
A NOVEL ARCHITECTURE FOR DETECTION OF VARIOUS

ATTACKS IN CLOUD COMPUTING ENVIRONMENT

Thesis Submitted for the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

Computer Science and Engineering

By

 Pooja Rana

Registration Number: 41800914

Supervised By

Dr. Isha Batra (17451)

Computer Science and Engineering

(Professor)

Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2025

i

DECLARATION

I, hereby declared that the presented work in the thesis entitled “A Novel Architecture

for Detection of Various Attacks in Cloud Computing Environment” in fulfilment

of degree of Doctor of Philosophy (Ph.D.) is outcome of research work carried out by

me under the supervision of Dr. Isha Batra, working as Professor, in the Computer

Science & Engineering of Lovely Professional University, Punjab, India. In keeping

with general practice of reporting scientific observations, due acknowledgements have

been made whenever work described here has been based on findings of other

investigator. This work has not been submitted in part or full to any other University or

Institute for the award of any degree.

(Signature of Scholar)

Name of the scholar: Pooja Rana

Registration No.: 41800914

Department/school: Computer Science & Engineering

Lovely Professional University

Punjab, India

ii

CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled “A Novel

Architecture or Detection of Various Attacks in Cloud Computing Environment”

submitted in fulfillment of the requirement for the award of degree of Doctor of

Philosophy (Ph.D.) in the Computer Science & Engineering , is a research work carried

out by Pooja Rana, 41800914, is bonafide record of his/her original work carried out

under my supervision and that no part of thesis has been submitted for any other degree,

diploma or equivalent course.

(Signature of Supervisor)

Name of supervisor: Dr. Isha Batra

Designation: Professor

Department/school: Computer Science & Engineering

University: Lovely Professional University

iii

Abstract

Cloud Computing is a platform that virtually shared servers provide software,

platforms, infrastructure, policies and other functionalities. This technology is seen as

a solution for minimizing costs and complexities for users. Its increasing popularity

stems from benefits like on-demand service access, flexible resource management,

robust fault tolerance and scalability. Cloud environments with their distributed nature

can become appealing targets for intruders. To ensure reliable and secure services

within these environments, implementing an Intrusion Detection System (IDS) is a

highly effective approach. An IDS helps to identify the attacks that could compromise

the security of cloud infrastructures. Conventional security measures, like firewalls, are

insufficient to tackle the increasingly complex and dynamic security issues faced in

cloud computing environments. These methods primarily focus on filtering

unauthorized access but fall short in identifying sophisticated and dynamic threats. To

overcome these limitations, implementing a robust system like an Intrusion Detection

System (IDS) is essential. An IDS effectively monitors network traffic and system

activities, detecting and responding to potential attacks in real-time. Its advanced

capabilities make it a critical component in safeguarding cloud infrastructures against

emerging security threats.

An Intrusion Detection System (IDS) is an automated solution designed to detect

inappropriate events, such as intrusion attacks, occurring within computer systems. An

IDS equipped with effective countermeasures plays a vital role in identifying and

addressing such threats. The main goal is to identify different forms of malicious

network activity and keep track of system behaviour, tasks that conventional security

methods often struggle to handle effectively.

The necessity for robust Intrusion Detection Systems (IDS) has grown exponentially as

the attacks pose significant risks to data integrity, availability, and confidentiality,

resulting in substantial financial losses, reputational damage and operational

iv

disruptions of the cloud. Consequently, there has been a significant surge in research

dedicated to developing effective IDS to counteract attacks. This report introduces a

novel architecture that combines the modified firefly algorithm with a hybrid classifier

to enhance IDS performance.

The swift expansion of internet connectivity and digitalization has resulted in a

significant rise in cyberattacks. This has driven the need for advanced IDS capable of

real-time identification and mitigation of various cyber threats. The primary goal of an

IDS is to detect unauthorized access and malicious activities within a network, thereby

protecting sensitive data and ensuring the continuous availability of network services.

The proposed architecture of research integrates the modified firefly algorithm for

feature selection with a hybrid classifier for detection of attacks. Hybridized Firefly

Algorithm with Decision Tree Algorithm is used for feature selection. This algorithm

was compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

The hybrid classifier, which combines the strengths of Neural Network with Decision

Tree utilized to enhance detection capabilities further.

Simulations were conducted in CloudSim, a robust platform for modelling and

simulating cloud computing environments and services. This realistic approach allowed

for testing the robustness and scalability of the IDS under various conditions. The

proposed algorithm was also tested on simulated data generated within the CloudSim

environment, in addition to validation over the CSE-CIC-IDS 2018 dataset. This two-

step validation method verifies both the accuracy and efficiency of the modified firefly

algorithm paired with the hybrid classifier in controlled datasets. Additionally, it

highlights its practical utility in real-world, cloud-based applications. The simulation

outcomes emphasize the algorithm's ability to detect and counter cyber threats

effectively, showcasing its potential to improve network security across various

computing environments.

The increasing sophistication and frequency of cyber threats demand the development

of robust and effective Intrusion Detection Systems. The proposed architecture, which

v

combines the proposed feature selection with a hybrid classifier, offers a novel

approach to improving IDS performance. Utilizing the extensive CSE-CIC-IDS 2018

dataset and performing simulations in CloudSim, notable enhancements in

classification accuracy, precision, recall, and overall performance have been achieved.

This study not only contributes to the advancement of IDS research but also offers a

practical and scalable approach to safeguarding digital infrastructures. As cyber threats

grow increasingly sophisticated, continued innovation and research in IDS will be vital

for maintaining the security and reliability of network systems, thereby protecting

critical data and services from malicious activities.

At 150,000 samples, the proposed architecture achieved a precision of 0.9658, recall of

0.9681, F-Measure of 0.9669, and accuracy of 94.99%. These metrics consistently

showed superior performance across various sample sizes compared to other

architectures. For instance, in terms of precision, PSO combined with a hybrid classifier

achieved 0.95188 at 100,000 samples, whereas the proposed architecture attained a

higher precision of 0.9658. Similarly, recall for PSO and GA combined with a hybrid

classifier at 100,000 samples was 0.83272 and 0.85425, respectively, while the

proposed architecture achieved 0.9884, highlighting its effectiveness in identifying

actual positives.

At 1,00,000 samples of simulated dataset, the precision was 0.9658, accuracy 91.5%,

recall 0.988 and F-Measure 0.977. These results indicate the proposed architecture's

strong ability to accurately identify true positives while minimizing false positives. The

high recall rate signifies the proposed algorithm's robust capacity to detect nearly all

true attack instances, thus significantly reducing false negatives. This capability to

detect a high number of true positives is crucial in an IDS context, as missing actual

threats can lead to severe security breaches with high F-Measure demonstrates that the

proposed architecture not only identifies a large number of true positives but also does

so with a low rate of false positives, ensuring a balanced and effective detection

capability.

vi

This high recall rate signifies the proposed algorithm's robust capacity to detect nearly

all true attack instances, thus significantly reducing false negatives. This capability to

detect a high number of true positives is crucial in an IDS context, as missing actual

threats can lead to severe security breaches.

The successful application of proposed architecture in both controlled datasets and

simulated real-world environments further highlights its robustness and practical

relevance in contemporary cybersecurity practices. The proposed architecture not only

advances IDS research but also provides a practical and scalable solution for protecting

digital infrastructures. This makes it an invaluable tool in the fight against cyber threats,

ensuring that IDS can effectively identify and mitigate potential attacks, thus protecting

network integrity and maintaining the availability of essential services. The successful

application of this architecture in both controlled datasets and simulated real-world

environments further highlights its robustness and practical relevance in contemporary

cybersecurity practices.

vii

Acknowledgement

I thank the Lord Almighty, the source of wisdom, who has provided me the with ability,

the resources, the opportunity, and his kind support. I would like to acknowledge and

give my warmth thanks to my supervisor Dr. Isha Batra who made this work. Her advice

guided through all stages of my research work. I am deeply indebted to her for shaping

my research path by guiding me with her extensive knowledge and discussions. I

express my deep gratitude to my supervisor for her motivation, persistent

encouragement, and keen involvement that persuaded me to complete this research. I

am highly thankful to her. Without her guidance, help, and patience, I would never have

accomplished this thesis work. She has been an incredible mentor to me.

I wish to extend my thanks to all faculty members of the Ph.D. (CSE) for attending my

seminars and for their insightful comments and constructive suggestions to improve the

quality of this research work.

I thank all the faculty members of the CSE department, Lovely Professional University,

for rendering excellent cooperation. I will remain indebted to my family for providing

me the confidence and comfort to undertake this thesis. I find no words to thank my

husband and parents for their dedicated support and prayers offered to complete my

research work.

Pooja Rana

i

Table of Contents

DECLARATION ... Error! Bookmark not defined.

CERTIFICATE ... Error! Bookmark not defined.

Abstract ... iii

Acknowledgement .. vii

Table of Contents .. viii

List of Tables ... xi

List of Figures ... xiii

List of Abbreviations ...xv

CHAPTER 1: INTRODUCTION ...1

1.1 Cloud Computing ...1

1.2 Characteristics of Cloud Computing ..2

1.3 Services of Cloud Computing ..3

1.4 Deployment Models of Cloud Computing ...4

1.5 Intrusion Detection System (IDS) ..6

 Types of IDS Based on Monitoring System ... 8

 Detection Techniques of IDS ... 9

 IDS Related to Cloud Computing .. 12

 Examples of Real-Time Security Breaches Related to Cloud Computing13

 Attacks Affecting Network .. 14

 Machine Learning ... 18

 Swarm Intelligence ... 17

 Research Motivation ... 19

ii

 Organization of Thesis .. 24

 ... 25

CHAPTER 2: LITERATURE REVIEW ..26

2.1 Cloud Computing ...26

2.2 Feature Selection ..28

2.3 Attacks Affecting Cloud Computing ..32

2.4 Similarity Comparison of Benchmark Dataset with Existing Dataset33

2.5 Intrusion Detection System ..36

2.6 Comparative Analysis ..45

2.7 Problem Statement ...55

2.8 Research Gaps ..57

2.9 Summary ..58

CHAPTER 3: RESEARCH METHODOLOGY ...59

3.1 Research Objectives ...59

3.2 Research Methodology of Research Work ...59

3.3 Key Challenges While Implementing the IDS ...68

3.4 Summary ..70

CHAPTER 4: PREPROCESSING AND FEATURE EXTRACTION ON SIMULATED

DATASET AND CSE CIC IDS 2018 DATASET ...71

4.1 Preprocessing ..71

 4.1.1 Generation and Preprocessing of Simulated Dataset..71

 4.1.1.1Generation of Simulated Dataset by Simulating Cloud Computing

Environment….……………………..…………………………..…………………84

 4.1.1.2 Mapping of Simulated Dataset with Actual Dataset….…………………...95

 4.1.1.3 Parameters Analysis for Analyzing the Impact of Attacks ……................100

iii

 4.1.1.4 Preprocessing on Simulated Dataset ..101

 4.1.2 Preprocessing of CSE CIC IDS 2018 Dataset ..103

4.2 Feature Selection Technique ..104

 4.2.1 Types of Feature Selection Techniques ..106

 4.2.2 Proposed Feature Selection Algorithm…………………………………………107

4.3 Summary ..113

CHAPTER 5: ARCHITECTURE FOR DETECTION OF ATTACKS IN CLOUD

COMPUTING ENVIRONMENT ...101

 5.1 Proposed Architecture for Detection of Attacks in Cloud Computing Environment

Using Optimized Classifier ..116

5.2 Computation Complexity Analysis ..127

5.3 Summary ..127

CHAPTER 6 RESULTS AND DISCUSSIONS ...128

6.1Implementation Details ...128

6.2 Performance Metrics and Hypothesis Testing ...129

 6.2.1 Performance Metrics ..129

 6.2.2 Hypothesis Testing ..129

6.3 Feature Selection Analysis ...130

6.4 Analysis Using CSE CIC IDS 2018 Dataset ..139

6.5 Analysis Using Simulated Dataset ...151

6.6 Summary ..160

CHAPTER 7: CONCLUSION AND FUTURE SCOPE ..161

7.1 Conclusion ..161

7.2 Future Scope ...166

 References ..168

iv

 List of Publications ...178

v

List of Tables

Table 1.1 Comparison of Detection Techniques of Intrusion Detection Syste11

Table 1.2 Comparison of Active Attack and Passive Attack ...14

Table 2.1 Comparison of related work to similarity measure…………………..45

Table 2.2 Comparative Analysis of Literature Review Related to IDS47

Table 3.1 Comparison of IDS Datasets ..61

Table 4.1 Attributes of VMs ...76

Table 4.2 Cloud Sim Configurations Used for Cloud Simulation…………………...….76

Table 4.3 Cloudsim Node Communication Simulation Algorithm 78

Table 4.4 Result of Similarity Calculation ………………………………………...........93

Table 4.5 Parameters Analyzed Before Attack .. 96

Table 4.6 Parameters Analyzed After Attack ... 97

Table 4.7Psuedocode for Hybridized Firefly Algorithm with Decision TreeAlgorithm 100

Table 4.8 Parameter Analysis Before and After Implementation of IDS 110

Table 5.1 Psuedocode for Hybridized Neural Network with Decision Tree 123

Table 6.1Implementation Details ... 128

Table 6.2 Precision Comparison of Feature Selection Algorithms 130

Table 6.3 Accuracy Comparison of Feature Selection Algorithms 133

Table 6.4 Recall Comparison of Feature Selection Algorithms 135

Table 6.5F-Measure Comparison of Feature Selection Algorithms 137

Table 6.6 Precision Comparison for CSE CIC IDS 2018 Dataset 140

Table 6.7 Accuracy Comparison for CSE CIC IDS 2018 Dataset 142

vi

Table 6.8 Recall Comparison for CSE CIC IDS 2018 Dataset 145

Table 6.9 F-Measure Comparison for CSE CIC IDS 2018 Dataset 148

Table 6.10 Precision Comparison for Simulated Dataset ... 151

Table 6.11Accuracy Comparison for Simulated Dataset ... 153

Table 6.12 Recall Comparison for Simulated Dataset ... 155

 Table 6.13 F-Measure Comparison for Simulated Dataset………………………….158

vii

List of Figures

Figure 1.1 Characteristics of Cloud Computing .. 2

Figure 1.2 Services of Cloud Computing .. 3

Figure 1.3 Deployment Models of Cloud Computing ... 5

Figure 1.4 CIA Related to Security.. 7

Figure 1.5 Types of IDS Based on Monitoring Environment .. 8

Figure 1.6 Signature-Based IDS .. 10

Figure 1.7 Pictorial Representation of DoS attack and DDoS attack 16

Figure 1.8 Pictorial Representation of Botnet attack ... 18

Figure 1.9 Types of Machine Learning.. 19

Figure 1.10Types of Swarm Intelligence ... 21

Figure 3.1Research Methodology of Research Work .. 60

Figure 4.1 Calculation of similarity measures and threshold 92

Figure 4.2 Comparison of CPU Utilization ... 97

Figure 4.3 Comparison of Bandwidth Utilization.. 98

Figure 4.4 Comparison of CPU Load .. 98

Figure 4.5 Flowchart of Proposed Feature Selection Algorithm 111

Figure 5.1 Proposed Architecture for Detection of Attacks in Cloud Computing

Environment ... 115

Figure 6.1 Comparison of Accuracy for Feature Selection Algorithms 132

Figure 6.2 Comparison of Precision for Feature Selection Algorithms..................... 134

Figure 6.3 Comparison of Recall for Feature Selection Algorithms 136

Figure 6.4 Comparison of F-Measure for Feature Selection Algorithms 138

viii

Figure 6.4 Comparison of Precision for CSE CIC IDS 2018 Dataset 141

Figure 6.5 Comparison of Accuracy for CSE CIC IDS 2018 Dataset 144

Figure 6.6 Comparison of Recall for CSE CIC IDS 2018 Dataset 147

Figure 6.7 Comparison of F-Measure for CSE CIC IDS 2018 Dataset 149

Figure 6.8 Comparison of Precision for Simulated Dataset 152

Figure 6.9 Comparison of Accuracy for Simulated Dataset 154

Figure 6.10 Comparison of Recall for Simulated Dataset .. 157

Figure 6.11 Comparison of F-Measure for Simulated Dataset 159

ix

List of Abbrevations

Acronym Term

CC Cloud Computing

CSPs Cloud Service Providers

SaaS Software as a Service

IaaS Information as a Service

PaaS Platform as a Service

IDS Intrusion Detection System

DM Data Mining

ML Machine Learning

NN Neural Network

HIDS Host-Based Intrusion Detection System

NIDS Network-Based Intrusion Detection

System

DIDS Distributed Intrusion Detection System

DT Decision Tree

SVM Support Vector Machine

FS Feature Selection

FFA Firefly Algorithm

AI Artificial Intelligence

ACO Ant Colony Optimization

x

ABC Artificial Bee Colony

PSO Particle Swarm Optimization

FFA Firefly Algorithm

GA Genetic Algorithm

DT Decision Tree

SVM Support Vector Machine

KNN K-Nearest Neighbor

VM Virtual Machine

1

CHAPTER 1 INTRODUCTION

The chapter offers an in-depth overview of the cloud computing environment,

addressing the associated security concerns. It also examines various network

attacks that threaten cloud computing security. The intrusion detection systems

used for detection of attacks are also discussed in detail in this chapter.

1.1 Cloud Computing

Today Cloud Computing has become highly valued as it offers on-demand and

scalable services that meet user needs along with reducing costs and complexities.

Resources can be deployed more easily with minimal management and reduced

interaction with different service providers by using cloud computing. This

improves the accessibility of the resources and allows the infrastructure to be

utilized on a Pay-per-Use-On-Demand basis which results in cost savings [S.

Kumar and R. H. Goudar,2012].

The cloud environment can support a large number of users because it is scalable.

The key benefits of switching to cloud computing include lower costs, less reliance

on staff, resilient scalability and others. Cloud computing allows for the dynamic

easing of congestion or addition of capabilities without investing in additional

hardware, employing more employees or obtaining software licences. It increases

IT potential.

Cloud Computing has revolutionised information processing by providing a

technology platform that is affordable, efficient and scalable. From an

administrative standpoint, cloud computing offers greater storage and processing

capacity at a lower cost. To fully unlock the potential of cloud computing, CSPs

must offer flexible service delivery that accommodates diverse consumer needs, all

2

while keeping users abstracted from the underlying infrastructure [A. Beloglazov

et al., 2012].

1.2 Characteristics of Cloud Computing

The cloud computing model is defined by five key characteristics: broad network

access, rapid elasticity, resource pooling, on-demand self-service, and measured

service. These features highlight the distinct advantages of cloud computing over

traditional computing models [M. I. Alam et al., 2015]. Figure 1.1 provides a visual

representation of these characteristics.

Figure No.1.1 Characteristics of Cloud Computing

1.On-demand self-service: Cloud computing services allow users for

provisioning, monitoring and managing resources independently without the

requirement of human administrators.

2.Broad network access: Cloud services are delivered over wide-area networks

and can be accessed through various heterogeneous devices.

3.Rapid elasticity: These services provide the capability to swiftly scale resources

up or down based on user demand.

On demand self service

Broad network access

Resource pooling

Rapid elasticity

Pay-per-use

3

4.Resource pooling: Resources such as networks, servers, storage, applications,

and services are shared among multiple users and applications. This allows

different clients to utilize the same physical resources efficiently.

5.Measured service: Resource usage is tracked for each application and user,

providing both the service provider and the user with detailed records of consumed

resources. This is crucial for purposes like billing and ensuring optimal resource

utilization.

1.3 Services of Cloud Computing

Cloud computing is comprised of three service models: Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [M.

Kavis, 2014]. Figure 1.2 depicts the services provided by these models.

Figure No.1.2 Services of Cloud Computing

1.Software as a Service (SaaS): SaaS is a cloud-based model for delivering a wide

range of services and applications. Users can access and use them online, instead

SaaS

Dropbox, Google
Workspace

PaaS

Google Cloud, Azure, IBM
Cloud

IaaS

AWS, Azure, Google Compute Engine

4

of installing and managing software on local devices and this simplifies software

and hardware management. This approach eliminates the need for installing and

running applications on local devices which reduces the costs related to the

software. This offers a complete software solution that is available on the

subscription basis from a CSP.

2.Platform as a Service (PaaS): PaaS helps the developers by providing with a

platform and environment for building applications and services via the cloud. PaaS

services are hosted in the cloud and accessed by users through their web browsers.

CSPs hosts the necessary hardware and software on its infrastructure which makes

the users free from the need to install and manage in-house hardware and software

for development or running of new applications. This helps the application

development and deployment to occur independently of the underlying hardware.

3. Infrastructure as a Service (IaaS): IaaS is a cloud service model which

provides outsourced computer infrastructure for supporting various operations. It

offers enterprises infrastructure components like networking equipment, devices,

databases and web servers. Users using IaaS services mostly pay on a per-user basis

and pricing often structured by the hour, week or month. Some CSPs may charge

on the amount of virtual machine space utilized. It provides services related to the

essential operating systems, security, networking and servers which are required

for development of the applications. It also provides deploying services.

1.4 Deployment Models of Cloud Computing:

The four types of cloud deployment models include public cloud, private cloud,

hybrid cloud, and community cloud [S. Carlin and K. Curran, 2013]. Another type

of cloud which is mutli-cloud is also discussed. Figure 1.3 descirbes the different

deployment models of the cloud computing.

5

 Figure No.1.3 Deployment Models of Cloud Computing

1.Public Cloud: These clouds are especially beneficial for small enterprises which

allows them to launch businesses without huge investments. The key feature of

public cloud is multitenancy so they can serve multiple users instead of single user.

The services can easily scale resources depending upon the traffic and workload

demands, optimizing performance and cost efficiency. They can help to reduce the

need for significant investments in hardware and infrastructure and thereby

lowering overall costs. Example of Public Cloud: Amazon EC2, IBM, Azure .

2.Private Cloud: Private clouds are operated on the private infrastructure which

gives dynamic provisioning of the computing resources to the users. Unlike the

pay-as-you-go model used for the public clouds, private clouds may use alternative

ways to manage the resource usage and assign costs proportionally across different

departments or sections within an enterprise. Examples of Private Cloud are

VMware vCloud Suite, OpenStack, Dell Cloud Solutions, HP Helion Eucalyptus.

3.Hybrid Cloud: A hybrid cloud is a heterogeneous system that combines the

capabilities of both public and private clouds. One major limitation of private

Hybrid

Cloud

Private

Cloud
Public Cloud

Multi- Cloud
Community

Cloud

Types of

clouds

https://www.geeksforgeeks.org/what-is-elastic-compute-cloud-ec2/
https://www.geeksforgeeks.org/microsoft-azure/

6

clouds is their lack of scalability to meet on-demand requirements and manage peak

loads effectively. Public clouds address this issue by providing additional

resources. Examples of hybrid cloud solutions include AWS Outposts, Azure

Stack, Google Anthos, and IBM Cloud Satellite.

4.Community Cloud: Community clouds cater to the specific needs of a particular

industry, community, or business sector. However, managing shared

responsibilities among participating organizations can pose challenges. While

public clouds typically offer lower security, community clouds provide a higher

level of protection. They facilitate the sharing of cloud resources, infrastructure,

and capabilities among various organizations. Examples of community clouds

include CloudSigma, Nextcloud, Synology C2, and Stratoscale.

5.Multi-Cloud: Multi-cloud refers to the use of multiple cloud computing services

from different providers, allowing organizations to select the most suitable services

for their specific needs while avoiding vendor lock-in. Examples of multi-cloud

platforms include Cloud Foundry, Kubernetes, Red Hat OpenShift, and Docker

Swarm.

1.5 Intrusion Detection System

Clouds can become attractive targets for intruders due to its distributed nature.

Traditional security methods like firewalls are not sufficient to meet the security

issues. A robust system like an Intrusion Detection System (IDS) is necessary for

effectively detecting attacks in the cloud computing environment.

Security is the one of the biggest issues of the cloud computing model [A. R. Suraj

et al., 2018]. Figure 1.4 describes the CIA related to security.

7

Figure No.1.4 CIA related to Security

IDS is a system which autonomously detect inappropriate events like intrusion

attacks which are occurring in computer systems. An IDS with effective

countermeasures is crucial for detecting attacks. The identification of different

kinds of malicious network traffic along with computer utilization is the key

objective of any IDS, which cannot be identifiable by traditional techniques.

Many researchers have applied Data Mining (DM) and Machine Learning (ML)

techniques to address cybersecurity challenges [P. Singh et al.,2014]. ML

classifiers are commonly employed to differentiate between attack packets and

normal packets [F. Kuang et al.,2014]. Additionally, rule association mining is an

emerging technique in this domain [C. Nkikabahizi et al., 2017].

Neural Network is frequently used due to its capability to handle incomplete

datasets [V. Balamurugan and R. Saravanan, 2019]. Various optimization

algorithms like genetic algorithm [P. Ghamisi and J A. Benediktsson, 2014],

particle swarm optimization [A. S. Saljoughi et al., 2017], firefly algorithm [X.S.

Yang, 2008], harmony search [K. Costa et al.,2012] and artificial bee colony [S.

Aljawarneh et al, 2018] have also been integrated with classifiers to categorize the

network traffic.

Confidentiality

• Protection of data
from unauthorized
access

Integrity

• Guarantees that it
has not been
modified by
unauthorized access

Availability

• Data should be
available when
needed

8

1.5.1 Types of IDS Based on Monitoring Environment

There are four types of IDS, categorized based on the environment they monitor.

Figure 1.5 describes the types of IDS based on the monitoring environment.

Figure No.1.5 Types of IDS Based on Monitoring Environment

Host- Based IDS
(HIDS)

Specific to a
particular

host

Monitors
single system

Network-Based
IDS (NIDS)

Specific to a
particular
network

Monitors
whole

network
including

multiple hosts

Distributed IDS
(DIDS)

Detection
systems spread

over the
network

Distributed
IDS are

interconnected
by LAN

Hybrid IDS

Combines the
features of
HIDS and

NIDS

Better than
HIDS and

NIDS

9

1. Host-based IDS (HIDS): When unknown malicious code is detected, host-based

IDS relies on an individual device to detect critical files of the operating system for

unusual or malicious activity. It only protects the host device on which it is located.

Individual host machines may be programmed with a general set of rules during

installation. To take into account new vulnerabilities, new rules can be loaded

periodically in the host system.

2. Network-based IDS (NIDS): The device analyzes network links for irregular

traffic and tracks them. NIDS are devices that are distributed within networks in an

intelligent way and detect malicious traffic on a network.

3. Hybrid IDS: This IDS combines both HIDS and NIDS components. The mobile

agent travelling to each host conducts a device log file checker, while a central

agent will check for irregularities across the entire network.

4. Distributed IDS (DIDS): DIDS composed of various key benefits of this IDS is

that its decentralized nature and scalability along with it does not have a single point

of failure. Apart from this having two important challenges; the detection algorithm

for each distributed network on different locations as well as how the information

is shared among all network. As depicted in figure there is one centralized server

which involves various sub-networks along with IDS and this centralized passed

summary statistics of their observed statistics.

1.5.2 Detection Techniques of IDS

There are four types of IDS that are categorized on the basis of the detection

techniques used by them. Figure 1.6 illustrates the types of IDS categorized by their

detection techniques.

10

1.Signature-Based IDS: This IDS have ability to easily identify the known attacks;

whereas it’s challenging to identify the unknown attacks through known signature

their corresponding pattern is unavailable. Figure 1.6 represents the pictorial

representation of the Signature-Based IDS.

Figure No.1.6 Signature -Based IDS

2.Anomaly-Based IDS: It analyses the behaviour of networks, get patterns and

then identify deviations corresponds to anomalies. The key benefit of this detection

scheme over signature-based IDS is that it can identify attempts to exploit unknown

cyber-threats or, vulnerabilities. Although it may generate high false alarm rate

through taking acre of existing unknown system behaviours as anomalies utilized

for known attacks.

The identification of different kinds of malicious network traffic along with

computer utilization is the key objective of any IDS, which cannot be identifiable

by traditional firewall.

11

Table 1.1 Comparison of Detection Techniques of Intrusion Detection System

Feature Signature-Based IDS Anomaly-Based IDS

Detection

Method

Matches traffic against a

database of known attack

signatures.

Detects deviations from normal

behaviour patterns.

Effectiveness Highly effective for

detecting known attacks.

Effective in identifying new or

unknown attacks.

False

Positives

Low, since it detects based

on specific signatures.

Higher, as unusual but legitimate

activity can trigger alerts.

False

Negatives

High for new, unknown

attacks (cannot detect

them without existing

signatures).

Lower for novel attacks, but can

miss subtle variations of normal

activity.

Response

Time

Fast, as it only matches

known signatures.

Slower due to the complexity of

analyzing behavioral anomalies.

Maintenance Requires frequent updates

to the signature database

to detect new threats.

Requires continuous training and

tuning of the model to adjust to

changing behavior patterns.

Resource

Consumption

Generally consumes fewer

system resources.

Requires more processing power

due to constant behavior

analysis.

12

Ideal Use

Case

Best for environments

where known threats are

prevalent.

Ideal for environments where

new or unknown threats are

expected.

1.5.3 IDS Related to Cloud Computing

There are four types of IDS related to Cloud Computing Environment.

1. Network-Based IDS (NIDS): Network-based Intrusion Detection Systems

(NIDS) monitor and analyze traffic across an entire network to identify potential

intrusions, such as port scanning or Denial of Service (DoS) attacks. In a cloud

environment, NIDS can detect attacks targeting the hypervisor or virtual machines

(VMs) when positioned at the cloud server interacting with external networks.

Typically, CSPs are responsible for deploying NIDS within the cloud

infrastructure.

2. Host-Based IDS (HIDS): Host-based Intrusion Detection Systems (HIDS)

collect and analyze data from a specific host to identify intrusive activities. In cloud

computing environments, HIDS can be deployed on hypervisors, virtual machines

(VMs), or individual hosts. It monitors system logs, user login activity, and access

control policies to detect potential threats. While the cloud provider manages HIDS

deployment at the hypervisor or host level, cloud users are responsible for

managing HIDS on their VMs.

3. Distributed IDS (DIDS): A Distributed Intrusion Detection System (DIDS)

comprises multiple IDS units, such as NIDS and HIDS, distributed across a large

network to monitor traffic for signs of intrusion. These IDS units can communicate

with each other directly or through a centralized server. In a cloud environment,

DIDS can be deployed on processing servers or directly on host machines.

13

4. Hypervisor-Based IDS: The hypervisor enables communication between virtual

machines (VMs) in a cloud environment. A hypervisor-based IDS is deployed at

the hypervisor layer to analyze this communication and detect any anomalous

activities. It monitors interactions at various levels, including VM-to-hypervisor

communication, VM-to-VM communication, and within the hypervisor-managed

virtual network.

1.5.4 Examples of Real-time Security Breaches Related to Cloud Computing:

1.Tesla Cloud Cryptojacking (2018): Cybercriminals infiltrated Tesla's AWS

cloud environment by exploiting an unprotected Kubernetes console that lacked

password security. They leveraged Tesla’s cloud infrastructure to mine

cryptocurrency, leading to increased operational costs and security threats. Failing

to secure administrative tools properly can result in significant financial and

cybersecurity risks.

2. Capital One Data Breach (2019): A misconfigured web application firewall

(WAF) in Capital One's AWS cloud environment was exploited by a former AWS

engineer, resulting in a major data breach. This incident exposed the personal and

financial information of over 100 million customers. Improper cloud security

configurations can create significant vulnerabilities, leading to widespread data

leaks.

3. Facebook Cloud Storage Leak (2019): Due to misconfigured Amazon S3

buckets by third-party developers, 540 million Facebook user records were

exposed. The leaked data included personal details such as user IDs, passwords,

and activity logs. To prevent such incidents, organizations should implement strict

cloud access controls and closely monitor third-party cloud integrations.

14

4. Microsoft Azure Cosmos DB "ChaosDB" (2021): Security researchers

discovered a flaw in Microsoft's Cosmos DB service that permitted unauthorized

access to customer databases. This vulnerability highlighted how even weaknesses

within cloud service providers can pose significant risks to businesses.

1.6 Attacks affecting Network

Active attacks are like a bandit storming your fortress, while passive attacks are

like a spy hiding in the shadows which are silently observing. Both types of attacks

are dangerous but in different ways. The active attacks disrupt and demand

immediate defense whereas passive attacks can go unnoticed for a long time which

potentially lead to major leaks of sensitive information.

Table 1.2 Comparison of Active Attack and Passive Attack

Aspect Active Attack Passive Attack

Definition Involves direct

interference with

system operations or

data.

Involves monitoring or

eavesdropping on

communications.

Objective To alter, modify, or

damage the target’s

data or system.

To gather information without

detection.

Visibility Typically noticeable

by the victim.

Usually stealthy and goes

unnoticed by the victim.

15

Impact on Data Data integrity,

availability, and

authenticity may be

compromised.

Confidentiality of data may be

compromised.

Interaction with

System

Direct interaction with

the target system or

communication.

No interaction with the target

system, only observation.

Detection

Difficulty

Easier to detect due to

noticeable effects on

the system.

Harder to detect as no immediate

changes occur in the system.

Response

Requirement

Requires immediate

response and recovery

actions.

May go undetected, so delayed

response if discovered.

Risk Level Higher risk due to the

potential for

immediate damage.

Lower risk but can lead to more

damaging active attacks.

Example

Attacks

Data modification,

denial of service

(DoS), session

hijacking.

Eavesdropping, traffic analysis,

password sniffing.

1. Denial-of-Service (DoS) Attack

A Denial of Service (DoS) attack refers to any event or malicious action that

diminishes or disrupts a cloud's ability to deliver the services and functionalities

that users expect. A DoS attack is one that targets a resource or service in the cloud

with the intention of temporarily preventing it from offering its regular services. It

16

is a cyberattack aimed at disrupting the services of a specific computer or website,

preventing legitimate users from accessing it. The goal is to interfere with an

organization’s network operations by overwhelming the target with excessive

requests, causing system overload. This flood of traffic makes it difficult or

impossible for the system to process genuine requests, effectively denying access

to users.

2. Distributed DoS (DDoS) Attack

Circulated version of Distributed DoS (DDoS) attack is referred to as DoS attacks.

It uses many network hosts to do more damage damaging consequences for its

sufferer. Instead of one attacker, DDoS attacks involve multiple compromised

devices (often part of a botnet) working together to flood a target with traffic,

overwhelming its resources and causing the service to become unavailable. DDoS

attacks are highly dangerous due to their ability to disrupt online services and

infrastructure with a coordinated, large-scale assault. Figure 1.7 represents the DoS

attack and DDoS attack.

Figure No.1.7 Pictorial Representation of DoS attack and DDoS attack

17

3. Bruteforce Attack

This type of attack involves attempting to guess a password through repeated trial

and error. The attacker tries various combinations of characters until they

successfully identify the correct password, granting them access to the system. This

approach relies on the premise that eventually all combinations will be tested,

leading to the discovery of the correct one. Brute-force attacks can be time-

consuming and resource-intensive, particularly as the complexity of the password

or encryption increases. To mitigate the risk of such attacks, it is advisable to use

strong, complex passwords and implement security measures such as account

lockouts after multiple failed attempts, CAPTCHA challenges, or multi-factor

authentication (MFA).

4. Infiltration Attack

This attack tries to exploit application related vulnerabilities. They send harmful

email to victim. After performing attack, a backdoor is installed in the victim. Then

other vulnerabilities of the system are exploited by attacker. This type of attack

typically focuses on penetrating the internal network of an organization or system

rather than just attacking external-facing components. Here’s an overview of how

infiltration attacks work and their key characteristics:

5. SQL Injection Attack

 SQL injection (SQLi) is a type of attack where an attacker exploits vulnerabilities

in an application's interface to execute malicious SQL queries against a database.

The attackers aim to disrupt the queries made to the database by the applications.

The attacker can view user data or application data. He can delete or modify the

files present in the database

18

6. Botnet Attack

This attack uses zombies which are computer systems affected by malware. These

systems can launch DDoS attack or send spam mails to the victim. A botnet attack

involves using a network of compromised devices, known as bots or zombies, to

carry out various malicious activities. The devices in the botnet are controlled by a

central command-and-control (C2) server operated by the attacker. Here’s a

breakdown of how botnet attacks work and their impact: Figure 1.8 represents the

Botnet attack.

Figure 1.8 Pictorial Representation of Botnet Attack

1.7 Machine Learning

A subtype of artificial intelligence (AI) known as machine learning (ML) enables

programmes to gain knowledge from data and experience without needing to be

explicitly code. Training and classification are two common tasks in machine

learning. A labelled dataset is given to the machine learning model during training

19

so that it may discover the connections between inputs (features) and outputs

(labels).

Predicting a type of categorical label for an input data sample is the aim of a

particular kind of machine learning problem called classification. For example,

given a feature vector of a IDS system, the goal of a classification model would be

to predict which category of intrusion the data belongs to. There are following type

of machine learning algorithm architecture in a broad manner. Figure 1.9 shows

various types of machine learning techniques.

Figure 1.9 Types of Machine Learning

• Supervised Learning: A labelled dataset with known values for the target

parameter is used to train the algorithm. Making forecasts for fresh,

unforeseen data is the aim. Support vector machines (SVMs), decision trees,

logistic regression, and linear regression are a few examples.

• Unsupervised Learning: The purpose of the unlabelled dataset used to

train the algorithm is to find patterns or correlations in the data. A few

examples include anomaly detection, dimensionality reduction (PCA), and

clustering (K-means).

20

• Semi-supervised Learning: The training is done on a partially labelled

dataset, where some instances have known labels and others do not. The

goal is to make predictions for the unlabelled instances based on the patterns

learned from the labelled instances.

1.8 Swarm Intelligence

SI represents a paradigm shift in how we approach problem-solving and decision-

making in complex systems. It draws inspiration from the elegance and efficiency

of social organisms that have evolved over millions of years to survive and thrive

in their environments. By studying and emulating the collective behaviour of these

organisms, researchers have unlocked a new frontier of possibilities in artificial

intelligence, optimization, and distributed computing.

The power of SI lies in its decentralized and self-organizing nature. Unlike

traditional approaches that rely on centralized control or complex algorithms,

Swarm Intelligence harnesses the inherent wisdom of the crowd. Each individual

agent, whether it's an ant, a bird, a robot, or a particle, follows simple rules based

on local information and interactions with its peers. These simple rules give rise to

emergent behavior at the group level, enabling swarms to tackle complex tasks with

surprising efficiency. One of the captivating aspects of Swarm Intelligence is its

adaptability and robustness. Swarms are capable of responding dynamically to

changes in their environment without the need for global communication or top-

down coordination. This adaptability makes them highly suitable for real-world

problems that are subject to uncertainties and dynamic conditions, such as route

optimization, resource allocation, anomaly detection, attack recognition, and data

clustering. Figure 1.10 shows various types of swarm intelligence.

21

Figure No. 1.10 Types of Swarm Intelligence

SI algorithms for feature selection can be categorized into various types based on

the nature of the swarm and optimization techniques they employ. Some of the

prominent categories include:

1.Particle Swarm Optimization (PSO): PSO algorithms are inspired by the social

behavior of birds or fish. In feature selection, particles represent potential feature

subsets, and they adapt their positions in the feature space to find the best subset

that minimizes or maximizes a given objective function.

2.Firefly Algorithm (FA): The Firefly Algorithm is a type of SI algorithm that

models the flashing behavior of fireflies. Firefly algorithms are used for feature

selection by mimicking the movement of fireflies towards brighter neighbors in the

feature space, representing promising feature subsets.

3.Dragonfly Algorithm: The Dragonfly Algorithm is another SI-based approach

that draws inspiration from the swarming behavior of dragonflies. These algorithms

22

optimize feature selection by mimicking the movements and interactions of

dragonflies in the search for optimal feature subsets.

4.Artificial Bee Colony (ABC) Algorithm: ABC algorithms are inspired by the

foraging behavior of honeybees. In feature selection, they employ a population of

artificial bees to explore and evaluate feature subsets, converging towards an

optimal solution.

5.Cuckoo Search (CS) Algorithm: Cuckoo Search algorithms are inspired by the

breeding behavior of cuckoo birds. They optimize feature selection by simulating

the random selection of host nests and the subsequent replacement of less fit feature

subsets.

1.9 Research Motivation

In the modern digital era, the rapid growth of internet usage and emerging

technologies has led to a significant rise in cyber threats. These attacks pose serious

risks, including financial damage, harm to an organization's reputation, and

interruptions to critical services. Traditional security approaches often fail to keep

up with the evolving complexity of these threats, highlighting the need for robust

Intrusion Detection Systems (IDS).

One of the primary challenges in building an efficient IDS is accurately analyzing

network traffic to distinguish between normal and malicious behavior. This

involves two key tasks: selecting the most important features from complex and

large-scale datasets, and choosing the right classification algorithms to ensure high

detection accuracy.

IDS datasets, such as the CSE-CIC IDS 2018 dataset, contain numerous attributes

that describe different aspects of network activity. However, not all features are

equally useful. Some may be redundant or irrelevant, leading to increased

23

processing time and decreased system accuracy. Therefore, identifying the most

informative features is crucial for effective threat detection.

Feature selection plays a vital role in improving the performance of IDS. By

reducing the number of features, it lowers computational overhead and improves

accuracy by eliminating unnecessary data. Finding the best subset of features

requires advanced techniques that can balance the trade-off between speed and

detection quality.

Another major consideration is the use of classifiers—machine learning models that

help identify whether activity is malicious or legitimate. Each type of classifier has

its strengths: Decision Trees offer simplicity and clarity, Support Vector Machines

perform well in high-dimensional data, and Neural Networks are capable of

capturing complex patterns. However, no single model is perfect for every scenario.

To overcome this, combining several classifiers into a hybrid model can provide

better overall performance. This approach takes advantage of each algorithm’s

strengths, aiming to increase detection rates while minimizing errors such as false

alarms or missed threats. The challenge lies in integrating these models effectively

to build a unified and reliable system.

It’s not enough to design a model in theory—it must be tested in realistic

environments to confirm its effectiveness. A well-structured simulation platform

should reflect real network conditions and allow thorough evaluation under various

circumstances. This ensures the IDS can be assessed in terms of performance,

scalability, and adaptability.

Ultimately, developing such a system leads to stronger defenses against cyber

threats, making cloud and network environments more secure.

24

1.10 Organization of the thesis chapters

Chapter 1: This chapter provides a detailed description related to the cloud

computing environment and various attacks affecting it. This chapter describes

intrusion detection system and it types in detail.

Chapter 2: This chapter outlines the related work, summarizing the research drafts

published prior to this study. It includes a comparative analysis and a literature

review focused on cloud computing, feature selection and intrusion detection

systems. Additionally, this chapter clearly defines the problem statement and

identifies research gaps pertinent to this work.

Chapter 3: This chapter presents the research objectives and details the

methodology employed throughout the research process. A flowchart is provided

to illustrate the steps taken to achieve the research objectives.

Chapter 4: This chapter discusses the generation of a simulated dataset using a

cloud simulation tool. Both the simulated dataset and the standard CSE CIC IDS

2018 dataset are utilized to evaluate the architecture developed for attack detection.

Preprocessing and feature selection are conducted on these datasets.

Chapter 5: This chapter details the architecture designed for detecting attacks in a

cloud computing environment. It explains the various modules of the architecture

in depth.

Chapter 6: This chapter describes the results and discussions of the research work.

The results for the standard benchmark dataset CSE CIC IDS 2018 dataset and

simulated dataset are described in this chapter. Results are presented in tabular and

graphical form. Description of results are given in this chapter. Different sample

sizes are taken for result generation.

25

Chapter 7: This chapter describes the conclusion and outlines the future scope

related to the research work. Conclusion is extracting the summary of the research

work. Future scope tells the possible future directions related to the research.

1.11 Summary

A thorough introduction to cloud computing environment is given in this chapter,

which also highlights its importance and widespread use in the contemporary

computing. It describes many security concerns encountered by cloud systems,

demonstrating various types of attacks that risk resources of the cloud. The

importance of machine learning algorithms in improving attack detection skills is

emphasized, along with the power of swarm intelligence, which together create a

robust intrusion detection system.

26

CHAPTER 2 LITERATURE REVIEW

This chapter presents an overview of the recent research focused on improving

intrusion detection and security measures within cloud computing environments.

Researchers have investigated a variety of approaches, including traditional

machine learning techniques, to develop effective intrusion detection systems (IDS)

capable of identifying attacks. The chapter also explores innovative methods, such

as nature-inspired algorithms and hybrid detection systems that combine multiple

detection techniques for more comprehensive cloud protection. By reviewing key

studies and their findings, the chapter sheds light on the evolving landscape of

intrusion detection in cloud computing environment, highlighting significant

advancements in security measures within this critical and dynamic field.

Additionally, problem statement with research gaps identified through the literature

review.

2.1 Cloud Computing

[C. Gong et al. ,2010] highlighted the core features of cloud computing, describing

it as an advanced evolution of existing distributed computing models, such as

cluster and grid computing. Cloud computing has emerged from innovations in

distributed systems, Internet technologies like service-oriented architecture (SOA),

hardware virtualization, and autonomic computing. The cloud offers users the

impression of unlimited, on-demand resources that can be accessed from any

location. This mobility and collaborative functionality are reinforced by

infrastructure abstraction, which hides complexity from users. The paper outlines

key cloud computing characteristics, facilitating its development and widespread

adoption. One major feature is its service-oriented architecture, which simplifies

complex internal operations. Another technical feature is loose coupling, applicable

27

across various cloud systems. Cloud computing’s robust fault tolerance also makes

it compatible with commonly used network infrastructures. Its economic benefits

are a primary driver for business adoption, distinguishing it from high-performance

computing (HPC) and grid computing. The user-friendly design abstracts service

provider complexities through simple interfaces. Other key features include

reliance on TCP/IP for Internet access, virtualization capabilities, and enhanced

security.

[E. Besharati et al., 2019] explored security issues in cloud environments and

introduced a host-based intrusion detection system (H-IDS) to protect virtual

machines. Key features for each category were selected using logistic regression

and further refined through regularization techniques. Attack classification was

performed using a combination of neural networks, decision trees, and linear

discriminant analysis, enhanced with a bagging algorithm to improve accuracy. The

proposed model was evaluated on the NSL-KDD dataset and implemented in the

CloudSim simulation environment. Results showed a detection accuracy of

97.51%, surpassing other methods in identifying attacks.

[Y. S. Abdulsalam and M. Hedabo, 2021] highlighted that the main challenge in

securing critical internet infrastructures, like cloud computing, is ensuring the

system's ability to self-protect regarding security and privacy. It is crucial to

implement secure adaptive techniques, which can be applied at different levels of

the technology stack, including hardware, software, and core computing

infrastructure. Secure adaptiveness enables the system to defend itself against a

range of attacks or malicious users exploiting vulnerabilities. Without the practical

deployment of these adaptive mechanisms, cloud computing will remain vulnerable

to security and privacy threats, putting the efficiency of client and user experiences

at risk.

28

2.2 Feature Selection

Filter Method: Filter methods assess the relevance of features based on statistical

measures, independent of any machine learning algorithms. In this case, the authors

utilize feature correlation to select important features, calculating the correlation

coefficients between features to construct a correlation matrix. The average

correlation of each feature with others is then computed to determine its

significance. This approach allows for the selection of features that are most

correlated with other features, aiming to enhance detection performance while

reducing computational complexity

[D. Rani and N. C. Kaushal, 2020] introduced a hybrid intrusion detection system

that combined the C5.0 Decision Tree with a One-Class SVM. The C5.0 model was

employed for misuse detection, effectively identifying known attacks with a low

false alarm rate, while the One-Class SVM focused on anomaly detection by

training only on normal traffic. During training, decision boundaries were

established based on normal data, and outliers were flagged as potential attacks.

Testing on the NSL-KDD dataset showed that this hybrid model improved

detection rates and reduced false alarms compared to previous methods.

[V. D. Ngo et al., 2024] compared feature selection and feature extraction methods

in intrusion detection, using the UNSW-NB15 dataset for both binary and

multiclass classification. The study found that feature selection provided higher

detection accuracy and required less training and inference time when the number

of features was moderately large (e.g., 8 or 16). However, feature extraction

performed better with fewer features (e.g., 4 or fewer). The study also found that

MLP was most effective for feature extraction, while the Decision Tree excelled in

feature selection for attack detection.

29

Wrapper Method: In the realm of feature selection methodologies, wrapper

methods are one of the primary categories, alongside filter and embedded methods.

Wrapper methods evaluate subsets of features by training and testing a specific

machine learning model, aiming to identify the combination that yields the best

performance. In this study, the authors applied the wrapper method using a decision

tree to select features that enhance the performance of various machine learning

algorithms in intrusion detection systems

[O. Alomari and Z. A. Othman, 2012] proposed a feature selection method based

on a wrapper approach, utilizing the Bees Algorithm (BA) for generating subsets

and Support Vector Machine (SVM) as the classifier. The study tested the method

on four randomly selected subsets from the KDD-Cup 99 dataset, each containing

approximately 4,000 records. The performance was evaluated using standard

intrusion detection system (IDS) metrics, achieving a detection accuracy of 99%,

with the feature set reduced to only 8 features and a false alarm rate of 0.004.

[I. Ahmad et al., 2014] presented an intrusion detection technique that focuses on

feature subset selection through a combination of Genetic Algorithms (GA) and

Principal Component Analysis (PCA), alongside a Multilayer Perceptron (MLP)

classifier. The integration of GA and PCA addressed performance challenges,

improving feature selection and accuracy. Using the KDD-Cup dataset, the method

reduced the feature set from 41 to 12, achieving a detection accuracy of 99%. This

optimized feature selection enhanced precision and reduced computational

demands, making the intrusion detection system more efficient.

[M. Otair et al., 2022] developed an intrusion detection method that optimized

feature selection using Grey Wolf Optimization (GWO). They enhanced this process

with Particle Swarm Optimization (PSO), which refined the GWO results and

avoided local minima. Simulations using k-means and SVM on the NSL-KDD

30

dataset revealed that this hybrid optimization technique outperformed other

methods, showing improvements in false alarm rate, detection rate, detection

accuracy, and execution time due to more efficient feature selection.

[S. K. Shandilya et al., 2023] introduced an advanced firefly optimization algorithm

for network monitoring, incorporating a new health function to identify suspicious

nodes early. This algorithm integrates event management and optimizes the

observation priority list using a genetic evolution algorithm to handle real-time

network events. Simulations showed the method's effectiveness, reducing suspicious

nodes by 60-80% with only a slight increase in turnaround time (1-2%). The focus

was on proactive network health monitoring for enhanced protection.

[M. A. Umar et al., 2024] conducted an analysis of the impact of feature selection

and normalization on various Intrusion Detection System (IDS) models, using the

NSL-KDD and UNSW-NB15 datasets. The study employed five machine learning

algorithms and used a decision tree wrapper-based feature selection method and

min-max normalization. The random forest model performed the best, achieving

99.87% and 98.5% accuracy and 99.79% and 99.17% detection rates on the NSL-

KDD and UNSW-NB15 datasets, respectively, outperforming many recent IDS

studies.

31

[Y. K. Saheed et al., 2024] presented a hybrid feature selection technique that

combined the Bat algorithm with the Residue Number System (RNS). The Bat

algorithm initially partitions the data and eliminates irrelevant features. RNS was

integrated to enhance processing speed and reduce training time. In the second

phase, RNS was removed, and the Bat algorithm focused solely on feature selection

while PCA handled feature extraction. Naive Bayes and k-Nearest Neighbors

classifiers were used for classification. The method improved detection rates,

accuracy, and F-scores while doubling processing speed, demonstrating

competitive results compared to other intrusion detection techniques.

[M. Bakro et al., 2024] proposed a hybrid feature selection strategy that combined

the grasshopper optimization algorithm (GOA) and the genetic algorithm (GA) for

efficient feature selection. The random forest classifier was trained on the selected

features. To address class imbalance, a hybrid approach was used: the adaptive

synthetic (ADASYN) algorithm oversampled minority classes, while random

under-sampling (RUS) was used for the majority class. The approach showed

improved performance, increasing the true positive rate (TPR) and reducing the

false positive rate (FPR). The method was tested on three datasets—UNSW-NB15,

CIC-DDoS2019, and CIC Bell DNS EXF 2021—achieving accuracies of 98%,

99%, and 92%, respectively.

Embedded Selection: Embedded feature selection is a technique used in machine

learning to automatically choose the most important input features (variables)

during the process of building a model. Unlike other methods that select features

before or after training the model, embedded methods do both tasks at the same

time.

These techniques are built into certain algorithms that have their own way of

ranking or filtering features based on how useful they are for making predictions.

For example, decision trees or regularized regression models (like Lasso) can

reduce the importance of less relevant features while focusing more on the key

32

ones. This approach is efficient because it reduces the number of features while

optimizing the model’s performance, saving time and improving accuracy.

[S. Ganapathy et al., 2016] introduced a feature selection method based on

Conditional Random Fields (CRF) for more efficient intrusion detection. The CRF-

based algorithm aimed to minimize the number of features while improving their

relevance. A Layered Approach (LA)-based algorithm was then applied for

classification with the reduced feature set. The resulting system demonstrated better

accuracy and efficiency in detecting attacks compared to existing methods. Key

benefits included faster detection times, improved classification accuracy, and

fewer false alarms. Evaluations on the KDD-Cup99 dataset showed the following

detection accuracies for different attack types: probe = 99.98%, DoS = 97.62%,

R2L = 32.43%, and U2R = 86.91%.

2.3 Attacks Affecting Cloud Computing Environment

[V. R. Kebande and H. S. Venter, 2014] introduced an innovative botnet detection

system specifically designed for cloud environments, utilizing the artificial immune

system. With the growing prevalence of botnet attacks that cause service

disruptions and resource depletion, this approach uses a negative selection

algorithm to determine whether a botnet matches self or non-self-patterns. The

detectors are trained to identify malicious activity in the cloud and classify it as

non-self, allowing for effective isolation of the attack.

[G. Somani et al., 2017] explored the critical issue of Distributed Denial of Service

(DDoS) attacks in cloud environments. The paper offers an extensive review of

recent advancements in DDoS mitigation techniques tailored for cloud computing.

It examines attack characterization, prevention, detection, and mitigation strategies,

proposing a detailed taxonomy to categorize existing solutions. The authors stress

33

the importance of solutions customized for utility computing models, highlighting

the need for accurate auto-scaling, multi-layered defense systems, and efficient

resource management in cloud environments. Their work provides valuable

insights and guidelines for developing effective mitigation techniques, aiming to

assist the cybersecurity community in building stronger defense mechanisms.

Notably, it pioneers the identification of multi-level information flow and resource

management strategies during DDoS attacks.

[M. K. H. Al-Dulaimi, 2024] presents a detailed overview of blockchain-based

security solutions designed to address DDoS, Man-in-the-Middle (MITM), and

SQL injection attacks. However, it is important to note that the proposed solution

has not yet been tested in real-world scenarios, indicating the need for further

research and validation to determine its effectiveness and practical feasibility.

Despite this, the integration of blockchain technology into cloud security shows

considerable potential to strengthen the overall security framework of cloud

environments.

2.4 Similarity Comparison of Benchmark Dataset with Existing Dataset

[N. Cao et al., 2013] developed a framework for performing privacy-preserving

ranked search on encrypted cloud data. The study focused on aligning simulated

keyword queries with real encrypted datasets, ensuring secure and efficient search

operations. Simulated datasets were created from hypothetical user interactions,

while actual datasets comprised encrypted academic and corporate documents. The

mapping used cosine similarity for keyword alignment, complemented by hybrid

measures incorporating the Jaccard index for set-based matching. Min-max scaling

was applied to normalize keyword frequencies, ensuring consistent term

importance across datasets. The authors emphasized that this mapping process

allowed for high relevance in search results while maintaining strong privacy

34

protections, highlighting the importance of accurately mapping simulated data to

real-world encrypted datasets for effective privacy-preserving search systems.

[B. Wang et al., 2016] addressed privacy-preserving searchable encryption by

mapping simulated encrypted queries to real encrypted document datasets. The

focus was on enabling efficient searches of encrypted text while maintaining

security. Simulated datasets consisted of hypothetical query logs, while real

datasets included encrypted academic documents from sources like PubMed. The

mapping relied on cosine similarity for text alignment, combined with weighted

Euclidean distance to account for term frequency and relevance. A preprocessing

step involved normalizing keyword vectors through token standardization and

frequency scaling to ensure that both simulated and real datasets shared the same

statistical distribution. The study concluded that precise mapping significantly

enhanced the relevance of search results, improving recall and precision in

retrieving encrypted documents. This work demonstrated the effectiveness of

hybrid similarity measures for handling large encrypted datasets while

safeguarding user privacy.

[V. Popic and S. Batzoglou, 2017] introduced a hybrid cloud read aligner that

mapped simulated genomic reads to actual genome assemblies. Simulated reads

were generated using sequencing tools mimicking real-world error patterns, while

actual datasets were sourced from repositories like Ensembl and NCBI. The

alignment process involved two steps: MinHash for rapid similarity estimation,

followed by cosine similarity for precise genetic sequence alignment.

Normalization was applied to sequence lengths to avoid bias due to read size

variations. This methodology demonstrated excellent scalability and accuracy,

enabling efficient genomic data alignment in cloud-based environments.

[W. Liang et al., 2019] proposed an intrusion detection algorithm using clustering-

based optimization models to map simulated attack vectors to real-world traffic

35

patterns. Simulated logs, generated using penetration testing tools, were aligned

with industrial control system traffic. The mapping was done using cosine

similarity to measure the alignment of multivariate feature vectors, and clustering

techniques were used to group similar traffic patterns. Min-max normalization was

applied to standardize features like bandwidth and packet rates. The study found

that accurate mapping improved the detection of multi-stage attacks, enhancing the

effectiveness of intrusion detection systems.

[Y. Miao et al., 2020] introduced an airborne LiDAR system for UAV-based

obstacle recognition and intrusion detection. The study involved generating

simulated LiDAR point cloud data under controlled conditions and mapping it to

real-world LiDAR data obtained during UAV field tests. Simulated datasets were

generated using models replicating environmental features like building heights

and tree densities. Mapping was achieved through transfer learning, using cosine

similarity to align features such as point density, elevation gradients, and object

contours between the datasets. The authors showed that hybrid similarity measures

combining cosine similarity and density-based clustering were effective in

distinguishing obstacles from noise in LiDAR data. Normalization via z-score

scaling ensured consistent feature distributions, compensating for variations in

point cloud density and collection angles. This approach improved the UAV

system's ability to perform accurate obstacle detection and navigation in complex

environments.

[A. Alshammari and A. Aldribi, 2021] applied machine learning techniques to

detect malicious network traffic in cloud environments. Their approach involved

mapping synthetic traffic data generated using tools like Tcpreplay to real-world

datasets such as CICIDS2017 and UNSW-NB15. The mapping process used

Jaccard similarity for categorical features, such as protocol types and attack labels,

and cosine similarity for numerical features, including packet arrival rates and flow

durations. The authors emphasized the use of L2 normalization to ensure equal

36

contribution of numerical features with varying scales (e.g., bandwidth in Mbps

and latency in milliseconds). The study demonstrated that this mapping approach

improved detection accuracy, especially for identifying multi-vector attacks. By

aligning synthetic and real-world datasets, the authors were able to develop models

capable of recognizing both known and emerging threats.

[T. Li et al., 2022] provided a comprehensive review of anomaly-based network

intrusion detection systems. This study analyzed methods to bridge the gap between

simulated and real-world intrusion data. The authors compared datasets like NSL-

KDD, which simulate a range of attacks, with real-world traffic datasets such as

CICIDS2017, highlighting differences in feature richness and complexity. The

mapping of features like packet sizes, flow durations, and attack signatures was

achieved through advanced similarity metrics. Techniques like cosine similarity

and clustering algorithms were used to measure alignment between the distributions

of simulated and real data. The authors concluded that integrating real-world data

during training enhances detection models' ability to generalize, particularly for

identifying zero-day attacks. Normalization was performed using min-max scaling,

ensuring that features with different units or scales contributed equally to similarity

calculations. The review emphasized that hybrid mapping methods, combining

statistical and machine learning approaches, can address the limitations of older

datasets and improve intrusion detection.

2.5 Intrusion Detection System

Host-Based IDS: Host-based IDS (HIDS) in Cloud Computing is a security tool

that monitors individual cloud-based virtual machines or servers for signs of

suspicious activity or potential attacks.

Unlike network-based IDS, which looks at data traveling across the network, HIDS

focuses on what's happening inside a specific cloud instance. It keeps track of things

37

like system logs, file changes, user activities, and running processes. If it detects

unusual behavior—like unauthorized access, unexpected file modifications, or

strange application behavior—it can raise an alert.In the cloud, where multiple

virtual machines may be running different tasks for different users, HIDS provides

a deeper level of protection at the machine level. It’s especially useful for detecting

insider threats or attacks that have already bypassed network defenses.

HIDS helps cloud providers and users maintain visibility and control over each

system's security, making it an important layer in a multi-level defense strategy.

In [R. Patil et al., 2019] proposed a Hypervisor-Level Distributed Network Security

(HLDNS) framework to secure cloud computing environments. Deployed on each

processing server, the framework monitored network traffic for virtual machines

using a Random Forest classifier, with features extracted via an extended binary bat

algorithm (BBA). The system generated intrusion alerts and correlated them across

servers to identify distributed attacks. Testing on a cloud network testbed and

evaluation with recent intrusion datasets (UNSW-NB15 and CICIDS-2017)

showed the framework's effectiveness in cloud network security.

[L. Chen et al. ,2020] developed a network intrusion detection system specifically

for cloud computing environments, addressing challenges like variability and

unpredictability of network intrusions. They employed the C4.5 decision tree

algorithm along with a random forest algorithm to build their intrusion detection

model. Real-time network traffic data was collected from various network levels of

cloud servers using the tcpdump tool and data mining techniques. Experimental

results showed that the system achieved a 99.71% detection accuracy while

reducing training and testing times, proving effective for real-time monitoring and

intrusion detection in cloud environments.

38

Network Based IDS: Network IDS (NIDS) in Cloud Computing is a security

system designed to monitor and analyze network traffic within a cloud environment

to detect suspicious activities or potential cyberattacks. In a cloud setup, multiple

virtual machines, services, and users share resources over a virtual network. A

Network IDS keeps an eye on this traffic flow, looking for patterns that match

known attacks (like malware or hacking attempts) or abnormal behavior that could

indicate a new threat.Because cloud networks are often large, dynamic, and spread

across different regions or data centers, placing NIDS at strategic points—such as

between virtual machines or at the cloud gateway—helps detect threats early

without impacting system performance.By continuously inspecting data packets

moving through the cloud network, a NIDS helps identify unauthorized access

attempts, data breaches, or other malicious actions, playing a critical role in

securing cloud infrastructures.

In [Y. Liu and R. Ma, 2013] introduced a novel intrusion detection model, BQPSO-

BN, to address the growing need for effective network intrusion detection due to

the rise of network attacks in cloud computing environments. They adapted the

classical QPSO algorithm for use in a binary search space, aligning it with the

discrete nature of Bayesian network learning. Experiments with the KDD'99 dataset

demonstrated the superiority of BQPSO-BN, showcasing faster convergence

compared to models like BPSO-BN and GA-BN.

In [K. Wang et al.,2014] presented a behavior-based botnet detection model,

BBDP, which employed fuzzy pattern recognition to detect botnets in real-time

through analysis of DNS queries and TCP requests. Unlike signature-based

methods, BBDP utilized a five-stage process: traffic reduction, feature extraction,

data partitioning, DNS-based detection, and TCP-based detection. By parallelizing

these stages across multiple servers, BBDP achieved high accuracy, with a true

39

positive rate exceeding 95% and a low false positive rate of 3%. Their experiments

on Windows Azure demonstrated the scalability of BBDP.

In [J. Hussain et al.,2016] proposed a two-stage hybrid classification method for

Network Intrusion Detection Systems (NIDS), combining Support Vector Machine

(SVM) for anomaly detection in the first stage and Artificial Neural Network

(ANN) for misuse detection in the second stage. This hybrid approach improved

classification accuracy and minimized false positives. Testing with the NSL-KDD

dataset resulted in a detection rate of 99.97% and a false positive rate of 0.19%,

outperforming traditional models.

In [H.H. Pajouh et al.,2017] introduced a two-tier classification model for network

anomaly detection that combined Naïve Bayes, a variant of KNN, and Linear

Discriminant Analysis. Evaluated on the NSL-KDD dataset, the model achieved

enhanced detection rates and reduced false alarms, specifically targeting rare and

dangerous attack types. The model utilized SMOTE for balancing datasets and

incorporated efficient dimension reduction and feature selection, leading to

minimized computational time and the ability to detect complex attacks that closely

resembled normal behaviour.

In [R. Kesavamoorthy and K.R. Soundar, 2019] addressed DDoS attacks in cloud

computing with an autonomous multi-agent system. This system used particle

swarm optimization to enable effective agent communication and decision-making.

Multiple agents detected DDoS attacks by communicating with a coordinator agent,

which analyzed scenarios using entropy and covariance methods. The system's

performance was optimized for faster attack detection and recovery, with

simulations showing a 53% improvement in efficiency compared to HMM-CRL

and 45% better than HCF.

[P. Ghosh et al., 2019] discussed how Cloud Computing, offering various services

over the Internet, attracted a large user base due to its cost-effectiveness and

40

efficiency. However, this popularity also made it susceptible to security threats. To

address these issues, Intrusion Detection Systems (IDS) were deployed in the cloud

environment. Training these IDS systems effectively was crucial for accurate and

timely intrusion detection. However, the presence of redundant features in the

training data led to increased memory usage and longer training times. The authors

proposed a novel CS-PSO-based IDS to classify attacks quickly and efficiently.

They utilized the NSL-KDD dataset to demonstrate the effectiveness of their IDS

approach.

In [R. Rajendran et al., 2019] addressed security challenges in cloud networks,

focusing on Denial of Service (DoS) attacks. They proposed a novel rule-based

method for detecting DoS attacks by leveraging domain expert knowledge. The

authors also introduced two new algorithms: one for feature selection, called the

Feature Selection Algorithm using Scoring and Ranking, and another for

classification, the Rule-based Classification Algorithm. Their approach

demonstrated improved DoS detection accuracy over existing methods, validated

through experiments in a cloud-based test environment with real-time DoS attack

tools.

[D. J. Prathyusha and G. Kannayaram, 2020] introduced an innovative IDS based

on artificial immune systems (AIS) to mitigate Distributed Denial of Service

(DDoS) attacks in cloud computing. By mimicking biological immune systems,

their approach identified critical features of DDoS attacks. Experiments with the

KDD Cup 99 dataset showed that the AIS-based IDS effectively detected and

neutralized DDoS threats, achieving high detection accuracy and a low false alarm

rate. This research highlighted the potential of AIS for enhancing cloud security

against DDoS attacks.

In [G. S. Kushwah and V. Ranga, 2020] proposed a method for detecting

Distributed Denial of Service (DDoS) attacks using voting extreme learning

41

machines (V-ELM). Their approach demonstrated strong accuracy in detecting

attacks, as evidenced by experiments with the NSL-KDD and ISCX datasets.

Comparative evaluations revealed that their V-ELM-based system outperformed

other detection methods, including backpropagation neural networks, black hole

optimization-trained neural networks, extreme learning machines, random forests,

and AdaBoost. The system’s effectiveness in mitigating DDoS threats in cloud

computing environments was reaffirmed through experiments under various

parameter settings.

In [K.B. Virupakshar et al., 2020] explored the widespread adoption of cloud

computing, driven by the rapid expansion of internet-based applications that reduce

IT infrastructure management costs. However, the distributed nature of cloud

resources, centrally controlled over the internet, makes them vulnerable to potential

intrusions. The study focused on detecting Distributed Denial of Service (DDoS)

attacks, which are particularly common in private clouds and can lead to service

degradation or denial. The authors proposed a solution that integrated an OpenStack

firewall with a DDoS detection system, utilizing raw socket programming to

monitor network traffic. Several algorithms, including Decision Tree, K Nearest

Neighbor (KNN), Naive Bayes, and Deep Neural Networks (DNN), were compared

using a dataset created from a controlled DDoS attack environment. The system

successfully detected DDoS attacks and notified the private cloud administrator.

In [S. Rajagopal et al.,2021] tackled the challenges posed by sophisticated

hacktivist attacks in network intrusion detection. They introduced a meta-

classification approach using decision jungle for both binary and multiclass

classification, optimizing hyperparameters and feature subsets through Azure

machine learning. Their model was validated using several datasets, including

UNSW NB-15, CICIDS 2017, and CICDDOS 2019, achieving accuracy rates of

99.8%, 98%, and 97%, respectively. This approach effectively identified thirty-

three modern attack types, using a 40:60 train-test split for legitimacy assessment,

42

which differed from traditional stacking ensembles. Statistical tests compared the

performance of various classifiers, and the automated model showed promise for

real-time intrusion detection.

In [E. Arul and A. Punidha, 2021] examined vulnerabilities in cloud devices with

weak defenses, often leaving users unaware of security compromises. The study

focused on DDoS attacks targeting MemCached, a caching mechanism used to

accelerate websites and networks. Hackers exploited insecure UDP MemCached

servers by submitting spoofed applications that concealed their real IP addresses.

The proposed method utilized Supervised SD-LVQ (Self-Organizing Map-based

Learning Vector Quantization) to detect MemCached attacks across various cloud

systems. The approach achieved a true positive rate of 97.23% and a false negative

rate of just 0.03%, demonstrating the system's effectiveness in detecting DDoS

attacks.

In [G. Sreelatha et al., 2022] explored the vulnerability of on-demand services to

various network threats, which pose significant security and privacy challenges.

Their solution included feature selection through sandpiper and the implementation

of deep transfer learning. They used datasets like NSL KDD and UNSW NB15 for

evaluation. Their simulations, conducted with a pre-trained AlexNet, resulted in a

high detection rate and low false alarm rate, outperforming other methods in terms

of detection efficiency.

[H. Ghani et al., 2023] investigated the use of a deep learning-based Feedforward

Neural Network (FFNN) classifier to assess classification performance on the

UNSW-NB15 and NSL-KDD datasets. Their study showed that while large feature

sets could lead to unnecessary features, using a smaller feature vector improved

classification accuracy. The approach achieved 91.29% accuracy on the UNSW-

NB15 dataset and 89.03% accuracy on the NSL-KDD dataset, demonstrating its

effectiveness in identifying network anomalies.

43

[Z. Long, 2024] proposed a novel Network Intrusion Detection System (NIDS)

based on the Transformer model tailored for cloud environments. By integrating

the Transformer’s attention mechanism, the system improves the accuracy of

intrusion detection by better analyzing the relationships between input features and

attack types. Experimental results indicated that the Transformer-based model

achieved over 93% accuracy, comparable to the CNN-LSTM model, demonstrating

its potential to enhance cloud security.

[A.V. Songa and G.R. Karri, 2024] focused on early detection of attacks in

Software-Defined Networking (SDN) switches, emphasizing the need for traffic

clustering and anomaly prediction at each switch to identify potential DDoS

attacks. They proposed event correlation to analyze network behavior and detect

coordinated attack patterns. This approach addresses the limitations of existing

methods, which often fail to provide early detection and lack integration for

comprehensive threat analysis.

Hybrid IDS: Hybrid IDS in Cloud Computing refers to a security system that

combines multiple techniques to detect malicious activity in cloud environments.

Typically, it blends two main types of intrusion detection approaches: signature-

based (which looks for known attack patterns) and anomaly-based (which identifies

unusual or suspicious behavior).

By combining both methods, a hybrid IDS provides more accurate and

comprehensive protection. The signature-based part quickly spots known threats,

while the anomaly-based component can catch new, unknown attacks that haven't

been seen before.

In the context of cloud computing, where resources are dynamic and distributed

across different locations, hybrid IDS solutions are especially useful. They can

monitor both network traffic and virtual machines, adapting to the flexible and

scalable nature of cloud environments.

44

This combination helps reduce false positives and ensures better detection of

complex threats, making cloud systems more secure.

Latest Trends Related to IDS in Cloud Computing:

[R. R. Dewangan et al., 2025] presented that the cloud computing faces several

prevalent security challenges. One major concern is data breaches, which may grant

unauthorized individuals access to confidential information stored in the cloud.

Such incidents can compromise privacy and confidentiality, potentially resulting in

legal and financial consequences for both individuals and organizations.

Additionally, the risk of data loss or corruption is significant, stemming from causes

like hardware malfunctions, human mistakes, or malicious activity. Cloud systems

are also vulnerable to distributed denial of service (DDoS) attacks, which can

interrupt services and cause extended downtime for users. To address these issues,

it is essential for organizations to adopt robust security strategies aimed at

safeguarding cloud-based data and maintaining system integrity.

In [M. Younus et al., 2025] presented a systematic literature review aimed at

exploring trends in cloud computing within the context of e-government.

Employing a descriptive qualitative methodology combined with a bibliometric

analysis, the research leverages the latest version of CiteSpace software to map the

knowledge landscape in this field. The results highlight a rapidly evolving domain

shaped by technological advancements and shifting governmental priorities.

Worldwide, public administrations are increasingly recognizing the potential of

cloud computing to enhance the efficiency, accessibility, and scalability of digital

government services. Despite ongoing challenges—particularly around data

security and privacy—the findings indicate a clear strategic movement toward

adopting digital innovations to deliver more responsive and citizen-centric services.

45

[H. Park, 2025] presented an approach utilizes a Resilient Backpropagation Neural

Network (RBN) to strengthen security and improve resilience by enabling real-time

detection and mitigation of DDoS attacks across both network and application

layers. To facilitate secure communication between containers, an Inter-Container

Communication Bridge (ICCB) is integrated into the system. Additionally, it

incorporates high-performance, low-latency technologies such as eXpress Data

Path (XDP) and Extended Berkeley Packet Filter (eBPF) for efficient security

enforcement, addressing the performance constraints of prior methods. This

solution offers comprehensive protection against emerging cyber threats while

preserving the flexible and scalable nature of cloud-native infrastructures. It also

supports continuous operations through proactive threat monitoring and dynamic

system adjustments, ensuring robust defense mechanisms without compromising

the agility of modern cloud environments.

2.6 Comparative Analysis

Some of the research papers discussed above are presented in the following table

2.1 and table 2.2 which are summarizing the papers in the tabular form.

Table 2.1 Comparison of related work to similarity measures

[Author, Year] Similarity

Measure Used

Purpose

[Cao et al. ,2013] Cosine

Similarity,

Jaccard Index

Facilitate multi-keyword ranked search

in encrypted cloud data with privacy

guarantees.

46

[Wang et al.

,2016]

Cosine

Similarity,

Weighted

Euclidean

Distance

Enable efficient and privacy-preserving

searchable encryption over feature-rich

data.

[Popic and

Batzoglou, 2017]

MinHash,

Cosine

Similarity

Align simulated genomic reads with

actual genome sequences for efficient

cloud-based genetic analysis.

[Liang et al.

,2019]

Cosine

Similarity,

Clustering

Enhance network intrusion detection

using multifeature data clustering

optimization models.

[Miao et al. ,2020] Cosine

Similarity,

Density-Based

Clustering

Map simulated LiDAR data to real-world

UAV point cloud data for obstacle

detection and intrusion monitoring.

[Alshammari and

Aldribi, 2021]

Jaccard

Similarity,

Cosine

Similarity

Detect malicious network traffic by

aligning synthetic traffic patterns with

real-world network datasets.

[Li et al. ,2022] Cosine

Similarity,

Clustering

Algorithms

Align simulated and real-world datasets

for anomaly-based intrusion detection,

focusing on modern attack patterns.

47

Table 2.2 Comparative Analysis of Literature Review Related to IDS

[Authors, Year] Attacks

Detected

Dataset

Used

Methodology Outcomes Limitations/Future

Scope

[Y. Liu and R.

Ma, 2013]

Various

network

attacks

KDD'99 Modified

QPSO

algorithm

aligned with

Bayesian

network

learning

Better

convergence

speed

compared to

existing models

Further evaluation

on different datasets

and real-world

scenarios

[N.Pitropakis et

al. ,2014]

Co-residency

and network

stressing

attacks

Controlled

environment

Smith-

Waterman

genetic

algorithm

Effective

detection in

kernel layer of

KVM-based

cloud

environment;

Method for

identifying

malicious

insider attacks

Creating system call

patterns as 'attack

signatures' for IDS

[K.Wang et al.,

2014]

Botnets Windows

Azure cloud

service

Behavior-

based botnet

detection

High accuracy

(true positive

rate > 95%)

with low false

positive rate;

Scalability

demonstrated

Further scalability

testing in larger

cloud environments

48

in cloud

environment

[N.Pandeeswari

and Kumar ,2016]

Insider and

outsider

attacks in

cloud

computing

DARPA's

KDD cup

dataset

(1999)

Hybrid

algorithm

combining

Fuzzy C-

Means

clustering

with

Artificial

Neural

Network

(FCM-ANN)

High detection

accuracy and

low false alarm

rate for both

insider and

outsider attacks

Evaluation on more

recent datasets and

consideration of

evolving attack

vectors

[J. Hussain et al.

,2016]

Network

Intrusion

NSL-KDD

datasets

Two-stage

hybrid

classification

method

combining

SVM and

ANN

High detection

rate (99.97%)

with low false

positive rate

(0.19%)

Further validation

on diverse network

environments and

attack scenarios

[H. H. Pajouh,

2017]

Network

Anomalies

NSL-KDD

dataset

Two-tier

classification

model

incorporating

Naïve Bayes,

KNN, and

Linear

Discriminant

Analysis

Enhanced

detection rates

and decreased

false alarms;

Efficient

identification

of complex

attack types

Further evaluation

on diverse datasets

and real-world

scenarios

49

[R.

Kesavamoorthy

and K. R.

Soundar, 2019]

DDoS attacks

in cloud

computing

Simulated

data

Autonomous

multi-agent

system with

particle

swarm

optimization

Faster attack

detection

compared to

other methods;

Improved

security

Evaluation under

real-world DDoS

attack scenarios;

Scalability testing

[Z. Chiba et al.,

2019]

Network

Intrusions in

Cloud

Environments

Benchmark

IDS datasets,

CloudSim

4.0

Hybrid

optimization

framework

(IGASAA)

for building

efficient

DNN-based

IDS

High detection

precision and

low false

alarms;

Outperformed

existing

methods

Further validation

on diverse cloud

environments and

real-world datasets

[R. Patil et al.,

2019]

Intrusions in

Cloud

Computing

UNSW-

NB15,

CICIDS-

2017

Hypervisor

Level

Distributed

Network

Security

(HLDNS)

framework

Capability to

meet cloud

network

security

requirements;

Intrusion

detection and

correlation

across servers

Scalability testing

on larger cloud

networks and

evaluation under

diverse attack

scenarios

[E.Besharati et al.

,2019]

Virtual

Machine

Intrusions in

Cloud

Computing

NSL-KDD

dataset,

Cloudsim

software

Host-based

Intrusion

Detection

System (H-

IDS)

Acceptable

accuracy

(approximately

97.51%) for

detecting

Exploration of

additional feature

selection and

classification

techniques

50

attacks against

normal states

[M. Jelidi et al.,

2019]

Cloud

Protection

Signature

based and

Anomaly

based

methods

Hybrid model

combining

distributed

and

centralized

intrusion

detectors

Effectiveness

in protecting

various cloud

layers;

Comprehensive

framework for

monitoring and

managing

cloud security

Integration with

real-time threat

intelligence and

adaptive security

measures

[P. Ghosh et al.,

2019]

Various

Network

Intrusions in

Cloud

Environments

NSL-KDD

dataset

CS-PSO-

based IDS for

quick and

efficient

attack

classification

Effective IDS

approach

demonstrated

on NSL-KDD

dataset

Evaluation on

diverse datasets and

real-world cloud

environments

[R. Rajendran et

al. ,2019]

Denial of

Service

(DoS) attacks

in Cloud

Networks

Cloud

experimental

setup with

real-time

DoS tools

Rule-based

approach for

DoS attack

detection

Improved DoS

attack detection

accuracy

compared to

existing

methods

Validation under

various DoS attack

scenarios and

network

configurations

[Cui et al. ,2019] Distributed

Denial of

Service

(DDoS)

attacks in

DDoS

Attack 2007

Cognitive-

inspired

computing

approach

with dual

Rapid

detection, high

accuracy, low

false positive

rates, and

Investigation of

scalability and

performance under

varying network

conditions

51

Software-

defined

networking

(SDN)

address

entropy

effective

implementation

of defense and

recovery

measures

[A. N. Jaber and

S. U. Rehman,

2020]

Various

network

intrusions in

Cloud

Computing

NSLKDD

dataset

Hybrid IDS

combining

fuzzy c-

means

clustering

(FCM) with

support

vector

machine

(SVM)

High accuracy

and low false

alarm rates

compared to

existing

techniques

Evaluation on larger

datasets and

consideration of

real-world cloud

network

environments

[D. J. Prathyusha

and

G.Kannayaram

,2020]

Distributed

Denial of

Service

(DDoS)

attacks in

Cloud

Computing

KDD cup 99

dataset

Artificial

Immune

System (AIS)

based IDS for

DDoS attack

mitigation

High detection

accuracy and

low false alarm

rate in cloud

environments

Exploration of AIS

performance under

evolving DDoS

attack techniques

[G. S. Kushwah

and V. Ranga,

2020]

Distributed

Denial of

Service

(DDoS)

attacks in

Cloud

Computing

NSL-KDD,

ISCX

datasets

Voting

Extreme

Learning

Machines (V-

ELM) for

DDoS attack

detection

Strong

accuracy in

detecting

attacks;

Outperformed

alternative

methods

Evaluation on

diverse cloud

environments and

consideration of

evolving DDoS

attack techniques

52

[L. Chen et al.,

2020]

Network

Intrusions in

Cloud

Computing

Environment

Real-time

network

traffic data

C4.5 decision

tree and

random forest

algorithms

Reduced

training and

testing times;

High detection

accuracy

Investigation of

system scalability

and performance

under varying

network conditions

[K. B.

Virupakshar et al.

,2020]

Distributed

Denial of

Service

(DDoS)

attacks in

Private

Clouds

Controlled

DDoS attack

environment

dataset

Integration of

OpenStack

firewall with

DDoS

detection

system

Successful

detection of

DDoS attacks

and alerting

administrator

Validation under

real-world DDoS

attack scenarios and

consideration of

additional attack

vectors

[Rajagopal et

al.,2021]

Network

Intrusions in

Computer

Security

UNSW NB-

15, CICIDS

2017,

CICDDOS

2019

datasets

Meta-

classification

approach

using

decision

jungle

High

accuracies for

detecting

modern attack

types; Promise

for real-time

intrusion

detection

Further validation

on larger and more

diverse datasets;

Real-world

deployment and

performance

evaluation

[G. S. Kushwah et

al. ,2021]

Distributed

Denial of

Service

(DDoS)

attacks in

Cloud

Computing

NSL-KDD,

ISCX IDS

2012,

UNSW-

NB15,

CICIDS

2017

datasets

Enhanced

Self-adaptive

evolutionary

extreme

learning

machine

(SaE-ELM)

Superior

detection

accuracies

compared to

other

techniques

Investigation of

system scalability

and performance

under real-world

DDoS attack

scenarios

53

[E. Arul and A.

Punidha ,2021]

DDoS attacks

on

MemCached

in Cloud

Computing

Prototype

Malware

Pool

Supervised

SD-LVQ for

MemCached

attack

detection

High true

positive rate

and low false

negative rate

for DDoS

attack detection

Evaluation under

diverse

MemCached attack

scenarios and

consideration of

additional attack

vectors

[S. Velliangiri et

al. ,2021]

Distributed

Denial of

Service

(DDoS)

attacks in

Cloud

Computing

KDD Cup

Database

Synthetic

User-

Generated

Database

and

Cloud

Server Log

Database

Taylor-

Elephant

Herd

Optimisation-

based Deep

Belief

Network

(TEHO-

DBN)

Improved

DDoS attack

detection

performance

with TEHO-

based DBN

classifier

Investigation of

TEHO-DBN

performance under

evolving DDoS

attack techniques

[GSreelatha et al.

,2022]

Various

network

attacks in On-

Demand

Services

NSL KDD,

UNSW

NB15

datasets

Feature

selection

using

sandpiper and

deep transfer

learning

High detection

rate and low

false alarm rate

compared to

alternative

approaches

Evaluation under

real-world network

attack scenarios and

consideration of

additional datasets

[M. Otair et

al.,2022]

Network

Intrusions in

Cloud

Computing

NSL KDD

dataset

Grey Wolf

Optimization

(GWO) and

Particle

Swarm

Optimization

Superior

outcomes in

terms of false

alarm rate,

detection rate,

detection

Investigation of

GWO-PSO

performance under

diverse network

attack scenarios

54

(PSO) for

feature

selection

optimization

accuracy, and

execution time

[Imran et al.,

2022]

Network

Intrusions in

Cloud

Computing

NSL-KDD

dataset

Cuckoo

search

algorithm

(CSA)

integrated

with k-means

clustering for

feature

selection

Outperformed

existing

approaches in

intrusion

detection

precision using

CS

Evaluation on

diverse cloud

computing

environments and

consideration of

real-time intrusion

detection scenarios

[Eren et al., 2023] Network

Intrusions in

UNSW-

NB15 and

NSL-KDD

datasets

UNSW-

NB15, NSL-

KDD

datasets

Combined

machine

learning and

deep learning

methods for

attack

detection

High accuracy

rates for two-

class and multi-

class

classification

Exploration of real-

world deployment

and scalability

considerations

[H. Ghani et al.,

2023]

Network

Traffic

Anomalies in

UNSW-

NB15 and

NSL-KDD

datasets

UNSW-

NB15, NSL-

KDD

datasets

Feedforward

Neural

Network

(FFNN)

classifier with

a small

feature vector

Improved

classification

accuracy with

reduced

computational

resources

Investigation of the

approach's

performance under

diverse network

conditions and

additional datasets

55

[Z. Long et al.,

2024]

Network

Intrusions in

CSE CIC IDS

2018 dataset

CSE- CIC

IDS 2018

dataset

Seq2Seq

(sequence-to-

sequence) is

used

Outperforms

CNN with

LSTM

technique

Simulated dataset

can be used for the

evaluation.

[A. V. Songa and

G. R. Karri,2024]

DDoS attack

in CICD DoS

2019

CICD DoS

2019

RDAER

model

developed

based on

Recursive

Feature

Elimination

(RFE),

Density

Based Spatial

Clustering

(DBSCAN)

and time

series

techniques

Improved

detection in

less time

RDAER training

and testing data can

be tuned for

improving the

accuracy.

[W. A. H. Aljuaid

and S. S.

Alshamrani,2024]

Network

intrusions in

CSE-CIC

IDS 2018

CSE-CIC

IDS 2018

CNN -based

model in

which Multi-

Blocks of

CNN

Performs better

than existing

techniques

Simulated datasets

can be used to

enhance the

performance of the

model.

2.7 Problem Statement

In today's digital landscape, the rapid expansion of internet connectivity and digital

technologies has led to a surge in cyber threats. These threats can result in

56

significant financial losses, tarnish organizational reputations, and disrupt essential

services. Conventional security methods frequently fall short in addressing the

increasingly advanced and dynamic nature of cyber threats, underscoring the

importance of implementing strong Intrusion Detection Systems (IDS).

A key challenge in creating an effective IDS is accurately classifying network

traffic to differentiate between legitimate and malicious activities. This task

comprises two essential components: selecting the most relevant attributes from

large, complex datasets and integrating appropriate classifiers to optimize detection

performance.

Datasets employed for IDS, such as the CSE-CIC IDS 2018 dataset, contain a wide

range of features that represent various attributes of network traffic. However, not

all features equally contribute to the detection of intrusions. Irrelevant or redundant

features can increase computational complexity and diminish detection accuracy.

Therefore, the challenge is to identify and select the most pertinent features that

provide valuable insights for detecting malicious activities.

Feature selection plays a critical role, as it directly affects the performance of the

IDS. Effective feature selection reduces the dimensionality of the dataset, thereby

enhancing both the efficiency and accuracy of the IDS by eliminating noise and

irrelevant data. Selecting the optimal subset of features from a large pool requires

sophisticated techniques to balance the trade-off between computational cost and

detection performance.

Another significant challenge lies in integrating classifiers that can work together

effectively to enhance the detection capabilities of the IDS. Different machine

learning algorithms have unique strengths and weaknesses. For example, Decision

Trees (DT) are valued for their interpretability and ability to manage categorical

57

data, Support Vector Machines (SVM) excel in high-dimensional spaces, and

Neural Networks (NN) are adept at learning complex patterns. However, no single

classifier is universally optimal for all types of network traffic and attack patterns.

By combining multiple classifiers into a hybrid model, it is possible to leverage the

strengths of each to create a more robust and accurate detection system. The

challenge here is to select and integrate these classifiers in a way that maximizes

detection accuracy while minimizing false positives and false negatives.

Developing a theoretical model is not enough; it must be validated in a realistic

environment to ensure practical applicability. The simulation architecture should

replicate real-world network conditions and allow for extensive testing under

various scenarios to evaluate the robustness and scalability of the IDS. A

comprehensive simulation environment is essential for assessing the IDS's

performance across multiple metrics. Ultimately, the architecture developed will

yield a robust system for detecting attacks, thereby enhancing the security of cloud

environments.

2.8 Research Gaps

1.Many intrusion detection systems are trained and evaluated on outdated datasets

that may not reflect real-world traffic [B. L. Farhan and A. D. Jasim, 2022].

2.Hybrid concept in feature selection module with hybrid classification module

needs to be more explored.

3.Optimization algorithm like Firefly Algorithm (FA) can be explored by

hybridizing with any classifier. FA is very efficient algorithm and, in some cases,

represents Particle Swarm Optimization, Genetic Algorithm and Differential

Evolution [I. Fister et al., 2013].

58

2.9 Summary

This chapter offers a summary of recent research efforts focused on improving

intrusion detection and security measures in cloud computing environments.

Various methodologies have been explored by researchers, including traditional

machine learning approaches, to develop effective intrusion detection systems

(IDS) capable of identifying emerging threats. Additionally, the chapter discusses

innovative approaches such as nature-inspired algorithms and hybrid detection

systems that integrate multiple detection methods for comprehensive cloud

protection. Through an examination of key studies and their findings, this chapter

elucidates the evolving landscape of intrusion detection in cloud computing,

highlighting the strides made towards bolstering security measures in this dynamic

and critical domain. Research gaps are also observed from literature review.

59

CHAPTER 3 RESEARCH METHODOLOGY

This chapter presents the research methodology used to accomplish the study's

objectives. Research methodology refers to the organized approach adopted to

address a research problem. It encompasses the systematic process a researcher

follows, detailing the steps involved in investigating and solving the research

problem.

3.1 Research Objectives: The research objectives are well-defined, clear, and

measurable targets that a study seeks to accomplish. They establish the purpose of

the research and specify what the researcher aims to investigate or uncover. The

objectives of this research are as follows:

1.To study and analyze various attacks in the cloud computing environment.

2.To preprocess data obtained from various sources for attack detection.

3.To extract the relevant features for classification.

4.To design and implement a proposed architecture for the detection of various

attacks in the cloud computing environment by using the optimized classifier.

5.To compare the proposed architecture with the existing ones.

3.2 Research Methodology of Research Work: The methodology used to achieve

the research objectives is illustrated in Figure 3.1. The research work was achieved

in various modules. These modules are described in the following section of this

chapter.

60

Figure 3.1 Research Methodology of Research Work

61

1.Literature Review: When beginning the research process, of journals, as well as

goo indexed published research papers and review papers were studied. Relevant

academic journals, conference proceedings and books are explored. One source

helped to get additional relevant sources. Prior studies that are similar to the current

research are thoroughly reviewed and analyzed. A well-equipped library was

accessed during this stage.

2.Selection of Standard Dataset and Generation of Simulated Dataset in Cloud

Computing Environment: There are various methods for collecting relevant data,

each differing significantly in terms of cost, time and available resources for the

researcher. Dataset can be gathered through experimental or survey-based

approaches. CSE CIC IDS 2018 dataset is selected after reviewing research papers

and review papers. Cloudsim toolkit is used for generating simulated dataset which

is collected by cloud computing environment simulation.

This rapid expansion of data demands more sophisticated security measures.

Vulnerabilities in computer systems, poor security policies, and limited awareness

of potential threats have made networks more prone to breaches. IDS can detect

intrusions either through signature matching within network packets or by

analyzing behavioural patterns.

Table 3.1 Comparison of IDS Datasets

Dataset Source Attack Types
Labelling

Details
Description

DARPA

1998

Simulated

network

traffic

DoS, Probe,

R2L, U2R

Detailed

attack labels;

some

outdated

scenarios

Early dataset;

historical

relevance

62

KDD Cup

1999

Simulated

network

traffic

DoS, R2L,

U2R, Probe

Detailed

attack labels;

some

redundant

records

Widely used;

criticized for

outdated

relevance

NSL-KDD

Refined KDD

Cup 1999

dataset

DoS, R2L,

U2R, Probe

Improved

labelling,

reduced

redundancy

Enhanced version

of KDD Cup

1999

ISCX 2012

Real-world

network

traffic

(Canadian

institution)

DoS, Brute

Force, Web

Attacks

Detailed

attack and

normal

behavior

labels

Focuses on

specific attack

types and normal

traffic

AFDaKyoto

Real-world

network

traffic (Kyoto

University)

DoS, DDoS,

Probe,

Malware,

Information

Gathering

Detailed

attack labels

and normal

traffic

Comprehensive

dataset with a

wide range of

attacks

UNSW-

NB15

Real-world

network

traffic

Exploits,

DoS, Generic,

Fuzzers,

Analysis

Detailed

attack and

normal

behavior

labels

Includes modern

attack types and

normal traffic

CICIDS

2017

Real-world

network

traffic

(Canadian

institution)

DDoS, Brute

Force, Data

Exfiltration,

Botnet

Detailed

labels for

various

attack types

and normal

traffic

Reflects modern

attack scenarios

63

CICIDS

2018

Real-world

network

traffic

(Canadian

institution)

DoS, DDoS,

Botnet,

Malware,

Web Attacks

Detailed

attack labels

and normal

traffic

Up-to-date with

current attack

trends

3. Preprocessing of Datasets: Dataset pre-processing involves transforming raw

data into a more organized and efficient format for further analysis. During this

phase, data is scaled using the min-max normalization technique, which adjusts all

values to a consistent range, typically between 0 and 1. This normalization

improves training efficiency by ensuring uniformity across the data. This step is

crucial for various knowledge discovery tasks, such as network-based intrusion

detection systems (NIDS), which classify network traffic as either normal or

anomalous. Additionally, dataset sampling is applied to address data imbalance. An

imbalanced dataset can result in a higher rate of false negatives, which negatively

impacts the performance of the IDS.

4. Feature Selection on Datasets using Proposed Feature Selection Algorithm:

Feature Selection (FS) tackles the issue of high-dimensional datasets by pinpointing

the minimal subset of optimal features. FS is a critical preprocessing step in

machine learning, commonly used for attack detection. Developing an efficient IDS

relies on selecting relevant features that enhance attack detection capabilities.

However, this process is complex due to the potential relevance, redundancy or

excessiveness of features, which can increase the computational complexity of

detecting attacks.

64

For years, researchers have been exploring optimal methods to improve accuracy

and efficiency in this area. A key focus of recent research is enhancing the feature

selection process by integrating additional algorithms into the learning model. One

promising approach involves employing metaheuristic techniques as optimizers in

conjunction with the learning model. New feature selection algorithm was proposed

which is the hybridization of Firefly Algorithm (FA) with the Decision Tree.

Decision Tree is used for finding the classification accuracy of the FA. This

hybridization results in improving the performance of the FA.

FA was introduced by Xin-She Yang in 2008 and draws inspiration from the natural

behaviour of fireflies, where their allure is influenced by the brightness of their

flashes. Fireflies use their flashes to attract mates and communicate, which has

inspired this optimization technique. In optimization problems, including feature

selection, FA mimics the movement of fireflies as they search for optimal solutions.

A firefly’s brightness corresponds to its fitness value, with brighter fireflies

representing better solutions.

Feature selection (FS) is a vital step in improving the accuracy and efficiency of

classification tasks. A modified version of the Firefly Algorithm (FA) has been

introduced for this purpose. In this enhanced method, a decision tree (DT) classifier

is utilized to evaluate the performance (fitness) of each solution generated by the

FA. The Firefly Algorithm was selected because it is not as widely used in FS

applications, making it a novel choice in this context. According to research by H.

S. Gebremedhin et al. (2020), FA has shown superior results compared to other

popular optimization techniques like Particle Swarm Optimization (PSO) and

Genetic Algorithms (GA). Interestingly, certain PSO variants can be viewed as

specific forms of FA. Moreover, fine-tuning the FA’s parameters can significantly

improve its convergence speed and overall performance.

65

5. Detection of Attack using Hybrid Classifier: In cybersecurity, attack detection

involves identifying various attacks that affect the integrity, confidentiality or

availability of systems and data. Classification is performed on the datasets to detect

the attacks. In many instances, enhancing overall classification accuracy can be

accomplished by designing hybrid classification models that capitalize on the

strengths of multiple algorithms.

A common approach is to combine the strengths of multiple classifiers to create a

more accurate and robust model. In the proposed method, a hybrid model merges a

Neural Network (NN) with a Decision Tree (DT) classifier. NN is a computational

model inspired by the human brain, consisting of interconnected layers of artificial

neurons that process and learn from data. These networks are trained to recognize

patterns and extract features by adjusting the connections between neurons to

improve accuracy. They are particularly effective at capturing complex, non-linear

relationships between input and output variables, making them ideal for tasks like

image and speech recognition, natural language processing, and both classification

and regression. A typical NN architecture includes an input layer, one or more

hidden layers, and an output layer. On the other hand, DT is a straightforward yet

powerful model used for classification and regression tasks. It splits data into

subsets based on feature values, forming a tree-like structure of decisions. Each

internal node represents a decision based on a particular feature, while branches

indicate the outcome of that decision. This process continues until the final

prediction is made at the leaf nodes, which correspond to class labels or predicted

values. Decision trees are intuitive and easy to interpret, mimicking human

decision-making processes. They can handle both numerical and categorical data

and model non-linear relationships between features.

In many situations, boosting classification accuracy can be achieved by developing

hybrid models that integrate the advantages of multiple algorithms. A widely used

66

strategy involves merging different classifiers to build a more reliable and precise

prediction system. In the current study, a hybrid classification approach is

introduced by combining a Neural Network with a Decision Tree. This fusion aims

to enhance overall performance by leveraging the Neural Network’s ability to

capture complex patterns and the Decision Tree’s interpretability and efficiency.

The combined model addresses the shortcomings of individual classifiers and

delivers more accurate and understandable results for the classification task at hand.

6. Evaluation of Proposed Architecture for the Detection of Various Attacks:

Evaluation is essential for checking the performance of the research work with

existing state-of-the-art techniques. Evaluating an architecture using state-of-the-

art techniques involves assessing its performance and effectiveness for the

detection of attacks in comparison to the other techniques in the field. Popular

techniques like Decision Tree, Support Vector Machine, Naïve Bayes are used for

the comparison purpose.

Some Popular Classifiers which are widely used for dataset categorization:

1. Support Vector Machine (SVM): For data that is linearly separable, SVM

identifies a hyperplane that efficiently separates the two classes. When the data is

not linearly separable, SVM applies kernel functions to map the data into a higher-

dimensional space, allowing the identification of an appropriate hyperplane.

2. Naive Bayes (NB): Naive Bayes (NB) is a group of probabilistic classifiers based

on Bayes' theorem, typically used for classification tasks. It assumes that the

features affecting the outcome are independent, which simplifies the computational

process. Despite this "naive" assumption, it frequently delivers accurate results,

particularly when working with large datasets. Naive Bayes is particularly well-

suited for text classification tasks like spam detection and sentiment analysis, due

to its efficiency and scalability.

67

3. K-Means Nearest Neighbor (KNN): KNN is a hybrid method that combines

K-Means clustering with the K-Nearest Neighbors (KNN) algorithm to enhance

classification and prediction results. The K-Means algorithm identifies clusters in

the dataset by grouping data points into k clusters, based on their similarity to the

centroids of these clusters. After the clustering process, the centroids are computed

to represent the center of each cluster.

The performance of the proposed architecture is evaluated using the following

metrics:

1. Precision: This metric indicates the proportion of predicted positive cases that

are actually positive.

2. Recall: It is also known as Sensitivity or True Positive Rate; recall assesses the

number of actual positive cases correctly identified by the model. A high recall

indicates that the majority of true positives are accurately detected.

3. Accuracy: Accuracy reflects the overall correctness of the model by calculating

the percentage of cases that were correctly predicted, encompassing both positive

and negative outcomes.

4. F-Measure: The F-Measure, also known as the F1-score, is the harmonic mean

of precision and recall. It serves as a balanced metric that accounts for both false

positives and false negatives. This measure is especially valuable in scenarios

where it's important to strike a balance between precision and recall, particularly

when dealing with imbalanced class distributions.

These metrics collectively offer a thorough assessment of a model’s performance,

aiding in the evaluation of its effectiveness in classification tasks.

68

3.3 Key Challenges while implementing the IDS

The key challenges faced during IDS implementation:

1. Resource Overhead

Challenge: IDS (especially host-based IDS) consume CPU, memory, and storage

resources.

IDS monitors activities and changes within individual devices to detect suspicious

behavior or potential threats. While effective in identifying internal security

breaches, these systems can place a significant load on system resources. They

often require continuous scanning, real-time analysis, and log generation, which

can lead to increased CPU usage, memory consumption, and storage demands. The

constant monitoring of files, processes, and system configurations may slow down

system performance, especially on machines with limited hardware capabilities.

Therefore, it's important to balance security needs with system efficiency when

deploying HIDS.

2. Tuning and Configuration

Challenge: IDS requires careful tuning to avoid excessive false positives or false

negatives.

Intrusion Detection Systems (IDS) must be carefully configured to ensure accurate

threat detection without overwhelming users with incorrect alerts. If not properly

tuned, an IDS can generate excessive false positives, flagging normal activity as

malicious, which can lead to alert fatigue and reduced trust in the system. On the

other hand, insufficient sensitivity may result in false negatives, allowing real

threats to go unnoticed. Achieving the right balance requires ongoing adjustment

based on the network environment, typical user behavior, and emerging threat

patterns. Regular updates and fine-tuning help maintain the IDS’s effectiveness

while minimizing unnecessary disruptions.

69

3. False Positives & Negatives

Challenge: IDS can generate too many false alarms or miss real threats. Intrusion

Detection Systems (IDS) can sometimes struggle with accurately identifying

threats, leading to two major issues: false alarms and missed detections. When an

IDS produces too many false positives, legitimate activities are mistakenly flagged

as malicious, which can overwhelm security personnel and cause important alerts

to be ignored. Conversely, if the system fails to recognize actual threats—resulting

in false negatives—harmful activities may go undetected, putting the network at

risk. These challenges highlight the importance of fine-tuning the IDS to ensure it

effectively distinguishes between normal and suspicious behavior while

maintaining a manageable alert volume.

4. Real-Time Processing

Challenge: Detecting intrusions in real-time requires fast data ingestion and

processing. High-volume traffic can overwhelm the IDS if it's not properly scaled.

Real-time intrusion detection demands rapid collection and analysis of data to

identify potential threats as they occur. To keep up with high-speed networks, an

IDS must be capable of efficiently handling large volumes of traffic without delay.

If the system lacks sufficient scalability or performance optimization, the surge in

data flow can exceed its processing capacity, leading to delayed responses or

missed threats. Ensuring the IDS is properly scaled and equipped with adequate

computational resources is essential for maintaining its effectiveness in fast-paced,

high-traffic environments.

5. Data Storage & Retention

Challenge: IDS logs and alerts can generate massive amounts of data. Intrusion

Detection Systems (IDS) continuously monitor network and system activities,

producing a significant volume of logs and alerts in the process. Each event,

70

whether benign or suspicious, is recorded to provide a detailed account of activity

for analysis and auditing. Managing, storing, and analyzing this information

requires substantial resources and effective data handling strategies to ensure that

important alerts are not lost in the noise and that the system remains efficient.

3.4 Summary: This chapter details the research methodology used to accomplish

the research objectives, which is structured into several modules. The first module

is the Literature Review, Selection of Standard Dataset and Generation of

Simulated Dataset in Cloud Computing Environment, Preprocessing of Datasets,

Feature Selection on Datasets, Detection of Attacks, Evaluation of Proposed

Architecture for the Detection of Various Attacks. Every module has its own

function and results in developing an efficient Intrusion Detection System.

71

CHAPTER 4 PREPROCESSING AND FEATURE

SELECTION ON SIMULATED DATASET AND CSE

CIC IDS 2018 DATASET

The goal of data pre-processing is to transform raw data into a format that is more

appropriate for analysis and processing. The missing values known as Not a

Number (NaN) values are converted to 0 to prevent value errors in the systems. The

preprocessing phase involves several essential operations to prepare datasets for

training. Outliers and unwanted traffic are removed, while additional features are

introduced to enhance the feature set, ensuring that classifiers achieve optimal

detection performance. Noise and missing values are eliminated. Normalization is

a scaling and mapping technique used in the preprocessing stage [A. L. Shalabi et

al., 2006]. It is particularly beneficial for prediction and forecasting purposes.

Normalization of the data using the Min-Max method helps to scale the values to a

defined range, typically between 0 and 1. This step helps to enhance the training

efficiency by ensuring that the data is on a consistent scale.

4.1.1Generation and Preprocessing of Simulated Dataset

4.1.1.1 Generation of Simulated Dataset by Simulating Cloud Computing

Environment

Cloud environment simulators are utilized to explore, evaluate, and test these

approaches under stress before implementing them in real-world settings.

Simulations are helpful for testing the performance of the applications and it is not

expensive [T. Goyal et al.,2012]. This model incorporates a virtualized cloud setup,

where cloud resources are simulated using CloudSim environment which allows

for the deployment of nodes that exchange data seamlessly through virtual

machines. The CloudSim toolkit enables the modeling and creation of one or more

72

virtual machines (VMs) on a simulated data center node, along with jobs and their

assignment to appropriate VMs [R. Buyya, 2010].

This toolkit follows a model which consists of cloud brokers and data centers [R.

N.Calheiros, 2011]. CloudSim's management interfaces allow for the

administration of data centers, virtual machines (VMs), and other components [D.

M. Reddy, 2023]. By simulating real-world cloud conditions, the model ensures

that the classifier is tested in scenarios that resemble actual cloud deployments.

Each VM in the cloud simulation communicates with other nodes to share data and

workloads which simulates the cloud environment. The hybrid classifier processes

the aggregated data, ensuring that tasks such as resource allocation, network

throughput are optimized. By integrating the hybrid classification method into the

simulation model, the study ensures a realistic and robust test environment that

mirrors the complexities and challenges of cloud data analysis and service

management.

•Deployment model for generating simulated dataset

The deployment of the cloud simulation has been done by using CloudSim which

is a robust cloud simulation framework designed for modelling and simulating

cloud computing environments. The objective of this deployment is generating a

simulated dataset which represents the real-world cloud environments.

The configuration of the CloudSim Environment used in the simulation is described

below:

1.Data Center

• The simulation model is equipped with one data center, which acts as the core of

the cloud infrastructure. The data center manages resources, handles requests and

oversees the operations of the virtual machines (VMs).

73

• The data center is designed to mimic the functioning of an actual cloud data

center, including resource provisioning, allocation of computational tasks and

monitoring of system performance.

• The Datacenter in this simulation represents the main cloud infrastructure, where

all resources are managed and provisioned. It includes hosts and (VMs) to

simulate real-world cloud environments.

• The datacenter is built with certain characteristics, such as architecture (x86),

operating system (Linux), and virtual machine monitor (XEN), making it a multi-

purpose infrastructure capable of handling various workloads.

2.Hosts (Physical Machines)

Within the data center, ten hosts known as Physical Machines (PMs) have been

deployed. These hosts represent physical servers that provide computational

resources such as CPU, memory and storage. Each host is configured with adequate

processing power and memory to support the virtual machines that operate on top

of them. The hosts serve as the foundation for the virtualized resources which offers

processing capabilities to handle diverse workloads that are generated by nodes

during the simulation.

• Hosts in this setup are essentially physical servers that provide the computational

power and memory for VMs. Each host is configured with a certain amount of

RAM, bandwidth and storage.

• The amount of RAM, bandwidth, and storage for each host is generated

randomly to simulate real-world variability in resource availability across

different machines.

• The host contains processing elements (PEs), which represent the CPU cores. In

this setup, each host has two CPU cores (PEs), and the computational power of

each PE is defined using the PeProvisionerSimple class.

74

3.Virtual Machines (VMs)

•The simulation incorporates 100 virtual machines (VMs) where each running on

top of the ten hosts. VMs are used to simulate cloud resources that can dynamically

handle workloads. Each VM has its allocated share of the host's resources which

includes CPU and memory and is responsible for executing tasks that are

submitted by the nodes.

•The VMs have been configured to simulate various workload types which provides

a diverse testing ground for the hybrid classifier. The simulation allows the VMs

to handle resource requests dynamically by adjusting their performance based on

the workloads generated.

•Virtual Machines are the entities running on top of the hosts. Each VM runs

independently and handles its allocated tasks. The hosts provide the computational

power, memory, and bandwidth for the VMs.

•The VMs are assigned a certain amount of RAM, bandwidth, and storage from the

host on which they reside.

4.Workload Generation

• Nodes have been strategically generated within the simulation model to create

and distribute workloads from various geographical locations. Each node

represents a unique source of data or a client system that submits tasks to the

cloud environment.

• The diversity in node locations helps to simulate the real-world cloud

environment where data and requests originate from multiple locations which

requires the cloud infrastructure to manage and allocate resources dynamically.

• The workloads generated by the nodes are distributed across the VMs, and the

hybrid classifier is used to classify, process and optimize the handling of these

workloads. The classifier helps to allocate resources efficiently and ensure that

the cloud infrastructure performs optimally under different conditions.

75

5. Host List Generation

The hostlist is dynamically generated in this setup. The number of hosts

(host_count) is determined at runtime and for each host, RAM, bandwidth and

storage are assigned using random values. This variability helps in simulating real-

world environments where not all physical machines have the same resource

capacity.

6. Costing

Each host is associated with certain costs:

Compute cost per second: The cost incurred for utilizing computational resources

per second, randomly generated.

Cost per memory: The cost for consuming RAM resources, slightly randomized

to simulate variable pricing.

Cost per storage: A fixed cost per unit of storage.

Cost per bandwidth: A fixed cost for bandwidth usage.

7. Provisioning

•PeProvisionerSimple provisions the processing power to the CPU cores (PEs). It

ensures that the allocated CPU resources are properly managed during the

simulation.

•RamProvisionerSimple class ensure the proper allocation and management of the

memory and BwProvisionerSimple class ensure the proper allocation and

management of bandwidth.

This architecture simulates a cloud environment using the CloudSim framework,

where a datacenter is created with multiple hosts, and each host manages one or

more Virtual Machines (VMs). The datacenter supports resource provisioning, VM

scheduling, and task execution. Here are the key details:

76

Attributes of Hosts

Each host has the following attributes:

• RAM: Randomly assigned between 0 to 8000 MB.

• Bandwidth (BW): Randomly assigned between 0 to 8000 Mbps.

• Storage: Randomly assigned between 0 to 100,000 MB.

• Processing Elements (PEs): Two PEs (cores), each with 1000 MIPS processing

capacity.

Table 4.1 Attributes of the VMs

Attribute Description Value/Range

VM ID Unique identifier for each VM 0 to 99

MIPS Processing capacity 1000

RAM Memory allocated to the VM 512 MB

Bandwidth (BW) Network bandwidth 1000 Mbps

Image Size VM image size 10,000 MB

PEs Number of processing elements (cores) 1

VMM Virtual Machine Monitor XEN

Table 4.2 Cloud Sim Configurations Used for Cloud Simulation

Component Description Value/Details

Architecture Defines the CPU

architecture used in the

cloud environment.

x86

Operating

System

OS used by the hosts. Linux

VMM

(Hypervisor)

Virtual Machine Monitor

that manages VMs.

XEN

77

Timezone Time zone for the

datacenter operations.

5.0

Compute

Cost/Sec

Cost of using CPU

resources per second,

randomized for variability.

3.0 * random()

Cost per

Memory

Cost of using memory

resources, slightly

randomized.

1.0 + random()

Cost per Storage Fixed cost of storage

utilization per unit.

0.05

Cost per

Bandwidth

Fixed cost of bandwidth

usage per unit.

0.10

Hosts Physical servers providing

resources (RAM,

bandwidth, storage, CPU

cores).

10 Hosts

RAM Randomized value between

2000 and 8000 MB for each

host.

2000-8000

Bandwidth (bw) Randomized value between

0 and 8000 units for each

host.

0-8000

Storage Randomized storage

capacity per host.

100000 * random()

Processing

Elements

Number of CPU cores

(PEs) assigned to each host.

2 cores per host (PE0 and

PE1)

78

VM Scheduler Scheduler used to allocate

CPU resources to VMs

running on the hosts.

VmSchedulerSpaceShared

Virtual

Machines

Independent VMs running

on hosts, each with

allocated RAM, bw, and

storage.

100 VMs

RamProvisioner Allocates and manages

RAM resources for each

host.

RamProvisionerSimple(ram)

BwProvisioner Allocates and manages

bandwidth for each host.

BwProvisionerSimple(bw)

Table 4.3 CloudSim Node Communication Simulation Algorithm

Algorithm 4.1: Node Communication Simulation Algorithm

Initialize Parameters: Number_of_Nodes = n, Node_Locations,

Node_Properties, Injection_Rate=0, Number_Of_Simulations=m

for i=1 to m

 for j=1 to n

 Set Route [0]= j

 Compute Injection_Rate= Injection_Rate+200* Random ()

 Generate Random Probability

 if Probability >0.3 then

 Starttime=Systemtime

 Set Destination = Random_Destination_Node

 Computer distance between Nodej and Destination

 if Distance<300 then

 Add Destination to Route

79

 else

 Find Intermediate Nodes to Reach Destination

 while (Destination_Flag=0) do

 for Each Intermediate Node k do

 if k is not intermediate node and distance<300 then

 Add k to intermediate

 if Distance from k to Destination <300 then

 Set Destination_Flag =1

 Add Destination to Route

 end if

 end if

 end for

 end while

 end if

Calculate Total Losses and Power Consumption for the Route

Compute Throughput and PDR

Store Results In Output Tabler

 end if

 end for

end for

In this simulation model, the nodes represent workloads rather than physical

machines (PMs). Each node simulates a distinct workload that is processed within

the cloud infrastructure which consists of PMs and VMs that manage these

workloads. The workloads (nodes) are randomly generated with specific

characteristics which includes the data volume, processing time and required

resources.

80

The algorithm begins by generating random locations for each workload (node),

representing different geographical or logical origins. Each workload is assigned

specific properties such as the injection rate which is the rate at which the workload

injects data into the system and processing requirements. The PMs in the data center

serve as the physical infrastructure while the VMs hosted on these PMs handle the

actual processing of the workloads. As workloads are introduced into the system,

the algorithm dynamically routes them through the cloud infrastructure.

For each node, the algorithm calculates the most efficient route to a destination,

which could be a service endpoint or another processing unit. In this context, the

route represents how the workload travels through the cloud infrastructure, possibly

being processed by multiple VMs across different PMs. If the workload is within a

certain distance threshold of the destination, the VM handling the workload

processes it directly. Otherwise, intermediate VMs on different PMs may be used

to forward the workload, simulating a multi-hop transmission scenario where

workloads are moved between different parts of the cloud infrastructure.

As workloads move through the cloud, VMs process the incoming data which

handle computational tasks and forward the workload to the next VM or

destination. The throughput of each workload is tracked to measure how quickly

data is processed and delivered through the cloud system. The algorithm ensures

that VMs efficiently handle workloads based on available resources like CPU,

memory and bandwidth. The Packet Delivery Ratio (PDR) is another key metric

used to measure the efficiency of the network in delivering workloads. PDR

indicates the proportion of the workload that is successfully processed and

transmitted to its destination.

To detect potential attacks in the network or to find the compromised route,

deviations in service parameters such as throughput, PDR are monitored.

81

Anomalies like sudden drops in throughput or unexpected spikes in resource usage,

particularly bandwidth, can indicate malicious activity. For example, if a VM

exhibits a sharp decline in PDR while consuming significantly more bandwidth,

this might signal a Denial of Service (DoS) attack or data interception attempt.

Additionally, if certain VMs process workloads much slower than expected or use

excessive CPU resources without corresponding workload increases, it could

indicate that the VM has been compromised.

The algorithm also calculates the power consumption for each VM based on the

workload being processed. This information is crucial for optimizing cloud

resource utilization and ensuring that the infrastructure remains energy-efficient

while handling diverse workloads. Moreover, abnormal spikes in power

consumption may also signal malicious behavior, where compromised VMs engage

in unauthorized computational tasks. By integrating these parameters, the system

can flag potential attacks. Ultimately, the simulation provides a detailed analysis of

how efficiently workloads are processed and delivered in a cloud environment and

also. tracking key metrics such as throughput, PDR and power consumption.

The security and robustness of the cloud infrastructure in managing workloads in

the simulation includes a step where the aggregated data from workload processing

is analyzed using k-means clustering. This method enables the system to categorize

data into three clusters based on key performance metrics, such as throughput,

Packet Delivery Ratio (PDR) and Power Consumption. The data collected from

workload nodes represents different processing demands and the locations are

aggregated and fed into the k-means algorithm to group the workloads based on

their similarities and differences.

The k-means clustering algorithm divides the aggregated data into three distinct

categories where each representing a different level of system performance. Once

82

the data is categorized, each cluster is further evaluated based on the standard

deviation (STD) of its performance metrics. The standard deviation is a critical

indicator of how much variability there is within each cluster.

Clusters with a high standard deviation represent workloads where performance

metrics such as throughput and PDR, vary significantly, suggesting that the system

is less consistent and less robust in managing these workloads. In practice, this

could mean that some workloads are processed quickly and securely, while others

experience delays, packet loss and higher energy consumption. A high standard

deviation signals potential security risks or inefficiencies, as the system may

struggle to maintain consistent performance under these conditions. These clusters

with high variability are labelled as least robust, indicating that the cloud

infrastructure is less reliable for certain workloads.

On the other hand, clusters with a low standard deviation are indicative of a more

robust system. Here, the performance metrics are more tightly clustered which

means that the system processes workloads consistently, with the minimal

variations in throughput, power consumption and PDR. A low standard deviation

demonstrates that the cloud infrastructure is capable of delivering stable and secure

processing across different workloads, efficiently managing resources and ensuring

that all workloads are handled securely and effectively. These clusters are labelled

as highly robust, highlighting the system's ability to maintain secure, efficient

operations, even under variable workload conditions.

After categorizing the aggregated data into three clusters using k-means

clustering—representing varying levels of robustness based on standard deviation

(STD), the next step involves further classification of this categorized data using a

hybrid classifier. The hybrid classifier integrates multiple classification techniques,

combining the strengths of different algorithms to achieve higher accuracy and

83

reliability in classifying the data. This classifier is designed to ensure that the

system can accurately classify workloads into one of the three categories: highly

robust, moderately robust, or least robust, based on the system's ability to process

them efficiently and securely.

The hybrid classifier processes the clustered data by taking into account the

performance metrics from each category, such as throughput, power consumption

and Packet Delivery Ratio (PDR). These metrics help the classifier in determining

the overall robustness of the system for each workload. The goal of the hybrid

classifier is to maintain high overall classification accuracy, ensuring that the

system can reliably identify workloads that fall into the least, moderate, or highly

robust categories.

• Potential Biases for simulated dataset generation

Potential Biases while generating simulated datasets can be:

1. Simulation Configuration Bias

We used specific simulation parameters (e.g., VM specification, datacenter models)

that don't reflect real-world cloud environments.

 2. Workload Bias

Datasets may be generated using synthetic workloads that do not match real user

behavior or applications.

3. Algorithmic Bias

Research might test a specific scheduling or load-balancing algorithm and report

performance improvements that don’t generalize.

4. Time Scale & Duration Bias

Short simulation durations may not reveal long-term performance trends or

anomalies.

84

5. Overfitting to Simulation

Some datasets might be tuned or generated to demonstrate high performance of a

specific approach, overfitting to the simulated environment.

4.1.1.2 Mapping of simulated data to actual dataset

In the domain of network security and anomaly detection, the classification of data

into attack and non-attack categories forms the cornerstone of model development.

While simulated data provides a controlled environment for experimentation, its

effectiveness hinges on its fidelity to real-world scenarios. Simulated data often

lacks the complexity and variability of actual data, making it prone to mislabelling

when relied upon without cross-referencing. This necessitates mapping simulated

data to actual data to refine the labelling process. Below, we explore the

importance, challenges, and benefits of this mapping process in depth, alongside its

implications for improving precision and reliability.

Labels define the underlying structure of datasets used for training and evaluation

of machine learning and deep learning models. A minor error in labelling can

propagate through the entire pipeline, leading to systemic issues such as:

• Model Degradation: Incorrect labels degrade the performance of models,

as they learn patterns based on false information.

• Overfitting or Underfitting: Mislabelling can create noise that forces

models to overfit irrelevant patterns or underfit essential ones.

• Operational Failures: Systems trained on poorly labelled data risk failing

in real-world scenarios, leading to security breaches or missed detections.

Accurate labelling is particularly critical in domains like cybersecurity, where real-

world attack patterns are nuanced, dynamic, and often multi-faceted.

Statistical methods, while valuable, provide a limited view of data characteristics.

Techniques such as Mean Squared Error (MSE), variance analysis, and deviation

85

thresholds are commonly applied for initial labelling of simulated data. However,

these methods face several limitations:

1. Lack of Contextual Awareness:

o Statistical methods evaluate data in isolation, focusing solely on numerical

patterns.

o Attack signatures often depend on complex, multi-dimensional patterns that

exceed simple statistical descriptions.

2. High Sensitivity to Thresholds:

o Choosing the correct threshold for labelling can be arbitrary and may vary

depending on the dataset. A misaligned threshold can either over-label

benign data as attacks (false positives) or under-label actual attacks (false

negatives).

3. Ambiguity in Complex Scenarios:

o Certain attack types, such as Advanced Persistent Threats (APTs) or blended

attacks, exhibit subtle patterns that evade detection by statistical methods

alone.

4. Static Nature of Statistical Approaches:

o Real-world environments are dynamic, with attack patterns evolving

continuously. Statistical methods, unless frequently updated, fail to adapt to

these changes.

Statistical error-based methods rely on thresholds to classify data points. For

instance, a high MSE value might indicate an anomaly, while a low MSE suggests

normal behaviour. These methods are straightforward and computationally

efficient, making them suitable for initial labelling in large datasets. However, they

come with inherent limitations. Statistical methods lack contextual awareness,

which is crucial for distinguishing between attacks and benign anomalies that might

appear similar in numerical terms but differ significantly in their underlying causes.

For example, a legitimate surge in network traffic during an online sale could be

86

mistaken for a Distributed Denial of Service (DDoS) attack if labelled purely based

on packet volume thresholds. Such mislabelling can lead to high false-positive

rates, eroding the reliability of the resulting system.

Mapping simulated data to actual data addresses these shortcomings by introducing

real-world context into the labelling process. Actual datasets, typically derived

from real-world scenarios, come with ground truth labels validated by experts or

trusted frameworks. These labels capture the nuances of real attack patterns,

including subtle behaviours that might not manifest in a simulation. By aligning

simulated data with these benchmarks, researchers can refine their labels, ensuring

greater accuracy and consistency. For instance, a simulated DDoS attack might be

labelled based on its high packet volume, but mapping it to actual data might reveal

additional characteristics such as synchronized timing or geographic distribution,

enriching the dataset's fidelity.

This mapping process also enhances the generalizability of models trained on the

labelled data. Models trained solely on simulated data risk overfitting to the specific

patterns of the simulation environment. These patterns might not translate well to

real-world scenarios, where attacks are more diverse and unpredictable. Mapping

simulated data to actual data bridges this gap, ensuring that the resulting models

perform reliably across a broader range of conditions. For example, a model trained

on purely simulated phishing email data might struggle to identify sophisticated

real-world phishing attempts that use social engineering tactics. Mapping to actual

datasets helps incorporate these subtleties, making the model more robust and

adaptable.

Another advantage of mapping simulated data to actual data lies in reducing false

positives and false negatives. Statistical methods, while efficient, often lead to

overgeneralizations. They might classify all high-MSE data points as attacks, even

87

if some are benign anomalies. Conversely, they might miss attacks with subtle

signatures that don’t trigger the predefined thresholds. Mapping provides a

validation layer, cross-referencing these classifications against real-world examples

to correct such errors. For instance, simulated data with high MSE might be flagged

as a potential attack, but mapping to actual data could confirm whether it aligns

with known attack patterns or is simply noise.

While statistical labelling methods provide a good starting point, combining them

with mapping creates a hybrid approach that leverages the strengths of both

techniques. Statistical methods quickly identify potential anomalies, which can

then be validated and refined through mapping. This iterative process ensures that

the final labels are both accurate and contextually relevant. Moreover, insights

gained from mapping can inform adjustments to statistical thresholds, making them

more effective in future labelling efforts. For example, if mapping reveals that

certain high-MSE cases consistently align with benign behaviours, the thresholds

can be adjusted to avoid similar false positives in the future.

Mapping simulated data to actual data is particularly critical in dynamic

environments where attack patterns evolve over time. Simulations are often static,

reflecting a snapshot of potential attack behaviours based on known scenarios.

However, real-world data captures the evolving nature of cyber threats, such as new

forms of malware or blended attack strategies that combine multiple vectors. By

mapping simulated data to actual datasets, researchers can ensure that their

simulations remain relevant and aligned with current threat landscapes. For

example, a simulation might model a brute force attack based on fixed parameters,

but mapping to real-world data could reveal new variations, such as adaptive

algorithms that change attack patterns based on system responses.

Despite its advantages, mapping simulated data to actual data is not without

challenges. One major hurdle is the availability of high-quality, labelled datasets.

88

Real-world datasets are often proprietary or subject to privacy restrictions, limiting

their accessibility. Even when such datasets are available, ensuring compatibility

with simulated data can require extensive preprocessing and transformation. For

instance, simulated data might use simplified features or metrics that don’t directly

align with the richer, more complex attributes of actual datasets. Addressing these

challenges requires careful planning and resource allocation, but the benefits of

improved labelling accuracy and model reliability far outweigh the costs.

The computational overhead of mapping can also be significant, especially for large

datasets. Simulated data often contains millions of records, and cross-referencing

each record with actual data can be time-consuming and resource-intensive.

However, advances in automated mapping techniques, such as the use of machine

learning to align and compare datasets, have made this process more efficient. For

example, clustering algorithms can group similar data points from simulated and

actual datasets, streamlining the mapping process and reducing manual effort.

In conclusion, mapping simulated data with actual data is an essential step for

achieving precise and reliable labelling in cybersecurity research. While statistical

error-based methods provide a useful starting point, they fall short in capturing the

complexity and variability of real-world attack patterns. Mapping addresses these

gaps by introducing real-world context, improving generalizability, and reducing

false classifications. The hybrid approach of combining statistical and mapping

methods ensures that labelled datasets are both accurate and adaptable, enabling the

development of robust models capable of meeting the challenges of evolving cyber

threats. Despite the challenges involved, the benefits of mapping far outweigh the

drawbacks, making it an indispensable practice in the pursuit of high-quality,

actionable datasets.

89

Mapping simulated data to actual data is a multi-step process involving the

application of various similarity measures to align and compare the features of the

two datasets. The goal is to refine the simulated data's labelling by benchmarking

it against actual data, ensuring that it captures real-world patterns effectively.

Several methods for mapping exist, each with its strengths and limitations. This

illustration explores similarity measures, their justification, and the importance of

normalization in enhancing their effectiveness.

Mapping involves identifying relationships between the simulated and actual data

points. This is typically achieved by quantifying how similar the data points are

across one or more dimensions. The key methods for mapping include feature

matching, similarity measures, dimensional reduction and projection, and cluster

alignment. Similarity measures play a central role in these approaches, offering a

mathematical basis for comparing datasets.

• Key Similarity Measures for Mapping

Among the many similarity measures available, the most common ones include

Euclidean distance, cosine similarity, and hybrid similarity measures. These

measures provide a robust foundation for aligning simulated and actual data,

ensuring precision and reliability in the mapping process.

1. Euclidean Distance

Euclidean distance is calculated as the straight-line distance between two points in

multi-dimensional space:

𝑑(𝑝, 𝑞) = 𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝑝𝑖 − 𝑞𝑖)
2)) (1)

It is suitable for continuous numerical spaces but is sensitive to scale differences,

making it less effective for high-dimensional data.

90

2. Cosine Similarity

Cosine similarity measures the cosine of the angle between two vectors in a multi-

dimensional space:

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
(𝐴 ⋅ 𝐵)

(||𝐴||||𝐵||)
 (2)

It is robust to magnitude differences, ideal for high-dimensional data, and

computationally efficient. This makes it particularly useful for sparse datasets like

text data represented as vectors.

3. Hybrid Similarity Measures

Hybrid measures combine the strengths of different similarity techniques, such as

a weighted combination of cosine similarity and Euclidean distance. An example

formula :

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = 𝑤1 ∗ 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) + 𝑤2 ∗ (𝐸𝑢𝑐𝑙) (3)

These methods offer enhanced flexibility and precision by leveraging multiple

perspectives on data similarity. Cosine similarity is particularly effective for

mapping simulated data to actual data due to its robustness to magnitude

differences, suitability for high-dimensional data, and ability to align with real-

world characteristics. It ensures computational efficiency while capturing

directional alignment, which is critical for tasks involving complex patterns like

cybersecurity.

Normalization is crucial for eliminating scale bias, improving robustness, and

enabling comparability. Common techniques include Min-Max scaling, Z-score

normalization, and L2 normalization. Normalizing data ensures that similarity

measures like cosine similarity operate effectively, capturing the true relationships

between data points.

91

The loading of the simulated dataset and the CSE-CICIDS dataset is performed

initially. The CSE-CICIDS dataset is a well-known benchmark dataset that contains

labelled records, with the last column specifying the labels (e.g., "Normal,"

"DDoS"). The simulated dataset, while feature-compatible, lacks these labels. To

enable meaningful comparisons, feature alignment is performed, retaining only

common features between the two datasets. This ensures consistency in the feature

space used for similarity computation. Following alignment, Min-Max

normalization is applied to scale all features to a range between 0 and 1. This step

is crucial because features like packet size or flow duration may differ significantly

in scale, leading to biased similarity calculations. By normalizing the data, the

algorithm ensures that all features contribute equally, avoiding domination by

larger-scaled features.

The core of the algorithm lies in the computation of hybrid similarity for mapping

the simulated data points to the CSE-CICIDS dataset. For each simulated data

point, cosine similarity is computed to measure the directional alignment of feature

vectors, which captures the pattern similarity between the data points. Additionally,

Euclidean distance is calculated to assess the magnitude difference, ensuring that

proximity in feature space is considered. Since Euclidean distance is inherently a

measure of dissimilarity, it is normalized to a similarity score ranging from 0 to 1

by subtracting it from the maximum possible distance in the dataset. These two

measures are combined into a hybrid similarity score, calculated as a weighted

average where the parameter α\alphaα balances the importance of cosine similarity

and normalized Euclidean similarity. This hybrid similarity approach provides a

comprehensive way to compare data points, leveraging both direction and

magnitude for precise mapping. The label of the closest CSE-CICIDS data point,

as determined by the highest hybrid similarity score exceeding a threshold (θ), is

assigned to the simulated data point.

92

Figure 4.1 Calculation of similarity measures and threshold

After mapping, the algorithm appends each simulated data point with its assigned

label and hybrid similarity score, producing a labelled dataset. This enriched dataset

is saved to an Excel file, creating a permanent record of the mapping process. To

evaluate the effectiveness of the mapping, the algorithm generates a histogram of

the hybrid similarity scores.

 This visualization helps in understanding how well the simulated data aligns with

the CSE-CICIDS dataset, with the threshold line distinguishing between points that

were successfully mapped and those that fell below the similarity requirement. The

histogram provides insights into the overall distribution of similarity scores,

93

identifying potential areas where parameter tuning (e.g., adjusting α\alphaα or

θ\thetaθ) might improve the mapping accuracy. By combining precise computation,

effective labelling, and detailed visualization, the algorithm ensures that the

simulated data can be reliably used for downstream tasks like model training or

anomaly detection in a realistic context.

Table 4.4 Result of Similarity Calculation

Route

Throughput

(MBPS)

PDR ConsumedPower

(mJ)

Label Hybrid_Similarity_Score

26 7.69E-12 0.0904 1.30E+04 Bruteforce 3.7137

10 3.28E-11 0.3482 1.42E+04 Bruteforce 3.1438

25 6.44E-12 0.0659 1.47E+04 Bruteforce 3.7673

14 2.49E-11 0.2283 1.68E+04 Bruteforce 3.3832

3 2.51E-11 0.2146 1.75E+04 Bruteforce 3.4105

40 3.51E-11 0.2737 1.96E+04 Bruteforce 3.2733

35 3.09E-11 0.2258 2.08E+04 Bruteforce 3.3726

39 9.27E-11 0.6629 2.08E+04 Bruteforce 2.5866

27 7.38E-11 0.5045 2.18E+04 Bruteforce 2.8154

44 1.73E-11 0.1139 2.26E+04 Bruteforce 3.6254

20 8.42E-11 0.5304 2.36E+04 Bruteforce 2.7614

22 1.26E-10 0.7659 2.45E+04 Bruteforce 2.4544

28 1.12E-10 0.633 2.62E+04 Bruteforce 2.5876

8 1.54E-10 0.845 2.72E+04 Bruteforce 2.3939

22 1.31E-10 0.6877 2.86E+04 Bruteforce 2.5001

36 1.30E-10 0.6642 2.89E+04 Bruteforce 2.5262

43 1.22E-10 0.5904 3.05E+04 Bruteforce 2.6219

15 1.38E-10 0.6499 3.14E+04 Bruteforce 2.5283

16 1.21E-10 0.5414 3.35E+04 Bruteforce 2.6847

The proposed work focused on validating the effectiveness of the hybrid similarity-

based mapping process by training a Pattern Recognition Network (PatternNet) to

94

classify simulated data labelled using the CSE-CICIDS dataset. The PatternNet, a

specialized neural network for classification tasks, was designed with three hidden

layers containing 128, 64, and 32 neurons, respectively. These layers were chosen

to allow the network to learn complex patterns and subtle relationships within the

labelled dataset. The dataset, prepared from simulated data mapped to CSE-

CICIDS labels, was divided into 70% training and 30% testing subsets to ensure

robust evaluation and to prevent data leakage between the training and testing

phases. To enable the PatternNet to handle multi-class classification tasks, the class

labels were transformed into one-hot encoded vectors, which represent each class

as a binary vector.

During the training process, the network was optimized using the Adam optimizer

with a learning rate of 0.01, targeting a mean squared error goal for 200 epochs.

Training progress was monitored through the generation of performance and

training state plots, which provided insights into the network’s learning curve,

including the reduction of loss over epochs and validation accuracy trends. These

plots confirmed that the network converged effectively, demonstrating stability in

its learning process. By leveraging a diverse set of labelled features generated

during the mapping process, the PatternNet was expected to validate the accuracy

and generalizability of the proposed mapping approach. Once trained, the network

was evaluated using the unseen test subset to assess its classification accuracy,

generating predictions that were compared to the true labels in the test set.

To provide a detailed evaluation, a confusion matrix was created to analyze the

network's classification performance for each class. The confusion matrix

highlighted true positive, false positive, and false negative rates for every class,

offering granular insights into how well the network distinguished between

different categories of traffic patterns, including normal and malicious activities. A

heatmap was plotted to visualize the confusion matrix, making it easier to interpret

the classification results. However, during this step, it was observed that some

95

classes from the CSE-CICIDS dataset were absent in the test subset, resulting in a

mismatch between the dimensions of the confusion matrix and the total number of

expected categories. This issue was addressed by expanding the confusion matrix

to include all categories from the dataset, ensuring that even missing classes were

represented in the final matrix. The confusion matrix was then normalized to show

percentages, enabling a clearer assessment of classification performance across all

classes. These measures ensured that the evaluation remained comprehensive,

validating the mapping process and the capability of the PatternNet to generalize

effectively to unseen data. The results of this work highlight the robustness of the

proposed methodology, emphasizing its potential for applications in real-world

network intrusion detection systems.

4.1.1.3 Parameters analysis for analyzing the impact of attacks on the system

There are many parameters which are affected when any attack occurs on the cloud.

Some key parameters are analyzed when DDoS attack and User to Root attack were

deployed on the cloud environment.

1. CPU Utilization: CPU utilization represents the proportion of time the central

processing unit (CPU) spends actively executing tasks or processing instructions.

This metric is vital for assessing the efficiency and overall performance of a

computer system. By tracking CPU utilization, organizations can uncover

performance bottlenecks, resource limitations and potential security vulnerabilities.

In cybersecurity, monitoring CPU usage takes on added importance as it can aid in

detecting malicious activities.

CPU Utilization =
Busy Time of CPU

Total Active Time of CPU
∗ 100 (4)

2. Bandwidth Utilization: Bandwidth utilization refers to the ratio of the amount

of data being transmitted over a network to the maximum bandwidth capacity of

96

that network. It is an important metric for assessing network performance and

efficiency.

Bandwidth Utilization =
Amount of Data Tranferred

Total Bandwidth of Network
∗ 100 (5)

3.CPU Load: CPU load refers to the amount of computational work that a CPU is

currently handling. It is a measure of how busy the CPU. This includes the count

of tasks that are currently running and the number of tasks waiting to be processed.

CPU = Number of Tasks Running + Number of Tasks Waiting (6)

Table 4.5 Parameters Analyzed Before Attack

Parameter VM 1 VM 2 VM 3 VM 4 VM 5

CPU Utilization

(%)

30% 35% 25% 40% 30%

Bandwidth

Utilization (%)

50% 45% 40% 55% 50%

Load

Distribution

((Number of

Tasks)

2 2 1 2 2

97

Table 4.6 Parameters Analyzed After Attack

Parameter VM 1

(DDoS)

VM 2

(DDoS)

VM 3

(U2R

Successful)

VM 4

(U2R

Failed)

VM 5

(No

Attack)

CPU Utilization (During

Attack)

90% 85% 95% 40% 30%

Bandwidth Utilization

(During Attack)

90% 85% 95% 55% 50%

Load Distribution

(Number of Tasks)

10 9 2 2 2

Figure No. 4.2 Comparison of CPU Utilization

0

10

20

30

40

50

60

70

80

90

100

VM1 (DDoS) VM2(DDoS) VM3(U2R Attack
Successful)

VM4(U2R Attack
Failed)

VM5 (No Attack)

Comparison of CPU Utilization

Before Attack (%) After Attack (%)

98

Figure No. 4.3 Comparison of Bandwidth Utilization

Figure No. 4.4 Comparison of CPU Load

0

10

20

30

40

50

60

70

80

90

100

VM1 (DDoS) VM2(DDoS) VM3(U2R Attack
Successful)

VM4(U2R Attack
Failed)

VM5 (No Attack)

Comparison of Bandwidth Utilization

Before Attack (%) After Attack (%)

0

1

2

3

4

5

6

7

8

9

10

VM1 (DDoS) VM2(DDoS) VM3(U2R Attack
Successful)

VM4(U2R Attack
Failed)

VM5 (No Attack)

Comparison of CPU Load

Before Attack (%) After Attack (%)

99

The tables provide a detailed overview of the behavior of CPU utilization,

bandwidth utilization, and load distribution across VMs in a cloud environment

before, during, and after the simulation of DDoS and U2R attacks. Before the

attacks, the cloud infrastructure operates in a balanced state. Each virtual machine

(VM) shows moderate CPU utilization: VM 1 at 30%, VM 2 at 35%, VM 3 at 25%,

VM 4 at 40%, and VM 5 at 30%. Bandwidth utilization also reflects a stable

environment, with VMs operating between 40% and 55% bandwidth usage, where

VM 1 and VM 5 show 50% utilization, VM 2 at 45%, VM 3 at 40%, and VM 4

experiencing slightly higher bandwidth at 55%. The load on the VMs is distributed

with 1 or 2 tasks allocated to each, indicating a well-managed and efficiently

running system.

4.Security Efficiency (SE): Security Efficiency measures the system’s overall

performance in detecting attacks while minimizing false alarms. It is defined as:

𝑆𝐸 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)−𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (7)

A higher SE indicates a more reliable detection system that can accurately

differentiate between malicious and benign traffic

.

5.Throughput (T): Throughput reflects the system's efficiency in processing data

(packets or instances) per unit time, critical for real-time applications. It is

expressed as:

𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑇𝑖𝑚𝑒(𝑠)
 (8)

Improved throughput signifies enhanced scalability and responsiveness of the

system.

The results before and after implementing the proposed methodology are shown in

the table below:

100

Table 4.7 Parameter Analysis Before and After Implementation of IDS

Parameter Before

Implementation

After

Implementation

Improvement

(%)

Security Efficiency

(SE)

72.5% 90.2% +24.14%

Throughput (T)

(pkt/s)

1100 1580 +43.64%

4.1.1.4 Preprocessing of Simulated Dataset

The first step is the removal of unused columns, elimination of incomplete or

incorrect records (i.e., those with missing values) and discarding repeated features

and columns as these can reduce the efficiency of the ML model. The second step

involves converting categorical and string values into numerical values. This

includes encoding non-numerical string values into integers and making them

compatible with ML methods. In simple terms, this process cleans the simulated

data. The raw dataset contains both categorical and numerical data, which can

sometimes be inconsistent or skewed, leading to inaccurate results. Machine

learning algorithms only work with cleaned numerical data. This step removes any

missing values from the dataset and converts strings into numerical form so that the

computer can easily process them.

Normalization is then applied to scale all feature values within a specific range,

typically between [-1, 1]. We use the popular Min-Max Normalization which is

represented by the following equation:

The formula of Min-Max Normalization is referred to Eq. (9).

𝐴′ =
(𝐴−min 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴)

(max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴−min 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴)
∗ (𝐷 − 𝐶) + 𝐶 (9)

101

where 𝐴’ is the having the Min-Max Normalized Data 𝐴 if predefined boundary

belongs to [𝐶, 𝐷].

4.1.2 Preprocessing on CSE CIC IDS 2018 Dataset

Several critical characteristics have been identified as essential to establish and

evaluate an effective Intrusion Detection System (IDS) dataset framework [I.

Sharafaldin, 2018]. These attributes encompass a variety of attack types, protocol

information, extensive network traffic capture, full network interactions, detailed

network configurations, a strong set of features, labelled data samples, diversity and

pertinent metadata. [I. Sharafaldin, 2018]. The CSE-CIC-IDS-2018 dataset was

developed with these characteristics in mind, employing a structured approach that

utilizes profiles for systematic dataset generation. The dataset offers a

comprehensive insight into various types of attacks and provides detailed

information regarding different application models, network devices, and

protocols. CICFlowMeter was utilized to capture network traffic, labelling data

flows and documenting specifics such as source and destination addresses, port

numbers, timestamps, and types of attacks. The testing environment simulated

network traffic from protocols including HTTP, HTTPS, SSH, as well as email

protocols like SMTP and POP3.To enhance the efficiency of the machine learning

(ML) model, any incomplete or incorrect records (missing values) are eliminated,

along with duplicate features and columns. Categorical and string values are

converted into numerical formats to facilitate analysis. After encoding the network

traffic datasets, normalization becomes necessary. Without normalization, one

feature might overshadow others, regardless of the advantageous characteristics of

the dataset. Both min-max normalization and Z-score normalization can be utilized

for data preprocessing, with the choice depending on the specific dataset and

algorithm employed. In the case of the CSE-CIC-IDS-2018 datasets, min-max

normalization is preferred due to the significantly varying feature ranges. This

102

technique scales numeric columns from a range of 10,000 to 100,000 down to a

range of 0 to 1, preserving the relative differences in values and ensuring that no

information is lost.

 The Min-Max scaling formula is applied, as normalized data generally enhances

ML training efficiency. While min-max normalization may eliminate some outliers,

this does not adversely affect system performance, as the detection task primarily

focuses on long-term attacks. The 'Label' column, which contains the names of

attacks identified in the dataset, is converted into numeric values. To balance the

dataset, sampling is performed, resulting in 20 samples from which the best one is

chosen for experimentation.

To evaluate the stability, generalization capability, and performance consistency of

the classification model across different subsets of the input data, a repeated

sampling-based experimentation framework was employed. This method operates

by drawing multiple randomized subsets from the original training dataset, each

subset containing a fixed percentage of the total available data.

The sampling is performed independently across multiple iterations to ensure

statistical independence and to simulate varying data conditions that a real-world

model might encounter. In each iteration, a specified proportion of data records is

selected through random index generation, ensuring uniform distribution across the

dataset space. The selected records are used to construct a new training matrix and

a corresponding target label vector. These subsets, along with their associated

labels, are preserved across iterations for traceability, reproducibility, and further

pattern analysis. A supervised learning model, configured to operate with a fixed

architecture, is then trained independently on each of these subsets.

The model's training process follows a standardized regimen, including internal

validation and testing, which allows it to fine-tune its parameters based on both the

103

immediate subset and a small portion reserved for evaluation. After training, the

classifier is assessed on its ability to correctly map the input features to the expected

labels. The predictions generated by the model are processed to determine class

membership through a probabilistic interpretation, typically based on the most

activated output node. These predicted outcomes are then statistically compared

with the ground truth labels using a confusion matrix to identify correct

classifications and misclassifications across all categories.

To assess the quality of predictions beyond binary accuracy, a matching score is

computed, reflecting the average confidence with which the model assigns its

predictions during each sampling run. This score provides a more nuanced metric

for evaluating the model’s certainty and class separability. Over multiple iterations,

this experimental design captures the variability in model performance caused by

changes in input distributions, offering a practical understanding of how robust the

model is to partial data exposure. By analyzing performance metrics across these

iterations, researchers can gain insights into the resilience and adaptability of the

classifier, verify its capacity to avoid overfitting to a specific subset, and estimate

its expected performance under real-world conditions where training data may be

incomplete, imbalanced, or non-uniformly distributed.

4.1.3. Limitation of CSE CIC IDS 2018 Dataset

There are various categories of malicious activities, including BOT attacks, Denial

of Service (DoS), brute-force attempts, infiltration, and SQL injection. The

Heartbleed attack is not represented in Figure 1 due to its limited sample size.

Typically, datasets show an exponential distribution in the number of samples per

class, where benign instances significantly outnumber malicious ones. For machine

learning applications, a dataset is most effective when its class distribution is

balanced or approximates a normal distribution.

104

4.2 Feature Selection Technique

To enhance the efficiency of classifiers used for attack detection, there is a pressing

need for advanced techniques. One effective method is through Feature Selection

(FS), which reduces the dimensionality of large datasets. Not all features are

essential for detecting attacks; therefore, identifying the most relevant ones can

significantly improve detection efficiency. FS addresses the challenge of high-

dimensional datasets by pinpointing the smallest subset of optimal features, making

it a crucial step in machine learning (ML) applications for attack detection. Building

an effective Intrusion Detection System (IDS) necessitates the identification of

relevant features that facilitate the detection of attacks.

 However, this task is complex due to the potential relevance, redundancy, or

excessiveness of features, which can increase the computational complexity of

attack detection. Several methods can be applied to FS, including Greedy Search

techniques such as Sequential Backward Selection (SBS) and Sequential Forward

Selection (SFS). However, these methods often encounter challenges, including

high computational costs and the risk of stagnation in local optima. To overcome

these limitations, efficient search techniques capable of performing global searches

are required. Evolutionary algorithms are particularly well-suited for this purpose

due to their ability to explore broader search spaces.These algorithms have been

successfully applied to various real-world problems, including wireless sensor

networks. Their stochastic, population-based nature makes them ideal for feature

selection. Two commonly used evolutionary algorithms in FS are Particle Swarm

Optimization (PSO) and Genetic Algorithm (GA).

Feature selection is a complex issue that often necessitates the application of

artificial intelligence methods for effective resolution. Researchers have long

sought optimal approaches to enhance accuracy and efficiency in this domain. A

105

current focus in research is on improving the feature selection process by

integrating additional algorithms with learning models. The following are various

types of feature selection techniques:

1.Filter Method: This approach assesses the inherent characteristics of the data

without relying on any specific classification algorithm. It uses predefined criteria

to identify and select the most relevant features for the problem at hand. Features

that meet or exceed the set threshold are retained, while those that do not are

discarded. Common metrics for setting these thresholds include distance,

information gain, correlation, and consistency. Examples of filter techniques

include Correlation-based Feature Selection (FCBF) and Minimum Redundancy

Maximum Relevance (MRMR). While this method is known for its speed and

scalability, its independence from the classifier may lead to a compromise in

accuracy.

2.Wrapper Method: Unlike the filter method, the wrapper method incorporates

the classification algorithm into the feature evaluation process. This method

establishes a connection between the selection of feature subsets and the classifier,

typically resulting in more accurate outcomes compared to the filter approach.

However, this increased interaction can lengthen the processing time and elevate

the risk of overfitting, where the classifier becomes too tailored to the training data

and struggles to generalize to new instances

3.Embedded Method: Similar to the wrapper approach, the embedded method

utilizes the same classifier for feature selection during the evaluation stage.

However, it is generally more efficient in terms of computational resources and

requires less processing time compared to the wrapper method.

106

 4.Hybrid Method: This technique combines elements of both the filter and

wrapper methods in a two-phase sequential process. Initially, the filter method is

employed to create a preliminary subset of features, which is then further refined

using the wrapper method.

 4.2.1Techniques for Feature Selection

1.Information Gain (IG): This approach ranks attribute subsets by calculating the

Information Gain (IG) entropy for each attribute in descending order. Each attribute

is assigned a score ranging from 1 (most relevant) to 0 (least relevant). Attributes

with the highest scores are selected for the next dimensionality reduction step.

2.Principal Component Analysis (PCA): Although the attributes chosen using the

Information Gain (IG) method can be directly applied for classification purposes,

IG often favors attributes with a wide range of potential values, potentially leading

to inflated gain values. To address this issue, selected features undergo further

reduction using PCA, which identifies an optimal subset of attributes. PCA

transforms a set of features into linearly uncorrelated variables through orthogonal

transformations, retaining most of the original information. The transformed

variables, known as principal components, are ranked by decreasing variance, with

the first component capturing the maximum variance.

3.Metaheuristic Techniques: These techniques can be employed as optimizers

alongside learning models. Recent research has demonstrated their ability to deliver

highly accurate results and enhance the feature selection process. Various

metaheuristic algorithms, such as Simulated Annealing and Ant Colony

Optimization, have been applied to the feature selection problem. Specific

Algorithms for Feature Selection are:

107

• Particle Swarm Optimization (PSO): PSO is a metaheuristic optimization

algorithm inspired by the social behavior of birds or fish. It maintains a population

of candidate solutions, referred to as particles, within a multi-dimensional search

space. Each particle represents a potential solution to the optimization problem,

and its position corresponds to a specific set of feature values. PSO operates on

the principle of collaboration among particles, with each adjusting its position

based on its own historical best-known position (pbest) and the best-known

position within the entire swarm (gbest).

• Genetic Algorithm (GA): The Genetic Algorithm (GA) is a heuristic

optimization method that draws inspiration from the principles of natural selection

and genetics. It evolves a population of potential solutions across multiple

generations. Each candidate solution, or chromosome, is represented as a string of

symbols, usually in binary form. The GA operates using three primary processes:

selection, crossover, and mutation. During selection, individuals are chosen as

parents based on their fitness levels. This is followed by the crossover operation,

which produces offspring, and mutation, which introduces random alterations to

preserve genetic diversity. This iterative process continues until a stopping

criterion is met, such as reaching a predetermined number of iterations or obtaining

a satisfactory level of solution quality.

4.2.2 Proposed Feature Selection Algorithm

• Basic Firefly Algorithm

Introduced by Xin-She Yang in 2008, Firefly Algorithm (FA) is based on the

attractiveness of fireflies, which is determined by their brightness or flash intensity.

Fireflies use their flashes to attract mates and communicate with each other, and

their behavior has inspired the development of this optimization technique.

108

In the context of optimization problems, including feature selection, FA simulates

the movement of fireflies in search of optimal solutions. The attractiveness of a

firefly is determined by its fitness value, with brighter fireflies representing better

solutions. Fireflies move towards brighter ones while gradually exploring the

search space to find optimal or near-optimal solutions.

The Firefly Algorithm (FA) is effective because it does not rely on prior values,

unlike Particle Swarm Optimization (PSO), which helps prevent premature

convergence that can occur with PSO. Additionally, FA does not incorporate the

concept of velocity found in PSO. It can manage its modality and easily adjust to

the problem landscape by varying its scaling parameter, such as ϒ. Moreover, FA

serves as a generalization of several optimization methods, including PSO,

Simulated Annealing (SA), and Differential Evolution (DE)..The relevance of FA

in cybersecurity lies in its ability to efficiently sift through the vast feature space,

discerning between relevant and irrelevant features to enhance the effectiveness of

intrusion detection systems, malware detection, and other security mechanisms. By

focusing on selecting the most impactful features for classification or detection

tasks, the Firefly Algorithm (FA) minimizes computational demands while

enhancing the accuracy and reliability of cybersecurity systems.

• Hybridized Firefly Algorithm with Decision Tree Algorithm

Feature selection (FS) plays a crucial role in classification. A modified Firefly

Algorithm (FA) for FS is proposed. In this modified approach, a decision tree (DT)

classifier is employed as the fitness function for the FA. FA was chosen due to its

rare application in FS by researchers. A literature review has demonstrated that FA

outperforms Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) [H.

S. Gebremedhin et al., 2020]. Additionally, some PSO variants are considered

109

special cases of FA. Adjusting the parameters of FA can further enhance its

convergence performance

1. Initialization: Fireflies are randomly distributed within the search space, with

their positions corresponding to different feature subsets.

2.Objective Function: In the context of feature selection, the objective function

measures

the performance of a classifier (e.g., accuracy) using the selected features.

3.Attractiveness: The attractiveness of a firefly is determined by its brightness,

which is calculated based on its fitness value. Brighter fireflies have higher fitness

values, indicating better solutions. The attractiveness decreases with distance

between fireflies and increases with their brightness.

4.Movement: Fireflies move towards brighter ones in the search space, guided by

their attractiveness and randomization. The movement of fireflies is characterized

by a random walk process, where they adjust their positions iteratively to approach

better solutions.

5.Update Positions: The fireflies update their positions based on the attraction

index generated.

6.Termination: The algorithm iterates until a termination criterion is met, such as

a maximum number of iterations or achieving a satisfactory solution quality.

7.Return Solution: Finally, the algorithm returns the best solution found by the

fireflies, which corresponds to the optimal or near-optimal feature subset identified

by the Firefly

110

Table 4.8 Pseudocode for Proposed Feature Selection Algorithm

Algorithm 4.2 : Hybridized Firefly Algorithm with Decision Tree Algorithm

Initialize the parameters n, α, β, ϒ, maxIterations

Number of fireflies =n

Initialize fireflies randomly

 for i=1 to maxIterations do

 Evaluate fitness for each firefly by using decision tree

 fitness= zeros (n, 2)

 for i= 1 to n

 SelectedFeatures= find (fireflies(:,i)> 0.5

 [accuracy, loss] =calculate_accuracy(selectedFeatures, alldata, data_label)

 fitness (i,:) = [accuracy, loss]

 end for

Sort fireflies based on fitness

[:, sortedIndices]= sortrows (fitness, [-1,2])

fireflies=fireflies(:,sortedIndices)

for i=1 to n

 for j= 1 to n

 attractiveness = β0 ∗ exp (−α ∗ ||fireflies(: , i) − fireflies(: , j)||
2

)

 fireflies(: , i) = fireflies(: , i) + ϒ ∗ (fireflies(: , j) − fireflies(: , i)) ∗ attractiveness

 Perform a random walk if necessary to prevent out-of-bounds

 fireflies(: , i) = min (max(fireflies(: , i), 0,1))

 attractionvalue(i, j) = attractiveness

 end for

 end for

111

Figure No. 4.5 Flowchart of Proposed Feature Selection Algorithm

112

1. Initialization: The algorithm initializes parameters such as the number of

fireflies, maximum fitness threshold, maximum iterations, and algorithmic

parameters. It also initializes the attraction value matrix.

2. Random Initialization of Fireflies: Fireflies are randomly initialized,

where each firefly represents a potential solution (i.e., a feature subset).

Fireflies' positions correspond to binary selections of features, with each

feature being either selected or not selected.

3. Main Loop (Iterations): The algorithm iterates for a maximum number of

iterations. Within each iteration, the following steps are performed:

a) Fitness Evaluation: The fitness of each firefly is evaluated by

calculating its accuracy and loss using a decision tree classifier. The

accuracy represents how well the selected features perform in classification,

and the loss is used to guide the search towards better solutions.

b) Sorting Fireflies: Fireflies are sorted based on their fitness values, with

higher fitness values indicating better solutions.

c) Updating Fireflies' Positions: Each firefly updates its position based on

the attractiveness of other fireflies. Attractiveness is determined by the

brightness (fitness) of other fireflies and their proximity. The firefly moves

towards brighter fireflies while considering the absorption coefficient, step

size, and randomization.

 d) Selection of Best Fireflies: After updating positions, the best fireflies'

positions are selected based on their fitness values.

113

e) Post-processing: The algorithm post-processes the selected features to ensure that

the maximum number of selected features does not exceed the specified threshold.

If the number of selected features exceeds the threshold, a random subset of features

is retained to meet the threshold.

f) Evaluation with Decision Tree: To assess the accuracy of the chosen features, a

decision tree classifier is trained and then tested against the dataset. The classifier's

accuracy acts as a performance indicator for the selected features.

g) Return Selected Features: The algorithm returns the selected features, along

with their corresponding accuracy evaluated by the decision tree classifier.

The entire implementation provided is written in MATLAB, a widely used

programming language for numerical computing and algorithm development.

• Features Selected:

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using

Proposed Feature Selection Algorithm which is the hybridized firefly algorithm and

it is observed that 43 features are selected as the optimized feature subset.

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using

PSO and it is observed that 51 features are selected as the optimized feature subset.

Number of simulations on the CSE CIC IDS 2018 dataset are performed by using

GA and it is observed that 63 features are selected as the optimized feature subset.

The 43 features optimized by proposed algorithm gives better results than the

techniques such as Particle Swarm Optimization (PSO) and Genetic Algorithms

(GA).

4.3 Summary: This study presents a novel approach to developing an intrusion

detection system by combining a hybrid firefly algorithm with a hybrid classifier.

The proposed architecture's effectiveness was assessed using both a simulated

dataset and the recent CSE CIC IDS 2018 dataset. A new feature selection

114

algorithm, which integrates the firefly algorithm with a decision tree, is introduced.

The proposed feature selection method outperforms both the PSO algorithm and

approaches without feature selection. The study emphasizes the significance of

feature selection before classification and shows that the proposed algorithm

outperforms other leading methods in the field.

115

CHAPTER 5 PROPOSED ARCHITECTURE FOR

DETECTION OF ATTACKS IN CLOUD COMPUTING

ENVIRONMENT

The architecture is designed to detect attacks in the cloud computing environment

by employing Swarm Intelligence techniques and Machine Learning techniques.

Swarm Intelligence methods are well-regarded for their capability to optimize

difficult problems by facilitating collaboration and knowledge sharing among

agents, which makes them particularly effective for feature selection.

5.1 Proposed Architecture for Detection of Attacks in Cloud Computing

Environment Using Optimized Classifier

Figure 5.1 is showing the proposed architecture for the detection of the attacks in

cloud computing environment. The description of the architecture is described as

follow:

Figure 5.1 Proposed Architecture for Detection of Attacks in Cloud

Computing Environment

116

The architecture incorporates a hybrid classifier to improve the effectiveness of

attack detection. This algorithm combines two classifiers to use their individual

strengths, thereby improving threat identification. This combining use of Swarm

Intelligence for feature selection and a hybrid classification algorithm for detection

promises not only to refine the analysis but also to significantly improve the

performance of identifying attacks within the network.

1.Standard Dataset: Standard benchmark datasets for research purposes can be

accessed on platforms like Kaggle and the UNB website. The CSE CIC IDS 2018

dataset can be downloaded from https://www.unb.ca/cic/datasets/ids-2018.html.

Profiles are created within this dataset, which was developed through the simulation

of various attack scenarios. The CSE CIC IDS 2018 dataset includes seven

categories for evaluation: Benign, Bot Attack, Bruteforce Attack, DoS Attack,

DDoS Attack, Infiltration Attack and Web Attack. This dataset was produced as a

collaborative project by the Communications Security Establishment (CSE) and the

Canadian Institute for Cybersecurity (CIC). The attack simulations were conducted

using 50 machines, while the victim system comprised five departments with 420

machines and 30 servers. The dataset captures network traffic alongside log files

for each machine, resulting in 80 features extracted from the network traffic using

CICFlowMeter-V3.

117

2. Cloud Simulation: Simulated dataset created for the evaluation of the

architecture is done by using the well -known cloud simulating environment, i.e.,

CloudSim. Deployment of real-world cloud is not easy for research as it is very

costly and requires a lot of infrastructure. By using the simulating environments,

researchers can perform their test multiple times. The environment in simulation is

also under the control of the researchers. In the proposed approach, there are three

features generated, i.e., Throughput, PDR, Consumed Power. Three categories are

generated, i.e., Highly Robust, Moderately Robust and Least Robust.

Approximately one lakh records are generated in the dataset. In least robust

category, two attacks are generated-DDoS Attack and User-to-Root Attack.

For the cloud simulation, users are deployed in the environment. In this simulation

model, nodes represent workloads rather than physical machines (PMs). Each node

simulates a unique workload processed within a cloud infrastructure composed of

PMs and virtual machines (VMs) that manage these tasks. The workloads (nodes)

are randomly generated with specific characteristics, such as data volume,

processing time, and resource requirements. The purpose of the simulation is to

model how these workloads are distributed and processed efficiently across the

cloud infrastructure by the virtualized resources, specifically VMs hosted on PMs.

3.Routing Algorithm: Routing algorithm is used which is using the that which

offers the least cost. The algorithm starts by generating random locations for each

workload (node), representing different geographical or logical sources. Each

workload is assigned specific attributes. Physical machines (PMs) in the datacenter

provide the infrastructure, while virtual machines (VMs) hosted on these PMs

handle the actual processing of workloads. As workloads enter the system, the

algorithm dynamically routes them through the cloud infrastructure, deciding

whether a workload can be processed directly by a VM on a PM or needs to be

forwarded through multiple VMs due to resource constraints or network conditions.

118

For each workload, the algorithm calculates the most efficient path to its

destination, such as a service endpoint or another processing unit. This route

represents the movement of the workload through the cloud, potentially involving

multiple VMs on different PMs. If the workload is within a certain distance

threshold from the destination, the handling VM processes it directly. Otherwise,

intermediate VMs on other PMs may be used to forward the workload, simulating

a multi-hop scenario where it moves between different parts of the cloud

infrastructure.

As workloads progress through the cloud, VMs process the incoming data, perform

computational tasks, and forward the workload to the next VM or its final

destination. The throughput of each workload is monitored to measure how

efficiently data is processed and delivered within the system. The algorithm ensures

that VMs handle workloads effectively, based on available resources like CPU,

memory, and bandwidth. Another key metric, the Packet Delivery Ratio (PDR), is

used to assess network efficiency by indicating the percentage of the workload

successfully processed and delivered to its destination without loss.

4.QoS Evaluation and Robustness Evaluation: Clusters with a low standard

deviation indicate a more robust system, where performance metrics are tightly

grouped, reflecting consistent processing of workloads with minimal variation in

Throughput, Power Consumption and Packet Delivery Ratio (PDR). A low

standard deviation demonstrates the cloud infrastructure’s ability to deliver stable

and secure processing, efficiently managing resources and ensuring workloads are

handled effectively. These clusters are identified as highly robust, emphasizing the

system’s capability to maintain secure and efficient operations, even under

fluctuating workload conditions. By clustering aggregated data and categorizing it

based on standard deviation, this approach provides a detailed analysis of the cloud

119

infrastructure's performance in terms of security and robustness. It helps cloud

administrators identify areas of lower security or efficiency, allowing them to

optimize resource allocation, reduce security risks, and improve the overall stability

and reliability of the cloud environment. This method enhances the system’s ability

to handle current workloads while preparing it for future scaling, ensuring long-

term robustness, efficiency, and security.

After categorizing the data into three clusters using k-means clustering, varying

levels of robustness based on standard deviation are represented and the next step

is to classify the data further using a hybrid classifier. This hybrid classifier

integrates machine learning methods, including decision trees and neural networks

to enhance both accuracy and reliability. It ensures that workloads are classified

into one of three categories: highly robust, moderately robust or least robust, based

on the system's capacity to process them efficiently and securely.

The hybrid classifier analyzes performance metrics from each category, such as

throughput, power consumption, and PDR, to determine the system’s robustness

for each workload. By using a combination of machine learning methods, the

classifier can detect subtle variations in performance metrics, enabling more

accurate classification. Its goal is to achieve high classification accuracy, reliably

identifying workloads as least, moderately, or highly robust based on the system's

performance.

Once the classifier processes the data, a confusion matrix is generated to evaluate

its performance across the three robustness categories. The confusion matrix breaks

down predictions versus actual categories, showing how well the classifier

performed in categorizing workloads. The matrix consists of four key components

for each category:

120

1. True Positives (TP) Workloads correctly classified into their actual category

(e.g., highly robust workloads correctly identified as highly robust).

2. True Negatives (TN): Workloads correctly excluded from a category (e.g.,

moderately robust workloads not misclassified as highly robust).

3. False Positives (FP) Workloads incorrectly classified into a category (e.g., least

robust workloads mistakenly classified as highly robust).

4. False Negatives (FN): Workloads that should have been classified into a category

but were not (e.g., highly robust workloads misclassified as moderately robust).

The hybrid classifier aims to maximize True Positives and True Negatives while

reducing False Positives and False Negatives. This ensures precise differentiation

among the three robustness levels while keeping the classification error rate low.

Achieving high classification accuracy is crucial, as it represents the ratio of

accurately classified workloads to the total number of workloads.

The confusion matrix also helps identify areas where the hybrid classifier may need

improvement. For example, a high number of False Positives or False Negatives in

the least robust category could indicate that the classifier is incorrectly interpreting

performance variability. This insight allows for fine-tuning of the classifier,

adjusting parameters and thresholds to better detect security vulnerabilities or

inefficiencies in workload handling.

By leveraging the hybrid classifier, the system enhances its ability to classify

workloads into the appropriate robustness category, improving the overall security

and efficiency of the cloud infrastructure. The integration of k-means clustering,

hybrid classification, and confusion matrix evaluation ensures the system can

handle a diverse range of workloads while maintaining high standards in

performance, security, and resource management. This process enables the cloud

infrastructure to adapt to changing conditions, dynamically identifying and

121

addressing potential weaknesses in real-time, ultimately leading to a more resilient

and robust cloud computing environment.

5. Preprocessing Module: In the preprocessing module, the raw dataset is turned

into fine form which makes the classification task easy and generates the results

with better accuracy. Strings are converted into the numeral form. Normalization is

performed for making the values in the dataset to lie in the range of [-1,1].

 Data sampling is performed for balancing the dataset. CSE CIC IDS 2018 dataset

is unbalanced as some classes are in large number as compared to other classes.

Machine learning techniques do not give biased results with these types of datasets.

Data sampling makes the dataset balanced. The pre-processed dataset is given as

input to the next module, i.e., Feature Selection Module.

6. Feature Selection Module: Feature selection (FS) plays a crucial role in

classification. A modified Firefly Algorithm (FA) for feature selection is proposed.

The innovation of the proposed feature selection algorithm is its incorporation of a

decision tree (DT) classifier as the fitness function for firefly algorithm (FA). The

choice of FA is notable because it has not been widely utilized for feature selection

in previous research. Evidence suggests that FA delivers better performance

compared to Particle Swarm Optimization (PSO) and Genetic Algorithm

(GA).Additionally, some variants of PSO are considered special cases of FA. By

adjusting FA parameters, its convergence can be further improved. Since FA is a

swarm-based algorithm, it shares the same advantages as other swarm-based

techniques. Some variants of Particle Swarm Optimization (PSO) are actually

forms of FA, functioning as accelerated PSO. FA's adaptability allows it to control

randomness and adjust as iterations progress. These benefits make FA well-suited

for handling clustering, classification, and continuous optimization problems.

122

7. Classification Module: In many cases, improving the overall classification

accuracy can be achieved by designing hybrid classification models that leverage

the strengths of multiple algorithms. One common approach is to combine the

capabilities of different classifiers to create a more robust and accurate model. In

the context of the proposed work, the hybrid model consists of a combination of

Neural Network and decision tree classifiers. It is noted that various machine

learning algorithms have been used to address these issues, including decision tree

algorithms and support vector machine models, k-means, k-nearest neighbor,

artificial intelligence approaches and several other.

• Neural Network (NN): Neural Networks consist of interconnected layers of

artificial neurons that process input data and learn to extract patterns and features

from the data through training. Neural networks are capable of learning complex

relationships and non-linear mappings between input and output variables, making

them well-suited for tasks such as pattern recognition, classification, and

regression.

• Decision Tree: Decision trees are simple yet effective classification models that

partition the feature space into a set of hierarchical decision rules based on the

values of input features. Each internal node of the tree represents a decision based

on a feature, and each leaf node corresponds to a class label or prediction. Decision

trees are interpretable, easy to understand, and capable of handling both numerical

and categorical data. They are particularly useful for capturing interactions and

non-linear relationships in the data.

123

Table 5.1 Pseudocode for Classification Algorithm

Algorithm: Hybridized Neural Network with Decision Tree Classification

Algorithm

Initialization: Initialize Data X, Labels Y, Decision Tree Classifier DT, Neural

Network Classifier NN, Number of Predictions =P, Number of Iterations =N

 𝑃𝐷𝑇 = 𝐷𝑇. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋)

 𝑃𝑁𝑁 = 𝑁𝑁. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋)

 P=zeros(N,1)

 for i=1 to N

 if 𝑃𝐷𝑇[𝑖] = 𝑃𝑁𝑁[𝑖] then

 𝑃[𝑖] = 𝑃𝐷𝑇[𝑖]

 else

 P[𝑖] = 𝑈𝑛𝑠𝑢𝑟𝑒

 end if

 end for

Return Predictions P

1. Input: The algorithm takes as input the dataset X containing the instances

to be classified and their corresponding labels Y. Additionally, it requires

two classifiers: a decision tree classifier (DT) and a neural network classifier

(NN).

2. Prediction Phase:

• The algorithm first makes predictions on the dataset X using both

the decision tree classifier (DT) and the neural network classifier

(NN).

• It stores the predictions made by the decision tree classifier in PDT

and the predictions made by the neural network classifier in PNN.

124

3. Comparison and Final Prediction:

• The algorithm then iterates through each instance in the dataset.

• For each instance, it checks if the predictions made by both classifiers are the

same.

• If both classifiers agree on the prediction for the instance, the algorithm assigns

the agreed prediction to the final predictions (P).

• If the classifiers disagree on the prediction for the instance, the algorithm labels

the prediction as "Unsure".

4.Output: The algorithm returns the final predictions P, where a prediction is

considered true only if both the decision tree and neural network classifiers agree

on it. If they disagree, the prediction is labelled as "Unsure".

This algorithm ensures that a classification is considered true only when both the

decision tree and neural network classifiers produce the same prediction for an

instance, thereby adding an additional level of confidence to the classification

results. If the classifiers disagree, the algorithm flags the prediction as "Unsure",

indicating uncertainty in the classification decision.By combining the strengths of

Neural Network and decision tree classifiers into a hybrid model, several benefits

can be realized:

a) Complementary Capabilities: Neural networks are particularly effective at

identifying intricate patterns and relationships within data, whereas decision trees

are skilled at managing categorical variables and generating easily interpretable

rules. By combining these models, the hybrid model can leverage their

complementary capabilities to improve overall classification accuracy.

125

b) Ensemble Effect: Ensemble methods, such as combining different classifiers,

often lead to better generalization performance than individual models. The hybrid

model can harness the ensemble effect by integrating predictions from both Neural

Network and decision tree classifiers, resulting in a more robust and accurate

classification model.

c)Model Interpretability: Decision trees offer clear and understandable models,

making them accessible for domain experts to interpret. By incorporating decision

tree components into the hybrid model, it enhances interpretability while

maintaining the predictive power of Neural Network.

In the proposed work, the hybrid classification model comprising Neural Network

and decision tree components offers a promising approach to enhance the overall

classification accuracy. By effectively combining the strengths of both models, it

can overcome the limitations of individual algorithms and provide more accurate

and interpretable predictions for the given classification task.

1.Improved Robustness to Overfitting: Neural networks, especially deep

architectures, have a tendency to overfit the training data, particularly when dealing

with small datasets or noisy input. Decision trees, on the other hand, are less prone

to overfitting due to their inherent simplicity and ability to capture local patterns.

By integrating decision trees into the hybrid model, it can help mitigate the risk of

overfitting, leading to more generalized and reliable predictions.

2.Enhanced Feature Representation Learning: Neural networks excel at

automatically learning feature representations from raw data, extracting

hierarchical and abstract features through successive layers of neurons. By pre-

processing the data using Neural Network layers before feeding it into the decision

tree classifier, the hybrid model can provide better feature representations,

126

potentially leading to improved discrimination between classes and higher

classification accuracy.

3.Flexible Model Architecture: The hybrid model offers flexibility in designing

the architecture and configuration of both Neural Network and decision tree

components. Researchers and practitioners have the freedom to experiment with

different network architectures, activation functions, learning rates, and tree

parameters to optimize the model's performance for the specific classification task

at hand. This flexibility enables fine-tuning and customization to adapt the model

to varying datasets and application requirements.

4.Adaptive Learning and Adaptability: Neural networks are inherently adaptive

and can continuously update their internal parameters through backpropagation and

gradient descent, allowing them to adapt to changes in the data distribution over

time. Decision trees, although static once trained, can be easily updated or retrained

with new data to accommodate concept drift or changes in the underlying data

characteristics. The hybrid model can leverage this adaptability to maintain high

performance in dynamic and evolving environments, making it suitable for real-

world applications where the data distribution may change over time.

5.Enriched Model Interpretability and Explain ability: While Neural Network

models are known for their black-box nature and lack of interpretability, decision

trees offer transparent and interpretable models that can provide insights into the

decision-making process. By combining both models in the hybrid architecture, it

not only improves classification accuracy but also enhances model interpretability

and explain ability, allowing users to understand the rationale behind predictions

and gain actionable insights from the model's output.

127

5.2 Computation Complexity Analysis

Neural Network Complexity (Pattern Recognition Model)

The implemented architecture is a multi-layer feedforward neural network

consisting of three hidden layers with 128, 64 and 32 neurons.

If D=Number of input features, C= Number of output classes, N= Number of

training samples then,

𝑃 = (𝐷 ∗ 128 + 128) + (128 ∗ 64 + 64) + (64 ∗ 32 + 32) + (32 ∗ 𝐶 + 𝐶)

(5)

where the total number of trainable parameters P(including weights and biases).

The overall computational complexity for training the network over EEE epochs

becomes O(E*N*P).

This accounts for forward propagation, backpropagation and parameter updates

using gradient descent. In the implementation, E=200 and the training dataset is

split using the stratified holdout sampling (70% trsining and 30% testing).

5.3 Summary: This chapter presents a framework designed for detecting attacks

within cloud computing environments. The architecture's effectiveness is assessed

using two distinct datasets. Hybridized firefly algorithm with decision tree is used

to extract relevant features from the datasets. A hybrid classification method that

considers a classification true only when both the decision tree and neural network

classifiers agree on the prediction is used for the detection of attacks.

128

CHAPTER 6 RESULTS AND DISCUSSIONS

The chapter describes the results of the research work. Results are represented in

tabular and graphical form. Detailed discussion on the results is described in this

chapter. Two datasets are used for the evaluation of the proposed architecture for

the detection of the attacks. Comparison of proposed feature selection with the

popular PSO and GA is described n this chapter.

6.1 Implementation Details

The implementation details describe the hardware and software requirements used

during the research. Table 6.1 describes the implementation details related to the

research work.

Table 6.1 Implementation Details

Operating System Windows 10

Hard Disk 8 GB

Implementation Software MATLAB 2022b

Simulation IDE Eclipse IDE 2024

Datasets Simulated Dataset,

CSE CIC IDS 2018 Dataset

129

6.2.1 Performance Metrics

The essential terms associated with performance metrics include True Positive

(TP), True Negative (TN), False Positive (FP) and False Negative (FN). TP refers

to the number of normal packets correctly identified, while TN indicates the number

of attack packets accurately recognized. FP denotes the number of packets

incorrectly classified as attack when they are actually normal packets and known

as Type I error. FN refers to the packets that are misclassified as normal packets

when they are attack packets and known as a Type II error.

Precision is measuring the accuracy of all positive predictions. Accuracy is

measuring the overall correctness of the classification. Recall is measuring the

ability to identify all actual positives. F-Measure is balancing the precision and

recall.

Performance metrics are described in equation forms as Eq. (1)-(4).

Precision =
True Positive

(True Positive+False Positive)
 (1)

Accuracy =
(True Positive+True Negative)

(True Positive +True Negative +False Positive+False Negative)
 (2)

Recall =
True Positive

(True Positive+False Negative)
 (3)

F − Measure =
(2∗Precision∗Recall)

(Precision+Recall)
 (4)

6.2.2 Hypothesis Testing

Hypothesis testing was performed on the classification output to validate whether

the model performance is statically significant compared to random chance.

1.Null Hypothesis (H0): The classifier performs at the level of random guessing.

2.Alternate Hypothesis(H1): The classifier performs significantly better than

random guessing.

130

Given that the confusion matrix encapsulated observed vs. expected frequencies

across multiple classes, a Chi-Square Test for Independence was applied. The Chi-

Square is defined as

𝜘2 = ∑(𝑂𝑖 − 𝐸𝑖) (6)

where 𝑂𝑖is observed values and 𝐸𝑖 is expected values assuming uniform

distribution.

6.3 Feature Selection Algorithm Analysis

The proposed architecture presented in this study represents a significant step

forward in the field of intrusion detection. Leveraging a substantial dataset

comprising 1.5 lakh (1,50,000) records of CSE CIC IDS 2018 dataset, this research

focuses on the identification and classification of the attacks.

This is achieved through the comprehensive evaluation of detection performance

metrics, including accuracy. precision, recall and f-measure. These metrics

collectively offer a holistic view of the system's efficacy, capturing both its ability

to accurately identify attacks and its capacity to minimize the false alarms.

Table 6.2 Precision Comparison of Feature Selection Algorithms

Total

number of

Samples

Precision

PSO+Hybrid

Classifier

Precision

GA+Hybrid

Classifier

Precision

Proposed

Firefly +

Hybrid

Classifier

20000 0.89325121 0.84606881 0.95885899

30000 0.83120870 0.81011737 0.95917421

131

40000 0.83774387 0.80041096 0.96476389

50000 0.89183689 0.80315651 0.96498339

60000 0.81438771 0.77887040 0.96272396

70000 0.88233581 0.91639030 0.96415675

80000 0.89576420 0.80485535 0.95938611

90000 0.88532679 0.86966180 0.95862370

100000 0.95187920 0.82428211 0.95963389

110000 0.91838369 0.77661431 0.96626869

120000 0.90554341 0.82591551 0.95983295

130000 0.81215359 0.78950563 0.96603604

140000 0.96386093 0.81487536 0.96588206

150000 0.89279464 0.84612539 0.96579691

132

Figure 6.1 Comparison of Precision Feature Selection Algorithms

The precision of the architecture is represented as Precision Proposed Firefly +

Hybrid Classifier is highest with different subsets of the dataset like 20,000

samples. The last sample subset is containing 1,50,000 records. The precision of

Proposed Firefly + Hybrid Classifier outperforms precision of PSO and GA

algorithms as it is 0.9589 for 20,000 samples. For 1,50,000 records precision of the

proposed architecture is 0.965.

0

0.5

1

1.5

2

2.5

3

Precision vs Total Number of Samples

Precision Proposed Firefly + Hybrid Classifier

Precision GA+Hybrid Classifier

Precision PSO +Hybrid Classifier

133

Table 6.3 Accuracy Comparison of Feature Selection Algorithms

Total

number of

Samples

Accuracy PSO

+Hybrid Classifier

Accuracy-measure

GA+Hybrid Classifier

Accuracy

Proposed

Firefly +

Hybrid

Classifier

20000 69.0787370 65.9316031

87.9843

30000 74.292018 79.4134382

88.88347

40000 74.9688163 70.2975348

89.9885

50000 75.4650278 71.3911008

86.0560

60000 82.1031559 76.395777

0.870500

70000 82.3963686 80.2633572

87.760

80000 84.9556829 83.7484475

88.2863

90000 81.2901379 82.7116438

90.7894

100000 77.7693584 77.7328603

91.19845

110000 87.0312721 76.6258699

92.8784

120000 85.4534590 75.5824956

93.7846

130000 78.4072976 77.3573391

94.2330

134

140000 81.1369337 74.2547736

94.9835

150000 84.9296383 78.8100726

94.9880

Figure 6.2 Comparison of Accuracy for Feature Selection Algorithms

The accuracy of the architecture is represented as Accuracy Proposed Firefly +

Hybrid Classifier is highest with different subsets of the dataset like 20,000

samples. The last sample subset is containing 1,50,000 records. The accuracy of

Proposed Firefly + Hybrid Classifier outperforms precision of PSO and GA

0

20

40

60

80

100

120

140

160

180

Accuracy (%) vs Total Number of Samples

Accuracy Proposed Firefly + Hybrid Classifier

Accuracy-measure GA+Hybrid Classifier

Accuracy PSO +Hybrid Classifier

135

algorithms as it is 87.9843 for 20,000 samples. For 1,50,000 records accuracy of

the proposed architecture is 94.9880.

Table 6.4 Recall Comparison of Feature Selection Algorithms

Total

number of

Samples

Recall PSO+Hybrid

Classifier

Recall GA+Hybrid

Classifier

Recall Proposed

Firefly + Hybrid

Classifier

20000 0.83396589 0.78073702 0.82851306

30000 0.88278632 0.87612737 0.88205147

40000 0.93018483 0.91105840 0.90895161

50000 0.88995665 0.82414106 0.92531343

60000 0.90343611 0.82126443 0.93597118

70000 0.84921977 0.79800564 0.94365591

80000 0.88786263 0.88940991 0.94934004

90000 0.86810371 0.85412944 0.95375149

100000 0.83271552 0.85425083 0.95725760

110000 0.80523515 0.87892040 0.96023499

120000 0.87661260 0.92861383 0.96276019

130000 0.86183583 0.76918209 0.96444139

136

140000 0.88628053 0.86384529 0.96644342

150000 0.86177842 0.77764284 0.96805712

Figure 6.3 Comparison of Recall for Feature Selection Algorithms

The recall of the architecture is represented as Recall Proposed Firefly + Hybrid

Classifier is highest with different subsets of the dataset like 20,000 samples. The

0

0.5

1

1.5

2

2.5

3

Recall vs Total Number of Samples

Recall PSO+Hybrid Classifier Recall GA+Hybrid Classifier

Recall Proposed Firefly + Hybrid Classifier

137

last sample subset is containing 1,50,000 records. The recall of Proposed Firefly +

Hybrid Classifier outperforms precision of PSO and GA algorithms as it is 0.8285

for 20,000 samples. For 1,50,000 records recall of the proposed architecture is

0.9681.

Table 6.5 F-Measure Comparison of Feature Selection Algorithms

Total

number of

Samples

Recall

PSO+Hybrid

Classifier

Recall GA+Hybrid

Classifier

Recall

Proposed

Firefly +

Hybrid

Classifier

20000 0.86902005

0.83997375 0.88893322

30000

0.82052752 0.84489217 0.91899763

40000

0.81865201 0.86043216 0.93602651

50000

0.84517686 0.84433161 0.94473215

60000

0.79623318 0.83654155 0.9491591

70000

0.89904068 0.88152732 0.95379618

80000

0.84787995 0.84432374 0.95433664

90000

0.87742438 0.86888206 0.95618139

100000

0.88349745 0.82847735 0.95844428

138

110000

0.84157022 0.79066581 0.96324239

120000

0.86389846 0.85050924 0.96129434

130000

0.80066949 0.82408667 0.96523806

140000 0.88312869 0.84907935 0.96616266

150000 0.86883376 0.85388018 0.96692569

Figure 6.4 Comparison of F-Measure Feature Selection Algorithms

0

0.5

1

1.5

2

2.5

3

F-Measure vs Total Number of Samples

F-Measure Proposed Firefly + Hybrid Classifier

F-Measure GA+Hybrid Classifier

F-Measure PSO +Hybrid Classifier

139

The F-Measure of the architecture is represented as F-Measure Proposed Firefly +

Hybrid Classifier is highest with different subsets of the dataset like 20,000

samples. The last sample subset is containing 1,50,000 records. The recall of F-

Measure Firefly + Hybrid Classifier outperforms precision of PSO and GA

algorithms as it is 0.8889 for 20,000 samples. For 1,50,000 records F-Measure of

the proposed architecture is 0.9669.

20 simulation runs were conducted using the CSE-CIC-IDS 2018 dataset to analyze

and optimize its feature set. This dataset widely used for evaluating intrusion

detection systems initially contained 80 features. Through the simulation process,

it was determined that 43 of these features were the most relevant and effective for

the optimization task. The selected features represent the critical attributes that

contribute to improve performance in identifying and classifying network

intrusions, reducing redundancy while maintaining or enhancing predictive

accuracy. This feature selection not only streamlines computational requirements

but also emphasizes the importance of focusing on key data characteristics for

efficient and reliable intrusion detection.

6.4 Attack Detection Analysis using CSE CIC IDS 2018 dataset

The analysis of the proposed architecture using the CSE CIC IDS 2018 dataset is

given in the following tables and graphs. Around 1.5 lakh records of the dataset are

used and analysis is done on different sample sizes.

140

Table 6.6 Precision Comparison for CSE CIC IDS 2018 Dataset

Total

number

of

Samples

Precision

Proposed

Firefly +

Hybrid

Classifier

Precision

Proposed

Firefly +

Levenberg

Neural

Precision

Proposed

Firefly +

Decision

Tree

Precision

Proposed

Firefly +

Random

Forest

Precision

Proposed

Firefly +

KNN with 10

neighbours

Precision

Multi-

SVM

20000 0.95885899 0.92957402 0.9275468 0.92419316 0.94224824 0.93979744

30000 0.95917421 0.94449384 0.94443984 0.94042102 0.93438557 0.93592328

40000 0.96476389 0.93675 0.93637754 0.93015736 0.93765343 0.93428337

50000 0.96498339 0.94046049 0.93662454 0.93755287 0.94267411 0.93886657

60000 0.96272396 0.93056105 0.93913262 0.94535597 0.93448569 0.94106818

70000 0.96415675 0.94553352 0.94136275 0.93481326 0.94053765 0.93824546

80000 0.95938611 0.9421243 0.93947408 0.94333487 0.94941953 0.93502283

90000 0.9586237 0.93736232 0.93514004 0.94924117 0.9346094 0.94853601

100000 0.95963389 0.94947545 0.94199408 0.93958422 0.94926324 0.94560917

110000 0.96626869 0.93482131 0.94661629 0.93885752 0.94579961 0.94611457

120000 0.95983295 0.93395744 0.93762854 0.94185481 0.94869342 0.94551495

130000 0.96603604 0.9380781 0.93617137 0.93468938 0.93986627 0.9391377

140000 0.96588206 0.94029318 0.95102071 0.94163124 0.94295029 0.93957001

141

150000 0.96579691 0.94420519 0.94797429 0.94493851 0.94814222 0.93547019

Figure 6.5 Comparison of Precision for CSE CIC IDS 2018 dataset

The results shows that the Precision of Proposed Firefly + Hybrid Classifier at all

dataset sizes, ranging from 20,000 to 150,000 samples, the 'Precision Proposed

Firefly + Hybrid Classifier' consistently achieves high precision scores. It starts at

0.9588 at 20,000 samples and remains consistently above 0.95, reaching 0.9662 at

110,000 samples. This signifies the algorithm's remarkable capability to accurately

identify attacks while minimizing false positives. The Precision of Levenberg

Neural also exhibits competitive precision scores, although slightly lower than the

proposed Firefly + Hybrid Classifier. It starts at 0.9296 at 20,000 samples and

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Precision vs Total Number of Samples

Precision Proposed Firefly + Hybrid Classifier

Precision Firefly + Levenberg Neural

Precision Firefly + Decision Tree

Precision Firefly + Random Forest

Precision Firefly + KNN with 10 neighbours

Precision Firefly + Multi-SVM

142

gradually increases, reaching 0.9495 at 100,000 samples. However, it doesn't

surpass the precision of the proposed algorithm.

 The Precision of Decision Tree classifier maintains precision scores ranging from

0.9275 to 0.9510 across dataset sizes. It performs consistently but still falls short of

the precision achieved by the proposed algorithm. The Precision of Random Fores

classifier start at 0.9242 and improve gradually to 0.9449 at 100,000 samples.

While it demonstrates competitive performance, it doesn't match the precision of

the proposed Firefly + Hybrid Classifier.

The Precision of KNN with 10 neighbors classifier starts with a precision score of

0.9422 at 20,000 samples and maintains relatively high precision throughout,

reaching 0.9493 at 100,000 samples. It's a strong contender but doesn't surpass the

proposed algorithm.

The Precision of Multi-SVM exhibits precision scores between 0.9398 and 0.9485

across different dataset sizes. It demonstrates competitive performance, but like the

others, it doesn't outperform the proposed Firefly + Hybrid Classifier.

Table 6.7 Accuracy Comparison for CSE CIC IDS 2018 Dataset

Total

number of

Samples

Accuracy

Proposed

Firefly +

Hybrid

Classifier

Accuracy

Firefly

+Levenberg

Neural

Accuracy

Firefly +

Decision

Tree

Accuracy

Firefly +

Random

Forest

Accuracy

Firefly +

KNN with

10

neighbors

Accuracy

Firefly +

Multi-

SVM

20000

87.9843289

69.8020712 70.578441 57.2868027 62.5573169 60.6971319

30000

88.834728

79.6344554 79.2979893 73.2847268 73.8338738 71.2648843

143

40000

89.9884938

79.9079942 80.1771272 65.0518857 70.3689683 66.3922483

50000

86.056

82.5312244 81.7337959 67.0057534 73.4126181 69.2393542

60000

87.05

81.3199879 83.8516298 67.8751961 72.7752154 67.1265216

70000

87.76

85.6572144 84.7906697 78.0607508 75.6514259 79.6163475

80000

88.28625

85.5850963 84.4143067 78.5941594 73.2396711 76.0353772

90000

90.7894358

84.4569366 84.3584236 71.4550674 64.8357461 71.1092599

100000

91.9845373

87.4907258 86.5439475 76.9822602 78.6530081 79.2730053

110000

92.878437

84.6907289 87.5910745 68.068426 82.9166421 69.4803375

120000

93.784638

85.4185933 85.4114399 70.7921331 69.3157987 70.699989

130000

94.233

85.9385461 85.4709568 66.3073606 66.5302593 67.3864733

140000

94.983487

86.381678 88.5309778 71.3191449 81.3273367 70.3030849

150000

94.987987

87.8201685 88.293079 76.6831584 82.381813 73.525489

144

Figure 6.6 Comparison of Accuracy for CSE CIC IDS 2018 dataset

The Accuracy of Proposed Firefly + Hybrid classifier consistently demonstrates the

highest accuracy scores across different dataset sizes, starting at 87.98% accuracy

at 20,000 samples and reaching 94.99% accuracy at 150,000 samples. These scores

signify its remarkable ability to correctly classify network traffic data, making it an

excellent choice for intrusion detection systems, especially in larger network

environments. The Accuracy of Levenberg Neural scores for this classifier also

show strong performance, increasing from 69.80% at 20,000 samples to 87.82% at

0

10

20

30

40

50

60

70

80

90

100

Accuracy vs Total Number of Samples

Accuracy Proposed Firefly + Hybrid Classifier

Accuracy Firefly + Levenberg Neural

Accuracy Firefly + Decision Tree

Accuracy Firefly + Random Forest

Accuracy Firefly + KNN with 10 neighbours

Precision Multi-SVM

145

150,000 samples. It consistently ranks as one of the top-performing classifiers,

indicating its suitability for intrusion detection tasks. The Accuracy of Decision

Tree scores for this classifier remain competitive across dataset sizes, starting at

70.58% at 20,000 samples and reaching 88.29% at 150,000 samples. It provides a

reliable choice for intrusion detection, especially in scenarios with varying data

volumes. The Accuracy of Random Forest classifier scores are lower compared to

the top-performing classifiers, they show a consistent upward trend. The scores

range from 57.29% at 20,000 samples to 76.68% at 150,000 samples. It may be a

suitable choice for scenarios where a balance between accuracy and computational

efficiency is essential. The Accuracy KNN with 10 neighbors classifier displays

noticeable improvement as the dataset size increases. Its accuracy scores increase

from 62.56% at 20,000 samples to 82.38% at 150,000 samples, indicating its

effectiveness in capturing patterns in larger datasets. The Accuracy of Multi-SVM

classifier also demonstrates improvement with larger datasets. Its accuracy scores

range from 60.70% at 20,000 samples to 73.53% at 150,000 samples. It provides a

balance between accuracy and computational complexity and is well-suited for

intrusion detection in various scenarios.

Table 6.8 Recall Comparison for CSE CIC IDS 2018 Dataset

Total

number of

Samples

Recall

Proposed

Firefly +

Hybrid

Classifier

'Recall

Firefly +

Levenberg

Neural '

Recall

Firefly +

Decision

Tree

Recall

Firefly +

Random

Forest

Recall

Firefly +

KNN with

10

neighbors

Recall

Firefly +

Multi-SVM

20000 0.82851306 0.76903862 0.77835963 0.62136802 0.67039498 0.65136714

30000 0.88205147 0.866633 0.86119612 0.79722399 0.80786026 0.77834124

146

40000 0.90895161 0.88138042 0.88296171 0.70745437 0.76393874 0.7185964

50000 0.92531343 0.90538539 0.9014495 0.72646733 0.7936827 0.74830512

60000 0.93597118 0.90743957 0.92066561 0.7266394 0.79531513 0.72129562

70000 0.94365591 0.93398537 0.92890995 0.85970455 0.82275806 0.87092168

80000 0.94934004 0.93747211 0.93016662 0.85347101 0.78458576 0.83555542

90000 0.95375149 0.93442573 0.93655094 0.76519746 0.70213711 0.76121151

100000 0.9572576 0.9527357 0.95003082 0.84350719 0.84656809 0.86158027

110000 0.96023499 0.94201617 0.95334988 0.73493026 0.90128402 0.74470265

120000 0.96276019 0.94922809 0.94747396 0.7638247 0.74230904 0.76098195

130000 0.96444139 0.95062452 0.94855178 0.71962663 0.71918271 0.72828543

140000 0.96644342 0.95320917 0.96099431 0.76913451 0.88762615 0.76057912

150000 0.96805712 0.96187755 0.96364734 0.83004618 0.89115407 0.80384628

147

Figure 6.7 Comparison of Recall for CSE CIC IDS 2018 dataset

The Recall of Proposed Firefly + Hybrid Classifier is consistently demonstrating

commendable recall scores across all dataset sizes. Starting at 0.8285 at 20,000

samples, it steadily improves to 0.9681 at 150,000 samples. This indicates its ability

to identify a high proportion of true positive instances (correctly classified attacks),

showcasing its effectiveness in detecting intrusions. The Recall Levenberg Neural

of classifier also exhibits competitive recall scores. It starts at 0.7690 at 20,000

samples and gradually increases to 0.9619 at 150,000 samples, demonstrating its

effectiveness in identifying true positive instances. The Recall of Decision Tree

classifier maintains recall scores ranging from 0.7784 to 0.9636 across different

dataset sizes. This indicates its ability to detect attacks effectively, especially as the

dataset size increases. The Recall of Random Forest scores for the 'Recall Random

Forest' classifier start at 0.6214 and improve to 0.8300 at 150,000 samples. While

it demonstrates competitive performance, it lags behind the top-performing

0

0.2

0.4

0.6

0.8

1

1.2

Recall vs Total Number of Samples

Recall Proposed Firefly + Hybrid Classifier Recall Firefly + Levenberg Neural

Recall Firefly + Decision Tree Recall Firefly + Random Forest

Recall Firefly + KNN with 10 neighbors Recall Multi-SVM

148

classifiers in recall. The Recall of KNN with 10 neighbors classifier starts with a

recall score of 0.6704 at 20,000 samples and gradually improves to 0.8912 at

150,000 samples. It is effective in identifying true positive instances. The Recall of

Multi-SVM classifier exhibits recall scores between 0.6514 and 0.8709 across

different dataset sizes. It demonstrates competitive performance, especially in

scenarios with larger datasets.

Table 6.9 F-Measure Comparison for CSE CIC IDS 2018 Dataset

Total

number

of

Samples

F-Measure

Proposed

Firefly +

Hybrid

Classifier

F-Measure

Firefly +

Levenberg

Neural

F-Measure

Firefly +

Decision

Tree

F-Measure

Firefly +

Random

Forest

F-Measure

Firefly +

KNN with

10 neighbors

F-Measure

Firefly +

Multi-SVM

20000 0.88893322 0.84172024 0.84642976 0.743114 0.78340762 0.76944042

30000 0.91899763 0.90388979 0.90089912 0.86292217 0.86652866 0.84988948

40000 0.93602651 0.9082221 0.90888548 0.80366289 0.84192886 0.81236721

50000 0.94473215 0.92258969 0.91870045 0.81862171 0.86178616 0.83282414

60000 0.9491591 0.91885488 0.92980743 0.82169234 0.85930195 0.8166544

70000 0.95379618 0.93972397 0.93509489 0.89568708 0.87771431 0.90333092

80000 0.95433664 0.93979245 0.93479718 0.89615575 0.85916813 0.88249519

90000 0.95618139 0.93589172 0.93584496 0.84734084 0.80186387 0.84461187

100000 0.95844428 0.95110278 0.94599538 0.88895728 0.89497934 0.90164117

110000 0.96324239 0.93840495 0.94997115 0.82447107 0.92300539 0.83341241

120000 0.96129434 0.94153085 0.94252554 0.84354882 0.83290677 0.84327116

130000 0.96523806 0.94430963 0.94232091 0.81317882 0.81484704 0.82038001

140000 0.96616266 0.94670712 0.9559815 0.84668644 0.91445221 0.84065253

150000 0.96692569 0.95295945 0.95574657 0.88377394 0.91876529 0.86467787

149

Figure 6.8 Comparison of F-Measure for CSE CIC IDS 2018 dataset

F-Measure Proposed Firefly + Hybrid Classifier consistently emerges as a top-

performing classifier, achieving F-Measure scores that steadily increase from

0.8889 at 20,000 samples to a remarkable 0.9669 at 150,000 samples. This signifies

the algorithm's proficiency in striking a balance between precision and recall, a vital

aspect of intrusion detection. The F-Measure Levenberg Neural classifier also

demonstrates competitive performance, gradually improving from 0.8417 to 0.9529

across the dataset sizes. The F-Measure Decision Tree maintains consistent scores,

indicating its robustness in attack detection, particularly in larger-scale networks.

While the F-Measure Random Forest exhibits competitive performance, it lags

slightly behind the top-performing classifiers. Similarly, the F-Measure KNN with

0

0.2

0.4

0.6

0.8

1

1.2

F-Measure vs Total Number of Samples

F-Measure Proposed Firefly + Hybrid Classifier

F-Measure Firefly + Levenberg Neural

F-Measure Firefly + Decision Tree

F-Measure Firefly + Random Forest

F-Measure Firefly + KNN with 10 neighbors

F-Measure Firefly + Multi-SVM

150

10 neighbors and F-Measure Multi-SVM classifiers prove their effectiveness, with

the former showcasing significant improvement as the dataset size increases. In

conclusion, this data underscores the robustness and reliability of the F-Measure

Proposed Firefly + Hybrid Classifier' for intrusion detection, making it an enticing

choice for network security where achieving a balanced performance between

precision and recall is crucial. The F-Measure Levenberg Neural classifier also

emerges as a strong contender, highlighting its suitability for this task. The F-

Measure Levenberg Neural scores for this classifier also exhibit strong

performance, increasing from 0.8417 at 20,000 samples to 0.9529 at 150,000

samples. It consistently ranks as one of the top-performing classifiers, showcasing

its suitability for intrusion detection tasks. The F-Measure of Decision Tree

classifier scores for this classifier remain relatively stable across dataset sizes,

indicating its robustness. It starts at 0.8464 at 20,000 samples and ends at 0.9557 at

150,000 samples, making it a reliable choice for intrusion detection, especially in

scenarios with varying data volumes. The F-Measure of Random Forest classifier

scores are competitive, they lag slightly behind the top-performing classifiers. The

scores range from 0.7431 at 20,000 samples to 0.8838 at 150,000 samples. The F-

Measure KNN with 10 neighbors classifier shows notable improvement as the

dataset size increases. Its F-Measure scores increase from 0.7834 at 20,000 samples

to 0.9188 at 150,000 samples. This suggests that KNN with 10 neighbors is

effective in capturing patterns in larger datasets. The F-Measure of Multi-SVM

classifier also demonstrates improvement with larger datasets. Its F-Measure scores

range from 0.7694 at 20,000 samples to 0.8647 at 150,000 samples. It provides a

balance between precision and recall and is well-suited for intrusion detection in

various scenarios.

151

6.5 Attack Detection Analysis using Cloudsim Simulated Dataset

The analysis of the proposed architecture using the simulated dataset is given in the

following tables and graphs. Around 1 lakh records of the dataset are used and

analysis is done on different sample sizes.

Table 6.10 Precision Analysis for Simulated Dataset

Total

number

of

Samples

Precision

Proposed

Firefly +

Hybrid

Precision

Levenberg

Neural

Precision

Decision

Tree

Precision

Random

Forest'

Precision

KNN with

10

neighbors

Precision

Multi-

SVM

10000 0.97070109 0.94371507 0.94699337 0.95033276 0.94434593 0.94605655

20000 0.96445322 0.94656442 0.9443651 0.9475 0.94434573 0.94210452

30000 0.96191003 0.95140165 0.94114795 0.94460563 0.94864945 0.94465708

40000 0.96054832 0.9400717 0.94519552 0.94067596 0.94077184 0.94350933

50000 0.96679479 0.94216509 0.94223591 0.94594996 0.94486697 0.93566467

60000 0.95959228 0.94733527 0.94698827 0.94761559 0.9415055 0.94730859

70000 0.9631075 0.94036768 0.94180683 0.94679845 0.94231306 0.94677086

80000 0.96332745 0.94765781 0.94137151 0.95121375 0.94557627 0.94348362

152

90000 0.96244337 0.93868467 0.93782452 0.94224961 0.93786857 0.94157871

100000 0.96586151 0.94163279 0.94708224 0.93809159 0.94532042 0.9408459

Figure 6.9 Comparison of Precision for simulated dataset

Precision values of the proposed architecture ranges from approximately 0.9596 to

0.9707. The proposed model has the highest precision across different sample sizes,

suggesting that it performs consistently well. Precision values with neural network

as classifier range from approximately 0.9381 to 0.9514. This model shows

variability in performance but tends to perform well, especially when the sample

0

1

2

3

4

5

6

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Precision vs Total Number of Samples

Precision Proposed Firefly + Hybrid Precision Levenberg Neural

Precision Decision Tree Precision Random Forest

Precision KNN with 10 neighbors Precision Multi-SVM

153

size is larger. Precision values of Decision Tree ranges from approximately 0.9378

to 0.9471. The precision of the Decision Tree model is in the middle range

compared to other models. Precision values range of Random Forest from

approximately 0.9381 to 0. 9512.The Random Forest model performs

competitively with the Neural and Decision Tree models. The Precision Proposed

Firefly + Hybrid model consistently has the highest precision across different

sample sizes, making it a strong performer in this dataset.

Table 6.11 Accuracy Analysis for Simulated Dataset

Total

number

of

Samples

Accuracy

Proposed

Firefly +

Hybrid

Accuracy

Levenberg

Neural

Accuracy

Decision

Tree

Accuracy

Random

Forest'

Accuracy

KNN with

10

neighbors

Accuracy

Multi-

SVM

10000 91.320000 88.0854162 89.0024674 73.9948182 74.082397 73.6674392

20000 91.680000 89.6750944 88.8071634 78.8322933 70.4459383 75.720351

30000 91.790000 90.4500109 88.7839973 80.3935722 74.550968 82.0204144

40000 91.842500 88.9689545 89.709981 73.1233596 79.8109589 73.340178

50000 91.910000 89.4015388 89.108862 74.2556578 73.3204334 72.2240623

60000 91.9316667 89.9367308 90.2193526 78.4939435 83.6650098 77.8595548

70000 91.9185714 88.7543378 89.3023569 72.7824099 75.2217781 73.3353638

154

80000 91.9325000 89.8462162 88.8295227 79.2131451 70.6162385 76.2271262

90000 91.9577778 88.8719189 88.8716406 71.6281608 70.1046478 71.2662066

100000 91.947000 89.2660161 89.9816264 74.0890382 74.9771295 75.1947625

Figure 6.10 Comparison of Accuracy for simulated dataset

Accuracy of Proposed Firefly + Hybrid range from approximately 91.32% to

91.96%. This model consistently exhibits high accuracy across different sample

sizes, making it one of the top-performing models in terms of overall correctness.

Accuracy of Neural range from approximately 88.09% to 90.45%. The Neural

model shows competitive accuracy values, with some variability across sample

sizes. Accuracy of Decision Tree range from approximately 88.78% to 90.22%.

The Decision Tree model demonstrates good accuracy, similar to the Neural model,

0

100

200

300

400

500

600

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Accuracy vs Total Number of Samples

Accuracy Proposed Firefly + Hybrid Accuracy Levenberg Neural

Accuracy Decision Tree Accuracy Random Forest'

Accuracy KNN with 10 neighbors Accuracy Multi-SVM

155

with some variability across sample sizes. Accuracy of Random Forest range from

approximately 70.10% to 83.67%. The Random Forest model has the most

significant variability in accuracy among all the models, with lower accuracy values

observed for some sample sizes. Accuracy of KNN with 10 neighbors range from

approximately 70.10% to 83.67%. The KNN model has accuracy values similar to

the Random Forest model, with variability across sample sizes. Accuracy of Multi-

SVM range from approximately 71.27% to 82.02%.

The Multi-SVM model exhibits variability in accuracy, similar to the KNN and

Random Forest models. The Accuracy Proposed Firefly + Hybrid model

consistently has high accuracy across different sample sizes, making it a strong

performer in terms of overall correctness. The Accuracy Random Forest, Accuracy

KNN with 10 neighbors, and Accuracy Multi-SVM models show the most

significant variability in performance, with lower accuracy values observed for

some sample sizes. The Accuracy Neural and Accuracy Decision Tree models

perform competitively, with good accuracy values, although they may exhibit some

variability.

Table 6.12 Recall Analysis for Simulated Dataset

Total

number of

Samples

Recall

Proposed

Firefly +

Hybrid

Recall

Levenberg

Neural

Recall

Decision

Tree

Recall

Random

Forest

Recall

KNN with

10

neighbors

Recall

Multi-

SVM

10000 0.97877814 0.97084782 0.97377555 0.79601528 0.80350511 0.79427382

20000 0.98416617 0.9810388 0.97685381 0.85244272 0.76020434 0.82583194

156

30000 0.98589381 0.98310249 0.98174377 0.87725407 0.8010276 0.89093119

40000 0.98667848 0.98207006 0.9836016 0.79384528 0.87129868 0.7938394

50000 0.98762116 0.98426527 0.98424038 0.80082892 0.79007506 0.78572233

60000 0.98801677 0.98456373 0.98579326 0.84812138 0.91559615 0.84236008

70000 0.98790131 0.98357569 0.98402106 0.78342863 0.81594429 0.78859459

80000 0.98812307 0.98491968 0.98269374 0.85199383 0.75993718 0.82848737

90000 0.98843903 0.98356653 0.98487059 0.77380211 0.76094323 0.770193

100000 0.98839047 0.98524936 0.98487797 0.80814008 0.81134415 0.81796635

157

Figure 6.11 Comparison of Recall for simulated dataset

Recall of Proposed Firefly + Hybrid range from approximately 0.9788 to 0.9884.

This model consistently has high recall values across different sample sizes,

indicating that it is effective at correctly identifying relevant instances. Recall of

Neural range from approximately 0.9708 to 0. 9852.The Neural model also shows

strong performance with high recall values, although there is some variability

across sample sizes. Recall of Decision Tree range from approximately 0.9738 to

0. 9858.The Decision Tree model exhibits consistently high recall values across

different sample sizes, similar to the other top-performing models. Recall of

Random Forest range from approximately 0.7738 to 0.8773. The Random Forest

model shows the most variability in recall among all the models, with lower values

observed for some sample sizes. Recall of KNN with 10 neighbors range from

approximately 0.7599 to 0.9156. The KNN model has a wide range of recall values,

with exceptionally high values for some sample sizes, but lower values for others.

0

1

2

3

4

5

6

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F-Measure vs Total Number of Samples

Recall Proposed Firefly + Hybrid Recall Levenberg Neural

Recall Decision Tree Recall Random Forest

Recall KNN with 10 neighbors Recall Multi-SVM

158

Recall of Multi-SVM range from approximately 0.7702 to 0.8909. The Multi-SVM

model also demonstrates variability in recall values across different sample sizes,

similar to the KNN model. The Recall Proposed Firefly + Hybrid, Recall Neural,

and Recall Decision Tree models generally exhibit high recall values, making them

strong performers in terms of correctly identifying relevant instances. The Recall

Random Forest model shows the most variability in performance across different

sample sizes, with lower recall values observed for some cases. The Recall KNN

with 10 neighbors and Recall Multi-SVM models exhibit variability in recall

values, indicating that their performance may be influenced by the specific dataset

or sample size.

Table 6.13 F-Measure Analysis for Simulated Dataset

Total

number of

Samples

F-Measure

Proposed

Firefly +

Hybrid

F-Measure

Neural

F-Measure

Decision

Tree

F-Measure

Random

Forest

F-Measure

KNN with

10

neighbors

F-Measure

Multi-

SVM

10000 0.97472288 0.95708918 0.96019774 0.86635582 0.86825108 0.86354632

20000 0.97420999 0.96349333 0.96033475 0.89746131 0.8423287 0.88014476

30000 0.97375426 0.96699233 0.96101733 0.90968491 0.86861103 0.91700789

40000 0.97343808 0.96061205 0.96401619 0.86104586 0.90470349 0.86222745

50000 0.97709701 0.96275515 0.96278022 0.86736117 0.86056573 0.8541631

60000 0.9735971 0.9655908 0.96600121 0.89511221 0.92837009 0.89175717

70000 0.97534686 0.9614865 0.96245127 0.85740076 0.87458752 0.86047395

80000 0.97556773 0.96592952 0.9615889 0.89887404 0.84265365 0.88225401

90000 0.975268 0.96060164 0.96077197 0.84975846 0.84019282 0.84730613

100000 0.97699613 0.96294742 0.9656104 0.86828045 0.87322328 0.87511363

159

Figure 6.12 Comparison of F-Measure for simulated dataset

F-Measure of Proposed Firefly + Hybrid range from approximately 0.9571 to

0.9760. This model consistently has high F-Measure values across different sample

sizes, indicating that it strikes a good balance between precision and recall. F-

Measure of Neural range from approximately 0.9602 to 0. 9660.The Neural model

also shows strong performance in terms of F-Measure, with relatively consistent

values across sample sizes. F-Measure of Decision Tree range from approximately

0.9603 to 0.9656. Decision Tree model demonstrates consistent F-Measure values,

similar to the other top-performing models. F-Measure of Random Forest range

from approximately 0.8423 to 0.9097. Random Forest model exhibits the most

variability in F-Measure among all the models, with lower values observed for

some sample sizes. F-Measure of KNN with 10 neighbors range from

approximately 0.8402 to 0.9284. The KNN model has a wide range of F-Measure

0

1

2

3

4

5

6

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F-Measure vs Total Number of Samples

F-Measure Proposed Firefly + Hybrid F-Measure Levenberg Neural

F-Measure Decision Tree F-Measure Random Forest

F-Measure KNN with 10 neighbors F-Measure Multi-SVM

160

values, with exceptionally high values for some sample sizes but lower values for

others. F-Measure of Multi-SVM range from approximately 0.8473 to 0.9170.

Multi-SVM model also shows variability in F-Measure values across different

sample sizes, similar to the KNN model. The F-Measure Proposed Firefly + Hybrid,

F-Measure Neural, and F-Measure Decision Tree models consistently exhibit high

F-Measure values, indicating their effectiveness in achieving a balance between

precision and recall. The F-Measure Random Forest model shows the most

variability in performance, with lower F-Measure values for some sample sizes.The

F-Measure KNN with 10 neighbors and F-Measure Multi-SVM models also

demonstrate variability in F-Measure values, suggesting that their performance may

be influenced by the specific dataset or sample size.

6.5 Summary

This chapter focus on Accuracy, Precision, Recall, F-Measure across different

dataset sizes. The Proposed Firefly + Hybrid Classifier consistently emerges as a

top-performing model across all metrics. Its high precision values indicate reliable

attack detection. Moreover, the model strikes a balance between precision and

recall, as highlighted by its robust F-Measure scores. Additionally, the consistency

of the Proposed Firefly + Hybrid Classifier in correctly classifying network traffic

data across varying dataset sizes solidifies its position as an excellent choice for

intrusion detection in cloud environments. The chapter also discusses the

performance of other models like Neural and Decision Tree, which exhibit

competitive performance but with some variability across sample sizes. Overall,

this analysis offers valuable insights into selecting appropriate machine learning

models for intrusion detection tasks in cloud computing environments, emphasizing

the effectiveness and reliability of the Proposed Firefly + Hybrid Classifier in

bolstering network security and mitigating cyber threats.

161

CHAPTER 7 CONCLUSION AND FUTURE SCOPE

The necessity for Intrusion Detection Systems (IDS) in Cloud Computing (CC) has

never been more urgent. Security attacks can result in significant financial losses,

reputational harm and service disruptions. The open and distributed architecture of

CC, along with the large volumes of traffic attracts hackers and making easier for

hackers to disrupt services, steal sensitive data and exploit Cloud Service Providers

(CSPs) resources. Such intrusions can lead to unauthorized access to private

information or excessive consumption of resources like CPU, bandwidth and

storage. Traditional security measures, such as firewalls, are often inadequate for

addressing these complex security challenges. Thus, a more sophisticated solution,

like an IDS, is essential for effectively detecting attacks within CC. As a result,

considerable research efforts have been directed toward developing an effective

IDS to counteract these threats.

7.1CONCLUSION

The proposed architecture introduces a novel approach to IDS by combining feature

selection algorithms with a hybrid classifier. Specifically, a Hybridized Firefly

Algorithm with Decision Tree is proposed as the feature selection method and its

performance is evaluated against other optimization techniques such as Particle

Swarm Optimization (PSO) and Genetic Algorithm (GA). The goal of the research

is to optimize classification accuracy, thereby improving the overall effectiveness

of the IDS. IDSs are essential for detecting unauthorized access and malicious

behaviour in a network by continuously analyzing network traffic and system

activities to identify anomalies and attacks in real time. However, developing an

effective IDS poses challenges due to the evolving nature of cyber threats and the

complexity of network environments. The proposed feature selection algorithm

162

draws inspiration from the flashing behaviour of the fireflies and aiming to identify

the optimal subset of features that maximize classification accuracy.

A hybrid classifier that combines Neural Network (NN) with Decision Tree (DT)

is used to enhance the detection capabilities of an IDS. The hybrid classifiers are

known for their robustness and improved accuracy, as they leverage the diverse

strengths of individual classifiers. The combination of proposed feature selection

and a hybrid classifier for detection results in a powerful IDS capable of accurately

identifying various types of attacks. The experimental results of research work

demonstrate significant improvements in classification accuracy compared to the

traditional approaches. By maximizing the classification accuracy, the developed

IDS effectively distinguishes between normal and malicious activities, thereby

reducing false positives and enhancing overall detection rates.

At 1,00,000 samples, the precision was 0.9658, outperforming, Levenberg Neural

method was 0.9416, Random Forest was 0.9381, SVM was 0.9408 and KNN with

10 neighbors was 0.9453. These results indicate the proposed method's strong

ability to accurately identify true positives while minimizing false positives.

At 1,00,000 samples, the accuracy was 91.95%, significantly higher than the

Decision Tree was 89.98% and KNN with 10 neighbors was 74.98%, Levenberg

Neural was 89.27%, Random Forest was 74.09% and SVM was 75.19%.

At 1,00,000 samples, the recall was 0.988, whereas the next best method,

Levenberg Neural achieved 0.985, Random Forest was 0.808, SVM was 0.818 and

KNN with 10 neighbors was 0.811. This high recall rate signifies the proposed

algorithm's robust capacity to detect nearly all true attack instances, thus

significantly reducing false negatives. This capability to detect a high number of

163

true positives is crucial in an IDS context, as missing actual threats can lead to

severe security breaches.

With 1,00,000 samples, the proposed method attained an F-Measure of 0.977,

surpassing other classifiers such as Levenberg Neural was 0.963, Decision Tree

was 0.965, Random Forest was 0.868, SVM was 0.875 and KNN with 10 neighbors

was 0.873. This high F-Measure demonstrates that the proposed method not only

identifies a large number of true positives but also does so with a low rate of false

positives, ensuring a balanced and effective detection capability.

Simulations were conducted in CloudSim, a robust platform for modelling and

simulating cloud computing environments and services. This realistic approach

allowed for testing the robustness and scalability of the IDS under various

conditions. The proposed algorithm was also tested on simulated data generated

within the CloudSim environment, in addition to validation over the CSE-CIC-IDS

2018 dataset. This dual-v

validation approach not only confirms the accuracy and efficiency of the modified

firefly algorithm combined with the hybrid classifier in controlled datasets but also

demonstrates its practical applicability in real-world, cloud-based scenarios. The

simulation results underscore the algorithm's capability to effectively detect and

mitigate cyber threats, providing further evidence of its potential to enhance

network security across diverse computing environments.

The increasing sophistication and frequency of cyber threats demand the

development of robust and effective Intrusion Detection Systems. Our proposed

method, which combines the Modified Firefly Algorithm for feature selection with

a hybrid classifier, offers a novel approach to improving IDS performance. By

leveraging the comprehensive CSE-CIC-IDS 2018 dataset and conducting

164

simulations in CloudSim, we achieve significant improvements in classification

accuracy, precision, recall, and overall effectiveness. This work not only advances

IDS research but also provides a practical and scalable solution for protecting

digital infrastructures. As cyber threats continue to evolve, ongoing research and

innovation in IDS will be crucial to ensuring the security and integrity of network

systems, ultimately safeguarding critical data and services from malicious attacks.

The results clearly demonstrate that the proposed feature selection algorithm

combined with a hybrid classifier significantly outperforms traditional methods and

other optimization algorithms. This makes it an invaluable tool in the fight against

cyber threats, ensuring that IDS can effectively identify and mitigate potential

attacks, thus protecting network integrity and maintaining the availability of

essential services. The successful application of this method in both controlled

datasets and simulated real-world environments further highlights its robustness

and practical relevance in contemporary cybersecurity practices.

At 150,000 samples, the precision was 0.9658, outperforming, Levenberg Neural

method was 0.9449, Random Forest was 0.9449, SVM was 0.9354 and KNN with

10 neighbors was 0.9442. These results indicate the proposed method's strong

ability to accurately identify true positives while minimizing false positives.

At 150,000 samples, the accuracy was 94.99%, significantly higher than the

Decision Tree was 88.29% and KNN with 10 neighbors was 82.38%, Levenberg

Neural was 87.82%, Random Forest was 76.68% and SVM was 73.52%. This high

accuracy vi indicates that the proposed method is exceptionally adept at correctly

classifying both normal and malicious activities, providing comprehensive and

reliable protection against network threats. For instance, at 20,000 samples, the

accuracy was 87.98%, compared to 69.80% for the Levenberg Neural method and

70.58% for the Decision Tree.

165

At 150,000 samples, the recall was 0.9681, whereas the next best method,

Levenberg Neural, achieved 0.9619, Random Forest was 0.9636, SVM was

0.8300and KNN with 10 neighbors was 0.8038. This high recall rate signifies the

proposed algorithm's robust capacity to detect nearly all true attack instances, thus

significantly reducing false negatives. This capability to detect a high number of

true positives is crucial in an IDS context, as missing actual threats can lead to

severe security breaches.

With 1,50,000 samples, the proposed method attained an F-Measure of 0.9584,

surpassing other classifiers such as Levenberg Neural was 0.9669, Decision Tree

was 0.95295, Random Forest was 0.8838, SVM was 0.9188 and KNN with 10

neighbors was 0.8647. This high F-Measure demonstrates that the proposed method

not only identifies a large number of true positives but also does so with a low rate

of false positives, ensuring a balanced and effective detection capability. At 20,000

samples, the F-Measure was 0.8889, compared to 0.8417 for the Levenberg Neural

method and 0.8464 for the Decision Tree.

When compared to other optimization algorithms like PSO and GA, the proposed

feature selection also showed superior performance. For instance, in terms of

precision, PSO combined with a hybrid classifier achieved 0.95188 at 100,000

samples, whereas the proposed method attained a higher precision of 0.9658.

Similarly, recall for PSO and GA combined with a hybrid classifier at 100,000

samples was 0.83272 and 0.85425, respectively, while the proposed method

achieved 0.9884, highlighting its effectiveness in identifying actual positives.

By using the comprehensive datasets like CSE-CIC-IDS 2018 and simulated

dataset, the proposed architecture achieves significant improvements in the

detection of attacks which contributes to the advancement of IDS research.

166

Simulated dataset is generated by using the cloudsim tool. CloudSim allows for the

modelling and simulation of cloud computing environments and services, offering

a comprehensive platform to test the robustness and scalability of the IDS under

various conditions. This dual-validation approach confirms the accuracy and

efficiency of the proposed architecture in controlled datasets and also demonstrates

its practical applicability in real-world cloud-based scenarios. The simulation

results underscore the algorithm's capability to effectively detect attacks and

provides further evidence of its potential to enhance network security across diverse

computing environments. This not only contributes to the advancement of IDS

research but also provides a practical and scalable solution for safeguarding CC.

7.2 FUTURE SCOPE

Future Potential of the Proposed Cloud-Based IDS:

1.Utilizing AI and Machine Learning Capabilities:

Incorporating AI and ML can significantly enhance the IDS by enabling it to detect

sophisticated and previously unseen cyber threats. These technologies can facilitate

real-time anomaly detection and help minimize false alerts.

2.Continuous Adaptation to User Behavior:

By implementing user behavior analytics, the IDS can evolve alongside the

changing activity patterns of cloud users. This dynamic learning approach

strengthens defense against both external and insider threats.

3Support for Multi-Cloud and Hybrid Setups:

With the growing trend of multi-cloud and hybrid infrastructure, future iterations

of the IDS could offer unified monitoring and threat detection across diverse cloud

platforms from a single interface.

4.Automated Threat Response:

Advanced versions may introduce automated actions such as isolating

167

compromised instances or blocking suspicious traffic, thereby shortening incident

response times and containing potential damage.

5.Assistance with Compliance Requirements:

Enhancing the IDS to generate structured logs and incident reports will help

organizations meet legal and regulatory standards like GDPR and HIPAA, ensuring

transparent and accountable security practices.

6.Improved Scalability and Efficiency:

Future developments may focus on optimizing system performance, allowing the

IDS to operate efficiently in high-demand cloud environments without

compromising speed or accuracy. Another potential direction is that which creates

an intrusion detection system that scales in response to the number of virtual

machines in the cloud by expanding or contracting as needed.

7.Seamless Integration with Security Ecosystems:

Connecting the IDS with platforms like SIEM (Security Information and Event

Management) and SOAR (Security Orchestration, Automation, and Response) will

provide broader visibility and enable faster, more coordinated responses to security

incidents.

8.Adaptive Attack Detection: An adaptive attack detection system can be a

promising future direction in cloud security. This system helps to manage the

dynamic conditions, such as changes in environmental configurations,

computational resources and the locations where attack detection systems are

deployed.

9.Vulnerabilities Detection: Another key area for future improvement is

enhancing the detection of vulnerabilities through the development of a more

efficient detection system

168

REFERENCES

1. S. Singh, K. Saxena and Z. Khan, “Intrusion detection based on artificial

intelligence techniques,” International Journal of Computer Science Trends

and Technology, vol. 2, no. 4, pp. 31-35, 2014.

2. A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware resource

allocation heuristics for efficient management of data centers for cloud

computing,” Future generation computer systems, vol. 28, no. 5, pp. 755-

768, 2012.

3. M. I. Alam, M. Pandey and S. S.Rautaray, “A comprehensive survey on

cloud computing,” International Journal of Information Technology and

Computer Science (IJITCS), vol. 7, no. 2, p. 68, 2015.

4. M. Kavis, “Architecting the cloud: design decisions for cloud computing

service models (SaaS, PaaS, and IaaS),” John Wiley & Sons, Inc., Hoboken,

New Jersey, 2014.

5. S. Carlin and K. Curran, “Cloud computing security,” in Pervasive and

Ubiquitous Technology Innovations for Ambient Intelligence Environments,

IGI Global,pp. 12–17,2013.

6. A. R. Suraj, S. J. Shekar and G. S. Mamatha, “A robust security model for

cloud computing applications,” In 2018 International Conference on

Computation of Power, Energy, Information and Communication

(ICCPEIC), pp. 18–22, 2018.

7. P. Singh, S. Manickam and S. U. Rehman, “A survey of mitigation

techniques against Economic Denial of Sustainability (EDoS) attack on

cloud computing architecture,” In Proceedings of the 3rd International

Conference on Reliability, Infocom Technologies and Optimization, pp. 1–

4, IEEE, 2014.

8. F. Kuang, W. Xu, and S. Zhang, “A novel hybrid KPCA and SVM with GA

model for intrusion detection,” Applied Soft Computing, vol. 18, no. 1, pp.

178–184, 2014.

169

9. C. Nkikabahizi, W. Cheruiyot and A. Kibe, “Classification and analysis of

techniques applied in intrusion detection systems,” International Journal of

Scientific Engineering and Technology, vol. 6, no. 7, pp. 216–219, 2017.

10. V. Balamurugan and R. Saravanan, “Enhanced intrusion detection and

prevention system on cloud environment using hybrid classification and

OTS generation,” Cluster Computing, vol. 22, no. 6, pp. 13027-13039,

2019.

11. P. Ghamisi and J.A. Benediktsson, “Feature selection based on

hybridization of genetic algorithm and particle swarm optimization,” IEEE

Geoscience and remote sensing letters, vol. 12, no. 2, pp. 309–313, 2014.

12. A. S. Saljoughi, M. Mehrvarz and H. Mirvaziri, “Attacks and intrusion

detection in cloud computing using neural networks and particle swarm

optimization algorithms,” Emerging Science Journal, vol. 1, no. 4, pp. 179–

191, 2017.

13. X. S. Yang, Firey algorithm, Nature-Inspired Metaheuristic Algorithms,

vol. 79, 2008.

14. K. Costa, C. Pereira, R. Nakamura, L. Pereira and J. Papa, “Boosting

Optimum-Path Forest clustering through harmony Search and its

applications for intrusion detection in computer networks,” In Proceedings

of the 4th International Conference on Computational Aspects of Social

Networks (CASoN), pp. 181–185, IEEE, 2012.

15. S Aljawarneh, M. Aldwairi and M. B. Yassein, “Anomaly based intrusion

detection system through feature selection analysis and building hybrid

efficient model,” Journal of Computational Science, vol. 25, pp. 152–160,

2018.

16. C. Gong, J. Liu, Q. Zhang., H. Chen and Z. Gong, “The characteristics of

cloud computing,” In 2010 39th International Conference on Parallel

Processing Workshops, IEEE, pp. 275-279, 2010.

17. E. Besharati, M. Naderan and E. Namjoo, “LR-HIDS: logistic regression

170

host-based intrusion detection system for cloud environments”, Journal of

Ambient Intelligence and Humanized Computing, vol. 10, pp. 3669-3692,

2019.

18. Y. S. Abdulsalam and M. Hedabou, "Security and privacy in cloud

computing: technical review", Future Internet, vol. 14 no. 1, 2021.

19. D. Rani and N. C. Kaushal, “Supervised machine learning based network

intrusion detection system for Internet of Things,” in 2020 11th

International Conference on Computing, Communication and Networking

Technologies (ICCCNT), pp. 1–7, 2020.

20. V. D. Ngo, T. C. Vuong, T. V. Luong and H.Tran, “Machine learning-based

intrusion detection: feature selection versus feature extraction,” Cluster

Computing, vol. 27, no. 3,pp. 2365-2379, 2024.

21. O. Alomari and Z. A. Othman, “Bees algorithm for feature selection in

network anomaly detection”, Journal of applied sciences research, vol. 8,

no. 3, pp. 1748-1756, 2012.

22. I. Ahmad, M. Hussain, A. Alghamdi and A. Alelaiwi, “Enhancing SVM

performance in intrusion detection using optimal feature subset selection

based on genetic principal components”, Neural computing and

applications, vol. 24, pp. 1671-1682, 2014.

23. M. Otair, O. T. Ibrahim, L. Abualigah, M. Altalhi, and P. Sumari, “An

enhanced grey wolf optimizer based particle swarm optimizer for intrusion

detection system in wireless sensor networks,” Wireless Networks, vol. 28,

no. 2, pp. 721–744, 2022.

24. S. K. Shandilya, B. J. Choi, A. Kumar and S. Upadhyay, “Modified Firefly

Optimization Algorithm-Based IDS for Nature-Inspired

Cybersecurity,” Processes, vol. 11, no. 3, pp.715-731, 2023.

25. M. A. Umar, Z. Chen, K. Shuaib and Y. Liu, “Effects of feature selection

and normalization on network intrusion detection,” Authorea Preprints,

2024.

171

26. Y. K. Saheed, T. O. Kehinde, M. A. Raji and U. A. Baba, “Feature selection

in intrusion detection systems: a new hybrid fusion of Bat algorithm and

Residue Number System,” Journal of Information and

Telecommunication, vol. 8, no. 2, pp. 189-207, 2024.

27. M. Bakro, R. R. Kumar, M. Husain, Z. Ashraf, A. Ali, S. I. Yaqoob, M. N.

Ahmed and N. Parveen, “Building a cloud-IDS by hybrid bio-inspired

feature selection algorithms along with random forest model,” IEEE Access,

2024.

28. S. Ganapathy, P. Vijayakumar, P. Yogesh and A. Kannan, “An Intelligent

CRF Based Feature Selection for Effective Intrusion

Detection.”, International Arab Journal of Information Technology

(IAJIT), vol. 13, no. 1, 2016.

29. R. Patil, H. Dudeja and C. Modi, “Designing an efficient security

framework for detecting intrusions in virtual network of cloud computing,”

Computers & Security, vol. 85, pp. 402–422, 2019.

30. L. Chen, M. Xian, J. Liu and H. Wang, “Intrusion Detection System in

Cloud Computing Environment,” International Conference on Computer

Communication and Network Security (CCNS) ,pp. 131-135, 2020.

31. Y. Liu and R. Ma, “Network anomaly detection based on BQPSO-BN

algorithm,” IETE Journal of Research, vol. 59, no. 4, pp. 334–342, 2013.

32. K. Wang, C.-Y. Huang, L.-Y. Tsai and Y.-D. Lin, “Behavior based botnet

detection in parallel,” Security and Communication Networks, vol. 7, no.

11, pp. 1849–1859, 2014.

33. J. Hussain, S. Lalmuanawma and L. Chhakchhuak, “A two stage hybrid

classification technique for network intrusion detection system,”

International Journal of Computational Intelligence Systems, vol. 9, no. 5,

pp. 863–875, 2016.

172

34. H. H. Pajouh, G. Dastghaibyfard and S. Hashemi, “Two-tier network

anomaly detection model: a machine learning approach,” Journal of

Intelligent Information Systems, vol. 48, no. 1, pp. 61–74, 2017

35. R. Kesavamoorthy and K. R. Soundar, “Swarm intelligence based

autonomous DDoS attack detection and defense using multi agent system,”

Cluster Computing, pp. 1–8, 2019.

36. P. Ghosh, A. Karmakar, J. Sharma and S. Phadikar, “CS-PSO based

intrusion detection system in cloud environment,” In Emerging

Technologies in Data Mining and Information Security, pp. 261–269,

Springer, Berlin, Germany, 2019.

37. D. J. Prathyusha and G. Kannayaram, “A cognitive mechanism for

mitigating DDoS attacks using the artificial immune system in a cloud

environment,” Evolutionary Intelligence, vol. 4, pp.1-2 2020.

38. G. S. Kushwah and V. Ranga, “Voting extreme learning machine based

distributed denial of service attack detection in cloud computing,” Journal

of Information Security and Applications, vol. 53, 2020.

39. KB Virupakshar, M Asundi, K Channal, P Shettar, S Patil and DG

Narayan,“Distributed denial of service (DDoS) attacks detection system for

Open Stack-based private cloud,” Procedia Computer Science, pp. 2297-

2307, 2020.

40. S Rajagopal, PP Kundapur and KS Hareesha,“Towards Effective Network

Intrusion Detection: From Concept to Creation on Azure Cloud,” IEEE

Access, pp. 19723-19742, 2021.

41. E.Arul and A. Punidha, “Supervised Deep Learning Vector Quantizatio to

Detect Mem Cached DDoS Malware Attack on Cloud”, SN Computer

Science, vol. 2, no. 2, pp. 1-2, 2021.

42. G. Sreelatha, A. V. Babu, and D. Midhunchakkaravarthy, “Improved

security in cloud using sandpiper and extended equilibrium deep transfer

learning based intrusion detection,” Cluster Computing, vol. 25, no. 5, pp.

https://scholar.google.com/citations?user=HB5mVWEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=FMo3XmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=FMo3XmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4prLSkMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Hkj144sAAAAJ&hl=en&oi=sra

173

3129–3144, 2022.

43. H. Ghani, B. Virdee, and S. Salekzamankhani, “A Deep Learning Approach

for Network Intrusion Detection Using a Small Features Vector,” Journal

of Cybersecurity and Privacy 2023, Vol. 3, Pages 451-463, vol. 3, no. 3, pp.

451–463, 2023.

44. Z. Long, H. Yan, G. Shen, X. Zhang, H. He and L. Cheng, “A Transformer-

based network intrusion detection approach for cloud security”, Journal of

Cloud Computing, vol. 13, no. 1, 2024.

45. A. V. Songa and R. K. Ganesh, "An integrated SDN framework for early

detection of DDoS attacks in cloud computing," Journal of Cloud

Computing, vol. 13, no. 1, 2024.

46. R. R. Dewangan, S. Soni and A. Mishal, ‘‘An approach of privacy

preservation and data security in cloud computing for secured data

sharing,’’ Recent Advances in Electrical & Electronic Engineering, vol. 18,

no. 2, pp. 176–195, Feb. 2025.

47. K. V. K. Chithanya and L. Reddy, “Automatic intrusion detection model

with secure data storage on cloud using adaptive cyclic shift transposition

with enhanced ANFIS classifier,” Cyber Security and Applications, vol.3,

2025.

48. Park, H., EL Azzaoui, A., & Park, J, “AIDS-Based Cyber Threat Detection

Framework for Secure Cloud-Native Microservices, “ Electronics, vol. 14,

no. 2, 229, 2025

49. V. R. Kebande and H. S. Venter, “A cognitive approach for botnet detection

using Artificial Immune System in the cloud,” In 2014 Third International

Conference on Cyber Security, Cyber Warfare and Digital Forensic

(CyberSec), IEEE, pp. 52-57, 2014.

50. G. Somani, M. S. Gaur, D. Sanghi, M. Conti and R. Buyya, “DDoS attacks

in cloud computing: Issues, taxonomy, and future directions,” Computer

communications, vol. 107, pp. 30-48, 2017.

174

51. A. M. Al-Dulaimi, O. M. Abdulqader A. F. Zakharzhevskyi, “Threats in

Cloud Computing System and Security Enhancement,” In 2024 35th

Conference of Open Innovations Association (FRUCT), IEEE, pp. 82-93,

2024.

52. N. Cao, C. Wang, M. Li, and K. Ren, "Privacy-preserving multi-keyword

ranked search over encrypted cloud data," IEEE Transactions on Cloud

Computing, vol. 2, no. 1, pp. 29-42, Jan. 2013.

53. Q. Wang, M. He, M. Du, and S. S. M. Chow, "Searchable encryption over

feature-rich data," IEEE Transactions on Information Forensics and

Security, vol. 11, no. 12, pp. 2836-2849, Dec. 2016.

54. V. Popic and S. Batzoglou, "A hybrid cloud read aligner based on MinHash

and kmer voting that preserves privacy," Nature Communications, vol. 8,

no. 1, pp. 47–59, 2017.

55. W. Liang, K. C. Li, J. Long, and X. Kui, "An industrial network intrusion

detection algorithm based on multifeature data clustering optimization

model," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 49-

61, Jan. 2019.

56. Y. Miao, Y. Tang, and B. A. Alzahrani, "Airborne LiDAR assisted obstacle

recognition and intrusion detection towards unmanned aerial vehicle:

Architecture, modeling and evaluation," IEEE Transactions on Vehicular

Technology, vol. 69, no. 10, pp. 10873-10886, Oct. 2020.

57. A. Alshammari and A. Aldribi, "Apply machine learning techniques to

detect malicious network traffic in cloud computing," Journal of Big Data,

vol. 8, no. 1, pp. 21–39, 2021.

58. T. Li, D. Wu, J. Wang, Y. Zhao, and H. Han, "A systematic literature review

of methods and datasets for anomaly-based network intrusion detection,"

Computers & Security, vol. 2022, pp. 13–35, 2022.

175

59. S. Songma, T. Sathuphan and T. Pamutha, “Optimizing Intrusion Detection

Systems in Three Phases on the CSE-CIC-IDS-2018 Dataset”,

Computers, vol. 12, no.12,pp. 245 20 pages,2023.

60. B. L. Farhan and A. D. Jasim, “Performance analysis of intrusion detection

for deep learning model based on CSE-CIC-IDS2018 dataset”, Indonesian

Journal of Electrical Engineering and Computer Science, vol. 26, no. 2, pp.

1165-1172, 2022.

61. I. Fister, I. Fister Jr, X. S. Yang and J. Brest, "A comprehensive review of

firefly algorithms", Swarm and evolutionary computation, vol.13, pp.34-

46, 2013.

62. R. Buyya, R., Ranjan and R. N. Calheiros, R. N., “Modeling and simulation

of scalable Cloud computing environments and the CloudSim toolkit:

Challenges and opportunities”, In 2009 international conference on high

performance computing & simulation, IEEE, pp. 1-11, 2009.

63. R. N. Calheiros, R. Ranjan, A. Beloglazov, CAF R. De, R. Buyya,

“CloudSim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms”,

Software: Practice and experience, vol. 41, no.1, pp. 23-50, 2011.

64. A. L. Shalabi, Z. Shaaban and B. Kasasbeh, “Data Mining: A Preprocessing

Engine”, J. Comput. Sci., vol.,2, pp. 735-739, 2006.

65. T. Goyal, A. Singh and A. Agrawal, “Cloudsim: simulator for cloud

computing infrastructure and modelling”, Procedia Engineering, vol.38,

pp. 3566-3572, 2012.

66. D. M. reddy, M. S. Kalyani, P. Hemalatha, A. Sreeja, & M. Y. Devi, “Cloud

Computing and Security using CloudSim”, In 2023 3rd International

Conference on Smart Data Intelligence (ICSMDI), IEEE, pp. 187-194,

2023.

67. T. Stevens, “Cyber security and the politics of time”, Cambridge University

Press, 2016.

176

68. N. J. Miller andM. Aliasgari, “Benchmarks for evaluating anomaly-based

intrusion detection solutions”, California State University, Long

Beach,2018.

69. N. Caife, H. Carter, P. Traynor and K. R. Butler, “Cryptolock (and drop it):

stopping ransomware attacks on user data”, In 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), IEEE, pp. 303–

312, 2016.

70. R.Koch, “Towards Next Generation Intrusion Detection”, In 2011 3rd

International Conferenceon Cyber Conflict, IEEE, pp.1–18, 2011.

71. J. Rajahalme, A. Conta, B. Carpenter, S. Deering, “RFC 3697: IPv6 Flow

Label Specification”, In:The Internet Society, 2004.

72. I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, “Toward Generating A

New Intrusion Detection Dataset and Intrusion Traffic Characterization”,

In: ICISSP, pp.108–116, 2018.

73. CSE-CIC-IDS2018 on AWS. Canadian Institute for Cybersecurity.

Available online: https://www.unb.ca/cic/datasets/ids-2018 .html (accessed

on 2 Feburary 2022).

74. H. S. Gebremedhen, D. E. Woldemichael and F. M. Hashim, ‘‘A firefly

algorithm based hybrid method for structural topology optimization’’,

Advanced Modeling and Simulation in Engineering Sciences., vol. 7, no. 1,

pp. 1–20, 2020.

75. I. Fister, Jr. I.Fister, X.S. Yang and J. Brest, “A comprehensive review of

firefly algorithms”, Swarm and evolutionary computation, vol.13, pp. 34-

46, 2013

76. K. Peng, V. C. M. Leung, L. Zheng, S. Wang, C. Huang, and T. Lin,

“Intrusion detection system based on decision tree over big data in fog

environment”, Wireless Communications and Mobile Computing, vol.

2018.

177

77. C. Modi, D. Patel, B. Borisanya, A. Patel, and M. Rajarajan, “A Novel

Framework for Intrusion Detection in Cloud,” in Proceedings of the Fifth

International Conference on Security of Information and Networks, pp. 67–

74, 2012.

78. J. Wei, C. Long, J. Li and J. Zhao, “An intrusion detection algorithm based

on bag representation with ensemble support vector machine in cloud

computing”, Concurrency and Computation: Practice and Experience, vol.

32, no. 24, pp. 14,2020.

79. Q. Schueller, K. Basu, M. Younas, M. Patel and F. Ball, “A hierarchical

intrusion detection system using support vector machine for sdn network in

cloud data center”, in Proceedings of the 28th International

Telecommunication Networks and Applications Conference (ITNAC), pp.

6,2018.

80. B. Sundararaman, S. Jagdev, and N. Khatri, “Transformative role of

arti5cial intelligence in advancing sustainable tomato (Solanum

lycopersicum) disease management for global food security: a

comprehensive review”, Sustainability, vol. 15, no. 15, Article ID 11681,

2023.

81. G. Dhanush, N. Khatri, S. Kumar,and P. K. Shukla, “A comprehensive

review of machine vision systems and anti- social intelligence algorithms

for the detection and harvesting of agricultural produce”, Scientific African,

vol. 21, 2023.

178

LIST OF PUBLICATIONS

1.P.Rana and I. Batra, “Detection of attacks in cloud computing environment–a

comprehensive review,” In 2021 2nd International Conference on Intelligent

Engineering and Management (ICIEM), IEEE, pp. 496-499, 2021.

Weblink: https://ieeexplore.ieee.org/abstract/document/9445284/

2.P. Rana, I. Batra, A. Malik, A. L. Imoize , Y. Kim, S. K.Pani, N. Goyal, A. Kumar

and S. Rho, “Intrusion Detection Systems in Cloud Computing Paradigm: Analysis

and Overview,” Complexity, vol.1, 2022.

Weblink: https://onlinelibrary.wiley.com /doi/full/10.1155/2022/3999039

3.P. Rana, Dr. I. Batra and Dr A. Malik, "An Innovative Approach to Select

Features for Identifying Attacks in Cloud Computing Environments by a New

Algorithm that Integrates the Principles of the Firefly Algorithm and K-Nearest

Neighbour," In Intelligent Circuits and Systems for SDG 3–Good Health and well-

being, pp. 211-217, CRC Press.

Weblink:https://www.taylorfrancis.com/chapters/edit/10.1201/9781003521716-

22/innovative-approach-select-features-identifying-attacks-cloud-computing-

environments-new-algorithm-integrates-principles-firefly-algorithm-nearest-

neighbour-pooja-rana-isha-batra-arun-malik

4. P. Rana, I. Batra, A. Malik, I. H. Ra, O. S. Lee and A. S. Hosen, “Efficacious

Novel Intrusion Detection System for Cloud Computing Environment,” IEEE

Access, pp. 99223-99239, 2024.

Weblink:https://ieeexplore.ieee.org/ abstract/document/10587216

5. P. Rana, I. Batra and A. Malik, “An Innovative Approach: Hybrid Firefly

Algorithm for Optimal Feature Selection,” In 2024 International Conference on

https://ieeexplore.ieee.org/abstract/document/9445284/
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003521716-22/innovative-approach-select-features-identifying-attacks-cloud-computing-environments-new-algorithm-integrates-principles-firefly-algorithm-nearest-neighbour-pooja-rana-isha-batra-arun-malik
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003521716-22/innovative-approach-select-features-identifying-attacks-cloud-computing-environments-new-algorithm-integrates-principles-firefly-algorithm-nearest-neighbour-pooja-rana-isha-batra-arun-malik
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003521716-22/innovative-approach-select-features-identifying-attacks-cloud-computing-environments-new-algorithm-integrates-principles-firefly-algorithm-nearest-neighbour-pooja-rana-isha-batra-arun-malik
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003521716-22/innovative-approach-select-features-identifying-attacks-cloud-computing-environments-new-algorithm-integrates-principles-firefly-algorithm-nearest-neighbour-pooja-rana-isha-batra-arun-malik
https://ieeexplore.ieee.org/%20abstract/document/10587216

179

Electrical Electronics and Computing Technologies (ICEECT) ,vol. 1, pp. 1-4,

IEEE.

Weblink: https://ieeexplore.ieee.org/abstract/document/10739012

Graphical Abstract submitted as Copyright:

Pooja Rana and Isha Batra, “An Innovative Architecture for Detection of Attacks

in Cloud Computing Environment”.

https://ieeexplore.ieee.org/abstract/document/10739012

