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Abstract 

Cloud Computing is a platform that virtually shared servers provide software, 

platforms, infrastructure, policies and other functionalities. This technology is seen as 

a solution for minimizing costs and complexities for users. Its increasing popularity 

stems from benefits like on-demand service access, flexible resource management, 

robust fault tolerance and scalability. Cloud environments with their distributed nature 

can become appealing targets for intruders. To ensure reliable and secure services 

within these environments, implementing an Intrusion Detection System (IDS) is a 

highly effective approach. An IDS helps to identify the attacks that could compromise 

the security of cloud infrastructures. Conventional security measures, like firewalls, are 

insufficient to tackle the increasingly complex and dynamic security issues faced in 

cloud computing environments. These methods primarily focus on filtering 

unauthorized access but fall short in identifying sophisticated and dynamic threats. To 

overcome these limitations, implementing a robust system like an Intrusion Detection 

System (IDS) is essential. An IDS effectively monitors network traffic and system 

activities, detecting and responding to potential attacks in real-time. Its advanced 

capabilities make it a critical component in safeguarding cloud infrastructures against 

emerging security threats. 

 

An Intrusion Detection System (IDS) is an automated solution designed to detect 

inappropriate events, such as intrusion attacks, occurring within computer systems. An 

IDS equipped with effective countermeasures plays a vital role in identifying and 

addressing such threats. The main goal is to identify different forms of malicious 

network activity and keep track of system behaviour, tasks that conventional security 

methods often struggle to handle effectively. 

 

The necessity for robust Intrusion Detection Systems (IDS) has grown exponentially as 

the attacks pose significant risks to data integrity, availability, and confidentiality, 

resulting in substantial financial losses, reputational damage and operational 
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disruptions of the cloud. Consequently, there has been a significant surge in research 

dedicated to developing effective IDS to counteract attacks. This report introduces a 

novel architecture that combines the modified firefly algorithm with a hybrid classifier 

to enhance IDS performance.  

 

The swift expansion of internet connectivity and digitalization has resulted in a 

significant rise in cyberattacks. This has driven the need for advanced IDS capable of 

real-time identification and mitigation of various cyber threats. The primary goal of an 

IDS is to detect unauthorized access and malicious activities within a network, thereby 

protecting sensitive data and ensuring the continuous availability of network services.  

 

The proposed architecture of research integrates the modified firefly algorithm for 

feature selection with a hybrid classifier for detection of attacks. Hybridized Firefly 

Algorithm with Decision Tree Algorithm is used for feature selection. This algorithm 

was compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). 

The hybrid classifier, which combines the strengths of Neural Network with Decision 

Tree utilized to enhance detection capabilities further. 

 

Simulations were conducted in CloudSim, a robust platform for modelling and 

simulating cloud computing environments and services. This realistic approach allowed 

for testing the robustness and scalability of the IDS under various conditions. The 

proposed algorithm was also tested on simulated data generated within the CloudSim 

environment, in addition to validation over the CSE-CIC-IDS 2018 dataset. This two-

step validation method verifies both the accuracy and efficiency of the modified firefly 

algorithm paired with the hybrid classifier in controlled datasets. Additionally, it 

highlights its practical utility in real-world, cloud-based applications. The simulation 

outcomes emphasize the algorithm's ability to detect and counter cyber threats 

effectively, showcasing its potential to improve network security across various 

computing environments. 

 

The increasing sophistication and frequency of cyber threats demand the development 

of robust and effective Intrusion Detection Systems. The proposed architecture, which 
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combines the proposed feature selection with a hybrid classifier, offers a novel 

approach to improving IDS performance. Utilizing the extensive CSE-CIC-IDS 2018 

dataset and performing simulations in CloudSim, notable enhancements in 

classification accuracy, precision, recall, and overall performance have been achieved. 

This study not only contributes to the advancement of IDS research but also offers a 

practical and scalable approach to safeguarding digital infrastructures. As cyber threats 

grow increasingly sophisticated, continued innovation and research in IDS will be vital 

for maintaining the security and reliability of network systems, thereby protecting 

critical data and services from malicious activities. 

 

At 150,000 samples, the proposed architecture achieved a precision of 0.9658, recall of 

0.9681, F-Measure of 0.9669, and accuracy of 94.99%. These metrics consistently 

showed superior performance across various sample sizes compared to other 

architectures. For instance, in terms of precision, PSO combined with a hybrid classifier 

achieved 0.95188 at 100,000 samples, whereas the proposed architecture attained a 

higher precision of 0.9658. Similarly, recall for PSO and GA combined with a hybrid 

classifier at 100,000 samples was 0.83272 and 0.85425, respectively, while the 

proposed architecture achieved 0.9884, highlighting its effectiveness in identifying 

actual positives. 

 

At 1,00,000 samples of simulated dataset, the precision was 0.9658, accuracy 91.5%, 

recall 0.988 and F-Measure 0.977. These results indicate the proposed architecture's 

strong ability to accurately identify true positives while minimizing false positives. The 

high recall rate signifies the proposed algorithm's robust capacity to detect nearly all 

true attack instances, thus significantly reducing false negatives. This capability to 

detect a high number of true positives is crucial in an IDS context, as missing actual 

threats can lead to severe security breaches with high F-Measure demonstrates that the 

proposed architecture not only identifies a large number of true positives but also does 

so with a low rate of false positives, ensuring a balanced and effective detection 

capability.  

 



vi 

 

This high recall rate signifies the proposed algorithm's robust capacity to detect nearly 

all true attack instances, thus significantly reducing false negatives. This capability to 

detect a high number of true positives is crucial in an IDS context, as missing actual 

threats can lead to severe security breaches. 

 

The successful application of proposed architecture in both controlled datasets and 

simulated real-world environments further highlights its robustness and practical 

relevance in contemporary cybersecurity practices. The proposed architecture not only 

advances IDS research but also provides a practical and scalable solution for protecting 

digital infrastructures. This makes it an invaluable tool in the fight against cyber threats, 

ensuring that IDS can effectively identify and mitigate potential attacks, thus protecting 

network integrity and maintaining the availability of essential services. The successful 

application of this architecture in both controlled datasets and simulated real-world 

environments further highlights its robustness and practical relevance in contemporary 

cybersecurity practices. 
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CHAPTER 1 INTRODUCTION 

The chapter offers an in-depth overview of the cloud computing environment, 

addressing the associated security concerns. It also examines various network 

attacks that threaten cloud computing security. The intrusion detection systems 

used for detection of attacks are also discussed in detail in this chapter. 

1.1 Cloud Computing 

Today Cloud Computing has become highly valued as it offers on-demand and 

scalable services that meet user needs along with reducing costs and complexities. 

Resources can be deployed more easily with minimal management and reduced 

interaction with different service providers by using cloud computing. This 

improves the accessibility of the resources and allows the infrastructure to be 

utilized on a Pay-per-Use-On-Demand basis which results in cost savings [S. 

Kumar and R. H. Goudar,2012]. 

The cloud environment can support a large number of users because it is scalable. 

The key benefits of switching to cloud computing include lower costs, less reliance 

on staff, resilient scalability and others. Cloud computing allows for the dynamic 

easing of congestion or addition of capabilities without investing in additional 

hardware, employing more employees or obtaining software licences. It increases 

IT potential.  

Cloud Computing has revolutionised information processing by providing a 

technology platform that is affordable, efficient and scalable. From an 

administrative standpoint, cloud computing offers greater storage and processing 

capacity at a lower cost. To fully unlock the potential of cloud computing, CSPs 

must offer flexible service delivery that accommodates diverse consumer needs, all 



2 

 

while keeping users abstracted from the underlying infrastructure [A. Beloglazov 

et al., 2012].  

1.2 Characteristics of Cloud Computing 

The cloud computing model is defined by five key characteristics: broad network 

access, rapid elasticity, resource pooling, on-demand self-service, and measured 

service. These features highlight the distinct advantages of cloud computing over 

traditional computing models [M. I. Alam et al., 2015]. Figure 1.1 provides a visual 

representation of these characteristics. 

 

Figure No.1.1 Characteristics of Cloud Computing 

1.On-demand self-service: Cloud computing services allow users for 

provisioning, monitoring and managing resources independently without the 

requirement of human administrators. 

2.Broad network access: Cloud services are delivered over wide-area networks 

and can be accessed through various heterogeneous devices. 

3.Rapid elasticity: These services provide the capability to swiftly scale resources 

up or down based on user demand. 

On demand self service

Broad network access

Resource pooling

Rapid elasticity

Pay-per-use
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4.Resource pooling: Resources such as networks, servers, storage, applications, 

and services are shared among multiple users and applications. This allows 

different clients to utilize the same physical resources efficiently. 

5.Measured service: Resource usage is tracked for each application and user, 

providing both the service provider and the user with detailed records of consumed 

resources. This is crucial for purposes like billing and ensuring optimal resource 

utilization. 

1.3 Services of Cloud Computing 

Cloud computing is comprised of three service models: Software as a Service 

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [M. 

Kavis, 2014]. Figure 1.2 depicts the services provided by these models. 

 

                  

Figure No.1.2 Services of Cloud Computing 

1.Software as a Service (SaaS): SaaS is a cloud-based model for delivering a wide 

range of services and applications. Users can access and use them online, instead 

SaaS

Dropbox, Google 
Workspace

PaaS

Google Cloud, Azure, IBM 
Cloud

IaaS

AWS, Azure, Google Compute Engine
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of installing and managing software on local devices and this simplifies software 

and hardware management. This approach eliminates the need for installing and 

running applications on local devices which reduces the costs related to the 

software. This offers a complete software solution that is available on the 

subscription basis from a CSP.  

2.Platform as a Service (PaaS): PaaS helps the developers by providing with a 

platform and environment for building applications and services via the cloud. PaaS 

services are hosted in the cloud and accessed by users through their web browsers. 

CSPs hosts the necessary hardware and software on its infrastructure which makes 

the users free from the need to install and manage in-house hardware and software 

for development or running of new applications. This helps the application 

development and deployment to occur independently of the underlying hardware.  

3. Infrastructure as a Service (IaaS): IaaS is a cloud service model which 

provides outsourced computer infrastructure for supporting various operations. It 

offers enterprises infrastructure components like networking equipment, devices, 

databases and web servers. Users using IaaS services mostly pay on a per-user basis 

and pricing often structured by the hour, week or month. Some CSPs may charge 

on the amount of virtual machine space utilized. It provides services related to the 

essential operating systems, security, networking and servers which are required 

for development of the applications. It also provides deploying services. 

1.4 Deployment Models of Cloud Computing: 

The four types of cloud deployment models include public cloud, private cloud, 

hybrid cloud, and community cloud [S. Carlin and K. Curran, 2013]. Another type 

of cloud which is mutli-cloud is also discussed. Figure 1.3 descirbes the different 

deployment models of the cloud computing. 
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 Figure No.1.3 Deployment Models of Cloud Computing 

1.Public Cloud: These clouds are especially beneficial for small enterprises which 

allows them to launch businesses without huge investments. The key feature of 

public cloud is multitenancy so they can serve multiple users instead of single user. 

The services can easily scale resources depending upon the traffic and workload 

demands, optimizing performance and cost efficiency. They can help to reduce the 

need for significant investments in hardware and infrastructure and thereby 

lowering overall costs. Example of Public Cloud: Amazon EC2, IBM, Azure . 

2.Private Cloud: Private clouds are operated on the private infrastructure which 

gives dynamic provisioning of the computing resources to the users. Unlike the 

pay-as-you-go model used for the public clouds, private clouds may use alternative 

ways to manage the resource usage and assign costs proportionally across different 

departments or sections within an enterprise. Examples of Private Cloud are 

VMware vCloud Suite, OpenStack, Dell Cloud Solutions, HP Helion Eucalyptus. 

3.Hybrid Cloud: A hybrid cloud is a heterogeneous system that combines the 

capabilities of both public and private clouds. One major limitation of private 

Hybrid 

Cloud 
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Cloud 
Public Cloud 

Multi- Cloud 
Community 

Cloud 

Types of 

clouds 
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clouds is their lack of scalability to meet on-demand requirements and manage peak 

loads effectively. Public clouds address this issue by providing additional 

resources. Examples of hybrid cloud solutions include AWS Outposts, Azure 

Stack, Google Anthos, and IBM Cloud Satellite. 

4.Community Cloud: Community clouds cater to the specific needs of a particular 

industry, community, or business sector. However, managing shared 

responsibilities among participating organizations can pose challenges. While 

public clouds typically offer lower security, community clouds provide a higher 

level of protection. They facilitate the sharing of cloud resources, infrastructure, 

and capabilities among various organizations. Examples of community clouds 

include CloudSigma, Nextcloud, Synology C2, and Stratoscale. 

5.Multi-Cloud: Multi-cloud refers to the use of multiple cloud computing services 

from different providers, allowing organizations to select the most suitable services 

for their specific needs while avoiding vendor lock-in. Examples of multi-cloud 

platforms include Cloud Foundry, Kubernetes, Red Hat OpenShift, and Docker 

Swarm. 

1.5 Intrusion Detection System  

Clouds can become attractive targets for intruders due to its distributed nature. 

Traditional security methods like firewalls are not sufficient to meet the security 

issues. A robust system like an Intrusion Detection System (IDS) is necessary for 

effectively detecting attacks in the cloud computing environment. 

Security is the one of the biggest issues of the cloud computing model [A. R. Suraj 

et al., 2018]. Figure 1.4 describes the CIA related to security. 
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Figure No.1.4 CIA related to Security 

 

IDS is a system which autonomously detect inappropriate events like intrusion 

attacks which are occurring in computer systems. An IDS with effective 

countermeasures is crucial for detecting attacks. The identification of different 

kinds of malicious network traffic along with computer utilization is the key 

objective of any IDS, which cannot be identifiable by traditional techniques.  

Many researchers have applied Data Mining (DM) and Machine Learning (ML) 

techniques to address cybersecurity challenges [P. Singh et al.,2014]. ML 

classifiers are commonly employed to differentiate between attack packets and 

normal packets [F. Kuang et al.,2014]. Additionally, rule association mining is an 

emerging technique in this domain [C. Nkikabahizi et al., 2017].  

Neural Network is frequently used due to its capability to handle incomplete 

datasets [V. Balamurugan and R. Saravanan, 2019]. Various optimization 

algorithms like genetic algorithm [P. Ghamisi and J A.  Benediktsson, 2014], 

particle swarm optimization [A. S. Saljoughi et al., 2017], firefly algorithm [ X.S. 

Yang, 2008], harmony search [K. Costa et al.,2012] and artificial bee colony [S. 

Aljawarneh et al, 2018] have also been integrated with classifiers to categorize the 

network traffic. 
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1.5.1 Types of IDS Based on Monitoring Environment 

There are four types of IDS, categorized based on the environment they monitor. 

Figure 1.5 describes the types of IDS based on the monitoring environment. 

 

Figure No.1.5 Types of IDS Based on Monitoring Environment 

 

Host- Based IDS 
(HIDS)

Specific to a 
particular 

host

Monitors 
single system

Network-Based 
IDS (NIDS)

Specific to a 
particular 
network

Monitors 
whole 

network 
including 

multiple hosts

Distributed IDS 
(DIDS)

Detection 
systems spread 

over the 
network

Distributed 
IDS are 

interconnected 
by LAN

Hybrid IDS

Combines the 
features of 
HIDS and 

NIDS

Better than 
HIDS and 

NIDS



9 

 

1. Host-based IDS (HIDS): When unknown malicious code is detected, host-based 

IDS relies on an individual device to detect critical files of the operating system for 

unusual or malicious activity. It only protects the host device on which it is located. 

Individual host machines may be programmed with a general set of rules during 

installation. To take into account new vulnerabilities, new rules can be loaded 

periodically in the host system. 

2. Network-based IDS (NIDS): The device analyzes network links for irregular 

traffic and tracks them. NIDS are devices that are distributed within networks in an 

intelligent way and detect malicious traffic on a network.  

3. Hybrid IDS: This IDS combines both HIDS and NIDS components. The mobile 

agent travelling to each host conducts a device log file checker, while a central 

agent will check for irregularities across the entire network. 

4. Distributed IDS (DIDS): DIDS composed of various key benefits of this IDS is 

that its decentralized nature and scalability along with it does not have a single point 

of failure. Apart from this having two important challenges; the detection algorithm 

for each distributed network on different locations as well as how the information 

is shared among all network. As depicted in figure there is one centralized server 

which involves various sub-networks along with IDS and this centralized passed 

summary statistics of their observed statistics.  

1.5.2 Detection Techniques of IDS 

There are four types of IDS that are categorized on the basis of the detection 

techniques used by them. Figure 1.6 illustrates the types of IDS categorized by their 

detection techniques.  
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1.Signature-Based IDS: This IDS have ability to easily identify the known attacks; 

whereas it’s challenging to identify the unknown attacks through known signature 

their corresponding pattern is unavailable. Figure 1.6 represents the pictorial 

representation of the Signature-Based IDS.  

 

Figure No.1.6 Signature -Based IDS 

2.Anomaly-Based IDS: It analyses the behaviour of networks, get patterns and 

then identify deviations corresponds to anomalies. The key benefit of this detection 

scheme over signature-based IDS is that it can identify attempts to exploit unknown 

cyber-threats or, vulnerabilities. Although it may generate high false alarm rate 

through taking acre of existing unknown system behaviours as anomalies utilized 

for known attacks.  

The identification of different kinds of malicious network traffic along with 

computer utilization is the key objective of any IDS, which cannot be identifiable 

by traditional firewall. 
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Table 1.1 Comparison of Detection Techniques of Intrusion Detection System 

 

Feature Signature-Based IDS Anomaly-Based IDS 

Detection 

Method 

Matches traffic against a 

database of known attack 

signatures. 

Detects deviations from normal 

behaviour patterns. 

Effectiveness Highly effective for 

detecting known attacks. 

Effective in identifying new or 

unknown attacks. 

False 

Positives 

Low, since it detects based 

on specific signatures. 

Higher, as unusual but legitimate 

activity can trigger alerts. 

False 

Negatives 

High for new, unknown 

attacks (cannot detect 

them without existing 

signatures). 

Lower for novel attacks, but can 

miss subtle variations of normal 

activity. 

Response 

Time 

Fast, as it only matches 

known signatures. 

Slower due to the complexity of 

analyzing behavioral anomalies. 

Maintenance Requires frequent updates 

to the signature database 

to detect new threats. 

Requires continuous training and 

tuning of the model to adjust to 

changing behavior patterns. 

Resource 

Consumption 

Generally consumes fewer 

system resources. 

Requires more processing power 

due to constant behavior 

analysis. 
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Ideal Use 

Case 

Best for environments 

where known threats are 

prevalent. 

Ideal for environments where 

new or unknown threats are 

expected. 

 

1.5.3 IDS Related to Cloud Computing 

There are four types of IDS related to Cloud Computing Environment. 

 

1. Network-Based IDS (NIDS): Network-based Intrusion Detection Systems 

(NIDS) monitor and analyze traffic across an entire network to identify potential 

intrusions, such as port scanning or Denial of Service (DoS) attacks. In a cloud 

environment, NIDS can detect attacks targeting the hypervisor or virtual machines 

(VMs) when positioned at the cloud server interacting with external networks. 

Typically, CSPs are responsible for deploying NIDS within the cloud 

infrastructure. 

2. Host-Based IDS (HIDS): Host-based Intrusion Detection Systems (HIDS) 

collect and analyze data from a specific host to identify intrusive activities. In cloud 

computing environments, HIDS can be deployed on hypervisors, virtual machines 

(VMs), or individual hosts. It monitors system logs, user login activity, and access 

control policies to detect potential threats. While the cloud provider manages HIDS 

deployment at the hypervisor or host level, cloud users are responsible for 

managing HIDS on their VMs. 

3. Distributed IDS (DIDS): A Distributed Intrusion Detection System (DIDS) 

comprises multiple IDS units, such as NIDS and HIDS, distributed across a large 

network to monitor traffic for signs of intrusion. These IDS units can communicate 

with each other directly or through a centralized server. In a cloud environment, 

DIDS can be deployed on processing servers or directly on host machines. 
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4. Hypervisor-Based IDS: The hypervisor enables communication between virtual 

machines (VMs) in a cloud environment. A hypervisor-based IDS is deployed at 

the hypervisor layer to analyze this communication and detect any anomalous 

activities. It monitors interactions at various levels, including VM-to-hypervisor 

communication, VM-to-VM communication, and within the hypervisor-managed 

virtual network. 

1.5.4 Examples of Real-time Security Breaches Related to Cloud Computing: 

1.Tesla Cloud Cryptojacking (2018): Cybercriminals infiltrated Tesla's AWS 

cloud environment by exploiting an unprotected Kubernetes console that lacked 

password security. They leveraged Tesla’s cloud infrastructure to mine 

cryptocurrency, leading to increased operational costs and security threats. Failing 

to secure administrative tools properly can result in significant financial and 

cybersecurity risks. 

 

2. Capital One Data Breach (2019): A misconfigured web application firewall 

(WAF) in Capital One's AWS cloud environment was exploited by a former AWS 

engineer, resulting in a major data breach. This incident exposed the personal and 

financial information of over 100 million customers. Improper cloud security 

configurations can create significant vulnerabilities, leading to widespread data 

leaks. 

 

3. Facebook Cloud Storage Leak (2019): Due to misconfigured Amazon S3 

buckets by third-party developers, 540 million Facebook user records were 

exposed. The leaked data included personal details such as user IDs, passwords, 

and activity logs. To prevent such incidents, organizations should implement strict 

cloud access controls and closely monitor third-party cloud integrations. 
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4. Microsoft Azure Cosmos DB "ChaosDB" (2021):  Security researchers 

discovered a flaw in Microsoft's Cosmos DB service that permitted unauthorized 

access to customer databases. This vulnerability highlighted how even weaknesses 

within cloud service providers can pose significant risks to businesses.  

 

1.6 Attacks affecting Network 

Active attacks are like a bandit storming your fortress, while passive attacks are 

like a spy hiding in the shadows which are silently observing. Both types of attacks 

are dangerous but in different ways. The active attacks disrupt and demand 

immediate defense whereas passive attacks can go unnoticed for a long time which 

potentially lead to major leaks of sensitive information. 

 

Table 1.2 Comparison of Active Attack and Passive Attack 

Aspect Active Attack Passive Attack 

Definition Involves direct 

interference with 

system operations or 

data. 

Involves monitoring or 

eavesdropping on 

communications. 

Objective To alter, modify, or 

damage the target’s 

data or system. 

To gather information without 

detection. 

Visibility Typically noticeable 

by the victim. 

Usually stealthy and goes 

unnoticed by the victim. 
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Impact on Data Data integrity, 

availability, and 

authenticity may be 

compromised. 

Confidentiality of data may be 

compromised. 

Interaction with 

System 

Direct interaction with 

the target system or 

communication. 

No interaction with the target 

system, only observation. 

Detection 

Difficulty 

Easier to detect due to 

noticeable effects on 

the system. 

Harder to detect as no immediate 

changes occur in the system. 

Response 

Requirement 

Requires immediate 

response and recovery 

actions. 

May go undetected, so delayed 

response if discovered. 

Risk Level Higher risk due to the 

potential for 

immediate damage. 

Lower risk but can lead to more 

damaging active attacks. 

Example 

Attacks 

Data modification, 

denial of service 

(DoS), session 

hijacking. 

Eavesdropping, traffic analysis, 

password sniffing. 

 

1. Denial-of-Service (DoS) Attack 

A Denial of Service (DoS) attack refers to any event or malicious action that 

diminishes or disrupts a cloud's ability to deliver the services and functionalities 

that users expect. A DoS attack is one that targets a resource or service in the cloud 

with the intention of temporarily preventing it from offering its regular services. It 
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is a cyberattack aimed at disrupting the services of a specific computer or website, 

preventing legitimate users from accessing it. The goal is to interfere with an 

organization’s network operations by overwhelming the target with excessive 

requests, causing system overload. This flood of traffic makes it difficult or 

impossible for the system to process genuine requests, effectively denying access 

to users. 

2. Distributed DoS (DDoS) Attack 

Circulated version of Distributed DoS (DDoS) attack is referred to as DoS attacks. 

It uses many network hosts to do more damage damaging consequences for its 

sufferer. Instead of one attacker, DDoS attacks involve multiple compromised 

devices (often part of a botnet) working together to flood a target with traffic, 

overwhelming its resources and causing the service to become unavailable. DDoS 

attacks are highly dangerous due to their ability to disrupt online services and 

infrastructure with a coordinated, large-scale assault. Figure 1.7 represents the DoS 

attack and DDoS attack. 

 

Figure No.1.7 Pictorial Representation of DoS attack and DDoS attack  
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3. Bruteforce Attack 

This type of attack involves attempting to guess a password through repeated trial 

and error. The attacker tries various combinations of characters until they 

successfully identify the correct password, granting them access to the system. This 

approach relies on the premise that eventually all combinations will be tested, 

leading to the discovery of the correct one. Brute-force attacks can be time-

consuming and resource-intensive, particularly as the complexity of the password 

or encryption increases. To mitigate the risk of such attacks, it is advisable to use 

strong, complex passwords and implement security measures such as account 

lockouts after multiple failed attempts, CAPTCHA challenges, or multi-factor 

authentication (MFA). 

4. Infiltration Attack  

 

This attack tries to exploit application related vulnerabilities. They send harmful 

email to victim. After performing attack, a backdoor is installed in the victim. Then 

other vulnerabilities of the system are exploited by attacker. This type of attack 

typically focuses on penetrating the internal network of an organization or system 

rather than just attacking external-facing components. Here’s an overview of how 

infiltration attacks work and their key characteristics: 

5. SQL Injection Attack  

 SQL injection (SQLi) is a type of attack where an attacker exploits vulnerabilities 

in an application's interface to execute malicious SQL queries against a database. 

The attackers aim to disrupt the queries made to the database by the applications. 

The attacker can view user data or application data. He can delete or modify the 

files present in the database 
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6. Botnet Attack  

This attack uses zombies which are computer systems affected by malware. These 

systems can launch DDoS attack or send spam mails to the victim. A botnet attack 

involves using a network of compromised devices, known as bots or zombies, to 

carry out various malicious activities. The devices in the botnet are controlled by a 

central command-and-control (C2) server operated by the attacker. Here’s a 

breakdown of how botnet attacks work and their impact: Figure 1.8 represents the 

Botnet attack. 

 

Figure 1.8 Pictorial Representation of Botnet Attack 

1.7 Machine Learning  

A subtype of artificial intelligence (AI) known as machine learning (ML) enables 

programmes to gain knowledge from data and experience without needing to be 

explicitly code. Training and classification are two common tasks in machine 

learning. A labelled dataset is given to the machine learning model during training 
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so that it may discover the connections between inputs (features) and outputs 

(labels).  

Predicting a type of categorical label for an input data sample is the aim of a 

particular kind of machine learning problem called classification. For example, 

given a feature vector of a IDS system, the goal of a classification model would be 

to predict which category of intrusion the data belongs to. There are following type 

of machine learning algorithm architecture in a broad manner. Figure 1.9 shows 

various types of machine learning techniques. 

 

Figure 1.9 Types of Machine Learning 

• Supervised Learning: A labelled dataset with known values for the target 

parameter is used to train the algorithm. Making forecasts for fresh, 

unforeseen data is the aim. Support vector machines (SVMs), decision trees, 

logistic regression, and linear regression are a few examples. 

 

• Unsupervised Learning: The purpose of the unlabelled dataset used to 

train the algorithm is to find patterns or correlations in the data. A few 

examples include anomaly detection, dimensionality reduction (PCA), and 

clustering (K-means). 
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• Semi-supervised Learning: The training is done on a partially labelled 

dataset, where some instances have known labels and others do not. The 

goal is to make predictions for the unlabelled instances based on the patterns 

learned from the labelled instances. 

1.8 Swarm Intelligence  

SI represents a paradigm shift in how we approach problem-solving and decision-

making in complex systems. It draws inspiration from the elegance and efficiency 

of social organisms that have evolved over millions of years to survive and thrive 

in their environments. By studying and emulating the collective behaviour of these 

organisms, researchers have unlocked a new frontier of possibilities in artificial 

intelligence, optimization, and distributed computing. 

 

The power of SI lies in its decentralized and self-organizing nature. Unlike 

traditional approaches that rely on centralized control or complex algorithms, 

Swarm Intelligence harnesses the inherent wisdom of the crowd. Each individual 

agent, whether it's an ant, a bird, a robot, or a particle, follows simple rules based 

on local information and interactions with its peers. These simple rules give rise to 

emergent behavior at the group level, enabling swarms to tackle complex tasks with 

surprising efficiency. One of the captivating aspects of Swarm Intelligence is its 

adaptability and robustness. Swarms are capable of responding dynamically to 

changes in their environment without the need for global communication or top-

down coordination. This adaptability makes them highly suitable for real-world 

problems that are subject to uncertainties and dynamic conditions, such as route 

optimization, resource allocation, anomaly detection, attack recognition, and data 

clustering. Figure 1.10 shows various types of swarm intelligence. 
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Figure No. 1.10 Types of Swarm Intelligence 

 

SI algorithms for feature selection can be categorized into various types based on 

the nature of the swarm and optimization techniques they employ. Some of the 

prominent categories include: 

 

1.Particle Swarm Optimization (PSO): PSO algorithms are inspired by the social 

behavior of birds or fish. In feature selection, particles represent potential feature 

subsets, and they adapt their positions in the feature space to find the best subset 

that minimizes or maximizes a given objective function. 

 

2.Firefly Algorithm (FA): The Firefly Algorithm is a type of SI algorithm that 

models the flashing behavior of fireflies. Firefly algorithms are used for feature 

selection by mimicking the movement of fireflies towards brighter neighbors in the 

feature space, representing promising feature subsets. 

 

3.Dragonfly Algorithm: The Dragonfly Algorithm is another SI-based approach 

that draws inspiration from the swarming behavior of dragonflies. These algorithms 
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optimize feature selection by mimicking the movements and interactions of 

dragonflies in the search for optimal feature subsets. 

 

4.Artificial Bee Colony (ABC) Algorithm: ABC algorithms are inspired by the 

foraging behavior of honeybees. In feature selection, they employ a population of 

artificial bees to explore and evaluate feature subsets, converging towards an 

optimal solution. 

 

5.Cuckoo Search (CS) Algorithm: Cuckoo Search algorithms are inspired by the 

breeding behavior of cuckoo birds. They optimize feature selection by simulating 

the random selection of host nests and the subsequent replacement of less fit feature 

subsets. 

1.9 Research Motivation 

In the modern digital era, the rapid growth of internet usage and emerging 

technologies has led to a significant rise in cyber threats. These attacks pose serious 

risks, including financial damage, harm to an organization's reputation, and 

interruptions to critical services. Traditional security approaches often fail to keep 

up with the evolving complexity of these threats, highlighting the need for robust 

Intrusion Detection Systems (IDS). 

One of the primary challenges in building an efficient IDS is accurately analyzing 

network traffic to distinguish between normal and malicious behavior. This 

involves two key tasks: selecting the most important features from complex and 

large-scale datasets, and choosing the right classification algorithms to ensure high 

detection accuracy. 

IDS datasets, such as the CSE-CIC IDS 2018 dataset, contain numerous attributes 

that describe different aspects of network activity. However, not all features are 

equally useful. Some may be redundant or irrelevant, leading to increased 
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processing time and decreased system accuracy. Therefore, identifying the most 

informative features is crucial for effective threat detection. 

Feature selection plays a vital role in improving the performance of IDS. By 

reducing the number of features, it lowers computational overhead and improves 

accuracy by eliminating unnecessary data. Finding the best subset of features 

requires advanced techniques that can balance the trade-off between speed and 

detection quality. 

Another major consideration is the use of classifiers—machine learning models that 

help identify whether activity is malicious or legitimate. Each type of classifier has 

its strengths: Decision Trees offer simplicity and clarity, Support Vector Machines 

perform well in high-dimensional data, and Neural Networks are capable of 

capturing complex patterns. However, no single model is perfect for every scenario. 

To overcome this, combining several classifiers into a hybrid model can provide 

better overall performance. This approach takes advantage of each algorithm’s 

strengths, aiming to increase detection rates while minimizing errors such as false 

alarms or missed threats. The challenge lies in integrating these models effectively 

to build a unified and reliable system. 

It’s not enough to design a model in theory—it must be tested in realistic 

environments to confirm its effectiveness. A well-structured simulation platform 

should reflect real network conditions and allow thorough evaluation under various 

circumstances. This ensures the IDS can be assessed in terms of performance, 

scalability, and adaptability. 

Ultimately, developing such a system leads to stronger defenses against cyber 

threats, making cloud and network environments more secure. 
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1.10 Organization of the thesis chapters 

Chapter 1: This chapter provides a detailed description related to the cloud 

computing environment and various attacks affecting it. This chapter describes 

intrusion detection system and it types in detail.  

Chapter 2: This chapter outlines the related work, summarizing the research drafts 

published prior to this study. It includes a comparative analysis and a literature 

review focused on cloud computing, feature selection and intrusion detection 

systems. Additionally, this chapter clearly defines the problem statement and 

identifies research gaps pertinent to this work. 

Chapter 3: This chapter presents the research objectives and details the 

methodology employed throughout the research process. A flowchart is provided 

to illustrate the steps taken to achieve the research objectives. 

Chapter 4: This chapter discusses the generation of a simulated dataset using a 

cloud simulation tool. Both the simulated dataset and the standard CSE CIC IDS 

2018 dataset are utilized to evaluate the architecture developed for attack detection. 

Preprocessing and feature selection are conducted on these datasets. 

Chapter 5: This chapter details the architecture designed for detecting attacks in a 

cloud computing environment. It explains the various modules of the architecture 

in depth. 

Chapter 6: This chapter describes the results and discussions of the research work. 

The results for the standard benchmark dataset CSE CIC IDS 2018 dataset and 

simulated dataset are described in this chapter. Results are presented in tabular and 

graphical form. Description of results are given in this chapter. Different sample 

sizes are taken for result generation. 
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Chapter 7: This chapter describes the conclusion and outlines the future scope 

related to the research work. Conclusion is extracting the summary of the research 

work. Future scope tells the possible future directions related to the research. 

 

1.11 Summary  

A thorough introduction to cloud computing environment is given in this chapter, 

which also highlights its importance and widespread use in the contemporary 

computing. It describes many security concerns encountered by cloud systems, 

demonstrating various types of attacks that risk resources of the cloud. The 

importance of machine learning algorithms in improving attack detection skills is 

emphasized, along with the power of swarm intelligence, which together create a 

robust intrusion detection system.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents an overview of the recent research focused on improving 

intrusion detection and security measures within cloud computing environments. 

Researchers have investigated a variety of approaches, including traditional 

machine learning techniques, to develop effective intrusion detection systems (IDS) 

capable of identifying attacks. The chapter also explores innovative methods, such 

as nature-inspired algorithms and hybrid detection systems that combine multiple 

detection techniques for more comprehensive cloud protection. By reviewing key 

studies and their findings, the chapter sheds light on the evolving landscape of 

intrusion detection in cloud computing environment, highlighting significant 

advancements in security measures within this critical and dynamic field. 

Additionally, problem statement with research gaps identified through the literature 

review. 

 

2.1 Cloud Computing 

[C. Gong et al. ,2010] highlighted the core features of cloud computing, describing 

it as an advanced evolution of existing distributed computing models, such as 

cluster and grid computing. Cloud computing has emerged from innovations in 

distributed systems, Internet technologies like service-oriented architecture (SOA), 

hardware virtualization, and autonomic computing. The cloud offers users the 

impression of unlimited, on-demand resources that can be accessed from any 

location. This mobility and collaborative functionality are reinforced by 

infrastructure abstraction, which hides complexity from users. The paper outlines 

key cloud computing characteristics, facilitating its development and widespread 

adoption. One major feature is its service-oriented architecture, which simplifies 

complex internal operations. Another technical feature is loose coupling, applicable 
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across various cloud systems. Cloud computing’s robust fault tolerance also makes 

it compatible with commonly used network infrastructures. Its economic benefits 

are a primary driver for business adoption, distinguishing it from high-performance 

computing (HPC) and grid computing. The user-friendly design abstracts service 

provider complexities through simple interfaces. Other key features include 

reliance on TCP/IP for Internet access, virtualization capabilities, and enhanced 

security. 

 

[E. Besharati et al., 2019] explored security issues in cloud environments and 

introduced a host-based intrusion detection system (H-IDS) to protect virtual 

machines. Key features for each category were selected using logistic regression 

and further refined through regularization techniques. Attack classification was 

performed using a combination of neural networks, decision trees, and linear 

discriminant analysis, enhanced with a bagging algorithm to improve accuracy. The 

proposed model was evaluated on the NSL-KDD dataset and implemented in the 

CloudSim simulation environment. Results showed a detection accuracy of 

97.51%, surpassing other methods in identifying attacks. 

[Y. S. Abdulsalam and M. Hedabo, 2021] highlighted that the main challenge in 

securing critical internet infrastructures, like cloud computing, is ensuring the 

system's ability to self-protect regarding security and privacy. It is crucial to 

implement secure adaptive techniques, which can be applied at different levels of 

the technology stack, including hardware, software, and core computing 

infrastructure. Secure adaptiveness enables the system to defend itself against a 

range of attacks or malicious users exploiting vulnerabilities. Without the practical 

deployment of these adaptive mechanisms, cloud computing will remain vulnerable 

to security and privacy threats, putting the efficiency of client and user experiences 

at risk. 
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2.2 Feature Selection 

Filter Method: Filter methods assess the relevance of features based on statistical 

measures, independent of any machine learning algorithms. In this case, the authors 

utilize feature correlation to select important features, calculating the correlation 

coefficients between features to construct a correlation matrix. The average 

correlation of each feature with others is then computed to determine its 

significance. This approach allows for the selection of features that are most 

correlated with other features, aiming to enhance detection performance while 

reducing computational complexity  

[D. Rani and N. C. Kaushal, 2020] introduced a hybrid intrusion detection system 

that combined the C5.0 Decision Tree with a One-Class SVM. The C5.0 model was 

employed for misuse detection, effectively identifying known attacks with a low 

false alarm rate, while the One-Class SVM focused on anomaly detection by 

training only on normal traffic. During training, decision boundaries were 

established based on normal data, and outliers were flagged as potential attacks. 

Testing on the NSL-KDD dataset showed that this hybrid model improved 

detection rates and reduced false alarms compared to previous methods. 

[V. D. Ngo et al., 2024] compared feature selection and feature extraction methods 

in intrusion detection, using the UNSW-NB15 dataset for both binary and 

multiclass classification. The study found that feature selection provided higher 

detection accuracy and required less training and inference time when the number 

of features was moderately large (e.g., 8 or 16). However, feature extraction 

performed better with fewer features (e.g., 4 or fewer). The study also found that 

MLP was most effective for feature extraction, while the Decision Tree excelled in 

feature selection for attack detection. 
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Wrapper Method: In the realm of feature selection methodologies, wrapper 

methods are one of the primary categories, alongside filter and embedded methods. 

Wrapper methods evaluate subsets of features by training and testing a specific 

machine learning model, aiming to identify the combination that yields the best 

performance. In this study, the authors applied the wrapper method using a decision 

tree to select features that enhance the performance of various machine learning 

algorithms in intrusion detection systems 

[O. Alomari and Z. A. Othman, 2012] proposed a feature selection method based 

on a wrapper approach, utilizing the Bees Algorithm (BA) for generating subsets 

and Support Vector Machine (SVM) as the classifier. The study tested the method 

on four randomly selected subsets from the KDD-Cup 99 dataset, each containing 

approximately 4,000 records. The performance was evaluated using standard 

intrusion detection system (IDS) metrics, achieving a detection accuracy of 99%, 

with the feature set reduced to only 8 features and a false alarm rate of 0.004. 

[I. Ahmad et al., 2014] presented an intrusion detection technique that focuses on 

feature subset selection through a combination of Genetic Algorithms (GA) and 

Principal Component Analysis (PCA), alongside a Multilayer Perceptron (MLP) 

classifier. The integration of GA and PCA addressed performance challenges, 

improving feature selection and accuracy. Using the KDD-Cup dataset, the method 

reduced the feature set from 41 to 12, achieving a detection accuracy of 99%. This 

optimized feature selection enhanced precision and reduced computational 

demands, making the intrusion detection system more efficient. 

[M. Otair et al., 2022] developed an intrusion detection method that optimized 

feature selection using Grey Wolf Optimization (GWO). They enhanced this process 

with Particle Swarm Optimization (PSO), which refined the GWO results and 

avoided local minima. Simulations using k-means and SVM on the NSL-KDD 
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dataset revealed that this hybrid optimization technique outperformed other 

methods, showing improvements in false alarm rate, detection rate, detection 

accuracy, and execution time due to more efficient feature selection. 

[S. K. Shandilya et al., 2023] introduced an advanced firefly optimization algorithm 

for network monitoring, incorporating a new health function to identify suspicious 

nodes early. This algorithm integrates event management and optimizes the 

observation priority list using a genetic evolution algorithm to handle real-time 

network events. Simulations showed the method's effectiveness, reducing suspicious 

nodes by 60-80% with only a slight increase in turnaround time (1-2%). The focus 

was on proactive network health monitoring for enhanced protection. 

[M. A. Umar et al., 2024] conducted an analysis of the impact of feature selection 

and normalization on various Intrusion Detection System (IDS) models, using the 

NSL-KDD and UNSW-NB15 datasets. The study employed five machine learning 

algorithms and used a decision tree wrapper-based feature selection method and 

min-max normalization. The random forest model performed the best, achieving 

99.87% and 98.5% accuracy and 99.79% and 99.17% detection rates on the NSL-

KDD and UNSW-NB15 datasets, respectively, outperforming many recent IDS 

studies. 
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[Y. K. Saheed et al., 2024] presented a hybrid feature selection technique that 

combined the Bat algorithm with the Residue Number System (RNS). The Bat 

algorithm initially partitions the data and eliminates irrelevant features. RNS was 

integrated to enhance processing speed and reduce training time. In the second 

phase, RNS was removed, and the Bat algorithm focused solely on feature selection 

while PCA handled feature extraction. Naive Bayes and k-Nearest Neighbors 

classifiers were used for classification. The method improved detection rates, 

accuracy, and F-scores while doubling processing speed, demonstrating 

competitive results compared to other intrusion detection techniques. 

[M. Bakro et al., 2024] proposed a hybrid feature selection strategy that combined 

the grasshopper optimization algorithm (GOA) and the genetic algorithm (GA) for 

efficient feature selection. The random forest classifier was trained on the selected 

features. To address class imbalance, a hybrid approach was used: the adaptive 

synthetic (ADASYN) algorithm oversampled minority classes, while random 

under-sampling (RUS) was used for the majority class. The approach showed 

improved performance, increasing the true positive rate (TPR) and reducing the 

false positive rate (FPR). The method was tested on three datasets—UNSW-NB15, 

CIC-DDoS2019, and CIC Bell DNS EXF 2021—achieving accuracies of 98%, 

99%, and 92%, respectively. 

Embedded Selection:  Embedded feature selection is a technique used in machine 

learning to automatically choose the most important input features (variables) 

during the process of building a model. Unlike other methods that select features 

before or after training the model, embedded methods do both tasks at the same 

time. 

These techniques are built into certain algorithms that have their own way of 

ranking or filtering features based on how useful they are for making predictions. 

For example, decision trees or regularized regression models (like Lasso) can 

reduce the importance of less relevant features while focusing more on the key 
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ones. This approach is efficient because it reduces the number of features while 

optimizing the model’s performance, saving time and improving accuracy. 

[S. Ganapathy et al., 2016] introduced a feature selection method based on 

Conditional Random Fields (CRF) for more efficient intrusion detection. The CRF-

based algorithm aimed to minimize the number of features while improving their 

relevance. A Layered Approach (LA)-based algorithm was then applied for 

classification with the reduced feature set. The resulting system demonstrated better 

accuracy and efficiency in detecting attacks compared to existing methods. Key 

benefits included faster detection times, improved classification accuracy, and 

fewer false alarms. Evaluations on the KDD-Cup99 dataset showed the following 

detection accuracies for different attack types: probe = 99.98%, DoS = 97.62%, 

R2L = 32.43%, and U2R = 86.91%. 

 

2.3 Attacks Affecting Cloud Computing Environment 

[V. R. Kebande and H. S. Venter, 2014] introduced an innovative botnet detection 

system specifically designed for cloud environments, utilizing the artificial immune 

system. With the growing prevalence of botnet attacks that cause service 

disruptions and resource depletion, this approach uses a negative selection 

algorithm to determine whether a botnet matches self or non-self-patterns. The 

detectors are trained to identify malicious activity in the cloud and classify it as 

non-self, allowing for effective isolation of the attack. 

[G. Somani et al., 2017] explored the critical issue of Distributed Denial of Service 

(DDoS) attacks in cloud environments. The paper offers an extensive review of 

recent advancements in DDoS mitigation techniques tailored for cloud computing. 

It examines attack characterization, prevention, detection, and mitigation strategies, 

proposing a detailed taxonomy to categorize existing solutions. The authors stress 
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the importance of solutions customized for utility computing models, highlighting 

the need for accurate auto-scaling, multi-layered defense systems, and efficient 

resource management in cloud environments. Their work provides valuable 

insights and guidelines for developing effective mitigation techniques, aiming to 

assist the cybersecurity community in building stronger defense mechanisms. 

Notably, it pioneers the identification of multi-level information flow and resource 

management strategies during DDoS attacks. 

[M. K. H. Al-Dulaimi, 2024] presents a detailed overview of blockchain-based 

security solutions designed to address DDoS, Man-in-the-Middle (MITM), and 

SQL injection attacks. However, it is important to note that the proposed solution 

has not yet been tested in real-world scenarios, indicating the need for further 

research and validation to determine its effectiveness and practical feasibility. 

Despite this, the integration of blockchain technology into cloud security shows 

considerable potential to strengthen the overall security framework of cloud 

environments. 

 

2.4 Similarity Comparison of Benchmark Dataset with Existing Dataset 

[N. Cao et al., 2013] developed a framework for performing privacy-preserving 

ranked search on encrypted cloud data. The study focused on aligning simulated 

keyword queries with real encrypted datasets, ensuring secure and efficient search 

operations. Simulated datasets were created from hypothetical user interactions, 

while actual datasets comprised encrypted academic and corporate documents. The 

mapping used cosine similarity for keyword alignment, complemented by hybrid 

measures incorporating the Jaccard index for set-based matching. Min-max scaling 

was applied to normalize keyword frequencies, ensuring consistent term 

importance across datasets. The authors emphasized that this mapping process 

allowed for high relevance in search results while maintaining strong privacy 



34 

 

protections, highlighting the importance of accurately mapping simulated data to 

real-world encrypted datasets for effective privacy-preserving search systems. 

[B. Wang et al., 2016] addressed privacy-preserving searchable encryption by 

mapping simulated encrypted queries to real encrypted document datasets. The 

focus was on enabling efficient searches of encrypted text while maintaining 

security. Simulated datasets consisted of hypothetical query logs, while real 

datasets included encrypted academic documents from sources like PubMed. The 

mapping relied on cosine similarity for text alignment, combined with weighted 

Euclidean distance to account for term frequency and relevance. A preprocessing 

step involved normalizing keyword vectors through token standardization and 

frequency scaling to ensure that both simulated and real datasets shared the same 

statistical distribution. The study concluded that precise mapping significantly 

enhanced the relevance of search results, improving recall and precision in 

retrieving encrypted documents. This work demonstrated the effectiveness of 

hybrid similarity measures for handling large encrypted datasets while 

safeguarding user privacy. 

[V. Popic and S. Batzoglou, 2017] introduced a hybrid cloud read aligner that 

mapped simulated genomic reads to actual genome assemblies. Simulated reads 

were generated using sequencing tools mimicking real-world error patterns, while 

actual datasets were sourced from repositories like Ensembl and NCBI. The 

alignment process involved two steps: MinHash for rapid similarity estimation, 

followed by cosine similarity for precise genetic sequence alignment. 

Normalization was applied to sequence lengths to avoid bias due to read size 

variations. This methodology demonstrated excellent scalability and accuracy, 

enabling efficient genomic data alignment in cloud-based environments. 

[W. Liang et al., 2019] proposed an intrusion detection algorithm using clustering-

based optimization models to map simulated attack vectors to real-world traffic 
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patterns. Simulated logs, generated using penetration testing tools, were aligned 

with industrial control system traffic. The mapping was done using cosine 

similarity to measure the alignment of multivariate feature vectors, and clustering 

techniques were used to group similar traffic patterns. Min-max normalization was 

applied to standardize features like bandwidth and packet rates. The study found 

that accurate mapping improved the detection of multi-stage attacks, enhancing the 

effectiveness of intrusion detection systems. 

[Y. Miao et al., 2020] introduced an airborne LiDAR system for UAV-based 

obstacle recognition and intrusion detection. The study involved generating 

simulated LiDAR point cloud data under controlled conditions and mapping it to 

real-world LiDAR data obtained during UAV field tests. Simulated datasets were 

generated using models replicating environmental features like building heights 

and tree densities. Mapping was achieved through transfer learning, using cosine 

similarity to align features such as point density, elevation gradients, and object 

contours between the datasets. The authors showed that hybrid similarity measures 

combining cosine similarity and density-based clustering were effective in 

distinguishing obstacles from noise in LiDAR data. Normalization via z-score 

scaling ensured consistent feature distributions, compensating for variations in 

point cloud density and collection angles. This approach improved the UAV 

system's ability to perform accurate obstacle detection and navigation in complex 

environments. 

[A. Alshammari and A. Aldribi, 2021] applied machine learning techniques to 

detect malicious network traffic in cloud environments. Their approach involved 

mapping synthetic traffic data generated using tools like Tcpreplay to real-world 

datasets such as CICIDS2017 and UNSW-NB15. The mapping process used 

Jaccard similarity for categorical features, such as protocol types and attack labels, 

and cosine similarity for numerical features, including packet arrival rates and flow 

durations. The authors emphasized the use of L2 normalization to ensure equal 
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contribution of numerical features with varying scales (e.g., bandwidth in Mbps 

and latency in milliseconds). The study demonstrated that this mapping approach 

improved detection accuracy, especially for identifying multi-vector attacks. By 

aligning synthetic and real-world datasets, the authors were able to develop models 

capable of recognizing both known and emerging threats. 

[T. Li et al., 2022] provided a comprehensive review of anomaly-based network 

intrusion detection systems. This study analyzed methods to bridge the gap between 

simulated and real-world intrusion data. The authors compared datasets like NSL-

KDD, which simulate a range of attacks, with real-world traffic datasets such as 

CICIDS2017, highlighting differences in feature richness and complexity. The 

mapping of features like packet sizes, flow durations, and attack signatures was 

achieved through advanced similarity metrics. Techniques like cosine similarity 

and clustering algorithms were used to measure alignment between the distributions 

of simulated and real data. The authors concluded that integrating real-world data 

during training enhances detection models' ability to generalize, particularly for 

identifying zero-day attacks. Normalization was performed using min-max scaling, 

ensuring that features with different units or scales contributed equally to similarity 

calculations. The review emphasized that hybrid mapping methods, combining 

statistical and machine learning approaches, can address the limitations of older 

datasets and improve intrusion detection. 

 

2.5 Intrusion Detection System 

Host-Based IDS: Host-based IDS (HIDS) in Cloud Computing is a security tool 

that monitors individual cloud-based virtual machines or servers for signs of 

suspicious activity or potential attacks. 

Unlike network-based IDS, which looks at data traveling across the network, HIDS 

focuses on what's happening inside a specific cloud instance. It keeps track of things 
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like system logs, file changes, user activities, and running processes. If it detects 

unusual behavior—like unauthorized access, unexpected file modifications, or 

strange application behavior—it can raise an alert.In the cloud, where multiple 

virtual machines may be running different tasks for different users, HIDS provides 

a deeper level of protection at the machine level. It’s especially useful for detecting 

insider threats or attacks that have already bypassed network defenses. 

HIDS helps cloud providers and users maintain visibility and control over each 

system's security, making it an important layer in a multi-level defense strategy. 

 

In [R. Patil et al., 2019] proposed a Hypervisor-Level Distributed Network Security 

(HLDNS) framework to secure cloud computing environments. Deployed on each 

processing server, the framework monitored network traffic for virtual machines 

using a Random Forest classifier, with features extracted via an extended binary bat 

algorithm (BBA). The system generated intrusion alerts and correlated them across 

servers to identify distributed attacks. Testing on a cloud network testbed and 

evaluation with recent intrusion datasets (UNSW-NB15 and CICIDS-2017) 

showed the framework's effectiveness in cloud network security. 

 

[L. Chen et al. ,2020] developed a network intrusion detection system specifically 

for cloud computing environments, addressing challenges like variability and 

unpredictability of network intrusions. They employed the C4.5 decision tree 

algorithm along with a random forest algorithm to build their intrusion detection 

model. Real-time network traffic data was collected from various network levels of 

cloud servers using the tcpdump tool and data mining techniques. Experimental 

results showed that the system achieved a 99.71% detection accuracy while 

reducing training and testing times, proving effective for real-time monitoring and 

intrusion detection in cloud environments. 
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Network Based IDS: Network IDS (NIDS) in Cloud Computing is a security 

system designed to monitor and analyze network traffic within a cloud environment 

to detect suspicious activities or potential cyberattacks. In a cloud setup, multiple 

virtual machines, services, and users share resources over a virtual network. A 

Network IDS keeps an eye on this traffic flow, looking for patterns that match 

known attacks (like malware or hacking attempts) or abnormal behavior that could 

indicate a new threat.Because cloud networks are often large, dynamic, and spread 

across different regions or data centers, placing NIDS at strategic points—such as 

between virtual machines or at the cloud gateway—helps detect threats early 

without impacting system performance.By continuously inspecting data packets 

moving through the cloud network, a NIDS helps identify unauthorized access 

attempts, data breaches, or other malicious actions, playing a critical role in 

securing cloud infrastructures. 

 

In [Y. Liu and R. Ma, 2013] introduced a novel intrusion detection model, BQPSO-

BN, to address the growing need for effective network intrusion detection due to 

the rise of network attacks in cloud computing environments. They adapted the 

classical QPSO algorithm for use in a binary search space, aligning it with the 

discrete nature of Bayesian network learning. Experiments with the KDD'99 dataset 

demonstrated the superiority of BQPSO-BN, showcasing faster convergence 

compared to models like BPSO-BN and GA-BN. 

In [K. Wang et al.,2014] presented a behavior-based botnet detection model, 

BBDP, which employed fuzzy pattern recognition to detect botnets in real-time 

through analysis of DNS queries and TCP requests. Unlike signature-based 

methods, BBDP utilized a five-stage process: traffic reduction, feature extraction, 

data partitioning, DNS-based detection, and TCP-based detection. By parallelizing 

these stages across multiple servers, BBDP achieved high accuracy, with a true 
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positive rate exceeding 95% and a low false positive rate of 3%. Their experiments 

on Windows Azure demonstrated the scalability of BBDP. 

In [J. Hussain et al.,2016] proposed a two-stage hybrid classification method for 

Network Intrusion Detection Systems (NIDS), combining Support Vector Machine 

(SVM) for anomaly detection in the first stage and Artificial Neural Network 

(ANN) for misuse detection in the second stage. This hybrid approach improved 

classification accuracy and minimized false positives. Testing with the NSL-KDD 

dataset resulted in a detection rate of 99.97% and a false positive rate of 0.19%, 

outperforming traditional models. 

In [H.H. Pajouh et al.,2017] introduced a two-tier classification model for network 

anomaly detection that combined Naïve Bayes, a variant of KNN, and Linear 

Discriminant Analysis. Evaluated on the NSL-KDD dataset, the model achieved 

enhanced detection rates and reduced false alarms, specifically targeting rare and 

dangerous attack types. The model utilized SMOTE for balancing datasets and 

incorporated efficient dimension reduction and feature selection, leading to 

minimized computational time and the ability to detect complex attacks that closely 

resembled normal behaviour. 

In [R. Kesavamoorthy and K.R. Soundar, 2019] addressed DDoS attacks in cloud 

computing with an autonomous multi-agent system. This system used particle 

swarm optimization to enable effective agent communication and decision-making. 

Multiple agents detected DDoS attacks by communicating with a coordinator agent, 

which analyzed scenarios using entropy and covariance methods. The system's 

performance was optimized for faster attack detection and recovery, with 

simulations showing a 53% improvement in efficiency compared to HMM-CRL 

and 45% better than HCF. 

[P. Ghosh et al., 2019] discussed how Cloud Computing, offering various services 

over the Internet, attracted a large user base due to its cost-effectiveness and 
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efficiency. However, this popularity also made it susceptible to security threats. To 

address these issues, Intrusion Detection Systems (IDS) were deployed in the cloud 

environment. Training these IDS systems effectively was crucial for accurate and 

timely intrusion detection. However, the presence of redundant features in the 

training data led to increased memory usage and longer training times. The authors 

proposed a novel CS-PSO-based IDS to classify attacks quickly and efficiently. 

They utilized the NSL-KDD dataset to demonstrate the effectiveness of their IDS 

approach. 

In [R. Rajendran et al., 2019] addressed security challenges in cloud networks, 

focusing on Denial of Service (DoS) attacks. They proposed a novel rule-based 

method for detecting DoS attacks by leveraging domain expert knowledge. The 

authors also introduced two new algorithms: one for feature selection, called the 

Feature Selection Algorithm using Scoring and Ranking, and another for 

classification, the Rule-based Classification Algorithm. Their approach 

demonstrated improved DoS detection accuracy over existing methods, validated 

through experiments in a cloud-based test environment with real-time DoS attack 

tools. 

[D. J. Prathyusha and G. Kannayaram, 2020] introduced an innovative IDS based 

on artificial immune systems (AIS) to mitigate Distributed Denial of Service 

(DDoS) attacks in cloud computing. By mimicking biological immune systems, 

their approach identified critical features of DDoS attacks. Experiments with the 

KDD Cup 99 dataset showed that the AIS-based IDS effectively detected and 

neutralized DDoS threats, achieving high detection accuracy and a low false alarm 

rate. This research highlighted the potential of AIS for enhancing cloud security 

against DDoS attacks. 

In [G. S. Kushwah and V. Ranga, 2020] proposed a method for detecting 

Distributed Denial of Service (DDoS) attacks using voting extreme learning 
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machines (V-ELM). Their approach demonstrated strong accuracy in detecting 

attacks, as evidenced by experiments with the NSL-KDD and ISCX datasets. 

Comparative evaluations revealed that their V-ELM-based system outperformed 

other detection methods, including backpropagation neural networks, black hole 

optimization-trained neural networks, extreme learning machines, random forests, 

and AdaBoost. The system’s effectiveness in mitigating DDoS threats in cloud 

computing environments was reaffirmed through experiments under various 

parameter settings. 

In [K.B. Virupakshar et al., 2020] explored the widespread adoption of cloud 

computing, driven by the rapid expansion of internet-based applications that reduce 

IT infrastructure management costs. However, the distributed nature of cloud 

resources, centrally controlled over the internet, makes them vulnerable to potential 

intrusions. The study focused on detecting Distributed Denial of Service (DDoS) 

attacks, which are particularly common in private clouds and can lead to service 

degradation or denial. The authors proposed a solution that integrated an OpenStack 

firewall with a DDoS detection system, utilizing raw socket programming to 

monitor network traffic. Several algorithms, including Decision Tree, K Nearest 

Neighbor (KNN), Naive Bayes, and Deep Neural Networks (DNN), were compared 

using a dataset created from a controlled DDoS attack environment. The system 

successfully detected DDoS attacks and notified the private cloud administrator. 

In [S. Rajagopal et al.,2021] tackled the challenges posed by sophisticated 

hacktivist attacks in network intrusion detection. They introduced a meta-

classification approach using decision jungle for both binary and multiclass 

classification, optimizing hyperparameters and feature subsets through Azure 

machine learning. Their model was validated using several datasets, including 

UNSW NB-15, CICIDS 2017, and CICDDOS 2019, achieving accuracy rates of 

99.8%, 98%, and 97%, respectively. This approach effectively identified thirty-

three modern attack types, using a 40:60 train-test split for legitimacy assessment, 
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which differed from traditional stacking ensembles. Statistical tests compared the 

performance of various classifiers, and the automated model showed promise for 

real-time intrusion detection. 

In [E. Arul and A. Punidha, 2021] examined vulnerabilities in cloud devices with 

weak defenses, often leaving users unaware of security compromises. The study 

focused on DDoS attacks targeting MemCached, a caching mechanism used to 

accelerate websites and networks. Hackers exploited insecure UDP MemCached 

servers by submitting spoofed applications that concealed their real IP addresses. 

The proposed method utilized Supervised SD-LVQ (Self-Organizing Map-based 

Learning Vector Quantization) to detect MemCached attacks across various cloud 

systems. The approach achieved a true positive rate of 97.23% and a false negative 

rate of just 0.03%, demonstrating the system's effectiveness in detecting DDoS 

attacks. 

In [G. Sreelatha et al., 2022] explored the vulnerability of on-demand services to 

various network threats, which pose significant security and privacy challenges. 

Their solution included feature selection through sandpiper and the implementation 

of deep transfer learning. They used datasets like NSL KDD and UNSW NB15 for 

evaluation. Their simulations, conducted with a pre-trained AlexNet, resulted in a 

high detection rate and low false alarm rate, outperforming other methods in terms 

of detection efficiency. 

[H. Ghani et al., 2023] investigated the use of a deep learning-based Feedforward 

Neural Network (FFNN) classifier to assess classification performance on the 

UNSW-NB15 and NSL-KDD datasets. Their study showed that while large feature 

sets could lead to unnecessary features, using a smaller feature vector improved 

classification accuracy. The approach achieved 91.29% accuracy on the UNSW-

NB15 dataset and 89.03% accuracy on the NSL-KDD dataset, demonstrating its 

effectiveness in identifying network anomalies. 
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[Z. Long, 2024] proposed a novel Network Intrusion Detection System (NIDS) 

based on the Transformer model tailored for cloud environments. By integrating 

the Transformer’s attention mechanism, the system improves the accuracy of 

intrusion detection by better analyzing the relationships between input features and 

attack types. Experimental results indicated that the Transformer-based model 

achieved over 93% accuracy, comparable to the CNN-LSTM model, demonstrating 

its potential to enhance cloud security. 

[A.V. Songa and G.R. Karri, 2024] focused on early detection of attacks in 

Software-Defined Networking (SDN) switches, emphasizing the need for traffic 

clustering and anomaly prediction at each switch to identify potential DDoS 

attacks. They proposed event correlation to analyze network behavior and detect 

coordinated attack patterns. This approach addresses the limitations of existing 

methods, which often fail to provide early detection and lack integration for 

comprehensive threat analysis. 

Hybrid IDS: Hybrid IDS in Cloud Computing refers to a security system that 

combines multiple techniques to detect malicious activity in cloud environments. 

Typically, it blends two main types of intrusion detection approaches: signature-

based (which looks for known attack patterns) and anomaly-based (which identifies 

unusual or suspicious behavior). 

By combining both methods, a hybrid IDS provides more accurate and 

comprehensive protection. The signature-based part quickly spots known threats, 

while the anomaly-based component can catch new, unknown attacks that haven't 

been seen before. 

In the context of cloud computing, where resources are dynamic and distributed 

across different locations, hybrid IDS solutions are especially useful. They can 

monitor both network traffic and virtual machines, adapting to the flexible and 

scalable nature of cloud environments. 
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This combination helps reduce false positives and ensures better detection of 

complex threats, making cloud systems more secure. 

Latest Trends Related to IDS in Cloud Computing: 

[R. R. Dewangan et al., 2025] presented that the cloud computing faces several 

prevalent security challenges. One major concern is data breaches, which may grant 

unauthorized individuals access to confidential information stored in the cloud. 

Such incidents can compromise privacy and confidentiality, potentially resulting in 

legal and financial consequences for both individuals and organizations. 

Additionally, the risk of data loss or corruption is significant, stemming from causes 

like hardware malfunctions, human mistakes, or malicious activity. Cloud systems 

are also vulnerable to distributed denial of service (DDoS) attacks, which can 

interrupt services and cause extended downtime for users. To address these issues, 

it is essential for organizations to adopt robust security strategies aimed at 

safeguarding cloud-based data and maintaining system integrity. 

 

In [M. Younus et al., 2025] presented a systematic literature review aimed at 

exploring trends in cloud computing within the context of e-government. 

Employing a descriptive qualitative methodology combined with a bibliometric 

analysis, the research leverages the latest version of CiteSpace software to map the 

knowledge landscape in this field. The results highlight a rapidly evolving domain 

shaped by technological advancements and shifting governmental priorities. 

Worldwide, public administrations are increasingly recognizing the potential of 

cloud computing to enhance the efficiency, accessibility, and scalability of digital 

government services. Despite ongoing challenges—particularly around data 

security and privacy—the findings indicate a clear strategic movement toward 

adopting digital innovations to deliver more responsive and citizen-centric services. 
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[H. Park, 2025] presented an approach utilizes a Resilient Backpropagation Neural 

Network (RBN) to strengthen security and improve resilience by enabling real-time 

detection and mitigation of DDoS attacks across both network and application 

layers. To facilitate secure communication between containers, an Inter-Container 

Communication Bridge (ICCB) is integrated into the system. Additionally, it 

incorporates high-performance, low-latency technologies such as eXpress Data 

Path (XDP) and Extended Berkeley Packet Filter (eBPF) for efficient security 

enforcement, addressing the performance constraints of prior methods. This 

solution offers comprehensive protection against emerging cyber threats while 

preserving the flexible and scalable nature of cloud-native infrastructures. It also 

supports continuous operations through proactive threat monitoring and dynamic 

system adjustments, ensuring robust defense mechanisms without compromising 

the agility of modern cloud environments. 

 

2.6 Comparative Analysis 

 

Some of the research papers discussed above are presented in the following table 

2.1 and table 2.2 which are summarizing the papers in the tabular form. 

 

Table 2.1 Comparison of related work to similarity measures 

[Author, Year] Similarity 

Measure Used 

Purpose 

[Cao et al. ,2013] Cosine 

Similarity, 

Jaccard Index 

Facilitate multi-keyword ranked search 

in encrypted cloud data with privacy 

guarantees. 
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[Wang et al. 

,2016] 

Cosine 

Similarity, 

Weighted 

Euclidean 

Distance 

Enable efficient and privacy-preserving 

searchable encryption over feature-rich 

data. 

[Popic and 

Batzoglou, 2017] 

MinHash, 

Cosine 

Similarity 

Align simulated genomic reads with 

actual genome sequences for efficient 

cloud-based genetic analysis. 

[Liang et al. 

,2019] 

Cosine 

Similarity, 

Clustering 

Enhance network intrusion detection 

using multifeature data clustering 

optimization models. 

[Miao et al. ,2020] Cosine 

Similarity, 

Density-Based 

Clustering 

Map simulated LiDAR data to real-world 

UAV point cloud data for obstacle 

detection and intrusion monitoring. 

[Alshammari and 

Aldribi, 2021] 

Jaccard 

Similarity, 

Cosine 

Similarity 

Detect malicious network traffic by 

aligning synthetic traffic patterns with 

real-world network datasets. 

[Li et al. ,2022] Cosine 

Similarity, 

Clustering 

Algorithms 

Align simulated and real-world datasets 

for anomaly-based intrusion detection, 

focusing on modern attack patterns. 
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Table 2.2 Comparative Analysis of Literature Review Related to IDS 

[Authors, Year] Attacks 

Detected 

Dataset 

Used 

Methodology Outcomes  Limitations/Future 

Scope 

[Y. Liu and R. 

Ma, 2013] 

Various 

network 

attacks 

KDD'99 Modified 

QPSO 

algorithm 

aligned with 

Bayesian 

network 

learning 

Better 

convergence 

speed 

compared to 

existing models 

Further evaluation 

on different datasets 

and real-world 

scenarios 

[N.Pitropakis et 

al. ,2014] 

Co-residency 

and network 

stressing 

attacks 

Controlled 

environment 

Smith-

Waterman 

genetic 

algorithm 

Effective 

detection in 

kernel layer of 

KVM-based 

cloud 

environment; 

Method for 

identifying 

malicious 

insider attacks 

Creating system call 

patterns as 'attack 

signatures' for IDS 

[K.Wang et al., 

2014] 

Botnets Windows 

Azure cloud 

service 

Behavior-

based botnet 

detection 

High accuracy 

(true positive 

rate > 95%) 

with low false 

positive rate; 

Scalability 

demonstrated 

Further scalability 

testing in larger 

cloud environments 
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in cloud 

environment 

[N.Pandeeswari 

and Kumar ,2016] 

Insider and 

outsider 

attacks in 

cloud 

computing 

DARPA's 

KDD cup 

dataset 

(1999) 

Hybrid 

algorithm 

combining 

Fuzzy C-

Means 

clustering 

with 

Artificial 

Neural 

Network 

(FCM-ANN) 

High detection 

accuracy and 

low false alarm 

rate for both 

insider and 

outsider attacks 

Evaluation on more 

recent datasets and 

consideration of 

evolving attack 

vectors 

[J. Hussain et al. 

,2016] 

Network 

Intrusion 

NSL-KDD 

datasets 

Two-stage 

hybrid 

classification 

method 

combining 

SVM and 

ANN 

High detection 

rate (99.97%) 

with low false 

positive rate 

(0.19%) 

Further validation 

on diverse network 

environments and 

attack scenarios 

[H. H. Pajouh, 

2017] 

Network 

Anomalies 

NSL-KDD 

dataset 

Two-tier 

classification 

model 

incorporating 

Naïve Bayes, 

KNN, and 

Linear 

Discriminant 

Analysis 

Enhanced 

detection rates 

and decreased 

false alarms; 

Efficient 

identification 

of complex 

attack types 

Further evaluation 

on diverse datasets 

and real-world 

scenarios 
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[R. 

Kesavamoorthy 

and K. R. 

Soundar, 2019] 

DDoS attacks 

in cloud 

computing 

Simulated 

data 

Autonomous 

multi-agent 

system with 

particle 

swarm 

optimization 

Faster attack 

detection 

compared to 

other methods; 

Improved 

security 

Evaluation under 

real-world DDoS 

attack scenarios; 

Scalability testing 

[Z. Chiba et al., 

2019] 

Network 

Intrusions in 

Cloud 

Environments 

Benchmark 

IDS datasets, 

CloudSim 

4.0 

Hybrid 

optimization 

framework 

(IGASAA) 

for building 

efficient 

DNN-based 

IDS 

High detection 

precision and 

low false 

alarms; 

Outperformed 

existing 

methods 

Further validation 

on diverse cloud 

environments and 

real-world datasets 

[R. Patil et al., 

2019] 

Intrusions in 

Cloud 

Computing 

UNSW-

NB15, 

CICIDS-

2017 

Hypervisor 

Level 

Distributed 

Network 

Security 

(HLDNS) 

framework 

Capability to 

meet cloud 

network 

security 

requirements; 

Intrusion 

detection and 

correlation 

across servers 

Scalability testing 

on larger cloud 

networks and 

evaluation under 

diverse attack 

scenarios 

[E.Besharati et al. 

,2019] 

Virtual 

Machine 

Intrusions in 

Cloud 

Computing 

NSL-KDD 

dataset, 

Cloudsim 

software 

Host-based 

Intrusion 

Detection 

System (H-

IDS) 

Acceptable 

accuracy 

(approximately 

97.51%) for 

detecting 

Exploration of 

additional feature 

selection and 

classification 

techniques 
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attacks against 

normal states 

[M. Jelidi et al., 

2019] 

Cloud 

Protection 

Signature 

based and 

Anomaly 

based 

methods 

Hybrid model 

combining 

distributed 

and 

centralized 

intrusion 

detectors 

Effectiveness 

in protecting 

various cloud 

layers; 

Comprehensive 

framework for 

monitoring and 

managing 

cloud security 

Integration with 

real-time threat 

intelligence and 

adaptive security 

measures 

[P. Ghosh et al., 

2019] 

Various 

Network 

Intrusions in 

Cloud 

Environments 

NSL-KDD 

dataset 

CS-PSO-

based IDS for 

quick and 

efficient 

attack 

classification 

Effective IDS 

approach 

demonstrated 

on NSL-KDD 

dataset 

Evaluation on 

diverse datasets and 

real-world cloud 

environments 

[R. Rajendran et 

al. ,2019] 

Denial of 

Service 

(DoS) attacks 

in Cloud 

Networks 

Cloud 

experimental 

setup with 

real-time 

DoS tools 

Rule-based 

approach for 

DoS attack 

detection 

Improved DoS 

attack detection 

accuracy 

compared to 

existing 

methods 

Validation under 

various DoS attack 

scenarios and 

network 

configurations 

[Cui et al. ,2019] Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

DDoS 

Attack 2007 

Cognitive-

inspired 

computing 

approach 

with dual 

Rapid 

detection, high 

accuracy, low 

false positive 

rates, and 

Investigation of 

scalability and 

performance under 

varying network 

conditions 
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Software-

defined 

networking 

(SDN) 

address 

entropy 

effective 

implementation 

of defense and 

recovery 

measures 

[A. N. Jaber and 

S. U. Rehman, 

2020] 

Various 

network 

intrusions in 

Cloud 

Computing 

NSLKDD 

dataset 

Hybrid IDS 

combining 

fuzzy c-

means 

clustering 

(FCM) with 

support 

vector 

machine 

(SVM) 

High accuracy 

and low false 

alarm rates 

compared to 

existing 

techniques 

Evaluation on larger 

datasets and 

consideration of 

real-world cloud 

network 

environments 

[D. J. Prathyusha 

and 

G.Kannayaram 

,2020] 

Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

Cloud 

Computing 

KDD cup 99 

dataset 

Artificial 

Immune 

System (AIS) 

based IDS for 

DDoS attack 

mitigation 

High detection 

accuracy and 

low false alarm 

rate in cloud 

environments 

Exploration of AIS 

performance under 

evolving DDoS 

attack techniques 

[G. S. Kushwah 

and V. Ranga, 

2020] 

Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

Cloud 

Computing 

NSL-KDD, 

ISCX 

datasets 

Voting 

Extreme 

Learning 

Machines (V-

ELM) for 

DDoS attack 

detection 

Strong 

accuracy in 

detecting 

attacks; 

Outperformed 

alternative 

methods 

Evaluation on 

diverse cloud 

environments and 

consideration of 

evolving DDoS 

attack techniques 
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[L. Chen et al., 

2020] 

Network 

Intrusions in 

Cloud 

Computing 

Environment 

Real-time 

network 

traffic data 

C4.5 decision 

tree and 

random forest 

algorithms 

Reduced 

training and 

testing times; 

High detection 

accuracy 

Investigation of 

system scalability 

and performance 

under varying 

network conditions 

[K. B. 

Virupakshar et al. 

,2020] 

Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

Private 

Clouds 

Controlled 

DDoS attack 

environment 

dataset 

Integration of 

OpenStack 

firewall with 

DDoS 

detection 

system 

Successful 

detection of 

DDoS attacks 

and alerting 

administrator 

Validation under 

real-world DDoS 

attack scenarios and 

consideration of 

additional attack 

vectors 

[Rajagopal et 

al.,2021] 

Network 

Intrusions in 

Computer 

Security 

UNSW NB-

15, CICIDS 

2017, 

CICDDOS 

2019 

datasets 

Meta-

classification 

approach 

using 

decision 

jungle 

High 

accuracies for 

detecting 

modern attack 

types; Promise 

for real-time 

intrusion 

detection 

Further validation 

on larger and more 

diverse datasets; 

Real-world 

deployment and 

performance 

evaluation 

[G. S. Kushwah et 

al. ,2021] 

Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

Cloud 

Computing 

NSL-KDD, 

ISCX IDS 

2012, 

UNSW-

NB15, 

CICIDS 

2017 

datasets 

Enhanced 

Self-adaptive 

evolutionary 

extreme 

learning 

machine 

(SaE-ELM) 

Superior 

detection 

accuracies 

compared to 

other 

techniques 

Investigation of 

system scalability 

and performance 

under real-world 

DDoS attack 

scenarios 
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[E. Arul and A. 

Punidha ,2021] 

DDoS attacks 

on 

MemCached 

in Cloud 

Computing 

Prototype 

Malware 

Pool 

Supervised 

SD-LVQ for 

MemCached 

attack 

detection 

High true 

positive rate 

and low false 

negative rate 

for DDoS 

attack detection 

Evaluation under 

diverse 

MemCached attack 

scenarios and 

consideration of 

additional attack 

vectors 

[S. Velliangiri et 

al. ,2021] 

Distributed 

Denial of 

Service 

(DDoS) 

attacks in 

Cloud 

Computing 

KDD Cup 

Database  

Synthetic 

User-

Generated 

Database 

and  

Cloud 

Server Log 

Database  

Taylor-

Elephant 

Herd 

Optimisation-

based Deep 

Belief 

Network 

(TEHO-

DBN) 

Improved 

DDoS attack 

detection 

performance 

with TEHO-

based DBN 

classifier 

Investigation of 

TEHO-DBN 

performance under 

evolving DDoS 

attack techniques 

[GSreelatha et al. 

,2022] 

Various 

network 

attacks in On-

Demand 

Services 

NSL KDD, 

UNSW 

NB15 

datasets 

Feature 

selection 

using 

sandpiper and 

deep transfer 

learning 

High detection 

rate and low 

false alarm rate 

compared to 

alternative 

approaches 

Evaluation under 

real-world network 

attack scenarios and 

consideration of 

additional datasets 

[M. Otair et 

al.,2022] 

Network 

Intrusions in 

Cloud 

Computing 

NSL KDD 

dataset 

Grey Wolf 

Optimization 

(GWO) and 

Particle 

Swarm 

Optimization 

Superior 

outcomes in 

terms of false 

alarm rate, 

detection rate, 

detection 

Investigation of 

GWO-PSO 

performance under 

diverse network 

attack scenarios 



54 

 

(PSO) for 

feature 

selection 

optimization 

accuracy, and 

execution time 

[Imran et al., 

2022] 

Network 

Intrusions in 

Cloud 

Computing 

NSL-KDD 

dataset 

Cuckoo 

search 

algorithm 

(CSA) 

integrated 

with k-means 

clustering for 

feature 

selection 

Outperformed 

existing 

approaches in 

intrusion 

detection 

precision using 

CS 

Evaluation on 

diverse cloud 

computing 

environments and 

consideration of 

real-time intrusion 

detection scenarios 

[Eren et al., 2023] Network 

Intrusions in 

UNSW-

NB15 and 

NSL-KDD 

datasets 

UNSW-

NB15, NSL-

KDD 

datasets 

Combined 

machine 

learning and 

deep learning 

methods for 

attack 

detection 

High accuracy 

rates for two-

class and multi-

class 

classification 

Exploration of real-

world deployment 

and scalability 

considerations 

[H. Ghani et al., 

2023] 

 

 

 

 

 

 

Network 

Traffic 

Anomalies in 

UNSW-

NB15 and 

NSL-KDD 

datasets 

UNSW-

NB15, NSL-

KDD 

datasets 

Feedforward 

Neural 

Network 

(FFNN) 

classifier with 

a small 

feature vector 

Improved 

classification 

accuracy with 

reduced 

computational 

resources 

Investigation of the 

approach's 

performance under 

diverse network 

conditions and 

additional datasets 
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[Z. Long et al., 

2024] 

Network 

Intrusions in 

CSE CIC IDS 

2018 dataset 

CSE- CIC 

IDS 2018 

dataset 

Seq2Seq 

(sequence-to-

sequence) is 

used  

Outperforms 

CNN with 

LSTM 

technique 

Simulated dataset 

can be used for the 

evaluation. 

[A. V. Songa and 

G. R. Karri,2024] 

DDoS attack 

in CICD DoS 

2019  

CICD DoS 

2019 

RDAER 

model 

developed 

based on 

Recursive 

Feature 

Elimination 

(RFE), 

Density 

Based Spatial 

Clustering 

(DBSCAN) 

and time 

series 

techniques 

Improved 

detection in 

less time 

RDAER training 

and testing data can 

be tuned for 

improving the 

accuracy. 

[W. A. H. Aljuaid 

and S. S. 

Alshamrani,2024] 

Network 

intrusions in  

CSE-CIC 

IDS 2018 

CSE-CIC 

IDS 2018 

CNN -based 

model in 

which Multi-

Blocks of 

CNN 

Performs better 

than existing 

techniques 

Simulated datasets 

can be used to 

enhance the 

performance of the 

model. 

 

2.7 Problem Statement 

In today's digital landscape, the rapid expansion of internet connectivity and digital 

technologies has led to a surge in cyber threats. These threats can result in 
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significant financial losses, tarnish organizational reputations, and disrupt essential 

services. Conventional security methods frequently fall short in addressing the 

increasingly advanced and dynamic nature of cyber threats, underscoring the 

importance of implementing strong Intrusion Detection Systems (IDS). 

 

A key challenge in creating an effective IDS is accurately classifying network 

traffic to differentiate between legitimate and malicious activities. This task 

comprises two essential components: selecting the most relevant attributes from 

large, complex datasets and integrating appropriate classifiers to optimize detection 

performance. 

 

Datasets employed for IDS, such as the CSE-CIC IDS 2018 dataset, contain a wide 

range of features that represent various attributes of network traffic. However, not 

all features equally contribute to the detection of intrusions. Irrelevant or redundant 

features can increase computational complexity and diminish detection accuracy. 

Therefore, the challenge is to identify and select the most pertinent features that 

provide valuable insights for detecting malicious activities. 

 

Feature selection plays a critical role, as it directly affects the performance of the 

IDS. Effective feature selection reduces the dimensionality of the dataset, thereby 

enhancing both the efficiency and accuracy of the IDS by eliminating noise and 

irrelevant data. Selecting the optimal subset of features from a large pool requires 

sophisticated techniques to balance the trade-off between computational cost and 

detection performance. 

 

Another significant challenge lies in integrating classifiers that can work together 

effectively to enhance the detection capabilities of the IDS. Different machine 

learning algorithms have unique strengths and weaknesses. For example, Decision 

Trees (DT) are valued for their interpretability and ability to manage categorical 
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data, Support Vector Machines (SVM) excel in high-dimensional spaces, and 

Neural Networks (NN) are adept at learning complex patterns. However, no single 

classifier is universally optimal for all types of network traffic and attack patterns. 

 

By combining multiple classifiers into a hybrid model, it is possible to leverage the 

strengths of each to create a more robust and accurate detection system. The 

challenge here is to select and integrate these classifiers in a way that maximizes 

detection accuracy while minimizing false positives and false negatives.  

 

Developing a theoretical model is not enough; it must be validated in a realistic 

environment to ensure practical applicability. The simulation architecture should 

replicate real-world network conditions and allow for extensive testing under 

various scenarios to evaluate the robustness and scalability of the IDS. A 

comprehensive simulation environment is essential for assessing the IDS's 

performance across multiple metrics. Ultimately, the architecture developed will 

yield a robust system for detecting attacks, thereby enhancing the security of cloud 

environments. 

2.8 Research Gaps 

1.Many intrusion detection systems are trained and evaluated on outdated datasets 

that may not reflect real-world traffic [B. L. Farhan and A. D. Jasim, 2022]. 

 

2.Hybrid concept in feature selection module with hybrid classification module 

needs to be more explored. 

 

3.Optimization algorithm like Firefly Algorithm (FA) can be explored by 

hybridizing with any classifier. FA is very efficient algorithm and, in some cases, 

represents Particle Swarm Optimization, Genetic Algorithm and Differential 

Evolution [I. Fister et al., 2013].  
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2.9 Summary  

This chapter offers a summary of recent research efforts focused on improving 

intrusion detection and security measures in cloud computing environments. 

Various methodologies have been explored by researchers, including traditional 

machine learning approaches, to develop effective intrusion detection systems 

(IDS) capable of identifying emerging threats. Additionally, the chapter discusses 

innovative approaches such as nature-inspired algorithms and hybrid detection 

systems that integrate multiple detection methods for comprehensive cloud 

protection. Through an examination of key studies and their findings, this chapter 

elucidates the evolving landscape of intrusion detection in cloud computing, 

highlighting the strides made towards bolstering security measures in this dynamic 

and critical domain. Research gaps are also observed from literature review. 
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CHAPTER 3 RESEARCH METHODOLOGY 

This chapter presents the research methodology used to accomplish the study's 

objectives. Research methodology refers to the organized approach adopted to 

address a research problem. It encompasses the systematic process a researcher 

follows, detailing the steps involved in investigating and solving the research 

problem. 

3.1 Research Objectives: The research objectives are well-defined, clear, and 

measurable targets that a study seeks to accomplish. They establish the purpose of 

the research and specify what the researcher aims to investigate or uncover. The 

objectives of this research are as follows: 

1.To study and analyze various attacks in the cloud computing environment.  

2.To preprocess data obtained from various sources for attack detection.  

3.To extract the relevant features for classification.  

4.To design and implement a proposed architecture for the detection of various 

attacks in the cloud computing environment by using the optimized classifier.  

5.To compare the proposed architecture with the existing ones. 

 

3.2 Research Methodology of Research Work: The methodology used to achieve 

the research objectives is illustrated in Figure 3.1. The research work was achieved 

in various modules. These modules are described in the following section of this 

chapter. 
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Figure 3.1 Research Methodology of Research Work 
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1.Literature Review: When beginning the research process, of journals, as well as 

goo indexed published research papers and review papers were studied. Relevant 

academic journals, conference proceedings and books are explored. One source 

helped to get additional relevant sources. Prior studies that are similar to the current 

research are thoroughly reviewed and analyzed. A well-equipped library was 

accessed during this stage.   

2.Selection of Standard Dataset and Generation of Simulated Dataset in Cloud 

Computing Environment: There are various methods for collecting relevant data, 

each differing significantly in terms of cost, time and available resources for the 

researcher. Dataset can be gathered through experimental or survey-based 

approaches. CSE CIC IDS 2018 dataset is selected after reviewing research papers 

and review papers. Cloudsim toolkit is used for generating simulated dataset which 

is collected by cloud computing environment simulation. 

This rapid expansion of data demands more sophisticated security measures. 

Vulnerabilities in computer systems, poor security policies, and limited awareness 

of potential threats have made networks more prone to breaches. IDS can detect 

intrusions either through signature matching within network packets or by 

analyzing behavioural patterns.  

 

Table 3.1 Comparison of IDS Datasets 

Dataset Source Attack Types 
Labelling 

Details 
Description 

DARPA 

1998 

Simulated 

network 

traffic 

DoS, Probe, 

R2L, U2R 

Detailed 

attack labels; 

some 

outdated 

scenarios 

Early dataset; 

historical 

relevance 
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KDD Cup 

1999 

Simulated 

network 

traffic 

DoS, R2L, 

U2R, Probe 

Detailed 

attack labels; 

some 

redundant 

records 

Widely used; 

criticized for 

outdated 

relevance 

NSL-KDD 

Refined KDD 

Cup 1999 

dataset 

DoS, R2L, 

U2R, Probe 

Improved 

labelling, 

reduced 

redundancy 

Enhanced version 

of KDD Cup 

1999 

ISCX 2012 

Real-world 

network 

traffic 

(Canadian 

institution) 

DoS, Brute 

Force, Web 

Attacks 

Detailed 

attack and 

normal 

behavior 

labels 

Focuses on 

specific attack 

types and normal 

traffic 

AFDaKyoto 

Real-world 

network 

traffic (Kyoto 

University) 

DoS, DDoS, 

Probe, 

Malware, 

Information 

Gathering 

Detailed 

attack labels 

and normal 

traffic 

Comprehensive 

dataset with a 

wide range of 

attacks 

UNSW-

NB15 

Real-world 

network 

traffic 

Exploits, 

DoS, Generic, 

Fuzzers, 

Analysis 

Detailed 

attack and 

normal 

behavior 

labels 

Includes modern 

attack types and 

normal traffic 

CICIDS 

2017 

Real-world 

network 

traffic 

(Canadian 

institution) 

DDoS, Brute 

Force, Data 

Exfiltration, 

Botnet 

Detailed 

labels for 

various 

attack types 

and normal 

traffic 

Reflects modern 

attack scenarios 
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CICIDS 

2018 

Real-world 

network 

traffic 

(Canadian 

institution) 

DoS, DDoS, 

Botnet, 

Malware, 

Web Attacks 

Detailed 

attack labels 

and normal 

traffic 

Up-to-date with 

current attack 

trends 

 

3. Preprocessing of Datasets: Dataset pre-processing involves transforming raw 

data into a more organized and efficient format for further analysis. During this 

phase, data is scaled using the min-max normalization technique, which adjusts all 

values to a consistent range, typically between 0 and 1. This normalization 

improves training efficiency by ensuring uniformity across the data. This step is 

crucial for various knowledge discovery tasks, such as network-based intrusion 

detection systems (NIDS), which classify network traffic as either normal or 

anomalous. Additionally, dataset sampling is applied to address data imbalance. An 

imbalanced dataset can result in a higher rate of false negatives, which negatively 

impacts the performance of the IDS.  

 

4. Feature Selection on Datasets using Proposed Feature Selection Algorithm: 

Feature Selection (FS) tackles the issue of high-dimensional datasets by pinpointing 

the minimal subset of optimal features. FS is a critical preprocessing step in 

machine learning, commonly used for attack detection. Developing an efficient IDS 

relies on selecting relevant features that enhance attack detection capabilities. 

However, this process is complex due to the potential relevance, redundancy or 

excessiveness of features, which can increase the computational complexity of 

detecting attacks. 

 



64 

 

For years, researchers have been exploring optimal methods to improve accuracy 

and efficiency in this area. A key focus of recent research is enhancing the feature 

selection process by integrating additional algorithms into the learning model. One 

promising approach involves employing metaheuristic techniques as optimizers in 

conjunction with the learning model. New feature selection algorithm was proposed 

which is the hybridization of Firefly Algorithm (FA) with the Decision Tree. 

Decision Tree is used for finding the classification accuracy of the FA. This 

hybridization results in improving the performance of the FA.  

FA was introduced by Xin-She Yang in 2008 and draws inspiration from the natural 

behaviour of fireflies, where their allure is influenced by the brightness of their 

flashes. Fireflies use their flashes to attract mates and communicate, which has 

inspired this optimization technique. In optimization problems, including feature 

selection, FA mimics the movement of fireflies as they search for optimal solutions. 

A firefly’s brightness corresponds to its fitness value, with brighter fireflies 

representing better solutions.  

Feature selection (FS) is a vital step in improving the accuracy and efficiency of 

classification tasks. A modified version of the Firefly Algorithm (FA) has been 

introduced for this purpose. In this enhanced method, a decision tree (DT) classifier 

is utilized to evaluate the performance (fitness) of each solution generated by the 

FA. The Firefly Algorithm was selected because it is not as widely used in FS 

applications, making it a novel choice in this context. According to research by H. 

S. Gebremedhin et al. (2020), FA has shown superior results compared to other 

popular optimization techniques like Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA). Interestingly, certain PSO variants can be viewed as 

specific forms of FA. Moreover, fine-tuning the FA’s parameters can significantly 

improve its convergence speed and overall performance. 
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5. Detection of Attack using Hybrid Classifier: In cybersecurity, attack detection 

involves identifying various attacks that affect the integrity, confidentiality or 

availability of systems and data. Classification is performed on the datasets to detect 

the attacks. In many instances, enhancing overall classification accuracy can be 

accomplished by designing hybrid classification models that capitalize on the 

strengths of multiple algorithms.  

 

A common approach is to combine the strengths of multiple classifiers to create a 

more accurate and robust model. In the proposed method, a hybrid model merges a 

Neural Network (NN) with a Decision Tree (DT) classifier. NN is a computational 

model inspired by the human brain, consisting of interconnected layers of artificial 

neurons that process and learn from data. These networks are trained to recognize 

patterns and extract features by adjusting the connections between neurons to 

improve accuracy. They are particularly effective at capturing complex, non-linear 

relationships between input and output variables, making them ideal for tasks like 

image and speech recognition, natural language processing, and both classification 

and regression. A typical NN architecture includes an input layer, one or more 

hidden layers, and an output layer. On the other hand, DT is a straightforward yet 

powerful model used for classification and regression tasks. It splits data into 

subsets based on feature values, forming a tree-like structure of decisions. Each 

internal node represents a decision based on a particular feature, while branches 

indicate the outcome of that decision. This process continues until the final 

prediction is made at the leaf nodes, which correspond to class labels or predicted 

values. Decision trees are intuitive and easy to interpret, mimicking human 

decision-making processes. They can handle both numerical and categorical data 

and model non-linear relationships between features. 

 

In many situations, boosting classification accuracy can be achieved by developing 

hybrid models that integrate the advantages of multiple algorithms. A widely used 



66 

 

strategy involves merging different classifiers to build a more reliable and precise 

prediction system. In the current study, a hybrid classification approach is 

introduced by combining a Neural Network with a Decision Tree. This fusion aims 

to enhance overall performance by leveraging the Neural Network’s ability to 

capture complex patterns and the Decision Tree’s interpretability and efficiency. 

The combined model addresses the shortcomings of individual classifiers and 

delivers more accurate and understandable results for the classification task at hand. 

 

6. Evaluation of Proposed Architecture for the Detection of Various Attacks: 

Evaluation is essential for checking the performance of the research work with 

existing state-of-the-art techniques. Evaluating an architecture using state-of-the-

art techniques involves assessing its performance and effectiveness for the 

detection of attacks in comparison to the other techniques in the field. Popular 

techniques like Decision Tree, Support Vector Machine, Naïve Bayes are used for 

the comparison purpose.  

Some Popular Classifiers which are widely used for dataset categorization: 

1. Support Vector Machine (SVM): For data that is linearly separable, SVM 

identifies a hyperplane that efficiently separates the two classes. When the data is 

not linearly separable, SVM applies kernel functions to map the data into a higher-

dimensional space, allowing the identification of an appropriate hyperplane. 

2. Naive Bayes (NB): Naive Bayes (NB) is a group of probabilistic classifiers based 

on Bayes' theorem, typically used for classification tasks. It assumes that the 

features affecting the outcome are independent, which simplifies the computational 

process. Despite this "naive" assumption, it frequently delivers accurate results, 

particularly when working with large datasets. Naive Bayes is particularly well-

suited for text classification tasks like spam detection and sentiment analysis, due 

to its efficiency and scalability. 
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3. K-Means Nearest Neighbor (KNN): KNN is a hybrid method that combines 

K-Means clustering with the K-Nearest Neighbors (KNN) algorithm to enhance 

classification and prediction results. The K-Means algorithm identifies clusters in 

the dataset by grouping data points into k clusters, based on their similarity to the 

centroids of these clusters. After the clustering process, the centroids are computed 

to represent the center of each cluster. 

 

The performance of the proposed architecture is evaluated using the following 

metrics: 

1. Precision: This metric indicates the proportion of predicted positive cases that 

are actually positive. 

 

2. Recall: It is also known as Sensitivity or True Positive Rate; recall assesses the 

number of actual positive cases correctly identified by the model. A high recall 

indicates that the majority of true positives are accurately detected. 

 

3. Accuracy: Accuracy reflects the overall correctness of the model by calculating 

the percentage of cases that were correctly predicted, encompassing both positive 

and negative outcomes. 

 

4. F-Measure: The F-Measure, also known as the F1-score, is the harmonic mean 

of precision and recall. It serves as a balanced metric that accounts for both false 

positives and false negatives. This measure is especially valuable in scenarios 

where it's important to strike a balance between precision and recall, particularly 

when dealing with imbalanced class distributions. 

 

These metrics collectively offer a thorough assessment of a model’s performance, 

aiding in the evaluation of its effectiveness in classification tasks. 
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3.3 Key Challenges while implementing the IDS 

 

The key challenges faced during IDS implementation: 

1. Resource Overhead 

Challenge: IDS (especially host-based IDS) consume CPU, memory, and storage 

resources. 

IDS monitors activities and changes within individual devices to detect suspicious 

behavior or potential threats. While effective in identifying internal security 

breaches, these systems can place a significant load on system resources. They 

often require continuous scanning, real-time analysis, and log generation, which 

can lead to increased CPU usage, memory consumption, and storage demands. The 

constant monitoring of files, processes, and system configurations may slow down 

system performance, especially on machines with limited hardware capabilities. 

Therefore, it's important to balance security needs with system efficiency when 

deploying HIDS. 

 

2. Tuning and Configuration 

Challenge: IDS requires careful tuning to avoid excessive false positives or false 

negatives. 

Intrusion Detection Systems (IDS) must be carefully configured to ensure accurate 

threat detection without overwhelming users with incorrect alerts. If not properly 

tuned, an IDS can generate excessive false positives, flagging normal activity as 

malicious, which can lead to alert fatigue and reduced trust in the system. On the 

other hand, insufficient sensitivity may result in false negatives, allowing real 

threats to go unnoticed. Achieving the right balance requires ongoing adjustment 

based on the network environment, typical user behavior, and emerging threat 

patterns. Regular updates and fine-tuning help maintain the IDS’s effectiveness 

while minimizing unnecessary disruptions. 
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3. False Positives & Negatives 

Challenge: IDS can generate too many false alarms or miss real threats. Intrusion 

Detection Systems (IDS) can sometimes struggle with accurately identifying 

threats, leading to two major issues: false alarms and missed detections. When an 

IDS produces too many false positives, legitimate activities are mistakenly flagged 

as malicious, which can overwhelm security personnel and cause important alerts 

to be ignored. Conversely, if the system fails to recognize actual threats—resulting 

in false negatives—harmful activities may go undetected, putting the network at 

risk. These challenges highlight the importance of fine-tuning the IDS to ensure it 

effectively distinguishes between normal and suspicious behavior while 

maintaining a manageable alert volume. 

 

4. Real-Time Processing 

Challenge: Detecting intrusions in real-time requires fast data ingestion and 

processing. High-volume traffic can overwhelm the IDS if it's not properly scaled. 

Real-time intrusion detection demands rapid collection and analysis of data to 

identify potential threats as they occur. To keep up with high-speed networks, an 

IDS must be capable of efficiently handling large volumes of traffic without delay. 

If the system lacks sufficient scalability or performance optimization, the surge in 

data flow can exceed its processing capacity, leading to delayed responses or 

missed threats. Ensuring the IDS is properly scaled and equipped with adequate 

computational resources is essential for maintaining its effectiveness in fast-paced, 

high-traffic environments. 

 

5. Data Storage & Retention 

Challenge: IDS logs and alerts can generate massive amounts of data. Intrusion 

Detection Systems (IDS) continuously monitor network and system activities, 

producing a significant volume of logs and alerts in the process. Each event, 
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whether benign or suspicious, is recorded to provide a detailed account of activity 

for analysis and auditing. Managing, storing, and analyzing this information 

requires substantial resources and effective data handling strategies to ensure that 

important alerts are not lost in the noise and that the system remains efficient. 

 

3.4 Summary: This chapter details the research methodology used to accomplish 

the research objectives, which is structured into several modules. The first module 

is the Literature Review, Selection of Standard Dataset and Generation of 

Simulated Dataset in Cloud Computing Environment, Preprocessing of Datasets, 

Feature Selection on Datasets, Detection of Attacks, Evaluation of Proposed 

Architecture for the Detection of Various Attacks. Every module has its own 

function and results in developing an efficient Intrusion Detection System. 
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CHAPTER 4 PREPROCESSING AND FEATURE 

SELECTION ON SIMULATED DATASET AND CSE 

CIC IDS 2018 DATASET 

The goal of data pre-processing is to transform raw data into a format that is more 

appropriate for analysis and processing. The missing values known as Not a 

Number (NaN) values are converted to 0 to prevent value errors in the systems. The 

preprocessing phase involves several essential operations to prepare datasets for 

training. Outliers and unwanted traffic are removed, while additional features are 

introduced to enhance the feature set, ensuring that classifiers achieve optimal 

detection performance. Noise and missing values are eliminated. Normalization is 

a scaling and mapping technique used in the preprocessing stage [A. L. Shalabi et 

al., 2006]. It is particularly beneficial for prediction and forecasting purposes. 

Normalization of the data using the Min-Max method helps to scale the values to a 

defined range, typically between 0 and 1. This step helps to enhance the training 

efficiency by ensuring that the data is on a consistent scale. 

4.1.1Generation and Preprocessing of Simulated Dataset 

4.1.1.1 Generation of Simulated Dataset by Simulating Cloud Computing  

Environment 

Cloud environment simulators are utilized to explore, evaluate, and test these 

approaches under stress before implementing them in real-world settings. 

Simulations are helpful for testing the performance of the applications and it is not 

expensive [T. Goyal et al.,2012]. This model incorporates a virtualized cloud setup, 

where cloud resources are simulated using CloudSim environment which allows 

for the deployment of nodes that exchange data seamlessly through virtual 

machines. The CloudSim toolkit enables the modeling and creation of one or more 



72 

 

virtual machines (VMs) on a simulated data center node, along with jobs and their 

assignment to appropriate VMs [R. Buyya, 2010]. 

This toolkit follows a model which consists of cloud brokers and data centers [R. 

N.Calheiros, 2011]. CloudSim's management interfaces allow for the 

administration of data centers, virtual machines (VMs), and other components [ D. 

M. Reddy, 2023]. By simulating real-world cloud conditions, the model ensures 

that the classifier is tested in scenarios that resemble actual cloud deployments. 

Each VM in the cloud simulation communicates with other nodes to share data and 

workloads which simulates the cloud environment. The hybrid classifier processes 

the aggregated data, ensuring that tasks such as resource allocation, network 

throughput are optimized. By integrating the hybrid classification method into the 

simulation model, the study ensures a realistic and robust test environment that 

mirrors the complexities and challenges of cloud data analysis and service 

management. 

•Deployment model for generating simulated dataset 

The deployment of the cloud simulation has been done by using CloudSim which 

is a robust cloud simulation framework designed for modelling and simulating 

cloud computing environments. The objective of this deployment is generating a 

simulated dataset which represents the real-world cloud environments. 

The configuration of the CloudSim Environment used in the simulation is described 

below: 

 

1.Data Center 

• The simulation model is equipped with one data center, which acts as the core of 

the cloud infrastructure. The data center manages resources, handles requests and 

oversees the operations of the virtual machines (VMs). 



73 

 

• The data center is designed to mimic the functioning of an actual cloud data 

center, including resource provisioning, allocation of computational tasks and 

monitoring of system performance. 

• The Datacenter in this simulation represents the main cloud infrastructure, where 

all resources are managed and provisioned. It includes hosts and (VMs) to 

simulate real-world cloud environments. 

• The datacenter is built with certain characteristics, such as architecture (x86), 

operating system (Linux), and virtual machine monitor (XEN), making it a multi-

purpose infrastructure capable of handling various workloads. 

2.Hosts (Physical Machines) 

Within the data center, ten hosts known as Physical Machines (PMs) have been 

deployed. These hosts represent physical servers that provide computational 

resources such as CPU, memory and storage. Each host is configured with adequate 

processing power and memory to support the virtual machines that operate on top 

of them. The hosts serve as the foundation for the virtualized resources which offers 

processing capabilities to handle diverse workloads that are generated by nodes 

during the simulation. 

 

• Hosts in this setup are essentially physical servers that provide the computational 

power and memory for VMs. Each host is configured with a certain amount of 

RAM, bandwidth and storage. 

• The amount of RAM, bandwidth, and storage for each host is generated 

randomly to simulate real-world variability in resource availability across 

different machines. 

• The host contains processing elements (PEs), which represent the CPU cores. In 

this setup, each host has two CPU cores (PEs), and the computational power of 

each PE is defined using the PeProvisionerSimple class. 
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3.Virtual Machines (VMs) 

•The simulation incorporates 100 virtual machines (VMs) where each running on 

top of the ten hosts. VMs are used to simulate cloud resources that can dynamically 

handle workloads. Each VM has its allocated share of the host's resources which 

includes CPU and memory and is responsible for executing tasks that are 

submitted by the nodes. 

•The VMs have been configured to simulate various workload types which provides 

a diverse testing ground for the hybrid classifier. The simulation allows the VMs 

to handle resource requests dynamically by adjusting their performance based on 

the workloads generated. 

•Virtual Machines are the entities running on top of the hosts. Each VM runs 

independently and handles its allocated tasks. The hosts provide the computational 

power, memory, and bandwidth for the VMs. 

•The VMs are assigned a certain amount of RAM, bandwidth, and storage from the 

host on which they reside. 

4.Workload Generation 

• Nodes have been strategically generated within the simulation model to create 

and distribute workloads from various geographical locations. Each node 

represents a unique source of data or a client system that submits tasks to the 

cloud environment. 

• The diversity in node locations helps to simulate the real-world cloud 

environment where data and requests originate from multiple locations which 

requires the cloud infrastructure to manage and allocate resources dynamically. 

• The workloads generated by the nodes are distributed across the VMs, and the 

hybrid classifier is used to classify, process and optimize the handling of these 

workloads. The classifier helps to allocate resources efficiently and ensure that 

the cloud infrastructure performs optimally under different conditions. 
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5. Host List Generation 

The hostlist is dynamically generated in this setup. The number of hosts 

(host_count) is determined at runtime and for each host, RAM, bandwidth and 

storage are assigned using random values. This variability helps in simulating real-

world environments where not all physical machines have the same resource 

capacity. 

 

6. Costing 

Each host is associated with certain costs: 

Compute cost per second: The cost incurred for utilizing computational resources 

per second, randomly generated. 

Cost per memory: The cost for consuming RAM resources, slightly randomized 

to simulate variable pricing. 

Cost per storage: A fixed cost per unit of storage. 

Cost per bandwidth: A fixed cost for bandwidth usage. 

 

7. Provisioning 

•PeProvisionerSimple provisions the processing power to the CPU cores (PEs). It 

ensures that the allocated CPU resources are properly managed during the 

simulation. 

•RamProvisionerSimple class ensure the proper allocation and management of the 

memory and BwProvisionerSimple class ensure the proper allocation and 

management of bandwidth. 

This architecture simulates a cloud environment using the CloudSim framework, 

where a datacenter is created with multiple hosts, and each host manages one or 

more Virtual Machines (VMs). The datacenter supports resource provisioning, VM 

scheduling, and task execution. Here are the key details: 
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Attributes of Hosts 

Each host has the following attributes: 

• RAM: Randomly assigned between 0 to 8000 MB. 

• Bandwidth (BW): Randomly assigned between 0 to 8000 Mbps. 

• Storage: Randomly assigned between 0 to 100,000 MB. 

• Processing Elements (PEs): Two PEs (cores), each with 1000 MIPS processing 

capacity. 

Table 4.1 Attributes of the VMs 

Attribute Description Value/Range 

VM ID Unique identifier for each VM 0 to 99 

MIPS Processing capacity 1000 

RAM Memory allocated to the VM 512 MB 

Bandwidth (BW) Network bandwidth 1000 Mbps 

Image Size VM image size 10,000 MB 

PEs Number of processing elements (cores) 1 

VMM Virtual Machine Monitor XEN 

 

Table 4.2 Cloud Sim Configurations Used for Cloud Simulation 

Component Description Value/Details 

Architecture Defines the CPU 

architecture used in the 

cloud environment. 

x86 

Operating 

System 

OS used by the hosts. Linux 

VMM 

(Hypervisor) 

Virtual Machine Monitor 

that manages VMs. 

XEN 
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Timezone Time zone for the 

datacenter operations. 

5.0 

Compute 

Cost/Sec 

Cost of using CPU 

resources per second, 

randomized for variability. 

3.0 * random() 

Cost per 

Memory 

Cost of using memory 

resources, slightly 

randomized. 

1.0 + random() 

Cost per Storage Fixed cost of storage 

utilization per unit. 

0.05 

Cost per 

Bandwidth 

Fixed cost of bandwidth 

usage per unit. 

0.10 

Hosts Physical servers providing 

resources (RAM, 

bandwidth, storage, CPU 

cores). 

10 Hosts 

RAM Randomized value between 

2000 and 8000 MB for each 

host. 

2000-8000  

Bandwidth (bw) Randomized value between 

0 and 8000 units for each 

host. 

0-8000  

Storage Randomized storage 

capacity per host. 

100000 * random() 

Processing 

Elements 

Number of CPU cores 

(PEs) assigned to each host. 

2 cores per host (PE0 and 

PE1) 
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VM Scheduler Scheduler used to allocate 

CPU resources to VMs 

running on the hosts. 

VmSchedulerSpaceShared 

Virtual 

Machines 

Independent VMs running 

on hosts, each with 

allocated RAM, bw, and 

storage. 

100 VMs 

RamProvisioner Allocates and manages 

RAM resources for each 

host. 

RamProvisionerSimple(ram) 

BwProvisioner Allocates and manages 

bandwidth for each host. 

BwProvisionerSimple(bw) 

 

Table 4.3 CloudSim Node Communication Simulation Algorithm 

Algorithm 4.1: Node Communication Simulation Algorithm 

Initialize Parameters: Number_of_Nodes = n, Node_Locations, 

Node_Properties, Injection_Rate=0, Number_Of_Simulations=m 

for i=1 to m 

       for j=1 to n 

       Set Route [0]= j 

       Compute Injection_Rate= Injection_Rate+200* Random () 

       Generate Random Probability 

       if Probability >0.3 then 

           Starttime=Systemtime 

           Set Destination = Random_Destination_Node 

           Computer distance between Nodej and Destination 

           if Distance<300 then 

              Add Destination to Route 
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           else  

             Find Intermediate Nodes to Reach Destination 

          while (Destination_Flag=0)  do 

            for Each Intermediate Node k    do  

                if k is not intermediate node and distance<300 then 

                     Add k to intermediate     

                          if Distance from k to Destination <300 then  

                                Set Destination_Flag =1 

                                Add Destination to Route 

                            end if 

                        end if 

                  end for 

              end while 

          end if 

Calculate Total Losses and Power Consumption for the Route 

Compute Throughput and PDR 

Store Results In Output Tabler 

      end if 

  end for 

end for 

 

In this simulation model, the nodes represent workloads rather than physical 

machines (PMs). Each node simulates a distinct workload that is processed within 

the cloud infrastructure which consists of PMs and VMs that manage these 

workloads. The workloads (nodes) are randomly generated with specific 

characteristics which includes the data volume, processing time and required 

resources.  
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The algorithm begins by generating random locations for each workload (node), 

representing different geographical or logical origins. Each workload is assigned 

specific properties such as the injection rate which is the rate at which the workload 

injects data into the system and processing requirements. The PMs in the data center 

serve as the physical infrastructure while the VMs hosted on these PMs handle the 

actual processing of the workloads. As workloads are introduced into the system, 

the algorithm dynamically routes them through the cloud infrastructure. 

 

For each node, the algorithm calculates the most efficient route to a destination, 

which could be a service endpoint or another processing unit. In this context, the 

route represents how the workload travels through the cloud infrastructure, possibly 

being processed by multiple VMs across different PMs. If the workload is within a 

certain distance threshold of the destination, the VM handling the workload 

processes it directly. Otherwise, intermediate VMs on different PMs may be used 

to forward the workload, simulating a multi-hop transmission scenario where 

workloads are moved between different parts of the cloud infrastructure. 

 

As workloads move through the cloud, VMs process the incoming data which 

handle computational tasks and forward the workload to the next VM or 

destination. The throughput of each workload is tracked to measure how quickly 

data is processed and delivered through the cloud system. The algorithm ensures 

that VMs efficiently handle workloads based on available resources like CPU, 

memory and bandwidth. The Packet Delivery Ratio (PDR) is another key metric 

used to measure the efficiency of the network in delivering workloads. PDR 

indicates the proportion of the workload that is successfully processed and 

transmitted to its destination. 

 

To detect potential attacks in the network or to find the compromised route, 

deviations in service parameters such as throughput, PDR are monitored. 
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Anomalies like sudden drops in throughput or unexpected spikes in resource usage, 

particularly bandwidth, can indicate malicious activity. For example, if a VM 

exhibits a sharp decline in PDR while consuming significantly more bandwidth, 

this might signal a Denial of Service (DoS) attack or data interception attempt. 

Additionally, if certain VMs process workloads much slower than expected or use 

excessive CPU resources without corresponding workload increases, it could 

indicate that the VM has been compromised. 

 

The algorithm also calculates the power consumption for each VM based on the 

workload being processed. This information is crucial for optimizing cloud 

resource utilization and ensuring that the infrastructure remains energy-efficient 

while handling diverse workloads. Moreover, abnormal spikes in power 

consumption may also signal malicious behavior, where compromised VMs engage 

in unauthorized computational tasks. By integrating these parameters, the system 

can flag potential attacks. Ultimately, the simulation provides a detailed analysis of 

how efficiently workloads are processed and delivered in a cloud environment and 

also. tracking key metrics such as throughput, PDR and power consumption. 

 

The security and robustness of the cloud infrastructure in managing workloads in 

the simulation includes a step where the aggregated data from workload processing 

is analyzed using k-means clustering. This method enables the system to categorize 

data into three clusters based on key performance metrics, such as throughput, 

Packet Delivery Ratio (PDR) and Power Consumption. The data collected from 

workload nodes represents different processing demands and the locations are 

aggregated and fed into the k-means algorithm to group the workloads based on 

their similarities and differences. 

 

The k-means clustering algorithm divides the aggregated data into three distinct 

categories where each representing a different level of system performance. Once 
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the data is categorized, each cluster is further evaluated based on the standard 

deviation (STD) of its performance metrics. The standard deviation is a critical 

indicator of how much variability there is within each cluster. 

 

Clusters with a high standard deviation represent workloads where performance 

metrics such as throughput and PDR, vary significantly, suggesting that the system 

is less consistent and less robust in managing these workloads. In practice, this 

could mean that some workloads are processed quickly and securely, while others 

experience delays, packet loss and higher energy consumption. A high standard 

deviation signals potential security risks or inefficiencies, as the system may 

struggle to maintain consistent performance under these conditions. These clusters 

with high variability are labelled as least robust, indicating that the cloud 

infrastructure is less reliable for certain workloads. 

 

On the other hand, clusters with a low standard deviation are indicative of a more 

robust system. Here, the performance metrics are more tightly clustered which 

means that the system processes workloads consistently, with the minimal 

variations in throughput, power consumption and PDR. A low standard deviation 

demonstrates that the cloud infrastructure is capable of delivering stable and secure 

processing across different workloads, efficiently managing resources and ensuring 

that all workloads are handled securely and effectively. These clusters are labelled 

as highly robust, highlighting the system's ability to maintain secure, efficient 

operations, even under variable workload conditions. 

 

After categorizing the aggregated data into three clusters using k-means 

clustering—representing varying levels of robustness based on standard deviation 

(STD), the next step involves further classification of this categorized data using a 

hybrid classifier. The hybrid classifier integrates multiple classification techniques, 

combining the strengths of different algorithms to achieve higher accuracy and 
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reliability in classifying the data. This classifier is designed to ensure that the 

system can accurately classify workloads into one of the three categories: highly 

robust, moderately robust, or least robust, based on the system's ability to process 

them efficiently and securely. 

 

The hybrid classifier processes the clustered data by taking into account the 

performance metrics from each category, such as throughput, power consumption 

and Packet Delivery Ratio (PDR). These metrics help the classifier in determining 

the overall robustness of the system for each workload. The goal of the hybrid 

classifier is to maintain high overall classification accuracy, ensuring that the 

system can reliably identify workloads that fall into the least, moderate, or highly 

robust categories. 

 

• Potential Biases for simulated dataset generation 

Potential Biases while generating simulated datasets can be: 

1. Simulation Configuration Bias 

We used specific simulation parameters (e.g., VM specification, datacenter models) 

that don't reflect real-world cloud environments. 

 2. Workload Bias 

Datasets may be generated using synthetic workloads that do not match real user 

behavior or applications. 

3. Algorithmic Bias 

Research might test a specific scheduling or load-balancing algorithm and report 

performance improvements that don’t generalize. 

4. Time Scale & Duration Bias 

Short simulation durations may not reveal long-term performance trends or 

anomalies. 
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5. Overfitting to Simulation 

Some datasets might be tuned or generated to demonstrate high performance of a 

specific approach, overfitting to the simulated environment. 

 

4.1.1.2 Mapping of simulated data to actual dataset  

In the domain of network security and anomaly detection, the classification of data 

into attack and non-attack categories forms the cornerstone of model development. 

While simulated data provides a controlled environment for experimentation, its 

effectiveness hinges on its fidelity to real-world scenarios. Simulated data often 

lacks the complexity and variability of actual data, making it prone to mislabelling 

when relied upon without cross-referencing. This necessitates mapping simulated 

data to actual data to refine the labelling process. Below, we explore the 

importance, challenges, and benefits of this mapping process in depth, alongside its 

implications for improving precision and reliability. 

Labels define the underlying structure of datasets used for training and evaluation 

of machine learning and deep learning models. A minor error in labelling can 

propagate through the entire pipeline, leading to systemic issues such as: 

• Model Degradation: Incorrect labels degrade the performance of models, 

as they learn patterns based on false information. 

• Overfitting or Underfitting: Mislabelling can create noise that forces 

models to overfit irrelevant patterns or underfit essential ones. 

• Operational Failures: Systems trained on poorly labelled data risk failing 

in real-world scenarios, leading to security breaches or missed detections. 

Accurate labelling is particularly critical in domains like cybersecurity, where real-

world attack patterns are nuanced, dynamic, and often multi-faceted. 

Statistical methods, while valuable, provide a limited view of data characteristics. 

Techniques such as Mean Squared Error (MSE), variance analysis, and deviation 
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thresholds are commonly applied for initial labelling of simulated data. However, 

these methods face several limitations: 

1. Lack of Contextual Awareness: 

o Statistical methods evaluate data in isolation, focusing solely on numerical 

patterns. 

o Attack signatures often depend on complex, multi-dimensional patterns that 

exceed simple statistical descriptions. 

2. High Sensitivity to Thresholds: 

o Choosing the correct threshold for labelling can be arbitrary and may vary 

depending on the dataset. A misaligned threshold can either over-label 

benign data as attacks (false positives) or under-label actual attacks (false 

negatives). 

3. Ambiguity in Complex Scenarios: 

o Certain attack types, such as Advanced Persistent Threats (APTs) or blended 

attacks, exhibit subtle patterns that evade detection by statistical methods 

alone. 

4. Static Nature of Statistical Approaches: 

o Real-world environments are dynamic, with attack patterns evolving 

continuously. Statistical methods, unless frequently updated, fail to adapt to 

these changes. 

 

Statistical error-based methods rely on thresholds to classify data points. For 

instance, a high MSE value might indicate an anomaly, while a low MSE suggests 

normal behaviour. These methods are straightforward and computationally 

efficient, making them suitable for initial labelling in large datasets. However, they 

come with inherent limitations. Statistical methods lack contextual awareness, 

which is crucial for distinguishing between attacks and benign anomalies that might 

appear similar in numerical terms but differ significantly in their underlying causes. 

For example, a legitimate surge in network traffic during an online sale could be 
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mistaken for a Distributed Denial of Service (DDoS) attack if labelled purely based 

on packet volume thresholds. Such mislabelling can lead to high false-positive 

rates, eroding the reliability of the resulting system. 

 

Mapping simulated data to actual data addresses these shortcomings by introducing 

real-world context into the labelling process. Actual datasets, typically derived 

from real-world scenarios, come with ground truth labels validated by experts or 

trusted frameworks. These labels capture the nuances of real attack patterns, 

including subtle behaviours that might not manifest in a simulation. By aligning 

simulated data with these benchmarks, researchers can refine their labels, ensuring 

greater accuracy and consistency. For instance, a simulated DDoS attack might be 

labelled based on its high packet volume, but mapping it to actual data might reveal 

additional characteristics such as synchronized timing or geographic distribution, 

enriching the dataset's fidelity. 

 

This mapping process also enhances the generalizability of models trained on the 

labelled data. Models trained solely on simulated data risk overfitting to the specific 

patterns of the simulation environment. These patterns might not translate well to 

real-world scenarios, where attacks are more diverse and unpredictable. Mapping 

simulated data to actual data bridges this gap, ensuring that the resulting models 

perform reliably across a broader range of conditions. For example, a model trained 

on purely simulated phishing email data might struggle to identify sophisticated 

real-world phishing attempts that use social engineering tactics. Mapping to actual 

datasets helps incorporate these subtleties, making the model more robust and 

adaptable. 

 

Another advantage of mapping simulated data to actual data lies in reducing false 

positives and false negatives. Statistical methods, while efficient, often lead to 

overgeneralizations. They might classify all high-MSE data points as attacks, even 
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if some are benign anomalies. Conversely, they might miss attacks with subtle 

signatures that don’t trigger the predefined thresholds. Mapping provides a 

validation layer, cross-referencing these classifications against real-world examples 

to correct such errors. For instance, simulated data with high MSE might be flagged 

as a potential attack, but mapping to actual data could confirm whether it aligns 

with known attack patterns or is simply noise. 

While statistical labelling methods provide a good starting point, combining them 

with mapping creates a hybrid approach that leverages the strengths of both 

techniques. Statistical methods quickly identify potential anomalies, which can 

then be validated and refined through mapping. This iterative process ensures that 

the final labels are both accurate and contextually relevant. Moreover, insights 

gained from mapping can inform adjustments to statistical thresholds, making them 

more effective in future labelling efforts. For example, if mapping reveals that 

certain high-MSE cases consistently align with benign behaviours, the thresholds 

can be adjusted to avoid similar false positives in the future. 

 

Mapping simulated data to actual data is particularly critical in dynamic 

environments where attack patterns evolve over time. Simulations are often static, 

reflecting a snapshot of potential attack behaviours based on known scenarios. 

However, real-world data captures the evolving nature of cyber threats, such as new 

forms of malware or blended attack strategies that combine multiple vectors. By 

mapping simulated data to actual datasets, researchers can ensure that their 

simulations remain relevant and aligned with current threat landscapes. For 

example, a simulation might model a brute force attack based on fixed parameters, 

but mapping to real-world data could reveal new variations, such as adaptive 

algorithms that change attack patterns based on system responses. 

 

Despite its advantages, mapping simulated data to actual data is not without 

challenges. One major hurdle is the availability of high-quality, labelled datasets. 
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Real-world datasets are often proprietary or subject to privacy restrictions, limiting 

their accessibility. Even when such datasets are available, ensuring compatibility 

with simulated data can require extensive preprocessing and transformation. For 

instance, simulated data might use simplified features or metrics that don’t directly 

align with the richer, more complex attributes of actual datasets. Addressing these 

challenges requires careful planning and resource allocation, but the benefits of 

improved labelling accuracy and model reliability far outweigh the costs. 

 

The computational overhead of mapping can also be significant, especially for large 

datasets. Simulated data often contains millions of records, and cross-referencing 

each record with actual data can be time-consuming and resource-intensive. 

However, advances in automated mapping techniques, such as the use of machine 

learning to align and compare datasets, have made this process more efficient. For 

example, clustering algorithms can group similar data points from simulated and 

actual datasets, streamlining the mapping process and reducing manual effort. 

 

In conclusion, mapping simulated data with actual data is an essential step for 

achieving precise and reliable labelling in cybersecurity research. While statistical 

error-based methods provide a useful starting point, they fall short in capturing the 

complexity and variability of real-world attack patterns. Mapping addresses these 

gaps by introducing real-world context, improving generalizability, and reducing 

false classifications. The hybrid approach of combining statistical and mapping 

methods ensures that labelled datasets are both accurate and adaptable, enabling the 

development of robust models capable of meeting the challenges of evolving cyber 

threats. Despite the challenges involved, the benefits of mapping far outweigh the 

drawbacks, making it an indispensable practice in the pursuit of high-quality, 

actionable datasets. 
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Mapping simulated data to actual data is a multi-step process involving the 

application of various similarity measures to align and compare the features of the 

two datasets. The goal is to refine the simulated data's labelling by benchmarking 

it against actual data, ensuring that it captures real-world patterns effectively. 

Several methods for mapping exist, each with its strengths and limitations. This 

illustration explores similarity measures, their justification, and the importance of 

normalization in enhancing their effectiveness. 

 

Mapping involves identifying relationships between the simulated and actual data 

points. This is typically achieved by quantifying how similar the data points are 

across one or more dimensions. The key methods for mapping include feature 

matching, similarity measures, dimensional reduction and projection, and cluster 

alignment. Similarity measures play a central role in these approaches, offering a 

mathematical basis for comparing datasets. 

 

• Key Similarity Measures for Mapping 

Among the many similarity measures available, the most common ones include 

Euclidean distance, cosine similarity, and hybrid similarity measures. These 

measures provide a robust foundation for aligning simulated and actual data, 

ensuring precision and reliability in the mapping process. 

 

1. Euclidean Distance 

Euclidean distance is calculated as the straight-line distance between two points in 

multi-dimensional space: 

𝑑(𝑝, 𝑞) =  𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝑝𝑖 −  𝑞𝑖)
2))                                                                     (1)    

It is suitable for continuous numerical spaces but is sensitive to scale differences, 

making it less effective for high-dimensional data. 
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2. Cosine Similarity 

Cosine similarity measures the cosine of the angle between two vectors in a multi-

dimensional space: 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
(𝐴 ⋅ 𝐵)

(||𝐴||||𝐵||)
                                                        (2)                                                               

It is robust to magnitude differences, ideal for high-dimensional data, and 

computationally efficient. This makes it particularly useful for sparse datasets like 

text data represented as vectors. 

 

3. Hybrid Similarity Measures 

Hybrid measures combine the strengths of different similarity techniques, such as 

a weighted combination of cosine similarity and Euclidean distance. An example 

formula : 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵)  =  𝑤1 ∗  𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵)  +  𝑤2 ∗  (𝐸𝑢𝑐𝑙)        (3) 

 

These methods offer enhanced flexibility and precision by leveraging multiple 

perspectives on data similarity. Cosine similarity is particularly effective for 

mapping simulated data to actual data due to its robustness to magnitude 

differences, suitability for high-dimensional data, and ability to align with real-

world characteristics. It ensures computational efficiency while capturing 

directional alignment, which is critical for tasks involving complex patterns like 

cybersecurity. 

 

Normalization is crucial for eliminating scale bias, improving robustness, and 

enabling comparability. Common techniques include Min-Max scaling, Z-score 

normalization, and L2 normalization. Normalizing data ensures that similarity 

measures like cosine similarity operate effectively, capturing the true relationships 

between data points. 
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The loading of the simulated dataset and the CSE-CICIDS dataset is performed 

initially. The CSE-CICIDS dataset is a well-known benchmark dataset that contains 

labelled records, with the last column specifying the labels (e.g., "Normal," 

"DDoS"). The simulated dataset, while feature-compatible, lacks these labels. To 

enable meaningful comparisons, feature alignment is performed, retaining only 

common features between the two datasets. This ensures consistency in the feature 

space used for similarity computation. Following alignment, Min-Max 

normalization is applied to scale all features to a range between 0 and 1. This step 

is crucial because features like packet size or flow duration may differ significantly 

in scale, leading to biased similarity calculations. By normalizing the data, the 

algorithm ensures that all features contribute equally, avoiding domination by 

larger-scaled features. 

 

The core of the algorithm lies in the computation of hybrid similarity for mapping 

the simulated data points to the CSE-CICIDS dataset. For each simulated data 

point, cosine similarity is computed to measure the directional alignment of feature 

vectors, which captures the pattern similarity between the data points. Additionally, 

Euclidean distance is calculated to assess the magnitude difference, ensuring that 

proximity in feature space is considered. Since Euclidean distance is inherently a 

measure of dissimilarity, it is normalized to a similarity score ranging from 0 to 1 

by subtracting it from the maximum possible distance in the dataset. These two 

measures are combined into a hybrid similarity score, calculated as a weighted 

average where the parameter α\alphaα balances the importance of cosine similarity 

and normalized Euclidean similarity. This hybrid similarity approach provides a 

comprehensive way to compare data points, leveraging both direction and 

magnitude for precise mapping. The label of the closest CSE-CICIDS data point, 

as determined by the highest hybrid similarity score exceeding a threshold (θ), is 

assigned to the simulated data point. 
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Figure 4.1 Calculation of similarity measures and threshold  

 

After mapping, the algorithm appends each simulated data point with its assigned 

label and hybrid similarity score, producing a labelled dataset. This enriched dataset 

is saved to an Excel file, creating a permanent record of the mapping process. To 

evaluate the effectiveness of the mapping, the algorithm generates a histogram of 

the hybrid similarity scores. 

 

 This visualization helps in understanding how well the simulated data aligns with 

the CSE-CICIDS dataset, with the threshold line distinguishing between points that 

were successfully mapped and those that fell below the similarity requirement. The 

histogram provides insights into the overall distribution of similarity scores, 
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identifying potential areas where parameter tuning (e.g., adjusting α\alphaα or 

θ\thetaθ) might improve the mapping accuracy. By combining precise computation, 

effective labelling, and detailed visualization, the algorithm ensures that the 

simulated data can be reliably used for downstream tasks like model training or 

anomaly detection in a realistic context. 

 

Table 4.4 Result of Similarity Calculation 

Route 
 

Throughput 

(MBPS) 

PDR ConsumedPower 

(mJ) 

Label Hybrid_Similarity_Score 

26 7.69E-12 0.0904 1.30E+04 Bruteforce 3.7137 

10 3.28E-11 0.3482 1.42E+04 Bruteforce 3.1438 

25 6.44E-12 0.0659 1.47E+04 Bruteforce 3.7673 

14 2.49E-11 0.2283 1.68E+04 Bruteforce 3.3832 

3 2.51E-11 0.2146 1.75E+04 Bruteforce 3.4105 

40 3.51E-11 0.2737 1.96E+04 Bruteforce 3.2733 

35 3.09E-11 0.2258 2.08E+04 Bruteforce 3.3726 

39 9.27E-11 0.6629 2.08E+04 Bruteforce 2.5866 

27 7.38E-11 0.5045 2.18E+04 Bruteforce 2.8154 

44 1.73E-11 0.1139 2.26E+04 Bruteforce 3.6254 

20 8.42E-11 0.5304 2.36E+04 Bruteforce 2.7614 

22 1.26E-10 0.7659 2.45E+04 Bruteforce 2.4544 

28 1.12E-10 0.633 2.62E+04 Bruteforce 2.5876 

8 1.54E-10 0.845 2.72E+04 Bruteforce 2.3939 

22 1.31E-10 0.6877 2.86E+04 Bruteforce 2.5001 

36 1.30E-10 0.6642 2.89E+04 Bruteforce 2.5262 

43 1.22E-10 0.5904 3.05E+04 Bruteforce 2.6219 

15 1.38E-10 0.6499 3.14E+04 Bruteforce 2.5283 

16 1.21E-10 0.5414 3.35E+04 Bruteforce 2.6847 

 

The proposed work focused on validating the effectiveness of the hybrid similarity-

based mapping process by training a Pattern Recognition Network (PatternNet) to 
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classify simulated data labelled using the CSE-CICIDS dataset. The PatternNet, a 

specialized neural network for classification tasks, was designed with three hidden 

layers containing 128, 64, and 32 neurons, respectively. These layers were chosen 

to allow the network to learn complex patterns and subtle relationships within the 

labelled dataset. The dataset, prepared from simulated data mapped to CSE-

CICIDS labels, was divided into 70% training and 30% testing subsets to ensure 

robust evaluation and to prevent data leakage between the training and testing 

phases. To enable the PatternNet to handle multi-class classification tasks, the class 

labels were transformed into one-hot encoded vectors, which represent each class 

as a binary vector. 

During the training process, the network was optimized using the Adam optimizer 

with a learning rate of 0.01, targeting a mean squared error goal for 200 epochs. 

Training progress was monitored through the generation of performance and 

training state plots, which provided insights into the network’s learning curve, 

including the reduction of loss over epochs and validation accuracy trends. These 

plots confirmed that the network converged effectively, demonstrating stability in 

its learning process. By leveraging a diverse set of labelled features generated 

during the mapping process, the PatternNet was expected to validate the accuracy 

and generalizability of the proposed mapping approach. Once trained, the network 

was evaluated using the unseen test subset to assess its classification accuracy, 

generating predictions that were compared to the true labels in the test set. 

 

To provide a detailed evaluation, a confusion matrix was created to analyze the 

network's classification performance for each class. The confusion matrix 

highlighted true positive, false positive, and false negative rates for every class, 

offering granular insights into how well the network distinguished between 

different categories of traffic patterns, including normal and malicious activities. A 

heatmap was plotted to visualize the confusion matrix, making it easier to interpret 

the classification results. However, during this step, it was observed that some 



95 

 

classes from the CSE-CICIDS dataset were absent in the test subset, resulting in a 

mismatch between the dimensions of the confusion matrix and the total number of 

expected categories. This issue was addressed by expanding the confusion matrix 

to include all categories from the dataset, ensuring that even missing classes were 

represented in the final matrix. The confusion matrix was then normalized to show 

percentages, enabling a clearer assessment of classification performance across all 

classes. These measures ensured that the evaluation remained comprehensive, 

validating the mapping process and the capability of the PatternNet to generalize 

effectively to unseen data. The results of this work highlight the robustness of the 

proposed methodology, emphasizing its potential for applications in real-world 

network intrusion detection systems. 

 

4.1.1.3 Parameters analysis for analyzing the impact of attacks on the system 

 

There are many parameters which are affected when any attack occurs on the cloud. 

Some key parameters are analyzed when DDoS attack and User to Root attack were 

deployed on the cloud environment. 

 

1. CPU Utilization: CPU utilization represents the proportion of time the central 

processing unit (CPU) spends actively executing tasks or processing instructions. 

This metric is vital for assessing the efficiency and overall performance of a 

computer system. By tracking CPU utilization, organizations can uncover 

performance bottlenecks, resource limitations and potential security vulnerabilities. 

In cybersecurity, monitoring CPU usage takes on added importance as it can aid in 

detecting malicious activities. 

CPU Utilization =
Busy Time of CPU

Total Active Time of CPU
∗ 100                                                                     (4) 

 

2. Bandwidth Utilization: Bandwidth utilization refers to the ratio of the amount 

of data being transmitted over a network to the maximum bandwidth capacity of 
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that network. It is an important metric for assessing network performance and 

efficiency.  

Bandwidth Utilization =
Amount of Data Tranferred

Total Bandwidth of Network
∗ 100                                     (5) 

 

3.CPU Load: CPU load refers to the amount of computational work that a CPU is 

currently handling. It is a measure of how busy the CPU. This includes the count 

of tasks that are currently running and the number of tasks waiting to be processed. 

CPU = Number of Tasks Running + Number of Tasks Waiting                    (6) 

 

Table 4.5 Parameters Analyzed Before Attack 

Parameter VM 1 VM 2 VM 3 VM 4 VM 5 

CPU Utilization 

(%) 

30% 35% 25% 40% 30% 

Bandwidth 

Utilization (%) 

50% 45% 40% 55% 50% 

Load 

Distribution 

((Number of  

Tasks) 

2 2 1 2 2 
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Table 4.6 Parameters Analyzed After Attack 

Parameter VM 1 

(DDoS) 

VM 2 

(DDoS) 

VM 3 

(U2R 

Successful) 

VM 4 

(U2R 

Failed) 

VM 5 

(No 

Attack) 

CPU Utilization (During 

Attack) 

90% 85% 95% 40% 30% 

Bandwidth Utilization 

(During Attack) 

90% 85% 95% 55% 50% 

Load Distribution 

(Number of Tasks) 

10 9 2 2 2 

 

 

Figure No. 4.2 Comparison of CPU Utilization 
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Figure No. 4.3 Comparison of Bandwidth Utilization 

 

 

Figure No. 4.4 Comparison of CPU Load 
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The tables provide a detailed overview of the behavior of CPU utilization, 

bandwidth utilization, and load distribution across VMs in a cloud environment 

before, during, and after the simulation of DDoS and U2R attacks. Before the 

attacks, the cloud infrastructure operates in a balanced state. Each virtual machine 

(VM) shows moderate CPU utilization: VM 1 at 30%, VM 2 at 35%, VM 3 at 25%, 

VM 4 at 40%, and VM 5 at 30%. Bandwidth utilization also reflects a stable 

environment, with VMs operating between 40% and 55% bandwidth usage, where 

VM 1 and VM 5 show 50% utilization, VM 2 at 45%, VM 3 at 40%, and VM 4 

experiencing slightly higher bandwidth at 55%. The load on the VMs is distributed 

with 1 or 2 tasks allocated to each, indicating a well-managed and efficiently 

running system. 

 

4.Security Efficiency (SE): Security Efficiency measures the system’s overall 

performance in detecting attacks while minimizing false alarms. It is defined as: 

𝑆𝐸 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)−𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                                                              (7) 

A higher SE indicates a more reliable detection system that can accurately 

differentiate between malicious and benign traffic 

. 

5.Throughput (T): Throughput reflects the system's efficiency in processing data 

(packets or instances) per unit time, critical for real-time applications. It is 

expressed as: 

𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑇𝑖𝑚𝑒(𝑠)
                                                                                                                (8) 

Improved throughput signifies enhanced scalability and responsiveness of the 

system. 

The results before and after implementing the proposed methodology are shown in 

the table below: 
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Table 4.7 Parameter Analysis Before and After Implementation of IDS 

Parameter Before 

Implementation 

After 

Implementation 

Improvement 

(%) 

Security Efficiency 

(SE) 

72.5% 90.2% +24.14% 

Throughput (T) 

(pkt/s) 

1100 1580 +43.64% 

 

4.1.1.4   Preprocessing of Simulated Dataset 

 

The first step is the removal of unused columns, elimination of incomplete or 

incorrect records (i.e., those with missing values) and discarding repeated features 

and columns as these can reduce the efficiency of the ML model. The second step 

involves converting categorical and string values into numerical values. This 

includes encoding non-numerical string values into integers and making them 

compatible with ML methods. In simple terms, this process cleans the simulated 

data. The raw dataset contains both categorical and numerical data, which can 

sometimes be inconsistent or skewed, leading to inaccurate results. Machine 

learning algorithms only work with cleaned numerical data. This step removes any 

missing values from the dataset and converts strings into numerical form so that the 

computer can easily process them. 

Normalization is then applied to scale all feature values within a specific range, 

typically between [-1, 1]. We use the popular Min-Max Normalization which is 

represented by the following equation: 

The formula of Min-Max Normalization is referred to Eq. (9). 

𝐴′ =
(𝐴−min 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴)

(max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴−min 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴)
∗ (𝐷 − 𝐶) + 𝐶                                                              (9) 
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where 𝐴’ is the having the Min-Max Normalized Data 𝐴 if predefined boundary 

belongs to [𝐶, 𝐷].      

 

4.1.2 Preprocessing on CSE CIC IDS 2018 Dataset 

 

Several critical characteristics have been identified as essential to establish and 

evaluate an effective Intrusion Detection System (IDS) dataset framework [I. 

Sharafaldin, 2018]. These attributes encompass a variety of attack types, protocol 

information, extensive network traffic capture, full network interactions, detailed 

network configurations, a strong set of features, labelled data samples, diversity and 

pertinent metadata. [I. Sharafaldin, 2018]. The CSE-CIC-IDS-2018 dataset was 

developed with these characteristics in mind, employing a structured approach that 

utilizes profiles for systematic dataset generation. The dataset offers a 

comprehensive insight into various types of attacks and provides detailed 

information regarding different application models, network devices, and 

protocols. CICFlowMeter was utilized to capture network traffic, labelling data 

flows and documenting specifics such as source and destination addresses, port 

numbers, timestamps, and types of attacks. The testing environment simulated 

network traffic from protocols including HTTP, HTTPS, SSH, as well as email 

protocols like SMTP and POP3.To enhance the efficiency of the machine learning 

(ML) model, any incomplete or incorrect records (missing values) are eliminated, 

along with duplicate features and columns. Categorical and string values are 

converted into numerical formats to facilitate analysis. After encoding the network 

traffic datasets, normalization becomes necessary. Without normalization, one 

feature might overshadow others, regardless of the advantageous characteristics of 

the dataset. Both min-max normalization and Z-score normalization can be utilized 

for data preprocessing, with the choice depending on the specific dataset and 

algorithm employed. In the case of the CSE-CIC-IDS-2018 datasets, min-max 

normalization is preferred due to the significantly varying feature ranges. This 
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technique scales numeric columns from a range of 10,000 to 100,000 down to a 

range of 0 to 1, preserving the relative differences in values and ensuring that no 

information is lost. 

 

 The Min-Max scaling formula is applied, as normalized data generally enhances 

ML training efficiency. While min-max normalization may eliminate some outliers, 

this does not adversely affect system performance, as the detection task primarily 

focuses on long-term attacks. The 'Label' column, which contains the names of 

attacks identified in the dataset, is converted into numeric values. To balance the 

dataset, sampling is performed, resulting in 20 samples from which the best one is 

chosen for experimentation. 

 

To evaluate the stability, generalization capability, and performance consistency of 

the classification model across different subsets of the input data, a repeated 

sampling-based experimentation framework was employed. This method operates 

by drawing multiple randomized subsets from the original training dataset, each 

subset containing a fixed percentage of the total available data.  

The sampling is performed independently across multiple iterations to ensure 

statistical independence and to simulate varying data conditions that a real-world 

model might encounter. In each iteration, a specified proportion of data records is 

selected through random index generation, ensuring uniform distribution across the 

dataset space. The selected records are used to construct a new training matrix and 

a corresponding target label vector. These subsets, along with their associated 

labels, are preserved across iterations for traceability, reproducibility, and further 

pattern analysis. A supervised learning model, configured to operate with a fixed 

architecture, is then trained independently on each of these subsets.  

The model's training process follows a standardized regimen, including internal 

validation and testing, which allows it to fine-tune its parameters based on both the 
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immediate subset and a small portion reserved for evaluation. After training, the 

classifier is assessed on its ability to correctly map the input features to the expected 

labels. The predictions generated by the model are processed to determine class 

membership through a probabilistic interpretation, typically based on the most 

activated output node. These predicted outcomes are then statistically compared 

with the ground truth labels using a confusion matrix to identify correct 

classifications and misclassifications across all categories.  

To assess the quality of predictions beyond binary accuracy, a matching score is 

computed, reflecting the average confidence with which the model assigns its 

predictions during each sampling run. This score provides a more nuanced metric 

for evaluating the model’s certainty and class separability. Over multiple iterations, 

this experimental design captures the variability in model performance caused by 

changes in input distributions, offering a practical understanding of how robust the 

model is to partial data exposure. By analyzing performance metrics across these 

iterations, researchers can gain insights into the resilience and adaptability of the 

classifier, verify its capacity to avoid overfitting to a specific subset, and estimate 

its expected performance under real-world conditions where training data may be 

incomplete, imbalanced, or non-uniformly distributed. 

 

4.1.3. Limitation of CSE CIC IDS 2018 Dataset  

 

There are various categories of malicious activities, including BOT attacks, Denial 

of Service (DoS), brute-force attempts, infiltration, and SQL injection. The 

Heartbleed attack is not represented in Figure 1 due to its limited sample size. 

Typically, datasets show an exponential distribution in the number of samples per 

class, where benign instances significantly outnumber malicious ones. For machine 

learning applications, a dataset is most effective when its class distribution is 

balanced or approximates a normal distribution. 
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4.2 Feature Selection Technique 

 

To enhance the efficiency of classifiers used for attack detection, there is a pressing 

need for advanced techniques. One effective method is through Feature Selection 

(FS), which reduces the dimensionality of large datasets. Not all features are 

essential for detecting attacks; therefore, identifying the most relevant ones can 

significantly improve detection efficiency. FS addresses the challenge of high-

dimensional datasets by pinpointing the smallest subset of optimal features, making 

it a crucial step in machine learning (ML) applications for attack detection. Building 

an effective Intrusion Detection System (IDS) necessitates the identification of 

relevant features that facilitate the detection of attacks. 

 

 However, this task is complex due to the potential relevance, redundancy, or 

excessiveness of features, which can increase the computational complexity of 

attack detection. Several methods can be applied to FS, including Greedy Search 

techniques such as Sequential Backward Selection (SBS) and Sequential Forward 

Selection (SFS). However, these methods often encounter challenges, including 

high computational costs and the risk of stagnation in local optima. To overcome 

these limitations, efficient search techniques capable of performing global searches 

are required. Evolutionary algorithms are particularly well-suited for this purpose 

due to their ability to explore broader search spaces.These algorithms have been 

successfully applied to various real-world problems, including wireless sensor 

networks. Their stochastic, population-based nature makes them ideal for feature 

selection. Two commonly used evolutionary algorithms in FS are Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA). 

 

Feature selection is a complex issue that often necessitates the application of 

artificial intelligence methods for effective resolution. Researchers have long 

sought optimal approaches to enhance accuracy and efficiency in this domain. A 
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current focus in research is on improving the feature selection process by 

integrating additional algorithms with learning models. The following are various 

types of feature selection techniques: 

 

1.Filter Method: This approach assesses the inherent characteristics of the data 

without relying on any specific classification algorithm. It uses predefined criteria 

to identify and select the most relevant features for the problem at hand. Features 

that meet or exceed the set threshold are retained, while those that do not are 

discarded. Common metrics for setting these thresholds include distance, 

information gain, correlation, and consistency. Examples of filter techniques 

include Correlation-based Feature Selection (FCBF) and Minimum Redundancy 

Maximum Relevance (MRMR). While this method is known for its speed and 

scalability, its independence from the classifier may lead to a compromise in 

accuracy. 

 

2.Wrapper Method: Unlike the filter method, the wrapper method incorporates 

the classification algorithm into the feature evaluation process. This method 

establishes a connection between the selection of feature subsets and the classifier, 

typically resulting in more accurate outcomes compared to the filter approach. 

However, this increased interaction can lengthen the processing time and elevate 

the risk of overfitting, where the classifier becomes too tailored to the training data 

and struggles to generalize to new instances 

 

3.Embedded Method: Similar to the wrapper approach, the embedded method 

utilizes the same classifier for feature selection during the evaluation stage. 

However, it is generally more efficient in terms of computational resources and 

requires less processing time compared to the wrapper method. 
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      4.Hybrid Method: This technique combines elements of both the filter and 

wrapper methods in a two-phase sequential process. Initially, the filter method is 

employed to create a preliminary subset of features, which is then further refined 

using the wrapper method. 

 4.2.1Techniques for Feature Selection 

1.Information Gain (IG): This approach ranks attribute subsets by calculating the 

Information Gain (IG) entropy for each attribute in descending order. Each attribute 

is assigned a score ranging from 1 (most relevant) to 0 (least relevant). Attributes 

with the highest scores are selected for the next dimensionality reduction step. 

2.Principal Component Analysis (PCA): Although the attributes chosen using the 

Information Gain (IG) method can be directly applied for classification purposes, 

IG often favors attributes with a wide range of potential values, potentially leading 

to inflated gain values. To address this issue, selected features undergo further 

reduction using PCA, which identifies an optimal subset of attributes. PCA 

transforms a set of features into linearly uncorrelated variables through orthogonal 

transformations, retaining most of the original information. The transformed 

variables, known as principal components, are ranked by decreasing variance, with 

the first component capturing the maximum variance. 

3.Metaheuristic Techniques: These techniques can be employed as optimizers 

alongside learning models. Recent research has demonstrated their ability to deliver 

highly accurate results and enhance the feature selection process. Various 

metaheuristic algorithms, such as Simulated Annealing and Ant Colony 

Optimization, have been applied to the feature selection problem. Specific 

Algorithms for Feature Selection are: 
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• Particle Swarm Optimization (PSO): PSO is a metaheuristic optimization 

algorithm inspired by the social behavior of birds or fish. It maintains a population 

of candidate solutions, referred to as particles, within a multi-dimensional search 

space. Each particle represents a potential solution to the optimization problem, 

and its position corresponds to a specific set of feature values. PSO operates on 

the principle of collaboration among particles, with each adjusting its position 

based on its own historical best-known position (pbest) and the best-known 

position within the entire swarm (gbest). 

• Genetic Algorithm (GA): The Genetic Algorithm (GA) is a heuristic 

optimization method that draws inspiration from the principles of natural selection 

and genetics. It evolves a population of potential solutions across multiple 

generations. Each candidate solution, or chromosome, is represented as a string of 

symbols, usually in binary form. The GA operates using three primary processes: 

selection, crossover, and mutation. During selection, individuals are chosen as 

parents based on their fitness levels. This is followed by the crossover operation, 

which produces offspring, and mutation, which introduces random alterations to 

preserve genetic diversity. This iterative process continues until a stopping 

criterion is met, such as reaching a predetermined number of iterations or obtaining 

a satisfactory level of solution quality. 

4.2.2 Proposed Feature Selection Algorithm 

• Basic Firefly Algorithm 

Introduced by Xin-She Yang in 2008, Firefly Algorithm (FA) is based on the 

attractiveness of fireflies, which is determined by their brightness or flash intensity. 

Fireflies use their flashes to attract mates and communicate with each other, and 

their behavior has inspired the development of this optimization technique. 
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In the context of optimization problems, including feature selection, FA simulates 

the movement of fireflies in search of optimal solutions. The attractiveness of a 

firefly is determined by its fitness value, with brighter fireflies representing better 

solutions. Fireflies move towards brighter ones while gradually exploring the 

search space to find optimal or near-optimal solutions. 

 

The Firefly Algorithm (FA) is effective because it does not rely on prior values, 

unlike Particle Swarm Optimization (PSO), which helps prevent premature 

convergence that can occur with PSO. Additionally, FA does not incorporate the 

concept of velocity found in PSO. It can manage its modality and easily adjust to 

the problem landscape by varying its scaling parameter, such as ϒ. Moreover, FA 

serves as a generalization of several optimization methods, including PSO, 

Simulated Annealing (SA), and Differential Evolution (DE)..The relevance of FA 

in cybersecurity lies in its ability to efficiently sift through the vast feature space, 

discerning between relevant and irrelevant features to enhance the effectiveness of 

intrusion detection systems, malware detection, and other security mechanisms. By 

focusing on selecting the most impactful features for classification or detection 

tasks, the Firefly Algorithm (FA) minimizes computational demands while 

enhancing the accuracy and reliability of cybersecurity systems. 

 

• Hybridized Firefly Algorithm with Decision Tree Algorithm 

Feature selection (FS) plays a crucial role in classification. A modified Firefly 

Algorithm (FA) for FS is proposed. In this modified approach, a decision tree (DT) 

classifier is employed as the fitness function for the FA. FA was chosen due to its 

rare application in FS by researchers. A literature review has demonstrated that FA 

outperforms Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) [H. 

S. Gebremedhin et al., 2020]. Additionally, some PSO variants are considered 
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special cases of FA. Adjusting the parameters of FA can further enhance its 

convergence performance 

 

1. Initialization: Fireflies are randomly distributed within the search space, with 

their positions corresponding to different feature subsets. 

 

2.Objective Function: In the context of feature selection, the objective function 

measures 

the performance of a classifier (e.g., accuracy) using the selected features. 

 

3.Attractiveness: The attractiveness of a firefly is determined by its brightness, 

which is calculated based on its fitness value. Brighter fireflies have higher fitness 

values, indicating better solutions. The attractiveness decreases with distance 

between fireflies and increases with their brightness. 

 

4.Movement: Fireflies move towards brighter ones in the search space, guided by 

their attractiveness and randomization. The movement of fireflies is characterized 

by a random walk process, where they adjust their positions iteratively to approach 

better solutions. 

 

5.Update Positions: The fireflies update their positions based on the attraction 

index generated. 

 

6.Termination: The algorithm iterates until a termination criterion is met, such as 

a maximum number of iterations or achieving a satisfactory solution quality. 

 

7.Return Solution: Finally, the algorithm returns the best solution found by the 

fireflies, which corresponds to the optimal or near-optimal feature subset identified 

by the Firefly  
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Table 4.8 Pseudocode for Proposed Feature Selection Algorithm 

Algorithm 4.2 : Hybridized Firefly Algorithm with Decision Tree Algorithm 

Initialize the parameters n, α, β, ϒ, maxIterations 

Number of fireflies =n 

Initialize fireflies randomly 

        for i=1 to maxIterations   do 

             Evaluate fitness for each firefly by using decision tree 

                fitness= zeros (n, 2) 

                  for i= 1 to n 

                    SelectedFeatures= find (fireflies(:,i)> 0.5 

                    [accuracy, loss] =calculate_accuracy(selectedFeatures, alldata, data_label)                    

                     fitness (i,:) = [accuracy, loss] 

        end for 

Sort fireflies based on fitness 

[:, sortedIndices]= sortrows (fitness, [-1,2]) 

fireflies=fireflies(:,sortedIndices) 

for i=1 to n 

    for j= 1 to n 

    attractiveness =  β0 ∗ exp (−α ∗ ||fireflies(: , i) − fireflies(: , j)||
2

) 

    fireflies(: , i) = fireflies(: , i) + ϒ ∗ (fireflies(: , j) − fireflies(: , i)) ∗ attractiveness 

    Perform a random walk if necessary to prevent out-of-bounds  

     fireflies(: , i) = min (max(fireflies(: , i), 0,1)) 

     attractionvalue(i, j) = attractiveness 

     end for 

  end for 
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Figure No. 4.5 Flowchart of Proposed Feature Selection Algorithm 
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1. Initialization: The algorithm initializes parameters such as the number of 

fireflies, maximum fitness threshold, maximum iterations, and algorithmic 

parameters. It also initializes the attraction value matrix. 

 

2. Random Initialization of Fireflies: Fireflies are randomly initialized, 

where each firefly represents a potential solution (i.e., a feature subset). 

Fireflies' positions correspond to binary selections of features, with each 

feature being either selected or not selected. 

 

3. Main Loop (Iterations): The algorithm iterates for a maximum number of 

iterations. Within each iteration, the following steps are performed: 

 

a) Fitness Evaluation: The fitness of each firefly is evaluated by 

calculating its accuracy and loss using a decision tree classifier. The 

accuracy represents how well the selected features perform in classification, 

and the loss is used to guide the search towards better solutions. 

 

b) Sorting Fireflies: Fireflies are sorted based on their fitness values, with 

higher fitness values indicating better solutions. 

 

c) Updating Fireflies' Positions: Each firefly updates its position based on 

the attractiveness of other fireflies. Attractiveness is determined by the 

brightness (fitness) of other fireflies and their proximity. The firefly moves 

towards brighter fireflies while considering the absorption coefficient, step 

size, and randomization. 

 

             d) Selection of Best Fireflies: After updating positions, the best fireflies' 

positions are selected based on their fitness values. 

 



113 

 

e) Post-processing: The algorithm post-processes the selected features to ensure that 

the maximum number of selected features does not exceed the specified threshold. 

If the number of selected features exceeds the threshold, a random subset of features 

is retained to meet the threshold. 

f)  Evaluation with Decision Tree: To assess the accuracy of the chosen features, a 

decision tree classifier is trained and then tested against the dataset. The classifier's 

accuracy acts as a performance indicator for the selected features. 

g) Return Selected Features: The algorithm returns the selected features, along 

with their corresponding accuracy evaluated by the decision tree classifier. 

The entire implementation provided is written in MATLAB, a widely used 

programming language for numerical computing and algorithm development.  

• Features Selected: 

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using 

Proposed Feature Selection Algorithm which is the hybridized firefly algorithm and 

it is observed that 43 features are selected as the optimized feature subset. 

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using 

PSO and it is observed that 51 features are selected as the optimized feature subset.  

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using 

GA and it is observed that 63 features are selected as the optimized feature subset.  

The 43 features optimized by proposed algorithm gives better results than the 

techniques such as Particle Swarm Optimization (PSO) and Genetic Algorithms 

(GA). 

 

4.3 Summary: This study presents a novel approach to developing an intrusion 

detection system by combining a hybrid firefly algorithm with a hybrid classifier. 

The proposed architecture's effectiveness was assessed using both a simulated 

dataset and the recent CSE CIC IDS 2018 dataset. A new feature selection 
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algorithm, which integrates the firefly algorithm with a decision tree, is introduced. 

The proposed feature selection method outperforms both the PSO algorithm and 

approaches without feature selection. The study emphasizes the significance of 

feature selection before classification and shows that the proposed algorithm 

outperforms other leading methods in the field.  
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CHAPTER 5 PROPOSED ARCHITECTURE FOR 

DETECTION OF ATTACKS IN CLOUD COMPUTING 

ENVIRONMENT 

The architecture is designed to detect attacks in the cloud computing environment 

by employing Swarm Intelligence techniques and Machine Learning techniques. 

Swarm Intelligence methods are well-regarded for their capability to optimize 

difficult problems by facilitating collaboration and knowledge sharing among 

agents, which makes them particularly effective for feature selection. 

5.1 Proposed Architecture for Detection of Attacks in Cloud Computing 

Environment Using Optimized Classifier 

Figure 5.1 is showing the proposed architecture for the detection of the attacks in 

cloud computing environment. The description of the architecture is described as 

follow: 

 

 

Figure 5.1 Proposed Architecture for Detection of Attacks in Cloud 

Computing Environment 
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The architecture incorporates a hybrid classifier to improve the effectiveness of 

attack detection. This algorithm combines two classifiers to use their individual 

strengths, thereby improving threat identification. This combining use of Swarm 

Intelligence for feature selection and a hybrid classification algorithm for detection 

promises not only to refine the analysis but also to significantly improve the 

performance of identifying attacks within the network. 

1.Standard Dataset: Standard benchmark datasets for research purposes can be 

accessed on platforms like Kaggle and the UNB website. The CSE CIC IDS 2018 

dataset can be downloaded from https://www.unb.ca/cic/datasets/ids-2018.html. 

Profiles are created within this dataset, which was developed through the simulation 

of various attack scenarios. The CSE CIC IDS 2018 dataset includes seven 

categories for evaluation: Benign, Bot Attack, Bruteforce Attack, DoS Attack, 

DDoS Attack, Infiltration Attack and Web Attack. This dataset was produced as a 

collaborative project by the Communications Security Establishment (CSE) and the 

Canadian Institute for Cybersecurity (CIC). The attack simulations were conducted 

using 50 machines, while the victim system comprised five departments with 420 

machines and 30 servers. The dataset captures network traffic alongside log files 

for each machine, resulting in 80 features extracted from the network traffic using 

CICFlowMeter-V3. 
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2. Cloud Simulation: Simulated dataset created for the evaluation of the 

architecture is done by using the well -known cloud simulating environment, i.e., 

CloudSim. Deployment of real-world cloud is not easy for research as it is very 

costly and requires a lot of infrastructure. By using the simulating environments, 

researchers can perform their test multiple times. The environment in simulation is 

also under the control of the researchers. In the proposed approach, there are three 

features generated, i.e., Throughput, PDR, Consumed Power. Three categories are 

generated, i.e., Highly Robust, Moderately Robust and Least Robust. 

Approximately one lakh records are generated in the dataset. In least robust 

category, two attacks are generated-DDoS Attack and User-to-Root Attack. 

For the cloud simulation, users are deployed in the environment. In this simulation 

model, nodes represent workloads rather than physical machines (PMs). Each node 

simulates a unique workload processed within a cloud infrastructure composed of 

PMs and virtual machines (VMs) that manage these tasks. The workloads (nodes) 

are randomly generated with specific characteristics, such as data volume, 

processing time, and resource requirements. The purpose of the simulation is to 

model how these workloads are distributed and processed efficiently across the 

cloud infrastructure by the virtualized resources, specifically VMs hosted on PMs. 

 

3.Routing Algorithm: Routing algorithm is used which is using the that which 

offers the least cost. The algorithm starts by generating random locations for each 

workload (node), representing different geographical or logical sources. Each 

workload is assigned specific attributes. Physical machines (PMs) in the datacenter 

provide the infrastructure, while virtual machines (VMs) hosted on these PMs 

handle the actual processing of workloads. As workloads enter the system, the 

algorithm dynamically routes them through the cloud infrastructure, deciding 

whether a workload can be processed directly by a VM on a PM or needs to be 

forwarded through multiple VMs due to resource constraints or network conditions. 
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For each workload, the algorithm calculates the most efficient path to its 

destination, such as a service endpoint or another processing unit. This route 

represents the movement of the workload through the cloud, potentially involving 

multiple VMs on different PMs. If the workload is within a certain distance 

threshold from the destination, the handling VM processes it directly. Otherwise, 

intermediate VMs on other PMs may be used to forward the workload, simulating 

a multi-hop scenario where it moves between different parts of the cloud 

infrastructure. 

 

As workloads progress through the cloud, VMs process the incoming data, perform 

computational tasks, and forward the workload to the next VM or its final 

destination. The throughput of each workload is monitored to measure how 

efficiently data is processed and delivered within the system. The algorithm ensures 

that VMs handle workloads effectively, based on available resources like CPU, 

memory, and bandwidth. Another key metric, the Packet Delivery Ratio (PDR), is 

used to assess network efficiency by indicating the percentage of the workload 

successfully processed and delivered to its destination without loss. 

 

4.QoS Evaluation and Robustness Evaluation: Clusters with a low standard 

deviation indicate a more robust system, where performance metrics are tightly 

grouped, reflecting consistent processing of workloads with minimal variation in 

Throughput, Power Consumption and Packet Delivery Ratio (PDR). A low 

standard deviation demonstrates the cloud infrastructure’s ability to deliver stable 

and secure processing, efficiently managing resources and ensuring workloads are 

handled effectively. These clusters are identified as highly robust, emphasizing the 

system’s capability to maintain secure and efficient operations, even under 

fluctuating workload conditions. By clustering aggregated data and categorizing it 

based on standard deviation, this approach provides a detailed analysis of the cloud 
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infrastructure's performance in terms of security and robustness. It helps cloud 

administrators identify areas of lower security or efficiency, allowing them to 

optimize resource allocation, reduce security risks, and improve the overall stability 

and reliability of the cloud environment. This method enhances the system’s ability 

to handle current workloads while preparing it for future scaling, ensuring long-

term robustness, efficiency, and security. 

 

After categorizing the data into three clusters using k-means clustering, varying 

levels of robustness based on standard deviation are represented and the next step 

is to classify the data further using a hybrid classifier. This hybrid classifier 

integrates machine learning methods, including decision trees and neural networks 

to enhance both accuracy and reliability. It ensures that workloads are classified 

into one of three categories: highly robust, moderately robust or least robust, based 

on the system's capacity to process them efficiently and securely. 

 

The hybrid classifier analyzes performance metrics from each category, such as 

throughput, power consumption, and PDR, to determine the system’s robustness 

for each workload. By using a combination of machine learning methods, the 

classifier can detect subtle variations in performance metrics, enabling more 

accurate classification. Its goal is to achieve high classification accuracy, reliably 

identifying workloads as least, moderately, or highly robust based on the system's 

performance. 

 

Once the classifier processes the data, a confusion matrix is generated to evaluate 

its performance across the three robustness categories. The confusion matrix breaks 

down predictions versus actual categories, showing how well the classifier 

performed in categorizing workloads. The matrix consists of four key components 

for each category: 
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1. True Positives (TP) Workloads correctly classified into their actual category 

(e.g., highly robust workloads correctly identified as highly robust). 

2. True Negatives (TN): Workloads correctly excluded from a category (e.g., 

moderately robust workloads not misclassified as highly robust). 

3. False Positives (FP) Workloads incorrectly classified into a category (e.g., least 

robust workloads mistakenly classified as highly robust). 

4. False Negatives (FN): Workloads that should have been classified into a category 

but were not (e.g., highly robust workloads misclassified as moderately robust). 

 

The hybrid classifier aims to maximize True Positives and True Negatives while 

reducing False Positives and False Negatives. This ensures precise differentiation 

among the three robustness levels while keeping the classification error rate low. 

Achieving high classification accuracy is crucial, as it represents the ratio of 

accurately classified workloads to the total number of workloads.  

 

The confusion matrix also helps identify areas where the hybrid classifier may need 

improvement. For example, a high number of False Positives or False Negatives in 

the least robust category could indicate that the classifier is incorrectly interpreting 

performance variability. This insight allows for fine-tuning of the classifier, 

adjusting parameters and thresholds to better detect security vulnerabilities or 

inefficiencies in workload handling. 

 

By leveraging the hybrid classifier, the system enhances its ability to classify 

workloads into the appropriate robustness category, improving the overall security 

and efficiency of the cloud infrastructure. The integration of k-means clustering, 

hybrid classification, and confusion matrix evaluation ensures the system can 

handle a diverse range of workloads while maintaining high standards in 

performance, security, and resource management. This process enables the cloud 

infrastructure to adapt to changing conditions, dynamically identifying and 
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addressing potential weaknesses in real-time, ultimately leading to a more resilient 

and robust cloud computing environment.  

5. Preprocessing Module: In the preprocessing module, the raw dataset is turned 

into fine form which makes the classification task easy and generates the results 

with better accuracy. Strings are converted into the numeral form. Normalization is 

performed for making the values in the dataset to lie in the range of [-1,1].  

 Data sampling is performed for balancing the dataset. CSE CIC IDS 2018 dataset 

is unbalanced as some classes are in large number as compared to other classes. 

Machine learning techniques do not give biased results with these types of datasets. 

Data sampling makes the dataset balanced. The pre-processed dataset is given as 

input to the next module, i.e., Feature Selection Module.                      

 

6. Feature Selection Module: Feature selection (FS) plays a crucial role in 

classification. A modified Firefly Algorithm (FA) for feature selection is proposed. 

The innovation of the proposed feature selection algorithm is its incorporation of a 

decision tree (DT) classifier as the fitness function for firefly algorithm (FA). The 

choice of FA is notable because it has not been widely utilized for feature selection 

in previous research. Evidence suggests that FA delivers better performance 

compared to Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA).Additionally, some variants of PSO are considered special cases of FA. By 

adjusting FA parameters, its convergence can be further improved. Since FA is a 

swarm-based algorithm, it shares the same advantages as other swarm-based 

techniques. Some variants of Particle Swarm Optimization (PSO) are actually 

forms of FA, functioning as accelerated PSO. FA's adaptability allows it to control 

randomness and adjust as iterations progress. These benefits make FA well-suited 

for handling clustering, classification, and continuous optimization problems. 
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7. Classification Module: In many cases, improving the overall classification 

accuracy can be achieved by designing hybrid classification models that leverage 

the strengths of multiple algorithms. One common approach is to combine the 

capabilities of different classifiers to create a more robust and accurate model. In 

the context of the proposed work, the hybrid model consists of a combination of 

Neural Network and decision tree classifiers. It is noted that various machine 

learning algorithms have been used to address these issues, including decision tree 

algorithms and support vector machine models, k-means, k-nearest neighbor, 

artificial intelligence approaches and several other. 

• Neural Network (NN): Neural Networks consist of interconnected layers of 

artificial neurons that process input data and learn to extract patterns and features 

from the data through training. Neural networks are capable of learning complex 

relationships and non-linear mappings between input and output variables, making 

them well-suited for tasks such as pattern recognition, classification, and 

regression. 

 

• Decision Tree: Decision trees are simple yet effective classification models that 

partition the feature space into a set of hierarchical decision rules based on the 

values of input features. Each internal node of the tree represents a decision based 

on a feature, and each leaf node corresponds to a class label or prediction. Decision 

trees are interpretable, easy to understand, and capable of handling both numerical 

and categorical data. They are particularly useful for capturing interactions and 

non-linear relationships in the data. 
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Table 5.1 Pseudocode for Classification Algorithm 

Algorithm: Hybridized Neural Network with Decision Tree Classification 

Algorithm 

Initialization: Initialize Data X, Labels Y, Decision Tree Classifier DT, Neural 

Network Classifier NN, Number of Predictions =P, Number of Iterations =N 

 𝑃𝐷𝑇 = 𝐷𝑇. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋) 

 𝑃𝑁𝑁 = 𝑁𝑁. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋) 

 P=zeros(N,1) 

 for i=1 to N  

        if 𝑃𝐷𝑇[𝑖] = 𝑃𝑁𝑁[𝑖] then 

           𝑃[𝑖] = 𝑃𝐷𝑇[𝑖] 

       else  

           P[𝑖] = 𝑈𝑛𝑠𝑢𝑟𝑒 

       end if 

 end for 

Return Predictions P 

 

1. Input: The algorithm takes as input the dataset X containing the instances 

to be classified and their corresponding labels Y. Additionally, it requires 

two classifiers: a decision tree classifier (DT) and a neural network classifier 

(NN). 

 

2. Prediction Phase: 

• The algorithm first makes predictions on the dataset X using both 

the decision tree classifier (DT) and the neural network classifier 

(NN). 

• It stores the predictions made by the decision tree classifier in PDT 

and the predictions made by the neural network classifier in PNN. 
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3. Comparison and Final Prediction: 

• The algorithm then iterates through each instance in the dataset. 

• For each instance, it checks if the predictions made by both classifiers are the 

same. 

• If both classifiers agree on the prediction for the instance, the algorithm assigns 

the agreed prediction to the final predictions (P). 

• If the classifiers disagree on the prediction for the instance, the algorithm labels 

the prediction as "Unsure". 

 

4.Output: The algorithm returns the final predictions P, where a prediction is 

considered true only if both the decision tree and neural network classifiers agree 

on it. If they disagree, the prediction is labelled as "Unsure". 

 

This algorithm ensures that a classification is considered true only when both the 

decision tree and neural network classifiers produce the same prediction for an 

instance, thereby adding an additional level of confidence to the classification 

results. If the classifiers disagree, the algorithm flags the prediction as "Unsure", 

indicating uncertainty in the classification decision.By combining the strengths of 

Neural Network and decision tree classifiers into a hybrid model, several benefits 

can be realized: 

 

a) Complementary Capabilities: Neural networks are particularly effective at 

identifying intricate patterns and relationships within data, whereas decision trees 

are skilled at managing categorical variables and generating easily interpretable 

rules. By combining these models, the hybrid model can leverage their 

complementary capabilities to improve overall classification accuracy. 
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b) Ensemble Effect: Ensemble methods, such as combining different classifiers, 

often lead to better generalization performance than individual models. The hybrid 

model can harness the ensemble effect by integrating predictions from both Neural 

Network and decision tree classifiers, resulting in a more robust and accurate 

classification model. 

 

c)Model Interpretability: Decision trees offer clear and understandable models, 

making them accessible for domain experts to interpret. By incorporating decision 

tree components into the hybrid model, it enhances interpretability while 

maintaining the predictive power of Neural Network. 

 

In the proposed work, the hybrid classification model comprising Neural Network 

and decision tree components offers a promising approach to enhance the overall 

classification accuracy. By effectively combining the strengths of both models, it 

can overcome the limitations of individual algorithms and provide more accurate 

and interpretable predictions for the given classification task. 

 

1.Improved Robustness to Overfitting: Neural networks, especially deep 

architectures, have a tendency to overfit the training data, particularly when dealing 

with small datasets or noisy input. Decision trees, on the other hand, are less prone 

to overfitting due to their inherent simplicity and ability to capture local patterns. 

By integrating decision trees into the hybrid model, it can help mitigate the risk of 

overfitting, leading to more generalized and reliable predictions. 

 

2.Enhanced Feature Representation Learning: Neural networks excel at 

automatically learning feature representations from raw data, extracting 

hierarchical and abstract features through successive layers of neurons. By pre-

processing the data using Neural Network layers before feeding it into the decision 

tree classifier, the hybrid model can provide better feature representations, 
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potentially leading to improved discrimination between classes and higher 

classification accuracy. 

 

3.Flexible Model Architecture: The hybrid model offers flexibility in designing 

the architecture and configuration of both Neural Network and decision tree 

components. Researchers and practitioners have the freedom to experiment with 

different network architectures, activation functions, learning rates, and tree 

parameters to optimize the model's performance for the specific classification task 

at hand. This flexibility enables fine-tuning and customization to adapt the model 

to varying datasets and application requirements. 

 

4.Adaptive Learning and Adaptability: Neural networks are inherently adaptive 

and can continuously update their internal parameters through backpropagation and 

gradient descent, allowing them to adapt to changes in the data distribution over 

time. Decision trees, although static once trained, can be easily updated or retrained 

with new data to accommodate concept drift or changes in the underlying data 

characteristics. The hybrid model can leverage this adaptability to maintain high 

performance in dynamic and evolving environments, making it suitable for real-

world applications where the data distribution may change over time. 

 

5.Enriched Model Interpretability and Explain ability: While Neural Network 

models are known for their black-box nature and lack of interpretability, decision 

trees offer transparent and interpretable models that can provide insights into the 

decision-making process. By combining both models in the hybrid architecture, it 

not only improves classification accuracy but also enhances model interpretability 

and explain ability, allowing users to understand the rationale behind predictions 

and gain actionable insights from the model's output. 
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5.2 Computation Complexity Analysis 

Neural Network Complexity (Pattern Recognition Model) 

The implemented architecture is a multi-layer feedforward neural network 

consisting of three hidden layers with 128, 64 and 32 neurons. 

If D=Number of input features, C= Number of output classes, N= Number of 

training samples then, 

𝑃 = (𝐷 ∗ 128 + 128) + (128 ∗ 64 + 64) + (64 ∗ 32 + 32) + (32 ∗ 𝐶 + 𝐶)                   

(5) 

where the total number of trainable parameters P(including weights and biases). 

The overall computational complexity for training the network over EEE epochs 

becomes O(E*N*P). 

This accounts for forward propagation, backpropagation and parameter updates 

using gradient descent. In the implementation, E=200 and the training dataset is 

split using the stratified holdout sampling (70% trsining and 30% testing). 

 

5.3 Summary: This chapter presents a framework designed for detecting attacks 

within cloud computing environments. The architecture's effectiveness is assessed 

using two distinct datasets. Hybridized firefly algorithm with decision tree is used 

to extract relevant features from the datasets. A hybrid classification method that 

considers a classification true only when both the decision tree and neural network 

classifiers agree on the prediction is used for the detection of attacks. 
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CHAPTER 6  RESULTS AND DISCUSSIONS 

The chapter describes the results of the research work. Results are represented in 

tabular and graphical form. Detailed discussion on the results is described in this 

chapter. Two datasets are used for the evaluation of the proposed architecture for 

the detection of the attacks. Comparison of proposed feature selection with the 

popular PSO and GA is described n this chapter. 

 

6.1 Implementation Details 

The implementation details describe the hardware and software requirements used 

during the research. Table 6.1 describes the implementation details related to the 

research work. 

 

Table 6.1 Implementation Details 

Operating System Windows 10 

Hard Disk 8 GB 

Implementation Software MATLAB 2022b 

Simulation IDE Eclipse IDE 2024 

Datasets  Simulated Dataset, 

CSE CIC IDS 2018 Dataset 
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6.2.1 Performance Metrics 

The essential terms associated with performance metrics include True Positive 

(TP), True Negative (TN), False Positive (FP) and False Negative (FN). TP refers 

to the number of normal packets correctly identified, while TN indicates the number 

of attack packets accurately recognized. FP denotes the number of packets 

incorrectly classified as attack when they are actually normal packets and known 

as Type I error. FN refers to the packets that are misclassified as normal packets 

when they are attack packets and known as a Type II error. 

Precision is measuring the accuracy of all positive predictions. Accuracy is 

measuring the overall correctness of the classification. Recall is measuring the 

ability to identify all actual positives. F-Measure is balancing the precision and 

recall. 

Performance metrics are described in equation forms as Eq. (1)-(4). 

Precision =
True Positive

(True Positive+False Positive)
                                                                                    (1)      

Accuracy =
(True Positive+True Negative)

(True Positive +True Negative +False Positive+False Negative)
   (2)                                   

Recall =
True Positive

(True Positive+False Negative)
                                                                                       (3)                   

F − Measure =
(2∗Precision∗Recall)

(Precision+Recall)
                                                                                           (4) 

 

6.2.2 Hypothesis Testing 

 

Hypothesis testing was performed on the classification output to validate whether 

the model performance is statically significant compared to random chance. 

1.Null Hypothesis (H0): The classifier performs at the level of random guessing. 

2.Alternate Hypothesis(H1): The classifier performs significantly better than 

random guessing. 
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Given that the confusion matrix encapsulated observed vs. expected frequencies 

across multiple classes, a Chi-Square Test for Independence was applied. The Chi-

Square is defined as 

𝜘2     = ∑(𝑂𝑖 − 𝐸𝑖)                                                                                                                    (6)                                                                  

where 𝑂𝑖is observed values and 𝐸𝑖 is expected values assuming uniform 

distribution. 

 

6.3 Feature Selection Algorithm Analysis 

The proposed architecture presented in this study represents a significant step 

forward in the field of intrusion detection. Leveraging a substantial dataset 

comprising 1.5 lakh (1,50,000) records of CSE CIC IDS 2018 dataset, this research 

focuses on the identification and classification of the attacks.  

 

This is achieved through the comprehensive evaluation of detection performance 

metrics, including accuracy. precision, recall and f-measure. These metrics 

collectively offer a holistic view of the system's efficacy, capturing both its ability 

to accurately identify attacks and its capacity to minimize the false alarms.  

Table 6.2 Precision Comparison of Feature Selection Algorithms 

Total 

number of 

Samples 

Precision 

PSO+Hybrid 

Classifier  

Precision 

GA+Hybrid 

Classifier  

Precision 

Proposed 

Firefly + 

Hybrid 

Classifier  

20000 0.89325121 0.84606881 0.95885899 

30000 0.83120870 0.81011737 0.95917421 
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40000 0.83774387 0.80041096 0.96476389 

50000 0.89183689 0.80315651 0.96498339 

60000 0.81438771 0.77887040 0.96272396 

70000 0.88233581 0.91639030 0.96415675 

80000 0.89576420 0.80485535 0.95938611 

90000 0.88532679 0.86966180 0.95862370 

100000 0.95187920 0.82428211 0.95963389 

110000 0.91838369 0.77661431 0.96626869 

120000 0.90554341 0.82591551 0.95983295 

130000 0.81215359 0.78950563 0.96603604 

140000 0.96386093 0.81487536 0.96588206 

150000 0.89279464 0.84612539 0.96579691 
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Figure 6.1 Comparison of Precision Feature Selection Algorithms 

 

The precision of the architecture is represented as Precision Proposed Firefly + 

Hybrid Classifier is highest with different subsets of the dataset like 20,000 

samples.  The last sample subset is containing 1,50,000 records. The precision of 

Proposed Firefly + Hybrid Classifier outperforms precision of PSO and GA 

algorithms as it is 0.9589 for 20,000 samples. For 1,50,000 records precision of the 

proposed architecture is 0.965. 
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Table 6.3 Accuracy Comparison of Feature Selection Algorithms 

Total 

number of 

Samples 

Accuracy PSO 

+Hybrid Classifier  

Accuracy-measure 

GA+Hybrid Classifier  

Accuracy 

Proposed 

Firefly + 

Hybrid 

Classifier  

20000 69.0787370 65.9316031 

87.9843 

30000 74.292018 79.4134382 

88.88347 

40000 74.9688163 70.2975348 

89.9885 

50000 75.4650278 71.3911008 

86.0560 

60000 82.1031559 76.395777 

0.870500 

70000 82.3963686 80.2633572 

87.760 

80000 84.9556829 83.7484475 

88.2863 

90000 81.2901379 82.7116438 

90.7894 

100000 77.7693584 77.7328603 

91.19845 

110000 87.0312721 76.6258699 

92.8784 

120000 85.4534590 75.5824956 

93.7846 

130000 78.4072976 77.3573391 

94.2330 
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140000 81.1369337 74.2547736 

94.9835 

150000 84.9296383 78.8100726 

94.9880 

 

 

Figure 6.2 Comparison of Accuracy for Feature Selection Algorithms 

 

The accuracy of the architecture is represented as Accuracy Proposed Firefly + 

Hybrid Classifier is highest with different subsets of the dataset like 20,000 

samples.  The last sample subset is containing 1,50,000 records. The accuracy of 

Proposed Firefly + Hybrid Classifier outperforms precision of PSO and GA 
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algorithms as it is 87.9843 for 20,000 samples. For 1,50,000 records accuracy of 

the proposed architecture is 94.9880. 

 

Table 6.4 Recall Comparison of Feature Selection Algorithms 

Total 

number of 

Samples 

Recall PSO+Hybrid 

Classifier  

Recall GA+Hybrid 

Classifier  

Recall Proposed 

Firefly + Hybrid 

Classifier  

20000 0.83396589 0.78073702 0.82851306 

30000 0.88278632 0.87612737 0.88205147 

40000 0.93018483 0.91105840 0.90895161 

50000 0.88995665 0.82414106 0.92531343 

60000 0.90343611 0.82126443 0.93597118 

70000 0.84921977 0.79800564 0.94365591 

80000 0.88786263 0.88940991 0.94934004 

90000 0.86810371 0.85412944 0.95375149 

100000 0.83271552 0.85425083 0.95725760 

110000 0.80523515 0.87892040 0.96023499 

120000 0.87661260 0.92861383 0.96276019 

130000 0.86183583 0.76918209 0.96444139 
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140000 0.88628053 0.86384529 0.96644342 

150000 0.86177842 0.77764284 0.96805712 

 

 

 

Figure 6.3 Comparison of Recall for Feature Selection Algorithms 

The recall of the architecture is represented as Recall Proposed Firefly + Hybrid 

Classifier is highest with different subsets of the dataset like 20,000 samples.  The 
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last sample subset is containing 1,50,000 records. The recall of Proposed Firefly + 

Hybrid Classifier outperforms precision of PSO and GA algorithms as it is 0.8285 

for 20,000 samples. For 1,50,000 records recall of the proposed architecture is 

0.9681. 

 

Table 6.5 F-Measure Comparison of Feature Selection Algorithms 

Total 

number of 

Samples 

Recall 

PSO+Hybrid 

Classifier  

Recall GA+Hybrid 

Classifier  

Recall 

Proposed 

Firefly + 

Hybrid 

Classifier  

20000 0.86902005 
 

0.83997375 0.88893322 

30000 
 

0.82052752 0.84489217 0.91899763 

40000 
 

0.81865201 0.86043216 0.93602651 

50000 
 

0.84517686 0.84433161 0.94473215 

60000 
 

0.79623318 0.83654155 0.9491591 

70000 
 

0.89904068 0.88152732 0.95379618 

80000 
 

0.84787995 0.84432374 0.95433664 

90000 
 

0.87742438 0.86888206 0.95618139 

100000 
 

0.88349745 0.82847735 0.95844428 
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110000 
 

0.84157022 0.79066581 0.96324239 

120000 
 

0.86389846 0.85050924 0.96129434 

130000 
 

0.80066949 0.82408667 0.96523806 

140000 0.88312869 0.84907935 0.96616266 

150000 0.86883376 0.85388018 0.96692569 

 

 

 

Figure 6.4 Comparison of F-Measure Feature Selection Algorithms 
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The F-Measure of the architecture is represented as F-Measure Proposed Firefly + 

Hybrid Classifier is highest with different subsets of the dataset like 20,000 

samples.  The last sample subset is containing 1,50,000 records. The recall of F-

Measure Firefly + Hybrid Classifier outperforms precision of PSO and GA 

algorithms as it is 0.8889 for 20,000 samples. For 1,50,000 records F-Measure of 

the proposed architecture is 0.9669. 

 

20 simulation runs were conducted using the CSE-CIC-IDS 2018 dataset to analyze 

and optimize its feature set. This dataset widely used for evaluating intrusion 

detection systems initially contained 80 features. Through the simulation process, 

it was determined that 43 of these features were the most relevant and effective for 

the optimization task. The selected features represent the critical attributes that 

contribute to improve performance in identifying and classifying network 

intrusions, reducing redundancy while maintaining or enhancing predictive 

accuracy. This feature selection not only streamlines computational requirements 

but also emphasizes the importance of focusing on key data characteristics for 

efficient and reliable intrusion detection. 

 

6.4 Attack Detection Analysis using CSE CIC IDS 2018 dataset 

The analysis of the proposed architecture using the CSE CIC IDS 2018 dataset is 

given in the following tables and graphs. Around 1.5 lakh records of the dataset are 

used and analysis is done on different sample sizes. 
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Table 6.6 Precision Comparison for CSE CIC IDS 2018 Dataset 

Total 

number 

of 

Samples 

Precision 

Proposed 

Firefly + 

Hybrid 

Classifier  

Precision 

Proposed 

Firefly + 

Levenberg 

Neural  

Precision 

Proposed 

Firefly +  

Decision 

Tree  

Precision  

Proposed 

Firefly + 

Random 

Forest 

Precision 

Proposed 

Firefly +  

KNN with 10 

neighbours   

Precision  

Multi-

SVM  

20000 0.95885899 0.92957402 0.9275468 0.92419316 0.94224824 0.93979744 

30000 0.95917421 0.94449384 0.94443984 0.94042102 0.93438557 0.93592328 

40000 0.96476389 0.93675 0.93637754 0.93015736 0.93765343 0.93428337 

50000 0.96498339 0.94046049 0.93662454 0.93755287 0.94267411 0.93886657 

60000 0.96272396 0.93056105 0.93913262 0.94535597 0.93448569 0.94106818 

70000 0.96415675 0.94553352 0.94136275 0.93481326 0.94053765 0.93824546 

80000 0.95938611 0.9421243 0.93947408 0.94333487 0.94941953 0.93502283 

90000 0.9586237 0.93736232 0.93514004 0.94924117 0.9346094 0.94853601 

100000 0.95963389 0.94947545 0.94199408 0.93958422 0.94926324 0.94560917 

110000 0.96626869 0.93482131 0.94661629 0.93885752 0.94579961 0.94611457 

120000 0.95983295 0.93395744 0.93762854 0.94185481 0.94869342 0.94551495 

130000 0.96603604 0.9380781 0.93617137 0.93468938 0.93986627 0.9391377 

140000 0.96588206 0.94029318 0.95102071 0.94163124 0.94295029 0.93957001 
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150000 0.96579691 0.94420519 0.94797429 0.94493851 0.94814222 0.93547019 

 

 

 

Figure 6.5 Comparison of Precision for CSE CIC IDS 2018 dataset 

The results shows that the Precision of Proposed Firefly + Hybrid Classifier at all 

dataset sizes, ranging from 20,000 to 150,000 samples, the 'Precision Proposed 

Firefly + Hybrid Classifier' consistently achieves high precision scores. It starts at 

0.9588 at 20,000 samples and remains consistently above 0.95, reaching 0.9662 at 

110,000 samples. This signifies the algorithm's remarkable capability to accurately 

identify attacks while minimizing false positives. The Precision of Levenberg 

Neural also exhibits competitive precision scores, although slightly lower than the 

proposed Firefly + Hybrid Classifier. It starts at 0.9296 at 20,000 samples and 
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gradually increases, reaching 0.9495 at 100,000 samples. However, it doesn't 

surpass the precision of the proposed algorithm. 

 

 The Precision of Decision Tree classifier maintains precision scores ranging from 

0.9275 to 0.9510 across dataset sizes. It performs consistently but still falls short of 

the precision achieved by the proposed algorithm. The Precision of Random Fores 

classifier start at 0.9242 and improve gradually to 0.9449 at 100,000 samples. 

While it demonstrates competitive performance, it doesn't match the precision of 

the proposed Firefly + Hybrid Classifier.  

 

The Precision of KNN with 10 neighbors classifier starts with a precision score of 

0.9422 at 20,000 samples and maintains relatively high precision throughout, 

reaching 0.9493 at 100,000 samples. It's a strong contender but doesn't surpass the 

proposed algorithm. 

 

The Precision of Multi-SVM exhibits precision scores between 0.9398 and 0.9485 

across different dataset sizes. It demonstrates competitive performance, but like the 

others, it doesn't outperform the proposed Firefly + Hybrid Classifier. 

 

Table 6.7 Accuracy Comparison for CSE CIC IDS 2018 Dataset 

Total 

number of 

Samples 

Accuracy 

Proposed 

Firefly + 

Hybrid 

Classifier  

Accuracy 

Firefly 

+Levenberg 

Neural  

Accuracy 

Firefly + 

Decision 

Tree  

Accuracy 

Firefly + 

Random 

Forest 

Accuracy 

Firefly + 

KNN with 

10 

neighbors   

Accuracy 

Firefly + 

Multi-

SVM  

20000 

87.9843289 

69.8020712 70.578441 57.2868027 62.5573169 60.6971319 

30000 

88.834728 

79.6344554 79.2979893 73.2847268 73.8338738 71.2648843 
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40000 

89.9884938 

79.9079942 80.1771272 65.0518857 70.3689683 66.3922483 

50000 

86.056 

82.5312244 81.7337959 67.0057534 73.4126181 69.2393542 

60000 

87.05 

81.3199879 83.8516298 67.8751961 72.7752154 67.1265216 

70000 

87.76 

85.6572144 84.7906697 78.0607508 75.6514259 79.6163475 

80000 

88.28625 

85.5850963 84.4143067 78.5941594 73.2396711 76.0353772 

90000 

90.7894358 

84.4569366 84.3584236 71.4550674 64.8357461 71.1092599 

100000 

91.9845373 

87.4907258 86.5439475 76.9822602 78.6530081 79.2730053 

110000 

92.878437 

84.6907289 87.5910745 68.068426 82.9166421 69.4803375 

120000 

93.784638 

85.4185933 85.4114399 70.7921331 69.3157987 70.699989 

130000 

94.233 

85.9385461 85.4709568 66.3073606 66.5302593 67.3864733 

140000 

94.983487 

86.381678 88.5309778 71.3191449 81.3273367 70.3030849 

150000 

94.987987 

87.8201685 88.293079 76.6831584 82.381813 73.525489 
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Figure 6.6 Comparison of Accuracy for CSE CIC IDS 2018 dataset 

 

The Accuracy of Proposed Firefly + Hybrid classifier consistently demonstrates the 

highest accuracy scores across different dataset sizes, starting at 87.98% accuracy 

at 20,000 samples and reaching 94.99% accuracy at 150,000 samples. These scores 

signify its remarkable ability to correctly classify network traffic data, making it an 

excellent choice for intrusion detection systems, especially in larger network 

environments. The Accuracy of Levenberg Neural scores for this classifier also 

show strong performance, increasing from 69.80% at 20,000 samples to 87.82% at 
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150,000 samples. It consistently ranks as one of the top-performing classifiers, 

indicating its suitability for intrusion detection tasks. The Accuracy of Decision 

Tree scores for this classifier remain competitive across dataset sizes, starting at 

70.58% at 20,000 samples and reaching 88.29% at 150,000 samples. It provides a 

reliable choice for intrusion detection, especially in scenarios with varying data 

volumes. The Accuracy of Random Forest classifier scores are lower compared to 

the top-performing classifiers, they show a consistent upward trend. The scores 

range from 57.29% at 20,000 samples to 76.68% at 150,000 samples. It may be a 

suitable choice for scenarios where a balance between accuracy and computational 

efficiency is essential. The Accuracy KNN with 10 neighbors classifier displays 

noticeable improvement as the dataset size increases. Its accuracy scores increase 

from 62.56% at 20,000 samples to 82.38% at 150,000 samples, indicating its 

effectiveness in capturing patterns in larger datasets. The Accuracy of Multi-SVM 

classifier also demonstrates improvement with larger datasets. Its accuracy scores 

range from 60.70% at 20,000 samples to 73.53% at 150,000 samples. It provides a 

balance between accuracy and computational complexity and is well-suited for 

intrusion detection in various scenarios. 

 

 

Table 6.8 Recall Comparison for CSE CIC IDS 2018 Dataset 

Total 

number of 

Samples 

Recall 

Proposed 

Firefly + 

Hybrid 

Classifier  

'Recall  

Firefly + 

Levenberg 

Neural ' 

Recall  

Firefly + 

Decision 

Tree  

Recall 

Firefly + 

Random 

Forest 

Recall  

Firefly + 

KNN with 

10 

neighbors   

Recall 

Firefly + 

Multi-SVM  

20000 0.82851306 0.76903862 0.77835963 0.62136802 0.67039498 0.65136714 

30000 0.88205147 0.866633 0.86119612 0.79722399 0.80786026 0.77834124 
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40000 0.90895161 0.88138042 0.88296171 0.70745437 0.76393874 0.7185964 

50000 0.92531343 0.90538539 0.9014495 0.72646733 0.7936827 0.74830512 

60000 0.93597118 0.90743957 0.92066561 0.7266394 0.79531513 0.72129562 

70000 0.94365591 0.93398537 0.92890995 0.85970455 0.82275806 0.87092168 

80000 0.94934004 0.93747211 0.93016662 0.85347101 0.78458576 0.83555542 

90000 0.95375149 0.93442573 0.93655094 0.76519746 0.70213711 0.76121151 

100000 0.9572576 0.9527357 0.95003082 0.84350719 0.84656809 0.86158027 

110000 0.96023499 0.94201617 0.95334988 0.73493026 0.90128402 0.74470265 

120000 0.96276019 0.94922809 0.94747396 0.7638247 0.74230904 0.76098195 

130000 0.96444139 0.95062452 0.94855178 0.71962663 0.71918271 0.72828543 

140000 0.96644342 0.95320917 0.96099431 0.76913451 0.88762615 0.76057912 

150000 0.96805712 0.96187755 0.96364734 0.83004618 0.89115407 0.80384628 
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Figure 6.7 Comparison of Recall for CSE CIC IDS 2018 dataset 

The Recall of Proposed Firefly + Hybrid Classifier is consistently demonstrating 

commendable recall scores across all dataset sizes. Starting at 0.8285 at 20,000 

samples, it steadily improves to 0.9681 at 150,000 samples. This indicates its ability 

to identify a high proportion of true positive instances (correctly classified attacks), 

showcasing its effectiveness in detecting intrusions. The Recall Levenberg Neural 

of classifier also exhibits competitive recall scores. It starts at 0.7690 at 20,000 

samples and gradually increases to 0.9619 at 150,000 samples, demonstrating its 

effectiveness in identifying true positive instances. The Recall of Decision Tree 

classifier maintains recall scores ranging from 0.7784 to 0.9636 across different 

dataset sizes. This indicates its ability to detect attacks effectively, especially as the 

dataset size increases. The Recall of Random Forest scores for the 'Recall Random 

Forest' classifier start at 0.6214 and improve to 0.8300 at 150,000 samples. While 

it demonstrates competitive performance, it lags behind the top-performing 
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classifiers in recall. The Recall of KNN with 10 neighbors classifier starts with a 

recall score of 0.6704 at 20,000 samples and gradually improves to 0.8912 at 

150,000 samples. It is effective in identifying true positive instances. The Recall of 

Multi-SVM classifier exhibits recall scores between 0.6514 and 0.8709 across 

different dataset sizes. It demonstrates competitive performance, especially in 

scenarios with larger datasets. 

 

Table 6.9 F-Measure Comparison for CSE CIC IDS 2018 Dataset 

Total 

number 

of 

Samples 

F-Measure 

Proposed 

Firefly + 

Hybrid 

Classifier  

F-Measure 

Firefly + 

Levenberg 

Neural 

F-Measure 

Firefly + 

Decision 

Tree  

F-Measure 

Firefly + 

Random 

Forest 

F-Measure 

Firefly + 

KNN with 

10 neighbors   

F-Measure 

Firefly + 

Multi-SVM  

20000 0.88893322 0.84172024 0.84642976 0.743114 0.78340762 0.76944042 

30000 0.91899763 0.90388979 0.90089912 0.86292217 0.86652866 0.84988948 

40000 0.93602651 0.9082221 0.90888548 0.80366289 0.84192886 0.81236721 

50000 0.94473215 0.92258969 0.91870045 0.81862171 0.86178616 0.83282414 

60000 0.9491591 0.91885488 0.92980743 0.82169234 0.85930195 0.8166544 

70000 0.95379618 0.93972397 0.93509489 0.89568708 0.87771431 0.90333092 

80000 0.95433664 0.93979245 0.93479718 0.89615575 0.85916813 0.88249519 

90000 0.95618139 0.93589172 0.93584496 0.84734084 0.80186387 0.84461187 

100000 0.95844428 0.95110278 0.94599538 0.88895728 0.89497934 0.90164117 

110000 0.96324239 0.93840495 0.94997115 0.82447107 0.92300539 0.83341241 

120000 0.96129434 0.94153085 0.94252554 0.84354882 0.83290677 0.84327116 

130000 0.96523806 0.94430963 0.94232091 0.81317882 0.81484704 0.82038001 

140000 0.96616266 0.94670712 0.9559815 0.84668644 0.91445221 0.84065253 

150000 0.96692569 0.95295945 0.95574657 0.88377394 0.91876529 0.86467787 
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Figure 6.8 Comparison of F-Measure for CSE CIC IDS 2018 dataset 

F-Measure Proposed Firefly + Hybrid Classifier consistently emerges as a top-

performing classifier, achieving F-Measure scores that steadily increase from 

0.8889 at 20,000 samples to a remarkable 0.9669 at 150,000 samples. This signifies 

the algorithm's proficiency in striking a balance between precision and recall, a vital 

aspect of intrusion detection. The F-Measure Levenberg Neural classifier also 

demonstrates competitive performance, gradually improving from 0.8417 to 0.9529 

across the dataset sizes. The F-Measure Decision Tree maintains consistent scores, 

indicating its robustness in attack detection, particularly in larger-scale networks. 

 

While the F-Measure Random Forest exhibits competitive performance, it lags 

slightly behind the top-performing classifiers. Similarly, the F-Measure KNN with 
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10 neighbors and F-Measure Multi-SVM classifiers prove their effectiveness, with 

the former showcasing significant improvement as the dataset size increases. In 

conclusion, this data underscores the robustness and reliability of the F-Measure 

Proposed Firefly + Hybrid Classifier' for intrusion detection, making it an enticing 

choice for network security where achieving a balanced performance between 

precision and recall is crucial. The F-Measure Levenberg Neural classifier also 

emerges as a strong contender, highlighting its suitability for this task. The F-

Measure Levenberg Neural scores for this classifier also exhibit strong 

performance, increasing from 0.8417 at 20,000 samples to 0.9529 at 150,000 

samples. It consistently ranks as one of the top-performing classifiers, showcasing 

its suitability for intrusion detection tasks. The F-Measure of Decision Tree 

classifier scores for this classifier remain relatively stable across dataset sizes, 

indicating its robustness. It starts at 0.8464 at 20,000 samples and ends at 0.9557 at 

150,000 samples, making it a reliable choice for intrusion detection, especially in 

scenarios with varying data volumes. The F-Measure of Random Forest classifier 

scores are competitive, they lag slightly behind the top-performing classifiers. The 

scores range from 0.7431 at 20,000 samples to 0.8838 at 150,000 samples. The F-

Measure KNN with 10 neighbors classifier shows notable improvement as the 

dataset size increases. Its F-Measure scores increase from 0.7834 at 20,000 samples 

to 0.9188 at 150,000 samples. This suggests that KNN with 10 neighbors is 

effective in capturing patterns in larger datasets. The F-Measure of Multi-SVM 

classifier also demonstrates improvement with larger datasets. Its F-Measure scores 

range from 0.7694 at 20,000 samples to 0.8647 at 150,000 samples. It provides a 

balance between precision and recall and is well-suited for intrusion detection in 

various scenarios. 
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6.5 Attack Detection Analysis using Cloudsim Simulated Dataset 

The analysis of the proposed architecture using the simulated dataset is given in the 

following tables and graphs. Around 1 lakh records of the dataset are used and 

analysis is done on different sample sizes. 

 

Table 6.10 Precision Analysis for Simulated Dataset 

Total 

number 

of 

Samples 

Precision 

Proposed 

Firefly + 

Hybrid  

Precision  

Levenberg 

Neural   

Precision 

Decision 

Tree  

Precision 

Random 

Forest' 

Precision 

KNN with 

10 

neighbors  

Precision 

Multi-

SVM  

10000 0.97070109 0.94371507 0.94699337 0.95033276 0.94434593 0.94605655 

20000 0.96445322 0.94656442 0.9443651 0.9475 0.94434573 0.94210452 

30000 0.96191003 0.95140165 0.94114795 0.94460563 0.94864945 0.94465708 

40000 0.96054832 0.9400717 0.94519552 0.94067596 0.94077184 0.94350933 

50000 0.96679479 0.94216509 0.94223591 0.94594996 0.94486697 0.93566467 

60000 0.95959228 0.94733527 0.94698827 0.94761559 0.9415055 0.94730859 

70000 0.9631075 0.94036768 0.94180683 0.94679845 0.94231306 0.94677086 

80000 0.96332745 0.94765781 0.94137151 0.95121375 0.94557627 0.94348362 
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90000 0.96244337 0.93868467 0.93782452 0.94224961 0.93786857 0.94157871 

100000 0.96586151 0.94163279 0.94708224 0.93809159 0.94532042 0.9408459 

 

 

 

Figure 6.9 Comparison of Precision for simulated dataset 

Precision values of the proposed architecture ranges from approximately 0.9596 to 

0.9707. The proposed model has the highest precision across different sample sizes, 

suggesting that it performs consistently well. Precision values with neural network 

as classifier range from approximately 0.9381 to 0.9514. This model shows 

variability in performance but tends to perform well, especially when the sample 
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size is larger. Precision values of Decision Tree ranges from approximately 0.9378 

to 0.9471.  The precision of the Decision Tree model is in the middle range 

compared to other models. Precision values range of Random Forest from 

approximately 0.9381 to 0. 9512.The Random Forest model performs 

competitively with the Neural and Decision Tree models. The Precision Proposed 

Firefly + Hybrid model consistently has the highest precision across different 

sample sizes, making it a strong performer in this dataset. 

 

Table 6.11 Accuracy Analysis for Simulated Dataset 

Total 

number 

of 

Samples 

Accuracy 

Proposed 

Firefly + 

Hybrid  

Accuracy 

Levenberg 

Neural 

Accuracy 

Decision 

Tree  

Accuracy 

Random 

Forest' 

Accuracy 

KNN with 

10 

neighbors  

Accuracy 

Multi-

SVM  

10000 91.320000 88.0854162 89.0024674 73.9948182 74.082397 73.6674392 

20000 91.680000 89.6750944 88.8071634 78.8322933 70.4459383 75.720351 

30000 91.790000 90.4500109 88.7839973 80.3935722 74.550968 82.0204144 

40000 91.842500 88.9689545 89.709981 73.1233596 79.8109589 73.340178 

50000 91.910000 89.4015388 89.108862 74.2556578 73.3204334 72.2240623 

60000 91.9316667 89.9367308 90.2193526 78.4939435 83.6650098 77.8595548 

70000 91.9185714 88.7543378 89.3023569 72.7824099 75.2217781 73.3353638 
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80000 91.9325000 89.8462162 88.8295227 79.2131451 70.6162385 76.2271262 

90000 91.9577778 88.8719189 88.8716406 71.6281608 70.1046478 71.2662066 

100000 91.947000 89.2660161 89.9816264 74.0890382 74.9771295 75.1947625 

 

 

Figure 6.10 Comparison of Accuracy for simulated dataset 

 

Accuracy of Proposed Firefly + Hybrid range from approximately 91.32% to 

91.96%. This model consistently exhibits high accuracy across different sample 

sizes, making it one of the top-performing models in terms of overall correctness. 

Accuracy of Neural range from approximately 88.09% to 90.45%. The Neural 

model shows competitive accuracy values, with some variability across sample 

sizes. Accuracy of Decision Tree range from approximately 88.78% to 90.22%. 

The Decision Tree model demonstrates good accuracy, similar to the Neural model, 
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with some variability across sample sizes. Accuracy of Random Forest range from 

approximately 70.10% to 83.67%. The Random Forest model has the most 

significant variability in accuracy among all the models, with lower accuracy values 

observed for some sample sizes. Accuracy of KNN with 10 neighbors range from 

approximately 70.10% to 83.67%. The KNN model has accuracy values similar to 

the Random Forest model, with variability across sample sizes. Accuracy of Multi-

SVM range from approximately 71.27% to 82.02%.  

 

The Multi-SVM model exhibits variability in accuracy, similar to the KNN and 

Random Forest models. The Accuracy Proposed Firefly + Hybrid model 

consistently has high accuracy across different sample sizes, making it a strong 

performer in terms of overall correctness. The Accuracy Random Forest, Accuracy 

KNN with 10 neighbors, and Accuracy Multi-SVM models show the most 

significant variability in performance, with lower accuracy values observed for 

some sample sizes. The Accuracy Neural and Accuracy Decision Tree models 

perform competitively, with good accuracy values, although they may exhibit some 

variability. 

 

Table 6.12 Recall Analysis for Simulated Dataset 

Total 

number of 

Samples 

Recall 

Proposed 

Firefly + 

Hybrid  

Recall 

Levenberg 

Neural 

Recall 

Decision 

Tree  

Recall 

Random 

Forest 

Recall 

KNN with 

10 

neighbors  

Recall 

Multi-

SVM  

10000 0.97877814 0.97084782 0.97377555 0.79601528 0.80350511 0.79427382 

20000 0.98416617 0.9810388 0.97685381 0.85244272 0.76020434 0.82583194 
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30000 0.98589381 0.98310249 0.98174377 0.87725407 0.8010276 0.89093119 

40000 0.98667848 0.98207006 0.9836016 0.79384528 0.87129868 0.7938394 

50000 0.98762116 0.98426527 0.98424038 0.80082892 0.79007506 0.78572233 

60000 0.98801677 0.98456373 0.98579326 0.84812138 0.91559615 0.84236008 

70000 0.98790131 0.98357569 0.98402106 0.78342863 0.81594429 0.78859459 

80000 0.98812307 0.98491968 0.98269374 0.85199383 0.75993718 0.82848737 

90000 0.98843903 0.98356653 0.98487059 0.77380211 0.76094323 0.770193 

100000 0.98839047 0.98524936 0.98487797 0.80814008 0.81134415 0.81796635 
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Figure 6.11 Comparison of Recall for simulated dataset 

 

Recall of Proposed Firefly + Hybrid range from approximately 0.9788 to 0.9884. 

This model consistently has high recall values across different sample sizes, 

indicating that it is effective at correctly identifying relevant instances. Recall of 

Neural range from approximately 0.9708 to 0. 9852.The Neural model also shows 

strong performance with high recall values, although there is some variability 

across sample sizes. Recall of Decision Tree range from approximately 0.9738 to 

0. 9858.The Decision Tree model exhibits consistently high recall values across 

different sample sizes, similar to the other top-performing models. Recall of 

Random Forest range from approximately 0.7738 to 0.8773. The Random Forest 

model shows the most variability in recall among all the models, with lower values 

observed for some sample sizes. Recall of KNN with 10 neighbors range from 

approximately 0.7599 to 0.9156. The KNN model has a wide range of recall values, 

with exceptionally high values for some sample sizes, but lower values for others. 
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Recall of Multi-SVM range from approximately 0.7702 to 0.8909. The Multi-SVM 

model also demonstrates variability in recall values across different sample sizes, 

similar to the KNN model. The Recall Proposed Firefly + Hybrid, Recall Neural, 

and Recall Decision Tree models generally exhibit high recall values, making them 

strong performers in terms of correctly identifying relevant instances. The Recall 

Random Forest model shows the most variability in performance across different 

sample sizes, with lower recall values observed for some cases. The Recall KNN 

with 10 neighbors and Recall Multi-SVM models exhibit variability in recall 

values, indicating that their performance may be influenced by the specific dataset 

or sample size. 

 

Table 6.13 F-Measure Analysis for Simulated Dataset 

Total 

number of 

Samples 

F-Measure 

Proposed 

Firefly + 

Hybrid  

F-Measure 

Neural  

F-Measure 

Decision 

Tree  

F-Measure 

Random 

Forest 

F-Measure 

KNN with 

10 

neighbors  

F-Measure 

Multi-

SVM  

10000 0.97472288 0.95708918 0.96019774 0.86635582 0.86825108 0.86354632 

20000 0.97420999 0.96349333 0.96033475 0.89746131 0.8423287 0.88014476 

30000 0.97375426 0.96699233 0.96101733 0.90968491 0.86861103 0.91700789 

40000 0.97343808 0.96061205 0.96401619 0.86104586 0.90470349 0.86222745 

50000 0.97709701 0.96275515 0.96278022 0.86736117 0.86056573 0.8541631 

60000 0.9735971 0.9655908 0.96600121 0.89511221 0.92837009 0.89175717 

70000 0.97534686 0.9614865 0.96245127 0.85740076 0.87458752 0.86047395 

80000 0.97556773 0.96592952 0.9615889 0.89887404 0.84265365 0.88225401 

90000 0.975268 0.96060164 0.96077197 0.84975846 0.84019282 0.84730613 

100000 0.97699613 0.96294742 0.9656104 0.86828045 0.87322328 0.87511363 
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Figure 6.12 Comparison of F-Measure for simulated dataset 

F-Measure of Proposed Firefly + Hybrid range from approximately 0.9571 to 

0.9760. This model consistently has high F-Measure values across different sample 

sizes, indicating that it strikes a good balance between precision and recall. F-

Measure of Neural range from approximately 0.9602 to 0. 9660.The Neural model 

also shows strong performance in terms of F-Measure, with relatively consistent 

values across sample sizes. F-Measure of Decision Tree range from approximately 

0.9603 to 0.9656. Decision Tree model demonstrates consistent F-Measure values, 

similar to the other top-performing models. F-Measure of Random Forest range 

from approximately 0.8423 to 0.9097. Random Forest model exhibits the most 

variability in F-Measure among all the models, with lower values observed for 

some sample sizes. F-Measure of KNN with 10 neighbors range from 

approximately 0.8402 to 0.9284. The KNN model has a wide range of F-Measure 
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values, with exceptionally high values for some sample sizes but lower values for 

others. F-Measure of Multi-SVM range from approximately 0.8473 to 0.9170. 

Multi-SVM model also shows variability in F-Measure values across different 

sample sizes, similar to the KNN model. The F-Measure Proposed Firefly + Hybrid, 

F-Measure Neural, and F-Measure Decision Tree models consistently exhibit high 

F-Measure values, indicating their effectiveness in achieving a balance between 

precision and recall. The F-Measure Random Forest model shows the most 

variability in performance, with lower F-Measure values for some sample sizes.The 

F-Measure KNN with 10 neighbors and F-Measure Multi-SVM models also 

demonstrate variability in F-Measure values, suggesting that their performance may 

be influenced by the specific dataset or sample size. 

 

6.5 Summary 

This chapter focus on Accuracy, Precision, Recall, F-Measure across different 

dataset sizes. The Proposed Firefly + Hybrid Classifier consistently emerges as a 

top-performing model across all metrics. Its high precision values indicate reliable 

attack detection. Moreover, the model strikes a balance between precision and 

recall, as highlighted by its robust F-Measure scores. Additionally, the consistency 

of the Proposed Firefly + Hybrid Classifier in correctly classifying network traffic 

data across varying dataset sizes solidifies its position as an excellent choice for 

intrusion detection in cloud environments. The chapter also discusses the 

performance of other models like Neural and Decision Tree, which exhibit 

competitive performance but with some variability across sample sizes. Overall, 

this analysis offers valuable insights into selecting appropriate machine learning 

models for intrusion detection tasks in cloud computing environments, emphasizing 

the effectiveness and reliability of the Proposed Firefly + Hybrid Classifier in 

bolstering network security and mitigating cyber threats. 
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CHAPTER 7 CONCLUSION AND FUTURE SCOPE 

The necessity for Intrusion Detection Systems (IDS) in Cloud Computing (CC) has 

never been more urgent. Security attacks can result in significant financial losses, 

reputational harm and service disruptions. The open and distributed architecture of 

CC, along with the large volumes of traffic attracts hackers and making easier for 

hackers to disrupt services, steal sensitive data and exploit Cloud Service Providers 

(CSPs) resources. Such intrusions can lead to unauthorized access to private 

information or excessive consumption of resources like CPU, bandwidth and 

storage. Traditional security measures, such as firewalls, are often inadequate for 

addressing these complex security challenges. Thus, a more sophisticated solution, 

like an IDS, is essential for effectively detecting attacks within CC. As a result, 

considerable research efforts have been directed toward developing an effective 

IDS to counteract these threats. 

 

7.1CONCLUSION 

The proposed architecture introduces a novel approach to IDS by combining feature 

selection algorithms with a hybrid classifier. Specifically, a Hybridized Firefly 

Algorithm with Decision Tree is proposed as the feature selection method and its 

performance is evaluated against other optimization techniques such as Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA). The goal of the research 

is to optimize classification accuracy, thereby improving the overall effectiveness 

of the IDS. IDSs are essential for detecting unauthorized access and malicious 

behaviour in a network by continuously analyzing network traffic and system 

activities to identify anomalies and attacks in real time. However, developing an 

effective IDS poses challenges due to the evolving nature of cyber threats and the 

complexity of network environments. The proposed feature selection algorithm 
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draws inspiration from the flashing behaviour of the fireflies and aiming to identify 

the optimal subset of features that maximize classification accuracy.  

 

A hybrid classifier that combines Neural Network (NN) with Decision Tree (DT) 

is used to enhance the detection capabilities of an IDS. The hybrid classifiers are 

known for their robustness and improved accuracy, as they leverage the diverse 

strengths of individual classifiers. The combination of proposed feature selection 

and a hybrid classifier for detection results in a powerful IDS capable of accurately 

identifying various types of attacks. The experimental results of research work 

demonstrate significant improvements in classification accuracy compared to the 

traditional approaches. By maximizing the classification accuracy, the developed 

IDS effectively distinguishes between normal and malicious activities, thereby 

reducing false positives and enhancing overall detection rates. 

 

At 1,00,000 samples, the precision was 0.9658, outperforming, Levenberg Neural 

method was 0.9416, Random Forest was 0.9381, SVM was 0.9408 and KNN with 

10 neighbors was 0.9453. These results indicate the proposed method's strong 

ability to accurately identify true positives while minimizing false positives.  

 

At 1,00,000 samples, the accuracy was 91.95%, significantly higher than the 

Decision Tree was 89.98% and KNN with 10 neighbors was 74.98%, Levenberg 

Neural was 89.27%, Random Forest was 74.09% and SVM was 75.19%.  

 

At 1,00,000 samples, the recall was 0.988, whereas the next best method, 

Levenberg Neural achieved 0.985, Random Forest was 0.808, SVM was 0.818 and 

KNN with 10 neighbors was 0.811. This high recall rate signifies the proposed 

algorithm's robust capacity to detect nearly all true attack instances, thus 

significantly reducing false negatives. This capability to detect a high number of 
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true positives is crucial in an IDS context, as missing actual threats can lead to 

severe security breaches.  

 

With 1,00,000 samples, the proposed method attained an F-Measure of 0.977, 

surpassing other classifiers such as Levenberg Neural was 0.963, Decision Tree 

was 0.965, Random Forest was 0.868, SVM was 0.875 and KNN with 10 neighbors 

was 0.873. This high F-Measure demonstrates that the proposed method not only 

identifies a large number of true positives but also does so with a low rate of false 

positives, ensuring a balanced and effective detection capability.  

 

Simulations were conducted in CloudSim, a robust platform for modelling and 

simulating cloud computing environments and services. This realistic approach 

allowed for testing the robustness and scalability of the IDS under various 

conditions. The proposed algorithm was also tested on simulated data generated 

within the CloudSim environment, in addition to validation over the CSE-CIC-IDS 

2018 dataset. This dual-v  

 

validation approach not only confirms the accuracy and efficiency of the modified 

firefly algorithm combined with the hybrid classifier in controlled datasets but also 

demonstrates its practical applicability in real-world, cloud-based scenarios. The 

simulation results underscore the algorithm's capability to effectively detect and 

mitigate cyber threats, providing further evidence of its potential to enhance 

network security across diverse computing environments.  

 

The increasing sophistication and frequency of cyber threats demand the 

development of robust and effective Intrusion Detection Systems. Our proposed 

method, which combines the Modified Firefly Algorithm for feature selection with 

a hybrid classifier, offers a novel approach to improving IDS performance. By 

leveraging the comprehensive CSE-CIC-IDS 2018 dataset and conducting 
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simulations in CloudSim, we achieve significant improvements in classification 

accuracy, precision, recall, and overall effectiveness. This work not only advances 

IDS research but also provides a practical and scalable solution for protecting 

digital infrastructures. As cyber threats continue to evolve, ongoing research and 

innovation in IDS will be crucial to ensuring the security and integrity of network 

systems, ultimately safeguarding critical data and services from malicious attacks.  

 

The results clearly demonstrate that the proposed feature selection algorithm 

combined with a hybrid classifier significantly outperforms traditional methods and 

other optimization algorithms. This makes it an invaluable tool in the fight against 

cyber threats, ensuring that IDS can effectively identify and mitigate potential 

attacks, thus protecting network integrity and maintaining the availability of 

essential services. The successful application of this method in both controlled 

datasets and simulated real-world environments further highlights its robustness 

and practical relevance in contemporary cybersecurity practices.  

 

At 150,000 samples, the precision was 0.9658, outperforming, Levenberg Neural 

method was 0.9449, Random Forest was 0.9449, SVM was 0.9354 and KNN with 

10 neighbors was 0.9442. These results indicate the proposed method's strong 

ability to accurately identify true positives while minimizing false positives.  

 

At 150,000 samples, the accuracy was 94.99%, significantly higher than the 

Decision Tree was 88.29% and KNN with 10 neighbors was 82.38%, Levenberg 

Neural was 87.82%, Random Forest was 76.68% and SVM was 73.52%. This high 

accuracy vi indicates that the proposed method is exceptionally adept at correctly 

classifying both normal and malicious activities, providing comprehensive and 

reliable protection against network threats. For instance, at 20,000 samples, the 

accuracy was 87.98%, compared to 69.80% for the Levenberg Neural method and 

70.58% for the Decision Tree.  
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At 150,000 samples, the recall was 0.9681, whereas the next best method, 

Levenberg Neural, achieved 0.9619, Random Forest was 0.9636, SVM was 

0.8300and KNN with 10 neighbors was 0.8038. This high recall rate signifies the 

proposed algorithm's robust capacity to detect nearly all true attack instances, thus 

significantly reducing false negatives. This capability to detect a high number of 

true positives is crucial in an IDS context, as missing actual threats can lead to 

severe security breaches.  

 

With 1,50,000 samples, the proposed method attained an F-Measure of 0.9584, 

surpassing other classifiers such as Levenberg Neural was 0.9669, Decision Tree 

was 0.95295, Random Forest was 0.8838, SVM was 0.9188 and KNN with 10 

neighbors was 0.8647. This high F-Measure demonstrates that the proposed method 

not only identifies a large number of true positives but also does so with a low rate 

of false positives, ensuring a balanced and effective detection capability. At 20,000 

samples, the F-Measure was 0.8889, compared to 0.8417 for the Levenberg Neural 

method and 0.8464 for the Decision Tree.  

 

When compared to other optimization algorithms like PSO and GA, the proposed 

feature selection also showed superior performance. For instance, in terms of 

precision, PSO combined with a hybrid classifier achieved 0.95188 at 100,000 

samples, whereas the proposed method attained a higher precision of 0.9658. 

Similarly, recall for PSO and GA combined with a hybrid classifier at 100,000 

samples was 0.83272 and 0.85425, respectively, while the proposed method 

achieved 0.9884, highlighting its effectiveness in identifying actual positives. 

 

By using the comprehensive datasets like CSE-CIC-IDS 2018 and simulated 

dataset, the proposed architecture achieves significant improvements in the 

detection of attacks which contributes to the advancement of IDS research. 
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Simulated dataset is generated by using the cloudsim tool. CloudSim allows for the 

modelling and simulation of cloud computing environments and services, offering 

a comprehensive platform to test the robustness and scalability of the IDS under 

various conditions. This dual-validation approach confirms the accuracy and 

efficiency of the proposed architecture in controlled datasets and also demonstrates 

its practical applicability in real-world cloud-based scenarios. The simulation 

results underscore the algorithm's capability to effectively detect attacks and 

provides further evidence of its potential to enhance network security across diverse 

computing environments. This not only contributes to the advancement of IDS 

research but also provides a practical and scalable solution for safeguarding CC.  

 

7.2 FUTURE SCOPE 

Future Potential of the Proposed Cloud-Based IDS: 

1.Utilizing AI and Machine Learning Capabilities: 

Incorporating AI and ML can significantly enhance the IDS by enabling it to detect 

sophisticated and previously unseen cyber threats. These technologies can facilitate 

real-time anomaly detection and help minimize false alerts. 

2.Continuous Adaptation to User Behavior: 

By implementing user behavior analytics, the IDS can evolve alongside the 

changing activity patterns of cloud users. This dynamic learning approach 

strengthens defense against both external and insider threats. 

3Support for Multi-Cloud and Hybrid Setups: 

With the growing trend of multi-cloud and hybrid infrastructure, future iterations 

of the IDS could offer unified monitoring and threat detection across diverse cloud 

platforms from a single interface. 

4.Automated Threat Response: 

Advanced versions may introduce automated actions such as isolating 
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compromised instances or blocking suspicious traffic, thereby shortening incident 

response times and containing potential damage. 

5.Assistance with Compliance Requirements: 

Enhancing the IDS to generate structured logs and incident reports will help 

organizations meet legal and regulatory standards like GDPR and HIPAA, ensuring 

transparent and accountable security practices. 

6.Improved Scalability and Efficiency: 

Future developments may focus on optimizing system performance, allowing the 

IDS to operate efficiently in high-demand cloud environments without 

compromising speed or accuracy. Another potential direction is that which creates 

an intrusion detection system that scales in response to the number of virtual 

machines in the cloud by expanding or contracting as needed. 

 

7.Seamless Integration with Security Ecosystems: 

Connecting the IDS with platforms like SIEM (Security Information and Event 

Management) and SOAR (Security Orchestration, Automation, and Response) will 

provide broader visibility and enable faster, more coordinated responses to security 

incidents. 

8.Adaptive Attack Detection: An adaptive attack detection system can be a 

promising future direction in cloud security. This system helps to manage the 

dynamic conditions, such as changes in environmental configurations, 

computational resources and the locations where attack detection systems are 

deployed. 

 

9.Vulnerabilities Detection: Another key area for future improvement is 

enhancing the detection of vulnerabilities through the development of a more 

efficient detection system 
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