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ABSTRACT 

 

The thesis entitled “Mathematical Modelling of Elastodynamic Problems in Two Temperature 

Thermoelastic Media” consists of five chapters, and a list of references is given at the end of this 

thesis. The subject matter is laid out in the following way: 

Chapter1 is concerned with the introductory part. We have given a brief introduction of (i) 

Thermoelasticity (ii) Green-Lindsay (G-L) theory (iii) Green-Naghdi Thermoelasticity Theory (iv) 

Two temperature (TT) and Hyperbolic two temperature model (HTT) (v) Dual Phase Lag (DPL) 

model (vi) Non-local (N-L) theory (vii) Fractional order theory of thermoelasticity (viii) Modified 

Green-Lindsay (MGL) thermoelasticity (ix) Moore-Gibbson-Thomson (MGT) theory of 

thermoelasticity. 

Chapter 2 deals with a two-dimensional deformation problem owing to the heat source and 

thermomechanical loading in a half-space that is homogeneous, isotropic, and thermoelastic under 

the modified Green-Lindsay (MGL) to study the influence of non-local (N-L) and two temperature 

(TT). The governing equations are converted into dimensionless form, and potential functions are 

used for further simplification. The problem is simplified by the integral transform technique 

(Laplace Transform and Fourier Transform). The approach's effectiveness is demonstrated by 

analyzing the normal force, the thermal source and the specific type of heat source. In the new 

dominion, physical field quantities (displacement components, stress components, and 

thermodynamic temperature and conductive temperature) are examined. The numerical inversion 

procedure is employed to recover the resulting quantities in original physical dominion and depicted 

graphically to investigate the impact of N-L, TT, heat source, and different theories of 

thermoelasticity on physical quantities. Some unique cases are also presented. 

Chapter 3, deals with investigation of two-dimensional problem in thermoelastic half space under 

MGT heat equation by virtue of thermomechanical source along with heat source. After simplifying 

the equation with the dimensionless quantities, the potential functions and integral transform 

technique are applied for further simplification. The problem is inspected due to a heat source, a 

laser pulse decaying with time, moving with constant velocity in one direction, and 

thermomechanical loading. Specific types of normal distributed force (NDF) and ramp-type thermal 

sources (RTTS) are adopted to exemplify the effectiveness of the problem. The rational expressions 

of displacement components, stress components, conductive temperature, and thermodynamic 

temperature are computed in altered dominion. However, the numerical inversion methodology used 
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to obtain subsequent physical quantities in physical dominion and results are displayed graphically 

to illustrate the effect of N-L moving heat source, and hyperbolic two temperature parameters. 

Chapter 4 deals with the axisymmetric problem in a thermoelastic half-space owing to 

mechanical loading in the presence of N-L and HTT parameters under the MGT heat equation and 

fractional-order derivatives. The solution is found using the integral transform (Laplace and Hankel 

Transforms) technique. Ring or disc loads are used as an application to exemplify the approach's 

efficacy. The transformed displacement components, stress components, conductive temperature, 

and thermodynamic temperature are numerically computed in the physical dominion. 

Chapter 5 is concerned with the reflection problem of a plane wave in thermoelastic half-

space subjected to impedance boundary under MGT heat equation with fractional order derivatives 

along with non-local (N-L) and HTT. The amplitude ratios of reflected waves are obtained 

correspond to each incident wave. The variations of amplitude ratios are shown with the help of 

graphs. Some limited cases are also introduced.
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Chapter -1 

1.1 Thermoelasticity 

Thermoelasticity is a field of study that examines the combined influences of change in 

temperature and mechanical stress on an elastic material and is deals with the prediction of 

thermomechanical behavior of the materials. It comprises the stress, strain theory and the heat 

conduction theory. Compared to the traditional elasticity theory, the influence of internal 

forces on the temperature field is evaluated, along with how temperature changes affect the 

deformation, according to the principles of thermoelasticity. On the other hand, the uncoupled 

theory was developed on the simplifying assumption that the effect of strain on the 

temperature can be ignored.  

1.2 Uncoupled Thermoelasticity Theory (UCT) 

Duhamel (1837) [40], was the first to propose the idea of a connection between the thermal 

and mechanical fields and obtained expressions to calculate the strain in a thermally changing 

elastic material. Later, Neumann (1841) [89] also obtained the similar outcomes. However, 

the concept dealt with the thermal and mechanical effects as independent effects and the 

overall strain was calculated by adding together the elastic strain and the thermal expansion 

resulting from the temperature distribution alone. Hence, the theory did not include the 

interactions between the strain and the temperature distributions in a specified manner. 

Subsequently, the thermodynamic arguments were taken into consideration by Thomson 

(1857) [140] was the first to use the principles of thermodynamics to study how an elastic 

body response to varying temperature by analyzing its stresses and strains. Later, Voigt 

(1928) [143] and Jefferys (1930) [58] ventured the thermodynamic documentation of the 

equations suggested by Duhamel (1837) [40]. 

1.3 Coupled Thermoelasticity Theory (CT) 

Biot (1956) [24] developed the CT model to resolve the inconsistency that is intrinsic in 

conventional UCT theory. In this theory, the equations governing elasticity and heat 

conduction are coupled. However, it estimates an infinite speed of thermal wave. 

1.4 Generalized Thermoelasticity Theory  

Generalized thermoelasticity theories are mainly the modified forms of conventional 

thermoelasticity theory to address the paradox of infinite thermal propagation speed. These 

theories can be divided into two main categories. The first one is given by Lord-Shulman 

(LS) [81] by utilizing the modified Fourier's law proposed by Catteno (1958) [28] to formulate 

a theory of thermoelasticity incorporating a single relaxation time. Green and Lindsay (GL) 
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(1972) [47] provide the second generalization of the thermoelasticity theory by establishing 

a model that is predicated on an entropy production inequality. This model is compatible with 

the traditional Fourier's law for materials that have a center of symmetry at each point. 

However, it introduces modifications to the classical energy equation and stress-strain 

temperature relations by incorporating the two relaxation times. 

1.5 Green-Naghdi Thermoelasticity Theory (GN) 

Green and Naghdi (1991, 1992, 1993) [48-50] introduced novel theory in forms of three 

models, known as GN - I, GN - II, and GN - III. The linearized GN-I model is similar to the 

CT (1980) [38] theory but has the drawback of allowing unlimited speed of thermal waves. 

On the other hand, the linearized GN-II and GN-III allow the finite speed for thermal waves. 

GN- II is unique as it does not dissipate thermal energy, unlike other established thermoelastic 

models. The GN-II model has the feature of sustaining undamped thermoelastic waves in the 

body.  

1.6 Two-Temperature (TT) and Hyperbolic Two-Temperature (HTT)Theory 

The TT theory, established by Chen and Gurtin (1968) [30] and Chen et al. (1969) [31], is 

based on both thermodynamic and conductive temperature. The first one was the result of a 

mechanical process between particles and layers of elastic material, while the second one was 

due to a thermal process. For time-free situations, the temperature difference equals the heat 

supply, so removing the heat makes both temperatures the same. However, the temperatures 

remain different in time-dependent situations even without heat supply. 

Youssef (2006) [147] utilized the generalized thermoelasticity theory to examine the 

uniqueness theorem in TT thermoelasticity theory, and demonstrated the finite speed of both 

thermal and mechanical waves. Youssef (2013) [148] explored the deformation of a semi-

space induced to thermal shock by employing Laplace transform and state-space techniques 

for TT theory, with the boundary being traction-free. Kumar et al. (2016) [71] used GN-II and 

GN-III with TT to investigate the impact of Hall current and magnetic field in thermoelastic 

medium due to thermomechanical sources. 

Youssef observed that the classical TT theory fails to account for the limited speed of 

thermal wave, this is not acceptable from a physical standpoint. Consequently, Youssef and 

El-Bary (2018) [149] improved the TT theory by introducing the HTT model for an isotropic 

body. This model suggests that the difference between conductive temperature and 

thermodynamic temperature acceleration is linked to the heat supply and it introduces a heat 

wave that spreads with a limited speed. 
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 Kaur et al. (2023) [59] presented a mathematical formulation for a couple stress 

thermoelasticity theory for fibre-reinforced composite material under HTT. They employed 

it to attain the systematic solution for physical field variables owing to concentrated inclined 

load. Geetanjali et al. (2023) [46] examined thermoelastic diffusion half-space under the 

influence of various loadings (thermal, mechanical, and concentration) with dual-phase-lag 

model under HTT to study the impact of thermal conductivity and diffusivity on physical field 

quantities. Bajpai et al. (2023) [14] investigated the response of HTT and fractional order 

parameters on elastic circular plate. Prasad and Kumar (2024) [102] established the 

convolutional-type variational and reciprocity theorems under HTT model for thermoelastic 

material. 

1.7 Dual-Phase-Lag Thermoelasticity Theory (DPL) 

Tzou (1995) [142] introduced a new model to account for microscopic effects on ultra-fast 

heat transport. This model is known as the dual phase-lag (DPL) model, aims to modify 

Fourier's law by incorporating two-time phase-lags: one for heat flux and the other for 

temperature gradient. Kumar et al. (2021) [64] presented a dynamic dual-phase lag model to 

examine the effects of non-local and diffusion on waves in a bio-thermoelastic medium. In a 

subsequent study, Kumar et al. (2024) [75] employed the normal mode analysis to scrutinize 

the impact of specific heat loss and penetration depth in the DPL framework, in conjunction 

with memory-dependent derivatives as applied to homogeneous micropolar thermoelastic 

plates. 

1.8 Three-Phase-Lag Thermoelasticity Theory (TPL) 

Roychoudhuri (2007) [107] has further generalized the concept of phase-lag to Green-Naghdi 

thermoelasticity theory by incorporating three different phase-lag parameters in the 

constitutive relation for heat conduction given by GN-III model. One additional phase-lag 

parameter is incorporated here for the gradient of thermal displacement, along with the 

incorporation of phase-lag parameters for the heat flux as well as temperature gradient terms. 

1.9 Non-Local Theory  

Eringen (1972) [41] created the non-local (N-L) theory of elasticity by utilizing the second 

law of thermodynamics and global balance laws. In the same year, Edelen, Green, and Laws 

obtained constitutive relations by utilizing N-L thermodynamics. Eringen (1974) [42] evolved 

a N-L theory of polar elastic continua and derived constitutive relations by employing N-L 

thermodynamics and invariance under rigid body motion of N-L micromorphic elastic solid 
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and derived a set of basic equations of N-L thermoelasticity. The core concept of classical 

continuum mechanics is to disregard the influence of the strain field of remote points on a 

particular local point. In contrast, N-L elasticity theory considers this influence. Incorporating 

the N-L factor into heat conduction theory enhances the microscopic effects at a macroscopic 

scale. Balta and Suhubi (1977) [19] used N-L theory to establish field equations for 

homogeneous isotropic solids. 

Eringen (2002) [43] established N-L continuum field theories to account for 

microscopic structures. Sharma (2010) [117] presented a boundary value problem in a 

thermodiffusive medium. Sharma (2012) [119] inspected the generation of plane waves with 

voids in thermoelastic and thermodiffusive medium. Sharma et al. [2013] [121] examined the 

propagation of Lamb waves in thermoelastic micropolar solid with two temperatures bordered 

with semi-spaces of inviscid liquid subjected to stress free boundary conditions. 

Yu et al. (2015, 2016) [150-151] constructed a new model by integrating heat equation 

and N-L elasticity, with extended irreversible thermodynamics and generalized free energy. 

Kumar and Devi (2017) [63] explored the effects of lateral deflection, thermal moment and 

axial stress on the thermoelastic beam due to laser source and heat flux in a modified couple 

stress model. Bachher and Sarkar (2018) [12] employed the N-L model to explore 

deformation problem in thermoelastic medium with void. Kumar et al. (2019) [74] explored 

the non-local influence in bi-layer tissue used for magnetic fluid hyperthermia.  

1.10 Fractional order thermoelasticity Theory (FOTT) 

The FOTT is the modification of classical thermoelasticity which employed fractional 

calculus and has recently garnered substantial interest and attention from researcher. Over the 

last few decades, considerable literature has progressed in the field of FOTT. Caputo and 

Mainardi (1971,1971) [26-27], and Caputo (1974) [25] employed fractional order derivative 

(FOD) to characterize the behavior of viscoelastic materials and attempted to establish an 

agreement between theoretical and experimental outcomes. It was shown that constitutive 

relations derived in terms of time fractional order derivative were quite in agreement with 

results of molecular theories. For more details, one can refer to the works of the researchers 

mentioned: Oldham and Spanier (1974) [90], Bagley and Torvik (1983) [13], Podlubny 

(1998) [92], Hilfer (2000) [52].  

 Povstenko (2005) [93] used Caputo fractional derivatives and suggested a theory of 

quasi-static uncoupled thermoelasticity by incorporating a time-fractional derivative into the 

heat conduction equation, following this, Sherief et al. (2010) [127], and Ezzat and El-
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Karamany (2011) [44] formulated new theories on generalized thermoelasticity, based on the 

heat conduction law with FOD. The problems based on fractional order heat conduction 

equation are investigated by Povstenko (2008, 2008,2009, 2009, 2010, 2011, 2011,2012) [94-

101]. Sarkar and Lahiri (2012) [111] have examined a deformation problem involving a 

homogeneous isotropic and thermoelastic rotating medium based on a FOTT. Sherief and 

Hussein (2020) [128] explored the behavior of a solid sphere containing spherical cavity 

surface. They focused on the traction-free surface response to an axisymmetric thermal field 

within the scope of FOTT. 

 Bajpai et al. (2023) [15] explored thermodiffusion phenomenon to investigate the 

impact of HTT on forced vibrations under FOTT with a TPL model and examined the efficacy 

of the problem by considering axisymmetric thermal, mechanical, and mass concentration 

loading. Abbas et al. (2024) [1] employed bioheat model to investigate impact of fractional 

parameter in process of heat transfer in living tissues wing to magnetic hyperthermia 

treatment for tumors. 

1.11 Modified Green-Lindsay (MGL) Thermoelasticity Theory 

The GL model was applied to certain problems, and it was observed that the displacement 

experiences finite leaps. This is in contradiction with the postulates of continuum mechanics 

Dhaliwal and Rokne (1989) [39], Ignaczak and Mr´owka-Matejewska (1990) [54], 

Chandrasekharaiah (1998) [29]. Considering this, Yu et al. (2018) [152] recently established 

a modified version of the GL thermoelasticity theory, including strain-rate and temperature-

rate terms. This theory is called modified Green-Lindsay theory and has evolved with the help 

of the principle of thermodynamics.  

The strain-rate term is usually neglected in constitutive relations of linear theory by 

assuming it to be relatively small. This is not an appropriate assumption for extreme 

conditions such as ultra-fast heating. Based on these factors, a novel thermoelasticity model 

was introduced using extended thermodynamics theory and generalized dissipation 

inequality. 

1.12 Moore-Gibson-Thompson (MGT) thermoelasticity theory 

The MGT thermoelastic theory has been the focus of extensive research and stems from a 

third-order differential equation. Thompson (1972) [139] originated the idea based on fluid 

mechanics principles. It has relevance in diverse fields, including fluid mechanics, 

nanostructures, and thermoelasticity. Furthermore, the MGT thermoelastic model is the 

generalization of the LS (1967) [81] and (GN-III) (1993) [50] theories of thermoelasticity. 
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1.13 Literature Review  

Quintanilla (2018) [104] presented qualitative findings related to the MG-L thermoelasticity 

model. Sarkar and De (2020) [109] investigated wave problem in the thermoelastic medium 

by employing the MGL model using the harmonic plane wave technique at stress-free and 

isothermal surfaces. In the context of MGL, Sarkar et al. (2020) [110] examined the 

propagation of waves in thermoelastic medium and reported that both MGL and G-L 

significantly impact the amplitude ratios of reflected waves (ARRW). Sarkar and Mondal 

(2020) [112] presented mathematical expressions for analyzing the behavior of a wave in 

thermoelastic medium at free surface and obtained ARRW. Shakeriaski and Ghodart. (2020) 

[113] performed a nonlinear study on the temporary response of elastic medium exposed to 

laser pulse using the L-S model. Sarkar et al. (2020) [108] examined the behavior of plane 

waves in thermoelastic semi-space and obtained reflection coefficients and their respective 

energy ratios within the framework of MGL thermoelasticity. 

 Shakeriaski et al. (2021) [114] analyzed the wave propagation phenomenon in elastic 

material induced by thermal shock under MGL model. Sharma and Kumar (2021) [122] 

explored the photothermoelastic properties of semiconducting materials under distributed 

loads. Mohamed et al. (2021) [88] contributed to the literature a semiconducting material by 

demonstrating the stimulus of a absorption coefficient owing to laser using the MGL model. 

Kumar et al. (2022) [66] adopted MGL model to study reflection phenomenon in micropolar 

thermoelastic media to explore the bearing of impedance parameters on various reflection 

coefficients of reflected wave. Further, Mirparizi and Razavinasab (2022) [87] utilized the 

MGL model to analyze stress and thermal wave propagation in a functionally graded medium 

exposed to thermal shock and electromagnetic influences.  

 Sharma and Kumari (2022) [116] utilized classical theory and L-S theory (1967) with 

FOTT to study impressions of N-L parameter on the reflection coefficient of plane waves. 

Malik et al. (2022) [83] obtained a fundamental solution of plane wave propagation for 

functionally graded solid with diffusion and void based on couple stress micropolar 

thermoelasticity. Abouelregal and Alesemi (2022) [4] studied the viscoelastic behavior of the 

fibre-reinforced material in modified thermo-viscoelastic MGT model. Kumar et.al (2023) 

[76] investigated the waves under the impact of memory-dependent derivatives by applying 

insulated thermal restriction at the boundary surface of the plate in the micropolar 

thermoelastic medium. 
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 Kumar et al. (2023) [65] presented the axisymmetric study using thick circular plate 

exposed to specific type of heat source within the framework of modified couple stress model 

and examined the various impacts (void, diffusion, phase lags parameter) on physical field 

quantities. Liang et al. (2023) [80] adopted MGL model to examine the phenomenon of 

reflection at imperfect boundary of thermoelastic solid half-space to study the impact of 

relaxation time and the interface effect on amplitude ratios (AR). Singh and Mukhopadhyay 

(2023) [135] explored problem in thermoelastic medium to investigate the impact of both 

strain and temperature rate owing to continuous line heat source with MGL model. Kaushal 

et al. (2024) [60] studied the waves in thermoelastic medium to explore the impact of N-L 

and TT and impedance parameters on AR of reflected wave. 

 Quintanilla (2019) [105] developed new thermoelastic model by using the MGT heat 

equation, focusing on TT. The research confirmed the well-posedness and exponential decay 

of the solution for dipolar structure. Quintanilla (2020) [106] formulated the MGT with TT. 

Marin et al. (2020)[85] investigated thermoelastic dipolar structure based on MGT heat 

equation and proved domain of influence theorem for mixed boundary value problem (BVP) 

for bounded functions. Conti et al. (2019) [34] established MGT thermoelastic theory results 

by transition of the heat equation into integro-differential equation.  

 Conti et al. (2020, 2021) [35,33] explored some problems in MGT thermoelastic heat 

equation. Jangid et al. (2021)[57] discussed the harmonic plane waves propagation with the 

MGT model and derived dispersion relation for longitudinal wave. Bazarra et al. (2021) [22] 

proved existence and uniqueness for thermoelastic problem using theory of linear semi group 

and obtained exponential decay solution using MGT model. Singh and Mukhopadhyay (2021) 

[132] presented a Galerkin-type solution under the MGT theory. Jangid and Mukhopadhyay 

(2021) [55] utilized MGT model to discuss results for domain of influence. Sharma and 

Khator (2021, 2022) [124,125] studied power generation challenges associated with 

renewable sources and delved into micro-grid planning within the renewable inclusive 

prosumer market. Al-Lehaibi (2022) [8] used MGT thermoelasticity theory to investigate a 

thermomechanical deformation due to ramp type heating thermal loading 

 Bazarra et al. (2022)[23] presented the MGT thermoelasticity theory for thermoelastic 

dielectrics. Lotfy et al. (2022) [82] examined photothermoelasticity with MGT model for 

semiconductor material and illustrated the interaction between thermal, plasma and elastic 

wave propagation owing to the impact of laser beam within semiconductor materials. Kumar 

et al. (2023) [77] explored thermomechanical interaction in a homogeneous, isotropic, photo-

viscothermoelastic plate with fractional order derivative under MGT model. Conti et al. 
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(2024) [32] examined the stability condition with constraints of the problem in MGT heat 

equation. 

 Yadav (2024) [145] investigated reflection problem of thermoelastic and microstretch 

semi-space to explore the impact of the impedance boundary due to magnetic diffusion. 

Kumar et al. (2024) [67] analyzed reflection phenomenon in propagation of plane wave in 

micropolar thermoelastic medium to investigate the effect of N-L, HTT and impedance 

parameter on reflection coefficients within the framework of MGT heat equation. Kumar et 

al. (2024) [68] explored axisymmetric problem in micropolar model using MGT heat equation 

to explore the effect of N-L and HTT due to mechanical loading. 

1.14 Research Gaps 

In the past decade, serious attention has been paid towards generalized 

thermoelasticity theories with different models and numerous research have been done in this 

field. As the work in this field is motivated by the need to analyse the vibration of structure 

such as rail/road tracks and bridges that is caused by moving vehicles. During the literature 

review, it has been observed that mathematical modelling by using modified G-L theory and 

using non local parameter was not explored to great extent so there is a requirement for 

interdisciplinary communication that motivates much of work in this field. The motivation 

behind this study lies in the increasing demand for advanced mathematical models that 

accurately predict thermoelastic behavior in modern engineering materials, aerospace 

components, and biological tissues. By integrating nonlocality, fractional calculus, and 

hyperbolic heat conduction, this research aims to enhance the fundamental understanding of 

thermoelasticity and contribute to the development of more precise predictive tools for 

scientific and industrial applications. Therefore, we will intend to work on framing new 

mathematical model in context of modified G-L theory in thermoelasticity, and thermoelastic 

model with and without energy dissipation with two temperature by considering various 

parameter such as non-local, diffusion, void and viscosity with different set of boundary 

conditions depending upon the nature of problem or model framed. The characteristics of new 

model will be discussed by comparing the numerical results with previous model. Also, the 

effect of parameters such as relaxation times, two temperature, diffusion, void and non local 

parameter will be calculated numerically for a particular model and their influence will be 

shown graphically 
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1.15 Organization of the thesis  

The present thesis works deals with “Mathematical Modelling of Elastodynamic 

Problems in Two Temperature Thermoelastic Media” and it consists of five chapters, and 

a list of references is given at the end of this thesis. The subject matter is laid out in the 

following way: 

Chapter1 is deals with the historical background and introductory part of 

thermoelasticity theories from where it comes into existence. We have given a brief 

introduction of (i) Thermoelasticity (ii) Green-Lindsay theory (iii) Green-Naghdi 

thermoelasticity theory (iv) Two temperature and Hyperbolic two temperature model (v) DPL 

model (vi) Non-local theory (vii) Fractional order theory of thermoelasticity (viii) Modified 

Green-Lindsay (MGL) thermoelasticity (ix) Morre-Gibbson Thomson (MGT) theory of 

thermoelasticity. 

Chapter 2 deals with a two-dimensional deformation problem with heat source and 

thermomechanical loading in a half-space that is homogeneous, isotropic, and thermoelastic 

under the modified Green-Lindsay (MGL) to study the effects of non-local (N-L) and two 

temperature (TT). The governing equations are rendered dimensionless for two-dimensional 

problem, and potential functions are used for further simplification. The problem is simplified 

by the integral transform technique (Laplace Transform and Fourier Transform). The 

approach's usefulness is demonstrated by analyzing the normal force, the thermal source and 

the specific type of heat source. In the transformed domain, physical field quantities 

(displacement components, stress components, thermodynamic temperature and conductive 

temperature) are examined. The numerical inversion procedure is employed to recover the 

resulting quantities in original physical dominion and depicted graphically to investigate the 

influence of N-L, TT, heat source, and different theories of thermoelasticity on physical 

quantities. Some unique cases are also presented. 

Chapter 3, concerned with investigation of two-dimensional problem in thermoelastic 

half space under MGT heat equation by virtue of thermomechanical source along with heat 

source. After simplifying the equation with the dimensionless quantities, the potential 

functions and integral transform technique are applied for further simplification. The problem 

is studied due to a heat source, a laser pulse decaying with time, moving with constant velocity 

in one direction, and thermomechanical loading. Specific types of normal distributed force 

(NDF) and ramp-type thermal sources (RTTS) are assumed to illustrate the usefulness of the 

problem. The rational expressions of displacement components, stress components, 
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conductive temperature, and thermodynamic temperature are computed in altered dominion. 

However, the numerical inversion methodology used to obtain subsequent physical quantities 

in physical dominion and results are displayed graphically to illustrate the effect of N-L 

moving heat source, and hyperbolic two temperature parameters. 

Chapter 4 concerned with the axisymmetric problem in a thermoelastic half-space 

owing to mechanical loading in the presence of N-L and HTT parameters under the MGT heat 

equation and fractional-order derivatives (FOD). The solution is found using the integral 

transform (Laplace and Hankel Transforms) technique. Ring or disc loads are used as an 

application to exemplify the approach's efficacy. The transformed displacement components, 

stress components, conductive temperature, and thermodynamic temperature are numerically 

computed in the physical dominion. 

Chapter 5 deals with the reflection problem of a plane wave in thermoelastic half-

space subjected to impedance boundary under MGT heat equation with fractional order 

derivatives along with non-local (N-L) and HTT. For the assumed model when a wave (P-

wave, T-wave, SV-wave) is incident on the surface 𝑥3 = 0, three varieties of reflected waves 

are produced: P-wave, T-wave and SV-wave. The amplitude ratios for these reflected waves 

are obtained numerically and displayed graphically to investigate the influence of specific 

parameters (N-L, HTT, and impedance). Additionally, special cases are inferred from the 

current investigation. 
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Chapter 2 

Deformation in a Thermoelastic Medium with Modified 

Green-Lindsay Model Incorporating Non-local and Two-

Temperature Effects 

2.1 Introduction 

Sharma (2011) [118] explored the deformation in thermoelastic diffusive semi- space 

due to inclined load based on G-L (1972) and CT (1980) theory. Sharma and Sharma 

(2014) [123] explored the response of relaxation time and heat sources in viscoelastic 

medium using bio heat equation. Bajpai et al. (2021) [17] constructed mathematical 

model of generalized thermoelasticity with fractional order derivatives to study the im-

pacts of two temperature (TT) and diffusion in thermoelastic plate owing to thermome-

chanical loading.  

 Abbas et al. (2022) [2] studied wave propagation in thermoelastic material un-

der L-S (1967) model of thermoelasticity to explore effect of relaxation and non-local 

(N-L) parameters. Jangid and Mukhopadhyay (2022) [56] used the MGL theory pro-

posed by Yu et al. (2018) [152] to investigate the effects of temperature and strain rate 

in an isotropic, thermoelastic medium by virtue of continuous line heat source. Othman 

et al. (2023) [91] analyzed various impacts (Hall current, TT, viscosity, and gravity) on 

physical field quantities in fiber reinforced visco-thermoelastic material under magnetic 

field in the context of the modified Green-Lindsay (MGL) model.  

Ailawalia and Gupta (2024) [9] investigated photothermoelastic interactions in 

a semiconducting material to study the effect of thermal conductivity under MGL 

model of thermoelasticity by applying normal mode analysis. Yadav et al. (2024)[146] 

used MGL theory of thermoelasticity and normal mode technique to examine the influ-

ence of N-L parameter in thermoelastic solid half-space subjected to moving thermal 

load. Tayel and Almuqrin (2024) [138] investigated two-dimensional axi-symmetric 

problem due to specific causes in photothermoelastic semi-space under MGL model.  

The investigation of thermoelastic materials incorporating non-local (N-L) and 

two-temperature (TT) effects is crucial for advancing the theoretical framework of ther-

moelasticity. Therefore, this research is motivated by the need to bridge gaps in existing 

theories by exploring the combined effects of heat sources and thermomechanical load-

ing, providing deeper insights into stress distribution in complex thermoelastic media. 
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In this chapter, heat source and thermomechanical loading are taken to study the 

effect of N-L and TT in thermoelastic semi-space under MGL model. The governing 

equations are made dimensionless, and potential functions are employed to facilitate 

further simplification. The problem is resolved by applying the Laplace transform (L.T) 

w.r.t time variable t and Fourier transform (F.T) w.r.t space variable 𝑥1. The problem's 

utility is illustrated using specific categories of heat sources, including thermal source 

and normal force. The components of displacement, normal stress, tangential stress, 

thermodynamic temperature and conductive temperature are obtained in the trans-

formed domain. The subsequent quantities are attained in actual dominion using a nu-

merical inversion method and represented explicitly to investigate the impact of N-L, 

TT, heat source, and different theories of thermoelasticity on physical quantities. Some 

unique cases are also presented.  

2.2 Basic Equations  

Following ( Eringen (1974) [42],Youssef (2006) [147] and Yu et al. (2018) [152] ) the 

basic equations and constitutive relations under MGL model with heat source, without 

body forces, taking into accounts N-L, and TT are  

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)𝛻(𝛻 ⋅ 𝑢⃗ ) + 𝜇Δ𝑢⃗ ] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝛻T = 𝜌(1 − 𝜉1

2Δ)
𝜕2𝑢⃗⃗ 

𝜕𝑡2 , 

          ( 2. 1 ) 

𝐾1Δϕ = (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
) (𝛽1𝑇0

𝜕

𝜕𝑡
ekk − 𝑄) + (1 + 𝜂4𝜏0

𝜕

𝜕𝑡
) 𝜌𝐶𝑒 Ṫ ,    ( 2. 2 )  

𝑡𝑖𝑗 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇 eij] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝑇𝛿𝑖𝑗  ,  ( 2. 3 ) 

𝑇 = (1 − 𝑎Δ)ϕ,        ( 2. 4 ) 

where 𝜆, 𝜇 -Lame's constants, 𝑢⃗  -displacement vector, 𝜌, 𝐶𝑒 -density and specific heat, 

𝑡 -time, 𝛽1=(3𝜆 + 2𝜇)𝛼𝑡, 𝛼𝑡 -coefficient of linear thermal expansion, 𝐾1-thermal con-

ductivity, ϕ -conductive temperature, 𝑇 -thermodynamic temperature , 𝜉1 – N-L param-

eter, 𝑡𝑖𝑗 -components of stress tensor, 𝑄 -heat source, 𝑇0 -reference temperature, 𝜏0, 𝜏1-

the relaxation times, 𝛿𝑖𝑗- Kronecker delta, 𝜂1, 𝜂2, 𝜂3,𝜂4- constants, a - two temperature 

parameter, Δ - Laplacian operator , ∇- nable (gradient) operator, 𝑒𝑘𝑘 - dilatation, 𝑒𝑖𝑗 =

1

2
 (𝑢𝑖,𝑗+ 𝑢𝑗 ,𝑖 ) (i, j = 1,2,3). 

The equations (2.1) - (2.4) reduce to the following model  

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 1 :  MGL model (2018) [152], 
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𝜂1 = 𝜂4 = 0,  𝜂2 = 𝜂3 = 1 :  Green-Lindsay (G-L) model, (1972) [47], 

𝜂1 = 𝜂2 = 0, 𝜂3 = 𝜂4 = 1 :  Lord -Shulman, (L-S) model, (1967) [81], 

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 =  0 :    Coupled thermoelasticity(C-T) model, (1980) [38], 

Equations (2.1) - (2.4) in components form for cartesian coordinates (𝑥1, 𝑥2, 𝑥3) are 

written as  

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥1
+ 𝜇 Δ𝑢1] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥1
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2
, 

( 2. 5 ) 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥2
+ 𝜇 Δ𝑢2] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥2
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢2

𝜕𝑡2 ,  

( 2. 6 ) 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥3
+ 𝜇 Δ𝑢3] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥3
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2  , 

          ( 2. 7 ) 

𝐾1Δϕ = (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
) [𝛽1𝑇0

𝜕𝑒

𝜕𝑡
− 𝑄] + (1 + 𝜂4𝜏0

𝜕

𝜕𝑡
) 𝜌𝐶𝑒

𝜕 𝑇

𝜕𝑡 
,  ( 2. 8 ) 

𝑡11 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆 𝑒 + 2 𝜇 e11] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)𝑇 ,   ( 2. 9 ) 

𝑡22 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆 e + 2 𝜇 e22] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝑇 ,    ( 2. 10 ) 

𝑡33 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆 𝑒 + 2 𝜇 e33] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝑇 ,     ( 2. 11 ) 

𝑡31 = 2(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) 𝜇 𝑒31,        ( 2. 12 ) 

𝑡32 = 2 (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) 𝜇 𝑒32,        ( 2. 13 ) 

𝑡21 = 2(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) 𝜇 𝑒21,        ( 2. 14 ) 

𝑇 = (1 − 𝑎Δ)ϕ ,         ( 2. 15 ) 

where Δ =
∂2

∂x1
2 +

∂2

∂x2
2 +

∂2

∂x3
2 , 𝑒 =  

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
 .    ( 2. 16 ) 

2.3 Problem Statement  

A homogeneous, isotropic, generalized thermoelastic solid semi - space MGL model 

besides the N-L and TT effects occupy a region 𝑥3 ≥ 0 in rectangular cartesian coordi-

nate system (x1, x2, x3) with 𝑥3 - axis pointing into the medium. The surface of the 

semi-space (𝑥3 = 0 ) is underneath the influence of thermomechanical loading and heat 

source. We define 𝑥1-𝑥3 as plane of incidence for our investigation, allowing the vari-

ous quantities to be expressed as functions of 𝑥1 , 𝑥3 and t. 
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Therefore, the displacement vector, thermodynamic temperature and conductive tem-

perature are taken as  

 𝑢⃗  = ( 𝑢1(𝑥1, 𝑥3, 𝑡), 0, 𝑢3(𝑥1, 𝑥3, 𝑡)), T = T(𝑥1, 𝑥3, 𝑡), ϕ = ϕ(𝑥1, 𝑥3, 𝑡). ( 2. 17 ) 

Equations (2.5) - (2.8), (2.11), (2.12) and (2.15) with the aid of (2.17) reduce to two di-

mensions form as follows: 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥1
+ 𝜇 Δ𝑢1] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥1
= (1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2
,  

          ( 2. 18 )  

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥3
+ 𝜇 Δ𝑢3] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥3
= (1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2 ,  

( 2. 19 ) 

𝐾1Δϕ = (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
) [𝛽1𝑇0

𝜕𝑒

𝜕𝑡 
− 𝑄] + (1 + 𝜂4𝜏0

𝜕

𝜕𝑡
) 𝜌𝐶𝑒

𝜕 𝑇

𝜕𝑡
 ,  ( 2. 20 ) 

𝑡33 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆 𝑒 + 2 𝜇 

𝜕𝑢3

𝜕𝑥3
] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝑇 ,    ( 2. 21 ) 

𝑡31 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) 𝜇 (

𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
) ,      ( 2. 22 ) 

𝑇 = (1 − 𝑎 Δ)ϕ,        ( 2. 23 ) 

where 

 Δ =
∂2

∂x1
2 +

∂2

∂x3
2,  e =

∂u1

∂x1
+

∂u3

∂x3
.       ( 2. 24 ) 

For further simplifications, following dimensionless quantities are taken as  

 (𝑥𝑖
′, 𝑢𝑖

′, 𝜉1
′) =

ω1

c1
(𝑥𝑖, ui, 𝜉1),  𝑡3𝑖

′ =
𝑡3𝑖

𝛽1𝑇0
,  (ϕ′, T′) =

1

T0
(ϕ, T),  

 (𝑡′, 𝜏0
′  , 𝜏1

′ ) = 𝜔1(𝑡, 𝜏0 , 𝜏1), 𝑎′ =
𝜔1

2

𝑐1
2 𝑎,   𝑄′ =

𝑐1
2

𝐾1𝜔1𝑇0
𝑄,  

 𝐹10
′ =

1

𝛽1𝑇0
𝐹10,   𝐹20

′ =
𝑐1

𝜔1𝑇0
𝐹20,  (𝑖 = 1,3).   ( 2. 25 ) 

where 

𝑐1
2 =

𝜆+2𝜇

𝜌
 , ω1 =

𝜌 𝐶𝑒𝑐1
2

𝐾∗
 , and 𝜔1, 𝑐1 being the characteristic frequency and longitudinal 

wave velocity respectively. 

Using the dimensionless quantities defined by equations (2.25), in equations (2.18) - 

(2.23), after removing the primes give, 

(1 + 𝜂1𝜏1
∂

∂𝑡
) [𝑎1

∂𝑒

∂𝑥1
+ 𝑎2Δ𝑢1] − 𝑎3 (1 + 𝜂2𝜏1

∂

∂𝑡
)

∂𝑇

∂𝑥1
= (1 − 𝜉1

2Δ)
∂2𝑢1

∂𝑡2 ,  ( 2. 26 ) 

(1 + 𝜂1𝜏1
∂

∂𝑡
) [𝑎1

∂𝑒

∂𝑥3
+ 𝑎2Δ𝑢3] − 𝑎3 (1 + 𝜂2𝜏1

∂

∂𝑡
)

∂𝑇

∂𝑥3
= (1 − 𝜉1

2Δ)
∂2𝑢3

∂𝑡2  , ( 2. 27 ) 

Δϕ = (1 + 𝜂3𝜏0
∂

∂𝑡
) [𝑎4 (

∂𝑢̇1

∂𝑥1
+

∂𝑢̇3

∂𝑥3
) − 𝑄] + (1 + 𝜂4𝜏0

∂

∂𝑡
)

∂𝑇

∂𝑡
,  ( 2. 28 ) 
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𝑡33 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝑎5

𝜕𝑢1

𝜕𝑥1
+ 𝑎6

𝜕𝑢3

𝜕𝑥3
 ] − (1 + 𝜂2𝜏1

∂

∂𝑡
)𝑇,   ( 2. 29 ) 

𝑡31 = 𝑎7 (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) (

𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
) ,      ( 2. 30 )  

𝑇 = (1 − 𝑎Δ)ϕ ,         ( 2. 31 ) 

where  

𝑎1 =
𝜆+𝜇

𝜌𝑐1
2 , 𝑎2 =

𝜇

𝜌𝑐1
2,  𝑎3 =

𝛽1𝑇0

𝜌𝑐1
2 ,  𝑎4 =

𝛽1𝑐1
2

𝐾∗𝜔1
 , 

𝑎5 = 
𝜆

𝛽1𝑇0
 , 𝑎6 = 

𝜆+2 𝜇

𝛽1 𝑇0
 , 𝑎7 =

𝜇

𝛽1 𝑇0
 . 

2.4 Solution Procedure 

Following Helmholtz’s decomposition, 𝑢1(𝑥1 , 𝑥3, 𝑡 ) and 𝑢3( 𝑥1 , 𝑥3, 𝑡) relate to poten-

tial functions 𝑞 (𝑥1, 𝑥3 , 𝑡) and Ψ (𝑥1, 𝑥3 , 𝑡) in dimensionless form are expressed as  

u1 =
∂q

∂x1
−

∂Ψ

∂x3
,   𝑢3 =

∂q

∂x3
+

∂Ψ

∂x1
 .     ( 2. 32 ) 

Equations (2.26) - (2.28) along with (2.31) reduce to the following equations after using 

(2.32). 

(1 + 𝜂1𝜏1
∂

∂𝑡
)Δq − 𝑎3 (1 + 𝜂2𝜏1

∂

∂𝑡
) (1 − 𝑎Δ)ϕ = (1 − 𝜉1

2Δ)
∂2q

∂𝑡2 ,   ( 2. 33 ) 

𝑎2 (1 + 𝜂1𝜏1
∂

∂𝑡
) ΔΨ = (1 − 𝜉1

2Δ)
∂2Ψ

∂𝑡2  ,      ( 2. 34 ) 

Δ𝜙 = (1 + 𝜂3𝜏0
∂

∂𝑡
) (𝑎4Δ𝑞̇ − 𝑄) + (1 + 𝜂4𝜏0

∂

∂𝑡
)

∂

∂𝑡
 (1 − 𝑎Δ)ϕ.  ( 2. 35 ) 

The L.T of a function  𝑓(𝑥1, 𝑥3, 𝑡) following [Debnath (1995)] [37] w.r.t variable ‘t’ 

and ‘s’ as the L.T parameter is defined as     

f̂(x1, x3, s) = L{f(x1, x3 , t )} =  ∫ e−stf(x1, x3, t)
∞

0
 dt.   ( 2. 36 )  

With following basic properties  

(i) L(
∂f

∂t
) = s f̂( x1, x3 s ) - f(x1, x3, 0),     ( 2. 37 ) 

(ii) L(
∂2f

∂t2
) = s2 f̂( x1, x3 s ) − s  f(x1, x3, 0) − (

∂f

∂t 
)
t=0 

.   ( 2. 38 ) 

Initial conditions are as follows: 

u1(x1, x3, 0) = (
∂u1

∂t
)
t=0

= 0,  u3(x1, x3, 0) = (
∂u3

∂t
)
t=0

= 0, 

q(x1, x3, 0) = (
∂q

∂t
)
t=0

= 0,  T(x1, x3, 0) = (
∂T

∂t
)
t=0

= 0, 

Ψ(x1, x3, 0) = (
∂Ψ

∂t
)
t=0

= 0,  ϕ(x1, x3, 0) = (
∂ϕ

∂t
)
t=0

= 0,  ( 2. 39 ) 

and the regularity conditions are  

u1(x1, x3, t) = u3(x1, x3, t) = q(x1, x3, t) = T(x1, x3, t) = Ψ(x1, x3, t) = 0, 

ϕ(x1, x3, t) = 0, for 𝑡 > 0, 𝑥3 → ∞  .       ( 2. 40 ) 
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Following Sneddon (1979) [137], the F.T of function a 𝑓 ( 𝑥1 , 𝑥3 , 𝑠 ) w.r.t space vari-

able 𝑥1 is defined as  

𝑓(𝜉, 𝑥3, 𝑠) = ∫ 𝑒−𝜄𝜉𝑥1𝑓(𝑥1, 𝑥3, 𝑠)
∞

−∞
𝑑𝑥1 .      ( 2. 41 ) 

where 𝜉 is the Fourier transform variable and ι denote iota.  

Applying L.T and F.T defined by equations (2.36) and (2.41) on equations (2.33) - 

(2.35) and with the aid of basic properties and initial conditions given by equation 

(2.37) - (2.39) yield  

[𝑅1 (
𝑑2

𝑑𝑥3
2 − 𝜉2) − (R2 − 𝜉1

2 𝑑2

𝑑𝑥3
2) 𝑠2] 𝑞̃  − (𝑅3R4 − 𝑎 R3

𝑑2

𝑑𝑥3
2) ϕ̃ = 0, ( 2. 42 ) 

[(𝑎2 R1 + 𝜉1
2 𝑠2)

𝑑2

𝑑𝑥3
2 − (𝑎2 ξ

2R1 + R2 𝑠
2) ] Ψ̃= 0,     ( 2. 43 ) 

(𝑅5ξ
2 − 𝑅5

𝑑2

𝑑𝑥3
2) 𝑞̃ + [(1 + 𝑎 𝑅6)

𝑑2

𝑑𝑥3
2 − (𝜉2 + 𝑅7)] ϕ̃ = −𝑅8 𝑄̃,  ( 2. 44 ) 

where 

𝑅1 = 1 + 𝜂1𝜏1𝑠,  𝑅2 = 1 + 𝜉1
2𝜉2,   𝑅3 = 𝑎3(1 + 𝜂2𝜏1𝑠),  

𝑅4 = 1 + 𝑎𝜉2,    𝑅5 = 𝑎4𝑠(1 + 𝜂3𝜏0𝑠), 𝑅6 = 𝑠 + 𝜂4𝜏0𝑠
2,  

𝑅7 = 𝑅4𝑅6,   𝑅8 = 1 + 𝜂3𝜏0𝑠. 

Solving equations (2.42) and (2.44) yield 

(
𝑑4

𝑑𝑥3
4 + 𝐵01

𝑑2

𝑑𝑥3
2 + 𝐵02) (q̃, ϕ̃) = (𝐵03

𝑑2

𝑑𝑥3
2 + 𝐵04 , 𝐵03

∗ 𝑑2

𝑑𝑥3
2 + 𝐵04

∗ ) Q̃ , ( 2. 45 ) 

where 

𝐵01 =
𝐵2

𝐵1
, 𝐵02 =

𝐵3

𝐵1
,  𝐵03 =

𝐵4

𝐵1
,  𝐵04 =

𝐵5

𝐵1
, 𝐵03

∗ =
𝐵4

∗

𝐵1
 , 𝐵04

∗ =
𝐵5

∗

𝐵1
 , 

𝐵1 = (1 + 𝑎𝑅6)(𝑅1 + 𝜉1
2𝑠2) + 𝑎𝑅3𝑅5, 

𝐵2 = −[𝑅3𝑅4𝑅5 + 𝑎𝑅3𝑅5𝜉
2 + (𝑅1𝜉

2 + 𝑅2𝑠
2)(1 + 𝑎𝑅6) + (𝜉2 + 𝑅7)(𝑅1 + 𝜉1

2𝑠2)],  

𝐵3 = (𝜉2 + 𝑅7)(𝑅1𝜉
2 + 𝑅2𝑠

2) + 𝑅3𝑅4𝑅5𝜉
2,  𝐵4 = a𝑅3𝑅8, 𝐵5 = −𝑅3𝑅4𝑅8, 

𝐵4
∗ = −(𝑎𝑅8 𝑅1 + 𝑅8𝜉1

2𝑠2),    𝐵5
∗ = 𝑅8 (𝑅1𝜉

2 + 𝑅2𝑠
2) . 

Simplification of equation (2.43) give 

(
𝑑2

𝑑𝑥3
2 − B05) ψ̃ = 0,         ( 2. 46 ) 

where 

𝐵05 =
𝐵6

𝐵7
 , 𝐵6 = 𝑎2 ξ

2𝑅1 + R2 𝑠
2, 𝐵7 = 𝑎2 𝑅1 + 𝜉1

2 𝑠2. 

The bounded solution of equations (2.45) and (2.46) satisfying the regularity conditions 

given by (2.40) can be written as: 

q̃ = A1e
−λ1x3 + A2e

−λ2x3 −
R3R4R8

(ξ2+R7)(R1ξ2+R2s2)+ R3R4R5ξ2
Q̃ ,   ( 2. 47 ) 
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ϕ̃ = d1A1e
−λ1x3 + d2A2e

−λ2x3 + d3Q̃ ,     ( 2. 48 )  

Ψ̃ = A3e
−λ3x3,          ( 2. 49 ) 

where Ai ( i = 1,2,3) are the random constants to be determined and λi (i = 1,2,3) are 

roots of subsequent characteristic equations  

(
d4

dx3
4 + B01

d2

dx3
2 + B02) = 0, 

(
d2

dx3
2 − B05) = 0, 

and coupling constants are given by  

di =
(R1+ξ1

2s2)λi
2−(R1ξ

2+R2s
2)

R3R4−aR3λi
2 ,   d3 =

(R1ξ
2+R2s

2)R8

(ξ2+R7)(R1ξ2+R2s2)+ R3R4R5ξ2
 , (i = 1, 2). 

2.5 Heat source 

Here, we consider the concentrated ramp-type heat source as  

𝑄 = 𝑄1𝛿(𝑥1), 

where 

𝑄1 = 𝑄0 {

0, 𝑡 ≤ 0
𝑡

𝑡0
, 0 < 𝑡 ≤ 𝑡0

1, 𝑡 > 𝑡0

 ,       ( 2. 50 ) 

where 𝑄0 is constant, 𝑡0 is the Ramp type parameter and 𝛿( ) is Dirac delta function. 

2.6 Boundary Conditions 

We take distributed exponentially decaying normal force and concentrated thermal 

source in addition the vanishing of the tangential stress at 𝑥3 = 0, Mathematically, 

these are expressed as  

(i) 𝑡33 = 𝐹1(𝑥, 𝑡),  (ii) 𝑡31 = 0 , (iii) 
𝜕𝜙

𝜕𝑥3
= 𝐹2(𝑥, 𝑡) ,   ( 2. 51 ) 

where  

F1(x, t) =
F10t2

16tp
2 exp (

−t

tp
)H(a1

∗ − |x1|) ,      ( 2. 52 ) 

F2(x, t) = F20 exp(−bx1)H(x1)x3
2δ(t).     ( 2. 53 ) 

F10 , F20 signifies immensity of the force and steady temperature applied on the bound-

ary respectively. a1
∗  and b are constants, H( ) is Heaviside step function. 

Using non-dimensional defined in equation (2.25) on equation (2.51) yield the non-

dimensional boundary conditions and applying L.T and F.T defined by equations 

(2.36) and (2.41) on resulting non-dimensional boundary conditions along with (2.52) 

- (2.53), determine  
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(i) 𝑡̃33 = 𝐹̃1(𝜉, 𝑠),  (ii) 𝑡̃31 = 0 , (iii) 
𝜕Ψ̃

𝜕𝑥3
= 𝐹̃2 (𝜉, 𝑠) ,    ( 2. 54 ) 

where  

𝐹1̃ ( 𝜉 , 𝑠 ) = 𝐹10
𝑡𝑝

(1+𝑠𝑡𝑝
2)

3  
sin𝑎1𝜉

𝜉
,  𝐹2̃( 𝜉 , 𝑠 ) =  𝑎8 𝐹20

𝑥3
2

𝑏−𝜄 𝜉 
,  ( 2. 55 ) 

where 

 𝑎8 =
𝛽1 𝑐1

𝜔1
 . 

Using L.T and F.T defined by equation (2.36) and (2.41) on (2.29) - (2.32) and (2.50) 

yield  

𝑢1̃ = −ι ξ q̃  −
d Ψ̃

dx3
 ,         ( 2. 56 ) 

u3̃ = 
d q̃

dx3
 −  ι ξ Ψ̃ ,        ( 2. 57 ) 

𝑡33̃ = R1(a5ιξ u1̃ + 𝑎6ιξ u3)̃ − R1 𝑇̃,      ( 2. 58 )  

𝑡31̃ = a7𝑅1 (−𝜄𝜉𝑢3̃ +
d u1 ̃

dx3
),         ( 2. 59 )  

𝑇̃ = (1 − 𝑎 (
𝑑2

𝑑𝑥3
2 − 𝜉2)) ϕ̃ ,       ( 2. 60 ) 

𝑄̃ = 𝑎9 𝑄0 ,         ( 2. 61 ) 

where 

 𝑎9 = 
( 1−𝑒𝑡0 𝑆 )

𝑡0 𝑠2 
. 

Inserting the value of q̃, ϕ̃, ψ̃ from equations (2.47) - (2.49) in the transformed boundary 

conditions (2.54) and with aid of equations (2.56) -(2.61), determine the expressions 

for components of displacement, stresses, thermodynamic temperature and conductive 

temperature as 

𝑢̃1 = −
1

Δ0
[𝜄𝜉 ∑ (

𝐹̃1(𝜉, 𝑠)𝛥𝑘1𝑒
−𝜆𝑘𝑥3 + 𝐹̃̃2(𝜉, 𝑠)𝛥𝑘2𝑒

−𝜆𝑘𝑥3

+𝛥𝑘3𝑒
−𝜆𝑘𝑥3

) −
𝑎9𝑅8𝑅4𝑅3

𝐵3
 3

𝑘=1 𝑄0 ] , 

( 2. 62 ) 

𝑢̃3 =

−
1

Δ0
[
(∑ (𝐹̃1(𝜉, 𝑠)𝜆𝑘Δ𝑘1𝑒

−𝜆𝑘𝑥3 + 𝐹̃2(𝜉, 𝑠)Δ𝑘2𝑒
−𝜆𝑘𝑥3 + 𝜆𝑘Δ𝑘3𝑒

−𝜆𝑘𝑥3)2
𝑘=1 )

+𝜄𝜉(𝐹̃1(𝜉, 𝑠)Δ31𝑒
−𝜆3𝑥3 + 𝐹̃2(𝜉, 𝑠)Δ32𝑒

−𝜆3𝑥3 + a13(𝑎11𝑄0 + 𝑎10)𝑒
−𝜆3𝑥3)

], 

          ( 2. 63 ) 

𝑡̃33 =
1

Δ0
[
(∑ (𝐹̃1(𝜉, 𝑠)𝐻𝑘𝛥𝑘1𝑒

−𝜆𝑘𝑥3 + 𝐹̃2(𝜉, 𝑠)𝐻𝑘𝛥𝑘2𝑒
−𝜆𝑘𝑥3 + 𝐻𝑘𝛥𝑘3𝑒

−𝜆𝑘𝑥3)3
𝑘=1 )

+(𝑎11𝑄0 + 𝑎10)𝛥
], 
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           ( 2. 64 ) 

𝑡̃31 =
1

Δ0
[∑ (𝐹̃1(𝜉, 𝑠)𝐻𝑘+4𝛥𝑘1𝑒

−𝜆𝑘𝑥3 + 𝐹̃2(𝜉, 𝑠)𝐻𝑘+4𝛥𝑘2𝑒
−𝜆𝑘𝑥3) +3

𝑘=1

H5H7H9(𝑎11𝑄0 + 𝑎10) + ∑ 𝐻𝑘+4𝛥𝑘3𝑒
−𝜆𝑘𝑥33

𝑘=2 ],     ( 2. 65 ) 

𝑇̃

=
1

Δ0
 [∑ (

𝐹̃1 (𝜉, 𝑠)[(1 + 𝑎𝜉2) − 𝑎𝜆𝑘
2]𝑑𝑘𝛥𝑘1𝑒

−𝜆𝑘𝑥3

+𝐹̃ 2(𝜉, 𝑠)[(1 + 𝑎𝜉2) − 𝑎𝜆𝑘
2]𝑑𝑘𝛥𝑘2𝑒

−𝜆𝑘𝑥3 + 𝑑𝑘𝛥𝑘3𝑒
−𝜆𝑘𝑥3

) + 𝑎9𝑑3 (1 + 𝑎𝜉2) 𝑄0𝛥0

2

𝑘=1  

] 

           ( 2. 66 ) 

ϕ̃ =
1

Δ0
[(∑ (𝐹̃1(𝜉, 𝑠)𝑑𝑘𝛥𝑘1𝑒

−𝜆𝑘𝑥3 + 𝐹̃2(𝜉, 𝑠)𝑑𝑘𝛥𝑘2𝑒
−𝜆𝑘𝑥3 + 𝑑𝑘𝛥𝑘3𝑒

−𝜆𝑘𝑥3)2
𝑘=1 ) + 𝑎9𝑑3  𝑄0𝛥0]  

                                            ( 2. 67 ) 

where  

Δ0 = H8(H2H7 − H3H6) + H9(H3H5 − H1H7),  Δ11 = −H9H7,  Δ21 = H7H8,   

Δ31 = H5H9 − H6H8,  Δ12 = a8(H2H7 − H3H6), Δ22 = (H3H5 − H1H7)a8, 

Δ32 = (H1H6 − H2H5)a8, Δ13 = a12H7H9,   Δ23 = −a12H7H8,  

Δ33 = a13 (a9H4Q0 + a10), Hi = R1(−a5ξ1
2 + a6λi

2) − R1[(1 + aξ2) + aλi
2]di,  

H3 = iξλ3R1(a6 − a5), H4 =
a5ξ2R8R4R3R1

B3
 (1 + η1τ1s),  

Hi+4 = 2ia7ξλiR1,  H7 = a7R1(ξ
2 + λ3

2),  Hi+7 = λidi,   

a10 = −R1(1 + aξ2)d3,  a11 = a9H4,    a12 =  a11Q0 + a10, 

a13 = (H6H8 − H5H9), (i = 1,2) 

and F1̃ ( ξ , s ), F2̃ ( ξ , s ) are given by equation (2.55). 

2.7 Validations  

(i) Modified Green-Lindsay model with two temperature 

Taking 𝜉1 = 0, in equations (2.62) - (2.67) yield the corresponding expressions for 

MGL with TT and a heat source. 

(ii) Non-local Modified Green-Lindsay model  

Neglecting two temperature parameters, i.e. 𝑎 = 0, in equations (2.62) - (2.67) yield 

the resulting expressions for the N-L, MGL model involving heat source.  

(iii) Non-local L-S model without two temperature 

Taking 𝜂1 = 𝜂2 = 0, 𝜂3 = 𝜂4 = 1, a = 0 along with absence of heat source in equa-

tions (2.62) - (2.67) yield the expressions for the N-L, L-S model and results are 

same as those obtained by Abbas et al. (2022) [2]. 

(iv)  Non-local G-L model without two temperature 
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Taking 𝜂1 = 𝜂4 = 0, 𝜂2 = 𝜂3 = 1, 𝑎 = 0 in equations (2.62) - (2.67) yield the ex-

pressions for N-L, G-L model without TT and the resulting equations are same as 

obtained by Bayones (2020) [20] as special cases. 

(v) Non-local L-S model with two temperature 

Taking 𝜂1 = 𝜂2 = 0, 𝜂3 = 𝜂4 = 1, in equations (2.62) - (2.67) determines the re-

sulting expressions for L-S model with TT and in addition to the without heat 

source, the outcomes are the same as those attained by Lata and Singh (2020) [79].  

2.8 Inversion of the Transformation 

In this section we shall illustrate the method to invert the transformed components to 

physical dominion. The transformed components of transforms for the equations (2.62) 

- (2.67) CD, NS, TS, conductive temperature and thermodynamic temperature. These 

expressions are functions of x3, s and ξ where s is the parameter of L.T and 𝜉 is the F.T 

parameter. The function f(𝑥1, 𝑥3, t) attained from the f̃(ξ, 𝑥3, s) in the actual dominion, 

we find inverse of the F.T as  

f̂(𝑥1, 𝑥3, s) =
1

2π
∫ f̃(ξ, 𝑥3, s) exp (−iξ𝑥1)

∞

−∞
 dξ=

1

π
∫ |cos(ξx1) fe − i sin(ξx1) f0|

∞

0
dξ,  

          (2. 68 ) 

where  

f0 - odd parts of f̃(ξ, 𝑥3, s) , fe - even part of f̃(ξ, 𝑥3, s) . 

Consequently equation (2.68) yields the L.T, f̂(𝑥1, 𝑥3, s) of f(𝑥1, 𝑥3, t) . 

 f̂(𝑥1, 𝑥3, s) in the expression (2.68) may be taken as the L.T ĝ (s) of g(t) for the static 

values of the variables 𝑥1 and 𝑥3. The inverse function g(t) of transformed function 

ĝ (s) is written [Honig and Hirdes(1984)][53] as  

g(t) = 
1

2πi
∫ ĝ(s)

𝐴+i∞

A−i∞
exp(st) ds,      (2. 69 ) 

where s = 𝐴 + 𝜄 𝑥3, A is a freely chosen real number that surpasses the real parts of all 

singularities of 𝑔̃(s) .  

Substituting the value in equation (2.69) yield  

g(t) = 
exp(At)

2𝜋
 ∫ ĝ( A + 𝜄 𝑥3)

∞

−∞
exp(ιξx3) dx3 ,    (2. 70 ) 

by defining h(t) =  exp(𝐴t)g(t) and expanding it using a Fourier series over the inter-

val [0, 2M], we drive the following approximation formula 

g(t) = ED + g∞(t),        (2. 71 ) 

where  

g∞(t) =
𝐴0

2
+ ∑ Ak

∞
i=1 ,  0 ≤ t ≤ 2M,    (2. 72 ) 
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Ak = 
exp(At)

M
Re [ĝ (A +

ιkπ

M
) exp (

ιkπt

M
)].     (2. 73 ) 

By choosing a suitably large number for A, the discretization error ED can be made 

arbitrarily tiny. The criterion to select the value of A and M is given by Honig and 

Hirdes (1984) [53]. 

In addition to discretization error 𝐸𝐷 there occur truncation error ET. 

In equation (2.71), the infinite series can be truncated after a finite number of N terms.  

Consequently, g(t)'s approximate value  

gN(t) =
A0

2
+ ∑ 𝐴k

N
k=1 ,  0 ≤ t ≤ 2M,    (2. 74 ) 

The approximate formula to evaluate the function g(t) by “Korrecktur method” is  

g(t)=g∞(t) − exp(−2AM) g∞(2M + t) + E′
D,    (2. 75 ) 

where  

|E′
D| ≪ |ED|, 

Now 𝜖 − algorithm the approximate value of g(t) as follows 

gNk
(t)=𝑔𝑁(t) − exp(−2AM) gN′(2M + t),     (2. 76 ) 

where N′ is an integer such that N′ < N. 

Define the sequence of partial sums of the series in the equation (2.73) as  

Sm = ∑ 𝐴k
m
k=1  and 𝜖 −sequence by  

ε0,m = 0, ε1,m = sm,  

and  

εn+1,m = εn−1,m+1 +
1

εn,m+1 −εn,m 
, n,m ϵ N .      (2. 77 ) 

Thus the sequence ...ε1,1, ε3,1, … εN,1 (where N is a natural number) converges to  

 g(t) + 𝐸𝐷 −
𝐴0

2
 much quicker than the 〈𝑆𝑚〉, m ∈ Ν[ (Honig and Hirdes, (1984)] [53]. 

The actual process is to find inversion of L.T of equation (2.76) using the ε-algorithm. 

Choosing the right free parameter N is crucial for accuracy, the Korrecktur technique, 

and the ε-algorithm. The final stage is evaluating the integral in equation (2.76). Press 

et al. (1986) [103] propose a technique to calculate this integral. 
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2.9 Computational Interpretation and discussion 

For numerical calculations, we take case of magnesium crystal type material, the phys-

ical constants are following Dhaliwal and Singh (1980) [38], as 

λ = 2.17 × 1010Nm−2, μ = 3.278 × 1010Nm−2, 𝐾1 = 1.7 × 102Wm−1 K−1 , 

ω1 = 3.58 × 1011S−1,  β1 = 2.68 × 106Nm−2K−1,  ρ = 1.74 × 103Kgm−3, 

Ce = 1.04 × 103JKg−1K−1,  T0 = 298K,  τ0 = 0.1s,  τ1 = 0.2s. 

To investigate the impact of different factors, numerical calculations are computed us-

ing a mathematical software Force 2.0 and Grapher for four distinct scenarios: (i) non-

local (ii) heat source (iii) two-temperature, and (iv) various thermoelasticity theories 

(MGL, G-L, and L-S theories) 

2.9.1 Non-Local Parameter 

Figures 2.1-2.4 show that the computation are carried out for 𝑡0 = 0.25, a = 0.0104, and 

nonlocal parameter values 𝜉1 = 0, 0.5, and 0.75. for 0 ≤ 𝑥1 ≤ 10.  

i. The solid black line (──) represents NLMGL (𝜉1 = 0.75). 

ii. Small dashed red line (. . .) stands for NLMGL (𝜉1 = 0.5). 

iii. Long dashed blue line (− − −) represents the case of NLMGL (𝜉1 = 0). 

 

Figure 2.1 Profile of 𝑡33 vs 𝐱𝟏 

Figure 2.1 illustrates the behavior of the normal stress 𝑡33 vs 𝑥1 . The value of 𝑡33 de-

creases sharply for all values of 𝜉1 in the bounded range, 0 ≤ 𝑥1 ≤ 2.5 and as 𝑥1 increases 

further, it shows a similar oscillatory behavior for remaining range. 
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Figure 2.2 Profile of 𝑡31 vs 𝐱𝟏 

Figure 2.2 displays the trend of 𝑡31 vs 𝑥1 . Initially, the values of 𝑡31 for 𝜉1 = 0.75 are 

lesser in contrast to other values of 𝜉1 . The N-L parameter considerably impacts 𝑡31 as 

for higher values of 𝜉1 = 0.75 , 𝑡31 has high oscillatory pattern whereas for the value 

of 𝜉1 = 0 , the magnitude of oscillation is small.  

 

Figure 2.3 Profile of T vs 𝐱𝟏 

Fig. 2.3 predicts T vs 𝑥1. The behavior of 𝑇 for all the values 𝜉1 of is oscillatory in the 

entire interval. The curve corresponds to T for intermediate value of 𝜉1=0.5, remains 

on higher side as compared to others considered values of 𝜉1. 
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Figure 2.4 Profile of 𝛟 vs 𝐱𝟏 

Figure 2.4 shows the trend of conductive temperature ϕ vs 𝑥1. It is seen that the be-

haviour and variations for T and ϕ are alike with small difference in magnitude. 

2.9.2 Heat Source Parameter 

Figures 2.5-2.8 show the results computed for 𝜉1 = 0.5, a = 0.0104, and 𝑡0 = 0.01, 0.25, 

and 0.75. 

i. The solid black line (──) represents HSMGL 𝑡0 = 0.75. 

ii. Small dashed red line (. . .) related to HSMGL 𝑡0 = 0.25. 

iii. Long dashed blue line (− − −) stands for HSMGL 𝑡0 = 0.01. 

 

Figure 2.5: Profile of 𝑡33 vs 𝐱𝟏. 
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Fig. 2.5 displays the trend of 𝑡33 vs 𝑥1. It is notice that all the curve corresponding to 

𝑡33 decreases abruptly for 0 ≤ 𝑥1 ≤ 2 and after that follows similar oscillatory behav-

ior. Also, immensity 𝑡33 is enhanced due to higher value of ramp time parameter 𝑡0. 

 

Figure 2.6: Profile of 𝑡31 vs 𝐱𝟏 

Fig. 2.6 displays the variation of 𝑡31 vs 𝑥1 It is seen that 𝑡31 exhibit similar pattern for 

all assumed cases. The values of 𝑡31 shows increasing trend for 2 ≤ 𝑥1 ≤ 4 and 7 ≤

𝑥1 ≤ 9 and decreasing trend for remaining range. Moreover, immensity of 𝑡31in-

creases for the smaller value of 𝑡0 

.  

Figure 2.7: Profile of T vs 𝐱𝟏. 

Fig. 2.7 represents the T vs 𝑥1. The values of T exhibit decreasing behaviour for all 



 
 

[26] 
 

assumed 𝑡0 in the range 0 ≤ 𝑥1 ≤ 2 and shows oscillatory trend in the left-over domain. 

 

Figure 2. 8: Profile of 𝛟 vs 𝐱𝟏 

Figure. 2.8 shows that all the curve corresponding to ϕ vs 𝑥1 decreases in the interval 

0 ≤ 𝑥1 ≤ 4 and follows an oscillatory behavior with increase in 𝑥1. 

2.9.3 Two Temperature Parameter  

Figures 2.9-2.12 show the results computed for 𝑡0 = 0.25, 𝜉1 = 0.5, and a = 0, 0.0104, 

and a = 0.5.  

i. The solid black line (──) represents TTMGL (𝑎 = 0.5). 

ii. Small dashed red line (. . .) related to TTMGL (𝑎 = 0.0104). 

iii. Long dashed blue line (− − −) represents the case of TTMGL (𝑎 = 0.0). 
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Figure 2.9: Profile of t33 vs 𝐱𝟏 

Figure 2.9 illustrates the behavior of the 𝑡33 vs 𝑥1 . The magnitude of 𝑡33 display sharp 

decreasing tendency for 0 ≤ 𝑥1 ≤ 2 . Also, the magnitude of value of 𝑡33 is greater for 

a = 0.5 as compared to those obtained for other values of this parameter; for 𝑥1 > 2, the 

value of 𝑡33 tends to zero. 

 

Figure 2.10: Profile of 𝑡31 vs 𝐱𝟏 

Figure 2.10 displays the stress 𝑡31 vs 𝑥1 . The behavior and variation of 𝑡31 is opposite 

to each other for a = 0.5 and a = 0.0104 in the range 2 ≤ 𝑥1 ≤ 6 and exhibit alike 

decreasing pattern in the left-over region, whereas in absence of two temperature 
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parameter, the values of 𝑡31shows small variations about origin, which reveals the im-

pact of two temperature parameter. 

 

Figure 2.11: Profile of T vs 𝐱𝟏 

Fig. 2.11 is a plot of T vs 𝑥1. Initially, the values of T for 𝑎 = 0.5 , 0.0104 shows 

decrement behaviour for 0 ≤ 𝑥1 ≤ 3 and shows the oscillatory trend in the left-over 

domain with the difference in the magnitude of oscillation. Also, the curve correspond-

ing to T for a = 0.5 remains on higher side as compared all considered cases. 

 

 

Figure 2.12: Profile of 𝛟 vs 𝐱𝟏 

Figure 2.12 illustrates that the values of ϕ for a= 0.5 decreases for the first half of the 
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range and in left over range, it shows steady state about '2', whereas the trend of ϕ for a 

= 0.0104 and a = 0.0 displays alike oscillatory trend in the whole region except for 5 ≤

𝑥1 ≤ 8 . 

2.9.4 Comparison of MGL, G-L and L-S models  

Figures (2.13) -(2.16) show the comparison of different theories MGL, G-L and L-S 

with 𝑎 = 0.0104, 𝑡 0 = 0.25, 𝜉1 = 0.5 as fixed values for 0 ≤ 𝑥1 ≤ 10.  

i. The solid black line (──) represents the MGL theory of thermoelasticity. 

ii. Small dashed red line (. . .) related to G-L theory of thermoelasticity. 

iii. Long dashed blue line (− − −) represents the case of L-S theory of thermoelas-

ticity. 

 

Figure 2.13: Profile of 𝑡33 vs 𝐱𝟏 

Figure 2.13 illustrates the behavior of the 𝑡33 vs 𝑥1 . Initially the values of 𝑡33 for MGL 

theory are smaller than those observed for G-L and L-S theory, which is accounted as 

the impact of relaxation times. Also, the values of 𝑡33 decreases sharply for 0 ≤ 𝑥1 ≤ 3 

and attains minimum value at 𝑥1 = 2.5 for L-S theory. 
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Figure 2. 14: Profile of 𝑡31 vs 𝐱𝟏 

Figure 2.14 shows 𝑡31 vs 𝑥1 . It is seen that the trend of 𝑡31 for MGL theory and G-

Ltheory exhibits opposite behavior as seen for L-S theory in the interval 0 ≤ 𝑥1 ≤ 8 

and similar behavior is observed in rest of the interval, which signifies the impact of 

different theories of thermoelasticity. 

 

Figure 2.15: Profile of T vs x1 

Fig. 2.15 exhibits the plot for T vs 𝑥1. The curve corresponding to T for GL theory is 

on higher side as compared to MGL and L-S theories in the entire range. Moreover, the 

magnitude of T shows abrupt decreasing pattern for 0 ≤ 𝑥1 ≤ 2, then, for the remaining 

interval, it exhibits the oscillatory behavior with large amplitude for GL theory.  
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Figure 2. 16: Profile of 𝛟 vs x1 

Figure 2.16 represent the ϕ vs 𝑥1. It is noticed that initially magnitude of values of ϕ 

for MGL is higher as in comparison to G-L and L-S theory Also, the value of ϕ de-

creases sharply in limited range of 0 ≤ 𝑥1 ≤ 2. For remaining interval, ϕ exhibits the 

oscillatory behavior with large amplitude for MGL in the entire range.  

2.10 Conclusions 

In this chapter, a mathematical MGL model of thermoelasticity with non-local and two-

temperature has been presented to solve deformation problem in homogenous, iso-

tropic, thermoelastic semi-space. The governing equations are simplified with dimen-

sionless and potential functions. The integral transform (L.T and F.T) technique has 

been employed to work out the problem. The exponentially decaying normal force, 

concentrated thermal source, and concentrated ramp-type heat source are taken to study 

the impact of N-L and TT. Numerical inversion methodology has been employed to 

attain the transformed expressions in original dominion and presented graphically to 

investigate the impact of N-L, TT, heat source, and different theories of thermoelasticity 

on obtained physical quantities. From Numerically computed results the conclusions 

are summarized as  

i. Presence of the non-local parameter intensify the amplitude of stress component, 

thermodynamic and conductive temperature and behaviour of normal stress, tan-

gential stress, thermodynamic temperature and conductive temperature is oscilla-

tory for all the assumed cases in most of the range different physical quantities 
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exhibit oscillatory behavior in most of the range. With the increase of the N-L 

parameter, thermodynamic and conductive temperature as well as stress compo-

nent increases which demonstrates the stimulus of the N-L parameter on the phys-

ical field quantities. 

ii. The behavior of normal stress, tangential stress, thermodynamic temperature and 

conductive temperature for various values of the heat source parameter are quali-

tatively similar. However, the amplitudes of oscillations of these quantities are dif-

ferent. Even small values of the heat source parameter enhance the values of nor-

mal stress, T, and ϕ .  

iii. The immensity of conductive temperature gets enhanced with presence of TT pa-

rameter, whereas the values of normal stress and tangential stress remain un-

changed. 

iv. The values of the stresses and the conductive temperature predicted by the G-L 

model are greater than those determined by the M G-L and L-S models.  

The physical applications of the model can be found in mechanical engineering and 

geophysics 



 

[33] 

 

Chapter 3 

The Influence of Non-Local and Heat Source in the Moore-Gibson-

Thompson Heat Equation Using the Hyperbolic Two-Temperature 

Model 

3.1 Introduction  

Abouelregal et al. (2022) [5] analyzed problem in thermoelastic half-space medium owing to 

periodic heat source with modified MGT thermoelastic heat equation to explore the impact of a 

magnetic field on different physical quantities. Kumar et al. (2022) [73] presented 

photothermoelastic model based on MGT theory for orthotropic plate to explore the impact of 

velocity, ramp type and periodic loading parameters on physical field quantities. Gupta et al. 

(2023) [51] employed Eringen (1974) non-local (N-L) elasticity theory to analyze 

thermomechanical response for micropolar thermoelastic material with voids using MGT heat 

conduction equation with memory-dependent derivative. 

 Srivastava and Mukhopadhyay (2023) [136] studied wave problem in thermoelastic 

medium owing to heat source and discussed analytical method to solve the problem under MGT 

model. Abouelregal et al. (2023) [3] studied the magneto-thermoelastic interactions in 

viscoelastic medium under fourth-order MGT model and analyzed the effect of Hall current. 

Kumar et al. (2024) [69] employed the integral transform technique to examine the influence of 

N-L and HTT on stress components and temperature distribution in thermoelastic half-space with 

the MGT and micropolar models.  

Abouelregal et al. (2024) [6] used fourth-order MGT model along with fractional order 

derivative to explore thermoelastic behavior of a functionally graded medium containing a 

spherical gap subjected to uniform electromagnetic field. Bazzara et al. (2024) [21] proved 

existence and uniqueness relations for poro-thermoelastic medium under MGT heat equation 

with microtemperature. 

Temperature changes affect the mechanical behavior of materials, including stress and 

strain, and play a significant role in analyzing deformation, particularly in investigations related 

to earthquakes and other phenomena in seismology and engineering. Therefore, this research is 

motivated to explore the influence of a moving heat source and thermomechanical loading, 
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providing deeper insights into stress distribution and temperature evolution in complex 

thermoelastic media and contributing to the development of more accurate and efficient models, 

In this chapter, the deformation problem of thermoelastic half -space under MGT heat 

equation with N-L and HTT is presented. After simplifying the equations with the dimensionless 

quantities, the potential functions and integral transform (L.T and F.T) technique is used for 

further simplification. The problem is examined due to a heat source which is taken as a laser 

pulse decaying with time and moving with constant velocity in one direction along with 

thermomechanical loading. Specific kinds of normal distributed force and ramp type thermal 

source (RTTS) are adopted to establish the effectiveness of the problem. The physical field 

quantities, component of displacement (CD), normal stress (NS), tangential stress (TS), 

thermodynamic temperature and conductive temperature are computed numerically and 

illustrated graphically for specific model to study the influence of N-L, HTT and moving heat 

source (MVS). Particular cases are also deduced from the present investigation. 

3.2 Basic Equations 

Following [(Quintanilla (2019) [105], Eringen (1974) [42], Youseff and El-Bary (2018) [149]] 

the field equations and constitutive relations in thermoelastic solid in the context of MGT heat 

equation with N-L, HTT and without body forces are written as: 

(𝜆 + 𝜇)𝛻(𝛻 ⋅ 𝑢⃑ ) + 𝜇Δ𝑢⃑ − 𝛽1𝛻𝑇 = 𝜌(1 − 𝜉1
2Δ)

𝜕2𝑢⃑⃑ 

𝜕𝑡2  ,    ( 3. 1 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒𝑇̈ + 𝛽1𝑇0𝑒̈ − 𝑄̇] = 𝐾∗ ∂

∂t
Δϕ + 𝐾1Δϕ,     ( 3. 2 ) 

ϕ̈ − 𝑇̈ = 𝛽∗Δϕ ,         ( 3. 3 ) 

𝑡𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇 eij − 𝛽1𝑇𝛿𝑖𝑗,       ( 3. 4 ) 

where 𝑒𝑖𝑗 is same as defined in section 2.2 [Chapter 2], K∗ =
Ce(λ+2μ)

4
 is rate of the thermal 

conductivity, β∗- HTT parameter constant, eij and other symbols λ, μ , β1,ρ, ξ1,Ce, 𝐾1, T0 , T, ϕ 

are same as defined in section 2.2 [Chapter 2]. 

The equations (3.1) - (3.4) yield to the following special cases. 

K∗ = 𝜏0 = 0:     CT model, (1980) [38],  

K∗ = 0 , 𝜏0 ≠ 0:    L-S model, (1967) [81], 

K1 = 𝜏0 = 0 , K∗ ≠ 0:    GN-II model, (1993) [49], 

𝜏0 = 0 , K∗ ≠ 0,𝐾1 ≠ 0:  GN-III model, (1992) [50]. 
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Equations (3.1) - (3.4), in components form for cartesian coordinates (x1, x2, x3) can be written 

as: 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇 Δ𝑢1 − 𝛽1

𝜕𝑇

𝜕𝑥1
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2
 ,               ( 3. 5 ) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥2
+ 𝜇 Δ𝑢2 − 𝛽1

𝜕𝑇

𝜕𝑥2
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢2

𝜕𝑡2  ,                 ( 3. 6 ) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇 Δ𝑢3 − 𝛽1

𝜕𝑇

𝜕𝑥3
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2  ,                ( 3. 7 ) 

𝜕2𝑇

𝜕 𝑡2 = (
𝜕2

𝜕 𝑡2 − 𝛽∗Δ)ϕ ,        ( 3. 8 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕2𝑇

𝜕𝑡2
+ 𝛽1𝑇0

𝜕2𝑒

𝜕𝑡2
− 

𝜕𝑄

𝜕𝑡
] = 𝐾∗Δϕ̇ + 𝐾1Δϕ,    ( 3. 9 )  

t11 = 𝜆 𝑒 + 2 𝜇 e11 − β1T,         ( 3. 10 ) 

𝑡22 = 𝜆 e + 2 𝜇 e22 − 𝛽1𝑇 ,         ( 3. 11 ) 

𝑡33 = 𝜆 𝑒 + 2 𝜇 e33 − 𝛽1𝑇,         ( 3. 12 ) 

𝑡31 =  2𝜇 𝑒31,          ( 3. 13 ) 

𝑡32 = 2μ e32,           ( 3. 14 ) 

𝑡21 =  2𝜇 e21 ,            ( 3. 15 ) 

where ∆, e are same as defined by equation (2.24) Section 2.2 [Chapter 2]. 

3.3  Formulation and Solution of the Problem 

A domain of solid half-space being homogeneous, isotropic thermoelastic under the MGT heat 

equation along with the impact of N-L and HTT parameters in an undisturbed state without body 

forces is considered. The starting point of rectangular cartesian coordinate system (𝑥1, 𝑥2 , 𝑥3) is 

situated on the surface when 𝑥3 =0. Also, 𝑥3-axis directing vertically downward into the semi-

space. The scenario includes a specific kind of forces/sources such as NDF and RTTS, with a heat 

source (HS) in the form of laser pulse decaying with time and moving with constant velocity in one 

direction is considered. 

 For the assumed model, we take  

 𝑢⃑  = ( 𝑢1(𝑥1, 𝑥3, 𝑡), 0, 𝑢3(𝑥1, 𝑥3, 𝑡)), T = T(x1, x3, t),  ϕ = ϕ(x1, x3, t).  (3. 16.) 

Using equation (3.16) in (3.5) - (3.9) and (3.12) - (3.13), we get  

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇Δ𝑢1 − 𝛽1

𝜕𝑇

𝜕𝑥1
= 𝜌(1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2  ,     ( 3. 17 ) 
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(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇Δ𝑢3 − 𝛽1

𝜕𝑇

𝜕𝑥3
= 𝜌(1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2
 ,     ( 3. 18 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕2T

𝜕𝑡2 + 𝛽1𝑇0
𝜕2e

𝜕𝑡2 − 
𝜕𝑄

𝜕𝑡
] = 𝐾∗Δϕ̇ + 𝐾1Δϕ,    ( 3. 19 ) 

𝜕2𝑇

𝜕 𝑡2 = (
𝜕2

𝜕 𝑡2 − 𝛽∗Δ)ϕ ,          ( 3. 20 ) 

𝑡33 =  𝜆 e + 2 𝜇 𝑒33 − 𝛽1𝑇 ,         ( 3. 21 ) 

𝑡31 = 2𝜇𝑒31  ,          ( 3. 22 ) 

where  

 e and Δ are same as defined in Section 2.3 [Chapter 2]. 

The following dimensionless quantity is  taken in addition to dimensionless quantities defined 

by equation (2.23) [Chapter 2]  

𝛽∗′
=

1

𝑐1
2 𝛽∗.          ( 3. 23 ) 

Equations (3.17) - (3.22), with the help of equations (2.23) and (3.23) simplify to the following 

equations after suppressing the primes,  

𝑎1
𝜕𝑒

𝜕𝑥1
+ 𝑎2Δ𝑢1 − 𝑎3

𝜕𝑇

𝜕𝑥1
= (1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2 ,      ( 3. 24 ) 

𝑎1
𝜕𝑒

𝜕𝑥3
+ 𝑎2Δ𝑢3 − 𝑎3

𝜕𝑇

𝜕𝑥3
= (1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2 ,      ( 3. 25 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) (

𝜕2𝑇

𝜕𝑡2 + 𝑎4
𝜕𝑒

𝜕𝑡2 −
𝜕𝑄

𝜕𝑡
) = (

𝜕

𝜕𝑡
+ 𝑘0) Δ𝜙,       ( 3. 26 ) 

ϕ̈ − 𝑇̈ = 𝛽∗Δϕ ,         ( 3. 27 ) 

𝑡33 = 𝑎5
𝜕𝑢1

𝜕𝑥1
+ 𝑎6

𝜕𝑢3

𝜕𝑥3
− 𝑇,        ( 3. 28 ) 

𝑡31 = 𝑎7 (
𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
) ,         ( 3. 29 ) 

where 

k0 =
𝐾1

𝐾∗𝜔1
, 𝑎𝑖 = (1-7) are same as defined in [Chapter2]. 

3.4 Solution Procedure  

The relation between displacement components and scalar potentials is same 

as given by equation (2.32) [Chapter 2].  

Using (2.32) in equations (3.24) - (3.26) give, 

Δ𝑞 − 𝑎3𝑇 = (1 − 𝜉1
2Δ)

𝜕2𝑞

𝜕𝑡2  ,       ( 3. 30 ) 
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[𝑎2Δ − (1 − 𝜉1
2Δ)

𝜕2

𝜕 𝑡2
] 𝜓 = 0 ,       ( 3. 31 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) (

𝜕2𝑇

𝜕𝑡2 + 𝑎4
𝜕

𝜕𝑡2 Δ𝑞 −
𝜕𝑄

𝜕𝑡
) = (

𝜕

𝜕𝑡
+ 𝑘0) Δ𝜙 .    ( 3. 32 ) 

Applying L.T and F.T defined by (2.36) and (2.41) on equations (3.30) - (3.32) and (3.27) along 

with the help of initial conditions (2.39) yield 

(
𝑑2

𝑑 𝑥3
2 − 𝜉2) 𝑞̃ − 𝑎3 𝑇̃ = (1 + 𝜉2𝜉1

2 − 𝜉1
2 𝑑2

𝑑 𝑥3
2) 𝑠2𝑞̃ ,     ( 3. 33 ) 

[(a2 + 𝑠2𝜉1
2)

𝑑2

𝑑 𝑥3
2 − ((1 + 𝜉2𝜉1

2)𝑠2 + 𝑎2 𝜉
2)] Ψ̃ = 0 ,    ( 3. 34 ) 

(1 + 𝜏0𝑠) (s2T̃ + 𝑎4 𝑠
2(

𝑑2

𝑑 𝑥3
2 − 𝜉2) − sQ̃) = (s + 𝑘0) (

𝑑2

𝑑 𝑥3
2 − 𝜉2) ϕ̃ ,  ( 3. 35 ) 

𝑇̃ = ϕ̃ −  (
d2

dx3
2 − ξ2) ϕ̃ ,         ( 3. 36 ) 

where   = {

0, for one temperature (1T)
𝑎, for two temperature (TT)

β∗

s2 , for hyperbolic two temperature (HTT)

. 

Using equation (3.36) in equation (3.33) and (3.35) give 

(𝑅1 + 𝑅2  
𝑑2

𝑑 𝑥3
2) ϕ̃ + (𝑅4 + 𝑅3

𝑑2

𝑑𝑥3
2) q̃  −  𝑅5 Q̃  = 0 ,      ( 3. 37 ) 

(𝑅9 + 𝑅8  
𝑑2

𝑑 𝑥3
2) ϕ̃+(𝑅7 + 𝑅6  

𝑑2

𝑑 𝑥3
2) q̃  = 0,       ( 3. 38 ) 

where           

𝑅1 = (1 + 𝜏0𝑠)[𝑠
2(1 + 𝜍𝜉2) + (𝑠 + 𝑎8)𝜉

2],   𝑅2 = (𝑠 + 𝑘0) − 𝑠2𝜍(1 + 𝜏0𝑠),  

𝑅3 = 𝑎4𝑠
2(1 + 𝜏0𝑠),  𝑅4 = −𝑎4𝑠

2𝜉2(1 + 𝜏0𝑠), 𝑅5 = 𝑠(1 + 𝜏0𝑠), 𝑅6 = 1 + 𝜉1
2𝑠2, 

𝑅7 = −(𝑠2(1 + 𝜉1
2𝜉2) + 𝜉2),  𝑅8 = 𝑎3𝜍,  𝑅9 = −𝑎3(1 + 𝜍𝜉2). 

Solving equation (3.37) - (3.38), after algebraic simplication’s, yield 

(
𝑑4

𝑑𝑥3
4 + 𝐵01

𝑑2

𝑑𝑥3
2 + 𝐵02) (𝑞̃, 𝜙̃) = (𝐵03

𝑑2

𝑑𝑥3
2 + 𝐵04 , 𝐵03

∗ 𝑑2

𝑑𝑥3
2 + 𝐵04

∗  ) 𝑄̃,  ( 3. 39 ) 

𝐵01 =
𝐵2

𝐵1
,  𝐵02 =

𝐵3

𝐵1
, 𝐵03 =

𝐵4

𝐵1
, 𝐵04 =

𝐵5

𝐵1
 , 𝐵1 = 𝑅2𝑅6 − 𝑅3𝑅8 , 

𝐵2 = (𝑅1𝑅6 + 𝑅2𝑅7 − 𝑅8𝑅4 − 𝑅9𝑅3), 𝐵3 = (𝑅1𝑅7 − 𝑅9𝑅4),  𝐵4 = −𝑅5𝑅8, 

𝐵5 = −𝑅5𝑅9, 𝐵03
∗ =

𝐵4
∗

𝐵1
 , 𝐵04

∗ =
𝐵5

∗

𝐵1
 , 𝐵4

∗ = 𝑅5 𝑅6, 𝐵5
∗= 𝑅5 𝑅7. 

Equation (3.34), after simplification gives  

(
𝑑2

𝑑𝑥3
2  − λ3

2) Ψ̅ = 0 ,         ( 3. 40 ) 
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where  

𝜆3
2 =

𝑎2 𝜉2+( 1+𝜉1
2𝜉2)𝑠2

𝑎2+𝜉1
2 𝑠2 .  

The bounded solution of equations (3.39) and (3.40) satisfying the regularity conditions given by 

(2.40) determine the following  

𝑞̃ = 𝐴1𝑒
−𝜆1𝑥1 + 𝐴2𝑒

−𝜆2𝑥3 +
𝑅5𝑅9

𝑅9𝑅4−𝑅1𝑅7
Q̃,       ( 3. 41 ) 

ϕ̃ = 𝑑1𝐴1𝑒
−𝜆1𝑥3 + 𝑑2𝐴2𝑒

−𝜆2𝑥3 + 𝑑3Q̃,      ( 3. 42 ) 

Ψ̃ = 𝐴3𝑒
−𝜆3𝑥3 .          ( 3. 43 ) 

𝜆𝑙(𝑖 = 1,2) being the roots of the characteristic equation (
𝑑4

𝑑𝑥3
4 + 𝐵01

𝑑2

𝑑𝑥3
2 + 𝐵02) = 0 and 

coupling constants are given by  

𝑑𝑖 = −
𝜆𝑖
2𝑅3+𝑅4

𝑅1+𝑅2𝜆𝑖
2 , 𝑑3 =

𝑅5𝑅7

𝑅1𝑅7−𝑅9𝑅4
 , (i = 1,2).  

3.5 Heat Source 

Here, we take exponentially decaying heat source with velocity v as  

𝑄 = 𝑄0 𝑒𝑥𝑝 (−
𝑡

𝑡𝑝
)𝛿(𝑥1 − 𝑣𝑡),         ( 3. 44 ) 

where 𝑄0 is constant, 𝑡𝑝 is the time duration of laser pulse decaying, 𝑣 is the velocity of moving heat 

source, t is time, 𝛿 ( ) symbolizes the Dirac delta function. 

3.6 Boundary Conditions 

The boundary restrictions for thermoelastic semi- space which is exposed to specific normal force 

(distributed normal force) and thermal source (ramp type) are considered as  

(𝑖) 𝑡33 = 𝐹1(𝑥1, 𝑡), (𝑖𝑖) 𝑡31 = 0, (iii) 
𝜕ϕ

𝜕𝑥3
= 𝐹2(𝑥1, 𝑡),  at 𝑥3 = 0 .  ( 3. 45 ) 

where 

𝐹1(𝑥1, 𝑡) = 𝐹10  {
𝑠𝑖𝑛

𝜋𝑡

𝜂
𝛿(𝑥)

0 
 
0 ≤ 𝑡 < 𝜂

𝑡 > 𝜂 
 ,       ( 3. 46 ) 

𝐹2(𝑥, 𝑡) = 𝐹20 𝛿𝑡0
(𝑡) 𝛿(𝑥) , 𝛿𝑡0

(𝑡) =  {
𝑡

𝑡0

0 
 
0 ≤ 𝑡 < 𝑡0

𝑡 > 𝑡0 
 ,    ( 3. 47 ) 

F10 , F20 are as defined in section 2.6 [Chapter 2].  

Using non-dimensional equation (2.25) on equation (3.44) and (3.45) give the non-dimensional 

boundary condition and applying L.T and F.T defined by (2.36) and (2.41) [Chapter 2], on 

resulting non-dimensional boundary conditions along with (3.46) - (3.47), determine  
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𝑄̃ = 𝑄0 a9,            ( 3. 48 ) 

where 

𝑎9 = 𝑒
−(𝑠+

1

𝑡𝑝
)
𝑥1
𝑣  and  

(𝑖) t̃33 = F̃1(ξ, s), (𝑖𝑖) t̃31 = 0,  (iii) 
∂ϕ̃

∂x3
= F̃2(ξ, s) at 𝑥3 = 0.    ( 3. 49 ) 

where 

F̃1(ξ, s) = F10 a10 , F̃2(ξ, s) = F20 a11 .      ( 3. 50 ) 

a10 = 
(1−e−st0)

t0s
, a11 = 

π η(1+e−ηs)

π2+s2η2  . 

Invoking L.T and F.T on equations (3.28) and (3.29) yield  

t33̃ = a5ιξ u1̃ + a6
∂u3̃

∂x3
−  T̃ ,          ( 3. 51 ) 

t31̃ = a7 (−ιξu3̃ +
du1̃

dx3
).          ( 3. 52 ) 

Inserting the values of q̃ , ψ̃, 𝜙̃ from equations (3.41) - (3.43) in the transformed boundary 

conditions (3.49) and using equations (2.32), (3.48), (3.50) - (3.52), yield the expressions of 

physical field quantities (displacement components, stresses, conductive temperature and 

thermodynamic temperature) as 

ũ1 =
1

Δ
[
F10[(−ιξ)∑ Δi1

2
i=1 e−λix3 + Δ31e

−λ3x3] + F20[(−ιξ)∑ Δi2e
−λix3 + Δ32

2
i=1 e−λ3x3]

−iξ (∑ Δi3
2
i=1 e−λix3 +

R5R9

R9R4−R1R7
Q0a9) + Δ33e

−λ3x3
], 

           ( 3. 53 ) 

ũ3 =
−1

Δ
[
F10(∑ λiΔi1

2
i=1 e−λix3 + iξΔ31e

−λ3x3) + F20(∑ λiΔi2
2
i=1 e−λix3 + iξΔ32e

−λ3x3)

+(∑ λiΔi3
2
i=1 e−λix3 + iξΔ33

∗ a9Q0e
−λ3x3)

] , 

            ( 3. 54 ) 

t33̃ =
1

Δ
[F10 ∑ Hi

∗3
i=1 Δi1e

−λix3 + F20 ∑ Hi
∗Δi2

3
i=1 e−λix3 + ∑ Hi

∗Δi3e
−λix33

i=1 + H4
∗Q0a9Δ], 

           ( 3. 55 ) 

t̂31 =
1

Δ
[F10 ∑ Hi+4

∗ Δi1
3
i=1 e−λix3 + F20 ∑ Hi+4

∗ Δi2e
−λix33

i=1 + ∑ Hi+4
∗ Δi3e

−λix32
i=1 +

H7
∗Δ33

∗  a9Q0e
−λ3x3],         ( 3. 56 ) 

ϕ̃ =
1

Δ
[F10

∑ Hi+7
∗ Δi1e

−λix32
i=1 + F20 ∑ Hi+7

∗ Δi2e
−λix32

i=1 + ∑ Hi+7
∗ Δi3e

−λix32
i=1 + H10

∗ Q0a9],

           ( 3. 57 ) 
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T̂ =
1

Δ
[F10

∑ diΔi1
2
i=1 e−λix3 + F20 ∑ diΔi2

2
i=1 e−λix3 + ∑ diΔi3

2
i=1 e−λix3 + d3Q0a9], 

           ( 3. 58 ) 

where  

Hi
∗ = −a5ξ

2 + a6λi
2 − (1 + ςξ2)di + ςdiλi

2
, H3

∗ = λ3iξ(a5 + a6), 

H4
∗ = −d3(1 + ςξ2) − a5ξ

2 R5R9

R4R9−R1R7
 ,  Hi+4

∗ = −2ia7ξλi, 

H7
∗ = −(λ3

2 − ξ2) ,  Hi+7
∗ = di(1 + ςξ2 − ςλi

2), H10
∗ = d3(1 + ςξ2),  

Δ = d1(H2
∗H7

∗ − H3
∗H6

∗) + d2(H3
∗H5

∗ − H1
∗H7

∗), Δ11 = −d2H7
∗a10, 

Δ12 = (H2
∗H7

∗ − H3
∗H6

∗)a11,  Δ13 = (H4
∗H7

∗d2 + H3
∗H6

∗d3 − H2
∗H7

∗d3)a9Q0,  

Δ21 = d1H7
∗a10,   Δ22 = (H3

∗H5
∗ − H1

∗H7
∗)a11,  Δ23 = (H1

∗d3 − H4
∗d1)H7

∗a9Q0,  

Δ31 = (d2H5
∗ − d1H6

∗)a10, Δ32 = (H1
∗H6

∗ − H2
∗H5

∗)a11,  

Δ33 = (H2
∗H5

∗d3 − H1
∗H6

∗d3 − H4
∗H5

∗d2 + H4
∗H6

∗d1)a9Q0,  (i = 1,2). 

3.7  Validation and Special Cases  

(i) MGT thermoelasticity with HTT 

if 𝝃𝟏 → 𝟎 in equations (3.53) - (3.58), determine the resulting expressions for MGT with HTT 

with the changed value of constants  𝑹𝟔 = 𝟏 , 𝑹𝟕 = 𝝃𝟐 𝒔𝟐 . 

(ii) Non-Local Lord Shulman Model (L-S model) with HTT  

Letting 𝑲∗= 0, in equations (3.53) - (3.58), give the expressions for generalized thermoelasticity, 

which involve one relaxation time under N-L and HTT with changed value of 𝒌𝟎 = 𝟎 . 

(iii) GN-II model with HTT 

Taking 𝐊𝟏 = 𝛕𝟎 = 𝟎,  𝐊∗ > 𝟎, in equations (3.53) - (3.58), will explore the resulting quantities 

for GN type-II model under N-L theory and HTT.with change value of constants  

R1 = (s2(1 + ςξ2) + (s + k0)ξ
2), R3 = a4s

2, R4 = −a4s
2ξ2,  R5 = 𝑠. 

(iv) Green- Naghdi-III model (GN-III model) with HTT  

Taking K∗, K1 > 0, τ0 = 0, in equations (3.53) - (3.58), determine the expressions for the GN 

type III model under the influence of N-L and HTT. 

(v) Lord Shulman model (L-S model) with TT 

Letting 𝐾∗ = 0, ξ1= 0 and = a in equations (3.53) - (3.58), gives the expression of generalized 

thermoelasticity, which involve one relaxation time under N-L and TT. 
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3.7.1 Sub Cases: 

3.7.1.1  For  = 𝒂 , in equations (3.53) - (3.58) yield resulting expressions for MGT 

thermoelasticity with TT and N-L effect. 

3.7.1.2 Putting 𝐊∗  = 𝟎,  = 𝟎 , 𝛏𝟏 = 𝟎 in equations (3.53) - (3.58), determine the resulting 

expressions for L-S thermoelasticity model with moving heat source then results agree with those 

obtained by Amin et al. (2017) [10] for a special case. 

 

3.8  Inversion of the Transforms 

To solve the problem in the physical realm, we must find the inverse of the transformations in 

equations (3.53) - (3.58). The inverse of the L.T and F.T can be found using the method explained 

in section 2.8 of [Chapter 2]. 

3.9  Numerical Result and Discussion 

For numerical computations, following Dhaliwal and Singh (1980) [38], we take material 

magnesium and the value of material constants are same as given by section 2.9[Chapter 2]. 

3.9.1 Non-Local  

In this case, we consider N-L parameter as 𝜉1 = 0, 𝜉1 = 0.20, 𝜉1 = 0.50, 𝜉1 = 0.75 , HTT 

parameter 𝜍 = 0.5 and 𝑣 = 1 for 0 ≤ 𝑥1 ≤ 10.  

i. The solid line (──) represents (𝜉1 = 0.75). 

ii. Small dashed line (. . .) stands for (𝜉1 = 0.50). 

iii. Solid line with center symbol Diamond ‘ ⋄ ′ (− ⋄  −) related to (𝜉1 = 0.20). 

iv. Small dashed line with center symbol Circle ′ο ′ (−ο−) represents the case of (𝜉1 = 0). 
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3.9.1.1  Normal Distributed Force 
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Fig. 3.1: Variation of 𝐭𝟑𝟑 vs 𝐱𝟏 

Figure 3.1 shows the behaviour of 𝑡33 vs 𝑥1. It is noticed that the behavior of 𝑡33 for 𝜉1 = 0.75 

and 0.5 are reverse in nature as that of 𝜉1 = 0.20 and 𝜉1 = 0 for the range 0 ≤ 𝑥1 ≤ 2 and 6 ≤

𝑥1 ≤ 10 respectively, while similar trends are noticed in the left-over interval. It is also seen that 

near the boundary surface, 𝑡33 attains minima for 𝜉1 = 0.20 at 𝑥1 = 4. 
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Fig. 3.2: Variation of 𝐭𝟑𝟏 vs 𝐱𝟏 
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Figure 3.2 is plot of 𝑡31vs 𝑥1, which demonstrates that for 𝜉1 = 0.0, the values of 𝑡31are higher 

in contrast to those obtained for 𝜉1 = 0.20for the entire range. It is also seen that for a higher 

value (𝜉1 = 0.75, 𝜉1 = 0.50), the values increase in the entire range with a significant difference 

in their magnitude. 
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Fig. 3.3: Variation of T vs 𝐱𝟏 

Figure 3.3 predicts T vs 𝑥1. It is seen that the magnitude of T for intermediate values of the N-L 

parameter (𝜉1 = 0.50, 𝜉1 = 0.20) are opposite in nature to those for the other value of 𝜉1 (𝜉1 =

0.75,  𝜉1 = 0.0 ) Moreover, T shows oscillatory behaviour with more variations for 𝜉1 =

0.50 than other lesser values of 𝜉1which is accounted as impact of N-L parameter. 
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Fig. 3.4: Variation of 𝛟 vs 𝐱𝟏 

The graphical representation of ϕ with 𝑥1 is represented in figure 3.4. It is noticed that ϕ exhibits 

similar pattern in the range 0 ≤ 𝑥1 ≤ 2 and 4 ≤ 𝑥1 ≤ 6 for 𝜉1 (𝜉1 = 0.75 ,𝜉1 = 0.0), whereas ϕ 

shows reverse trend for other considered values of 𝜉1, which is accounted as the impact of N-L 

parameter.  

3.9.1.2 Ramp Type Thermal Source  

Figure 3.5 represents the variations of t33 vs x1. 𝑡33 begins with large value in absence of N-L 

parameter. As the value of N-L parameter increases, the magnitude of 𝑡33 increases and attain 

maxima at 𝑥1 = 5 for 𝜉1 = 0.75 and decreases thereafter. 
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Fig. 3.5: Variation of 𝒕𝟑𝟑 vs 𝐱𝟏 
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Fig. 3.6: Variation of 𝒕𝟑𝟏 vs 𝐱𝟏 

The plot of 𝑡31vs x1 is represented by figure 3.6. It is seen that the trend of t31 for 𝜉1 = 0.20and 

𝜉1 = 0.0 are inverse in nature in the entire range, whereas for higher values of 𝜉1 (𝜉1 = 0.50, 

𝜉1 = 0.75) the behaviour of 𝑡31 is similar in nature in the entire range, although ,magnitude of 

values are greater for higher value of 𝜉1. 
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Fig. 3.7: Variation of T vs 𝐱𝟏 

Figure 3.7 shows the variations of T vs 𝑥1. It is noticed that T exhibits oscillatory behaviour for 

all values of 𝜉1, magnitude of oscillation is greater in absence of N-L parameter i.e. for 𝜉1 = 0, 

while for other values of 𝜉1 , T shows small variations about ' 2 '. 
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Fig. 3.8: Variation of 𝛟 vs 𝐱𝟏 

Figure 3.8 exhibits the plot for ϕ vs 𝑥1. The behaviour and variations of ϕ is similar with that for 

T with significant difference in their magnitude. 
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3.9.2  Moving Heat Source  

In this case, we consider moving heat source parameter, 𝑣 = 0.25, 𝑣 = 1 and 𝑣 = 1.75, N-L 

parameter 𝜉1 = 0.50 and HTT parameter 𝜍 = 0.5 for range 0 ≤ 𝑥1 ≤ 10.  

i. The solid black line (──) corresponds to (𝑣 = 1.75). 

ii. Small dashed blue line (. . .) corresponds to (𝑣 = 1). 

iii. The solid violet line (──) represents the case of 𝑣 = 0.25. 

3.9.2.1  Normal Distributed Force 
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Fig. 3.9: Variation of 𝒕𝟑𝟑 vs 𝒙𝟏 

Figure 3.9 demonstrates the variations of 𝑡33 vs 𝑥1. It is noticed that the value of 𝑡33 decreases 

in the ranges 2 ≤ 𝑥1 ≤ 3 and 6 ≤ 𝑥1 ≤ 10 and increase in the rest of the interval for all 

considered values of 𝑣. Moreover, the value of 𝑡33 is the highest when (𝑣 = 1.75 ). 
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Fig. 3.10: Variation of 𝐭𝟑𝟏 vs 𝐱𝟏 

The variation of 𝑡31 vs 𝑥1 is represented in figure 3.10. 𝑡31 shows an increasing trend for the 

entire range for all considered values of 𝑣. Moreover, the magnitude of the increment is greater 

for larger values of 𝑣 =  1.75. 
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Fig. 3.11: Variation of T vs 𝐱𝟏 

Figure 3.11 depicts the trend of T vs 𝑥1. The magnitude of temperature T starts with a large value 

for velocity, 𝑣 = 0.25 in the range 0 ≤ 𝑥1 ≤ 2 .For the left-over interval, T follows oscillatory 

behaviour. The magnitude of oscillation is higher in the case of 𝑣 = 1.75 than other considered 

values of 𝑣. 
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Fig. 3.12: Variation of 𝛟 vs 𝐱𝟏 

Figure 3.12 exhibits ϕ vs 𝑥1 . ϕ follows an oscillatory behavior for all the considered values of 

𝑣 for the entire range, the magnitude of oscillation is greater for higher-values of v. 

3.9.2.2 Ramp Type Thermal Source  
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Fig. 3.13: Variation of 𝐭𝟑𝟑 vs x1 
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Figure 3.13 depicts the variations of 𝑡33 vs 𝑥1. The values of 𝑡33 for 𝑣 = 1.75 and 𝑣 = 1 increases 

for the range 0 ≤ 𝑥1 ≤ 6, magnitude of values for 𝑣 = 1.75 are greater in comparison to those 

for 𝑣 = 1 and decreases in left over interval, whereas the smaller value of for 𝑣 (𝑣 = 0.25), 𝑡33 

shows a steady state about the origin. 
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Fig. 3.14: Variation of 𝐭𝟑𝟏 vs 𝐱𝟏 

Figure 3.14 is a plot of 𝑡31 vs 𝑥1. It is evident from the plot that 𝑡31 follows an oscillatory behavior 

for all values of 𝑣, The magnitude of oscillation is higher for a greater value of 𝑣 (𝑣 = 1.75). 
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Fig. 3.15: Variation of T vs x1 
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Figure 3.15 exhibits the plot for T vs 𝑥1. The value of T for 𝑣 = 1.75 and 𝑣 = 1 decreases for 

the range 3 ≤ 𝑥1 ≤ 5 and 8 ≤ 𝑥1 ≤ 10, and increases for the left-over interval, whereas for 𝑣 =

0.25, the values of T exhibit small variations about the value 2. 
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Fig. 3.16: Variation of 𝛟 vs x1 

Figure 3.16 is plot of ϕ vs 𝑥1. The behavior of ϕ is similar in nature as observed for T with 

significant difference in their magnitude, which reveals the impact of moving heat source 

parameter. 

3.9.3  Hyperbolic Two Temperature  

In this case, we consider HTT parameter 𝜍 = 0.75, 𝜍 = 0.50 and TT parameters 𝑎 = 0.104 and 

𝑎 = 0.0, N-L parameter 𝜉1 = 0.2 and moving heat source 𝑣 = 1for the range 0 ≤ 𝑥1 ≤ 10.  

i. The solid black line (──) corresponds to (𝜍 = 0.75). 

ii. Small dashed blue line (. . .) corresponds to (𝜍 = 0.50). 

iii. Solid Magenta line with center symbol ⋄ (──⋄──) corresponds to (𝑎 = 0.104). 

iv. Small dashed red line with center symbol 𝜊 (-ο -) represents the case of (𝑎 = 0.0). 
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3.9.3.1  Normal Distributed Force 
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Fig. 3.17: Variation of 𝐭𝟑𝟑 vs 𝐱𝟏 

It is evident from the figure 3.17, which is plot of 𝑡33 vs 𝑥1 that the trend of 𝑡33 are similar in 

nature for higher value HTT ( 𝜍 = 0.75, 𝜍 = 0.50 ) in the entire interval except in the range 9 ≤

𝑥1 ≤ 10 with a magnitude of values is higher for higher value of HTT parameter for 𝜍 = 0.50, 

whereas in case of TT (𝑎 = 0.104, 𝑎 = 0.0 ) the trend of 𝑡33 are similar in nature in the first half 

of the interval, whereas opposite behavior in the rest of the interval. 
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Fig. 3.18: Variation of 𝐭𝟑𝟏 vs 𝐱𝟏 
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Figure 3.18 is a plot of 𝑡31 vs 𝑥1. It is noticed that the values of 𝑡31 for 𝜍 = 0.50 show a decreasing 

trend in the entire interval, whereas the values of 𝑡31 for 𝑎 = 0.104 and 𝑎 = 0.0 increases in the 

range 0 ≤ 𝑥1 ≤ 7 and decreases in the remaining range. It also seen that the value of 𝑡31 for 𝜍 =

0.75 shows a small variation about the value '-1' and ultimately approaches to zero. 
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Fig. 3.19: Variation of T vs 𝒙𝟏 

Figure 3.19 shows the variations of T vs 𝑥1. It is noticed that the trend of T for HTT i.e. 𝜍 = 0.75 

is opposite in nature as observed for the case of TT (𝑎 = 0.104) in the entire range, which shows 

a significant impact of HTT parameter. It is also noticed that the trend of T in the absence of TT 

parameter are reverse in nature as for the case of HTT (𝜍 = 0.50). 
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Fig. 3.20: Variation of 𝛟 vs 𝐱𝟏 

Figure 3.20 is plot of ϕ vs 𝑥1. ϕ shows an oscillatory trend in the entire range. It is observed that 

the magnitude of oscillation is higher for HTT (𝜍 = 0.75) as compared to other considered values 

of HTT parameter. 

3.9.3.2  Ramp Type Thermal Source  
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Fig. 3.21: Variation of 𝐭𝟑𝟑 vs 𝐱𝟏 
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Figure 3.21 is a plot of 𝑡33 vs 𝑥1. The values of 𝑡33 increase for the entire range for HTT parameter 

(𝜍 = 0.75 and 𝜍 = 0.50), magnitude of values for 𝜍 = 0.50 are greater as compared to those for 

𝜍 = 0.75. Also, the values of 𝑡33 for 𝑎 = 0.104 and 𝑎 = 0.0 decreases in the range 3 ≤ 𝑥1 ≤ 7 

and a reverse trend is noticed in the left-over interval. 
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Fig. 3.22: Variation of 𝐭𝟑𝟏 vs 𝐱𝟏 

Figure 3.22 is a plot of 𝑡31 vs 𝑥1. 𝑡31 for 𝑎 = 0.0 shows the opposite trend as compared to other 

considered cases for the first half of the interval, which is accounted as significant effect of TT 

parameters. In the latter half of the interval, the values of 𝑡31 shows an oscillatory behavior. 
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Fig. 3.23: Variation of T vs 𝐱𝟏 
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Figure 3.23 is the plot of T vs 𝑥1. T shows the opposite behaviour for 𝑎 = 0.104 as compared to 

other considered values of HTT parameters for the entire range. In the absence of TT parameter 

T shows a steady state for the interval 0 ≤ 𝑥1 ≤ 4 and later, the values of T decrease for the 

interval 4 ≤ 𝑥1 ≤ 6, 8 ≤ 𝑥1 ≤ 10 and increases in the left-over interval. 

0 2 4 6 8 10
Distance x1

0

1

2

3

4

C
o
n
d

u
ct

iv
e 

T
em

p
er

at
u

re
 

HTT =

HTT =

TT a=0.104

AT a=0

 

Fig. 3.24: Variation of 𝛟 vs 𝐱𝟏 

Figure 3.24 is plot of ϕ vs 𝑥1. The variation of ϕ shows similar trend as for T with significant 

difference in their magnitude, which reveals the impact of HTT and TT parameters. 

3.10  Conclusions 

In this chapter, a two-dimensional problem in thermoelastic half space under MGT heat equation 

due to thermomechanical source along with heat source is presented. The heat source is 

considered as a laser pulse decaying with time and moving with constant velocity in one 

direction. The problem is further examined using a normal distributed force and ramp type 

thermal source. The LT and FT technique is applied to solve the problem in the transformed 

domain. The expressions for displacement components, stresses, conductive temperature, and 

thermodynamic temperature are obtained. The numerically computed inversion technique has 

been used to obtain the results in the physical domain, and results are displayed graphically to 
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illustrate the effect of N-L parameter, moving heat source parameter, and HTT. The following 

observations are obtained from numerical computed result: 

Non-Local Parameter  

i. When NDF is applied, it is observed that increment of N-L parameter increases the 

magnitude of normal and tangential stresses while thermodynamic temperature and 

conductive temperature show similar oscillatory behaviour. The magnitude of oscillation is 

higher for intermediate value of N-L parameter 𝜉1 = 0.50 as compared to other considered 

values of N-L parameter. 

ii. When RTTS is applied, the magnitude of normal stress remains greater for higher value 

values of 𝜉1, tangential stress, thermodynamic temperature, and conductive temperature 

show oscillatory behaviour in the entire range, although the magnitude of oscillation is 

higher in the absence of N-L parameter. 

iii. Moving Heat Source  

Higher value of moving heat source parameter enhances the magnitude of normal stress, 

thermodynamic temperature, and conductive temperature for NDF as well as for RTTS. 

Furthermore, the behaviour of variations for all physical quantities for different values of 

velocity is qualitatively similar in nature with the differences in their magnitude of 

oscillations. 

iv. Hyperbolic two temperature  

The HTT parameter enhances the magnitude of thermodynamic temperature and 

conductive temperature in contrast to normal and tangential stresses due to NDF and RTTS. 

It is also observed that in most of the range, the behaviour of all physical quantities for 

intermediate value of HTT parameter (𝜍 = 0.50) due to NDF and RTTS. 

The problem discussed although theoretical but it finds the application in material science The 

physical applications of the model can be found in the mechanical engineering and geophysics. 
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Chapter 4 

Modelling of Axi-Symmetric thermoelastic behaviour with 

Moore-Gibson-Thompson heat equation incorporating 

hyperbolic two temperature, non-local, and fractional order 

effects 

4.1 Introduction 

Kumar et al. (2019) [72] used eigen value method to study axisymmetric problem of 

thermoelastic plate. Sherief and Hussein (2020) [128] investigated two-dimensional 

axisymmetric problems in solid sphere and semi space with spherical cavity based on FOTT. 

Sherief et al, (2022) [126] explored two-dimensional axisymmetric problem by virtue of 

variable heat source using G-L model. 

Sherief and Hussein (2023) [129] studied two-dimensional half–space problem whose 

boundary is rigidly fixed and subjected to an axisymmetric thermal shock within frame work 

of the generalized micropolar theory of thermoelasticity. Bajpai et al. (2023) [15] used the 

axisymmetric technique to study the deformation of thermo-diffusive elastic half-space 

subjected to thermomechanical loading using the integral transform technique under the 

three-phase lag theory and fractional thermoelastic diffusion model. Khavale and Gaikward 

(2023) [62] analyzed the effect of axi-symmetric heat supply in the circular plate in the 

context of fractional-ordered thermoelastic stress analysis. Kumar et al. (2023) [65] presented 

the axisymmetric deformation problem of a thick circular plate subjected to a ramp-type heat 

source under modified couple stress thermoelasticity model to analyze the impact of 

diffusion, phase lags, and voids on studied physical quantities.  

 Kumar et al. (2024) [68] investigated the axisymmetric problem in micropolar 

thermoelastic half-space subjected to mechanical loading under the Moore-Gibson-Thompson 

(MGT) heat equation to study the impact of non-local (N-L) and Hyperbolic two-temperature 

(HTT) on physical field quantities. Bajpai et al. (2024) [18] explored thermo-diffusive elastic 

interactions in an axisymmetric half-space under internal heat source by virtue of 

axisymmetric thermal, mechanical, and mass concentration loads in context of fractional 

generalized thermoelastic diffusion theory with two temperature (TT) to study the impacts of 

thermal conductivity and diffusivity on physical field quantities. 

The study of thermoelastic materials incorporating fractional order derivatives (FOD), 

non-local (N-L) effects, and the hyperbolic two-temperature (HTT) model is essential for 
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advancing heat conduction theories and mechanical response analysis. This chapter is 

motivated by the need to improve the accuracy of thermoelastic models by integrating FOD 

and N-L parameters. The study of axisymmetric problems in thermoelasticity is crucial for 

understanding the behavior of materials and structures under thermal and mechanical loads 

that exhibit radial symmetry. Many practical engineering and scientific applications involve 

cylindrical, spherical, or annular geometries, making axisymmetric analysis highly relevant 

In this chapter, a two-dimensional axi-symmetric problem in a thermoelastic half-

space featuring fractional order derivatives (FOD), with N-L and HTT, in context of the MGT 

heat equation in response to mechanical loading is presented. The basic field equations and 

constitutive relations in the absence of body forces and heat sources are formulated. The 

governing equations are derived in cylindrical coordinates for axisymmetric problems. The 

resulting two-dimensional equations are normalized using non-dimensional quantities and 

decomposed using the Helmholtz decomposition theorem. The problem is solved by applying 

the Laplace transform (L.T) and Hankel transform (H.T). Ring and disc loads are taken as an 

application. The transformed components of displacement, stresses, conductive temperature, 

and thermodynamic temperature are computed in physical domain numerically. The graphical 

representation of numerical findings for displacement components, stresses (normal stress 

(NS), tangential stress (TS) thermodynamic temperature and conductive temperature reveals 

the impacts of N-L, HTT and TT parameters. Certain cases of interest are also drawn. 

4.2 Constitutive Relations and Basic Equations 

The governing equations and the constitutive relations in homogeneous, isotropic, 

thermoelastic under MGT heat equation with FOD under the influence of N-L and HTT 

parameters after removing body forces and heat sources are given by [Quintanilla (2019) 

[105], Ezzat et al. (2018) [45] and Eringen (1974) [42]] as 

The equations of motion 

(λ + μ)∇(∇ ⋅ u⃗ ) + μΔu⃗ − β1∇T = ρ(1 − ξ1
2Δ)

∂2u⃗⃗ 

∂t2
 ,     ( 4.1 ) 

Fractional order heat conduction equation 

(1 +
τ0

α

α!

∂α

∂tα
) [ρCeT̈ + β1T0ë] = K∗ ∂

∂t
Δϕ +K1Δϕ,     ( 4.2 ) 

The constitutive equation  

tij = λek,kδij + 2μ eij − β1Tδij,       ( 4.3 ) 

ϕ̈ − T̈ = β∗Δϕ,         ( 4.4 ) 

where 



 

[60] 

 

τ0
α-relaxation time, α-fractional parameter, and other symbols λ, μ, β1,ρ , ξ1 ,Ce, 𝐾1, T0 , T, ϕ 

are as specified in section 2.2 [Chapter 2] and K∗, β∗are as defined in Section 3.2 [Chapter 3]. 

Equations (4.1) - (4.4) in cylindrical polar coordinates (r, θ, z) in components forms can 

be written as 

(λ + μ)
∂e

∂r
+ 𝜇 (∆ur −

ur

r2
−

2

r2
∂uθ

∂θ
) − β1

∂T

∂r
 = ρ(1 − ξ1

2∆)
∂2ur

∂t2
 ,   (4.5 ) 

(λ + μ)
1

r

∂𝑒

∂θ
+ 𝜇 (∆uθ −

uθ

r2
+

2

r2
∂ur

∂θ
)  − β1

1

𝑟

∂T

∂θ
 = ρ(1 − ξ1

2∆)
∂2uθ

∂t2
 ,  (4.6 ) 

(λ + μ)
∂e

∂z
+ 𝜇∆uz − β1

∂T

∂z
 = ρ(1 − ξ1

2∆)
∂2uz

∂t2
,     (4.7 ) 

(1 +
τ0

α

α!

∂α

∂tα
) [ρCe

𝜕2𝑇

𝜕𝑡2 + β1T0
𝜕2𝑒

𝜕𝑡2] = (𝐾1 + 𝐾∗ 𝜕

𝜕𝑡
)Δ𝜙 ,    (4.8 )  

𝑡𝑧𝑧 = λ e + 2μ
∂uz

∂z
− 𝛽1𝑇 ,        (4.9 ) 

𝑡𝑧𝑟 = μ( 
𝜕𝑢𝑟

𝜕𝑧
+ 

𝜕𝑢𝑧

𝜕𝑟
 ),         (4.10 ) 

𝑡𝑟𝑟 = λ e +2μ 
𝜕𝑢𝑟

𝜕𝑟
− 𝛽1𝑇 ,        (4.11 ) 

𝑡𝜃𝜃 = λ e +2μ (
ur

𝑟
+

𝜕𝑢𝜃

𝜕𝜃
) − 𝛽1𝑇 ,       (4.12 ) 

𝑡𝑟𝜃 = μ (
1

𝑟
 
𝜕𝑢𝑟

𝜕𝜃
+ 

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟
),        (4.13 ) 

𝑡𝑧𝜃 =  𝜇 (
𝜕𝑢𝜃

𝜕𝑧
+

1

𝑟
 
𝜕𝑢𝑧

𝜕𝜃
) ,        (4.14 ) 

ϕ̈ − T̈ = β∗Δϕ,            (4.15 ) 

where 

𝑒 =
ur

𝑟
+

∂ur

∂r
+

1

r

∂uθ

∂θ
+

∂u𝑧

∂z
, ∆=

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2 +
1

r2
∂2

∂θ2.     (4.16 ) 

4.3 Formulation And Solution of The Problem 

A homogenous, isotropic thermoelastic solid half-space with HTT and N-L parameters under 

MGT heat equation with fractional order derivatives is considered. The cylindrical polar 

coordinates (r, θ, z) are chosen in such a way that z-axis coincide with axis of symmetry. The 

surface of the half space is taken as the plane z = 0 with z-axis pointing vertically into the 

medium. A ring or disc load is assumed to be acting at origin of the cylindrical polar 

coordinate. The geometry of the problem as shown in figure 4.1. 
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Figure 4.1: Schematic representation of the problem 

As due to symmetry about z-axis, all the quantities are independent of θ with condition 
𝜕

𝜕𝜃
 = 

0, then we take 

u⃗ = ( ur(r , z , t) , 0 , uz (r , z , t)),  T = T(r, z, t), and ϕ = ϕ(r, z, t).  (4.17 )  

With these considerations and using (4.17) in equations (4.5)- (4.15), reduce to following 

(λ + μ)
∂e

∂r
+ μ(Δ −

1

r2
) ur − β1

∂T

∂r 
= ρ(1 − ξ1

2Δ)
∂2ur

∂t2
,    (4.18 ) 

(λ + μ)
∂e

∂z
+ μΔuz − β1

∂T

∂z
= ρ(1 − ξ1

2Δ)
∂2uz

∂t2
 ,     (4.19 ) 

(1 +
τ0

α

α!

∂α

∂tα
) [ρCe

∂2𝑇

∂t2
+ β1T0

∂2e

∂t2
] = (K1 + K∗ ∂

∂t
) Δϕ ,    (4.20 ) 

tzz = (λ + 2μ)
∂uz

∂z
+ λ ( 

ur

r
+

∂ur

∂r
) − β1T ,      (4.21 ) 

tzr = μ(
∂uz

∂r
+

∂ur

∂z
) ,         (4.22 ) 

trr = λ e +2μ 
∂ur

∂r
− β1T,        (4.23 ) 

tθθ = λ e +2μ 
ur

r
− β1T ,        (4.24 ) 

trθ = 0,          (4.25 ) 

𝑡𝑧𝜃 = 0,          (4.26 ) 

T̈ = ϕ̈ − β∗Δϕ ,         (4.27 ) 

where 

𝑒 =  
𝑢𝑟

𝑟
+

𝜕𝑢𝑟

𝜕𝑟
+

𝜕𝑢𝑧

𝜕𝑧
 , Δ = 

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+ 

𝜕2

𝜕𝑧2
.      (4.28 ) 

For further simplifications, following dimensionless quantities are taken as 

(r′, z′, ur
′  , uz

′ , ξ1
′) =

ω1

c1
(r , z , ur , uz, ξ1),   (tzz

′ ,  tzr
′ ,  F10

′) =
1

β1T0
(tzz, tzr, F10),  

Ring Load 

r 

 

z 

Disc Load 
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(ϕ′, T’) =
1

𝑇0
(ϕ, T),  β∗’ =

1

c1
2 β∗,  (t′, τ0

′ ) = ω1(t, τ0),   (4.29 ) 

where 𝜔1, 𝑐1 are same as defined in Section 2.3 [Chapter 2]. 

Applying equation (4.29) leads to the reduction of equations (4.18) - (4.22) and (4.27) to 

the following, after removing the primes. 

a1
∂e

∂r
+ a2 (Δ −

1

r2
) ur − a3

∂T

∂r
= (1 − ξ1

2Δ) 
∂2ur

∂t2
,     (4.30 ) 

a1
∂e

∂z
+ a2Δuz − a3

∂T

∂z
 =  (1 − ξ1

2Δ)
∂2uz

∂t2
,      (4.31 ) 

(1 +
τ0

α

α!

∂α

∂tα
) [

∂2T

∂t2
+ a4

∂2e

∂t2
] = (k0 +

∂

∂t
)Δϕ,      (4.32 ) 

𝑡𝑧𝑧 = 𝑎6
𝜕𝑢𝑧

𝜕𝑧
+ 𝑎5 (

𝑢𝑟

𝑟
 +

𝜕𝑢𝑟

𝜕𝑟
) − 𝑇,       (4.33 )  

𝑡𝑧𝑟 = 𝑎7 (
𝜕𝑢𝑧

𝜕𝑟
+

𝜕𝑢𝑟

𝜕𝑧
),         (4.34 )  

ϕ̈ − 𝑇̈ = 𝛽∗Δϕ ,         (4.35 )  

where  

𝑎1 =
𝜆+𝜇

𝜌𝑐1
2 , 𝑎2 =

𝜇

𝜌𝑐1
2, 𝑎3 =

𝛽1𝑇0

𝜌𝑐1
2 , 𝑎4 =

𝛽1𝑐1
2

𝐾∗ 𝑤1
 ,  

𝑎5 =
𝜆

β1𝑇0
 , 𝑎6 = 

𝜆+2 𝜇

𝛽1 𝑇0
 ,  𝑎7 =

𝜇

𝛽1 𝑇0
 ,  𝑘0 = 

𝐾1

w1 𝐾
∗ 
. 

Applying Helmholtz decomposition, the displacement components ur, uz associated to the 

scalar potential functions are taken as 

ur =
∂𝑞

∂r
+

∂2ψ

∂r∂z
, uz =

∂𝑞

∂z
− (

∂2

∂r2
+

1

r

∂

∂r
)ψ.     (4.36 ) 

With the aid of (4.36) in equations (4.30) - (4.32) yield  

Δq − (1 − ξ1
2Δ) 

∂2q

∂t2
 − a3T =0,        (4.37 )  

a2ΔΨ − (1 − ξ1
2Δ) 

∂2Ψ

∂t2
= 0,         (4.38 ) 

(1 +
τ0

α

α!

∂α

∂tα
) (

∂2T

∂t2
+ a4

∂2

∂t2
∆q) = (𝑘0 +

∂

∂t
)Δϕ.     (4.39 ) 

We assume the initial conditions of the problem as: 

ur(r, z, 0) = (
∂ur

∂t
)
t=0

= 0,  uz(r, z, 0) = (
∂uz

∂t
)
t=0

= 0, 

ψ(r, z, 0) = (
∂ψ

∂t
)
t=0

= 0,  T(r, z, 0) = (
∂T

∂t
)
t=0

= 0, 

ϕ(r, z, 0) = (
∂ϕ

∂t
)
t=0

= 0 .         (4.40 ) 

Following [Debnath (1995)] [37], Laplace Transform (L.T) of a function f(𝑥1, 𝑥3, t) w.r.t time 

variable t and L.T parameter s is defined as: 

f̂(r, z, s) = L{f(r, z, t)} = ∫ f(r, z, t)
∞

0
e−stdt,       (4.41 ) 
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With basic properties 

i) L (
∂f

∂t
) = sf̂(r, z, s) − f(r, z, 0),       (4.42 ) 

ii) L (
∂2f

∂t2
) = s2f̂(r, z, s) − sf(r, z, 0) − (

∂f

∂t
)
t=0

.      (4.43 ) 

The Hankel transform (H.T) following [Sneddon (1979)] [137], of order n of f̄(r, z, s) w.r.t 

variable r, is defined as  

f(̅η, z, s) = Hn{f̂(r, z, s)} = ∫ f̂
∞

0
(r, z, s)rJn(ηr)dr,     (4.44 )  

where 𝜂 denotes the H.T parameter and Jn() is Bessel function of first kind of order n, with 

basic properties: 

H0 (
∂𝑓̂

∂r
+

1

𝑟
 f̂) = ηH1(f̄), H0 (

∂2𝑓̂

∂r2
+

1

𝑟

∂f̂

∂r
) = −η2H0(f)̅,    

H1 (
∂f̂

∂r
) = −ηH0(f)̅,  H1 (

∂2f̂

∂r2
+

1

𝑟

∂f̂

∂r
−

1

𝑟2 f̂) = −η2H1(f)̅.    (4.45 ) 

Applying L.T defined by equation (4.41) and H.T defined by equation (4.44) on equations 

(4.37) - (4.39) and (4.35) with the aid of (4.42) - (4.43), and (4.45) yield  

[(1 + ξ1
2 s2) 𝐷2 − (𝜂2 + (1 + η2 ξ1

2)𝑠2)]𝑞̅ − 𝑎3 𝑇̅ = 0,    (4.46 ) 

 [(𝑎2 + 𝜉1
2 𝑠2)𝐷2 − (a2η

2 + ( 1 +  ξ1
2𝜂2)𝑠2)]Ψ̅ = 0,     (4.47 ) 

(1 +
τ0

α

α!
 sα) s2𝑇̅ − (k0 + s)(D2 − η2)ϕ̅ + (1 +

τ0
α

α!
 sα) a4s

2(𝐷2 − η2) 𝑞̅  = 0,  (4.48 ) 

T̅ = ϕ̅ − ( 𝐷2 − η2)ϕ̅,         (4.49 ) 

where   

  = {

0, for one temperature (1T)
𝑎, for two temperature (TT)

β∗

s2 , for hyperbolic two temperature (HTT)

. 

Using equation (4.49) in equation (4.46) and (4.48), yield  

(𝑅1 𝐷
2 − 𝑅2)𝑞̅ − (𝑅4𝐷

2 + 𝑅3)𝜙̅ = 0 ,      (4.50 ) 

(𝑅6 𝐷
2 + 𝑅10)𝑞̅ + (𝑅8 − 𝑅9 𝐷

2 )𝜙̅ = 0 ,      (4.51 ) 

R1 = 1 + ξ1
2s2,  R2 = η2 + (1 + η2ξ1

2)s2,  R3 = a3(1 + ςη2), R4 = −a3,   

R5 = s2 (1 +
τ0

α

α!
sα) , R6 = (1 +

τ0
α

α!
sα) a4s,  R7 = a5 + s,    

R8 = R5(1 + ςη2) + R7η
2, R9 = R5 ς + R7,  R10 = −R6η

2, D =
d

dz
. 

After some algebraic simplifications, equations (4.50)- (4.51), yield 

(D4 + B01D
2 + B02)(q̅, ϕ̅) = 0,       (4.52 ) 

where 

𝐵01 =
𝐵2

𝐵1
,  𝐵02 =

𝐵3

𝐵1
,  B1 = R4R6 − R1R9 ,   
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B2 = R1R8 + R2R9 + R3R6 + R4R10,  B3 = R3R10 − R2R8 . 

Simplification of equation (4.47), yield  

(𝐷2 − 𝜆3
2) Ψ̅  = 0 ,         (4.53 ) 

where 

 λ3 = √
R11

R12
 , R11 = a2η

2 + (1 + η2ξ1
2)s2,  R12 = η2s2. 

Solution of equations (4.52) and (4.53) satisfying the radiation conditions that q̅, ϕ̅, and Ψ̅ →

0 as z → ∞, can be written as 

q̅ = A1e
−λ1 Z + A2e

−λ2 Z,        (4.54 ) 

𝜙̅ = d1A1e
−λ1z + d2A2e

−λ2z,       (4.55 ) 

Ψ̅ = A3e
−λ3 z,          (4.56 ) 

where ±λi (i = 1,2) and λ3 are the roots of the characteristic equations D4 + B01D
2 + B02 = 0, 

𝐷2 − λ3
2
= 0 respectively and the coupling constant 𝑑𝑖 are given by 

 di =
λ2

iR1−R2

R3+R4λi
2,  i = 1, 2. 

4.4 Boundary Conditions 

As an application of the present problem, we are examining mechanical loads (Disc/Ring 

load) displayed in figure 4.1, which act perpendicular to the surface. These loads originate 

from the coordinates' origin and uniformly expand over the surface at a constant rate 'c', 

while the tangential stress diminishes and the boundary remains isothermal. These 

boundary restrictions can be expressed mathematically as follows: 

(i) tzz = F1(r, t), (ii) tzr = 0, (iii) ϕ = 0  at 𝑧 = 0   (4.57 ) 

where 

F1(r, t) = F10 {

H(ct−r)

π(ct)2
 for disc load 

δ(ct−r)

2πr
 for ring load 

       (4.58 ) 

F10- magnitude of the force, H( ) - the Heaviside function, δ( ) - Dirac delta function. 

Applying L.T and H.T defined by equation (4.41), (4.44) in equation (4.57) along with 

(4.58) after using dimensionless quantities given by (4.29) yield 

(i)tzz̅̅̅̅  = F1
̅̅ ̅(η, s) (ii)  tzr̅̅ ̅̅ = 0 (iii) ϕ̅ = 0 at z = 0.   (4.59 ) 

 F1
̅̅ ̅(η, 𝑠) = F10

{
 
 

 
 1

π c η
(√η2 +

s2

𝑐2
−

s

c
)  for disc load.

 
1

2π

1

√𝜂2+
s2

c2

 for ring load.
      (4.60 ) 
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Using (4.41) and (4.44) in (4.36), (4.33) and (4.34) and with the aid of equations (4.42) and 

(4.43) and (4.45), along with (4.49), the components of displacement, and stress yield  

𝑢𝑟̅̅ ̅ = −𝜂 ( 𝑞̅ +
𝑑Ψ̅

𝑑𝑧
),         (4.61 ) 

𝑢𝑧̅̅ ̅ =
𝑑𝑞̅

𝑑𝑧
+ 𝜂2Ψ̅ ,          (4.62 ) 

𝑡𝑧𝑧̅̅ ̅̅ = 𝑎6
𝑑𝑢𝑧̅̅̅̅

𝑑𝑧 
 + 𝑎7 𝜂 𝑢𝑧̅̅ ̅ −  ( 

𝑑2

𝑑𝑧2 − η2) ϕ̅ ,       (4.63 ) 

𝑡𝑧𝑟̅̅ ̅̅ = 𝑎8 (
𝑑𝑢𝑟̅̅̅̅

𝑑𝑧
− 𝜂 𝑢𝑧̅̅ ̅) .         (4.64 ) 

Substituting the values 𝑞̅, ϕ̅, Ψ̅ from equations (4.54) - (4.56) in the boundary conditions 

(4.59) and using equations (4.60) - (4.64) we arrive at the matrix formulation as follows 

AX = B,  

where 

A = [

H1 H2 H3

H4 H5 H6

d1 d2 0
],  X = [

A1

A2

A3

],  B = [
F10

0
0

] .     (4.65 ) 

From equation (4.65) we obtain the value of unknown parameters as 

A𝑖 =
Δ𝑖

Δ
,  i = 1, 2, 3.        (4.66 ) 

Where 

Δ = |

H1 H2 H3

H4 H5 H6

d1 d2 0
| , 

 Δi , (i = 1 - 3) is obtained by replacing | F10 0 0|𝑇 with 𝑖th column of Δ  

Δ11 = −d2H6, Δ21 = d1H6, Δ31 = (d2H4 − d1H5),   

Hi = a6λi
2 − a5η

2 − (1 + η2)di + diλi
2
, 

H3 = λ3η
2(a5 − a6),  Hi+3 = 2λiηa7,  H6 = ηa7(λ3

2 + 𝜂2),  

Hi+6 = (1 + ςη2)di − ςdiλi
2,    (i = 1, 2). 

Substituting the values of 𝐴𝑖 from (4.66) in equations (4.54) -(4.56) yield  

q̅ =
𝐹10

Δ
 ∑   Δi1𝑒

−𝜆𝑖 𝑧2
𝑖=1  ,         (4.67 ) 

ϕ̅ =
𝐹10

Δ
 ∑ 𝑑𝑖  Δi1𝑒

−𝜆𝑖 𝑧2
𝑖=1  ,         (4.68 ) 

Ψ̅ =  
𝐹10

Δ
 Δ31  𝑒−𝜆3 𝑧 .          (4.69 ) 

Invoking the value of 𝑞̅, ϕ̅, Ψ̅ from (4.67) - (4.69) in equations (4.61) - (4.64) and (4.49) 

determine  

𝑢𝑟̅̅ ̅ =
F10

Δ
(η[−∑ Δi1

2
i=1 e−λiz + λ3Δ31e

−λ3z]),     (4.70 ) 
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𝑢𝑧̅̅ ̅ =
F10

Δ
([−∑ λiΔi1

2
i=1 e−λiz + η2Δ31e

−λ3z]),     (4.71 ) 

𝑡𝑧𝑧̅̅ ̅̅ =
F10

Δ
[∑ Hi

3
i=1 Δi1e

−λiz],        (4.72 ) 

𝑡𝑧𝑟̅̅ ̅̅ =
F10

Δ
[∑ Hi+3Δi1

3
i=1 e−λiz],       (4.73 ) 

ϕ̅ =
F10

Δ
[∑ diΔi1e

−λi 𝑧2
i=1 ],        (4.74 ) 

T̅ =
F10

Δ
[H7Δ11e

−λ1z + H8Δ21e
−λ2z].       (4.75 ) 

4.5 Validation  

i. By substituting K1 = ξ1 = 𝛼 = τ0 =  0 along with  = a in equations (4.70) - (4.75), 

give the expressions in thermoelastic under Lord-Shulman (1967) with TT these results 

are as obtained by Miglani and Kaushal (2011) [86] (In the absence of NF and TS at 

boundary) with changed value of constants  

 𝑎8 = 0,  R1 = 1,  R2 = η2 + s2,  R3 = a3(1 + 𝑎η2),  

 R4 = −a3𝑎, R5 = s2,  R6 = a4s,   R7 = 𝑎s, 

 R8 = R5(1 + 𝑎η2) + R7η
2,  R9 = R5 𝑎 + R7,  R10 = −R6η

2. 

ii. The required expressions for thermoelastic GN-II model for FOTT are recovered by 

taking K∗ = τ0
α = 0, K1 > 0 in equations (4.70) - (4.75) and these findings are aligned 

with those reported by Sharma et al. (2015) [115] as specific case. 

iii. Resulting expressions for thermoelastic Green- Naghdi-III (GN-III) model with HTT 

and FOTT are obtain by taking K1
∗ ≠ 0, K∗ ≠ 0 and τ0

α = 0 in equations (4.70) - (4.75). 

iv.  Neglecting fractional order parameter and HTT parameter using (4.70) - (4.75) 

determine the results which are similar as obtained by Lata and Singh (2022) [78] as a 

unique case. 

v. The expressions for axisymmetric problem in thermoelastic without N-L and TT can be 

obtained if we omit fractional order parameter 𝛼 appearing in the heat equation. In 

addition, if we omit TT and N-L parameters in equations (4.70) - (4.75) then the 

analytical solutions for modified formulation match with those reported by Kumar et al. 

(2014) [70]. 

4.6 Special Cases 

4.6.1 Taking 𝛓 = 𝐚 in equations (4.70) - (4.75) yields the results for thermoelasticity MGT 

with FOTT, TT and N-L. 

4.6.2  Putting 𝛓 = 𝟎 in equations (4.70) - (4.75) determine the results for thermoelasticity 

MGT with FOTT, one temperature along with N-L effect is obtained. 

4.7  Inversion of the Transforms 

In this section we shall illustrate the method to invert the transformed components to physical 

dominion. The transformed components of transforms for the equations (4.70) - (4.75) are 
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components of displacement (CD), normal stress (NS), tangential Stress (TS), conductive 

temperature and thermodynamic temperature. These terms are functions of z, s and 𝜂 where 

s is the parameter of L.T and 𝜂  is the H.T parameter. To acquire the f(𝑟, 𝑧, t) from the 

𝑓(̅η, z, s) in the physical dominion, first we invert the H.T as  

f̂(r, z, s) = ∫ η 𝑓(̅η, z, s)
∞

0
Jn(ηr)dη,        (4.76 ) 

Compute the integral (4.76) according to the instructions provided by Press et al. (1986) 

[103]. 

Thus, the expression (4.76) gives us the L.T 𝑓(r, z, s) of, f(r, z, t). 

For the static values of the variables 𝑟 and z, 𝑓(r, z, s) in the equation (4.76) might be assume 

as the L.T ĝ (s) of g(t). 

The inverse function g(t) of transformed function ĝ (s) can be written [Honig and Hirdes 

(1984)] [53] as  

g(t) = 
1

2πi
∫ ĝ(s)

𝐴+i∞

A−i∞
exp(st) ds .        (4.77 ) 

The final stage is to compute the integral given in equation (4.77). The details of approach 

can be found in section 2.8 of [Chapter 2]. 

4.8 Numerical Result and Discussion 

Following the approach of Dhaliwal and Singh (1980) [38], we focused on a material 

magnesium crystal. The physical constants used are consistent with those defined in Section 

2.9 [Chapter 2]. To analyze the impact of different factors, we conducted numerical 

simulations computed using a mathematical software Force 2.0  and Grapher for various 

scenarios. We inspected the impact of (i) HTT (ii) N-L parameters for ring load and disc load 

in a thermoelastic medium, using the MGT heat equation. To demonstrate the theoretical 

outcomes discussed in the previous section, we present certain numerical results in form of 

graphs. 

4.8.1 Hyperbolic Two-Temperature 

In the figures 4.2 - 4.9, we can observe the influence of HTT parameter, TT parameter and 

classical one temperature on NS ( tzz ), TS ( tzr ), thermodynamic temperature (T) and 

conductive temperature (ϕ) . The computation is performed for dimensionless two 

temperature a = 0.0, a = 0.0104, a = 0.5, HTT  = 0.75 in the range 0 ≤ r ≤ 10. 

In all these figures  

i. Solid black line (──) represents the curve corresponds a = 0. 

ii. Dashed brown line (- - -) stands for TT a = 0.0104. 

iii. Solid blue line with center symbol '⋄' (- ⋄-) represent TT a = 0.5. 

iv. Dashed red line with center symbol '𝜊' (- ⋄-) related to HTT  =0.75.  
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4.8.1.1 Disc Load  

 

  

 

 

 

 

 

 

 

      

 

 

 

Figure 4.2 Profile of 𝐭𝐳𝐳𝐯𝐬 𝐫 

 Figure 4.2 shows the variation of tzz vs r. Near the point of loading, 𝑡𝑧𝑧 depicts decreasing 

trend whereas for  =0.0104 reverse behavior is observed. Away from loading points, 𝑡𝑧𝑧 

follows oscillatory behavior. Also, the values of tzz  remains more for  = 0.75  in 

comparison to all considered cases.  
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Figure 4.3 Profile of 𝐭𝐳𝐫𝐯𝐬 𝐫 

Figure 4.3 displays variation of tzr  vs r. The values of tzr  increases with r for all the 

assumed scenario for 0 ≤ r ≤  2 , after that oscillatory behavior with a small amplitude 
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about the origin is noticed. Moreover, the immensity of tzr  is more for  = 0.75  in 

comparison to other cases throughout the range, which reveals that HTT parameter impact 

the immensity of tzr. 
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Figure 4.4 Profile of 𝐓 𝐯𝐬 r 

Figure 4.4 depicts the decreasing trend of T for 0 ≤ r ≤  2, afterwards the immensity of T 

follows oscillatory behavior with a small amplitude and finally become stationary about 

zero value. 
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    Figure 4.5 Profile of 𝛟 𝐯𝐬 𝐫  

Figure 4.5 shows ϕ vs r. It is noticed that ϕ behave in opposite manner for curve corresponds 

to  = 0.75  and 𝑎 =  (0.0, 0.0104) in the first half of the interval and follows similar 
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behavior for remaining region, whereas for intermediate value of ‘’ slight variations are 

observed about origin. 

4.8.1.2 Ring Load  

0 2 4 6 8 10
 Radial Distance (r)

-3

-2

-1

0

1

2

3

4

5

6

7

N
o

rm
a

l 
S

tr
e

s
s
 (

 t
Z

Z
 )

 
a=0

a=0.0104

a=0.5

=0.75

 

Figure 4.6 Profile of 𝐭𝐳𝐳𝐯𝐬.r 

Figure 4.6, depicts trend of tzz vs r. The curve corresponding to tzz for a = 0.5 and  = 0.75 

are opposite in nature as observed for (a = 0.0, a = 0.0104) in the range 0 ≤ r ≤ 2, 

afterwards, stationary behavior about the '0' value is noted for all the curves. 
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Figure 4.7 Profile of 𝐭𝐳𝐫𝐯𝐬. r 

Figure 4.7 expresses that the trends and variation of tzr for all the curves are alike for all 

the considered cases in the entire range except for 0 ≤ r ≤ 1, where opposite behaviour is 
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observed for 𝑎 = 0.0. Moreover, the magnitude of oscillation remains on higher side for 

𝑎 = 0.0 than other cases. 
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Figure 4.8 Profile of 𝐓 𝐯𝐬. 𝐫 

Figure 4.8 demonstrate trends of T vs r. For 0 ≤ r ≤ 1, the response and variation of T is 

mirror image for the value  = 0.75 as compared with 𝑎 = 0.0 and 𝑎 = 0.0104. Moreover, 

the values of T remain more for  = 0.75 than that for the other considered cases. Also, the 

value of T for 𝑎 = 0.5 increase for 0 ≤ r ≤ 1, 3 ≤ r ≤ 7 and follows decreasing trend for 

remaining region. 

0 2 4 6 8 10
 Radial Distance (r)

-1

0

1

2

3

C
o

n
d

u
c
ti
v
e

 t
e

m
p

e
ra

tu
re

 (
)

a=0

a=0.0104

a=0.5

 

Figure 4.9 Profile of 𝛟 𝐯𝐬. 𝐫 
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Figure 4.9 depicts variation of ϕ vs r . Near the loading surface, for intermediate value of 

TT parameter the values of ϕ, decreases and afterwards oscillatory behaviour is noticed 

while reverse behaviour is observed for a = 0.5 than other cases. Moreover, the immensity 

of ϕ increases for  = 0.75 than other considered cases hence HTT effect enhances the 

immensity of ϕ . 

4.8.2 Different Theories of Thermoelastic 

Figures 4.10 – 4.17 depicts the impact of various thermoelasticity theories (MGT, GN-III, 

and L-S) for dimensionless two-temperature parameter  =0.75 and 𝜉1 = 0.5 for 0 ≤ r ≤ 10.  

i. The solid black line (──) relates to MGT model. 

ii. The big dashed Magenta line (─ ─) corresponds to GN-III theory of thermoelasticity. 

iii. The small dashed blue line (- - -) corresponds to L-S theory of thermoelasticity. 

 

 

4.8.2.1 Disc Load  
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Figure 4.10 Profile of 𝐭𝐳𝐳 𝐯𝐬 𝐫 

Figure 4.10 shows tzz vs r. For 0 ≤ r ≤ 2 , near the loading points, the values of  tzz 

decreases sharply and oscillatory behaviour is observed for left over interval. Also, values 

of tzz  corresponding to GN-III theory of thermoelasticity remains on higher side when 

compared to other scenarios. 
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Figure 4.11 Profile of 𝐭𝐳𝐫𝐯𝐬 𝐫 

Figure 4.11 depicts trend of tzr vs r. The values of tzr exhibit abrupt increase, owing to the 

disc load for 0 ≤ r ≤ 1 for all curves. Afterwards negligible variations are observed for all 

the considered models of thermoelasticity. However, the immensity of tzr  remains on 

higher side for GN-III model for the interval 2 ≤ r ≤ 5.  
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Figure 4.12 Profile of 𝐓𝐯𝐬 𝐫 

Figure 4.12 depicts the trend of T vs r. For 1 ≤ r ≤ 3, the magnitude of T sharply decreases 

for all considered model, afterwards, it become stationary. Also, the immensity of T is on 

higher side for the MGT model as compared to other considered models. 
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Figure 4.13 Profile of 𝛟 𝐯𝐬 𝐫 

Figure 4.13 views the variation of ϕ vs r. The values of ϕ increases for 1 ≤ r ≤ 3 and for 

the remaining range, trends are oscillatory with small amplitude. Also, MGT model enhance 

the immensity ϕ in comparison to other considered theories. 

4.8.2.2 Ring Load  
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Figure 4.14 Profile of 𝐭𝐳𝐳𝐯𝐬. 𝐫 

Figure 4.14 displays that in the vicinity of loading surface, the values of tzz exhibits strict 

decreasing behaviour for MGT and LS models, whereas it shows increasing trend for GN- 
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III model in the interval 1 ≤ r ≤ 2 and for the remaining region, tzz shows small variations 

about zero value for all the cases. 
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Figure 4.15 Profile of 𝐭𝐳𝐫𝐯𝐬. 𝐫 

Figure 4.15 depicts tzr vs r. For 1 ≤ r ≤ 3, the curve corresponding to tzr increases for 

GN- III model, whereas gradual increase is observed for LS and MGT models after that, tzr 

shows similar variations for all the assumed cases. 
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Figure 4.16 Profile of 𝐓 𝐯𝐬 𝐫  

Figure 4.16 demonstrate trend of T vs r. The curve corresponding to T follows increasing 

trend for MGT and LS models while decreasing trends is noticed for GN-III model for most 

of the range. 
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    Figure 4.17 Profile of 𝛟 𝐯𝐬. 𝐫 

Figure 4.17 depicts trend of ϕ vs r. in the initial range, ϕ decrease for 0 ≤ r ≤ 2 for all 

considered model afterwards oscillatory behaviour is observed corresponding to GN-III 

model while all the curve corresponding to ϕ follows stationary behaviour corresponding 

to MGT and LS models. However, the magnitude of variations is more pronounced for 

MGT model in comparison to other considered theories. 

4.8.3 Non-Local  

Figures 4.18 - 4.26 are depicted to display the impact of N-L effect carried out for 

dimensionless N-L parameter 𝜉1=0, 0.25, 0.50 and 0.75. 

i. The solid black line (──) corresponds to N-L 𝜉1= 0. 

ii. The dashed brown line (- - -) corresponds to N-L 𝜉1 = 0.25. 

iii. The solid blue line with centre symbol '' (──) relates to N-L 𝜉1 = 0.50. 

iv. The dashed red line with centre symbol '' (...…) corresponds to N-L 𝜉1= 0.75. 
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4.8.3.1 Disc Load 
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       Figure 4.18 Profile of 𝐭𝐳𝐳𝐯𝐬. 𝐫 

 Figure 4.18 displays the trend of tzz  vs r. Near the loading surface, all the curve 

corresponding to tzz decreases for all the considered case. The magnitude of tzz is higher for 

absence of N-L parameter and then tzz follows an oscillating behaviour. 
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Figure 4.19 Profile of 𝐭𝐳𝐫𝐯𝐬. 𝐫 

Figure 4.19 represents tzr  vs r. The observed pattern is consistent across all the models 

examined, although there are notable variations in their magnitude. Also, the magnitude of 

tzr  remains on higher side for 𝜉1 = 0.75 , and on lower side in case of absence of N-L 

parameters in comparison to all assumed cases. 
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Figure 4.20 Profile of 𝐓 𝐯𝐬. 𝐫 

Figure 4.20 displays variation of T vs r. The curve corresponds to T show strictly decreasing 

behaviour in the range 0 ≤ r ≤ 2 , after that all the curve corresponds to T behave almost 

similar for all assumed scenario. Moreover, the value of T is more for 𝜉1 = 0.75  in 

comparison to other considered values, which reveals that N-L parameter enhance T. 

 

Figure 4.21 Profile of 𝛟 𝐯𝐬. 𝐫 

Figure 4.21 displays the trend of ϕ vs r. The value ϕ exhibits strictly increasing trend and 

followed by oscillatory behaviour. Moreover, higher value of ϕ is observed for 𝜉1 = 0.50 

as compared to other cases. 
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4.8.3.2 Ring Load  
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Figure 4.22 Profile of 𝐭𝐳𝐳𝐯𝐬. 𝐫 

Figure 4.22 show trend of tzz vs r . Near the loading points, the values of tzz  shows an 

increasing trend for all the considered models and, after that, a steady behaviour is noted for 

all the curves. Also, the value of normal stress remains on higher side for the absence of N-L 

parameter in comparison to all other scenario. 
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Figure 4.23 Profile of 𝐭𝐳𝐫𝐯𝐬. 𝐫 

Figure 4.23 depicts trend of tzr vs r. The values of tzr exhibit increasing trends for 0 ≤ r ≤

2 and with increase in r, it shows stationary variations about origin. Also, higher variations 
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are seen for greater value of 𝜉1, ( 𝜉1 = 0.75 than other cases, which reveals impact of N-L 

parameter on tangential stress. 
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Figure 4.24 Profile of 𝐓 𝐯𝐬. 𝐫 

Figure 4.24 depicts that the magnitude of T follows a sharp uptrend near the loading surface, 

and for the moderate values of r, there is a gradual increment, and with further increase in r, 

T follows a steady behaviour. However, immensity of T is enhanced for higher value of N-L 

parameter 𝜉1 = 0.75. 

0 2 4 6 8 10
Radial Distance (r)

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

C
o

n
d

u
c
ti
v
e

 T
e

m
p

e
ra

tu
re

 

 

Figure 4.25 Profile of 𝛟 𝐯𝐬. 𝐫 
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Figure 4.25 displays variation of ϕ vs r. the curve corresponding to ϕ strictly decreases for 

0 ≤ r ≤ 2 , and afterwards it shows small variations about origin. Also, the curve 

corresponding to 𝜉1 = 0.50 is mirror image of curve for 𝜉1 = 0.25. 

4.9 Conclusions 

In this chapter, a two-dimensional axisymmetric problem within a thermoelastic medium 

featuring fractional order derivatives, focusing on the MGT heat equation in response to N-

L and mechanical loading, is investigated. The governing equations are rendered 

dimensionless, simplified by introducing potential functions, and solved using Laplace and 

Hankel transforms. The applicability of the problem is assessed under specific loads (ring 

and disc loads). Analytical expressions for component of displacement, stresses, 

thermodynamic temperature, and conductive temperature are derived in the transformed 

domain. Numerical inversion techniques are employed to obtain solutions in the physical 

domain. The manuscript aims to analyse the effects of N-L, HTT parameters and various 

theories of thermoelasticity on resulting physical quantities. From the empirical study, 

following observations are made: 

i) Impact of HTT Parameter  

Disc load 

It is observed that the due to disc load, HTT parameter effects increase the value of normal 

stress (NS), tangential stress (TS), and thermodynamic temperature while opposite 

behaviour is observed for conductive temperature near the application of loading surface. 

On the other hand, away from loading surface, oscillatory behaviour is observed for all 

physical field quantities. 

Ring load  

Near the loading surface, normal stress and conductive temperature shows opposite 

behaviour for = 0.75 and a= 0.5, and away from loading surface follow oscillatory 

behaviour. On other hand, tangential stress and thermodynamic temperature exhibit 

oscillatory behaviour due to ring load. 

ii) Impact of Different Thermoelasticity Theories 

Disc load  

It is observed that absolute value of NS and TS remains on higher side for GN- III model 

whereas magnitude of thermodynamic temperature and conductive temperature get 

enhanced under MGT model due to disc load. Energy dissipation enhances the magnitude 
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of stresses for GN-III model whereas immensity of thermodynamic and conductive 

temperatures gets enhanced under MGT thermoelastic model. 

Ring Load 

Due to ring load, the behaviour of all the curve corresponding to thermodynamic and 

conductive temperature is quite similar for MGT and L-S model while oscillatory behaviour 

is observed for GN-III model. 

iii) Impact of Non-local Parameter  

Disc load 

Near the loading surface, the decreasing impact of N-L parameter is observed on NS and 

thermodynamic temperature and away from the loading surface oscillatory behaviour is 

observed. Meanwhile, tangential stress and conductive temperature decreases near the 

loading point and away from loading point it follows oscillatory behaviour for all 

considered cases due to a disc load. 

Ring load 

When subjected to a ring load, both NS and TS increases near loading points, while the 

stress component values are notably higher in the absence of the N-L parameter, while 

moderate value of N-L parameter enhance the immensity of thermodynamic temperature 

and conductive temperature. Additionally, then N-L parameter considerably increases the 

values of T and ϕ. While the absence of the N-L parameter amplifies the stress component. 

The HTT parameter exerts a more pronounced influence on both temperature fields and NS 

as opposed to the classical TT parameter. The HTT parameter augments the immensity of 

the T and NS as compared with the effect of the classical TT parameter.  

It is observed that the behavior of composite materials under mechanical loading is affected 

by N-L and HTT. It will provide information about the different constituents of a composite 

material respond to temperature changes and mechanical stresses, which is crucial for 

designing and optimizing composite structures.  
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Chapter 5 

Plane-wave vibrations in thermoelastic non-local medium 

utilizing Moore-Gibson-Thompson heat equation with hyperbolic 

two temperature model  

5.1  Introduction 

Sharma (2013) [120] used coupled thermoelasticity theory to explore the impact of two-

temperature (TT) on reflection coefficients of plane waves propagating micropolar 

thermoelastic medium. Kaushal et al. (2021) [61] used reflection technique for plane wave 

propagation in thermoelastic medium under G-L theory to explore the impact of relaxation 

time on amplitude ratios (AR) of reflected wave due to impedance boundary. Jangid et al. 

(2021) [57] used Moore-Gibson-Thompson (MGT) theory to explore impact of material 

parameter (phase velocity, specific loss and penetration depth on propagation of plane wave 

in thermoelastic medium by employing harmonic wave technique.  

Singh and Mukhopadhyay (2023) [133] obtained fundamental solution for steady vibration 

using MGT heat equation. Singh and Mukhopadhyay (2023) [134] utilized MGT model to 

predict the thermoelastic vibration of the microstructure model for a Timoshenko beam. 

Askar et al. (2023) [11] examined the photothermal effect semiconducting medium to study 

the impact of various parameter laser pulse ramp time, viscosity, and thermal parameter on 

physical quantities under MGT theory. Bajpai et al. (2023) [16] explored wave propagation 

due to thermomechanical loading under TT theory. Abouelregal et al. (2023) [7] explored the 

thermoelastic behaviour of elastic medium due to laser in the context of the MGT model with 

memory-dependent derivative.  

  Das et al. (2024) [36] used MGT theory to examine the phenomenon of reflection at 

impedance boundary of thermoelastic half- space and investigated the impression of non-

local (N-L) parameter on reflection coefficients and energy ratios due to impedance boundary 

conditions. Yadav et al. (2024) [146] investigated the impacts of fractional order derivative 

and diffusion parameters on waves in a micro stretch thermoelastic material subjected to 

magnetic field and impedance boundary. Singh (2024) [130] examined the wave propagation 

problem in thermoelastic medium to investigate the effect of N-L, conductivity rate, and 

angular frequency parameter on the wave. 

Understanding wave propagation in thermoelastic media is essential for various 

scientific and engineering applications, including geophysics, materials science, and non-
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destructive testing. Motivated by the need to enhance theoretical models, this study 

explores the behavior of plane waves in complex thermoelastic systems and contributes to 

the development of more accurate predictive models 

  This chapter presents study of the plane wave in a homogeneous, isotropic, 

thermoelastic medium with the MGT heat equation, along with the effects of N-L, Hyperbolic 

two temperature (HTT) and impedance parameter. For two-dimensional problem, the 

governing equations are made dimensionless, and potential functions are used for further 

simplification. The plane wave solution of these equations determines the effectiveness of 

longitudinal (P-wave), thermal (T-wave), and transverse (SV-wave). For the assumed model 

when a wave (P-wave, or T-wave or SV-wave) is incident on the surface 𝑥3 = 0, three 

varieties of reflected waves are produced: P-wave, T-wave and SV-wave. The AR for these 

reflected waves is obtained numerically and displayed graphically to investigate the influence 

of specific parameters (N-L, HTT, and impedance). Additionally, special cases are inferred 

from the current investigation. 

5.2  Basic Equations 

Following [Quintanilla (2019) [105], Eringen (1974) [42], Youseff and El-Bary (2018) [149]] 

the basic equations and constitutive relations in isotropic, thermoelastic homogeneous semi- 

space under MGT heat equation with the influence of N-L, HTT parameters, without body 

forces and heat sources, are presented as follows 

(𝜆 + 𝜇)𝛻(𝛻 ⋅ 𝑢⃑ ) + 𝜇Δ𝑢⃑ − 𝛽1𝛻𝑇 = 𝜌(1 − 𝜉1
2Δ)

𝜕2𝑢⃑⃑ 

𝜕𝑡2 ,           ( 5. 1 )  

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒𝑇̈ + 𝛽1𝑇0𝑒̈] = 𝐾∗ ∂

∂t
Δϕ + 𝐾1Δϕ,             ( 5. 2 ) 

ϕ̈ − 𝑇̈ = 𝛽∗Δϕ,                       ( 5. 3 )  

𝑡𝑖𝑗 = 𝜆𝑒𝑘,𝑘𝛿𝑖𝑗 + 2𝜇 eij − 𝛽1𝑇𝛿𝑖𝑗.                 ( 5. 4 )  

where symbols are same as defined in section 2.2 [Chapter 2] and Section 3.2 of [Chapter 3]. 

Equations (5.1) -(5.4) in component form for Cartesian coordinates (𝑥1, 𝑥2, 𝑥3) are written as  

[(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇 Δ𝑢1] − 𝛽1

𝜕𝑇

𝜕𝑥1
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2
 ,           ( 5. 5 )  

[(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥2
+ 𝜇 Δ𝑢2] − 𝛽1

𝜕𝑇

𝜕𝑥2
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢2

𝜕𝑡2  ,            ( 5. 6 )  

[(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇 Δ𝑢3] − 𝛽1

𝜕𝑇

𝜕𝑥3
= ρ(1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2  ,           ( 5. 7 )  

𝜕2𝑇

𝜕 𝑡2
= (

𝜕2

𝜕 𝑡2
− 𝛽∗Δ)ϕ,                     ( 5. 8 )  

(1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕2𝑇

𝜕𝑡2
+ 𝛽1𝑇0

𝜕2𝑒

𝜕𝑡2
 ] = 𝐾∗Δϕ̇ + 𝐾1Δϕ,            ( 5. 9 )  
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t11 = 𝜆 𝑒 + 2 𝜇 e11 − β1T,                    ( 5. 10 )  

𝑡22 = 𝜆 e + 2 𝜇 e22 − 𝛽1𝑇,                    ( 5. 11 )  

𝑡33 = 𝜆 𝑒 + 2 𝜇 e33 − 𝛽1𝑇,                    ( 5. 12 )  

𝑡31 =  2𝜇 𝑒31,                        ( 5. 13 )  

𝑡32 = 2μ e32,                         ( 5. 14 )  

𝑡21 =  2𝜇 e21,                        ( 5. 15 )  

where ∆, e are same as defined in Section 2.2 [Chapter 2].  

5.3 Problem Statement 

An isotropic thermoelastic and homogeneous semi-space is considered to examine MGT heat 

equation with N-L and HTT, initially at the uniform temperature. The coordinate system 

(𝑥1, 𝑥2, 𝑥3) with the origin is positioned at the plane boundary at the 𝑥3 = 0. The x3-axis 

directing vertically downward into the medium, as signified through 𝑥3 ≥ 0 and depicted in 

figure 5.1. The wave propagation direction is considered in such a way so that every particle 

on a line parallel to the 𝑥2 -axis are correspondingly displaced. As a result, the 𝑥2-coordinate 

will not affect any of the field quantities.  

 

Figure 5.1 diagrammatic presentation of the problem 

For the assumed model, we take  

u⃑  = ( u1(x1, x3, t), 0, u3(x1, x3, t)),  T = T(x1, x3, t),  ϕ = ϕ(x1, x3, t).     ( 5. 16 ) 

Using equation (5.16) in (5.5) - (5.9) and (5.12) - (5.13), we get  

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇Δ𝑢1 − 𝛽1

𝜕𝑇

𝜕𝑥1
= 𝜌(1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2
 ,            ( 5. 17 ) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇Δ𝑢3 − 𝛽1

𝜕𝑇

𝜕𝑥3
= 𝜌(1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2  ,           ( 5. 18 ) 
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 (1 + 𝜏0
𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕2T

𝜕𝑡2
+ 𝛽1𝑇0

𝜕2e

𝜕𝑡2
] = 𝐾∗Δϕ̇ + 𝐾1Δϕ,            ( 5. 19 ) 

𝜕2𝑇

𝜕 𝑡2 = (
𝜕2

𝜕 𝑡2 − 𝛽∗Δ)ϕ,                       ( 5. 20 )  

𝑡33 =  𝜆 e + 2 𝜇 𝑒33 − 𝛽1𝑇 ,                    ( 5. 21 )  

𝑡31 = 2𝜇𝑒31 ,                        ( 5. 22 ) 

where  

e and Δ are same as defined in equation (2.16) [Chapter 2]. 

The following dimensionless quantities are taken in addition to dimensionless quantities 

defined by equation (3.23) [Chapter 3]: 

(𝑧′1, 𝑧′2) =
𝑐1

𝛽1𝑇0
(𝑧1, 𝑧2),  𝑧′3 =

𝑐1

K∗ 𝑧3,   ω′ =
ω

ω1
 .          ( 5. 23 ) 

where c1
2 and ω1 are same as defined in equation (2.34) [Chapter 2]. 

Equations (5.17) - (5.22), with the aid of equations (5.23) and (3.23) [Chapter 3] reduce to 

the following equations after suppressing the primes,  

𝑎1
𝜕𝑒

𝜕𝑥1
+ 𝑎2Δ𝑢1 − 𝑎3

𝜕𝑇

𝜕𝑥1
= (1 − 𝜉1

2Δ)
𝜕2𝑢1

𝜕𝑡2 ,               ( 5. 24 ) 

𝑎1
𝜕𝑒

𝜕𝑥3
+ 𝑎2Δ𝑢3 − 𝑎3

𝜕𝑇

𝜕𝑥3
= (1 − 𝜉1

2Δ)
𝜕2𝑢3

𝜕𝑡2 ,              ( 5. 25 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) (

𝜕2𝑇

𝜕𝑡2 + 𝑎4
𝜕𝑒

𝜕𝑡2) = (
𝜕

𝜕𝑡
+ 𝑘′0) Δϕ,                 ( 5. 26 ) 

ϕ̈ − 𝑇̈ = 𝛽∗Δϕ ,                        ( 5. 27 ) 

𝑡33 = 𝑎5
𝜕𝑢1

𝜕𝑥1
+ 𝑎6

𝜕𝑢3

𝜕𝑥3
− 𝑇,                    ( 5. 28 ) 

𝑡31 = 𝑎7 (
𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
) ,                      ( 5. 29 ) 

where k′0 =
𝐾1

𝐾∗𝜔1
.  

5.4 Solution Procedure 

The relation between displacement and scalar potentials is same as given by equation (2.32) 

[Chapter 2]. 

The dimensionless form specified by (2.32) is used to decompose equations (5.24) - (5.29) 

by utilizing potential functions q and Ψ defined by equation (2.32) [ Chapter 2]. 

Δ𝑞 − 𝑎3𝑇 = (1 − 𝜉1
2Δ)

𝜕2𝑞

𝜕𝑡2  ,                  ( 5. 30 ) 

[𝑎2Δ − (1 − 𝜉1
2Δ)

𝜕2

𝜕 𝑡2]Ψ = 0 ,                  ( 5. 31 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) (

𝜕2𝑇

𝜕𝑡2
+ 𝑎4

𝜕

𝜕𝑡2
Δ𝑞) = (

𝜕

𝜕𝑡
+ k′0)Δϕ ,            ( 5. 32 ) 
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T̈ = ϕ̈ − β∗∆ϕ,                        ( 5. 33 )  

𝑡33 = 𝑎5
𝜕𝑢1

𝜕𝑥1
+ 𝑎6

𝜕𝑢3

𝜕𝑥3
− 𝑇,                    ( 5. 34 ) 

𝑡31 = 𝑎7  (
𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
),                       ( 5. 35 ) 

where  

𝑎1 =
𝜆+𝜇

𝜌𝑐1
2 ,  𝑎2 =

𝜇

𝜌𝑐1
2,   𝑎3 =

𝛽1𝑇0

𝜌𝑐1
2 ,  𝑎4 =

𝛽1𝑐1
2

𝐾∗ 𝑤1
 , 

𝑎5 =
𝜆

β1𝑇0
 ,  𝑎6 = 

𝜆+2 𝜇

𝛽1 𝑇0
 , 𝑎7 =

𝜇

𝛽1 𝑇0
 . 

In order to solve the equations (5.30) - (5.32), we adopt the solution of the type 

(q, T,Ψ, ϕ) = (q0 , T0, Ψ0, ϕ0)eικ(x1 sinθ0−x3 cosθ0+𝜈t),             ( 5. 36 ) 

where ι is known as iota, κ is the wave number, 𝜈 is the phase speed, 𝜔 is the angular 

frequency with the relation ω = k ν, (sin θ0, cos θ0) represents the wave normal's projection 

onto the 𝑥1-𝑥3 plane and q0, T0, Ψ0, and ϕ0 are random constants representing the wave 

amplitudes. 

Substituting the value of T from equation (5.36) in (5.33), (after removing the bars) yield 

T = ϕ + ∆ϕ,                         ( 5. 37 ) 

where  = {

β∗

ω2 , for (HTT),

a, for two temperature (TT),

0, for one temperature (1T).

 

Using the equation (5.37) in equations (5.30) and (5.32), yield 

(Δ𝑞 − (1 − 𝜉1
2Δ)

𝜕2𝒒

𝜕𝑡2)  = 𝑎3( ϕ + ∆ϕ),               ( 5. 38 ) 

(1 + 𝜏0
𝜕

𝜕𝑡
) (

𝜕2 

𝜕𝑡2
(ϕ + ∆ϕ) + 𝑎4

𝜕

𝜕𝑡2 Δ𝑞) = (
𝜕

𝜕𝑡
+ k′0) Δϕ.          ( 5. 39 ) 

Substituting the values of q and ϕ from the equation (5.36) in equations (5.38), and (5.39), 

after simplification, we get the following equation 

(υ4 + Aυ2 + B)(q, ϕ) = 0,                     ( 5. 40 ) 

where  

A=
𝜄𝜔+𝑎5+𝜄 𝜔 𝜏0

∗(1−𝜉1
2𝜔2+𝑎3𝑎4)+𝜄𝜔𝜏0

∗𝛽∗

𝜄𝜔𝜏0
∗ , 𝐵 =  

(𝜄𝜔+𝑎5)(1−𝜉1
2𝜔2)+𝜄 𝜔 𝜏0

∗(1−𝜉1
2𝜔2+𝑎3𝑎4)

𝜄𝜔𝜏0
∗  

, 𝜏0
∗ = 𝜏0 −

𝜄

𝜔
 . 

Inserting the value of Ψ from (5.36) in (5.31), after simplification yield  

(𝜐2 − 𝐴1)Ψ = 0,                        ( 5. 41 )  

where 

 𝐴1 = √
𝑎2

1+𝜉1
2 𝑘2 .  

Let υ𝑖 (i = 1,2) are roots of biquadratic characteristic equation (υ4 + Aυ2 + B) = 0 and υ3 is 
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roots of characteristic equation (𝜐2 − 𝐴1) = 0.  υ1, υ2, correspond to velocities of the P-wave 

and T-wave in order of decreasing, whereas υ3 correspond to velocity of SV- wave . 

5.5  Reflection Phenomenon of Waves 

A thermoelastic half-space is being analysed using MGT heat equation which includes N-L 

and HTT parameters. The phenomenon involves the incidence of either a P-wave, T-wave, 

SV-wave at a plane, with its propagation angle θ0 makes with perpendicular to the surface. 

In the half-space 𝑥3 ≥ 0, we obtain a reflected (P, T, and SV) -wave for each incident wave. 

Assume that the reflected P, T and SV waves make angles θ1,  θ2, and θ3 respectively, with 

the x3−axis. The incident and reflected waves are illustrated in figure 5.1, providing a 

complete representation of the geometry. 

The potential functions and conductive temperature can be expressed as: 

q = ∑ 𝐴0ie
ικl(x1 sin θ0 −x3 cosθ0)+ιωt + Aie

ικl(x1 sin θl −x3 cosθl)+ιωt2
𝑖=0 ,     ( 5. 42 ) 

ϕ = ∑ di(A0ie
ικl(x1 sin θ0 −x3 cosθ0)+ιωt + Aie

ικl(x1 sin θ1 +x3 cosθl)+ιωt)2
i=0 ,    ( 5. 43 ) 

Ψ = ∑A03 eικ0(x1 sin θ0 −x3 cosθ0)+ιωt + A3e
ικ3(x1 sin θ3 −cosθ3)+ιωt,  i=1,2    ( 5. 44 ) 

where 

d𝑖 =
𝜔2[(1+𝜉1

2
𝑘𝑖

2)𝜔2−𝑘𝑖
2]

𝑎8(𝜔2−𝑘𝑖
2
𝛽∗)

, (i = 1,2).                ( 5. 45 ) 

The amplitudes of the P- wave and T-wave are denoted by A0i (i = 1, 2) and while the 

amplitude of the incident SV-wave is denoted by A03. A𝑖(𝑖 = 1, 2, 3) are the amplitudes of 

the reflected P-wave, T-wave and SV-wave respectively. 

5.6 Boundary Conditions  

The impedance boundary is determined by a combination of unspecified functions and their 

corresponding derivative which are defined along the boundary. Typically, a contact surface 

that is ideally welded is presumed in the context of seismic wave interactions with 

discontinuities, ensuring the continuity of appropriate displacement and stress components. 

Therefore, following [Tiersten (1969) [141] and Malischewsky (1987) [84]], the appropriate 

impedance boundary restrictions at x3 = 0 are 

(i) t33 + ωz1u3 = 0,   (ii) t31 + ωz2u1 = 0,  (iii) K∗ ∂ϕ

∂x3
+ ω𝑧3ϕ = 0,    (5. 46.) 

where z1, z2 signifies impedance parameter with dimensions Nsm−3, and z3 is impedance 

parameter with dimensions Nsm−1 respectively. The stress-free boundary conditions are 

implemented by setting z1 = z2 = z3 = 0. 

Using non-dimensional quantities given by (5.23) on equation (5.46), yield  
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(i) t33 + ωz1u3 = 0, (ii) t31 + ωz2u1 = 0,  (iii) 
∂ϕ

∂x3
+ ωz3ϕ = 0 .      ( 5. 47 ) 

Using equation (2.32) [Chapter 2] in equations (5.34), (5.35) and with the aid of equation 

(5.37), yield 

𝑡33 = 𝑎5 (
∂2q

∂x3
2 − 

∂2Ψ

∂x3𝜕𝑥1
) + 𝑎6 (

∂2q

∂x3
2 +

∂2Ψ

∂x3𝜕𝑥1
) − ϕ + ∆ϕ,           ( 5. 48 ) 

t31 = 𝑎7 (
∂2Ψ

∂x1
2 +

∂2q

∂x1 ∂x3
+ 

∂2q

∂x1 ∂x3
−

∂2Ψ

∂x3
2).               ( 5. 49 ) 

To satisfy the boundary conditions (5.47) at x3 = 0, the angle of reflected waves needs to be 

linked to the angle of incident (P-, T-, SV-) wave by using Snell's Law is specified as 

sin𝜃0

𝜐0
=

sin𝜃1

𝜐1
=

sin𝜃2

𝜐2
=

sin𝜃3

𝜐3
,                     ( 5. 50 ) 

where 

𝑘1𝜐1 = 𝑘2𝜐2 = 𝑘3𝜐3 = 𝜔 at 𝑥3 = 0.          

𝜐0 = {

𝜐1, incident P − wave 
𝜐2, incident T − wave

 υ3, incident SV − wave
 .                     ( 5. 51 ) 

After simplification, a system of three non-homogeneous equations is obtained by 

substituting the values of potential functions q, ϕ, and ψ in the boundary condition (5.47) and 

utilizing equations (5.48) - (5.49) and (5.50) - (5.51) as  

∑ 𝑎𝑖𝑗𝑅𝑗 = 𝑌𝑗
3
𝑖,𝑗=1 ,         ( 5. 52 ) 

where  

𝑎1𝑖 = −(𝑎5𝑘𝑖
2 cos 𝜃𝑖

2 + 𝑎6𝑘𝑖
2 sin2 𝜃𝑖 + 𝑑𝑖(1 − ζ𝑘1

2) − 𝜄𝑘𝑖𝑤𝑧𝑖cos𝜃𝑖), 

𝑎13 =   (𝑎5 + 𝑎6)𝑘3
2 cos 𝜃3 sin 𝜃3 + 𝜄𝑘3𝑤𝑧1 sin 𝜃3,  

𝑎2𝑖 = −2𝑎7𝑘𝑖
2 cos 𝜃𝑖 sin 𝜃𝑖 + 𝜄𝑘𝑖𝑤𝑧𝑖 sin 𝜃𝑖 ,   𝑎23 = −(𝜄𝑘3𝑤𝑧3 cos 𝜃3 + 𝑘3

2),  

𝑎3𝑖 = (𝜄𝑘𝑖𝐾
∗ cos 𝜃𝑖 + 𝑤𝑧3)𝑑𝑖,   𝑎33 = 0,      (i = 1,2).     ( 5. 53 ) 

Also, Rj(j = 1,2,3) are AR of reflected P-wave, reflected T-wave, and SV-wave as given by  

R1 =
A1

B∗ , R2 =
A2

B∗ , R3 =
A3

B∗  .                   ( 5. 54 ) 

For incident P-wave B∗ = A01, and A02 = A03 = 0. 

Y1 = a5k0
2 cos2 θ0 + a6k0 sin2 θ0 + d1 (1 − ζk0

2) + w z1ι k0 cos θ0,  

Y2 = −(2a7k0
2 cos θ0sinθ0 +w z2ι k0 sin θ0),  

Y3 = (K∗ι k0 cos θ0 − w z3 )d1 .                  ( 5. 55 ) 

For incident T-wave B∗ = A02, and A01 = A03 = 0.            

Y1 = a5k0
2 cos2 θ0 + a6k0 sin2 θ0 + d2 (1 − ζk0

2) + w z1ι k0 cos θ0 , 
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Y2 = −(2k0
2 a7 sinθ0 cosθ0 + wz2 sinθ0ι k0) ,              

Y3 = (K∗ι k0 cos θ0 − w z3 )d2 .                 ( 5. 56 ) 

For incident SV-wave B∗ = A03 , and A01 = A02 = 0. 

Y1 = −(a5k0
2 cosθ0 sinθ0 − a6k0

2 cosθ0 sinθ0 + w z1ι k0 sin θ0 ), 

Y2 = −[a7k0
2 (cos2 θ0 − sin2 θ0) + w z2ι k0 cos θ0],            

𝑌3 = 0.                          ( 5. 57 ) 

5.7 Validation 

i)  By letting K∗ = 0, and  = 0, in (5.52), the corressponding expressions for AR are obtain 

for coupled thermoelasticity theory under impedance boundary. The findings of this study 

align with those of Kaushal et al. (2021) [61] for the specific case, excluding diffusion. 

ii)  Letting 𝜉1 =  = K∗ = 0 in equation (5.52), we can derive similar results for the L-S 

model, which are consistent with those obtained by Yadav (2021) [144] in a specific 

scenario without considering diffusion and void parameters as a particular case. 

iii)  By setting  = K∗ = 0 , in (5.52), we derive the compatible outcomes for generalised 

thermoelasticity (L-S model) with N-L and these results are the consistent with those 

obtained by Singh and Bijarnia (2021) [131] (in the absence of impedance) as a particular 

case with stress free boundary . 

iv)  By setting K1 = 0, τ0 = 0 and  = a , the matching expressions for AR can be obtained 

by equation (5.52) for the GN-II model alongwith N-L and TT effects under the 

impedance boundary.  

v)  The results reduce to thermoelastic with energy dissipation (GN-III model (1993)) 

without TT effects by considering ξ1 = 0 , τ0 = 0 and  = 0 along with z1 = z2 =

 z3  = 0 in equation (5.52). 

5.8 Special Cases 

i)  If z2 = z3 = 0, in (5.52), then the corresponding relation for AR can be derived for a 

generalized thermoelastic semi-space with a normal impedance parameter. 

ii)  The findings are obtained for a generalized thermoelastic semi-space with a tangential 

impedance parameter by taking z1 = z3 = 0, in (5.52). 

5.9 Numerical result and discussion 

Some numerical results are presented to exemplify the theoretical results derived in the 

previous section. The influence of N-L , HTT and impedance parameters (z1 = 1, z2 =

5, z3 = 2) and without impedance parameters (z1 = z2 = z3 = 0) on AR with angle of 
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incidence θ0 under MGT heat equation is illustrated in figures 5.2 - 5.19. We consider the 

case of magnesium crystal-like material in accordance with Dhaliwal and Singh (1980) [38]. 

The physical constants employed are as same as appeared in section 2.9 [Chapter 2]. 

5.9.1 Non-Local Effect 

The computation for the following cases is as: 

i. A solid black line (──) is used to represent MGT model with N-L parameter (𝜉1 = 0.5) 

and with impedance parameters (NI). 

ii. A dashed red line (----) corresponds MGT model without N-L parameter (𝜉1 = 0) and 

with impedance parameters (ANI). 

iii. A solid blue line with a triangle symbol (− ∆ −) denotes MGT model with N-L 

parameter (𝜉1 = 0.5) and without impedance parameter (NWI). 

iv. A dashed green line with the symbol (− ∘ −) corresponds to the MGT model in absence 

of N-L parameter and without impedance parameters (ANWI). 

5.9.1.1 P- wave  
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Fig.5.2 Profile of |𝑹𝟏| for P- wave 

Figure 5.2 represents the trend of |R1| vs θ0. The values of |R1| decreases for all curves in 

whole domain except for 0 ≤ θ ≤ 600, |R1| exhibit increasing trend for NI. It is seen that the 

amplitude of |R1| remains on higher side for NI as compared to other cases which can be 

accounted as the effect of N-L and impedance parameter. 
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Fig.5.3 Profile of |𝑹𝟐| for P- wave   

Figure 5.3 shows that the values of |R2| follows the uptrend for NI and NWI for whole range 

except for 72° ≤ θ ≤  90°,where the reversed behaviour is observed. However, the values of 

|R2| remains higher for NWI than that for NI. Also, the values of |R2| remains stationary for 

ANWI and ANI for all  𝜃0. 
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Fig.5.4 Profile of |𝑹𝟑| for P- wave 

Figure 5.4, depicts that the immensity of |R3| follows increasing trend for all the considered 

cases for all 𝜃0, but the values of |R3| remains higher for ANWI in comparison to all 

considered cases. 
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5.9.1.2 T- Wave  
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Fig 5.5. Profile of |𝑹𝟏| for T- wave 

Figure 5.5 depicts variations of |𝑅1| with 𝜃0. All the curve corresponding to |𝑅1| decrease 

throughout range, while due to N-L effect, the curve corresponding to NWI remain higher 

than other curves. 
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Fig.5.6 Profile of | 𝑹𝟐 | for T-Wave 

Figure 5.6 depicts the variations of |𝑅2| with 𝜃0. The values of |𝑅2| shows increasing trend 

for 0 ≤ 𝜃 ≤ 600and follows a decreasing trend in the left-over interval. Also, the magnitude 

of variations is relatively higher for NI than other considered curves. 
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Fig. 5.7 Profile of |𝑹𝟑| for T-Wave 

Figure 5.7 depicts that the values of |𝑅3| shows a positive uptrend in the first half of the 

interval, whereas reverse behaviour is observed for remaining region. Moreover, the values 

of |𝑅3| is highest for NWI, while lowest for ANI. 

5.9.1.3 SV-Wave 
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Fig.5.8 Profile of |𝑹𝟏| for SV-Wave 

It is depicted in figure 5.8 that values of |𝑅1| shows rising trend in the range 0 ≤ 𝜃 ≤ 360, 

and magnitude of variations remains higher for the case of ANWI in comparison to other 

cases. For the remaining range, |𝑅1| shows a steady trend for all the cases. 
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Fig.5.9 Profile of |𝑹𝟐| for SV-Wave 

Figure 5.9 displays that the values of |𝑅2| increases for 0 ≤ 𝜃 ≤ 25°and then decreases 

monotonically for all the cases, although the magnitude of the decrement is relatively small. 
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Fig.5.10 Profile of |𝑹𝟑| for SV-Wave 

From figure 5.10, it is seen that for both NWI and ANWI the values of |𝑅3| increases for 0 ≤

𝜃 ≤ 45°, and it remains almost stationary for remaining range and the immensity |𝑅3| remains 

on higher side for ANWI. Also, the values of |𝑅3| exhibit a decreasing pattern for ANI and 

NI for the entire range except for 0 ≤ 𝜃 ≤ 25°. 
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5.9.2 Hyperbolic Two Temperature effect 

The computation for the following cases is as: 

i. A solid black line (──) represents the MGT model with HTT ( = 0.75) with 

impedance parameter (HI). 

ii. A dotted red line (----) corresponds to the MGT model with HTT ( = 0.0) and with 

impedance parameter (WHI). 

iii. A blue line with a triangle symbol (− ∆ −) denotes the MGT model with HTT 

( = 0.75) and without impedance parameter (HWI). 

iv. A green line with a symbol (− ∘ −) represents the MGT model with ( = 0.0) and 

without impedance parameter (AHWI). 

5.9.2.1 P- wave  
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  Fig. 5.11 Profile of |𝑹𝟏| for P- wave  

Figure 5.11, represents the trend of |𝑅1| with 𝜃0. The values of |𝑅1| shows a decreasing trend 

for the case ANWI in the whole region, while for AHI, it displays a steady state in initial half 

of the range and decreases in the remaining region. Also, for HI and HWI, behaviour and 

variations are similar for 0 ≤ 𝜃 ≤ 540, while reverse trend is observed for the left-over range. 
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Fig. 5.12 Profile of |𝐑𝟐| for P- Wave 

Figure 5.12 represents that the values of |R2|shows incremental behaviour for HWI and HI 

in almost the entire range. Also, it is evident that the pattern of variation of |R2| for both AHI 

and AHWI is similar, with substantial differences in their absolute values. 
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Fig.5.13 Profile of |𝑹𝟑| for P- wave 

Figure 5.13 represents the trend of |𝑅3| vs 𝜃0. The immensity of all the curve corresponding 

to |𝑅3| remains on higher side. Further, the immensity of |𝑅3| is on higher side for AHI, while 

on lower side for HWI in comparison to other cases. 
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5.9.2.2 T- Wave  
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Fig.5.14 Profile of |𝑹𝟏| for T -Wave 

It is depicted from figure 5.14, that for HI and HWI, a decreasing trend is noticed throughout 

the region, whereas for both AHI and AHWI, the magnitude of |𝑅1| remains stationary in 

almost for all 𝜃0 except near 𝜃0 = 90°where the values decrease sharply. 
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   Fig.5.15 Profile of |𝑹𝟐| for T-wave 

Figure 5.15 displays that for AHI and AHWI the values of |𝑅2| show similar trends in the 

entire range with significant differences in the magnitude and attain maximum value at 𝜃0 =

80°and then, it decreases sharply. It is further found that the magnitude of |𝑅2| follows 

increasing behaviour for HI and HWI for 0 ≤ 𝜃 ≤ 650and decreases in the left-over interval, 
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magnitude of value for |𝑅2| remains higher for HI than HWI.  
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Fig.5.16 Profile of |𝐑𝟑|for T-Wave 

From figure 5.16, the immensity of |𝑅3| for HI and HWI rise in the first half of the interval, 

whereas reverse trend is observed in the remaining range. Also, for AHWI and AHI, the trend 

of variation is increasing in the entire range except at grazing angle where the values decrease 

sharply for the case AHWI. 

5.9.2.3 SV- Wave 
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Fig.5.17 Profile of |𝑹𝟏| for SV-wave 

It is depicted from figure 5.17, that the values of |𝑅1| shows rising trends for the case of HI 

and HWI in the range 0 ≤ 𝜃 ≤ 36° and as 𝜃0 increases, |𝑅1| shows a steady behaviour. 
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Initially, |𝑅1| shows an upward trend for AHI and AHWI, with a magnitude of values greater 

for AHI than AHWI, which reveals the impact of the impedance parameter. 
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Fig.5.18 Profile of |𝐑𝟐| for SV- wave 

Figure 5.18 indicates an increasing trend of variation for HI and HWI in the range 0 ≤ 𝜃 ≤

18°followed by a decreasing trend, whereas it shows a steady state for AHWI and AHI in the 

whole range, except when 0 ≤ 𝜃 ≤ 18°, where the values of |𝑅2| shows an increasing 

behaviour for AHIWI and AHI due to absence of HTT parameter. 
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Fig.5.19 Profile of |𝑹𝟑| for SV-wave 

Figure 5.19 demonstrates that |𝑅3| for HI shows an increasing trend in the interval 0 ≤ 𝜃 ≤

27°, decreases in the left-over interval, whereas for HWI, |𝑅3| rises in the interval 0 ≤ 𝜃 ≤

40° and thereafter decreases. while for AHI and AHWI, stationary behaviour is observed. 
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5.10 Conclusion 

In this chapter, a plane wave reflection problem for thermoelastic half-space under MGT heat 

equation with N-L and HTT parameters due to impedance boundary is investigated. The 

problem is simplified by using dimensionless quantities and potential functions. The effects 

of N-L, HTT, TT and impedance parameters on the AR corresponding to various reflected 

wave namely, P-wave, T-wave, SV-wave are computed numerically and shown graphically. 

The results concluded from above analysis can be summarized as  

(i) It is observed that for P-wave, the N-L parameter and impedance parameter enhance the 

values of the AR corresponding to reflected P and T waves, whereas opposite behaviour 

is observed for AR of reflected SV-wave.  

(ii) For T-wave, the AR relating to reflected P and SV waves increase with presence of N-

L and absence of impedance parameter. Also, AR for reflected SV-wave remain higher 

as compared to other cases in entire domain. whereas the values of AR for reflected T-

wave increases with N-L and impedance parameter which shows that N-L and 

impedance significantly affect the AR of reflected waves. 

(iii)  For SV - wave, it is observed that the AR corresponding to reflected P, T and SV waves 

increase and remain higher in comparison to other cases for absence of N-L and 

impedance parameters. 

(iv) For longitudinal (P) wave, the AR relating to reflected P and SV waves exhibit 

increasing trend due to impedance parameter and absence of HTT parameter whereas 

the values of AR of reflected T wave get enhanced with HTT and impedance parameter. 

(v) For T-wave, the AR corresponding to reflected P and SV waves show increasing trend 

due to absence of impedance and HTT parameters whereas the AR corresponding to 

reflected T get enhanced with HTT and impedance parameters. 

(vi) For SV -wave is incident, the AR corresponding to reflected (P, T and SV) waves get 

enhanced and remain greater than other cases with HTT and absence of impedance 

parameters. 

This study's findings highlight the significant impact of N-L, HTT, and impedance parameters 

on AR of reflected waves. The current research will be beneficial for scientists studying 

thermoelasticity using non-Fourier heat conduction models in solid materials within the 

Earth. This study is particularly relevant to geophysical investigations, especially those 

related to earthquakes, seismology, and engineering phenomena. 
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Conclusion and Future Scope 

In Chapter 2, a mathematical model of thermoelasticity incorporating non-local (N-L) 

effects and two temperatures is developed to address the deformation problem in a 

homogeneous, isotropic, thermoelastic semi-space. The governing equations are simplified 

using dimensionless variables and potential functions. Integral transform techniques, 

specifically Laplace Transform and Fourier Transform ((L.T and F.T) are employed to 

solve the problem. The effects of non-local and two-temperature phenomena are 

investigated through an exponentially decaying normal force and a concentrated ramp-type 

heat source. The results indicate that the non-local parameter substantially increases the 

normal stress, tangential stress, and both thermodynamic and conductive temperatures. The 

study shows that while normal stress, tangential stress, thermodynamic temperature, and 

conductive temperature exhibit comparable behavior across varying heat source parameter 

values, their oscillation amplitudes differ. Furthermore, for smaller values of the heat 

source parameter lead to an increase in normal stress, thermodynamic temperature, and 

conductive temperature. The Two-Temperature (TT) parameter boosts the conductive 

temperature, whereas the values of normal and tangential stress remain unchanged. The 

Green and Lindsay (G-L) model forecasts greater values for stress and conductive 

temperature compared to the modified Green-Lindsay (M G-L) and Lord-Shulman (L-S) 

models 

In chapter 3, the deformation problem of a thermoelastic half-space is explored using the 

Moore-Gibson-Thompson (MGT) heat equation with non-local and hyperbolic two-

temperature. The equations are simplified with dimensionless quantities, and potential 

functions along with integral transforms (L.T and F.T) are applied. The study focuses on a 

heat source modeled as a laser pulse that decays over time and moves with a constant 

velocity, along with thermomechanical loading. Normal distributed force and ramp-type 

thermal source are used to demonstrate the problem's effectiveness. The introduction of 

Normal Distributed Force (NDF) leads to increased normal and tangential stresses, with 

more noticeable effects, especially at intermediate values of the N-L parameter. In contrast, 

when a ramp-type thermal source (RTTS) is present, normal stress remains elevated across 
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all intervals, while tangential stress and temperature display oscillatory patterns, with more 

significant fluctuations occurring in the absence of the N-L parameter. A higher value of 

the moving heat source parameter significantly raises normal stress, thermodynamic 

temperature, and conductive temperature for both NDF and RTTS. Furthermore, the 

Hyperbolic Two-Temperature (HTT) parameter substantially amplifies the effects of 

thermodynamic and conductive temperatures compared to the normal and tangential 

stresses produced by NDF and RTTS. 

In Chapter 4, a two-dimensional axi-symmetric problem is examined within a 

thermoelastic half-space, which incorporates fractional order derivatives (FOD) along with 

N-L and hyperbolic two-temperature (HTT) in relation to the MGT heat equation as a 

response to mechanical loading. The field equations and the constitutive relations are 

established, assuming there are no body forces or heat sources present. The governing 

equations are formulated using cylindrical coordinates specifically for axisymmetric 

scenarios. The resulting two-dimensional equations are adjusted with non-dimensional 

terms and analyzed through the Helmholtz decomposition theorem. The solution to the 

problem is obtained by employing the Laplace transform (L.T) and the Hankel transform 

(H.T). Applications include considerations of ring and disc loads. 

It has been noticed that when subjected to the disc load, the effects of the HTT parameter 

lead to an increase in the normal stress, tangential stress, and thermodynamic temperature, 

whereas a contrasting effect is seen for the conductive temperature close to the loading 

surface. Whereas when subjected to ring load, the tangential stress and thermodynamic 

temperature show oscillatory behavior. It has been noted that the absolute values of normal 

stress , tangential stress are higher in the GN (Green and Naghdi)-III model, whereas the 

levels of thermodynamic temperature and conductive temperature increase in the MGT 

model due to the disc load. Energy dissipation elevates the stress levels in the GN-III 

model, while the magnitude of thermodynamic and conductive temperatures rises in the 

MGT thermoelastic model. As a result of ring load, the patterns of the curves related to 

thermodynamic and conductive temperature are quite alike for both the MGT and L-S 

models, whereas an oscillatory behavior is noted in the GN-III model.  
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The tangential stress and conductive temperature decrease near the loading point, and 

beyond that point, they exhibit oscillatory behavior in all examined scenarios because of a 

disc load. Under a ring load, both normal stress, tangential stress rise near the loading 

surface, while the stress component values are significantly greater without the N-L 

parameter. However, a moderate non-local parameter enhances the intensity of 

thermodynamic and conductive temperatures..  

Chapter 5 explores the behavior of plane waves in a homogeneous, isotropic, thermoelastic 

medium using the MGT heat equation, and examines the impacts of non-local effects, 

hyperbolic two-temperature (HTT) , and impedance parameters. For the two-dimensional 

scenario, the governing equations are normalized, and potential functions are employed for 

further clarification. A reflection problem involving a plane wave in a thermoelastic half-

space governed by the MGT heat equation with non-local N-L and HTT parameters due to 

an impedance boundary is addressed. It is noticed that for P-wave, the non-local parameter 

and impedance parameter enhance the values of the Amplitude ratios (AR) corresponding 

to reflected P and T waves, whereas opposite behaviour is observed for AR of reflected 

SV-wave. For T-wave, the AR relating to reflected P and SV waves increase with presence 

of non-local and absence of impedance parameter. Also, AR for reflected SV-wave remain 

higher as compared to other cases in entire domain. whereas the values of AR for reflected 

T-wave increases with N-L and impedance parameter which shows that N-L and 

impedance significantly affect the AR of reflected waves. For SV - wave, it is observed 

that the AR corresponding to reflected P, T and SV waves increase and remain higher in 

comparison to other cases for absence of N-L and impedance parameters. 

The thesis may be extended to consider material anisotropy and higher-order symmetries 

over time. The research presented in this thesis can be applied to visco-thermoelastic 

media, micropolar thermoelastic media, orthotropic thermoelastic materials, fibre-

reinforced thermoelastic materials, composite materials, non-local thermoelastic materials, 

thermoelastic materials with cubic symmetry, piezo-electric thermoelastic, and piezo-

thermoelastic materials. These challenges may also be examined by considering the effects 

of magnetic, rotation, etc. 
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Mathematical modeling can be described using finite element, homotopy perturbation, and 

other numerical techniques. The governing equations of these models can be solved 

analytically as well as numerically to obtain expressions for displacement components, 

stress components, temperature change and various other components considered in the 

studies by using various other methods like Normal mode analysis, complex analysis 

(integral using residue at poles etc.), State space approach, fractional calculus and Eigen 

value approach. The fundamental models listed above can be extended to spherical 

coordinates. As a result, the research presented in this thesis is available to a wide range of 

researchers interested in thermoelasticity. There is a scope for investigating waves and 

vibration difficulties in the considered models 
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