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ABSTRACT

The increasing complexity of healthcare systems and the exponential growth of medical

data necessitate advanced analytical methods for improving disease prediction, diagno-

sis, and treatment outcomes. This thesis explores machine learning and deep learning

techniques applied to healthcare analytics, specifically focusing on lung cancer predic-

tion. It addresses gaps in traditional healthcare analytics through sophisticated data

mining techniques, optimized classification algorithms, and the integration of emerging

technologies like the Internet of Medical Things.

Data mining techniques have emerged as pivotal tools in processing vast healthcare

datasets. The thesis discusses the significance of these techniques in disease prediction,

patient care improvement, and resource optimization. By employing algorithms that can

detect patterns and trends within complex datasets, healthcare providers can make more

informed decisions, leading to better patient care. The importance of data mining tech-

niques is highlighted, showcasing their effectiveness in disease prediction and resource

optimization while addressing challenges like data privacy and high dimensionality.

Subsequently, the study dicusses the applications of machine learning and deep

learning methodologies, presenting real-world implementations that demonstrate im-

proved diagnostic accuracy. The research underscores the limitations of traditional an-

alytics methods and articulates the need for robust models in multi-disease prediction

and lung cancer detection.
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The primary objectives of this thesis include improving disease detection capabil-

ities, enhancing prediction accuracy, and optimizing resource utilization, particularly

concerning lung cancer and multi-disease diagnosis. The proposed work includes a

comprehensive methodology for developing machine learning models, featuring com-

parative analyses of various classifiers and demonstrating significant improvements in

diagnostic accuracy. The proposed framework utilizes ensemble learning techniques to

enhance predictive accuracy. Hyperparameter tuning and optimization strategies, such

as grid search, are employed to refine model performance. The results demonstrate a

significant improvement in diagnostic accuracy compared to traditional methods, with

the Multilayer Perceptron (MLP) and Logistic Regression models achieving accuracy

rates of 93.65% and 93.54%, respectively.

The advantages of utilizing deep learning models for lung cancer detection and

multi-disease classification are highlighted. The research employs various architec-

tures, including DenseNet201, VGG16, VGG19, MobileNet and EfficientNet, refined

through transfer learning. The integration of ensemble reinforcement learning tech-

niques further enhances model robustness and reliability. Deep learning implementa-

tions showcase architectures refined through transfer learning, achieving a diagnostic

accuracy of 99.40%. The findings validate the efficacy of the proposed frameworks and

their transformative potential in healthcare.

The research highlights the necessity for scalable machine learning frameworks that

improve model generalization while addressing ethical concerns in healthcare data ana-

lytics. Future research directions are proposed, emphasizing the need for robust valida-

tion across diverse datasets and the integration of emerging technologies such as IoMT

to facilitate real-time monitoring and personalized medicine.

This thesis serves as a significant contribution to the field of healthcare analytics,

providing valuable insights into the application of advanced analytical techniques for

improving disease prediction, diagnosis, and overall patient care. The findings un-

derline the critical importance of leveraging data mining, machine learning, and deep

learning methodologies to navigate the complexities of healthcare data and enhance

clinical outcomes.
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CHAPTER 1

INTRODUCTION

The healthcare sector is undergoing a remarkable transformation driven by the prolifer-

ation of digital technologies and the integration of advanced data analytics techniques.

With the rapid advancement of medical technologies, the volume of healthcare data

has surged exponentially, leading to the emergence of big data in healthcare. This

phenomenon presents both challenges and opportunities for healthcare providers, re-

searchers, and policymakers alike [1, 2]. The ability to effectively mine and analyze

this vast amount of data has the potential to revolutionize healthcare delivery, enhance

patient outcomes, and reduce costs [3]. The following sections discuss the role of data

mining algorithms in healthcare, the evaluation of ML classifiers for disease prediction,

and innovative approaches to lung cancer detection, showcasing the critical need for

research and development in this domain.

1.1 Overview of Human Lung Anatomy

The lung is the most vital organ in the human respiratory system. The lungs are organs

in the chest that resemble sponges and are an essential part of the breathing system.

To make room for the heart, the left lung is smaller, having only two lobes, whereas

the right lung has three lobes. Air enters the body through the mouth or nose, travels

through each bronchus and the trachea, and then enters the lungs. The lungs are a couple

of sponge-shaped organs that resemble cones. Inhaled air provides the lungs with a full
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supply of oxygen. As oxygen travels to the body’s other organs, lung tissue transfers it

to the blood. When cells take in oxygen, they release carbon dioxide. Carbon dioxide is

returned to the lungs by the bloodstream and is expelled from the body while breathing

out. Figure 1.1 [4] shows the lung’s anatomical structure. The other main components

of the lung areas besides atmospheric air are pulmonary arteries and bronchi. The two

lungs (left and right) form the regions of the lung. In the left lung, an additional fissure,

the oblique fissure further divides the lung into upper and lower lobes. The geometry

of the human thoracic airway can be understood as a binary tree structure. The left and

right main bronchi branch from the base of the trachea or tracheal tree to enter the left

and right sides of the lung. The main bronchus consists of five lobar bronchi, two left

bronchi, and three right bronchi, respectively, entering each lobe of the lung. The seg-

mental bronchial tree (8–10 per lung region) branches from the lobar bronchi. Although

the distribution of the bronchi is random, the branches of the pulmonary arteries follow

the bronchi in parallel.

Figure 1.1: Structure of Human Lung
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1.1.1 Overview of Lung Cancer

The World Health Organization reports that in 2022, there were 2.5 million new in-

stances of lung cancer, accounting for 12.4% of all the new cancer cases, and deaths

were 1.8 million, accounting for 18.7% of the total cancer fatalities [5]. A quick diag-

nosis, appropriate treatment, or discovery are critical to the patient’s health. The treat-

ment plan and prognosis for the patient are usually dictated by the stage at which the

illness is identified. Early disease detection is therefore crucial to patients’ chances of

recovery. Computer-Aided Diagnosis (CAD) technology can greatly aid the diagnosis

of lung cancer.

There are two primary types of lung tumors.

• Malignant

• Benign

Malignant tumors are cancerous, develop uncontrollably, invade adjacent tissues,

and spread to other parts of the body, whereas benign tumors are not cancerous, develop

slowly, and don’t spread or invade other tissues.

1.1.2 Lung Cancer Detection

Early detection of lung cancer is instrumental in enhancing patient survival rates. The

conventional techniques used in detecting lung cancer involve imaging procedures like

chest X-rays, CT scans, and PET scans, which are used to detect suspicious masses

in the lungs. These are often followed by biopsy procedures, where tissue samples

are examined for malignancy. More recently, advanced technologies have come out

as powerful tools for lung cancer detection, providing automated and highly accurate

diagnostic support [6]. These AI-driven methods, including convolutional neural net-

works (CNN), can analyze medical images to detect lung nodules and classify cancerous

and non-cancerous tissues, often outperforming traditional techniques in terms of speed

and accuracy. Early detection through such automated systems can lead to improved

outcomes, enabling timely interventions. Figure 1.2 shows each phase in the cancer

detection process.

Raw data often contains noise, missing values, or irrelevant features. Preprocessing

involves handling these issues to ensure high-quality data. Relevant features from the
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Figure 1.2: Steps Involved in Detecting Lung Cancer

dataset such as texture, shape, and intensity of lung nodules are extracted using image

processing techniques or DL models [7]. Machine Learning (ML) or Deep Learning

(DL) Algorithms are used to train on the extracted features to classify whether a lung

nodule is malignant or benign. Data mining techniques like k-fold cross-validation are

employed to evaluate the model’s performance [8].

1.2 Overview of Healthcare Data Analytics

Healthcare data analytics represents a significant advancement in the ability of health-

care providers to utilize data for improved patient outcomes and operational efficiency.

As the healthcare sector transitions to a more data-driven approach, understanding the

types and sources of healthcare data becomes crucial. The role of data analytics ex-

tends beyond mere data collection; it encompasses sophisticated techniques that trans-

form raw data into meaningful insights that can drive clinical decisions, enhance patient

care, and optimize healthcare delivery systems.

Healthcare data encompasses a broad range of information generated through vari-

ous processes within the healthcare ecosystem. This data can originate from numerous

sources, including electronic health records (EHR), medical imaging systems, wear-
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ables, laboratory results, and patient surveys [9]. As healthcare becomes increasingly

digitized, the volume and variety of data generated continue to expand rapidly, leading

to what is commonly referred to as big data in healthcare [10].

Big data in healthcare can be defined by the "three Vs": volume, variety, and ve-

locity. The volume of healthcare data is immense, with millions of patients generating

countless data points through their interactions with healthcare providers. The variety

of data types is extensive [11]. Finally, the velocity of data refers to the speed at which

data is generated and analyzed, necessitating real-time analytics capabilities.

The effective analysis of healthcare data can lead to numerous benefits, includ-

ing enhanced patient safety, reduced costs, improved operational efficiency, and bet-

ter decision-making. Data analytics enables healthcare organizations to identify trends,

make predictions, and develop targeted interventions, ultimately improving patient out-

comes.

1.2.1 Importance of Data Mining in Healthcare

Data mining is the practice of using a variety of analytical approaches to huge databases

in order to find patterns, trends, and insightful information. In the context of healthcare,

data mining serves as a powerful tool for extracting meaningful information from EHRs,

clinical databases, and other healthcare-related data sources. As the healthcare indus-

try increasingly adopts digital technologies, data mining plays a pivotal role in trans-

forming raw data into actionable insights that can improve patient care and streamline

operational efficiency.

The digitalization of healthcare has resulted in the accumulation of data, often un-

structured and heterogeneous, which presents a significant challenge for healthcare pro-

fessionals. Data mining algorithms facilitate the extraction of valuable information

from these complex datasets, allowing for improved decision-making, resource alloca-

tion, and personalized treatment plans. Furthermore, the use of data mining techniques

enables healthcare organizations to identify trends, monitor disease outbreaks, and eval-

uate the effectiveness of interventions, ultimately enhancing the overall quality of care.

Data mining involves a series of processes that transform raw data into valuable

information. Each of these techniques serves distinct purposes in healthcare analytics:

• Clustering identifies groups of similar patients or conditions, allowing for tar-
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geted interventions and personalized care.

• Classification assigns patients to predefined categories based on their health data,

facilitating early diagnosis and treatment decisions.

• Regression analyzes the relationships between variables, helping healthcare pro-

fessionals understand how different factors impact health outcomes.

• Association rule mining uncovers hidden relationships between variables, which

can be crucial for identifying patterns in disease progression.

The significance of data mining techniques in healthcare cannot be overstated. As

healthcare systems face mounting pressures to improve patient care while controlling

costs, data mining provides actionable insights that can lead to informed decision-

making and effective interventions.

Applications of Data Mining in Healthcare

The applications of data mining in healthcare are diverse and extensive. One of the

most prominent applications is in predictive medicine, where data mining algorithms

are used to forecast disease outbreaks, predict patient outcomes, and identify high-risk

patients. By analyzing historical data, healthcare providers can implement proactive

measures to mitigate risks, allocate resources efficiently, and improve patient safety.

Another critical application of data mining is in customer relationship manage-

ment (CRM) within healthcare organizations. By leveraging patient data, healthcare

providers can enhance their understanding of patient preferences and behaviors, lead-

ing to improved patient engagement and satisfaction [12]. Data mining techniques can

also be used to identify trends in patient feedback, enabling organizations to address

concerns and improve service delivery.

Moreover, data mining plays a vital role in fraud detection and prevention within the

healthcare system. By analyzing billing patterns, data mining algorithms can identify

anomalies and flag potential fraudulent activities. This application is particularly crucial

in combating healthcare fraud, which costs the industry billions of dollars annually.

In addition to these applications, data mining is instrumental in monitoring health-

care quality and evaluating the efficiency of various therapies. By analyzing treatment
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Figure 1.3: Healthcare Mining Analysis

outcomes [13, 14] as per Figure 1.3, healthcare providers can determine the effective-

ness of different interventions.

Challenges in Data Mining

While data mining offers significant advantages in healthcare, it is essential to address

several challenges and considerations. These include data privacy and security con-

cerns, data problems are good and experts are needed to analyze and interpret data

patterns.

1. Data Privacy and Security The increasing use of data mining methods [15] has

raised concerns about patient privacy and data security. Healthcare organizations

have a legal obligation to comply with Health Insurance Portability and Account-

ability Act (HIPAA) rules and safeguard patient data. The proper governance of

data and the use of encryption mechanisms are essential to implement effective

safeguards for patient data.

2. Data Quality Data mining techniques generally yield better results when samples

are taken from high-quality data [16]. Faulty conclusions can lead to incorrect

data, which are not consistent and not complete, making the decision-making
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process difficult. This can include prescriptive levels to enhance data cleaning

and preprocessing.

3. Skilled Professionals The proper implementation of data mining techniques re-

quires trained personnel with backgrounds in data analytics, statistics, and medicine

[17]. Data mining, as a powerful approach to analyzing and leveraging data, can

contribute significantly to the advancement of healthcare by transforming the con-

temporary nature of patient care and providing insights for enhancing operational

efficiencies.

4. Lack of Explainability ML and DL models, particularly deep neural networks,

tend to be "black boxes" in that they provide predictions without revealing how

they reached them. Because of this lack of transparency, it is hard for clinicians

to trust or defend the model’s decision in a clinical context [18].

5. Bias and Fairness AI models trained on unbalanced data can perform poorly

for certain populations, leading to unequal treatment. These kinds of biases may

worsen already existing health inequities.

6. Generalizability and Validation Models that perform well in controlled envi-

ronments may fail in real clinical settings. To ensure consistent performance, AI

systems need thorough testing and validation across diverse real-world scenarios.

1.3 Machine Learning and Deep Learning in Healthcare

The integration of ML and DL techniques into healthcare has transformed the land-

scape of disease prediction and diagnosis. As vast amounts of healthcare data continue

to grow, the need for sophisticated analytical methods becomes increasingly important.

ML is a form of artificial intelligence (AI) that generates algorithms capable of learning

from data samples and making predictions based on them. A subset of neural networks

with several layers used to examine intricate patterns in huge datasets is called deep

learning. It has found its best applications in image and speech recognition tasks. In

healthcare, these techniques are applied to predict diseases, detect anomalies, and sup-

port medical decision-making, ultimately leading to improved patient outcomes.
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1.3.1 Machine Learning for Disease Prediction

ML encompasses a range of algorithms designed to analyze data, learn from it, and

make predictions. Figure 1.4 represents various different approaches in machine learn-

ing. Common techniques used in healthcare include:

• Supervised Learning: This method uses labeled datasets, to train algorithms.

This group includes algorithms such as random forests, logistic regression, deci-

sion trees, and SVM.

• Unsupervised Learning: When the algorithm has to find patterns or groupings

within the data samples and the data is unlabeled, this method is employed. To

find hidden links, methods like association rule mining and clustering are fre-

quently used.

• Reinforcement Learning: This technique involves training algorithms through

trial and error, with rewards given for successful outcomes. While less common

in healthcare, it has applications in optimizing treatment plans and patient man-

agement.

1.3.2 Deep Learning for Disease Prediction

Deep learning is built on top of neural networks which are computing systems that

are modeled loosely after human brain architecture. More specifically, these neural

networks have multiple layers which modify the input samples through processes. The

following are key DL methods applied to medicine:

• Convolutional Neural Networks (CNNs): CNNs are a type of deep neural net-

work that is often used to analyze visual images and are particularly good at

processing medical images like MRIs, X-rays, and CT scans. They automatically

discover what features should be engaged from images of different diseases to

correctly identify those illnesses.

• Recurrent Neural Networks (RNNs): These are designed to process sequences

and so is well-suited for time series analysis as well. They analyze data of patients

monitoring and predict the disease progress in upcoming times.
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Figure 1.4: Classification of Machine Learning Techniques.

• Generative Adversarial Networks (GANs): GANs have two distinct neural net-

works, which are a generator and a discriminator, and are trained in a way that

they compete with each other. They have been helpful in data augmentation, par-

ticularly in medical imaging, where we often have small datasets to train models.

1.4 Motivation for Research

In recent years, the healthcare industry has witnessed a significant surge in the gener-

ation and availability of data, driven largely by advancements in technology and the

digitization of medical records. Despite the tremendous potential of this data, exist-

ing healthcare analytics techniques have not fully capitalized on it, leading to various

research gaps and limitations in traditional methods.This section highlights the moti-

vations for pursuing innovative solutions, and the anticipated benefits of adopting ad-

vanced ML and DL models to enhance healthcare outcomes.
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1.4.1 Motivations for Exploring Advanced Machine Learning and Deep Learn-

ing Models

The limitations of traditional healthcare analytics techniques underscore the need for

advanced ML and DL models. By addressing existing research gaps, these innovative

approaches promise to enhance predictive accuracy, operational efficiency, and patient

care.

1. Enhancing Predictive Accuracy: One of the main motivations for using ML

and DL models is to improve the accuracy of disease diagnosis and treatment

outcomes. Researchers aim to create models with greater predictive power by

leveraging advanced algorithms that can analyze large amounts of data.

For instance, deep learning techniques, particularly CNNs, have shown remark-

able success in analyzing medical images. These models can learn hierarchical

features from images, allowing them to achieve higher accuracy rates in diagnos-

ing conditions such as cancer or cardiovascular diseases compared to traditional

image analysis methods.

2. Improving Efficiency in Healthcare Delivery: In addition to enhancing predic-

tive accuracy, advanced ML and DL models can significantly improve the effi-

ciency of healthcare delivery. The ability to process large datasets quickly and

make real-time predictions allows healthcare providers to streamline operations

and optimize resource allocation.

For example, machine learning algorithms can analyze patient data to identify

trends in hospital admissions, enabling hospitals to allocate resources more ef-

fectively. Forecast models predict patient numbers, allowing healthcare organi-

zations to adjust staffing levels and reduce patient wait times.

3. Facilitating Personalized Medicine: As healthcare shifts towards personalized

medicine, advanced machine learning and deep learning models play a pivotal

role in tailoring treatment plans to individual patients. By analyzing genetic,

clinical, and lifestyle data, these models can help healthcare providers identify

the most effective treatments for each patient.
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For instance, ML techniques have been successfully applied to predict responses

to cancer therapies based on a patient’s genetic makeup. By leveraging patient-

specific data, healthcare providers can design targeted treatment plans, minimiz-

ing adverse effects and enhancing treatment efficacy.

4. Addressing the Challenge of Data Complexity: The complexity of medical

records poses a major challenge to traditional diagnostic procedures. Advanced

ML and DL are specifically designed to address this challenge. For example, DL

models can extract relevant features from raw data, reducing the need for manual

selection and enabling data analysis. Images, text, and data structures, among

many others.

1.4.2 Research Gaps in Existing Healthcare Analytics Techniques

Despite the advancements in healthcare analytics, several research gaps remain that

warrant exploration. Identifying and addressing these gaps can lead to more effective

machine learning and deep learning applications in healthcare.

1. Limited Generalizability of Models: Many existing models are trained on spe-

cific datasets, which may not be representative of broader patient populations.

This limitation can affect the generalizability of models when applied to new

populations or settings. There is a need for research that focuses on developing

models capable of adapting to diverse populations and contexts.

2. Insufficient Data Integration: Healthcare data often resides in silos, with dif-

ferent systems and formats hindering comprehensive analysis. Integrating data

from multiple sources—such as EHRs, wearable devices, and genomics—poses

a significant challenge.

3. Interpretability and Trust: As ML and DL models become more complex, the

issue of interpretability becomes increasingly important. Future research should

focus on developing interpretive models to gain insight into decision-making pro-

cesses.
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1.5 Research Objectives

The overarching aim of this research is to explore and enhance the use of data mining

techniques, ML, and DL algorithms in the healthcare sector. Through a detailed analysis

of various methodologies and their applications, this study seeks to contribute to the

improvement of patient care, disease prediction, and treatment strategies. The following

objectives outline the specific goals to be accomplished through this research:

1. To study data mining techniques used by healthcare organizations to build infer-

ences concerning patient health.

2. To implement procedures to precisely recognize diseases via examining symp-

toms and other relevant medical factors.

3. To build a consumer focused integrated model in relevance with evaluation pa-

rameters intended to provide the right care and right living pathway.

4. To perform predictive analysis of Respiratory diseases so that individual patients

can be better treated.

1.6 Thesis Contribution

The thesis contribution is mentioned as per the following:

• To study data mining techniques used by healthcare organizations to build infer-

ences concerning patient health.

1. A thorough literature review has been conducted to identify existing data

mining methods that are currently in use within the healthcare domain.

2. The review highlights the advantages and limitations of different methods,

providing a comprehensive understanding of their applicability in different

healthcare scenarios.

3. Assess the impact of data mining on patient care, focusing on predictive

analytics and decision support systems.

• To implement procedures to precisely recognize diseases via examining symptoms

and other relevant medical factors.
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1. Compared nine machine learning classifiers based on multiple evaluation

metrics.The top-performing classifiers were selected for further optimiza-

tion and integration into the final ensemble model.

2. Evaluated classification models using accuracy, recall, precision,and F1-

score to ensure effective disease identification.

• To build a consumer-focused integrated model in relevance with evaluation pa-

rameters intended to provide the right care and right living pathway.

1. Designed a comprehensive framework using data mining and machine learn-

ing to deliver personalized care plans based on patient-specific information.

2. To enhance feature extraction integrated K-Means clustering with fuzzy

logic, leading to improved model performance evaluated through metrics

such as precision, accuracy, recall,and F1-score.

3. Implemented a voting classifier ensemble with majority voting to combine

predictions from multiple models, and further enhanced predictive power

through grid search-based hyperparameter tuning.

• To perform predictive analysis of Respiratory diseases so that individual patients

can be better treated.

1. Integrated model was introduced using DenseNet201, EfficientNet B7, VGG16,

MobileNet, and VGG19 to accurately predict lung cancer using a multiclass

dataset.

2. The Elastic Transformation augmentation approach was applied to the dataset

with significant class disparity.

3. The performance of the model was assessed against the individual model.

4. An Ensemble Reinforcement Learning framework was proposed to contin-

uously enhance prediction accuracy and reliability.

The objectives outlined above represent a comprehensive framework for the pro-

posed research work in healthcare analysis. By studying data mining techniques,

implementing accurate disease recognition procedures, developing a consumer-

focused integrated model, and performing predictive analyses of respiratory dis-
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eases, this research aims to advance the application of data science in healthcare

sets. Through these efforts, the study aspires to contribute to the enhancement of

patient care, the optimization of treatment strategies, and the overall improvement

of healthcare systems.

1.7 Thesis Organization

The thesis is structured to provide a comprehensive overview of the role of ma-

chine learning and deep learning in healthcare analytics, with a particular focus on

lung cancer detection and multi-disease prediction. The organization of the thesis

is designed to guide the reader through a logical progression of research objec-

tives, methodologies, and findings, highlighting the significance of each chapter

in contributing to the overall aim of improving healthcare outcomes through ad-

vanced data mining techniques. The structure of the thesis and its dependencies

are shown in Figure 1.5.
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Figure 1.5: Chapter Wise Thesis Organization

Chapter 2 provided an extensive review of existing research in healthcare analyt-

ics and compares various data mining algorithms, highlighting their strengths and

weaknesses in healthcare applications. Chapter 3 detailed the methodologies em-

ployed in the research, specifically focusing on machine learning techniques for

disease prediction. Chapter 4 presented the research methodology used for de-

veloping deep learning models, including preprocessing techniques, architecture

selection, and data augmentation strategies. It emphasized the role of ensem-

ble techniques in improving diagnostic accuracy. Chapter 5 encapsulates the key

findings of the research, emphasizing the contributions made to healthcare ana-

lytics and also explored future research directions. In detail, the organization of

the thesis is as follows:

– Chapter 2 provides an extensive review of existing research in healthcare

analytics. It also compares various data mining algorithms, highlighting
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their strengths and weaknesses in healthcare applications. This chapter is

partially derived from:

* Richa Jain, Devendran V., “Data Mining Algorithms in Healthcare:

An Extensive Review”, Fifth International Conference on I-SMAC (IoT

in Social, Mobile, Analytics and Cloud) (I-SMAC) (Published), 2021.

(Scopus)

– Chapter 3 presents an innovative approach therapy prototype that optimizes

resource use through computational intelligence. We proposed a novel IOMT-

based framework that is consumer-focused, designed to enhance patient

care, integrating Logistic Regression, MLP Classifier, Gaussian NB, and

intelligent feature selection using K-Means and Fuzzy Logic. Ensemble

learning with a voting classifier and hyperparameter tuning further improves

performance. This chapter is derived from:

* Richa Jain, Parminder Singh, Mohamed Abdelkader, and Wadii Boulila,

“Efficient lung cancer detection using computational intelligence and

ensemble learning”, PloS one (Published), 2024. (Scopus, SCIE 2.9

IF)

* Richa Jain, V. Devendran, and Parminder Singh, “Evaluation of Ma-

chine Learning Classifiers for Multiple Disease Prediction.”, Computer

Science Engineering and Emerging Technologies: Proceedings of ICCS

(Published), 2024.

– Chapter 4 introduces a new framework that combines deep learning with RL

to improve the accuracy of CT scans for lung cancer diagnosis. This chapter

is derived from:

* Richa Jain, Parminder Singh, and Avinash Kaur, “An Ensemble Rein-

forcement Learning-Assisted Deep Learning Framework for Enhanced

Lung Cancer Diagnosis”, Swarm and Evolutionary Computation (Pub-

lished), 2024. (Scopus, SCIE 8.2 IF)

– Chapter 5 presents the conclusion of the thesis finding and introduces the

possible future directions.
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CHAPTER 2

LITERATURE REVIEW

Lung cancer remains a significant public health challenge, being one of the lead-

ing causes of cancer-related deaths worldwide. To improve patient outcomes and

survival rates, lung cancer must be detected early and diagnosed accurately. Re-

cent developments in DL and ML methods have demonstrated enormous promise

for transforming the healthcare industry, especially in the diagnosis and treat-

ment of illnesses like lung cancer. By leveraging the power of ML algorithms

and deep learning models, researchers and clinicians can analyze vast amounts

of medical data, such as imaging scans, genetic profiles, and patient records, to

develop innovative and accurate tools for early detection, prognosis, and person-

alized treatment of lung cancer. This literature aims to explore the application

of machine learning, deep learning, and reinforcement learning in the context

of cancer prediction, highlighting the potential benefits, challenges, and future

directions in utilizing these technologies to combat this deadly disease.1 [19].

1This chapter is partially derived from:

R. Jain and D. V, "Data Mining Algorithms in Healthcare: An Extensive Review," 2021 Fifth Interna-

tional Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India,

2021, pp. 728-733, doi: 10.1109/I-SMAC52330.2021.9640747.
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2.1 Machine Learning in Healthcare

Over the past few decades, data mining—a potent method for gleaning important

information from massive datasets—has seen substantial development, especially

in the healthcare industry. As the volume of healthcare data has exponentially

increased due to advancements in technology and digitalization, the need for so-

phisticated data mining methods has become paramount. This section provides an

overview of data mining applications in healthcare, tracing the development from

early rule-based systems to the modern ML and DL methods employed today.

ML provides creative ways to enhance patient outcomes, optimize treatment plans,

and expedite clinical procedures. By harnessing the power of advanced algo-

rithms and computational models, ML enables healthcare professionals to ana-

lyze vast amounts of complex data, identify patterns, and make more accurate

predictions in diagnosis, treatment planning, and disease management. In the

context of lung cancer, ML techniques have shown great promise in enhancing

early detection, predicting patient prognosis, and personalizing treatment regi-

mens. The integration of machine learning in healthcare holds the potential to

revolutionize medical research and practice.

Shamrat et al. [17] explored the use of ML for predicting breast diseases, in-

cluding cancer. Algorithms like SVM, KNN,logistic regression, decision trees,

random forest, and naive Bayes were evaluated. The SVM model demonstrated

the best performance, with an accuracy of 97.07% in breast disease prediction.

Ed-daoudy et al. [20] presented a real-time health prediction system using big

data technologies. By applying a distributed machine learning model via Spark

streaming and Kafka, it transformed the standard decision tree (C4.5) into a scal-

able and efficient version for processing streaming data. The system predicted

health status from various disease sources, sends alerts to caregivers, and stores

results in a distributed database for further analytics. Performance evaluation

shows Spark’s decision tree outperforms traditional tools like Weka in terms

of throughput and execution time, demonstrating its ability to handle real-time,

large-scale medical data effective
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Vinitha, S et al. [9] The proposed system provided machine learning algorithms

for predicting disease occurrences in high-risk communities, using real-life hos-

pital data. To handle incomplete data, a latent factor model was used to recon-

struct missing information. Experiments focused on cerebral infarction, utilizing

both structured and unstructured hospital data. Machine Learning Decision Tree

and MapReduce algorithms were applied, marking one of the few works to ad-

dress both data types in medical big data analytics. The system outperformed the

CNN-based Unimodal Disease Risk Prediction (CNN-UDRP) algorithm in terms

of convergence speed and prediction accuracy, achieving 94.8%.

Revathy et al. [21] studied the performance of algorithms such as SVM,Random

Forest, decision tree, and Naive Bayes on chronic kidney disease(CKD)dataset.

V. Mounika et al. [22] used ML algorithms to predict type-2 diabetes based on

various risk factors. The algorithms tested included logistic regression, and ran-

dom forest. The LR model achieved the highest accuracy of 97% in predicting

type-2 diabetes.

Dahiwade. D et al. [23] proposed a system that predicted general diseases based

on patient symptoms using K-Nearest Neighbor (KNN) and CNN algorithms. It

used a symptom dataset and considered patient habits and checkup details for

accuracy. CNN achieved an accuracy of 84.5%, outperforming KNN, which also

required more time and memory than CNN.

Reddy et al. [24] used the Cleveland Heart data, ten learning machines classi-

fied by Bayesian, functional, lazy, meta, rule, and tree clustering were trained to

predict heart disease risk. Classifications were tested using the full set of meth-

ods and optimized methods from our measured behavior, using 10-fold cross-

validation. Hyperparameter tuning was performed on the IBk classifier by ad-

justing the number of nearest neighbors. The sequential minimal optimization

(SMO) classifier achieved 85.14% accuracy.

Bharathy S et al. [25] primarily used multi-stage classification, including data

enhancement and segmentation. Segmentation was performed using threshold-

ing, marker-controlled watershed, and binary classifiers. Various algorithms like

Random Forest, Support Vector Machine (SVM),Logistic Regression, KNN, De-
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cision Tree, and Naïve Bayes were used for training the dataset, with Random

Forest achieving the highest performance.

Mohan K. et al. [26] developed an accurate learning model for early lung can-

cer prediction using different populations and treatment regimens. Different ML

techniques were used. The Random Forest model outperformed the others, achiev-

ing an accuracy of 90.32%.

Modak C. et al. [27] aimed to develop machine learning algorithms to assist

physicians in determining the appropriate diagnosis level for lung cancer patients,

reducing unnecessary treatment and costs. XGBoost achieved the highest accu-

racy of 95.92%, followed by Random Forest (93.32%), Decision Tree (91.50%),

Naïve Bayes (90.32%), and Logistic Regression (57.41%).

2.2 Deep Learning in Healthcare

Deep learning has emerged as a transformative force in the field of healthcare,

particularly in the area of disease prediction. This section delves into the role of

deep learning models in disease prediction, emphasizing their unique strengths

and applications.

Deep learning is a branch of machine learning that uses neural networks with mul-

tiple layers (hence the term “deep”) to analyze large datasets. These networks are

designed to recognize and extract features from raw data, allowing them to per-

form complex tasks like image recognition, natural language processing, etc.In

healthcare, deep learning has proven particularly effective in handling unstruc-

tured data, which comprises a significant portion of the information generated in

clinical settings.

C.Wang et al. [28] investigated CT images from 1,222 patients across three med-

ical institutions. The pathological labels were categorized into 2, 3, and 8 clas-

sifications. A modified ResNet-34 deep learning network, combined with ra-

diomics strategies, was used for the classification task. The deep radiomics al-

gorithm achieved an internal accuracy of 0.8776 for the 2-category classification

and 0.8061 for the 3-category classification, while the AUC for the 8-category
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classification ranged from 0.739 to 0.940. Additionally, the prognostic model

achieved a C-index of 0.892.

Seyrek, E. C. et al. [29] conducted a comparative analysis of various activation

functions and optimizers. Six robustness enhancements (LReLU, Mish, PReLU,

ReLU, Swish, and Sigmoid) and four smoothing enhancements (Adam, Adamax,

Nadam and RMSProp) were tested on CNN models using two datasets Indian

Pines and WHU-. The results show that the CNN model using the Adamax opti-

mizer and Mish optimization function achieves the highest accuracy with 98.32%

accuracy for Indian Pines dataset and 97.54% accuracy for WHU Hi HongHu

dataset.

Sungyeup Kim et al. [30] proposed a deep learning method utilizing transfer

learning to classify lung diseases in chest X-ray (CXR) images. Experiments

were conducted on three classes (normal, pneumonia, and pneumothorax) using

the U.S. National Institutes of Health (NIH) dataset, yielding validation results

of loss = 0.6933, accuracy = 82.15%. Additional experiments on the Cheonan

Soonchunhyang University Hospital (SCH) dataset, which included four classes

(normal, pneumonia, pneumothorax, and tuberculosis), achieved validation re-

sults of loss = 0.7658, accuracy = 82.20%.

Alshmrani, G. M., et al. [31] proposed a deep learning architecture for multi-class

classification of different diseases. A pre-trained VGG19 model was utilized,

followed by three CNN blocks for feature extraction and classification. Results

showed that the VGG19 + CNN model achieved 96.48% accuracy, significantly

enhancing diagnostic efficiency for healthcare practitioners.

Tan, Mingxing et al. [32] proposed a scaling method that uniformly scaled all

dimensions of depth, width, and resolution using a compound coefficient. This

method was applied to MobileNets and ResNet, enhancing their scalability. Ad-

ditionally, a baseline network was designed through neural architecture search,

resulting in the EfficientNet family. EfficientNet-B7 achieved 84.3% top-1 accu-

racy on ImageNet, being 8.4x smaller and 6.1x faster than prior ConvNets. It also

transferred well to datasets like CIFAR-100 (91.7%) and Flowers (98.8%), using

significantly fewer parameters.
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Shandilya et al. [33] aimed to develop a CAD method to classify histopathologi-

cal images of lung tissues. Multi-scale processing was applied for image feature

extraction. Seven pre-trained CNN models were compared for lung cancer clas-

sification. After hyper-tuning various factors, ResNet 101 achieved the highest

accuracy at 98.67%.

R. Pandian et al. [34] aimed to detect abnormal lung tissue growth using a highly

accurate detection tool. It analyzed lung images from healthy and malignant indi-

viduals, developing databases for various CT scan views (axial, coronal, sagittal).

Neural networks based on image texture were used to classify normal and ma-

lignant tissues. CNN and GoogleNet deep learning algorithms were proposed to

improve detection, utilizing the VGG-16 architecture. The method achieved a

precision of 98% in detecting and classifying lung cancer.

Al-Yasriy et al. [35] introduced a computer-aided system for detecting lung can-

cer using a convolutional neural network with the AlexNet architecture. The

model achieved 93.55% accuracy, with a sensitivity of 95.71% and specificity of

95%.

Priya and Bharathi [36] proposed a deep learning model that combines SE-ResNeXt-

50 and CNN to improve lung cancer classification using CT images. The model

leverages advanced feature extraction, QDHE-based preprocessing, and data aug-

mentation, achieving 99.15% accuracy and high performance across metrics. No-

table advantages include precise classification, robust generalization, and en-

hanced feature learning. However, drawbacks involve high computational de-

mand and limited clinical validation, potentially affecting its real-world applica-

bility.

Vadala et al. [37] proposed SpiLenet, a deep learning-based hybrid framework

that integrates SpinalNet and LeNet for lung cancer detection and severity clas-

sification using CT scans. The model employs advanced pre-processing, DRINet

for segmentation, and a fuzzy logic layer for improved decision-making. Key

advantages include high detection accuracy 92.10%, effective segmentation, and

reduced computational overhead. However, limitations involve reliance on large

annotated datasets and the absence of clinical deployment, which could restrict
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its practical implementation.

Yagappan et al. [38] introduced a hybrid framework, T-RGB, combining attention-

based CNNs, Vision Transformers, and a novel Gooseneck Barnacle Optimiza-

tion algorithm for enhanced lung cancer classification. The model effectively

captures critical spatial features using attention-enhanced convolution layers and

classifies them through a Vision Transformer, which excels at modeling global

dependencies in medical images. GBO is employed for efficient hyperparame-

ter tuning, accelerating convergence and boosting performance. The model was

tested on histopathological and CT scan datasets, achieving 99.61% accuracy. Its

strengths include innovative integration of transformer architecture, biologically

inspired optimization, and strong generalization across datasets. However, weak-

nesses include reliance on high computational resources, lack of clinical valida-

tion, and limited explainability in real-world deployment of AI in healthcare.

Table 2.1 explains the comparative analysis of various machine learning and deep

learning techniques for the cancer prediction used in the literature. Findings from

the existing research include: dataset used, the techniques/methodology applied,

and major findings which leads the researchers to solve existing problems.

Table 2.1: Summary of the Relevant Literature on Machine Learning and Deep

Learning Methods.

Author

and

Year

Technique Used Dataset Observations

Nageswaran

S, et

al. [39]

(2022)

Artificial Neural Network

(ANN), KNN, and RF

Dataset of 83

CT pictures from

70 individual

patients.

ANN outperformed other ma-

chine learning techniques in

accuracy for lung cancer de-

tection.
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V. Durga

Prasad

Jasti, et

al. [40]

(2022)

Geometric mean filter,

AlexNet, Relief algorithm,

KNN, LS-SVM, NB, and

Random Forest

MIAS database

of 322 mammo-

grams from 161

patients.

LS-SVM achieved the high-

est accuracy, while KNN

exhibited superior sensitivity

and specificity for breast dis-

ease detection.

Wang J,

et al. [28]

(2021)

Chest CT imaging with MPP

and mixed infections of MPP

and streptococcal pneumonia

(SP)

Pediatric chest

CT scans from

the MPP group

CT scans reveal differences

between MPP and MPP+SP

co-infections, with more lung

abnormalities in the MPP

group.

C. Anil

Kumar,

et al. [41]

(2022)

SVM for lung cancer predic-

tion

UCI Lung Can-

cer dataset with

32 instances and

57 features

SVM classifier, especially

with SMOTE resampling,

showed superior accuracy,

precision, recall, and F1-

score.

Dritsas,

E.;

Trigka,

M. [42]

(2022)

Naive Bayes, Bayesian Net-

work, Stochastic Gradient

Descent, SVM, Logistic Re-

gression, ANN, KNN, De-

cision Trees, Random For-

est, Rotation Forest, RepTree,

and AdaBoostM1

Dataset of 309

participants and

15 features

Rotation Forest (RotF) model

outperformed others with an

accuracy of 97.1%.

Vani Ra-

jasekar,

et al. [43]

(2023)

Inception V3, CNN, CNN

GD, Resnet-50, VGG-16, and

VGG-19

Dataset com-

prising CT and

histopathological

images

CNN GD model achieved the

highest accuracy of 97.86%.

Deepapriya,

et al. [44]

(2023)

MSD-NET deep learning

model

Chest X-rays and

CT scans

MSD-NET demonstrated su-

perior performance compared

to other models.
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Hanaoka,

J., et

al. [45]

(2021)

Dynamic Perfusion Digital

Radiography, Pulmonary

Perfusion Scintigraphy, and

Spirometry

52 individuals

included, specific

dataset details not

disclosed

Dynamic perfusion digi-

tal radiography effectively

matched with scintigra-

phy and spirometry for

post-surgical risk predictions.

KMA

Alheeti

et al. [46]

(2024)

Transfer learning models for

deep learning classification.

Chest CT-Scan

dataset used for

analysis.Focused

on CT scan

images for lung

cancer detection.

MobileNetV2 achieved high-

est accuracy of 98%.SVM

model achieved overall accu-

racy of 89%.

2.3 Ensemble Learning and Reinforcement Learning in Health-

care

The advent of machine learning in healthcare has led to significant advancements

in diagnostic accuracy and patient care. Among the various approaches used

in this domain, ensemble learning and reinforcement learning have emerged as

powerful techniques that enhance the performance of predictive models. Ensem-

ble learning is a machine learning paradigm that combines multiple models to

improve predictive performance compared to individual models. By aggregating

the predictions of various classifiers, ensemble methods can reduce variance, bias,

and improve accuracy. Common ensemble techniques include Bagging (Boot-

strap Aggregating), Boosting, and Stacking, each employing different strategies

to combine the strengths of individual models.

Reinforcement learning (RL)is an ML method in which an agent gradually learns

to make decisions via its environment interaction. In the form of feedback, it re-

ceives of its behavior but learn to act in a way to maximize a goal in the presence

strategies over time. RL has also been successful in many other applications, such

as the healthcare domain, from where it can be used to optimize decision-making

processes. This section reviews the integration of ensemble learning and rein-
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forcement learning in healthcare applications, emphasizing their contributions to

improving diagnostic accuracy, robustness, and overall healthcare delivery.

2.3.1 Techniques of Ensemble Learning

1. Bagging: Bagging is an ensemble method where many models are trained

independently on different subsets of the data. Typically, this subset is cre-

ated by bootstrapping-sampling with replacement.

Application in Healthcare: Bagging techniques, such as Random Forests,

have been widely used in healthcare for disease prediction tasks. For in-

stance, Random Forests have been employed to predict the onset of diabetes

by aggregating the predictions of numerous decision trees, leading to im-

proved accuracy and reduced overfitting compared to single decision trees.

2. Boosting: Boosting is another ensemble method that combines weak learn-

ers sequentially, where each new model is trained to correct the errors of the

preceding ones. This process emphasizes misclassified instances, allowing

the ensemble to focus on challenging cases.

Application in Healthcare: Gradient Boosting Machines (GBM) and Ad-

aBoost are common boosting techniques used in healthcare. For example,

GBM has been effectively applied in predicting cardiovascular disease risk

by improving classification accuracy through iterative training, which ac-

counts for previously misclassified cases.

3. Stacking: Stacking involves training multiple models and combining their

predictions using a meta learner (usually a simple model) that uses the re-

sults of the base models as input.

Application in Healthcare: Stacking has been utilized in complex diagnos-

tic tasks where different models provide unique strengths. For instance, a

combination of neural networks and traditional classifiers can enhance lung

cancer prediction accuracy, leveraging the strengths of both deep learning

and statistical methods.
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2.3.2 Overview of Reinforcement Learning

Reinforcement learning is an ML technique in which an agent learns to make

decisions by interacting with its environment. It receives feedback in the form

of rewards or punishments based on its behavior, which allows it to learn better

strategies over time. Reinforcement learning holds promise in a variety of appli-

cations, including healthcare, where it can facilitate decision-making processes.

Applications of Reinforcement Learning in Healthcare

1. Treatment Recommendations: RL has been applied to develop personal-

ized treatment recommendations for patients based on their individual re-

sponses to previous treatments. For instance, RL algorithms can analyze

patient data to recommend optimal medication dosages or therapies, con-

sidering both short-term and long-term health outcomes.

Case Study: A study utilized reinforcement learning to personalize treat-

ment for chronic conditions such as diabetes. By leveraging patient data

on glucose levels and treatment responses, the RL model optimized insulin

administration, resulting in improved glycemic control and patient satisfac-

tion.

2. Resource Allocation: RL can be employed to optimize resource allocation

in healthcare systems, particularly in emergency departments or intensive

care units. RL algorithms can dynamically adjust staffing, equipment usage,

and patient assignments to maximize efficiency and minimize waiting times.

Case Study: In a hospital setting, an RL approach was used to manage bed

assignments. The model adapted to changing patient inflows and resource

availability, significantly improving bed utilization rates and reducing pa-

tient wait times.

3. Personalized Health Interventions: RL enables the design of personalized

health interventions by continuously learning from patient interactions. For

instance, an RL framework can recommend lifestyle changes or monitoring

strategies based on real-time health data, adjusting its recommendations as

the patient’s condition evolves.
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Case Study: A study explored the use of RL to provide personalized health

coaching for weight management. By analyzing data on dietary habits,

physical activity, and weight changes, the RL agent provided tailored rec-

ommendations, resulting in more effective weight loss outcomes for partic-

ipants.

Xiao, Yawen et al. [47] proposed a deep learning-based ensemble method, com-

bining outputs from five different classifiers trained on gene expression data. Dif-

ferential gene expression analysis provided the most informative genes, which

were input into the classifiers. The ensemble method, improved cancer predic-

tion accuracy compared to single classifiers or majority voting methods.

Khalid El Asnaoui [48] evaluated single and ensemble learning models for clas-

sifying pneumonia. The ensemble models were fine-tuned versions of Inception-

ResNetV2, ResNet50, and MobileNetV2. A new dataset of 6,087 chest X-ray

images was compiled for comprehensive testing. Among single models, Incep-

tionResNetV2 achieved a 93.52% F1 score. The ensemble of ResNet50, Mo-

bileNetV2, and InceptionResNetV2 outperformed other configurations, reaching

an F1 score of 94.84%.

Talukder Md. Alamin et al. [49] introduced a hybrid ensemble feature extraction

model to identify lung and colon cancer effectively. It combined deep feature

extraction, ensemble learning, and high-performance filtering on the LC25000

histopathological lung and colon datasets. The results of the study show that this

approach provides better results than existing models.

Yang J. et al. [50] presented an imbalance classifier centered on RL for training on

highly imbalanced datasets, applicable to multi-class cases. Our approach was to

combine dueling and double-deep Q-learning architectures with a custom reward

function and episode-training process to support our multi-class imbalanced data.

The framework, which used clinical case studies for testing purposes, yielded bet-

ter results than existing imbalanced learning methods, leading to more balanced

classification and leading to a substantial advance in predicting the minority class.

Wang L. et al. [51] proposed a Supervised Reinforcement Learning with Recur-

rent Neural Network framework, integrating supervised reinforcement learning
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with an RNN to effectively manage complex relationships among medications,

diseases, and patient characteristics. The SRL-RNN utilized an off-policy actor-

critic structure, where the “actor” adjusted its prescription decisions based on

both indicator and evaluation signals to ensure optimal treatment and reduced

mortality. RNN was employed to address the Partially-Observed Markov Deci-

sion Process (POMDP) challenges, handling real-world cases with incomplete

data. Experiments on the MIMIC-3 dataset demonstrated that SRL-RNN could

decrease estimated mortality and improve the accuracy of prescriptions in align-

ment with doctors’ decisions.

Ausawalaithong, W et al. [52] investigated DenseNet-121, a 121-layer CNN, with

a transfer learning approach to classify lung cancer using chest X-ray images. The

model was pre-trained on a lung nodule dataset to address limited data availabil-

ity, followed by training on the lung cancer dataset.

Ansari et al. [53] proposed a hybrid SVMVGGNet-16 model that combines deep

learning (VGGNet-16) and machine learning (SVM) to classify lung cancer into

four types (ADC, LCC, SCC, and Normal) using CT images. The model achieved

high accuracy (96.72%) and AUC (96.87%), benefiting from precise feature ex-

traction and strong classification synergy. Its notable merits include multi-class

capability, robust preprocessing, and excellent performance across multiple met-

rics. However, key drawbacks involve dependence on a single dataset, limited

modality coverage, and lack of clinical validation, which restrict generalizability.

G.Liang [54] presented a DL framework combined with segmentation and cross-

correlation algorithms for the diagnosis of pneumonia in children. To address

overfitting and degradation in deep models, residual structures were used, while

dilated convolutions helped preserve feature space information as model depth

increased. Transfer learning with pre-trained parameters mitigated the impact of

limited data and structured noise. The method achieved good results, effectively

handling low-resolution images and occlusions in children’s chest X-rays, show-

ing improvement over previous methods.

Vignesh Kumaran et al. [55] proposed an intelligent ensemble framework for lung

cancer classification using CT images, combining models like VGG19, ResNet152V2,
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and EfficientNet with a fuzzy logic-based SALLC-NeT system. The model achieved

high accuracy upto 96.69% across various subtypes, demonstrating improved

early-stage nodule detection and reduced diagnostic errors. Strengths include ro-

bust ensemble modeling, enhanced feature extraction using fuzzy inference, and

multi-dataset validation. However, limitations involve high computational com-

plexity and a lack of explainability and real-world clinical validation, which may

hinder direct clinical deployment.

Table 2.2 explains the comparative analysis of various ensemble learning and

reinforcement learning techniques for the cancer prediction used in the the lit-

erature. Findings from the existing research include: dataset used, the tech-

niques/methodology applied, and major findings which leads the researchers to

solve existing problems.

Table 2.2: Summary of the Relevant Literature on Ensemble Learning and Rein-

forcement Learning.

Citation Dataset Technique Used Observations

SP

Venkatesh

et al. [56]

(2022)

Surveillance,

Epidemiology

and End Results

(SEER) dataset

used.

Ensemble methods in ma-

chine learning evaluated Bag-

ging, Adaboost, K-Nearest

Neighbours, Decision Tree,

Neural Networks

Results affirm that ensemble

methods are powerful tools

for enhancing the accuracy of

lung cancer survival predic-

tions, emphasizing the need

for careful data preprocess-

ing and the potential for im-

proved patient management

in clinical settings

U Sub-

ashchan-

drabose

et al. [57]

(2023)

Kaggle cancer

dataset.

Ensemble Federated Learn-

ing for multi-order lung can-

cer classification. Combines

multiple models with dis-

tributed data for privacy.

Ensemble Federated Learn-

ing improves accuracy and

generalization and achieved

89.63% accuracy in lung can-

cer classification.
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J Zhou et

al. [58]

(2023)

1075 lung

nodules with

preoperative

thin-section CT

scans less than or

equal to 30 mm

and greater than

or equal to 4 mm

nodules.

Ensemble multi-view 3D

convolutional neural network

(EMV-3D-CNN) model is

used to analyze preoperative

thin-section CT scans for risk

stratification

EMV-3D-CNN model

achieves 91.3% diagnosis

performance and outperforms

doctors with 77.6% accuracy

in risk stratification.

M Ma-

mun et

al. [59]

(2022)

Survey dataset

of 309 people

with lung can-

cer. The dataset

includes various

health-related

attributes.

Ensemble techniques: XG-

Boost, LightGBM, Bagging,

AdaBoost. Oversampling

SMOTE method for dataset

enhancement.

XGBoost achieved 94.42%

accuracy in predictions. En-

semble techniques improved

lung cancer prediction accu-

racy.

D Hu et

al. [60]

(2022)

Real clinical

dataset of 1848

postoperative

NSCLC patients.

Ensemble learning with

active sampling (ELAS)

method. Active sampling

queries informative samples

for classifier training.

ELAS achieved 0.736 AU-

ROC and 0.453 AUPRC val-

ues. Significant improve-

ments over SVM, AdaBoost,

and other methods.

MI Faisal

et al. [61]

(2018)

Benchmark

dataset obtained

from UCI reposi-

tory.

Evaluated classifiers: SVM,

C4.5, Multi-Layer Percep-

tron, Neural Network, Naive

Bayes. Compared with en-

sembles: Random Forest and

Majority Voting

Gradient-boosted Tree

achieved 90% accuracy in

predictions.
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Y Wang

et al. [62]

(2024)

National Lung

Screening Trial

dataset used.

Optimal stopping approach

using Snell envelope. Model-

free deep reinforcement

learning for diagnosis deci-

sions.

EarlyStop-RL enhances lung

cancer risk assessment and

diagnosis. Surpasses Lung-

RADS and Brock model per-

formance in evaluations.

S

Luo [63]

(2023)

LIDC-IDRI

dataset used.

LLC-QE model combines

ensemble and reinforce-

ment learning. Pre-training

with Artificial Bee Colony

algorithm utilized.

LLC-QE model achieves F

measure of 89.8%. Rein-

forcement learning improves

the classification of underrep-

resented classes.

J Balajee

et al. [64]

(2023)

Clinical data,

MRI images, and

X-rays utilized.

Adaptive Reinforcement

Learning Model (ARLM)

implemented. Deep trans-

fer learning and feature

extraction techniques used.

ARLM achieved 92% accu-

racy in lung cancer detec-

tion. False negative rate re-

duced with adaptive learning

approach.

SK Shah

et al. [65]

(2024)

CT scans of

individuals diag-

nosed with lung

cancer stages

Deep learning with pre-

trained CNN architectures

for classification. Elastic

transformation and data aug-

mentation for preprocessing.

Achieved 98.19% accuracy

using weighted CNN ensem-

ble.

A

Choud-

hary et

al. [66]

(2024)

Polymorphisms

data of five

XRCC1 SNPs.

Machine learning-based en-

semble approach utilized for

prediction. Input includes

XRCC1 SNPs and smoking

status data.

Ensemble model predicts

lung cancer risk with 85%

accuracy. The model outper-

forms individual models in

evaluation parameters.

2.4 Summary

The existing literature on healthcare data analytics reveals significant gaps, par-

ticularly concerning high false-positive rates, limitations in model generalization,

and the need for real-time decision-making frameworks. Addressing these chal-
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lenges is crucial for enhancing the effectiveness of disease prediction models and

improving patient outcomes in healthcare.

This thesis aims to fill these gaps by exploring advanced techniques that re-

duce false-positive rates, enhance model generalization, and develop real-time

decision-making frameworks. By doing so, the research seeks to contribute to the

growing body of knowledge in healthcare analytics and facilitate the integration

of data-driven approaches into clinical practice. The findings from this thesis will

not only advance the field of healthcare analytics but also ultimately enhance the

quality of care provided to patients.
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CHAPTER 3

LUNG CANCER DETECTION

USING COMPUTATIONAL

INTELLIGENCE AND ENSEMBLE

LEARNING

Lung cancer emerges as a major factor in cancer-related fatalities in the current

generation, and it is predicted to continue having a long-term impact. Detecting

symptoms early becomes crucial for effective treatment, underscoring innovative

therapy’s necessity. In this chapter, we present an innovative approach therapy

prototype that optimizes resource use through computational intelligence. We

propose a novel IOMT based framework that is consumer-focused, designed to

enhance patient care, integrating Logistic Regression, MLP Classifier, Gaussian

NB, and intelligent feature selection using K-Means and Fuzzy Logic. Ensemble

learning with a voting classifier and hyperparameter tuning further improves per-

formance. The proposed model’s performance is demonstrated through compar-

ative analysis with existing NB, J48, and SVM approaches, achieving a 98.50%

accuracy rate. This chapter highlights the potential of computational intelligence
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and IoMT in developing efficient, cost-effective lung cancer therapies.1 [68]

3.1 Introduction

Machine learning (ML) has emerged as a cornerstone technology in healthcare

analysis, providing innovative solutions to enhance diagnostic accuracy, predict

patient outcomes, and improve overall healthcare delivery. The increasing avail-

ability of vast amounts of healthcare data—ranging from electronic health records

(EHRs) to medical imaging—has necessitated the adoption of sophisticated an-

alytical techniques. Lung cancer is a life-threatening disease that significantly

impacts individuals and communities worldwide, leading to severe respiratory

complications and a high mortality rate. Early detection is crucial in improving

survival rates, making the identification of lung nodules—a potential precursor to

lung cancer—a priority in medical diagnostics. With the increasing prevalence of

lung nodules, the need for advanced techniques such as CAD systems has become

more urgent. These systems, which leverage the power of Computed Tomogra-

phy (CT) scans, utilize sophisticated X-ray technology to capture images from

multiple angles.

Early detection of lung cancer is crucial so that effective treatment can be pro-

vided to improve the survival rate. Wheezing is the commonly observed symptom

of lung-related cancer, which needs special care because of the reason of many

individuals who have lung cancer also suffer from a chronic obstructive respira-

tory disorder, which is the primary cause of coughing. The characteristics behind

the cough disease change, which is a critical pulmonary syndrome. Additionally,

expectorating, discomfort in the chest, shortness of breathing process, anorexia,

weight loss, fever, and bloody sputum are all signs as well as symptoms of lung

cancer [69–71].
1This chapter is derived from:

Richa Jain, Parminder Singh, Mohamed Abdelkader, and Wadii Boulila."Efficient lung cancer de-

tection using computational intelligence and ensemble learning." PloS one 19.9 (2024): e0310882.

(https://doi.org/10.1371/journal.pone.0310882) [67]. Jain, Richa, V. Devendran, and Par-

minder Singh. "Evaluation of Machine Learning Classifiers for Multiple Disease Prediction." Computer

Science Engineering and Emerging Technologies: Proceedings of ICCS 2022 (2024): 401.
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The conventional diagnostic methods, like X-rays and CT scans, provide detailed

images but rely heavily on the expertise of radiologists, leading to potential delays

and errors in diagnosis [72–74]. Furthermore, many patients with lung cancer

also suffer from chronic obstructive respiratory disorders, which can mask or

complicate the diagnosis.

ML techniques and AI approaches are crucial in the healthcare industry. One of

the most important applications in healthcare is predictive modeling, which in-

cludes developing mathematical models that can predict future outcomes based

on existing data [75]. Predictive modeling, for example, can be used to identify

individuals who are more likely to develop a particular disease or condition, en-

abling medical professionals to intervene sooner and treat or prevent the ailment

more successfully. Predictive modeling can also be used to improve drug ad-

herence and treatment plans, improving patient outcomes and saving healthcare

costs. A variety of laws should be established like in [76, 77] to assess and pro-

mote the real-world evolution of software utilities based on AI/ML for the initial

presumption and recognition of disease due to the broad application of AI/ML in

multiple health disorders’ prediction.

In particular, ML techniques have proved their potential in several healthcare ap-

plications [78–82]. Recently, attempts at analyses have also been made to predict

different diseases beyond hypertension and diabetes using language models of

symptoms [83]. The one that elaborates on how the machine learning domain

expanded to include not only the image-based data analysis of skin lesions [84]

but also the prediction and management of physiological conditions were further

extending an application scope within healthcare [85].

In this chapter, many classifiers are compared and analyzed to create a highly

sensitive and discrimination-capable model. The benchmark indicators include

accuracy, recall, precision, F-Score, and Area Under the Curve (AUC), each cru-

cial component of the diagnostic jigsaw. The proposed method assessments are

embellished with AUC ROC curves, which improve the visual comprehension

of our models’ effectiveness. In this ever-changing environment, research keeps

pace with computational intelligence, where cutting-edge methods like Python

scripted Intelligent Feature Selection, Logistic Regression, MLP Classifier, Gaus-
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sian NB Classifier, and a unified Voting Classifier ensemble combine to improve

the accuracy of early detection. Computational intelligence and ensemble learn-

ing both have their key roles in lung cancer detection, mainly in comparison to

techniques developed earlier. Computational intelligence involves using algo-

rithms such as Logistic Regression, MLP Classifier, and Gaussian NB Classifier

to improve the analysis of complex datasets, hence greatly improving diagnostic

accuracy. Ensemble learning improves this further through methods such as Vot-

ing Classifier by fusing several models to avoid false positives. Hyperparameter

modification, carried out by diligent grid search, improves model performance

further, portending a future in which lung cancer prediction is characterized by

accuracy, early action, and lives saved.

3.1.1 Major Contributions

This chapter presents an advanced machine learning-based approach for lung can-

cer prediction, with the following key contributions:

1. Cloud-Based IoMT Framework for Remote Lung Cancer Monitoring.

Challenge: Remote monitoring and management of lung cancer patients re-

quire an efficient and scalable framework for data handling. Contribution:

We propose a cloud-based Internet of Medical Things (IoMT) framework

that facilitates remote patient care by enabling effective data collection,

analysis, and seamless sharing with physicians, thereby improving treat-

ment outcomes.

2. Feature Selection Using K-Means and Fuzzy Logic.

Challenge: Extracting relevant features from complex lung cancer datasets

for accurate prediction is challenging. Contribution: We developed a model

utilizing Logistic Regression, MLP classifier, and Gaussian NB classifier.

To enhance feature extraction, we integrated K-Means clustering with fuzzy

logic, leading to improved model performance evaluated through metrics

such as accuracy, recall, precision, and F1-score.

3. Performance Comparison of Machine Learning Classifiers

Challenge:Selecting the most effective classifiers from a broad range of
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options for accurate disease prediction.Contribution:The study compared

nine machine learning classifiers, including Random Forest, Naive Bayes,

Logistic Regression, MLP, and others, based on multiple evaluation met-

rics. From this analysis, the top-performing classifiers—Logistic Regres-

sion, MLP, and Gaussian Naive Bayes—were selected for further optimiza-

tion and integration into the final ensemble model.

4. Ensemble Learning Through Voting Classifier

Challenge: Single-model predictions often suffer from limitations in accu-

racy and robustness. Contribution: We implemented a voting classifier en-

semble with majority voting to combine predictions from multiple models,

and further enhanced predictive power through grid search-based hyperpa-

rameter tuning.

5. Better Performance Through Experimental Validation

Challenge: Existing techniques for lung cancer prediction often lack suffi-

cient accuracy and efficiency. Contribution: Experimental results demon-

strated that our proposed system outperformed existing methods, validating

its superior performance and potential for real-world application attaining a

remarkable 98.50% accuracy rate.

This chapter is organized as follows: Section 3.2 describes the relevant existing

work. The proposed methodology is discussed in Section 3.3. The Proposed

Consumer-Focused Integrated Framework for Lung Cancer Diagnosis is high-

lighted in Section 3.4. The experimental setup is discussed in Section 3.5. In

Section 3.6, the results of the suggested work are thoroughly detailed and the

conclusion is summarized in Section 3.7.

3.2 Related Work

Numerous studies have explored machine learning models for improving lung

cancer detection accuracy.In this section, we go over the crucial contributions of

the researchers in predicting diseases using machine learning models. Nageswaran

et al. [39] used machine learning methods and mainly image processing tech-

nologies to demonstrate precise classification and anticipation of lung tumors.
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Gathering photographs was the first step. 83 CT scan images from 70 separate

individuals were incorporated into the experimental investigation as the dataset.

When processing digital images, the geometric mean filter was employed. Due to

this, picture sharpness was improved. The k-mean method was used for the seg-

mentation of photos. After that, machine learning-assisted organizing techniques

were applied. It was identified that the ANN architecture is more successful in

the prognosis of lung carcinoma.

Durga V. et al. [40] enveloped a data-driven process and image processing method

mainly based on evolutionary techniques for sorting and uncovering breast can-

cer. To contribute to the segmentation and pinpointing of skin-related chaos, this

paradigm integrated image optimization and trait extraction methods. The expo-

nential mean image filter was put into practice to improve the resolution of the

scan images. AlexNet was used to extract the features. An algorithm known as

relief was used to pick attributes. The proposed architecture used methods such

as KNN and Nave Bayes to categorize illness conditions and their identification.

Next, data from MIAS was gathered for scientific research. After that, the analy-

sis by using images to accurately diagnose cancer of the breast proved beneficial

for the suggested method. Halder and Kumar [86] proposed a unique active learn-

ing approach employing a rough-fuzzy classifier (ALRFC) for categorizing can-

cer disease samples by using gene expression data. The suggested method can

deal with overlapping, indiscernibility, and ambiguity of gene expression data.

The recommended algorithm was tested using different available illness datasets.

The experimental findings for cancer prediction are superior to other cutting-edge

methods. The primary purpose of the recommended strategy by Wang J et al. [28]

was to investigate the CT results of pediatric suffered patients who have MPP as

well as MP. It is quite frequent, and pediatric respiratory doctors should do crucial

studies on treating this type of mixed pneumonia disorder.

Kumar et al. [41] discussed the current causes of lung cancer and the usage of ML

algorithms, paying particular emphasis to their respective advantages and disad-

vantages. Instead of referring to several articles, this one allowed the researchers

to swiftly scan the pertinent literature. Dritsas and Trigka [42] developed effec-

tive models to detect patients who are at high risk of developing lung tumors
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or cancer and must be treated sooner to avoid long-life consequences. The Ro-

tation Forest was the main approach of the article. In further detail, the trials’

assessment revealed that the suggested model outperformed others with high F-

measure, precision, recall, and accuracy.

Deepapriya et al. [44] tested several models using a chest X-ray or a CT-scanned

image to identify a specific condition. The goal was to determine which deep

learning methods best predicted lung illness. Various performance criteria, in-

cluding accuracy, recall, precision, and Jaccard index, were used to assess the

method’s effectiveness. Doyle et al. [87] described the primary diagnosis char-

acteristics of NTMLD patients in the primary care wards and to see if machine

learning might be used to recognize NTMLD patients who have not yet received

a diagnosis. The UK’s electronic-based medical records primary care database,

IQVIA Medical Research Data (a Cegedim Database), was used. Patients with

NTMLD were located between 2003 and 2017 based on records of their NTMLD

treatment plan or main or secondary care diagnoses. At least one of these traits

was added to the control population.112 784 control subjects and 741 NTMLD

patients were chosen. For NTMLD patients, COPD and bronchial disorder were

the most prevalent pre-existing diagnoses, along with penicillin, macrolides, and

inhaled corticosteroids. With an AUC of 0.94, machine learning significantly in-

creased the identification of NTMLD patients compared to random testing. In

2016, it was predicted that there were 9 to 16 diagnosed and unrecognized in-

stances of NTMLD for every 100,000 people. The findings of this study sug-

gest that there may be a sizable number of unconfirmed instances of NTMLD in

the UK, supporting the viability of computational learning practiced to primary

health data to screen for unverified NTMLD patients.

Almarzouki et al. [88] greatly lessen the perplexity of real-time monitoring and

data collecting operations for a healthcare practitioner, resulting in better health-

care management. Raising awareness can aid in the development of important

dangers and regulating measures. Along with aiding in mitigating strokes, it also

detects high-risk variables. In the coming years, the EEG-based brain-computer

interface will have a bright future in preventing DALY. Thakur et al. [89] created

several techniques based on gene expression. DNA is transformed into Ribose
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Nucleic Acid (RNA), which is then transported into proteins through gene ex-

pression. This protein can be used for many things, such as creating new cells,

treating cancer, and even creating hybrid species. Some gene malformations are

also passed along to the next generation since genes transport genetic informa-

tion from generation to generation. Consequently, it’s necessary to find the mal-

formation. To predict malignant and non-cancerous genes using gene expression

data, there are several strategies present in the literature. This is a significant

breakthrough in diagnosing the illness and providing a prognosis. Ricciuti et

al. [90] aimed to ascertain if alterations in the levels of circulating tumor DNA

following the start of first-line pembrolizumab treatment in NSCLC would allow

early response expectation before radiological evaluation. Plasma patient sam-

ples were analyzed by next-generation sequencing employing improved tagged

amplicon and coding sections from 36 genes. The outcomes were linked with an

early AF. To determine if real-time blood flow radiography may be used to evalu-

ate pulmonary microcirculation scintigraphy in comparison to predict early post-

operative lung function and problems, Hanaoka et al. [45] conducted the study.

Spirometer and dynamic perfusion digital radiography were done before, as well

as one and three months following radical lung cancer resection. The same cases

were then used to validate correlation coefficients between blood flow ratios. The

relationship between projected values derived from the blood flow ratio and mea-

sured taken values was examined for all patients with dynamic perfusion digital

radiography.

Lakshmanaprabu, S. K., et al. [91] proposed a new method for the automated di-

agnosis of lung cancer using CT images. The features have been extracted from

the CT lung images through deep transformation and dimensionality reduction.

Then, the optimized ODNN has been reached using M-GSA sensitivity, speci-

ficity, and accuracy declared as 96.2%, 94.2%, and 94.56%, respectively. This

kind of automation can help screen for lung cancer effectively and reliably, allow-

ing radiologists to raise the rate of early detection to improve survival. Althubiti,

Sara A., et al. [92] introduced an effective approach for automated lung cancer

diagnosis on CT scans. The median filter was the best filter to be applied to med-

ical CT images, which gave better results than the Gaussian, 2D convolution, and
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mean filters. The preprocessed image was optimized by two optimization algo-

rithms, such as fuzzy c-means and k-means clustering, and later compared. From

the two, fuzzy c-means had 98% accuracy. Features of a texture were extracted

using the Gray Level Co-occurrence Matrix (GLCM), and three classification al-

gorithms were compared. The best one from this selection was gradient boosting

with 90.9% accuracy.

3.3 Research Methodology

The suggested method’s flow diagram, shown in Fig 3.1, includes the following

steps:

Figure 3.1: Flow Diagram of the Proposed Methodology.

3.3.1 Data Acquisition

The University of California, Irvine provided the dataset used for this study [93].

The dataset is housed in the Lung Cancer repository, which indicates the database
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in which the dataset is stored. The UCI lung cancer dataset is a well-known

dataset widely used for benchmarking various machine learning algorithms. It

serves as the basis of our analysis and consists of 32 instances referred to as indi-

vidual samples in the dataset. In addition to this, the dataset has 56 characteristics.

These refer to the attributes or variables that describe each instance. The dataset

comprises many features, including age, gender, alcohol use, genetic risk, chronic

lung disease, balanced diet, obesity, smoking, passive smoking, chest pain, blood

cough, weight loss, shortness of breath, difficulty swallowing, snoring, and oth-

ers. [94] Moreover, the dataset contains a single class attribute used in machine

learning and data analysis tasks. The class attribute is used to predict or classify

the network output.

3.3.2 Data Pre-processing

In the data pre-processing phase of our study, we imported the lung cancer dataset

into Python utilizing the Pandas module. This initial step facilitated data acces-

sibility for subsequent processing steps. To ensure data quality and relevance,

we conducted gap-filling and removing irrelevant data. Handling missing val-

ues effectively and eliminating superfluous information were essential to main-

tain the dataset’s integrity and suitability for analysis; Hence, the missing values

were dropped. Furthermore, the Synthetic Minority over-sampling Technique

(SMOTE) was employed to mitigate any possible class imbalance in the dataset.

This technique allowed us to balance the representation of different classes, a

crucial consideration in many classification tasks, particularly when dealing with

imbalanced datasets. Moreover, to augment our dataset and expand its diversity,

we employed synthetic data augmentation technique. These techniques lever-

aged random functions to generate additional data points, enhancing the dataset’s

richness and potentially improving the robustness of our subsequent analyses and

machine-learning models. Finally, the normalization is performed using the stan-

dardization technique. This approach involves transforming the data with a mean

of zero and a standard deviation of one. These comprehensive data pre-processing

steps laid the foundation for more accurate and meaningful insights in our re-

search of lung cancer diagnosis.
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3.3.3 K-Fuzzy Select Feature Selection Technique

Intelligent feature selection plays a pivotal role in our data analysis process, sig-

nificantly contributing to the quality and effectiveness of our study. To enhance

our attribute extraction efforts, we have incorporated a synergistic approach that

combines K-Means clustering with fuzzy logic techniques, which is explained

using Algorithm 1 below. K-Means clustering is a well-established unsupervised

learning algorithm that excels at identifying natural groupings or clusters within

the dataset. We aim to pinpoint cluster data points with common characteristics

by applying K-Means. This step is instrumental in uncovering pertinent features

within the dataset, as it helps us distinguish relevant patterns and relationships

among the variables. We leverage fuzzy logic to refine our feature selection pro-

cess in tandem with K-Means. Fuzzy logic is particularly valuable in this context

because it considers the relevance level associated with each feature. Instead of

treating features as strictly binary (relevant or irrelevant), fuzzy logic allows us

to assign degrees of relevance, recognizing that some attributes may contribute

more significantly to the analysis than others. This nuanced approach to feature

selection ultimately increases the attributes’ overall discriminating power. Com-

bining K-Means clustering and fuzzy logic makes our feature selection process

more sophisticated and data-driven. We identify relevant attributes and consider

their varying degrees of importance, resulting in a more precise and robust set of

features for our subsequent analysis and modeling. This intelligent feature selec-

tion approach enhances the overall quality and depth of insights derived from our

study, ultimately advancing our understanding of the underlying factors in our

lung cancer diagnosis research.

Explanation of Algorithm Steps:

– Normalization: This step standardizes the input dataset X to ensure that all

features have a comparable scale. It calculates the mean Xmean and standard

deviation Xstd of the dataset and then subtracts the mean from each data

point and divides by the standard deviation. By scaling the data, this method

yields a mean of 0 and a standard deviation of 1.
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Algorithm 1 K-Fuzzy Select: Algorithm for Intelligent Feature Selection via K-Means

and Fuzzy Logic
Input: Input dataset X of lung disease samples

Output: Optimal attributes Optimal f

Start

Get dataset X

Normalize the dataset X using the equation:

Xn =
X−Xmean

Xstd

where Xmean =
1
n ∑

n
i=1 X and Xstd =

1
n

√
∑(X−Xmean)2

Apply k-means clustering technique on dataset Xn and get cluster centers.

Predict the cluster labels for each data point in Xn, resulting in cluster_labels

Determine the number of features, n, in Xn

Initialize f uzzy_scores as a zero vector of length n

for i← number of features do

for j← number of clusters do
Calculate ms membership value for data in feature i with respect to cluster j

using a Gaussian membership function:

Xmean(x;c,Xstd) = e
− (x−c)2

2Xstd
2

where x represents the data point values for the i-th feature, c is the cluster

center for the j-th cluster and the i-th feature

Calculate fs fuzzy score using ms membership value and c:

fs[i] = fs[i]+

(
∑

x∈Xi

Xmean(x;c j,Xstd)

)
· c j,i

where Xmean(x;c j,Xstd) represents the Gaussian membership function for a

data point x in feature i, with c j being the center of cluster j for feature i

end

end

Get Optimal f optimal attributes by finding indices where fs > 0

End
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– K-Means Clustering: The algorithm applies the K-Means clustering tech-

nique to the normalized dataset XnK̇-Means identifies clusters in the data

and computes cluster centres cĖach cluster centre represents a group of sim-

ilar data points.

– Feature Loop: The algorithm enters a loop to evaluate each feature in the

dataset. This loop iterates through all features, one at a time i, to determine

their importance for feature selection.

– Cluster Loop: Within the feature loop, there is another loop that iterates

through the clusters j. For each feature, this loop calculates membership

values ms and fuzzy scores fs for that feature in each cluster.

– Membership Calculation (ms): For each feature i and each cluster j, the

algorithm calculates a membership value ms using fuzzy logic. Fuzzy logic

allows for a degree of membership rather than a binary classification. It

quantifies how well each data point (feature) belongs to each cluster.

– Fuzzy Score Calculation ( fs): After determining the membership values

ms, the algorithm computes a fuzzy score fs for each feature in each cluster.

The fuzzy score takes into account the membership value and the cluster

center c. This score reflects the importance or relevance of the feature within

that cluster.

– Optimal Attribute Selection: After calculating membership values and

fuzzy scores for all features in all clusters, the algorithm selects the opti-

mal attributes Optimal f based on these scores. The selection process aims

to identify the features that are most relevant to the clustering results.

– End: The algorithm concludes after evaluating all features and clusters.

The K-Fuzzy Select algorithm is designed to intelligently select optimal attributes

by combining K-Means clustering and fuzzy logic. It assesses the relevance of

each feature within different clusters, allowing for a more nuanced and data-

driven feature selection process. The resulting Optimal_f attributes can be used

for subsequent analysis, such as building machine learning models or making

data-driven decisions in the context of liver disease diagnosis.
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3.3.4 Selection of Machine Learning Classifiers

To assess the effectiveness of several classifiers on the dataset, four different per-

formance evaluation metrics including Accuracy, F1-Score, Recall, and Precision

were considered. Figure 3.2 depicts the graphical representation of the compar-

ative analysis of the different performance indicators including accuracy, pre-

cision, F1-score, and Recall of the various base algorithms considered for the

research. The results show that MLP and Logistic regression in comparison to

the other classifiers outperformed better in terms of accuracy and other metrics

as well. Since accuracy is an important metric in predicting diseases accurately

and which further helps in providing the right care and medication to the patients

for their recovery, so more emphasis is given to accuracy. The accuracy achieved

through MLP , Logistic Regression and GaussianNB is 93.65% ,93.54 % and

92.65% respectively which is the highest among all other classifiers considered

whereas KNN is giving lowest accuracy rate.

Figure 3.2: Selection of Machine Learning Classifiers.

Selecting the optimal classifier for lung cancer prediction required a compara-

tive analysis of various machine learning models depecited in figure 3.3. Nine

machine learning classifiers—Random Forest, Naive Bayes, Logistic Regression,

Multilayer Perceptron (MLP), SGD (Stochastic Gradient Descent), KNN, Deci-

sion Tree, Gradient Boosting, and Adaboost—were evaluated. Each classifier
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was assessed based on multiple performance metrics, including accuracy, preci-

sion, recall, and F1-score. Logistic Regression, MLP, and Gaussian Naive Bayes

(GNB) were identified as the top-performing classifiers. These models demon-

strated superior diagnostic accuracy, which led to their selection for further re-

finement and integration into the final model.

A comparative analysis of nine machine learning classifiers was conducted using

multiple evaluation metrics including accuracy, precision, recall, and F1-score.

The top-performing models were selected based on consistent high performance

across all metrics. This data-driven selection helped ensure that the chosen meth-

ods were not only theoretically sound but also practically effective.

Figure 3.3: Comparision of Machine Learning Classifiers.

3.3.5 Ensemble Voting Classifier

Gaussian Naive Bayes (GNB) Classifier

An effective machine learning method for situations where features have contin-

uous distributions is the GNB classifier. The Gaussian (normal) distribution as-

sumption is included in the GNB method, which builds on the Naive Bayes frame-

work. It uses the Bayes theorem to compute posterior probabilities, as shown by

the equation:

P(Ck|x) =
P(Ck|x).P(Ck)

P(x)
(3.1)
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In equation 3.1, P(ck|x) stands for the prior class probability, P(ck|x) for the like-

lihood of seeing x given class ck, P(ck) for the marginal likelihood of observation

x, and P(x) for the probability of class ck given observation x. The feature inde-

pendence and Gaussian distribution assumptions of GNB make it a trustworthy

classification method for continuous data.

Logistic Regression

In the field of machine learning, logistic regression is regarded as a fundamental

method that excels at binary classification tasks due to its deceptively straight-

forward nature. It converts linear combinations into probabilities, denoted: by

modeling the association between input characteristics and a binary result using

the logistic function.

P(y = 1|x) = 1
1+ e−z (3.2)

Here, P(y = 1|x), where z represents the linear combination of the features and

weights, and is the likelihood of the positive class given input x. Logistic re-

gression is a flexible and well-liked classification method since it identifies subtle

patterns in data through repeated optimization.

MLP Classifier

The Multilayer Perceptron (MLP) classifier, which is recognized for its capacity

to tackle challenging and non-linear classification tasks, is a key component of

machine learning. An MLP consists of several layers and functions as a neural

network. A weighted sum of inputs processed via an activation function, denoted

mathematically as: determines the output of an MLP node.

y = σ(w.x+b) (3.3)

Here, y stands for the node’s output, σ for the activation function, w for weights, x

for inputs, and b for the bias term. The MLP is a flexible and effective technique
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for contemporary classification problems because it can capture deep relation-

ships within data through these linked nodes and hidden layers.

Voting Classifier from Ensemble Learning

Due to its ability to improve prediction performance by mixing many models, en-

semble learning has emerged as a fundamental component of machine learning.

To arrive at a judgment, the Voting Classifier, a well-known ensemble approach,

combines the predictions of many classifiers. It uses majority voting for catego-

rization jobs, which is spelled out as follows:

y = mode(y1,y2, . . . ..yn) (3.4)

Here, y is the final projected class label, but the individual predictions are y1,y2, . . . ,yn.

The Voting Classifier offers "hard" and "soft" voting algorithms that involve equal

collaboration across many models or the averaging of probabilistic predictions for

the best possible decision-making.

Our comprehensive classification approach incorporates various machine learn-

ing classifiers, including Gaussian NB, MLP, and Logistic Regression. The com-

putational intelligence methods employed, like Gaussian NB, MLP, and Logistic

regression, have been explained in the Background section. A Voting Classifier

framework, which was synergistically included using Python programming, sup-

ports this group of classifiers. The voting classifier is one of the simplest stacking

ensemble methods. The Voting Classifier used a soft voting mechanism, where

each classifier’s prediction is weighted by its confidence level. The ensemble

model configured with the respective parameters of the different machine learn-

ing classifiers was optimized through GridSearch. The best models taken with

this approach capture linear relationships from LR, complex non-linear patterns

from MLP, and probabilistic reasoning with independence feature assumptions

from GaussianNB. The predictions from these diverse models were aggregated

to get a final prediction resulting in increased accuracy than with just a single

model. The disease prediction using an ensemble voting classifier and hyperpa-

rameter tuning is explained in Algorithm 2.
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Algorithm 2 Disease Prediction Using Ensemble Voting Classifier and Hyperparameter

Tuning
Input: Lung Disease Dataset

Output: Optimized Voting Classifier, Best Hyperparameters, Accuracy Score

1. Get dataset

2. Preprocess dataset

3. Apply feature selection using K-Fuzzy Select algorithm

4. Split dataset into training and testing sets (X_train, Y_train, X_test, Y_test)

5. Initialize base models for the ensemble:

GNB← GaussianNB(), LR← LogisticRegression(), MLP←MLPClassifier()

6. Configure the Voting Classifier with soft voting: voting_clf ← VotingClassi-

fier(estimators=[(’LR’, LR), (’MLP’, MLP), (’GNB’, GNB)], voting=’soft’)

7. Define the hyperparameter search space:

H← { ’LR__C’: [0.1, 1, 10], ’MLP__hidden_layer_sizes’: [(10,), (50,), (100,)] }

8. Initialize and configure GridSearchCV:

GS ← GridSearchCV(estimator=voting_clf, param_grid=H, cv=5, scor-

ing=’accuracy’)

9. Perform hyperparameter tuning with GridSearchCV: GS.fit(X_train, Y_train)

10. Extract the best model and its hyperparameters:

M*← GS.best_estimator_, H*← GS.best_params_

11. Evaluate M* on the testing set to measure performance: Y_pred ←

M*.predict(X_test), P*← EvaluatePerformance(Y_test, Y_pred)

12. return M*, H*, P*
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3.4 Proposed Integrated Framework for Lung Cancer Diag-

nosis

Internet of Things (IoT) is a computing concept where each device is intercon-

nected through the internet, and one can communicate with others. IoT is widely

used in the medical field, where different IoMT devices play significant roles in

collecting and sharing patient data across the network. In Fig 3.4, cloud-based

IoMT architecture has been designed where data can be collected, shared, and

analyzed accordingly. Different use cases of IoMT devices have been mentioned

here, where n is the number of local servers connected with a main cloud server.

The framework is designed so that patient data can be collected, extracted, ana-

lyzed, and shared with physicians so that they can treat their patients more effec-

tively from a remote distance and the right care can be provided to the patients.

Data from m patients are collected through IoMT devices and are shared with the

nearest local cloud server. An AI module in the local cloud server is responsi-

ble for predicting the classified output. The fetched patient data are extracted and

classified in the local cloud server using a defined machine learning algorithm and

sent to the Dew servers. The data stored in the dew servers are shared with the

main cloud servers and local servers of different health organizations so that doc-

tors, nurses, and patients can access the data. The main cloud server is connected

to all the local servers and can exchange information across all the servers.

Different types of IoMT devices are available and used for different applications.

Some devices are used in health organizations, and some are portable or wearable

to track daily activities and health status. The devices are connected to the internet

through a gateway to exchange data through the proper channels. In Fig 3.4, it

can be observed that the IoMT devices are directly connected with the respective

local servers through the gateway. Once the data is collected from the patient’s

end, it is sent to the local server through the Internet.

The AI module inside the local server receives the data and preprocesses it ini-

tially. The preprocessed data are extracted and classified later using ML algo-

rithms, as explained in the above section.The AI module comes with a predictive
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output shared with the dew servers and further shared with the main cloud server

from the dew servers. Different local servers share the predicted data with the

main cloud server, where the main cloud server is connected to hospitals, health

research labs, or remote dispensaries.

Figure 3.4: Proposed Cloud-Based IoMT Framework.

The local Dew server is represented in Fig 3.5, and different ML algorithms

are applied to the dataset. The physicians/health specialists can access the data

and share the prescribed feedback with the respective user-ends. The data can be

accessed from the local servers so that doctors, nurses, or patients can utilize the

stored information anytime.
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Figure 3.5: Local Cloud Server Module.

With the proposed framework, an intelligent network environment can be de-

signed between users and healthcare professionals so that appropriate treatment

can be possible in time from a remote distance. The intelligent AI module can

help classify the disease automatically and smartly so that doctors can prescribe

medicines and treat them accordingly.

3.5 Experimental Setup

This section contains the experimental analysis and findings of predicting lung

disease.

3.5.1 Experimental Setup

Our computational experiments were conducted using Jupyter Notebooks, an

open-source web application. Jupyter provides an interactive environment well-

suited for exploratory analysis and data visualization. The Jupyter environment

was set up with a Python 3 kernel, and experiments were executed on a machine

with an Intel Core i5 processor, 16GB RAM, and an NVIDIA GTX 1080 Ti GPU.

The Jupyter Notebook interface was accessed via a local server on the host ma-

chine, ensuring a consistent and isolated environment for all experimental runs.
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3.5.2 Training and Testing Samples

To assess the performance of our machine learning models effectively, we have

partitioned the dataset into two distinct subsets: a training sample and a testing

sample. This division is a critical step in our study’s methodology, ensuring that

our models are both trained and evaluated rigorously. Specifically, we have allo-

cated 80% of the dataset to the training sample. This substantial portion serves as

the foundation for our machine-learning algorithms. During the training phase,

our models learn from this data, capturing underlying patterns, relationships, and

trends that are essential for making accurate predictions or classifications related

to lung cancer diagnosis. Conversely, the remaining 20% of the dataset is reserved

for the testing sample. This sample is an independent and unseen data set that our

models have not encountered during their training. By evaluating the models on

this test sample, we can gauge their generalization performance—their ability to

make accurate predictions on new, unseen data. This division into training and

testing samples helps us assess the model’s ability to make accurate predictions

on real-world, previously unseen cases, a critical measure of its effectiveness.

Table 3.1: Simulation Parameters and Values

Simulation Parameters Values

Training dataset 80%

Testing dataset 20%

Machine learning Models LR, MLP, Gaussian NB, Ensembled Voting Classifier

Constant c (LR) 0.1 to 10

Hidden layers (MLP) 10 to 100

Best Constant c (LR) 10

Best Hidden Layers (MLP) 50

Hyperparameters Tuning Method Grid Search Method
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3.5.3 Evaluation Parameters

The parameters of evaluation that were considered for the performance evalua-

tion of machine learning models include accuracy, precision, recall, and F-Score

[95, 96]. With the contribution of the confusion matrix, these desired metrics

were evaluated, consisting of elements: True Positive (TP), True Negative(TN),

False Positive(FP), and False Negative (FN). Accuracy measures the proportion

of correctly predicted instances, including true positives and negatives, against

total instances. Precision looks more at the quality of positive predictions. It is

the ratio of true positives to the total predicted as positive. Recall, also known

as sensitivity or the true positive rate, measures how well a model can detect all

instances of interest. The F1 measure is the harmonic average of both precision

and recall, thus balancing between these two measures. The formula for all these

metrics is given below:

Accuracy =
T P+T N

T P+T N +FP+FN
(3.5)

Precision =
T P

T P+FP
(3.6)

Recall =
T P

T P+FN
(3.7)

F1 Score = 2× Precision×Recall
Precision+Recall

(3.8)

3.6 Results and Discussion

In this section, we report the findings from our thorough examination of classifi-

cation performance, which considered important parameters, including accuracy,

F-score, recall, and precision. We successfully demonstrate the sturdiness of our

technique by careful comparison with several existing approaches. Our strategy

achieves higher accuracy rates while retaining precision and recall values on par

with or beyond those of current techniques. Our inquiry includes a thorough
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analysis of the components that affect how well our technique performs, reveal-

ing potential areas for improvement. These findings highlight the potential of our

technique to provide improved accuracy and reliability for classification tasks,

placing it as an exciting candidate for practical applications.

Precision, F1-score, Accuracy, and recall were the four key measures we used in

our assessment technique mentioned below in Table 3.1, to analyze the effective-

ness of our classification model. By calculating the percentage of samples that

were properly identified out of all samples, we could determine our model’s ac-

curacy. The fraction of samples categorized as genuine positive samples among

all samples was also considered while precision was calculated. Recall was com-

puted as the ratio of correctly classified positive samples to all positive samples

overall, much like classification. The F-score, a comprehensive performance in-

dicator representing the full power of the model’s categorization skills, was con-

structed using the harmonic mean of accuracy and recall.

Figure 3.6: Comparison of Attributes.

In Fig 3.6, the red bar in the graphical depiction, which shows a significant vari-

ance in the number of characteristics, shows that there are more than 50 different

traits. Our ideal attribute count criteria imply that an attribute count of fewer than

15 is represented by the blue bar, which is preferable for best performance, which

is in opposition to this finding. Firty six features were reduced to fifteen features
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using the proposed feature selection technique, which thus saved processing time.

Table 3.2summarizes the values obtained for the validation and test accuracy met-

rics for different train-test split ratios of the dataset. The highest test accuracy is

obtained for the 80:20 train/test split case; the corresponding confusion matrix

is presented in Fig 3.7.The total execution time was 38.92 seconds. Within this

period, the fuzzy logic-based feature selection process was completed in 0.50

seconds, while the ensemble model training took significantly longer, with a to-

tal duration of 35.54 seconds.The confusion matrix comes from its capacity to

graphically represent a classification model’s performance. This matrix makes

it easier to understand how well the model predicts outcomes concerning the la-

bels assigned to each class. The confusion matrix shows 74 true negatives (TN)

and 123 true positives (TP) in the context of our particular investigation. Impres-

sive, there have been no false positives (FP) and just 3 false negatives (FN). This

astoundingly low percentage of misclassification, especially in predicting the pos-

itive class, provides a strong defense of the model’s astounding competence and

accuracy.
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Figure 3.7: Confusion Matrix (20% Data Reserved for Testing).

Table 3.2: Performance of the Model with Different Train/Test Split Ratio

Train/Test Split ratio Accuracy Precision Recall F1-Score

70:30 0.9792 0.98 0.978 0.978

80:20 0.9850 0.9761 1.00 0.9879
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Figure 3.8: Receiver Operating Characteristic (ROC) Curve of AUC.

ROC curve, shown in Fig 3.8, illustrates how the classification model balances

its sensitivity and specificity. The orange line shows the ROC curve, and its AUC

value of 0.98 denotes exceptional performance.

Figure 3.9: Comparison of Fuzzy K-Ensemble Performance Parameters with NB Clas-

sifier.
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Clear differences in the performance measures are visible in Fig 3.9 when con-

trasting the classification results of Naive Bayes (NB) and Fuzzy K-Ensemble

techniques. The NB method’s recall, accuracy, and precision are 0.77, 0.78, and

0.77, respectively. These results demonstrate the higher classification skills of

the Fuzzy K-Ensemble method, demonstrating its potential for increased preci-

sion and accuracy in real-world applications.

Figure 3.10: Comparison of Fuzzy K-Ensemble Performance Parameters with J48 Clas-

sifier.

Different performance patterns can be seen in Fig 3.10 when contrasting the J48

and Fuzzy K-Ensemble classification techniques. J48 yields an accuracy of 0.76,

recall of 0.78, precision of 0.77, and F-measure of 0.76. Conversely, Fuzzy K-

Ensemble consistently outperforms the other models, achieving 0.9850 accuracy,

0.9761 precision, 1.00 recall, and 0.9879 significant F-measure.

There are noticeable performance patterns when comparing the SVM (Support

Vector Machine) and Fuzzy K-Ensemble classification techniques as depicted in

Fig 3.11. The Fuzzy K-Ensemble consistently outperforms the SVM technique

in all four of these measures, with values of 0.9850 for accuracy, 0.9761 for preci-

sion, 1.00 for recall, and a noteworthy 0.9879 for F-measure. The SVM strategy

results in an accuracy, precision, recall, and F-measure of 0.81 and 0.82. These

results highlight the Fuzzy K-Ensemble’s strong accuracy performance.
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Figure 3.11: Comparison of Fuzzy K-Ensemble Performance Parameters with SVM

Classifier.

Table 4.9 compares the performance of four different machine learning mod-

els—NB, J48, SVM, and our proposed model across four parameters: Accuracy,

Precision, Recall, and F-measure.

Table 3.3: Comparison of NB, J48, SVM with FuzzyK-Ensemble

Parameters NB J48 SVM FuzzyK-Ensemble

Accuracy 0.77 0.76 0.81 0.9850

Precision 0.78 0.77 0.82 0.9761

Recall 0.78 0.78 0.82 1.00

F-measure 0.77 0.76 0.81 0.9879

The paired t-test is the statistical method for comparing two related groups. This

research has used it to compare the performance metrics of baseline machine

learning models and the proposed model over accuracy, precision, recall, and F1-

score with J48, SVM, and NB. The results of the paired t-test are shown in Table

3.4. Paired t-test results indicate that the proposed model performs significantly

better for all metrics under investigation than the baseline models represented

by J48, SVM, and NB. Indeed, all the p-values are very small and below the
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common threshold of 0.05. This will provide very strong evidence to prove that

the improvements observed are statistically significant and not due to random

chance. Therefore, the proposed model is likely to be a superior choice that will

offer a more reliable and accurate prediction.

Table 3.4: Paired t-test Results for Performance Metrics.

Metric p-value

Accuracy 0.0055

Precision 0.0060

Recall 0.0048

F1-Score 0.0055

The comparison of accuracy results between previous studies and the suggested

model presents a clear progression in developing and refining machine learning

methods for a specific task. This progression is illustrated in Table 3.5 through

the incremental improvements in accuracy percentages, culminating in the sug-

gested model’s superior performance.

Table 3.5: Comparison Results of Accuracy Between Previous Studies and Suggested

Model

Authors Name Methods used Accuracy (%)

Gultepe Y. [94] KNN, NB, DT 83

Faisal et al. [97] Majority voting ensemble model 90

Patra R. [98] RBF classifier 81.25

Khashei M et al. [99] DIMLP 94.43

Our Work Fuzzy K-Ensemble 98.50

The limitation of the model is that it was tested only on lung cancer; however,

its generalizability needs to be tested for other types of cancers also. There are

no defined measures of the model’s performance concerning accuracy, precision,

recall, and F1 score against other cancer types. Different cancers have different

characteristics and genetic profiles. A model trained using lung cancer data may
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not effectively capture the relevant features to predict other cancers.

3.7 Summary

The increasing prevalence of chronic diseases, particularly lung cancer, poses sig-

nificant challenges to healthcare systems globally. As a leading cause of cancer-

related deaths, lung cancer necessitates innovative approaches to enhance early

detection and improve patient outcomes. In light of this pressing need, this chap-

ter presents a comprehensive study focused on leveraging machine learning al-

gorithms for the detection of lung cancer and the prediction of multiple diseases.

The proposed work integrates computational intelligence, ensemble learning, and

rigorous evaluation methodologies to develop robust predictive models that can

be applied in clinical settings.

To sum up, the fact that lung cancer is a primary cause of cancer-related death

highlights the urgent need for novel approaches. This research capitalizes on

recent computational intelligence advancements to establish an environmentally

conscious prototype for lung cancer treatment, offering optimized resource uti-

lization and potential time and cost savings. Intelligent Feature Selection, Lo-

gistic Regression, MLP Classifier, Gaussian NB Classifier, and Voting Classi-

fier ensemble methods, all implemented using Python, collectively enhance early

detection accuracy. Hyperparameter tuning through grid search further refines

the model. Comparative analysis against existing methods substantiates the pro-

posed model’s superior performance, attaining a remarkable 98.50% accuracy

rate. These findings highlight the transformative potential of computational intel-

ligence in advancing effective lung cancer diagnosis and treatment paradigms.
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CHAPTER 4

AN ENSEMBLE DEEP LEARNING

FRAMEWORK FOR ENHANCED

LUNG CANCER DIAGNOSIS

This chapter presents a novel framework that combines deep learning with inte-

grated reinforcement learning to improve the accuracy of lung cancer diagnosis

from CT scans. To address the issue of class imbalance, we apply elastic transfor-

mation and data augmentation techniques to enhance model generalization. For

multi-class classification of lung tumors, five pre-trained convolutional neural

network architectures—DenseNet201, EfficientNetB7, VGG16, MobileNet, and

VGG19—are employed, with each model refined through transfer learning. To

further improve performance, we introduce a weighted average ensemble model,

"DEV-MV," combined with grid search hyperparameter optimization, achieving

an impressive diagnostic accuracy of 99.40%. The integration of ensemble re-

inforcement learning contributes to enhanced robustness and reliability in pre-

dictions. This approach represents a significant advancement in automated lung

cancer detection, offering a highly accurate and scalable solution for early diag-
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nosis.1

4.1 Introduction

Lung tumor continues to be one of the most important causes of health disorders

and the greatest causes of death from cancer in the world. It refers to cancer

that develops due to the impact of unregulated expansion of abnormal cells in the

lungs. This cancer poses a serious health hazard, mostly causing grievous illness

and death. The World Health Organization reports that in 2022, there were 2.5

million new instances of lung cancer, accounting for 12.4% of all the new cancer

cases, and deaths were 1.8 million, accounting for 18.7% of the total cancer fa-

talities [5]. Early detection of the diseases can let one have better outcomes, but

traditional screening methods, such as CT scans and chest X-rays, are not without

their shortcomings.

Recent advances in AI and ML have brought new hope to the potential of deep

learning transforming medical diagnostics. Deep learning, a sub-application of

ML, utilizes varieties of neural networks arranged in multiple layers to model

complex patterns from datasets. It has been effectively used for most of the med-

ical imaging analysis activities, from radiographic tumor detection to classifica-

tion [101, 102].

In recent years, DL approaches have become increasingly significant for lung tis-

sue cancer diagnosis and prognosis.These include medical image analysis and

personalized treatment plans.CNN have also demonstrated remarkable perfor-

mance in analytical processing of CT scans and X-rays with high accuracy, thereby

making techniques of this nature in detecting lung cancer very effective, reducing

the false positives and negatives [103, 104].

Some deep learning methods can be trained from large-scale data handling and

feature extraction points to achieve a more precise classification of lung cancer

1This chapter is derived from:

Richa Jain, Parminder Singh, and Avinash Kaur. "An Ensemble Reinforcement Learning-Assisted Deep

Learning Framework for Enhanced Lung Cancer Diagnosis", Swarm and Evolutionary Computation

(Published), 2024, (Scopus, SCIE 8.2 IF) [100].
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in test data. These methods are conceived to be invaluable for early lung cancer

detection and personalized treatment [104]. However, the poor interpretability

of the developed models, along with the problems of unbalanced datasets and

limited sample sizes in the case of some diseases, implementation in clinical

practice becomes a matter at hand due to data privacy, are only a few of many

challenges [104, 105].

4.1.1 Advantages of Deep Learning Over Traditional Methods

The traditional methods for lung cancer detection primarily relied on radiolo-

gists’ interpretation of CT scans, often using basic image processing techniques.

However, these methods have several limitations:

1. Subjectivity: Human interpretation is subject to variability; different radi-

ologists may arrive at different conclusions based on the same image.

2. Time-Consuming: Manual analysis of images is labor-intensive and can

lead to delays in diagnosis.

3. Inability to Capture Complex Patterns: Traditional algorithms may strug-

gle to recognize subtle patterns indicative of early-stage tumors, particularly

in the presence of noise or artifacts.

In contrast, DL models offer several advantages:

1. Automated Feature Extraction: DL algorithms automatically learn rele-

vant features from images without requiring manual intervention. This re-

duces the risk of human error and biases.

2. Higher Accuracy: Studies have shown that deep learning models, espe-

cially CNNs, outperform traditional methods in various medical imaging

tasks. Their ability to learn complex patterns results in improved diagnostic

accuracy.

3. Efficiency: DL models can process large volumes of images quickly, facil-

itating real-time analysis and timely diagnoses.
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4.1.2 Motivation for Using Deep Learning

The motivation for selecting deep learning models for lung cancer detection and

multi-disease classification stems from several factors:

1. Need for Improved Diagnostic Accuracy: The primary motivation behind

utilizing deep learning models is the pressing need to enhance diagnostic ac-

curacy in lung cancer detection. Traditional imaging techniques often yield

high false-positive and false-negative rates, leading to unnecessary proce-

dures or missed diagnoses. By leveraging deep learning algorithms, which

can automatically learn from vast datasets, the aim is to create a model that

minimizes errors and provides more reliable results.

2. Addressing Class Imbalance: Lung cancer datasets often exhibit class im-

balance, where images of cancerous tissues are less frequent than those of

healthy tissues. Traditional methods struggle with class imbalance, lead-

ing to biased predictions. Deep learning models can incorporate techniques

such as elastic transformation to address this imbalance, enhancing the train-

ing dataset and ensuring better performance across all classes.

3. Enhancing Model Generalization: Deep learning models possess the abil-

ity to generalize from training data to unseen data better than traditional

methods. This characteristic is crucial in healthcare, where the variabil-

ity in patient demographics, imaging conditions, and disease presentations

can significantly impact model performance. By utilizing data augmenta-

tion techniques, the robustness of deep learning models can be improved,

enabling them to perform reliably across different scenarios.

4. Integration of Multi-Modal Data: Deep learning approaches can seam-

lessly integrate multiple data types, such as imaging data, clinical records,

and demographic information. This capability allows for a more compre-

hensive assessment of patient health and supports improved decision-making

processes. The ability to analyze diverse data sources simultaneously is a

significant advantage over traditional methods, which typically focus on sin-

gle data types.
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4.1.3 Major Contributions

The proposed method makes an ensemble and more powerful model that becomes

more robust, more reliable, and more diversified in its decision-making. The

primary contributions of this research include:

1. DEV-MV model was introduced, integrating DenseNet201, EfficientNet B7,

VGG16, MobileNet, and VGG19 to accurately predict lung cancer using a

multiclass dataset.

2. The Elastic Transformation augmentation approach was applied to the dataset

with significant class disparity to equalize the lung cancer disease classes.

3. The performance of the DEV-MV model was assessed against the individual

model, i.e., the CNN model. The result showed that the proposed model

performed better than the other individual models.

4. To assess the model’s performance in predicting lung cancer from CT scans,

the Adam optimizer with a batch size of 16 was employed.

5. An Ensemble Reinforcement Learning framework was proposed to contin-

uously enhance prediction accuracy and reliability.

This chapter is organized as follows: Section 4.2 describes the literature review.

Section 4.3describes the proposed methodology used in this study. The experi-

mental results with their discussion is explained in section 4.4, and is concluded

in Section 4.5.

4.2 Related Work

Researchers worldwide have made significant advancements in lung cancer pre-

diction. In the study by Rahman et al. [106], the authors classified skin lesions

into seven groups using an ensemble algorithm that employs weighted average

ensemble learning. This technique has been shown with ample evidence to en-

hance significantly the accuracy of the concerned classification by ensembling

multiple models. The result has improved to an average of 93% for the stupid en-

semble model. In their research, Alamin et al. [107] proposed an ensemble-based
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method to optimize model building, using weight optimization techniques such

as Grid Search. Deep learning in medical image-based diagnosis of cancer was

applied; Xiaoyan Jiang et al. [108] referred to the study by utilizing deep learning

in cancer diagnosis through medical imaging. Also, the authors pointed to the

amalgamation of available data augmentation techniques as a way of finding the

best strategy in discourse to enhance the precision of the model.

In the work by G.S. Chakraborty et al. [109], a weighted average ensemble ap-

proach is followed wherein the given weights were based on priority values ob-

tained from the pre-trained models. The generalized accuracy of the model to

97.25% for binary classification and 94.10% accuracy for multiclass classifica-

tion purposes. This method can be facilitated to optimize deep models in de-

tecting cancer. Literature shows several past studies that applied deep learning

techniques in lung cancer diagnostics. Ahmed Shaffi et al. [110] proposed an

optimization cuckoo search with a support vector machine-based classifier for an

intelligent lung cancer diagnosis system. The present research showcased the po-

tential of deep learning frameworks for detecting lung cancer in the early stages.

The accuracy, specificity, and sensitivity of the system are 92.55%, 93.40%, and

91.70% respectively, demonstrating very good performance measures.

Sher Lyn Tan et al. [111] presented a framework for diagnosing non-small-cell

lung tumors using an optimization-driven combination of deep neural networks.

Shamrat et al. [112] introduced LungNet22, a deep-learning model specifically

designed to enhance the accuracy of lung disease diagnosis through chest X-ray

images. Extensive training, data augmentation, and hyperparameter tuning con-

tributed to the model’s superior performance. The results showed that LungNet22

outperformed several existing models. The study concluded that LungNet22 is a

promising tool for supporting radiologists in the accurate and efficient diagnosis

of various lung diseases. In addition, the findings by Thangamani M et al. [113]

the optimization was done through grid search, using a weighted convolutional

neural framework, and it proved useful in enhancing the prediction of lung cancer.

Enlisted altogether, this framework is based on the perspective of deep learning

augmented with a weighted average ensemble technique, aided with grid search

in configuring the right set of hyperparameters, which could help in deriving lung
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cancer diagnosis.

Nasser and Naser [114] were able to identify the presence of cancer in lung tissue

using an ANN with an accuracy of 96.67%. The approach proposed by Cifci et

al. [115], called IPCT not only improved the quality of lung images but increased

the diagnosis rate of lung cancer to an approximate accuracy of 98.42%.C. Wang

et al. [116] built a deep learning system for accurate prediction of survival and

determination of the status of EGFR mutation from CT image subtypes related to

lung adenocarcinoma.

S. Kim et al. [117] have used an innovative learning tool for diagnosis through

CXR images as a deep learning methodology to enhance the efficiency and ac-

curacy of CAD for lung diseases. The SCH dataset was employed, achieving an

accuracy of 82.15% in multi-class classification tasks. M. Alshmrani et al. [118]

used CNN and VGG19 in a deep learning architecture to classify different lung

diseases into many classes based on CXR pictures. The author proposed that the

VGG19 CNN model outperformed existing works in the classification of Lung

Cancer, Lung Opacity, TB, Pneumonia, and COVID-19.

Kareem et al. [119] suggested the use of image processing and computer vision

techniques in a computer system to detect lung cancer within a dataset. The SVM

is employed as the classification strategy to group the instances under one of the

three classes: normal, benign, or malignant. Some of the SVM kernels were eval-

uated with various feature extraction techniques for better results. This yielded

an accuracy of 89.88%. Humayun et al. [120] offered a diagnostic tool and em-

ployed a deep neural network to drive features for computer-aided diagnosis.

Song. Y. et al. [121] gave a general overview of Ensemble Reinforcement Learn-

ing. Ensemble Reinforcement Learning combines several learning models for a

variety of applications to improve their performance. He. Xin et al. [122] pro-

posed a new paradigm in STLF using Q-learning to dynamically assign weights

to the ensemble members, and it has had a much better prediction accuracy com-

pared to traditional methods. Similarly, in the fault diagnosis of rolling bearings,

an ensemble reinforcement method can recognize a fault type effectively under

different working conditions, indicating practical engineering benefits [123]. An-
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other contribution is ensemble meta-reinforcement learning for server anomaly

detection, which allows for both fast adaptation to changing data distributions and

better precision of prediction [124]. Similarly, the ELRL-MD model performed

ensemble learning with RL to cope with cardiac imaging data imbalance. It pro-

vided better diagnostic performance than traditional approaches for the diagnosis

of myocarditis [125].

Point cloud registration is a crucial task in computer science, and has been ap-

proached using various methods. In this context, Hangqi Ding, et al., proposed

a new technique called sampling-based evolutionary multitasking for point cloud

registration. Sampling-based evolutionary multitasking integrates the power of

evolutionary computation with multitasking which enables several tasks to be

optimized in parallel by exploiting knowledge transfer between them [126]. This

approach accelerates convergence as well as sharpens the precision of registration

by transferring information across tasks. Another two-level knowledge transfer

system has been proposed in order to better improve the robustness of multi-view

point cloud registration and handle the complicated datasets better [127, 128].

4.3 Research Methodology

The research methodology employed in this study focuses on the development of

a robust framework for lung cancer diagnosis using deep learning and integrated

reinforcement learning. The methodology encompasses various stages, includ-

ing data preprocessing, architecture selection, data augmentation strategies, and

model training and evaluation. A workflow diagram in Figure 4.1 illustrates the

comprehensive procedure utilized to create and assess our deep learning frame-

work to improve the diagnosis of lung cancer.
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Figure 4.1: Flow Diagram of the Proposed Model.

4.3.1 Dataset

The National Center for Cancer Diseases/Iraq-Oncology Teaching Hospital (IQ-

OTH/NCCD) dataset is utilized [129]. It comprises the CT Scan images concern-

ing both healthy individuals and unhealthy patients with lung cancer at different

stages gathered from hospitals in the year 2019. The dataset contains 1097 CT

scan images of 110 patients involving different categories- benign (120 cases),

malignant (561 cases), and normal (416 cases). There are also variations in the

size of images ranging from 515 x 515 to 512 x 801. The cases vary in terms of
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living arrangements, residential areas, gender, age, and level of education. Fig-

ure 4.2 depicts the sample data belonging to malignant, benign, and normal cases

respectively of the dataset.

Figure 4.2: Sample Input CT Scan Images at Different Stages of Lung Cancer.

4.3.2 Data Preprocessing

Image preprocessing methods are commonly employed on image samples to en-

hance classification precision by sharpening and eliminating noise. All the im-

ages in the dataset were converted to grayscale, which removed color information

and reduced complexity. Then, to guarantee consistency throughout the dataset,

the grayscale images were enlarged to a standard image size of 224 by 224 pixels.

The images were then subjected to Gaussian blur to improve the quality and mini-

mize noise. Ultimately, the images’ pixel values were scaled to a range of 0 to 1 to

normalize them. This normalization stage helped in stabilizing and accelerating

the model’s learning process.

4.3.3 Spliting of Dataset

After preprocessing the dataset was split into 3 different folders namely train-

ing, validation, and testing. The first 70% of the data is split into training, the

next 15% into validation, and the remaining 15% for testing. Each set contains a

randomly selected, well-balanced selection of images from each class. This dis-

tribution balances the need to have sufficient training data. It also ensures there is

enough validation and test data to provide meaningful insights into performance

and generalization.
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4.3.4 Data Augmentation

The dataset used has an unequal distribution of the number of images per class.

Having imbalanced data can lead to biases in classification. Hence, Data Aug-

mentation using Elastic transformation [130] has been used to augment and bal-

ance the classes in the training set to ensure each class has the same number of

images. Data augmentation has been performed using the ImageDataGenerator

class from the Keras library.

The data generator access the images from the directory and applied a series

of random transformations to each image, including rotation, translation, shear-

ing, zooming, and flipping. This allowed the model to generate many different

variations of each training image.The transformation is governed by three key

parameters: alpha, sigma, and alpha affine.

Alpha controls the intensity of the transformation, dictating the magnitude of

pixel displacement. Sigma determines the smoothness of the deformation field.

Alpha affine introduces affine transformations to control the global displacement

of the image grid. These parameters enable the production of a range of altered

images, which are essential for effectively training the model. It also controls the

direction and magnitude of deformations.

Techniques like elastic transformations, introduce controlled variability while

preserving the base structure of the images. This will enable the model to gen-

eralize more without modifying target class visual characteristics. The values of

the parameters alpha, sigma, and alpha affine were chosen based on their effec-

tiveness in prior literature, and we visually supervised the augmented outputs to

avoid excessive distortion in images. Thus, the augmentation techniques do not

create inappropriate images and or reduce model performance. Instead, they are

an enrichment of the dataset diversity which helps in combating class imbalance

and enhancing model robustness.

To balance the dataset, the target maximum is determined, which is 392 in our

case. For every class, the number of images needed to reach the target maximum

is then determined, and the necessary number of modified images is produced

by transforming the pre-existing images. By ensuring that every class is fairly
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represented, this procedure helps the model perform better when generalizing

across different samples. Figure 4.3 shows the distribution of classes before and

after augmentation.

Figure 4.3: Distribution of Classes Before and After Augmentation.

4.3.5 Proposed Weighted Average Ensemble Model

Using a single model can be biased toward the specific aspects of data, and certain

critical patterns can be missed. Consequently, different models are integrated to

maximize their strengths and minimize their weaknesses [131, 132]. To enhance

model performance, making them more accurate, and reliable ensemble methods

like weighted average ensembles can be used. The ensemble method improves

the overall accuracy by combining the trained model’s performances rather than

using any single model. In a weighted average ensemble method, predictions

from different models are combined and the average of the result is utilized. A

weighted average ensemble using Convolutional Neural Networks (CNNs) is a

powerful technique in deep learning to improve models’ accuracy and robustness.

The proposed work combines five CNN models: DenseNet201, EfficientNetB7,

VGG16, MobileNetV1, and VGG19. The following subsection orients with the

layered architecture of these models.
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DenseNet201

Due to its architectural uniqueness, DenseNet201 can perform better feature learn-

ing than other CNN architectures. Every layer in a DenseNet201 takes input from

all its preceding layers, which helps it in better information flow and at the same

time leads to more efficient feature reuse. Each layer of DenseNet201 is directly

and feed-forward coupled to every other layer. All dense blocks are divided by

transition layers, which consist of a convolution and pooling process, this helps to

prevent the deep model from becoming more complex and compresses the feature

maps dimensionality. Dense connectivity and transition layers allow for the effi-

cient flow of information and gradients, and thus the DenseNet201 quickly learns

relevant features with fewer parameters and computational resources [133].

DenseNet201 was selected for its unique architecture to promote feature reusabil-

ity through the interconnection of each layer with all the others. This architecture

results in the minimum number of parameters with high levels of performance,

which is beneficial in applications where efficiency in computing is a concern.

Table 4.1 depicts the detailed layer configuration of the DenseNet201 model

used in the study.

Table 4.1: DenseNet201 Layer Configuration

Layer Output Size Number of Filters Kernel Size Output Shape Parameters

DenseNet-201 (Functional) - - - (None, 8, 8, 1920) 18,321,984

Initial Convolution Layer 112x112 64 7x7 (112, 112, 64) 9,472

Max Pooling 56x56 - 3x3 (56, 56, 64) 0

Dense Block 1 56x56 256 - (56, 56, 256) 94,464

Transition Layer 1 28x28 128 1x1 (28, 28, 128) 32,896

Dense Block 2 28x28 512 - (28, 28, 512) 367,104

Transition Layer 2 14x14 256 1x1 (14, 14, 256) 131,584

Dense Block 3 14x14 1024 - (14, 14, 1024) 5,242,880

Transition Layer 3 7x7 512 1x1 (7, 7, 512) 524,800

Dense Block 4 7x7 1920 - (7, 7, 1920) 12,446,720

Global Average Pooling 1x1 - - (None, 1920) 0

Dense Layer 1 1x1 - - (None, 128) 245,888

Dropout 1x1 - - (None, 128) 0

Dense Layer 2 1x1 - - (None, 3) 387
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EfficientNetB7

EfficientNet B7 is a much more robust deep learning model concerning both per-

formance and computational efficiency. It has a compound scaling technique

specific to scale up network width,depth,and resolution in a balanced way. Thus,

EfficientNet B7 is better in terms of precision and efficiency compared to the

traditional CNN. This is a baseline of the Neural Architecture Search (NAS)-

generated network by using MBConv blocks. Depthwise separable convolutions

are applied on Mobile Inverted Bottleneck Convolution (MBConv) blocks. All of

these ’convolutions’ are augmented in a way that reduces parameters and compu-

tational cost with Squeeze-and-Excitation modules. Swish activation and various

regularization techniques are applied to enhance the model in terms of perfor-

mance as well as the robustness of the model [32].

EfficientNet B7 is chosen due to its state of the art performance for balancing

between efficiency and accuracy by scaling network dimensions uniformly. In

terms of quality, it is considerably higher than many of the traditional methods

with a lower computational burden, which makes it an ideal candidate for high-

performance applications.Table 4.2 depicts the detailed layer configuration of the

EfficientNet B7 model used in the study.

VGG16

The VGG16 is designed by the University of Oxford’s Visual Geometry Group.

It is a deep CNN with quite a simple and uniform architecture, thus the imple-

mentation and extension of this network is quite easy. The architecture consists

of 16 layers where parameters are learned: 13 convolutional and also 3 fully

connected. Every convolutional layer uses small receptive fields of 3x3 filters

applied with a stride of 1 and padding to retain spatial resolution followed by a

max-pooling layer using 2x2 filters reducing dimensionality and computational

complexity. Since the convolutional layers are organized into blocks, each block

consists of a set of convolutional layers followed by a max-pooling layer. This

arrangement progressively reduces the spatial dimensions while increasing the

depth of the feature maps. The final layer is a softmax classifier that generates
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the output [134].

Table 4.2: EfficientNet B7 Layer Configuration

Layer (type) Output Size Number of Filters Kernel Size Output Shape Parameters

EfficientNetB7 (Functional) 8x8 - - (None, 8, 8, 2560) 64,097,687

Initial Convolution Layer 112x112 64 3x3 (112, 112, 64) 1,792

MBConv Block 1 112x112 32 3x3 (112, 112, 32) 5,888

MBConv Block 2 56x56 32 3x3 (56, 56, 32) 31,168

MBConv Block 3 56x56 48 5x5 (56, 56, 48) 134,304

MBConv Block 4 28x28 48 5x5 (28, 28, 48) 379,776

MBConv Block 5 28x28 80 3x3 (28, 28, 80) 1,240,320

MBConv Block 6 14x14 80 3x3 (14, 14, 80) 3,580,480

MBConv Block 7 14x14 128 3x3 (14, 14, 128) 2,017,152

MBConv Block 8 7x7 128 3x3 (7, 7, 128) 6,015,360

MBConv Block 9 7x7 192 3x3 (7, 7, 192) 10,724,608

MBConv Block 10 7x7 320 3x3 (7, 7, 320) 4,702,080

MBConv Block 11 7x7 1280 1x1 (7, 7, 1280) 1,640,000

Global Average Pooling 1x1 - - (None, 2560) 0

Dense Layer 1 1x1 - - (None, 128) 327,808

Dropout 1x1 - - (None, 128) 0

Dense Layer 2 1x1 - - (None, 3) 387

VGG 16 can extract complex hierarchical features pretty well and would also

work for an array of Image Classification tasks with decent accuracy due to its

consistent architecture and deeper layers. It has been included primarily because

of its robust performance across many different domains. Table 4.3 depicts the

detailed layer configuration of the VGG16 model used in the study.

MobileNetV1

MoblieNetV1 is a convolutional neural network model crafted for embedded and

mobile systems. The novelty is in the use of depth-wise separable convolutions

used to break down a standard convolution into spatial convolutions operation,

followed by cross-channel convolutions operation. It keeps competitive accuracy

and also reduces the model size and computing complexity. It achieves very high

efficiency with limited computational resources by concentrating depth-wise con-

volutions on the spatial correlations in channels and point-wise convolutions to
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combine information across channels. It also introduces two parameters to set

network width in terms of the number of channels and input resolution, giving

an option to make the right choices between accuracy and performance subject to

deployment constraints. It has a compact structure and efficient architecture that

enables the model to run quickly on these devices without sacrificing classifica-

tion accuracy [135].

Table 4.3: VGG16 Layer Configuration

Layer (type) Output Size Number of Filters Kernel Size Output Shape Parameters

Input Layer 224x224 - - (224, 224, 3) 0

Conv2D Layer1 224x224 64 3x3 (224, 224, 64) 1,792

Conv2D Layer2 224x224 64 3x3 (224, 224, 64) 36,928

MaxPooling2D Layer1 112x112 - 2x2 (112, 112, 64) 0

Conv2D Layer3 112x112 128 3x3 (112, 112, 128) 73,856

Conv2D Layer4 112x112 128 3x3 (112, 112, 128) 147,584

MaxPooling2D Layer2 56x56 - 2x2 (56, 56, 128) 0

Conv2D Layer5 56x56 256 3x3 (56, 56, 256) 295,168

Conv2D Layer6 56x56 256 3x3 (56, 56, 256) 590,080

Conv2D Layer7 56x56 256 3x3 (56, 56, 256) 590,080

MaxPooling2D Layer3 28x28 - 2x2 (28, 28, 256) 0

Conv2D Layer8 28x28 512 3x3 (28, 28, 512) 1,180,160

Conv2D Layer9 28x28 512 3x3 (28, 28, 512) 2,359,808

Conv2D Layer10 28x28 512 3x3 (28, 28, 512) 2,359,808

MaxPooling2D Layer4 14x14 - 2x2 (14, 14, 512) 0

Conv2D Layer11 14x14 512 3x3 (14, 14, 512) 2,359,808

Conv2D Layer12 14x14 512 3x3 (14, 14, 512) 2,359,808

Conv2D Layer13 14x14 512 3x3 (14, 14, 512) 2,359,808

MaxPooling2D Layer5 7x7 - 2x2 (7, 7, 512) 0

VGG16 (Functional Layer) - - - (None, 8, 8, 512) 14,714,688

Global Average Pooling layer 1x1 - - (None, 512) 0

Dense Layer 1 1x1 - - (None, 128) 65,664

Dropout 1x1 - - (None, 128) 0

Dense Layer 2 1x1 - - (None, 3) 387

The reason for choosing MobileNet V1 was because it was streamlined architec-

ture, especially designed for mobile and embedded vision applications. It uses

depthwise separable convolutions, that could achieve high accuracy while model

size and computations demanded are essential for efficient inference. Table 4.4

depicts the detailed layer configuration of the MobileNet model used in the study.
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Table 4.4: MobileNetV1 Layer Configuration

Layer Output Size Number of Filters Kernel Size Output Shape Parameters

Input 150,528 - - (None, 224, 224, 3) 0

Conv1 401,408 32 3x3 (None, 112, 112, 32) 864

Conv1_BN 401,408 - - (None, 112, 112, 32) 128

Conv1_ReLU 401,408 - - (None, 112, 112, 32) 0

Conv_dw1 401,408 32 3x3 (None, 112, 112, 32) 288

Conv_pw1 802,816 64 1x1 (None, 112, 112, 64) 2,112

Conv_pw1_BN 802,816 - - (None, 112, 112, 64) 256

Conv_pw1_ReLU 802,816 - - (None, 112, 112, 64) 0

Conv_dw2 200,704 64 3x3 (None, 56, 56, 64) 576

Conv_pw2 401,408 128 1x1 (None, 56, 56, 128) 8,320

Conv_pw2_BN 401,408 - - (None, 56, 56, 128) 512

Conv_pw2_ReLU 401,408 - - (None, 56, 56, 128) 0

Conv_dw4 100,352 128 3x3 (None, 28, 28, 128) 1,152

Conv_pw4 200,704 256 1x1 (None, 28, 28, 256) 33,024

Conv_pw4_BN 200,704 - - (None, 28, 28, 256) 1,024

Conv_pw4_ReLU 200,704 - - (None, 28, 28, 256) 0

Conv_dw6 50,176 256 3x3 (None, 14, 14, 256) 2,304

Conv_pw6 100,352 512 1x1 (None, 14, 14, 512) 131,584

Conv_pw6_BN 100,352 - - (None, 14, 14, 512) 2,048

Conv_pw6_ReLU 100,352 - - (None, 14, 14, 512) 0

Conv_dw11 25,088 512 3x3 (None, 7, 7, 512) 4,608

Conv_pw11 50,176 1024 1x1 (None, 7, 7, 1024) 525,312

Conv_pw11_BN 50,176 - - (None, 7, 7, 1024) 4,096

Conv_pw11_ReLU 50,176 - - (None, 7, 7, 1024) 0

GlobalAveragePooling 1024 - - (None, 1024) 0

Dense 1000 - - (None, 1000) 1,025,000

MobileNetV1 65,536 1024 - (None, 8, 8, 1024) 3,228,864

GlobalAveragePooling 1024 - - (None, 1024) 0

Dense Layer 1 128 - - (None, 128) 131,200

Dropout 128 - - (None, 128) 0

Dense Layer 2 3 - - (None, 3) 387

VGG19

The VGG19 model is created by adding three more convolutional layers to the

VGG16 model, which has 19 layers overall with learnable parameters. The con-

volutional layers are organized into blocks, with each block followed by a max-
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pooling layer. The final three fully connected layers lead to a softmax layer pro-

ducing the final class probabilities. It learns subtle features and patterns in the

image thus yielding high accuracy. The uniform use of small filters brings along

implementation and extensibility [134].

VGG19, provides a deeper network that can capture more complex features. The

added layers can improve performance on intricate datasets, justifying its inclu-

sion in our study for comparison with other architectures.Table 4.5 depicts the

detailed layer configuration of the VGG16 model used in the study.

Table 4.5: VGG19 Layer Configuration

Layer (type) Output Size Number of Filters Kernel Size Output Shape Parameters

Input Layer 224x224 - - (224, 224, 3) 0

Conv2D_1 224x224 64 3x3 (224, 224, 64) 1,792

Conv2D_2 224x224 64 3x3 (224, 224, 64) 36,928

MaxPooling2D_1 112x112 - 2x2 (112, 112, 64) 0

Conv2D_3 112x112 128 3x3 (112, 112, 128) 73,856

Conv2D_4 112x112 128 3x3 (112, 112, 128) 147,584

MaxPooling2D_2 56x56 - 2x2 (56, 56, 128) 0

Conv2D_5 56x56 256 3x3 (56, 56, 256) 295,168

Conv2D_6 56x56 256 3x3 (56, 56, 256) 590,080

Conv2D_7 56x56 256 3x3 (56, 56, 256) 590,080

Conv2D_8 56x56 256 3x3 (56, 56, 256) 590,080

MaxPooling2D_3 28x28 - 2x2 (28, 28, 256) 0

Conv2D_9 28x28 512 3x3 (28, 28, 512) 1,180,160

Conv2D_10 28x28 512 3x3 (28, 28, 512) 2,359,808

Conv2D_11 28x28 512 3x3 (28, 28, 512) 2,359,808

Conv2D_12 28x28 512 3x3 (28, 28, 512) 2,359,808

MaxPooling2D_4 14x14 - 2x2 (14, 14, 512) 0

Conv2D_13 14x14 512 3x3 (14, 14, 512) 2,359,808

Conv2D_14 14x14 512 3x3 (14, 14, 512) 2,359,808

Conv2D_15 14x14 512 3x3 (14, 14, 512) 2,359,808

Conv2D_16 14x14 512 3x3 (14, 14, 512) 2,359,808

MaxPooling2D_5 7x7 - 2x2 (7, 7, 512) 0

VGG19 (Functional layer) - - - (None, 8, 8, 512) 20,024,384

Global Average Pooling layer 1x1 - - (None, 512) 0

Dense Layer 1 1x1 - - (None, 128) 65,664

Dropout 1x1 - - (None, 128) 0

Dense Layer 2 1x1 - - (None, 3) 387
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Weighted Average Ensemble with Grid Search (DEV-MV)

An ensemble of predictions by five independent CNN models—DenseNet201,

EfficientNet B7, VGG16, MobileNet V1, and VGG19 was prepared to enhance

model accuracy. Running every model over the test dataset, obtaining individual

predictions, and calculating their respective accuracies were done to get an ini-

tial set of weights for models in this preliminary weighted ensemble version.To

ensure optimum precision, the best possible combination of weights was found

via a grid search. The weighted predictions from every model were summed to

obtain the forecasts from the ensembling, and accuracy was calculated. Figure

4.4 illustrates an ensemble learning, where five different deep learning models

are combined to enhance the performance of the classification. Every model has

a sequence comprising two dense layers with a dropout layer in between. It pre-

vents overfitting by randomly dropping a fraction of the number of units during

training.

The outputs from these models were combined using an average weighted en-

semble method in which each model is assigned a weight, wi(w1,w2,w3,w4,w5).

It was characterized by these weights’ contribution in making the final predic-

tion. The weights were tuned by running the grid search algorithm, enabling this

ensemble to allow better performance overall.

Algorithm 3 summarizes its stages from fetching a dataset, and then doing all the

necessary steps in preprocessing—the extension and normalization of data. After

that, it splits data for training and trains five different models: Model1 to Model5.

Each model is trained iteratively for the number of epochs specified, where the

preprocessed images are augmented and passed to each model to return accuracy

scores and validation accuracies. After teaching the models, save and load them

for ensemble modeling. Initial weights for each model are set, and predictions

from all models are weighted and added together to create an ensemble predic-

tion. It then computes the ensemble accuracy and applies grid search to optimize

weights by trying out all different combinations that could maximize accuracy.

Finally, the performance of the ensemble model will be evaluated to predict the

types of lung cancer using test data, hence ending the process.
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Figure 4.4: DEV-MV Architecture.

Algorithm 4 explains the procedure for training multiple models with early stop-

ping based on validation loss. The training would involve running over each

epoch up to maximum epochs. In each epoch, model training and validation are

done. In case the validation loss improves, then the algorithm updates best vali-

dation loss and resets epochs without improvement to 0. Otherwise, it increments

epochs without improvement. If the number of epochs with no improvement

reaches or exceeds the patience, training will stop to prevent overfitting. This en-

sures training will stop when validation loss improvement is no longer seen.The

proposed Algorithm 3 and 4 are described below.

Proposed Ensemble Reinforcement Learning Model

Ensemble Reinforcement Learning has emerged as one of the promising ap-

proaches towards the integration of both RL and ensemble learning. The figure

4.5 illustrates how ensemble learning and reinforcement learning are combined

to improve prediction accuracy and dependability in the healthcare industry. An

illustration of data processing and prediction workflow that uses IoMT devices,
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local servers, deep learning (DL) models, reinforcement learning (RL) agents,

and a central cloud server is shown.

Algorithm 3 Proposed Ensemble Approach (DEV-MV) for Lung Cancer Detection
Require: CT Scan Images from the dataset M: Models

Ensure: Classification of lung cancer types

1: Start

2: Get Dataset

3: Preprocess Data

4: Split Data

5: Define layered architecture of all models M = {M1,M2,M3,M4,M5}

6: For each model Mi in the set of models M:

– Call Algorithm 4 with model Mi and the Preprocessed dataset.

7: Save Models

8: Load Models

9: Set initial weights w1,w2,w3,w4,w5

10: Model Ensembling

11: Calculate ensemble prediction as:

Ensemble_Prediction =
5

∑
i=1

wi ·Mi_Prediction

12: Get Ensemble accuracy

13: Apply Grid Search to Optimize Weights

14: Loop through all combinations of weights w1,w2,w3,w4,w5:

– Calculate the corresponding weighted ensemble accuracy.

– If this accuracy is the highest so far, store the ensemble weights.

15: Evaluate the best ensemble on the test set

16: End
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Algorithm 4 Algorithm for Training Multiple CNN Models
Input: Model Mi, Preprocessed dataset

Output: Trained model Mi

Start

Initialize model training parameters:

Set max_epochs← 20

Set patience← 5

Set optimizer← Adam

Set epochs_without_improvement← 0

Set best_val_loss← ∞

for epoch i← 1 to max_epochs do
Train and validate model Mi

if validation loss < best_val_loss then
Update best_val_loss← validation loss

Reset epochs_without_improvement← 0

end

else
Increment epochs_without_improvement← epochs_without_improvement + 1

end

if epochs_without_improvement ≥ patience then
Stop training break

end

end

End

Algorithm 5 describes an ensemble learning framework in healthcare for mul-

tiple local servers that employ reinforcement learning to improve deep learning

model predictions. These refined predictions are then aggregated in a central

cloud server for further processing and decision-making. Data collection begins

at various IoMT devices, such as ECG machines and smartwatches, which trans-

mit raw data to the local servers for subsequent processing. Each server pre-

processes this data and extracts relevant features, after which they feed it into

different DL models, like DenseNet, EfficientNet, MobileNet, etc., to generate

the initial predictions.

87



Figure 4.5: Proposed Ensemble Reinforcement Learning Architecture.

Each server at a local level has a reinforcement learning agent that continuously

monitors the accuracy of these predictions. In this regard, the agents receive feed-

back from healthcare professionals—doctors, patients, and nurses—which acts

as a reward or penalty signal. The RL agent dynamically adjusts the DL models

based on feedback to improve prediction accuracy over time. The process embod-

ies reinforcement ensemble learning, wherein multiple models are adjusted and

fitted optimally by reinforcement learning techniques to produce a more robust

ensemble prediction.

The key to aggregating all the predictions of the local servers lies with the main

cloud server, which connects with a Meta-RL agent. This refines the overall pre-

diction strategy using aggregated feedback and sends updates back to the local

servers for further optimization of their models. This iterative, collaborative pro-

cess ultimately results in a final ensemble prediction that health providers can

use for informed decision-making. This model is designed to continuously im-

prove predictive models across a distributed network of servers through real-time
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feedback and adjustments.

Algorithm 5 Ensemble Learning with Reinforcement Learning in Lung Cancer Diag-

nosis
Input: Patient data D1,D2, . . . ,Dn from IoMT devices

Input: Local models M1,M2, . . . ,Mn

Input: Local RL agents RL1,RL2, . . . ,RLn

Input: Main cloud server CS

Input: Meta RL agent MetaRL

Output: Final ensemble prediction Pensemble

Start

Initialize AI module and local RL agents at each local server

for each local server i← 1 to n do
Collect patient data Di from IoMTi Preprocess data: D

′
i← Pi(Di) Select relevant

features: F
′
i ← Fi(D

′
i) Generate local prediction: Plocal

i ← Mi(F
′
i ) Refine local

prediction using RL agent: Pre f ined
i ← RLi(Plocal

i ) Send refined prediction Pre f ined
i

to central cloud server CS
end

Aggregate predictions at cloud server: Pagg ← 1
n ∑

n
i=1 Pre f ined

i Meta RL agent learns

from aggregated predictions: Supdated ←MetaRL(Pagg)

for each local server i← 1 to n do
Send updated strategy Supdated from cloud server CS to local server i Update RL

agent RLi← Supdated

end

Generate final ensemble prediction at cloud server: Pensemble←MetaRL(Pagg) Deliver

Pensemble to healthcare providers Collect feedback from healthcare providers, doctors,

patients, and nurses

for each local server i← 1 to n do
Use feedback to improve RL agents: RLi← Feedback

end

End
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4.4 Results and Discussion

All the experiments were done on the Colab Pro GPU provided by Google. Ev-

ery experiment carried out on the multiclass lung cancer dataset is shown in this

section. We have used efficient ensemble deep-learning architectures that con-

sumed very few resources. For the study, a learning rate of 0.0001, a batch size

of 16, 20 epochs, and a loss function based on categorical cross-entropy were

employed. Different optimization algorithms for the training of CNN (Adam,

SGD, Adadelta, Adagrad and RMSprop) were used in this study. The experi-

ments with different optimizers revealed the supremacy of Adam over other op-

timization methods in terms of accuracy as well as convergence rate, hence the

suggested ensemble model is trained and tested using Adam optimization.

4.4.1 Results of Individual Deep Learning Models

Experiments were performed using individual fine-tuned deep learning models:

DenseNet 201, EfficientNet B7, VGG-16, MobileNet V1, and VGG-19. The

particular models were trained and tested using a loss function known as the cat-

egorical cross-entropy for benign, malignant, and normal cases, along with vari-

ous optimizers- Adam (Adaptive Moment Estimation), Adagrad(Adaptive Gradi-

ent Descent), Adadelta, SGD (Stochastic Gradient Descent) and RMSprop(Root

Mean Square Propagation), for optimizing their performance.

The results presented in table 4.6 show the accuracy comparison of the five dif-

ferent deep learning models using five optimizers. The analysis demonstrated

that, when the models were trained using the Adam optimizer, they achieved the

highest accuracy compared to the other optimizers. Hence, the Adam optimizer

was selected for this work as it outperformed other optimizers. Each of the mod-

els applies transfer learning using ImageNet pre-trained weights. Each model

adds custom output layers at the top, which include Dense and Global Average

Pooling2D layers with Dropout layers to avoid overfitting at a rate of 0.5. The

training runs up to 20 epochs and uses early stopping along with ReduceLROn-

Plateau, which drops learning rates by 0.2 when the validation loss plateaus to
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fine-tune the learning process.

Table 4.6: Accuracy Comparison of Different Models with Various Optimizers

Model Adam (%) SGD (%) Adagrad (%) Adadelta (%) RMSprop (%)

DenseNet 201 97.59 96.78 95.49 96.89 97.21

EfficientNet B7 95.12 93.88 92.92 94.69 94.83

VGG 16 92.17 90.74 90.67 91.36 92.11

MobileNet V1 93.98 91.71 91.72 92.41 92.96

VGG 19 93.37 92.82 91.93 92.75 93.04

Table 4.7 depicts the performance metrics of individual models. DenseNet201

exhibits the highest performance with an accuracy of 97.59%, a weighted preci-

sion, recall, and F1-score of 98.03%, 97.6%, and 97.67% respectively. Efficient-

Net follows with strong metrics, while VGG16 and VGG19 have lower scores.

MobileNet, also has slightly lower values than DenseNet201 and EfficientNet,

indicating that DenseNet201 is the most robust among all other models. Figure

4.6 compares the accuracy, f1-score, precision, and recall of each model in terms

of performance.

Table 4.7: Performance Metrics of Different Models

Model Accuracy (%) Weighted Recall (%) Weighted Precision (%) Weighted F1-Score (%)

DenseNet 201 97.59 97.60 98.03 97.67

EfficientNet B7 95.12 94.58 94.83 94.45

VGG 16 92.17 92.17 91.92 91.39

MobileNet V1 93.98 94.10 93.60 93.50

VGG 19 93.37 93.00 92.60 92.30
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Figure 4.6: Comparison of Performance Metrics of Different Models

Figure 4.7 illustrates the performance metrics for loss and accuracy for various

models across 20 epochs of training and validation. The figure 4.7 (a)shows the

performance curve of DenseNet 201. As portrayed, the accuracy improved fast in

the first 7 epochs and then stabilized at around 0.975 for the train and a bit lower

for validation. Also, the loss decreased sharply initially and flattened out, with

validation loss showing more fluctuation. The EfficientNet B7 performance curve

is represented in figure 4.7 (b) which shows a steady increase, reaching above

0.95 for both training and validation. The loss decreased significantly for training

and validation. Figure 4.7 (c) is the performance curve for the VGG 16, which

started with an accuracy of around 0.85, increased steadily, and then stabilized

at about 0.95. The loss decreased drastically initially and then progressively re-

duced; validation loss showed more variability. For the MobileNet, the accuracy

reached about 0.97 and its validation was about 0.95, also consistent. The loss

decreased smoothly for both training and validation as indicated in figure 4.7(d).

The performance curve of VGG 19 in figure 4.7(e) shows that the accuracy starts

lower but increases rapidly, stabilized around 0.95 for training and slightly less

for validation. The loss decreased quickly in the initial epochs and then flattened,

with some fluctuations in validation loss. Overall, each model shows an improve-

ment in accuracy and a decrease in loss over the epochs, with some variations in

the validation performance.
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Figure 4.7: (a) DenseNet 201, (b) EffieientNet B7, (c) VGG 16, (d) MobileNet V1, and

(e) VGG 19, Showing Accuracy and Loss.
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The confusion matrix results of different models are shown in figure 4.8 where

label 0 indicates Benign cases, 1 indicates Malignant cases and 2 indicates Nor-

mal cases. Each matrix compares the predicted classifications against the actual

classifications. Model 4.8(a) correctly classifies 100% of benign, 95.5% of ma-

lignant cases, and 92.2% of the normal cases. Model 4.8(b) correctly identifies

77.8% of benign cases, 95.5% of malignant cases, and 90.6% of normal cases.

Model 4.8(c) identified 50% of benign cases, 94.4% of malignant cases, and

93.8% of normal cases. Model 4.8(d) had an accuracy for benign cases at 55.6%,

for malignant cases, it was 95.5%, while that of normal cases was 95.3%. For

model 4.8(e), the accuracy for benign cases was 55.6%; for malignant it was

94.4%; and for normal cases, it stood at 95.3%. Thus, on average, the models are

accurate in malignant and normal cases but varied in correctly identifying benign

cases.

4.4.2 Results of the Proposed Ensemble Model and Weighted Average En-

semble Model Assisted with Grid Search (DEV-MV)

An ensemble of predictions by five independent CNN models—DenseNet201,

EfficientNet B7, VGG16, MobileNet V1, and VGG19 was prepared to enhance

model accuracy. A comparative analysis was taken while deciding on the 5 CNN

models, to check their complementary strengths. Even though VGG19 is the

extended version of VGG16, it also pushes forward its deeper architecture in

capturing more complex features. VGG16, however, is a shallower network and

may generalize better on other datasets, especially relating to the computational

resources or nuances of the particular task at hand.
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Figure 4.8: Confuion Matrix for (a) DenseNet 201, (b) EffieientNet B7, (c) VGG 16,

(d) MobileNet V1, and (e) VGG 19.

Since all the five CNN models used in this study have an error rate of less than

50% (as the accuracy of all individual models is more than 50%), they meet the

criteria mentioned by Sebastian Raschka [136]. According to Raschka, ensemble

methods consistently outperform individual classifiers if the base classifiers are

at least moderately accurate, with error rates below random guessing (ε < 0.5).

Raschka explains this using combinatorics, where the error probability of an en-

semble is calculated through a binomial distribution. The ensemble error rate,
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Pensemble, is represented by the formula:

Pensemble(y≥ k) =
n

∑
k=⌈ n+1

2 ⌉

(
n
k

)
· εk(1− ε)n−k (4.1)

This formula demonstrates that combining multiple classifiers (such as VGG16

and VGG19) can reduce the overall error rate, as the ensemble is less likely to

make incorrect predictions than any single base classifier.

The table 4.8 presents the performance metrics of the models: Proposed Ensem-

ble and Proposed Weighted Average Ensemble with Grid Search (DEV-MV). It

contains accuracy, weighted F1-score, weighted precision, and weighted recall in

percentages. The proposed ensemble attained an accuracy of 98.20%, a weighted

precision of 95.96%, a weighted recall of 97.16%, and a weighted F1-score of

96.53%. The Proposed Ensemble with Grid Search—the improved model—gave

an accuracy of 99.40%, a weighted precision of 98.25%, a weighted recall of

99.47%, and a weighted F1 score of 98.85%. These results further validate that

although both models demonstrated good performance, the Proposed Ensemble

with Grid Search had better accuracy and precision, evidencing that grid search

optimization improves the performance of the model.

Table 4.8: Performance Metrics of Proposed Ensemble Model and Proposed DEV-MV.

Model Accuracy (%) Weighted Recall (%) Weighted Precision (%) Weighted F1-Score (%)

Proposed Ensemble 98.20 97.16 95.96 96.53

Proposed DEV-MV 99.40 99.47 98.25 98.85

The figure 4.9 illustrates the performance metrics of the three models: DenseNet

201, Proposed Ensemble, and Proposed Ensemble with Grid Search. The metrics

included were Accuracy, Recall, Precision, and F1 Score. The DenseNet 201

model outperformed other models initially taken; it turned in quite a good result

on all metrics. The Proposed Ensemble model could not perform well on both

Precision and Recall. The proposed ensemble method with grid search had the

highest among all metrics, significantly higher than the other two models: it had

an accuracy and a recall close to 100%, an extremely high F1 score, and precision

was the highest.
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Figure 4.9: Comparison of Performance Metrics of DenseNet 201, Proposed Ensemble

and Weighted Average Ensemble with Grid Search (DEV-MV).

Two confusion matrices representing the performance of the proposed Ensemble

model and Weighted Average Ensemble model using grid search are shown in

figure 4.10 where label 0 indicates Benign cases, 1 indicates Malignant cases,

and 2 indicates Normal cases. In the first confusion matrix figure 4.10(a), the

model showed strong performance with true predictions comprising 94.44% for

class 0, 100% for class 1, and 96.88% for class 2, indicating that most instances in

every class were correctly classified by this model. The accuracy for this model

was 98.20%. On the second confusion matrix, figure 4.10(b) showed slightly im-

proved performance, predicting correctly class 0 with 100%, class 1 with 100%,

and class 2 with 98.41%. The total accuracy accomplished by the use of this

model is 99.40%. These are very excellent percentages of the true predictions

that prove both models are very efficient; however, the second model shows a

slight improvement in accuracy and precision.
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Figure 4.10: Confuion Matrix for (a) Proposed Ensemble Model, (b) Proposed Ensem-

ble Model Assisted with Grid Search (DEV-MV).

We compared the proposed method with previous studies discussed in related

work to show the effectiveness and robustness of the proposed weighted average

ensemble model with grid search. The comparison of the findings for the detec-

tion of lung cancer disease cases is depicted in table 4.9. We chose those studies

from the literature that considered multiclass datasets for comparison with the

proposed method. The accuracy column presents the performance of each model

in percentage terms. Specifically, the proposed model from this paper achieved

the highest accuracy of 99.40%, outperforming other models such as LungNet22

(98.89%), EfficientNet v2-M (82.15%), VGG 19 + CNN (96.48%), an ensemble

of 7 pre-trained CNN models (98.67%), CNN and GoogleNet (98%), and AMP-

WSVM(93%).

Table 4.10 illustrates the comparison of the proposed model with other models

found in the literature using same dataset.

4.4.3 Discussion

While traditional ensemble methods are widely used, the concept of reinforce-

ment learning (RL) has been relatively less explored in the literature. Com-

pared to previous studies, our proposed Ensemble Reinforcement Learning (ERL)

model provides significant improvements in both accuracy and robustness. The

proposed approach introduces dynamic model tuning based on feedback using a

unique combination of deep learning and reinforcement learning. The proposed
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integrated reinforcement learning model is based on well-established methods,

but has distinct advantages. While previous studies have investigated individual

models and reinforcement learning techniques, this approach uniquely integrates

several state-of-the-art models (DenseNet201, VGG16, VGG19, MobileNet V1,

EfficientNet) into a single integration framework that has not been used in pre-

vious works. The ensemble provides the potential benefits of each architectural

design to develop a more stable and wider model of deviations and differences in

the model.

Table 4.9: Comparison of Proposed Weighted Average Ensemble using Grid Search

with Previous Studies.

Reference Model Dataset Accuracy

[112] LungNet22 Combination of 16 datasets 98.89%

[117] EfficientNet v2-M NIH 82.15%

[118] VGG 19 + CNN RSNA, SIRM 96.48%

[33] 7 Pre-trained CNN models Histopathological image dataset 98.67%

[34] CNN and GoogleNet Dataset from hospital 98%

[137] AMPWSVM classifier LIDC 93%

This Paper Proposed Model IQ-OTH/NCCD 99.40%

Table 4.10: Comparison of Proposed Model with Previous Studies Using IQ-

OTH/NCCD Dataset.

Reference Model Accuracy (%) Recall (%) Precision (%) F1-score (%)

[119] SVM 89.88 97.14 98.55 97.84

[120] VGG16, VGG19, Xception 98.83 98.57 98.83 98.70

[138] AlexNet 93.54 95.71 97.10 96.40

[139] Ensemble learning 92.80 - - -

[140] AlexNet, ResNet 98.58 95.50 96.78 96.14

[141] SMOTE based on CNN 97.00 - - -

This Paper Proposed Model 99.40 99.47 98.25 98.85

The high accuracy and reliability of our proposed integrated reinforcement learn-

ing (ERL) framework have promising implications in clinical settings, especially
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in early lung cancer diagnosis. However, a few challenges need to be overcome.

First, the model needs to guarantee generalizability to many different patient pop-

ulations so that it can be brought to real-world applications.. The dataset used

in this study contains a limited number of images from specific demographics.

Therefore, expanding the data set in patients with different varieties, age and risk

factors are important to improve the pattern of persistence and avoid possible

bias.

Another challenge from an operational perspective is integrating the system into

the clinical workflow which requires appropriate infrastructure and training. Health-

care professionals, must be trained to interpret the results generated by artificial

intelligence and combine them with clinical experience. In addition, computer

resources should be used to treat model treatment requirements.

Although there are challenges, it is still possible to use this framework. ERL-

based systems may enhance diagnostic accuracy in under-resourced areas where

healthcare professionals may not be readily available.Through mitigation of these

challenges and an exploitation of the available opportunities, the proposed ERL

system has vast promise for transforming diagnosis in lung cancer, and improve-

ment of patient outcomes through enabling more accurate, efficient, and scalable

healthcare solutions.

4.5 Summary

The increasing incidence of lung cancer necessitates advancements in diagnostic

techniques that can facilitate early detection and treatment. This study presents a

comprehensive framework that integrates deep learning with ensemble reinforce-

ment learning to enhance lung cancer diagnosis accuracy from CT scans. The

objective is to identify the stages of lung tumors at the earliest possible point

through advanced imaging techniques. By combining five powerful CNN ar-

chitectures—DenseNet201, EfficientNetB7, VGG16, MobileNetV1, and VGG19

along with grid search optimization, our model achieves an outstanding accuracy

of 99.40%, surpassing previous benchmarks.

The advanced preprocessing methods are employed together with handling class
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imbalance using elastic transformations, which increases the strength and gen-

eralization of the model. This unique integration of models and reinforcement

learning signifies a substantial advancement in lung cancer diagnosis, providing

a more reliable and scalable solution for medical use.

Our work not only improved existing methods but also set new standards for the

field. In order to ensure the model’s adaptability and impact on actual medical

care, future work will concentrate on growing the dataset and validating the model

across a range of patient demographics.
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CHAPTER 5

CONCLUSION AND FUTURE

DIRECTIONS

This chapter concludes the thesis, including a summary of work and significant

contributions. It then suggests and analyses several potential future directions

that can further enhance diagnostic methodologies.

5.1 Conclusion and Discussion

The quest for improved diagnostic methodologies in the healthcare sector has

intensified, especially in the context of diseases like lung cancer, which remain

among the leading causes of mortality worldwide. This research has focused

on developing an advanced diagnostic framework that integrates deep learning

with reinforcement learning to enhance lung cancer diagnosis accuracy from CT

scans. This section summarizes the key findings of this study, emphasizing per-

formance improvements achieved through various machine learning and deep

learning models in disease prediction and lung cancer detection.

In this thesis, to achieve the first objective, the literature survey chapter highlights

the extensive application of data mining techniques in healthcare. It explores vari-

102



ous machine learning and deep learning methods used for diagnosing lung cancer

and other diseases. This chapter also provides a foundation for understanding

how data mining can extract meaningful inferences from patient health data, set-

ting the stage for implementing the models proposed in the following chapters.

The implementation of second objective involves the use of predictive models

with machine learning, deep learning, and ensemble techniques to recognize lung

cancer. To achieve this objective several different machine learning classifiers

and deep learning models are implemented and tested for a novel ensemble learn-

ing framework. A cloud-based IoMT framework was proposed for remote lung

cancer detection, integrating logistic regression, MLP classifier, Gaussian NB,

and K-Means with fuzzy logic for intelligent feature selection. A reinforcement

learning-assisted deep learning framework was introduced, focusing on diagnos-

ing lung cancer from CT scan images. These procedures enable precise recogni-

tion of lung cancer by automating feature selection and optimizing model accu-

racy through hyperparameter tuning and ensemble learning techniques.

To achieve the third objective a consumer-focused IoMT-based framework is de-

veloped that enables remote monitoring and diagnostic capabilities. By integrat-

ing machine learning models and ensemble methods into the IoMT architecture,

this system provides efficient and accessible healthcare support for lung cancer

patients. The proposed model’s ability to gather patient data, process it using

deep learning techniques, and offer real-time insights enhances patient care. This

also demonstrates how data-sharing between healthcare providers and patients

can lead to timely and informed decision-making, ensuring the right care path-

ways are chosen.

To implement the fourth objective, the proposed models focus on predictive anal-

ysis for lung cancer detection, achieving high diagnostic accuracy rates of 98.50%

and 99.40% for machine learning and deep learning models respectively. The

voting classifier ensemble and hyperparameter tuning techniques improved pre-

dictive accuracy, and we further refined these methods by introducing weighted

average ensemble learning and reinforcement learning. These approaches ensure

that the models can predict lung cancer at an early stage, thus facilitating timely

interventions and improving patient outcomes. The integration of elastic trans-
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formation and data augmentation also ensures robust model generalization across

diverse datasets, enhancing its application in real-world healthcare settings.

Each chapter has successfully contributed to the overarching goal of enhancing

lung cancer diagnosis using computational intelligence and deep learning frame-

works. Through rigorous model development, feature selection, and reinforce-

ment learning integration, the research has demonstrated notable improvements

in diagnostic accuracy, making significant strides toward addressing real-world

healthcare challenges.

5.2 Future Directions

While this research has made significant contributions to healthcare analytics,

several future research directions can further enhance its impact.Given the promis-

ing results of this study, several directions for future research can be proposed:

1. Expansion to Other Cancers:

Future studies could validate the framework on datasets for other cancer

types, assessing its generalizability and robustness across various diseases.

The validation of this model on datasets external to these subsets will con-

firm the robustness and applicability of this model.

2. Integration of Multi-Modal Data:

Incorporating genomic, clinical, and demographic data into the existing

framework could enhance the model’s predictive capabilities and provide a

more comprehensive understanding of patient health. Additionally, various

types of feature data will improve resilience and diagnostic precision.

3. Development of Real-Time Detection Systems:

Future work could focus on building real-time monitoring systems that lever-

age the proposed framework for continuous patient assessment.

4. Exploration of Explainable AI:

Further research into explainable AI methods could enhance the interpretabil-

ity of the model’s predictions, fostering greater trust among healthcare pro-

fessionals. This enhancement will make it easier for healthcare profession-
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als to understand and depend on the result produced by the model. Further,

the incorporation of XAI into the system will help with following the medi-

cal monitoring regulations thus enhancing the applicability of the system in

a clinical environment.

5. Cross-Validation Across Diverse Populations:

Conducting extensive cross-validation on diverse patient populations will

help ensure the model’s effectiveness in varied clinical settings.

6. Multi-task Reinforcement Learning:

Exploring the integration of multi-task reinforcement learning could opti-

mize performance across different medical imaging tasks, improving the

framework’s adaptability and generalizability. This could allow for joint

optimization across various medical imaging tasks, further enhancing the

model’s robustness.

This thesis has made significant strides in enhancing lung cancer diagnosis through

the integration of deep learning and reinforcement learning techniques. The study

demonstrates that advanced computational methods can yield impressive diagnos-

tic accuracy, addressing critical challenges in lung cancer detection and predic-

tions.

The results underscore the transformative potential of ML and DL in healthcare,

paving the way for improved diagnostic practices that can ultimately lead to bet-

ter patient outcomes. The proposed framework not only sets new benchmarks

for accuracy but also provides a scalable solution for the early detection of lung

cancer. As the field of medical diagnostics continues to evolve, the findings from

this research will contribute to ongoing advancements in automated detection and

treatment paradigms, heralding a new era of precision medicine sets.
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