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ABSTRACT 

The thesis “Study of Stability and Bifurcation Analysis of Aquatic Food-Web 

Models using Delay Differential Equations” investigates the stability and bifurcation 

phenomena within aquatic food-web dynamics. The research synthesizes insights from 

different pivotal research papers, each addressing distinct facets of the complex 

interactions among phytoplankton, zooplankton, and their environment.  

The methodology used for the research is primarily mathematical modelling, 

specifically using delay differential equations (DDEs). In mathematical ecology, the 

focus lies not on the direct representation of natural objects, but rather on utilizing 

mathematical constructs and methodologies as representations of natural phenomena 

and processes. It serves as a powerful tool for assimilating and consolidating 

environmental and ecological data.  Additionally, the research involves analytical 

analysis and numerical simulations using MATLAB to explore stability, bifurcation 

phenomena, and the consequences of time lag on the changing aspects of species within 

ecosystems. The utilization of MATLAB enhances the reliability and applicability of 

the findings. Sensitivity analysis of model parameters and validation through 

mathematical simulations are also conducted. By comprehending the underlying 

principles guiding our natural theories, mathematical modelling helps prevent the 

presentation of persuasive arguments that may lack truth or only hold validity under 

specific conditions. 

In natural environments, a species’ pace of population expansion frequently 

necessitates some time for it to adjust to changes in its own numbers or those of other 

interacting species. The population age structure, which affects birth and death rates, 
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varying maturation and gestation periods, such as those of mice (20 days) and elephants 

(645 days), feeding duration, reaction time, food preservation, resource renewal cycles, 

and the hunger coefficient in interactions between zooplankton and phytoplankton are 

some of the factors that contribute to this time delay within the model. 

Numerous studies have attempted to ascertain the significance of diverse hydrological 

characteristics in the progression of plankton blooms, and subsequently explore an 

appropriate functional result to elucidate the decline in zooplankton inhabitants 

resulting from toxin-producing phytoplankton (TPP). However, they fall short in 

explaining a number of important aspects, including the influence of allelopathic 

interactions on the coexistence and perseverance of phytoplankton species and their 

direct impact on predators, the regulation of destructive algal blooms or alternations 

that recur, and the consequence of the time delay necessary for the proclamation of 

toxic substances. The thesis primarily outlines a structure for planktonic bloom in 

which the release of toxic constituents or the consequence of toxic phytoplankton is a 

process that is arbitrated by time delay rather than occurring instantly. This structure 

can be useful in reducing population oscillations and sustain a stable cohabitation of 

the species. 

The aforementioned mathematical modelling was first applied to study opposing toxin 

creating phytoplankton on a zooplankton inhabitant. In an environment where harmful 

phytoplankton and zooplankton interact, this study attempts to examine the 

consequences of time delay on the constancy and incidence of bifurcation. It examines 

the dynamics of species within an ecosystem and their interactions with their 

surroundings. As such, this study integrates sustainability concerns to explore 
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environmental difficulties. Furthermore, this work advances the understanding of delay 

differential equations conceptually. 

Next, the same model was used to investigate the collaborative impacts of 

phytoplankton on zooplankton. The state variables phytoplankton 𝐻1 and zooplankton 

C, as well as a companion phytoplankton species 𝐻2 , are incorporated into the model. 

It is assumed that both phytoplankton defend the inhabitants of zooplankton by 

cooperating with one another.  Hopf bifurcation occurs at critical delay values when 

delay perturbs the system’s equilibrium. Here, MATLAB supports in corroborating 

analytical findings through numerical simulation. 

A different mathematical model was used to investigate the interactions between 

phytoplankton and two rival zooplankton species. Phytoplankton H, Zooplankton 𝐶1, 

and Zooplankton 𝐶2 are the related state variables. It is assumed that the inhabitants of 

Phytoplankton will live along with the inhabitants of Zooplankton that will incline to 

extinction if the ratio of the mortality rates of Zooplankton to the fundamental of the 

carrying capacity of inhabitants of Phytoplankton is greater than latter’s adaptation 

competence and rates of predation. When delay is introduced, the system’s interior, 

axial, and boundary equilibria are all disrupted, leading to Hopf bifurcation at critical 

delay parameters. Sensitivity analysis of model parameters was also conducted, 

supported by MATLAB simulations.   

Additionally, a model of phytoplankton-zooplankton interaction was developed to 

facilitate commercial harvesting of certain species for food. This model establishes 

stability criteria across different levels and explores optimal harvesting policies. 

However, continuous species spreading limits harvesting opportunities and 
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maintaining population equilibrium. Through further research, an optimal balance 

between biological and bioeconomic equilibrium is sought to support sustainable 

commercial harvesting practices. Analytical results from the model design are 

validated through mathematical simulations. 

Overall, our study contributes to the advancement of mathematical ecology by 

elucidating the intricate dynamics of planktonic ecosystems and offering insights into 

sustainable resource management practices. 
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Chapter 1 

General Introduction 

1.1 Introduction 

The scientific subject of ecology studies the number and distribution of living 

organisms in an ecosystem are influenced by interactions between organisms and 

their surroundings. Numerous food webs typically come together to form 

ecosystems. There are several types of food webs that exist, such as those found in 

microbes, humans, agriculture, detrital, marine, aquatic, soil, and arctic (or polar) 

food webs. A biological community within an ecosystem is exclusively made up 

of living things. The need for food that is derived from the sun through plant life 

links the organisms in a biological community. Herbivores referred to as primary 

consumers eat the plants. Rabbits, mice, deer, seed-eating birds, cows, horses, and 

squirrels are a few examples of these.  

Secondary consumers that are either carnivores or omnivores eat these creatures. 

Perhaps, even third- or tertiary-level customers exist. These creatures devour 

secondary consumers. Like, among the secondary consumers such as owls and 

snakes are consumed by hawks and mountain lions. 

A food cycle is a series of related food chains displaying the movements of energy and 

matter through an ecosystem. The grazing web, which starts with autotrophs, and the 

detrital web, which starts with organic debris, are the two main divisions of the food 

web. There are three categories of creatures that may be distinguished in the food web: 
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producers, which are plants; consumers, which are both primary and secondary 

including herbivores, carnivores, or omnivores; lastly decomposers, such as 

detritivores and decomposers. Food continues to go up the food chain as it always has, 

with producers and consumers being the components of a bigger structure known as 

the grazing food web. Food is returned to the soil through the decomposing food web, 

which is composed of detritivores and decomposers. 

Figure 1.1: Food web diagram 

Food webs-interlocking pattern of organisms: - Under natural circumstances, food 

chains never function as separate sequences; instead, they are linked to one another 

to form a pattern that interlocks and is known as a food web. The linear 

arrangement of food chains is rare in nature, and they in fact remain linked to one 

another through organisms of different kinds at various trophic levels. Hundreds of 
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species are typically connected by their consuming patterns in real food cycle. Food 

webs are basic components of ecosystem ecology. Some food web in a different 

ecosystem, with different connected food chains is shown in Figure 1.1. 

The stability of an ecosystem in nature is greatly influenced by the food webs.  

For instance, a decline in the population of rabbits would inevitably lead to a 

decline in the population of carnivorous consumers who preferably eat rabbit. 

Therefore, alternatives (substitutes) serve to maintain the ecosystem's steadiness. 

Furthermore, survival of all living things depends on a balanced ecosystem. For 

example, the producers would have died from opposition and overcrowding if the 

primary consumers—herbivores—had not existed in the natural world. In a similar 

vein, secondary consumers (carnivores) and primary consumers’ survival are 

interdependent, and so forth. In order for an ecosystem to remain stable, each species 

is thus kept under some sort of natural control. Any food web's complexity is 

influenced by the variety of organisms present. As a result, it would rely on two key 

elements: 

1. The length of the food cycle is determined by the diversity of the organisms 

and their dietary preferences. The food chain would be longer if the 

organisms' eating habits were more diverse. 

2. Alternatives at various consumer chain nodes: The more alternatives, the 

more the pattern will interlock. The food webs are much more complex in 

the depth of oceans, seas, and other areas where we discover various 

species. 
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In the real world, a species' population growth rate frequently takes time to adjust 

to changes in either its own population or the population of an interacting species. 

Age building of the population (affecting rates of births and deaths), period of 

maturation and gestation which varies for mice (20 days) and elephants (645 days), 

feeding time, reaction time, food preservation, resource regeneration period, and 

hunger coefficient in zooplankton phytoplankton interaction are some factors that 

introduce time delay in the model. 

An effective mechanism for integrating and synthesizing environmental and 

ecological information is mathematical modelling. 

Natural objects are not directly addressed in mathematical ecology. It deals with 

mathematical constructs and procedures that serve as analogues to natural 

phenomena and processes. The mathematical models only include the most 

important information that is relevant to the problem at hand, not all of the 

information about nature that we may be aware of. By understanding the logic 

behind our theories about nature, mathematical modelling enables us to avoid 

making convincing arguments that may not be true or are only true in certain 

circumstances. 

Considering the foregoing, the following issues have been researched using 

mathematical models in this thesis: 

1. Functional response of Holling type-II with time-delay is used to model the 

effects of competing phytoplankton that produce toxins on a zooplankton 

population. 
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2. The stability of a system with interacting phytoplankton-toxic 

phytoplankton-zooplankton species is affected by time delay. 

3. An age-based predation phytoplankton-zooplankton model's stability and 

bifurcation analysis: function of time lag. 

4. The impact of time-delay on a multi-team phytoplankton- zooplankton 

system's dynamics. 

5. Dynamic study of a phytoplankton-zooplankton system with mutualistic 

species opposed to phytoplankton species examined the impacts of time lag 

and other food sources. 

6. Time delay and functional response squared in the dynamics of a single 

phytoplankton and two zooplankton system. 

7. A phytoplankton-zooplankton and host commensal to the zooplankton 

delay model with host population harvesting. 

8. The Asiatic lion, leopard, and ungulates of Gir National Park, India, were 

studied using a one phytoplankton-two zooplankton delay model. 

1.2 Terms used in the Thesis 

Commensalism: - It is a class of relationship between two species where one 

species benefits without affecting the other. 

Competition: -It is a class of relationship between two organisms in which one 

species is harmed due to the presence of the other and vice versa. 
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Predation: - It depicts a biological relationship in which zooplankton is fed by 

hunting its phytoplankton. The act of predation causes phytoplankton to die, 

even though zooplanktons may or may not kill their phytoplankton before 

eating on them and eventually absorb the phytoplankton's tissue through 

ingestion. 

Gestation period: - Gestation period is the period of time when a fetus 

develops in mammals, starting with fertilization and ending with birth. The 

length of this particular phase differs depending on the species. For instance, 

the gestation period of an elephant is 645 days, but that of a cat is about 58–65 

days. 

Food webs and chains: - In a wildlife community, feeding process is the 

primary mechanism that connects the lives of diverse animals. The food and 

energy stored in an organism's tissues are transferred through a chain when 

plants and animals grow and are consumed by other creatures. A food web is 

the resultant network created when food chains connect to one another. In a 

naturally balanced society, there are an equal number of diverse animals and 

plants. There might be an impact on the entire web if the balance is off. 

1.3 Review of Literature 

In a theoretical study on a food cycle model, Klebanoff and Hastings (1994),  

obtained the normal form at a codimension two point and showed that, for tiny 

perturbations of the parameters, this normal form can suggest chaos. Later, this 

idea of a food cycle was examined by Kuznetsov and Rinaldi (1996). They used 
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normal forms and numerical analysis to create a detailed two-parameter bifurcation 

diagram, taking into account that the zooplankton and super zooplankton death 

rates can be strongly influenced by variables outside of the system. Differential 

delay models of population relation with practical persistence was discussed by 

Cao Y. and Gard T.C. (1997). The practical durability was explored by computing 

such estimates, using various Liapunov functions, for some basic instances of 

competition and zooplankton-phytoplankton type, which may involve time delays 

in the net per capita growth rates. The persistence and overall stability of a delayed 

non-autonomous zooplankton-phytoplankton system without dominant 

instantaneous negative feedback were studied by Xu R. and Chen L. (2001). The 

zeros of transcendental functions were discussed by Ruan S. and Wei J. (2003) 

with reference to the consistency of delay differential equations using two lags. 

Braza Peter A.(2003), provides the Holling-Tanner model of bifurcation 

mechanism for zooplankton-phytoplankton relation using two timing. In this 

chapter, it has been noted that the Hopf-bifurcation points are separated further, 

and one limit cycle becomes unstable as the ratio of linear growth rate changes. A 

population outbreak may cause this situation to change. There was discussion of a 

zooplankton-phytoplankton model with a stage hierarchy and a continuous 

maturation time lag by Gourley S.A. and Kuang Y. (2004) (through stage time 

delay). Through this model, they demonstrated that, for both minor and high values 

of maturation time lag, if the juvenile mortality rate (through death rate stage) is non-

zero, then a globally appealing steady state is the most basic kind of population 

dynamics. If the resource is dynamic in nature, then the linear stability shows that 

there is a window in the maturation time lag boundary that produces sustained 
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dynamics of oscillations. Bifurcations of a ratio-reliant zooplankton-phytoplankton 

mechanism that harvests continuously were studied by Xiao D. and Jennings L.S. 

(2005). They looked at the ratio-reliant zooplankton phytoplankton model's 

dynamical characteristics with non-zero constant rate harvesting. As the values of 

the model's parameters change, it is demonstrated that the concept can undergo 

many diverse types of bifurcation, including saddle-node, subcritical, and 

supercritical hopf, Bogdanov Takens, homoclinic, and heteroclinic. The impact of 

age-based vaccination policies on the dynamics of delay epidemic models was 

examined by Misra O. P. et al. (2006). A phytoplankton-zooplankton system with 

dual delays' constancy and analysis of Hopf bifurcation were discussed by Li K. 

and Wei J. (2009). Wan A. and Wei J. (2010), investigated the delayed Hopf 

bifurcation analysis of a population with food scarcity. In a delayed zooplankton 

phytoplankton system, Yuan S. and Zhang F. (2010), investigated consistency and 

universal bifurcation. Three interacting species were analysed qualitatively in two food-

web models based on resources by Kesh D. et al. (1997). The constancy and 

complication of environmental systems was examined by researchers Upadhyay R. K.  

et al. (2000). According to their argument, dynamical complexity can exist without 

structural complexity. The intricate dynamics of a ratio-dependent single 

phytoplankton, two-zooplankton model have been studied by Hsu S. et al. (2001). 

El-Owaidy et al. (2001) discussion of a food-web model's mathematical 

exploration. In a harvested one-zooplankton, two-phytoplankton model, Kumar S. 

et al. (2002) studied the constancy analysis and Hopf-bifurcation. The Hopf-

bifurcation is explained in this chapter using an intriguing one-zooplankton, two 

phytoplankton model with constant zooplankton harvesting rate. In this case, the 
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harvesting rate is a controlling factor. They discovered that when the harvesting 

rate exceeds a particular threshold, periodic solutions emerge from stable stationary 

states. In a food chain model, Upadhyay R. K. (2003) discussed various attractors 

and the crisis path to chaos. Order and chaos in the food cycle that is dependent on 

the zooplankton-phytoplankton ratio were discussed by Gakkhar S. and Naji R. K. 

(2003). They investigated the chaotic dynamics and realistic food cycle model of 

three species, taking into account type II functional response and zooplankton to 

phytoplankton ratio dependence for the interaction. Gakkhar S. and Naji R. K. 

(2003) studied a two phytoplankton, one zooplankton model that included non-

linear functional response. When long-term behaviour in this model was examined, 

they discovered that for a variety of parametric values, the system appeared to 

exhibit chaos. Bockleman et al. (2004), investigated disorderly cohabitation in a 

top-zooplankton-mediated competitive exclusive web. Models of the zooplankton-

phytoplankton and food web's reactivity and transient dynamics were examined by 

Neubart et al. (2004). Single -zooplankton and two-phytoplankton model with 

functional response of Holling type II and no interspecific competition was taken 

into consideration by Kvrivan and Eisner (2006). They hypothesized that the 

zooplankton's ideal foraging habits might facilitate the coexistence of all species. 

In their article, Gakkhar S.  and Singh B. (2005) discussed the intricate food chain 

dynamics made up of double phytoplankton’s and a zooplankton. Naji R. K. and 

Balasim A. T. (2007) conducted research on the dynamic behaviour of the food 

network model with three species. Gakkhar and Singh B.  (2007), investigated the 

subtleties of a food chain made up of double phytoplanktons and single 

zooplankton that is actively harvesting. Elettreby M. F. (2009) examined the two-
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phytoplankton, one-zooplankton model in their paper. Wei Hsiu-Chuan (2010), 

conducted research pertaining to bifurcation analysis of a four-species food 

network. In a given a food cycle mechanism including n species and time lags, Liu 

Q. and Zhou H.  (2003), discussed the presence and universal attractivity of 

intervallic resolutions. The bifurcation and constancy in a harvested single-

zooplankton-double-phytoplankton delayed model were studied by Liu Z. and 

Yuan R. (2006). Algal blooms in two detrimental phytoplankton-zooplankton 

systems can be controlled by a time delay, according to Sarkar et al. (2007); Zhao 

J. and Wei J. (2009), studied the bifurcation and stability of two detrimental 

phytoplankton-zooplankton systems.  The dynamic characteristics of a delayed 

zooplankton phytoplankton model with harvesting was discussed by Kar T. K.  and 

Ghorai Abhijit (2011). The modification of the Leslie-Gower and scheme of 

Holling-type II can be seen in the manner defined here. Bairagi N.and Jana D. 

(2011) conducted research on the Hopf bifurcation and constancy caused by delay 

of zooplankton-phytoplankton mechanism with complex environment. The Hopf 

bifurcation of a zooplankton-phytoplankton system featuring harvesting and a 

stage structure was discussed by Ge Zhihao and Yan Jingjing (2011). Zabalo 

Joaquin (2012), investigates persistence in an intraguild predation model with 

phytoplankton switching. Misra O. P. et al. (2012), examined the impact of time 

lag on the constancy of a phytoplankton-toxic phytoplankton-zooplankton 

interacting species system. A three-part model with two competing, detrimental 

phytoplankton and a zooplankton with a discrete time lag and functional response 

of Holling type-II was discussed by Misra O. P. et al. in (2012). 

Gupta R. P.  and Chandra Peeyush (2013), conducted a bifurcation investigation of the 
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Leslie-Gower zooplankton-phytoplankton prototype with Michaelis-Menten 

phytoplankton harvesting. Priyadarshi A. and Gakkhar S. (2013) investigated the 

dynamics of generalist zooplankton of the Leslie-Gower type in a tritrophic food 

network system. A phytoplankton-zooplankton model with age-based predation was 

studied for stability and bifurcation analysis by Misra et O. P. al. in (2013). 

1.4 Mathematical Preliminaries 

1.4.1 Existence of Unique, Bounded and Positive Solution of Delay differential 

equation 

A differential equation in which the present time derivative is dependent upon the 

solution and derivatives of previous times is known as a delay differential equation. 

Here, it is necessary to establish a primary history function as opposed to an initial 

condition. A delayed state variable can be used to demonstrate the past dependence of a 

differential equation. The derivative of the state variable is not required in this case. The 

corresponding delay differential equation with a single delay 𝜏 > 0 is given by (Smith, 

(2010)) 

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏))                                                     (1.1)  

Assume that 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and∅: [𝑠 −

𝜏, 𝑠] → 𝑅 be constant. We look for a solution 𝑥(𝑡) of equation (1.1) satisfying 

𝑥(𝑡) = ∅(𝑡). 𝑡 ∈ [𝑠 − 𝜏, 𝑠], 𝑥(0) = 𝑥0                                         (1.2)  

And satisfying equation (1.2) on 𝑡 ∈ [𝑠, 𝑠 + 𝜎] for some 𝜎 > 0. 
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Theorem 1 (Existence of unique solution). Let 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) are 

continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and ∅: [𝑠 − 𝜏, 𝑠] → 𝑅 be continuous. Next there is, 𝜎 > 𝑠 

and a distinctive solution of the primary-value problem (1.1) - (1.2) on [𝑠 − 𝜏, 𝜎]. 

Theorem 2 (Boundedness of solution).  Let 𝑓 satisfy the hypothesis of theorem1 and 

let 𝑥: [𝑠 − 𝜏, 𝜎) → 𝑅 be the non-continuous solution for the primary value problem 

(1.1)- (1.2). If 𝜎 < ∞ then lim
𝑡→𝜎−

|𝑥(𝑡)| = ∞. 

Remark. Theorems 1 and 2 extend instantly to the case that 𝑥 ∈ 𝑅𝑛 and 

𝑓: 𝑅 × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛, it encompasses several distinct delays as well. 𝜏0 < 𝜏1 < ⋯ <

𝜏𝑚 where 𝑓 = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏0), 𝑦(𝑡 − 𝜏1), … , 𝑦(𝑡 − 𝜏𝑚)). 

Theorem 3 (Positivity of solution). Suppose that 𝑓: 𝑅 × 𝑅+
𝑛 × 𝑅+

𝑛 → 𝑅𝑛satisfies the 

hypothesis of theorem 1 for all 𝑖, 𝑡 and for all 𝑥, 𝑦 ∈ 𝑅+
𝑛: 

𝑥𝑖 = 0 ⇒ 𝑓𝑖(𝑡, 𝑥, 𝑦) ≥ 0 

If the initial data ∅ in equation (1.2) satisfy ∅ ≥ 0, then the corresponding solution 𝑥(𝑡) 

of equation (1.1) satisfy 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 𝑠 where it is defined. 

1.4.2 Stability by Variational matrix method 

Let an autonomous system of equations be  

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦)                                                      (1.3) 

Where 𝑦 is an n-tuple vector i.e. 𝑦 = (𝑦1, 𝑦2, − − −𝑦𝑛). Let 𝜙(𝑡)  be the result of 

system defined above. The linear part of the expansion of the system (1.3) about 𝜙(𝑡) 

is given by the variational equation of the system (1.3) with respect to 𝜙(𝑡), written as 

𝑑𝑥

𝑑𝑡
= 𝑓𝑦(∅(𝑡))𝑥                                                   (1.4) 
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Where 𝑓𝑦(𝜙(𝑡)) =
𝑑𝑓𝑖

(𝑑𝑦𝑗)𝑛×𝑛

 at 𝜙(𝑡). Since the constancy of the variational structure 

depicts the constancy of any solution of a non- linear system governed by it, so stability 

of 𝑥 = 0 determines the stability of 𝑦 = 𝜙(𝑡).  Particularly, when 𝜙(𝑡) = 𝜙0, a 

constant, the system (1.4) becomes  

 𝑑𝑥

𝑑𝑡
 = 𝐴𝑥  (1.5) 

Where 𝐴 = 𝑓𝑦(𝜙0). Since a small perturbation of the system (1.3) is represented by 

system (1.4), so the stability of 𝑦 = 𝜙0 of (1.5) actually gives the stability of the 

solution of 𝑥 = 0 of (1.4)  .The description of constancy of every solution of 𝑥′ = 𝐴𝑥 

is given by following theorems. (S. Ahmad & Rao,2014). 

Theorem 4 Asymptotically stable solutions exist for all solutions of the system 𝑥′ =

𝐴𝑥 ,where 𝐴 = (𝑎𝑖𝑗)  is a constant matrix, if all of the distinctive roots of A have 

negative real portions. 

Theorem 5 All of the solutions to the system 𝑥′ = 𝐴𝑥 are bounded and hence stable if 

all of A's characteristic roots with multiplicity higher than one have negative real parts 

and all of its roots with multiplicity of one have non-positive real parts. 

Following theorem (S.Ahmad & Rao,2014) to determine the sign of real components 

of the characteristic equation's roots. 

Theorem 6 Hurwitz’s Theorem. A prerequisite that is both essential and sufficient for 

the actual part to be negative of all the roots of the polynomial  𝐿(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 +

𝑎2𝜆
𝑛−2 + − − − − +𝑎𝑛 ,with the Hurwitz matrix's primary diagonals of all the minors 

are positive and have real coefficients. 
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𝐻𝑛 =

[
 
 
 
 
𝑎1
𝑎3
𝑎5

1
𝑎2
𝑎4

0   0 0    0 ⋯ 0
𝑎1 1 0    0 ⋯ 0
𝑎3 𝑎2 𝑎1 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮           0
0 0 0 0 0 0 ⋯      0 ]

 
 
 
 

 

Theorem 7. Let ς1,ς2… . ςm are all non-negative and ζi
j(j = 0,1,2, …m: i = 1,2, … n) 

are constants. As (ς1, ς2, … , ςm) differ, the total of the orders of the zeros of exponential 

polynomial P(χ, e−χς1 , … . , e−χςm) only be different when the right half plane is open 

in the event that the imaginary axis has a zero or crosses it, where, 

P(χ, e−χς1 , … . , e−χςm) = χn + ζ1
0χn−1 +⋯+ ζn−1

0χn + ζn
0 + [ζ1

1χn−1 +⋯+

ζn−1
1χn + ζn

1]e−χς1 +⋯+ [ζ1
mχn−1 +⋯+ ζn−1

mχn + ζn
m]e−χςm  

Ruan & Wei (2001),S Ruan & Wei (2001), Shigui Ruan & Wei(2003) proved this 

theorem using Rouches theorem (Dieudonne, 1960). 

1.4.3 Hopf-Bifurcation 

Hopf made a significant contribution when expanded on two-to-higher dimensions. 

Sometimes Hopf bifurcation is also called as “Poincaré-Andronov-Hopf bifurcation”. 

(Marsden et al. 1978) According to the Hopf-bifurcation theorem, that topological 

characteristic of flow changes when one or more parameters are changed. The essential 

observation about flows is that if the stationary point is hyperbolic, that is, if all of the 

eigenvalues of the linearized flow at the stationary point have non-zero real pars, then 

the local behaviour of the flow is totally determined by the linearized flow. Therefore, 

only at parameter values for which a stationary point is non-hyperbolic may 

bifurcations of stationary points occur. More, precisely, a bifurcation value of a 

parameter is a value at which the qualitative nature of the flow changes. 
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The Hopf bifurcation is several orders of magnitude where a two-dimensional centre 

manifold and a non-hyperbolic stationary point with linearized eigenvalues ∓iω make 

it more difficult to study, and bifurcating results are periodic as different to stationary. 

Theorem 8 Hopf-Bifurcation Theorem  

Let us consider a family of delay equations with one parameter:  

Where 𝐹: 𝐶 × 𝑅 → 𝑅𝑛  is, with according to its reasons, a twice continuously 

differentiable and represents a stable state at 𝑥 = 0 for every value of 𝜇: 𝐹(0, 𝜇) ≡ 0. 

Here, we may linearize 𝐹 about ∅ = 0 as follows: 

𝐹(∅, 𝜇) = 𝐿(𝜇)∅ + 𝑓(∅, 𝜇) 

In this case,  𝐿(𝜇): 𝐶 → 𝑅𝑛  is a linear operator with bounds and 𝑓 is greater order: 

lim
∅→0

|𝑓(∅, 𝜇)|

‖∅‖
= 0 

Following is the characteristic equation about 𝐿: 

|𝜆𝐼 − 𝐴(𝜇, 𝜆)| = 0,      

𝐴𝑖𝑗(𝜇) = 𝐿(𝜇)𝑖(𝑒𝜆𝑒𝑗) 

The roots of this equation constitute the main assumption(H). The characteristic 

equation will have two simple roots ∓𝑖𝜔 with 𝜔0 ≠ 0 and no other root can be a 

multiple of an integer of 𝑖𝜔0 for 𝜇 = 0 

Here a root of order one means (Pandey et al. 2016)a simple root.  Assuming that the 

typical equation is expressed as ℎ(𝜇, 𝜆) = 0, then (H) implies ℎ𝜆(0, 𝑖𝜔0) ≠ 0. So, 
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according to the theorem of implied function, there exists a continuously differentiable 

family of roots 𝜆 = 𝜆(𝜇) =  𝛼(𝜇) + 𝑖𝜔(𝜇) for small-scale 𝜇 sustaining 𝜆(0) = 𝑖𝜔0. In 

specific, 𝛼(0) = 0 and 𝜔(0) = 𝜔0.  Further, pre-assumption is that as 𝜇 increases 

through zero, the line of imaginary axis is crossed transversally by these roots. 

Actually, the assumption is: 

  𝛼′(0) > 0   (1.6) 

In case 𝛼′(0) < 0,  we always ensure that equation (1.6) holds by changing the sign of 

the parameter i.e. we take factor 𝑣 = −𝜇. Thus, The positive symbol essentially serves 

as a normalization that guarantees that if 𝜇 < 0, then, a negative real component is 

present in the pair of roots and if  𝜇 > 0, then the real part is positive. 

Theorem 9.  Let (H) and equation (1.6) hold. Subsequently 𝜀0 > 0 occur, followed by 

actual value even function 𝜇(𝜀) and 𝑇(𝜀) > 0 fulfilling 𝜇(0) = 0 and 𝑇(𝜀) = 2𝜋 𝜔0⁄ , 

and a non-constant 𝑇(𝜀)- periodic function 𝑝(𝑡, 𝜀) where all functions being 

continuously differentiable in 𝜀 for |𝜀| < 𝜀0, so that 𝑝(𝑡, 𝜀) is a solution of the 

mentioned equation  and 𝑝(𝑡, 𝜀) = 𝜀 𝑞(𝑡, 𝜀) where 𝑞(𝑡, 0) is a 2𝜋 𝜔0⁄ -periodic solution 

of 𝑞′ = 𝐿(0)𝑞. 

Additionally, there exist 𝜇0, 𝛽0, 𝛿 > 0 so that it has a non-constant regular solution 𝑥(𝑡) 

of period 𝑃 for some 𝜇 fulfilling |𝜇| < 𝜇0 with 𝑚𝑎𝑥𝑡|𝑥𝑡| < 𝛽0 and |𝑃 − 2𝜋 𝜔0⁄ | < 𝛿, 

then 𝜇 = 𝜇(𝜀) and 𝑥(𝑡) = 𝑝(𝑡 + 𝜃, 𝜀) for some |𝜀| < 𝜀0 and some 𝜃. 

If F is differentiable five times in a row, then: 
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Asymptotically, 𝑝(𝑡, 𝜀) is stable if 𝜇1 > 0 and unstable if 𝜇1 < 0 if all other 

characteristic roots for 𝜇 = 0 have solidly negative real components, with the 

exception of ∓𝑖𝜔. 

1.4.4 Sensitivity Analysis of State Variables with respect to Model Parameters 

Systematic evaluation of the effects of model parameters on system solutions is called 

sensitivity analysis. There are number of methods to do sensitivity analysis of systems 

without delay, but there are only a few methods for sensitivity analysis of systems 

involving delays. The knowledge of how a small change in model parameter can bring 

change in the state variable, can be a great help in modelling process. It helps in 

elimination of ineffective and irrelevant parameters. It gives a complete insight into the 

overall behaviour of the proposed model.  

If all the parameters in the given system (1.1) - (1.2) are considered to be constants, 

then analysis includes just the calculation of partial derivatives of solution with respect 

to each parameter (Rihan, 2003). The matrix of sensitivity functions is of the form: 

 
𝑆(𝑡) ≡ 𝑆(𝑡, 𝛼) = [

𝜕

𝜕𝛼
]
𝑇

𝑥(𝑡, 𝛼)                                  (1.7)  

Its 𝑗𝑡ℎ column is:    𝑆𝑗(𝑡, 𝛼) = [
𝜕𝑥𝑗(𝑡,𝛼)

𝜕𝛼1
,
𝜕𝑥𝑗(𝑡,𝛼)

𝜕𝛼2
, … ,

𝜕𝑥𝑗(𝑡,𝛼)

𝜕𝛼𝑛
 ]
𝑇

 

 𝜇(𝜀) = 𝜇1𝜀
2 + 𝑂(𝜀4) 

 𝑇(𝜀) =
2𝜋

𝜔0
[1 + 𝜏1𝜀

2 + 𝑂(𝜀4)] 
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This column vector gives sensitivity of the solution 𝑥𝑗(𝑡, 𝛼) for small change in 

parameter 𝛼𝑖, 𝑖 = 1,2,3, … , 𝑛. 

Theorem 10.  𝑆(𝑡) satisfies the delay differential equation: 

  𝑆′(𝑡) = 𝐽(𝑡)𝑆(𝑡) + 𝐽𝜏(𝑡)𝑆(𝑡 − 𝜏) + 𝐵(𝑡), 𝑡 ≥ 0  

Where 𝐽(𝑡) =
𝜕

𝜕𝑥
𝑓(𝑡, 𝑥, 𝑥𝜏),   𝐽𝜏(𝑡) =

𝜕

𝜕𝑥𝜏
𝑓(𝑡, 𝑥, 𝑥𝜏),   𝐵(𝑡) =

𝜕

𝜕𝛼
𝑓(𝑡, 𝑥, 𝑥𝜏) 

1.5 Summary 

The present thesis consists of five chapters. In Chapter- 1, a general introduction 

of the work carried in light of the existing literature is given along with some basic 

concepts and terminology used in the study and mathematical techniques applied 

in the analysis of the mathematical models. 

In Chapter 2, considered a structure comprising the function of delay and the two 

opposing toxic phytoplankton and zooplankton. We have examined the system's 

stability behaviour in the vicinity of the accurate steady states. Our theoretical and 

numerical findings demonstrate that the system immediately has asymptotic 

consistency around the internal equilibrium that is positive, which stands for the 

coexistence each of the three species, at a given threshold of the system 

characteristics. Based on both qualitative and quantitative analysis, we determine 

that the predation rates (ρ1 and ρ2) of the two harmful phytoplankton are bifurcating 

parameters. The interior equilibrium point for these parameters displays a stable 

bifurcating solution when ρ1 exceeds the edge value ρ∗
1, and when ρ∗

2 falls below the 

edge value ρ∗
2 respectively. Likewise, it is discovered that half saturation constants 
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(h1 and h2) are bifurcating parameters, exhibiting a stable bifurcating solution at 

the interior equilibrium point when h1 is less than the number set as the threshold 

h∗
1 and h∗

2  and beyond the threshold value h∗
2 respectively. Interestingly, though, the 

bifurcating solution's dynamic character is dependent on the values of ρ1, ρ2, h1 

and h2.  For a given critical value of the delay parameter, it is seen that the stable 

interior equilibrium points once more displays Hopf-bifurcation when the time-

delay is taken into account within the system. 

In the Chapter-3, the impact of time lag on a multi-team phytoplankton-zooplankton 

system comprising of two phytoplankton and one zooplankton is studied 

considering that the two phytoplankton-populations help each other when they are 

subjected to predation. It is demonstrated that the addition of time delay destabilizes 

the stable balance point of the original system. It is also shown that the Hopf-

bifurcation can arise in the system as the period of delay parameter crosses the 

significant values. Furthermore, utilizing the central manifold reduction theorem 

and normal form theory, a particular method is devised that defines the route and 

constancy of the Hopf-bifurcating solution. 

The Chapter-4, has taken into consideration a single phytoplankton-two zooplankton 

system using a functional response of a square root and a phytoplankton growth rate 

delay. In contrast to the phytoplankton-zooplankton model investigated by Valerio 

Ajraldi et al. (2011), the inclusion of another competing zooplankton makes the system 

more stable and prevents limit cycles from occurring in the system spontaneously 

without delay. Limit cycles naturally emerge under certain situations involving model 

parameters in the phytoplankton-zooplankton model explored by Valerio Ajraldi et al. 
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(2011). The conclusion drawn via analysis of stability of the axial balance point (X, 0, 

0) is that if the proportion of the zooplankton populations' mortality rates expressed as a 

square root of the phytoplankton population's carrying capacity is greater than the 

product of the corresponding conversion effectiveness and rates of predation, the 

phytoplankton community will survive, and the zooplankton populations will tend to 

extinct. According to the analysis of stability of the boundary stability point (X, P1, 0), 

the density dependent mortality rate of the zooplankton population (P2) reaches 

extinction if the proportion of the zooplankton's mortality rate (P1) is less than the ratio 

of the product of its conversion efficiency and its rate of predation of the zooplankton's 

mortality rate (P2) in relation to the product of its rate of predation and conversion 

effectiveness. The phytoplankton community (X) and one of the zooplankton 

populations (P1) survive. According to the constancy analysis of the boundary 

equilibrium point (X, 0, P2), if the constancy level of the phytoplankton inhabitants 

is lower than the proportion of the zooplankton (P1) inhabitants’ death rate to the 

sum of its rate of predation, adaptability, and the square root of the phytoplankton 

population's carrying capacity, then the phytoplankton population (X) and the 

zooplankton population (P2) would survive and the other zooplankton population 

(P1) would go extinct. If the ratio of the zooplankton mortality rate (P1) to the 

product of its rate of predation and conversion effectiveness is more than the one-

third's square root of the phytoplankton population's carrying capacity, then 

coexistence exists within the system. Also, when time lag exceeds a significant 

threshold, maximum cycles occur at each equilibrium point, accounting for the 

effects of time delay within the system. 

In Chapter-5, we have suggested a phytoplankton- zooplankton system with host-
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commensal to the zooplankton in which time lag is considered in logistic growth of 

the host species which is undergoing harvesting. In the absence of host species, the 

system has stable co-existence and after the introduction of host species, the 

equilibrium level of predator increases preserving the stability behaviour up to a 

certain value of commensal rate.  

Further it is noted that if commensal rate increases then limit cycles occurs and the 

system loses its stability. It is shown numerically that the phytoplankton-

zooplankton system shows oscillatory behaviour in the absence of host species 

when intrinsic growth rate is less than or equal to harvesting rate of host species (r2 

≤ H). If r2 > H then the host species will survive and the phytoplankton-

zooplankton system will exhibit similar oscillatory behaviour with larger 

amplitude. From the analysis it is observed that the role of harvesting rate is 

opposite to that of commensal rate with regard to the underlying system's dynamic 

behaviour. Following the consideration of the effect of time-delay within the 

system, limit cycles arise when the time lag exceeds certain significant levels for 

interior equilibrium points that were otherwise stable without delay. It is also 

shown analytically as well as numerically that the length of delay increases as 

harvesting rate increases and specific growth rate of host species decreases. 
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Chapter 2 

Role of Delay in toxin producing Phytoplankton 

and Zooplankton dynamics 

Abstract 

The effects of zooplankton exposed to toxic phytoplankton are studied using a 

mathematical model proposed in this chapter. Phytoplankton 𝐻1, Phytoplankton 𝐻2, 

and Zooplankton C are the state variables linked to them. The assumption is that the 

population of zooplankton is negatively impacted by the toxicity released by two 

phytoplanktons. The system's internal equilibrium was disturbed by the delay addition, 

leading to Hopf bifurcation at the critical delay parameter value.  MATLAB is used to 

provide numerical simulation to complement analytical findings. 

Keywords: Phytoplankton, Zooplankton, Plant biomass, Hopf bifurcation, Toxic 

material. 

2.1 Introduction 

Over the past three decades, harmful plankton blooms have increased worldwide 

as studied by Anderson (1989); Hallegraeff (1993) & Smayda (1990). The 

mechanisms underlying hazardous algal blooms (HAB) and how to regulate them 

have recently drawn more attention to researchers like Blaxter et.al (1998); Huang 

et.al (2006); Sarkar et.al (2007) & Zhao and Wei (2009).  

It is a kind of ecological model that has extensively been studied and established 

by Li and Chen (2009) far along with other different plankton models. Also, 
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Chattopadhyay et.al (2002) & Khare et. al (2010) in their work attempt to a certain 

the role that various hydrological conditions have in the development of plankton 

blooms and to explore the appropriate form of functional reaction to explain the 

reason behind the declination in zooplankton population by toxin-producing 

phytoplankton (TPPs). One of the most important factors is the drop in zooplankton 

pressure dure to grazing is caused by phytoplankton's production of toxins as 

explained by Keating (1976) & Kirk and Gilbert (1992). The exclusion principle 

explains the phenomenon where zooplankton steers clear of regions abundant in 

certain phytoplankton species, such as Rhizosolenia, Coscinodiscus, and 

Phaeocystis, etc. either because of dense phytoplankton concentration or because 

they produce some toxic and unpleasant elements Odum (1971).  

Buskey and Stockwell (1993) research in the southern coast of Texas explains that 

while Aureococcus anophagefferens, a chrysophyte, bloom, there is declination of 

population of micro and meso zooplankton. The research findings demonstrated 

that harmful phytoplankton contributes to an increase in zooplankton populations, 

which in turn has a major impact on interactions between both. But, it cannot be 

denied that not all the above-mentioned research were able to explain various 

features like allelopathic interaction on phytoplankton’s persistence and 

coexistence, its immediate effect on predators, the regulation of oscillations or 

dangerous algal blooms, the impact of delay needed to discharge toxic substances. 

At this point, it is important to highlight that numerous predational functional 

response arrangements and toxin releases provide a variety of intriguing dynamics 

of the system Sarkar and Malchow (2005).  
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The study presents planktonic bloom mechanism where the release of noxious 

elements and the consequences of hazardous phytoplankton is not an instantaneous 

but rather are arbitrated by certain amount of time and which can be effective in 

reducing population oscillations and in turn, which is very crucial in maintaining a 

co-existence stability between the organisms. Several research data indicate that 

the harmful phytoplankton bloom eventually causes death of zooplankton and 

therefore the time delay biological study is being considered extremely important. 

The number of Paracalanus (zooplankton) populations is found to be declining after 

a period of bloom of toxic phytoplankton Noctiluca scintillans as explained in 

mathematical and empirical explanations Chattopadhyay et.al (2002). This fact 

allows some substantial liberty in the model construction considering the delay 

factor. According to Sarkar et al. (2005), hazardous compounds are categorized 

into Holling type II functions and the predational functional response are linear 

responses. The research was based on plankton that produces toxin and their 

impacts on phytoplankton-zooplankton system. The authors also proposed that the 

roles of delay and environmental variations in above mentioned adverse dynamics 

of phytoplankton and zooplankton may yield interesting outcomes and should be 

considered for further investigation.  

2.2 Statistical Model 

The current research was inspired by interactions discovered in theory and 

experiment between different kinds of phytoplankton-zooplankton interactions. 

The differential equation system that governs the dynamics are as follows. The 

three state variables are: 
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𝐻1(𝑡): ratio of the first type of dangerous phytoplankton at time t   

𝐻2(𝑡): ratio of the second type of dangerous phytoplankton at time 𝑡  

𝐶(𝑡): concentrations of the Zooplankton 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

𝑑𝐻1
𝑑𝑡

= 𝛾1𝐻1 (1 −
𝐻1
𝑠
) − 𝑘1𝐻1𝐻2 − 𝛽1𝐻1𝐶                                                      (2.1) 

𝑑𝐻2
𝑑𝑡

= 𝛾2𝐻2 (1 −
𝐻2
𝑠
) − 𝑘2𝐻1𝐻2 − 𝛽2𝐻2𝐶                                                      (2.2) 

𝑑𝐶

𝑑𝑡
= (𝛼1𝐻1 + 𝛼2𝐻2)𝐶 − 𝑑𝐶 − ∅1𝐻1(𝑡 − 𝜏)𝐶 − ∅2𝐻2(𝑡 − 𝜏)𝐶               (2.3) 

The additional primary conditions mentioned below are included in the system of 

equations (1-3); 

a. 𝐻1(0) ≥ 0  

b. 𝐻2(0) ≥ 0  

c. 𝐶(0) ≥ 0  

 

2.2.1 Delineation of the variables 

Parameters Description 

𝛾1 The rate of harmful phytoplankton's expansion 𝐻1 

𝛾2 The rate of harmful phytoplankton's expansion 𝐻2 

𝑠 Carrying Capacity of both phytoplankton species 

𝛽1 The predation of phytoplankton’s rate  𝐻1  by zooplankton C 

𝛽2 The predation of phytoplankton’s rate 𝐻2  by zooplankton C 

𝛼1 The conversion rates of Zooplankton C on phytoplankton 𝐻1 
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𝛼2 The conversion rates of Zooplankton C on phytoplankton 𝐻2 

 

𝑑 Zooplankton’s Natural death rate C 

 

∅1 Proportion of toxic release by harmful phytoplankton 𝐻1 on 

zooplankton C  

∅2 Proportion of toxic release by harmful phytoplankton 𝐻2 on 

zooplankton C 

𝑘1 Inhibitory detrimental phytoplankton effect 𝐻1 on the other 

phtoplankton 𝐻2 

𝑘2 Inhibitory detrimental phytoplankton effect 𝐻2 on the other 

phtoplankton 𝐻1 

𝜏 Delay parameter 

 

2.3 Model Without Delay 

𝑑𝐻1
𝑑𝑡

= 𝛾1𝐻1 (1 −
𝐻1
𝑠
) − 𝑘1𝐻1𝐻2 − 𝛽1𝐻1𝐶                                              (2.4) 

𝑑𝐻2
𝑑𝑡

= 𝛾2𝐻2 (1 −
𝐻2
𝑠
) − 𝑘2𝐻1𝐻2 − 𝛽2𝐻2𝐶                                            (2.5) 

𝑑𝐶

𝑑𝑡
= ((𝛼1 − ∅1)𝐻1 + (𝛼2 − ∅2)𝐻2)𝐶 − 𝑑𝐶                                    (2.6) 

2.4 Interior equilibrium of Model 

Solving  
𝑑𝐻1

∗

𝑑𝑡
= 0 ,

𝑑𝐻2
∗

𝑑𝑡
= 0 𝑎𝑛𝑑

𝑑𝐶

𝑑𝑡
  simultaneously, 

𝐻1
∗ =

(𝛽1𝛾1 − 𝛽1𝛾2)(𝛼2 − ∅2) − 𝑑(𝑘1𝛽2 −
𝛾2𝛽1
𝑠 )

[(
𝛾1𝛽2
𝑠 − 𝑘2𝛽1) (𝛼2 − ∅2) − (𝛼1 − ∅1)(𝑘1𝛽2 −

𝛾2𝛽1
𝑠 )]

 

𝐻2
∗ =

(𝛽2𝛾1 − 𝛽1𝛾2)(𝛼1 − ∅1) − 𝑑(
𝛾1𝛽2
𝑠 − 𝑘2𝛽1)

[(𝑘1𝛽2 −
𝛾2𝛽1
𝑠
) (𝛼1 − ∅1) − (𝛼2 − ∅2)(

𝛾1𝛽2
𝑠 − 𝑘2𝛽1)]
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𝐶∗ =
1

𝛽1
(𝛾1 −

𝛾1
𝑠
(

(𝛽1𝛾1 − 𝛽1𝛾2)(𝛼2 − ∅2) − 𝑑 (𝑘1𝛽2 −
𝛾2𝛽1
𝑠
)

[(
𝛾1𝛽2
𝑠 − 𝑘2𝛽1) (𝛼2 − ∅2) − (𝛼1 − ∅1) (𝑘1𝛽2 −

𝛾2𝛽1
𝑠
)]
)

− 𝑘1(
(𝛽2𝛾1 − 𝛽1𝛾2)(𝛼1 − ∅1) − 𝑑(

𝛾1𝛽2
𝑠 − 𝑘2𝛽1)

[(𝑘1𝛽2 −
𝛾2𝛽1
𝑠
) (𝛼1 − ∅1) − (𝛼2 − ∅2)(

𝛾1𝛽2
𝑠 − 𝑘2𝛽1)]

) ) 

2.5 Study of Interior Equilibrium and Local Hopf-Bifurcation 

We will only look at the interior equilibrium's dynamic behaviour in this section. It is 

evident that there is only one positive equilibrium in the system of equations (2.1), 

(2.2), and (2.3). 

|

𝜇 −𝑚1 −𝑚2 −𝑚3

−𝑚4 𝜇 − 𝑚5 −𝑚6

−𝑚7 −𝑚8 𝜇 − 𝑚9

| = 0 

The following is the exponential characteristic equation for equilibrium E* : 

𝜇3 + 𝑃1𝜇
2 + 𝑃2𝜇 + 𝑃3 + 𝑒

−𝜇𝜏(𝑄1𝜇 + 𝑄2)                                     (2.7)              

Where 𝑃1 = (𝛿1 + 𝛿2 + 𝛿3 + 𝛾𝑁
∗), 𝑃2 = (𝛿1𝛿2 + 𝛿2𝛿3 + 𝛿3𝛿1 + 𝛿1𝛾𝑄

∗ + 𝑆𝑁𝑀𝛾𝑃
∗),  

                 𝑃3 = (𝛿1𝛿2𝛿3 + 𝛿2𝑆𝑁𝑀𝛾𝑃
∗), 𝑄1 = 𝛼𝑍∗(𝛿1 + 𝛿3 + 𝛾𝑄

∗), 𝑄2 = 𝛿2𝛿3𝛼𝑍
∗.  

Clearly 𝑃1, 𝑃2, 𝑃3, 𝑄1, 𝑄2 will be positive. 

Now, 𝜇 = 𝑖𝜔 satisfies (2.7) if and only if   

(𝑖𝜔)3 + 𝑃1(𝑖𝜔)
2 + 𝑃2(𝑖𝜔) + 𝑃3 + (𝑄1(𝑖𝜔) + 𝑄2)𝑒

−𝑖𝜔𝜏 = 0                       (2.8)  

Splitting Real and imaginary parts: 

𝑃3 − 𝑃1𝜔
2 + 𝑄2𝑐𝑜𝑠 𝜔𝜏 + 𝑄1𝜔 sin𝜔𝜏 = 0                                  (2.9)               
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                   𝑃2𝜔 − 𝜔
3 + 𝑄1𝜔 𝑐𝑜𝑠 𝜔𝜏 − 𝑄2 sin𝜔𝜏 = 0                                (2.10)   

Which gives:  

𝜔6 + (𝑃1
2 − 𝑄1

2 − 2𝑃2)𝜔
4 + (𝑃2

2 − 𝑄2
2 + 2𝑄1𝑄2 − 2𝑃1𝑃3)𝜔

2 + 

                    (𝑃3
2 − 𝑄2

2) = 0                                                                                            (2.11)                                                                                                                                                                                                           

Let 𝑎 = (𝑃1
2 − 𝑄1

2 − 2𝑃2), 𝑏 = (𝑃2
2 − 𝑄2

2 + 2𝑄1𝑄2 − 2𝑃1𝑃3), 𝑐 = (𝑃3
2 − 𝑄2

2). 

If 𝜔2 = 𝑡, then equation (2.11) becomes: 

𝑡3 + 𝑎𝑡2 + 𝑏𝑡 + 𝑐 = 0                                                      (2.12) 

Lemma 1. Conditions applied on (2.12) yields following results, 

1) If 𝑐 < 0, then (2.12) has at least one positive root. 

2) If 𝑐 ≥ 0 and (𝑎2 − 3𝑏) ≤ 0, then (2.12) has no root that is positive. 

3) If 𝑐 ≥ 0 and (𝑎2 − 3𝑏) > 0 , then (2.12) roots will be positive roots if and only  

𝑖𝑓 ʋ =  
−𝑎 ± (𝑎2 − 3𝑏)

3
> 0 𝑎𝑛𝑑 ℎ(ʋ) ≤ 0 

Lemma 2. Assume ℎ(𝑡0) =  (3𝑡
2 + 2𝑎𝑡0 + 𝑏0) and the conditions of Routh-Hurwitz 

are fulfilled. When (j=0,1,2...), 𝑡𝜂(𝜏) = 𝑡(𝜏) + 𝑖𝜔(𝜏) fulfilling 𝑡(𝜏𝑗) = 0,𝜔(𝜏𝑗) =

𝜔0, where 

𝜏𝑗 = 
1

𝜔
 𝑎ɤ𝑐 cos (

−(𝑄1𝜔
2(𝑃2 − 𝜔

2) + (𝑃3 − 𝑃1𝜔
2)(𝑄2))

(𝑄2)
2 + (𝑄1𝜔0)

2
+ 2𝑗𝜋)  

then ±𝑖𝜔0 are simple roots. If  𝑡𝑗(𝜏𝑗) =  
𝑅𝑒𝜂(𝜏)

𝑑𝜏
|
𝜂 =𝑖 𝑡0 

  𝑓 = 0 
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Using Lemma 2, we can quickly determine the equations (2.1), (2.2), and (2.3) system's 

stability and bifurcation. 

Theorem: If  Routh-Hurwitz criterion is satisfied, then the Cciterion examines the 

polynomial equation's coefficients to see if the system has any roots in the complex 

plane's right-hand half. If there are no origin in the partial right of the complex plane, 

the system is constant. 

Results have been proved by “Ahmad, S. & Rao, (1999)”. 

2.6 Numerical Results 

Representing (2.1) to (2.3) by utilising the set of values mentioned below: 

𝛾1 = 2.5, 𝛾 2= 2.55, s = 20,k1 = .01, 𝛽1 = .66, k2 = 0.02, 𝛽2 = 0.55, 𝛼1 = 0.43, 

𝛼2 = 0.21, d = 0.1 

 

 

Figure 2.1: The system's positive internal equilibrium point E* is stable instantly 

when 𝛽1 = 0.66 < 𝛽1
∗
= 0.683535. 
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Figure 2.2: When  𝛽1 = 0.75 > 𝛽1
∗
  = 0.683535, A Hopf-bifurcation appears as a 

effect of the structure's positive internal equilibrium point 𝐸∗ losing stability 

quickly. 

2.7 Conclusion 

Researchers have previously proven that phytoplankton that produces toxin can be 

considered as an agent that controls the end of planktonic blooms using 

experimental results and mathematical models. However, such studies do not take 

into account the presence of two hazardous phytoplankton. Furthermore, the 

impact of time delay can’t be overlooked in this circumstance. This work examined 

a three-component model with two competing substances i.e. toxic phytoplankton 

and zooplankton. The theoretical and numerical data obtained reveals that the 

system is stable for a specific threshold of system parameters, reflecting the 

coexistence of three species, around the positive interior equilibrium. 
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Chapter 3 

Effect of Time-Delay on the teamed-up 

Phytoplankton-Zooplankton Dynamics 

Abstract 

The effects of teamed up phytoplankton on zooplankton are studied using a 

mathematical model proposed in this chapter. The associated state variables are 

Phytoplankton 𝐻1, Phytoplankton 𝐻2 and Zooplankton C. The assumption is that 

both Phytoplankton help each other against Zooplankton which adversely effects the 

Zooplankton population. The addition of delay disrupted the system's interior 

equilibrium, causing Hopf bifurcation at the delay parameter's crucial value. MATLAB 

is used to assist analytical findings with numerical simulation. 

3.1 Introduction 

The Universal existence and importance of Zooplankton-Phytoplankton dynamics has 

piqued the curiosity of both applied mathematicians and ecologists. Many models have 

two or more interacting species systems that have been developed, considering the 

effects of age, structure, functional response, time lag, crowding, switching, and other 

factors.  

 Many creatures can be found in nature that form teams and they have moved in 

teams from one place to another. There are two major benefits: the first is an 

increase in foraging efficiency and the second is the reduction of predation risk. 

The biological motivation of our study is related to the system in which the two 
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types of Phytoplankton are living in close quarters, and which are of one type which 

are being assaulted by Zooplankton.  

The issue of multi-team games is a relatively new one. It's being looked into by 

Elettreby M. (2009); Liu Y. and Simaan, M.A. (2003) gave a model to investigate 

a novel multi-team Phytoplankton-Zooplankton system where Phytoplankton 

teams assist one another in the presence of Zooplankton. Equilibrium solutions of 

the model are derived, and their stability analysis is performed. The persistence 

analysis in the model without considering the team behaviour is also carried out in 

this chapter. 

The introduction of time delay in Phytoplankton-Zooplankton system is because of 

the factors such as age-structure, maturation period, gestation period (ranging from 

about 20 days to about 645 days), feeding time, reaction time and resource 

regeneration time. The system with delay received more attention because of its 

complex dynamical behaviour such as the emergence of periodic solution and 

bifurcation phenomena. We'd want to make a point about here that there are a number 

of excellent publications on bifurcation and stability for ecological models without 

delay or with delay, we're talking about Abdusalam H. and Fahmy, E. (2003); 

Freedman, H. et al. (1989); Gakkhar S. and Kamel N.R. (2003); Gakkhar, S. et 

al.(2009); Hui J. and Chen L.(2006); Jing Z. and Yang J.(2006); Liu Z. and Yuan 

R. May  R.(1973); Meng X. and Wei J.(2004); Song Y. and Yuan S.(2007); Zhao, 

J., Wei, J.(2009) and the reference therein. Time-integrated models delay in various 

biological systems are extensively researched Beretta E. and Kuang Y. (1998); 

Gopalsamy K. (1992); Kuang Y. (1993); MacDonald, N. (1976). Richard Shine 
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discovered that no specimen showed signs of zooplankton poisoning and that the 

majority of zooplanktons consumed phytoplanktons before discarding them. Both 

Zooplanktons immediately learnt to stay away from Phytoplankton after just one 

or two encounters. Zooplankton rejected phytoplanktons for the duration of the 

sample (22 days), indicating that phytoplanktons are detrimental when considering 

long-term retention Webb, J. K. et al. (2011). 

According to Christina G. Halpin, zooplankton increase their consumption by 

artificially elevating their nutritional levels, and they lower it by ceasing protein 

enrichment. This demonstrates that phytoplankton can perceive and use this 

information to determine the nutritional composition of harmful phytoplankton, 

opening up new possibilities for phytoplankton defence evolution.  

It is evident that individual variations in nutrition may result in hitherto unheard-of 

levels of toxicity in phytoplankton, which may help to explain why certain species have 

ontogenetic defence mechanisms Halpin C. et al. (2014). New methods against 

Zooplanktons are vitally needed for the survival of endangered species, according to 

Read J. et al.(2016). According to Ramos R.S. et al.(2017), flubendiamide tended to 

remain on the surface for a longer period of time.The population pallescens are also 

maintained by these substances, and they make more sustainable sophisticated pest 

control strategies possible.   

Though coral gobies could be prey, Gratzer B. et al. (2015) pointed out that E. 

Gobiodon was clearly preferred by the non-toxic monitoring fish of Fasciatus. 

While pursuing a goby, the predator did not favour any particular animal over the 

others. Since these gobies have a skin toxin, residing on the ground is highly risky, 
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as shown by their unusual post-capture avoidance. Recent research by Banerjee M. 

& Venturino E. (2011) examined a phytoplankton-toxic zooplankton-interacting 

device without taking into consideration the temporal lag brought on by the 

gestation period. But the report's authors neglected to account for the temporal gap 

throughout the gestation stage. The approach put out by them considers the 

practical form of the predator displaying avoidance behaviour in the face of large 

concentrations of toxic phytoplankton, and the predator replicates instantaneously 

after predating the prey. In the natural world, however, it makes more sense to 

accommodate the temporal lag of the gestation period. In light of this, the work of 

Banerjee M. & Venturino E. (2011) is extended by incorporating time delay into the 

dynamical equation of zooplankton. The link between phytoplankton and 

zooplankton under certain external conditions was emphasised by Rodgers 

Makwinja (2021). In this work, Fanny Chenillat et al. (2021) demonstrate how 

zooplankton feeding patterns are portrayed in these models. The approach provided 

by Elettreby, M. (2009) assumes that Zooplankton reproduces instantaneously after 

Phytoplankton is devoured; in reality, though, it is more likely to take the time lag 

of the gestation period into account. In this study, the work of Elettreby, M. (2009) 

is expanded by adding time delay to the model, taking into account time-lag for 

gestation period. 

3.2 Mathematical Model 

Consider a Phytoplankton-Zooplankton system that is delayed in which both 

Phytoplankton help each other against Zooplankton. In this model, the assumption 
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is that the Zooplankton takes time τ for the gestation period . Accordingly, the 

model can be expressed as 

𝑑𝐻1(𝑡)

𝑑𝑡
= 𝑚𝐻1(𝑡)(1 − 𝐻1(𝑡)) − 𝐻1(𝑡)𝐶(𝑡) + 𝐻1(𝑡)𝐻2(𝑡)𝐶(𝑡)       3.1     

𝑑𝐻2(𝑡)

𝑑𝑡
= 𝑛𝐻2(𝑡)(1 − 𝐻2(𝑡)) − 𝐻2(𝑡)𝐶(𝑡) + 𝐻1(𝑡)𝐻2(𝑡)𝐶(𝑡)             3.2  

𝑑𝐶(𝑡)

𝑑𝑡
= −𝑜𝐶2(𝑡) + 𝑝𝐻1(𝑡 − 𝜏)𝐶(𝑡) + 𝑞𝐻2(𝑡 − 𝜏)𝐶(𝑡)                       3.3  

If the desired time delay is 𝜏 > 0 for the Zooplankton’s gestation time, H1(t) and 

H2(t) are densities of two teams of Phytoplankton, C(t) is the density of 

Zooplankton. All the parameter takes positive values, i.e., 𝑚, 𝑛, 𝑜, 𝑝, 𝑞 > 0. The 

system comes with the following starting functionality (3.1-3.3): 

(H1(𝛾), H2(𝛾), C (𝛾)) ∈ K+ = K ((−τ, 0), R3), H1(0), H2(0), C(0) > 0. 

3.3 Point of interior equilibrium and stability analysis 

The system of equations mentioned in (3.1-3.3) has eight equilibria with certain 

conditions for non-negativity. Since the remaining seven equilibria do not show any 

impact of delay in the internal stability of outcomes, we shall only confine our 

analysis to the stability and local Hopf-bifurcation of interior equilibrium.Let 

𝐸∗(𝐻1
∗, 𝐻2

∗, 𝐶∗) denote the interior equilibrium where,   

 𝐻1
∗ =

𝑛𝑜+𝑞(1−√
𝑛

𝑚
 )

𝑞+𝑝√𝑛/𝑚
, 𝐻2

∗ =
𝑜√𝑚𝑛−𝑝(1−√

𝑛

𝑚
)

𝑞+𝑝√𝑛/𝑚
, 𝐶∗ = √𝑚𝑛 𝑎𝑛𝑑 𝐸∗ exist under the 

following conditions  
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𝑜√𝑚𝑛 ≤ 𝑝 + 𝑞, 𝑜𝑚 + 𝑝 > 𝑝√
𝑛

𝑚
, 𝑜𝑛 + 𝑞 > 𝑞√𝑚/𝑛 

Now we'll look at the equilibrium’s 𝐸∗(𝐻1
∗, 𝐻2

∗, 𝐶∗) local stability. Let 𝛼1 = 𝐻1 −

𝐻1
∗, 𝛼2 = 𝐻2 − 𝐻2

∗ and 𝛼3 = 𝐶 − 𝐶
∗. 

After that, the system (3.1-3.3) can be written as follows: 

𝑑𝛼1
𝑑𝑡

= −𝑚𝐻1
∗𝛼1 − 𝐻1

∗𝛼3 + 𝐻1
∗𝐻2

∗𝛼3 +𝐻1
∗𝐶∗𝛼2 −𝑚𝛼1

2 − (1 − 𝐻2
∗)𝛼1𝛼3

+ 𝐻1
∗𝛼2𝛼3 + 𝐶

∗𝛼1𝛼2 + 𝛼1𝛼2𝛼3                                                        3.4        

𝑑𝛼2
𝑑𝑡

= −𝑛𝐻2
∗𝛼2 − 𝐻2

∗𝛼3 + 𝐻1
∗𝐻2

∗𝛼3 + 𝐻2
∗𝐶∗𝛼1 − 𝑛𝛼2

2 − (1 − 𝐻1
∗)𝛼2𝛼3

+ 𝐻2
∗𝛼1𝛼3 + 𝐶

∗𝛼1𝛼2 + 𝛼1𝛼2𝛼3                                                  3.5 

𝑑𝛼3
𝑑𝑡

= −𝑜𝐶∗𝛼3 + 𝑝𝐶
∗𝛼1(𝑡 − 𝜏) + 𝑞𝐶

∗𝛼2(𝑡 − 𝜏) − 𝑜𝛼3
2 + 𝑝𝛼1(𝑡 − 𝜏)𝛼3

+ 𝑞𝛼2(𝑡 − 𝜏)𝛼3                                                                             3.6 

To study the stability of the equilibrium 𝐸∗(𝐻1
∗, 𝐻2

∗, 𝐶∗), it’s enough to examine the 

constancy of the origin for the structure (3.4-3.6). As the linearized system (3.4-3.6) is 

at (0,0,0), its characteristic equation is, 

λ3 + Xλ2 + Y1λ + e−λτ (Y2λ + Z2) = 0   (3.7) 

𝑋 = 𝑚𝐻1
∗ + 𝑛𝐻2

∗ + 𝑜𝐶∗ 

𝑌1 = 𝑛𝑜𝐻2
∗𝐶∗ +𝑚𝐻1

∗(𝑛𝐻2
∗ + 𝑜𝐶∗) − 𝐻1

∗𝐻2
∗𝐶∗2, 

𝑌2 = 𝑞𝐻2
∗𝐶∗(1 − 𝐻1

∗) + 𝑝𝐻1
∗𝐶∗(1 − 𝐻2

∗) 
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𝑍2 = 𝑚𝑞𝐻1
∗𝐻2

∗𝐶∗(1 − 𝐻1
∗) + 𝑝𝐻1

∗𝐻2
∗𝐶∗2(1 − 𝐻1

∗) + 𝑞𝐻1
∗𝐻2

∗𝐶∗2(1 − 𝐻2
∗)

+ 𝑛𝑝𝐻1
∗𝐻2

∗𝐶∗(1 − 𝐻2
∗)  

When 𝜏 = 0, equation (3.7) becomes, 

λ3 + Xλ2 + (Y1 + Y2) λ + Z2 = 0             (3.8)  

According to the Routh-Hurwitz, the balance 𝐸∗ is stable in the local asymptote 

when 𝜏 = 0, criterion, if 

(H1) X > 0, (Y1 + Y2) > 0, Z2 > 0, X (Y1 + Y2) > Z2 

hold. As seen in the following, the time delay can affect the stability of equilibrium 

E∗ and cause Hopf bifurcation when it surpasses certain critical levels. 

Lemma I Suppose the conditions in (𝐻1) are satisfied. Then equation (3.7) with 

𝜏 = 𝜏𝑗(𝑗 = 0,1,− − −−) possesses a basic pair of totally imaginary conjugate 

roots ±𝑖𝜔0, where  

𝜏𝑗 =
1

𝜔0
[𝑎𝑟𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔02 + 𝑍2

2 + 2𝑗∏] 

Further, we have the following: 

1. If τ ∈ [0, τ0), the equation of all roots (3.7) has undesirable factual   parts. 

2. If τ = τ0, equation (3.7) has a duo of conjugate virtuously complex roots 

±𝑖𝜔0, and the real components of all the other roots are negative. 

 Lemma II Suppose ℎ(𝑥0)  =  (3𝑥0
2 + 2𝑝𝑥0 +  𝑞)  ≠  0 and the conditions in 

(H1) are satisfied. For (j=0,1...), denote (𝜏 ) =  և(𝜏 ) +  𝑖𝜔(𝜏 ) function as the 

equation's root (3.7) fulfilling և (τJ ) = 0, 𝜔 (τj) = 𝜔0, where 
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𝜏𝑗 =
1

𝜔0
[arccos

𝜔0
2(𝜔0

2𝑌2+𝑍2𝑋−𝑌1𝑌2)

𝑌2
2𝜔02+𝑍2

2 + 2𝑗∏] 

Then ±𝑖𝜔0 are simple roots. If the transversality condition  (𝐻1),և
,(𝜏𝑗) =

𝑅𝑒𝜆(𝜏)

𝑑𝜏
|
𝜆=𝑖𝜔0≠0

   

holds, a Hopf bifurcation occurs for (3.4-3.6) at   և = 0 and τ = τj. 

Theorem Suppose the conditions in (H1) are satisfied. If τ ∈ [0, τ0), subsequently (3.4-

3.6)'s zero solution is asymptotically stable. 

The proof of Lemmas and theorem have been conveyed in the publication given by 

Ruan S. and Wei J. (2001). 

3.4 Direction and Stability of the Hopf-Bifurcating 

Solution 

It is also known to be of interest to determine the period, stability, and direction of 

these bifurcating periodic solutions. In this part, we will create the explicit 

equations specifying the characteristics of the Hopf-bifurcation at the critical value 

𝜏𝑗 using normal form theory and centre manifold reduction due to Hassard B.D. et al. 

(1981). 

Applying time scaling, 𝑡 →
𝑡

𝜏
 to normalize the delay 𝜏, system (3.4-3.6) is  

𝑑𝛼1
𝑑𝑡

= −𝑚𝐻1
∗𝛼1 − 𝐻1

∗𝛼3 + 𝐻1
∗𝐻2

∗𝛼3 +𝐻1
∗𝐻2

∗𝛼2 −𝑚𝛼1
2 − (1 − 𝐻2

∗)𝛼1𝛼3

+ 𝐻1
∗𝛼2𝛼3 + 𝐶

∗𝛼1𝛼2 + 𝛼1𝛼2𝛼3                                                           3.9    
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𝑑𝛼2
𝑑𝑡

= −𝑛𝐻2
∗𝛼2 − 𝐻2

∗𝛼3 +𝐻1
∗𝐻2

∗𝛼3 + 𝐻2
∗𝐶∗𝛼1 − 𝑛𝛼2

2 − (1 − 𝐻1
∗)𝛼2𝛼3

+ 𝐻2
∗𝛼1𝛼3  + 𝐶

∗𝛼1𝛼2 + 𝛼1𝛼2𝛼3                                                       3.10 

𝑑𝛼3
𝑑𝑡

= −𝑜𝐶∗𝛼3 + 𝑝𝐶
∗𝛼1(𝑡 − 1) + 𝑞𝐶

∗𝛼2(𝑡 − 1) − 𝑜𝛼3
2 + 𝑝𝛼1(𝑡 − 1)𝛼3

+ 𝛼2(𝑡 − 1)𝛼3                                                                                       3.11 

As a result, we'll be able to work in the phase, K=K ((-1,0),𝑅+
3). Denote the critical 

value  𝜏𝑗  𝑏𝑦 𝜏0 without sacrificing generality . Let 𝜏 = 𝜏0 + 𝜑,then 𝜑 = 0 is a Hopf-

bifurcation value of the system (3.9-3.11). To make notations simpler, we rewrite (3.9-

3.11) as, 

                                       𝛼 ,(𝑡) = 𝑀𝜑(𝛼𝑡) + 𝐺(𝜑, 𝛼𝑡)                                              (3.12)    

Where 𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡), 𝛼3(𝑡))
𝑈 ∈ 𝑅3, 𝛼𝑡(𝛾) ∈ 𝐾 is defined by 𝛼𝑡(𝛾) = 𝛼(𝑡 +

𝛾), 𝑎𝑛𝑑 𝑀𝜑 = 𝐾 → 𝑆, 𝐺: 𝑆𝑋𝐾 → 𝑆  and further 

𝑀𝜑𝜀 = (𝜏0 + 𝜑) [
−𝑚𝐻1

∗ 𝐻1
∗𝐶∗ −𝐻1

∗ + 𝐻1
∗𝐻2

∗

𝐻2
∗𝐶 −𝑛𝐻2

∗ −𝐻2
∗ + 𝐻1

∗𝐻2
∗

0 0 −𝑜𝐶∗
] [

𝜀1(0)

𝜀2(0)

𝜀3(0)
] + (𝜏0

+ 𝜑) [
0 0 0
0 0 0
𝑝𝐶∗ 𝑞𝐶∗ 0

] [

𝜀1(−1)

𝜀2(−1)

𝜀3(−1)
] 

and 

𝐺(𝜑, 𝜀) = (𝜏0 + 𝜑) [
𝐺1
𝐺2
𝐺3

] 

 respectively, where,  

𝐺1 = −𝑚𝜀1
2(0) − (1 − 𝐻2

∗)𝜀1(0)𝜀3(0) + 𝐻1
∗𝜀2(0)𝜀3(0) + 𝐶

∗𝜀1(0)𝜀2(0)

+ 𝜀1(0)𝜀2(0)𝜀3(0) 



53 
 

𝐺2 = −𝑛𝜀2
2(0) − (1 − 𝐻1

∗)𝜀2(0)𝜀3(0) + 𝐻2
∗𝜀1(0)𝜀3(0) + 𝐶

∗𝜀1(0)𝜀2(0)

+ 𝜀1(0)𝜀2(0)𝜀3(0) 

𝐺3 = −𝑜𝜀3
2(0) + 𝑝𝜀1(−1)𝜀3(0) + 𝑞𝜀2(−1)𝜀3(0), 

𝜀(𝛾) = (𝜀1(𝛾)𝜀2(𝛾)𝜀3(𝛾))
𝑈 ∈ 𝐾((−1,0), 𝑆) 

According to Reisz illustration theorem, there occurs a function  ƞ(𝛾, 𝜑) of limited 

dissimilarity for 𝛾 ∈ [−1,0], in such a way that, 𝑀𝜑𝜀 = ∫ 𝑑ƞ(𝛾, 0)𝜀(𝛾)  𝑓𝑜𝑟 𝜀 ∈ 𝐾.
1

0
  

As a matter of fact, we can select  

ƞ(𝛾, 𝜑) = (𝜏0 + 𝜑) [
−𝑚𝐻1

∗ 𝐻1
∗𝐶∗ −𝐻1

∗ + 𝐻1
∗𝐻2

∗

𝐻2
∗𝐶 −𝑛𝐻2

∗ −𝐻2
∗ + 𝐻1

∗𝐻2
∗

0 0 −𝑜𝐶∗
] [

𝜀1(0)

𝜀2(0)

𝜀3(0)
] 𝛿(𝛾) + (𝜏0

+ 𝜑) [
0 0 0
0 0 0
𝑝𝐶∗ 𝑞𝐶∗ 0

] 𝛿(𝛾 + 1) 

 where 𝛿 is the Dirac delta function.For 𝜀 ∈ 𝐾([−1,0], 𝑅+
3),we establish 

𝑋(𝜑)𝜀 =

{
 
 

 
 
𝑑𝜀𝛾

𝑑𝛾
,                      𝛾 ∈ [−1,0)

∫𝑑ƞ(𝛾, 0)𝜀(𝛾)

0

−1

, 𝛾 = 0

 

and 

𝑆(𝜑)𝜀 = {
0, 𝛾 ∈ [−1,0),

𝐺(𝜑, 𝜀) 𝛾 = 0.
 

 Hence, (3.12) is equal to 

𝛼𝑡
′ = 𝑋(𝜑)𝛼𝑡 + 𝑆(𝜑)𝛼𝑡                                                   (3.13)     

For 𝛹 ∈ 𝐾1([−1,0], 𝑅+
3), 𝑑𝑒𝑓𝑖𝑛𝑒 
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𝑋∗𝛹(𝑠) =

{
 
 

 
 −

𝑑𝛹(𝑠)

𝑑𝛾
                                 , 𝑠 ∈ [−1,0)

∫𝑑ƞ𝑈(−𝑡, 0)𝛹(−𝑡),                     𝑠 = 0.

0

−1

 

And bilinear inner product  

<𝛹(𝑠), 𝜀(𝛾) ≥ �̅�(0)𝜀(0) − ∫ ∫ �̅�(𝜉 − 𝛾)𝑑ƞ(𝛾)𝜀(𝜉)𝑑𝜉                       (3.14)
0

𝜉=𝜃

0

−1
  

We know that 𝑋∗ 𝑎𝑛𝑑 𝑋 = 𝑋(0) are adjoint operators. We are aware that 𝑖𝜔0 are eigen 

values of X (0). Thus, they are eigen values of 𝑋∗. Assume that 𝑟(𝛾) = 𝑟(0)𝑒𝑖𝜔0𝛾 is 

an eigenvector of X (0) related to the eigenvalue 𝑖𝜔0.   So, 𝑋(0) = 𝑖𝜔0𝑟(𝛾). When 𝛾 =

0, we acquire 

[𝑖𝜔0𝐼 − ∫ 𝑑ƞ(𝛾
0

−1
)𝑒𝑖𝜔0𝛾]𝑟(0) = 0, 

which generates 𝑟(0) = (1, 𝜎1, 𝜌1)
𝑈, 𝑤ℎ𝑒𝑟𝑒 

𝜎1 =
(𝐻1

∗ − 𝐻1
∗𝐻2

∗)𝐻2
∗𝐶∗ + (𝐻2

∗ − 𝐻1
∗𝐻2

∗)(𝑖𝜔0 +𝑚𝐻1
∗)

𝐻1
∗𝐶∗(𝐻2

∗ − 𝐻1
∗𝐻2

∗) − (𝐻1
∗ − 𝐻1

∗𝐻2
∗)(𝑖𝜔0 + 𝑛𝐻2

∗)
 

𝜌1 =
𝐻1

∗𝐻2
∗𝐶∗2 − (𝑖𝜔0 +𝑚𝐻1

∗)(𝑖𝜔0 + 𝑛𝐻2
∗)

𝐻1
∗𝐶∗(𝐻2

∗ − 𝐻1
∗𝐻2

∗) − (𝐻1
∗ − 𝐻1

∗𝐻2
∗)(𝑖𝜔0 + 𝑛𝐻2

∗)
 

In the same way, it may be confirmed that 𝑟∗(𝑠) = 𝐷(1, 𝜎2, 𝜌2)𝑒
𝑖𝜔0𝜏0𝑠 is the eigen 

vector of 𝑋∗ related to −𝑖𝜔0,where 

𝜎2 =
(𝐻1

∗ − 𝐻1
∗𝐻2

∗)𝐻2
∗𝐶∗ + (𝐻2

∗ − 𝐻1
∗𝐻2

∗)(𝑚𝐻1
∗ − 𝑖𝜔0)

𝐻1
∗𝐶∗(𝐻2

∗ − 𝐻1
∗𝐻2

∗) − (𝐻1
∗ − 𝐻1

∗𝐻2
∗)(𝑛𝐻2

∗ − 𝑖𝜔0)
 

𝜌2 =
𝐻1

∗𝐻2
∗𝐶∗2 − (𝑖𝜔0 +𝑚𝐻1

∗)(𝑖𝜔0 + 𝑛𝐻2
∗)

𝐻1
∗𝐶∗(𝐻2

∗ − 𝐻1
∗𝐻2

∗) − (𝐻1
∗ − 𝐻1

∗𝐻2
∗)(𝑛𝐻2

∗ − 𝑖𝜔0)
 

From (3.14) we have <𝑟∗(𝑠), 𝑟(𝛾) >=0 
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Following algorithms in Hassard, B.D. et al. (1981) and the coordinates are calculated 

describing the centre manifold 𝐾0 using the same notations as at 𝜑 = 0.Let 𝛼𝑡 be a 

solution of equation (3.12) with 𝜑 = 0. 

Define 𝑧(𝑡) =< 𝑟∗(𝑠), 𝛼𝑡(𝛾)>, 

                                     𝑌(𝑡, 𝛾) = 𝛼𝑡(𝛾) − 2𝑅𝑒𝑧(𝑡)𝑟(𝛾)                                            (3.15)     

Upon the central manifold 𝐾0 we possess 

𝑌(𝑡, 𝛾) = 𝑌(𝑧(𝑡)𝑧(𝑡), 𝛾), 

Where 

𝑌(𝑧, 𝑧, 𝛾) = 𝑌20(𝛾)
𝑧2

2
+ 𝑌11(𝛾)𝑧𝑧 + 𝑌02(𝛾)

𝑧
2

2
+⋯… 

𝑧 and 𝑧 are centre manifold, 𝐾0 local coordinated pointing in the direction of 𝑟∗ 𝑎𝑛𝑑 𝑟∗. 

Point to remember that Y is real if 𝛼𝑡 is real. Only viable solutions are taken into 

account. For result 𝛼𝑡 ∈ 𝐾0 of (3.12), as 𝜑 = 0, 

𝑧′(𝑡) = 𝑖𝜔0𝜏0𝑧+< 𝑟∗(𝛾), 𝐺(0, 𝑌(𝑧, 𝑧, 𝛾) + 2𝑅𝑒{𝑧(𝑡)𝑟(𝛾)}) > 

= 𝑖𝜔0𝜏0𝑧 + 𝑟∗(0)𝐺(0, 𝑌(𝑧, 𝑧, 0) + 2𝑅𝑒{𝑧(𝑡)(𝛾)}) 

=  𝑖𝜔0𝜏0𝑧 + 𝑟∗(0)𝐺(𝑧, 𝑧) 

We recast the formula as,  

                 𝑧′(𝑡) = 𝑖𝜔0𝜏0𝑧(𝑡) + ℎ(𝑧, 𝑧)                                                              (3.16)            
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Where 

ℎ(𝑧, 𝑧) = 𝑟
∗
(0)𝐺0(𝑧, 𝑧) 

           = ℎ20(𝛾)
𝑧2

2
+ ℎ11(𝛾)𝑧𝑧 + ℎ02(𝛾)

𝑧
2

2
+ ℎ21

𝑧2𝑧

2
+⋯                          (3.17)                

  

Noticing  

𝛼𝑡(𝛾) = (𝛼1𝑡, 𝛼2𝑡 , 𝛼3𝑡) = 𝑌(𝑡, 𝛾) + 𝑧𝑟(𝛾) + 𝑧𝑟(𝛾), 

and 𝑟(0) = (1, 𝜎1, 𝜌1)
𝑈𝑒𝑖𝑤0𝜏0𝛾, we calculate the values of 

𝛼1𝑡(0), 𝛼2𝑡(0), 𝛼3𝑡(0), 𝛼1𝑡(−1), 𝛼2𝑡(−1) and comparing the co-efficients with (3.17), 

we observe that  𝑌20(𝛾) 𝑎𝑛𝑑 𝑌11(𝛾) are there in ℎ21. 

Hence, we need to further compute them from (3.13) and (3.15), 

𝑌′ = 𝛼𝑡
′ − 𝑧′𝑟 − 𝑧′𝑟 

= {
𝑋𝑌 − 2𝑅𝑒{𝑟

∗
(0)𝐺0𝑟(𝛾)}, 𝛾 ∈ [−1,0),

𝑋𝑌 − 2𝑅𝑒{𝑟
∗
(0)𝐺0𝑟(0)} + 𝐺0, 𝛾 = 0

 

                                    = 𝑋 + 𝐼(𝑧, 𝑧, 𝛾),                                                          (3.18)                      

Where 

𝐼(𝑧, 𝑧, 𝛾) = 𝐼20(𝛾)
𝑧2

2
+ 𝐼11(𝛾)𝑧𝑧 + 𝐼02(𝛾)

𝑧
2

2
+ 𝐼21

𝑧2𝑧

2
+⋯…                  (3.19)  

Conversely, yet, on 𝐾0 in close proximity to the origin, 

𝑌′ = 𝑌𝑧𝑧
′ + 𝑌𝑧𝑧′. 
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Comparing the coefficient after expanding the series, 

[𝑋 − 2𝑖𝜔0𝐽]𝑋20(𝛾) = −𝐼20(𝛾), 

                                                   𝑋𝑌11(𝛾) = −𝐼11(𝛾)                                                  (3.20)  

By (3.16), we are aware that for 𝛾 ∈ [−1,0), 

𝐼(𝑧, 𝑧, 𝜑) = −𝑟
∗
(0)𝐺0𝑟(𝛾) − 𝑟

∗(0)𝐺0𝑟(𝛾) = −ℎ𝑟(𝛾) − ℎ 𝑟(𝛾). 

Analysing the coefficients in relation to (3.18) we acquire for 𝛾 ∈ [−1,0] that 

𝐼20(𝛾) = −ℎ20𝑟(𝛾) − ℎ02𝑟(𝛾), 

𝐼11(𝛾) = −ℎ11𝑟(𝛾) − ℎ11𝑟(𝛾) 

By using equations (3.18), (3.19) and the definition of X, we can get 

𝑌20(𝛾) = 2𝑖𝜔0𝜏0𝑌20(𝛾) + ℎ20𝑟(𝛾) + ℎ02ℎ(𝛾) 

Solving for 𝑌20(𝛾) 𝑎𝑛𝑑 𝑌11(𝛾) 

𝐼(𝑧, 𝑧, 𝛾) = −2𝑅𝑒{𝑟
∗
(0)𝐺0𝑟(0)} + 𝐺0, 

We have 

𝐼20(𝛾) = −ℎ20𝑟(𝛾) − ℎ02𝑟(𝛾) + 𝐺𝑧
2, 

𝐼11(𝛾) = −ℎ11𝑟(𝛾) − ℎ11𝑟(𝛾) + 𝐺𝑧𝑧, 

Where 

𝐺0 = 𝐺𝑧2
𝑧2

2
+ 𝐺𝑧𝑧 + 𝐺

𝑧
2

𝑧
2

2
+⋯… 
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Hence, combining the definition of X, we get 

[

2𝑖𝜔0 +𝑚𝐻1
∗ −𝐻1

∗𝐶∗ 𝐻1
∗ − 𝐻1

∗𝐻2
∗

−𝐻2
∗𝐶∗ 2𝑖𝜔0 + 𝑛𝐻2

∗ 𝐻2
∗ − 𝐻1

∗𝐻2
∗

−𝑝𝐶∗𝑞−2𝑖𝜔0𝜏0 −𝑞𝐶∗𝑒−2𝑖𝜔0𝜏0 2𝑖𝜔0 + 𝑜𝐶
∗

] 𝐸1 

= −2 [

𝑚 + (1 − 𝐻2
∗)𝜌1 − 𝜎1(𝐻1

∗𝜌1 + 𝐶
∗)

(𝑛𝜎1
2 + (1 − 𝐻1

∗)𝜎1𝜌1) − 𝜎1𝐶
∗ − 𝜌1𝐻2

∗)

𝜌1(𝑜𝜌1 − 𝑝𝑒
−𝑖𝜔0𝜏0 − 𝑒𝜎1𝑒

−𝑖𝜔0𝜏0)

] 

and  

[

𝐻1
∗ −𝐻1

∗𝐶∗ 𝐻1
∗ − 𝐻1

∗𝐻2
∗

−𝐻2
∗𝐶∗ 𝑛𝐻2

∗ 𝐻2
∗ − 𝐻1

∗𝐻2
∗

−𝑝𝐶∗ −𝑞𝐶∗ 𝑜𝐶∗
] 𝐸2 

=−2 [

𝑚 + (1 − 𝐻2
∗)𝑅𝑒{𝜌1} − 𝐻1

∗𝑅𝑒{𝜌
1
𝜎1} − 𝐶

∗𝑅𝑒{𝜎1}

(𝜎1𝜎1𝑛 + (1 − 𝐻1
∗)𝑅𝑒{𝜎1𝜌1} − 𝐻2

∗𝑅𝑒{𝜌
1
} − 𝐶∗𝑅𝑒{𝜎1})

(𝑜𝜌1𝜌1 − 𝑝𝑅𝑒{𝜌1} − 𝑞𝑅𝑒{𝜌1𝜎1}𝑒
𝑖𝜔0𝜏0

] 

Then ℎ21 can be expressed by the parameters. 

Hence, we can see that ℎ𝑖𝑗 can be determined by the parameters. Therefore, below 

mentioned quantities are: 

𝐾1(0) =
𝑖

2𝑤0𝜏0
(ℎ11ℎ20 − 2|ℎ11|

2 −
|ℎ02|

2

3
) +

ℎ21
3

𝜑2 = −
𝑅𝑒{𝐷1(0)}

𝑅𝑒{𝜆′(𝜏0)}
,

𝛽2 = 2𝑅𝑒{𝐷1(0)}

𝑈2 = −
𝐼𝑚{𝐷1(0)} + 𝜑2𝐼𝑚{𝜆

′(𝜏0)}

𝜏0𝜔0 }
 
 
 

 
 
 

                             (3.21) 
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3.5 Numerical Example 

Numerical simulations for system of (3.1-3.3) have been performed using 

MATLAB. We take two set of parametric values as given in the literature Elettreby 

M. (2009):  

Parameters  Parametric Values 

M 1.2 

N 1.4 

O 1 

P 1 

Q 2 

Positive interior 

equilibrium point 

E*(0.4025, 0.4468, 1.2961) 

𝜏𝑗 1.7387 + 2jπ/0.6499 

Result An equilibrium point that is positive is stable when τ 

< τ0  (Figure 1) and the Hopf-Bifurcation is observed 

in  at τ 

 

Furthermore, the direction and stability of periodic solutions that bifurcate and 

break away from positive equilibrium at the critical point τj can be regulated. e.g., 

when τ = τ0 = 1.7387, K1(0) = −1.5156−6.2274i. It follows from (3.21) that 𝜑2 > 

0 and β2 < 0. As a result, when 𝜏 > 𝜏0, the bifurcation occurs, and the orbits 

that fit are orbitally asymptotically stable, as illustrated in Figure 2. The amount 

of the crucial delay 𝜏0 grows as the intrinsic growth rate of Phytoplankton 

(𝐻1) and conversion efficiency q of Zooplankton diminishes. 
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Figure 3.1: The internal balance point E∗ is positive for system (3.1-3.3) and has 

asymptotic stability when τ = 1.5 < τ0 = 1.7387. Here the initial value is (0.2 0.4 

0.6).
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Figure 3.2: When τ = 1.85 > τ0 = 1.7387, the point of positive internal equilibrium 

is E∗ of system (3.1-3.3)  

a) Becomes unstable 

b) Hopf-bifurcation takes place 

c) the orbitally and asymptotically stable bifurcating periodic solution 

d) In this case, the initial value is (0.2 0.4 0.6). 

3.6 Conclusion 

In this chapter, the impact of time lag on a multi team phytoplankton-zooplankton 

system was investigated, where we considered two phytoplankton and one 

zooplankton. The assumption is that the two phytoplankton-populations assist each 

other when they are preyed upon. Further it is demonstrated that the system’s stable 

equilibrium point becomes unstable when a time delay is introduced. It is shown 

that the Hopf-bifurcation can occur when the delay parameter crosses the critical 

levels. Additionally, utilising the centre manifold reduction theorem and normal 

form theory, an explicit approach is constructed that establishes the direction and 

stability of a Hopf- bifurcating solution. 
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Chapter 4 

Dynamics of One-Phytoplankton Two-

Zooplankton System with Square Root Functional 

Response and Time Lag 

Abstract: In this chapter, the effects of Phytoplankton and two competing 

Zooplanktons are studied using a mathematical model. The associated state variables 

are Phytoplankton 𝐻,Zooplankton 𝐶1 and Zooplankton 𝐶2. The assumption is that if 

the ratio of mortality rates of Zooplankton to the radical of the carrying volume of 

the Phytoplankton inhabitants is larger than their respective conversion efficiency 

and predation rates, the Phytoplankton inhabitants will survive as well as 

Zooplankton inhabitants will tend to extinction. The addition of delay disrupted the 

system's interior, axial and boundary equilibrium, and at the critical point of the delay 

parameter, Hopf bifurcation occurs. Sensitivity analysis is performed on the model 

parameters. MATLAB is used to assist analytical findings with numerical simulation. 

Keywords: Phytoplankton, Zooplankton, Toxic Material, Hopf bifurcation, Stability, 

Interior Equilibrium. 

4.1 Introduction   

Many animals establish groups in nature, and they also move in groups from one 

location to another. Zooplanktons benefit from the development of groups (herds) 

because it improves their effectiveness at foraging and reduces their danger of 

predation. As a result, the herd's actions prevent the extinction of Zooplankton, 
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which group together to protect themselves from predators. One of the most 

fascinating population dynamics phenomena is the aggregation of Zooplanktons. 

Many authors' models have taken into account various functional responses of 

Phytoplankton-Zooplankton forming groups Cosner et al. (1999) and Venturino 

(2011). Ajraldi et al. (2011) investigated that employing a two-breed system where 

the members of first breed live in groups while those belonging to the other breed 

live alone. They’ve explained everything from competitiveness to symbiosis to 

predation in populations. Phytoplankton-Zooplankton interaction is defined, where 

limit cycles organically arise Braza (2012). Beretta and Kuang, (1998) also looked 

at the functional response of the square root in the Zooplankton-Phytoplankton model 

and found in that community behavior more in the area of the emergence other than 

typical models that don't include herd behavior. Due to the square root word, this 

makes ecological sense. 

Models with delays are more realistic as time lags are present in almost all 

biological scenarios and cause frequent changes in demography. Numerous authors 

have carried out in-depth studies on time delay in a range of biological systems. 

Cushing (1977), Wangersky and Cunningham (1957), MacDonald (1976), 

Gopalswamy (1992), Kuang (1993), Chakraborty et al. (2011), Ajraldi et al. 

(2011). In Phytoplankton-Zooplankton models, a wide variety of functional 

responses have been studied Kar and Matsuda (2007); Khare et al. (2011); Holt and 

Lawto (1994) 

In their natural habitat, zooplankton depends not only on phytoplankton density but 

also on the abundance and existence of host species as examined by Srinivasu and 
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Prasad (2010); Srinivasu et al. (2007); Merfield et al. (2004). Several studies have 

demonstrated the importance of the host-commensal interaction in the survival or 

extinction of a variety of organisms as specified by Nouhuys and Kraft (2012); 

Vargas- Leon and Alcaraz (2013); Wang (2013); Zhang (2012); Bhattacharyya and 

Pal (2013). Real-world examples of harvesting causing the extinction of some 

species have also negatively impacted other species that depend on these species. 

Many publications have been published in recent years analyzing Zooplankton-

Phytoplankton models with harvesting Ghosh and Kar (2013); Yuan and Pei 

(2013); Zhang et al. (2013); Khan et al. (2021); Chenilla et al. (2021); Ruan and 

Wei (2001). 

4.2 Mathematical Model 

The current work arose from theoretical and experimental findings on the interplay 

of hazardous algal blooms with various types of phytoplankton-zooplankton 

interactions. Following system of differential equations governs the dynamics. 

𝑑𝐻

𝑑𝑇
= 𝛾𝐻 (1 −

𝐻(𝑇 − 𝜏)

𝐾
) − 𝛽1̂√𝐻𝐶1 − 𝛽2̂√𝐻𝐶2                              (4.1) 

𝑑𝐶1
𝑑𝑇

= 𝛼1̂𝛽1̂√𝐻𝐶1 − 𝑑1̂𝐶1                                                 (4.2) 

𝑑𝐶2
𝑑𝑇

= 𝛼2̂𝛽2̂√𝐻𝐶2 − 𝑑2̂𝐶2 − 𝑖̂𝐶2
2                                          (4.3) 

  

with initial conditions𝐻(0) > 0, 𝐶1(0) > 0, 𝐶2(0) > 0. 
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We use following for non- dimentionalising the equations: 

ℎ̂ =
𝐻

𝑆
, 𝑦1 =

𝐶1𝛽1̂

√𝑆
,𝑦2 =

𝐶2𝛽2̂

𝛾√𝑆
, 𝑡 =

𝛾𝑇

2
 and setting out the new variables such as 

𝑘1 =
2𝛼1̂𝛽1̂√𝑆

𝛾
 

, 𝑘2 =
2𝛼2̂𝛽2̂√𝑆

𝛾
, 𝑑1 =

𝑑1̂

𝛼1̂𝛽1̂√𝑆
, 𝑑2 =

𝑑2̂

𝛼2̂𝛽2̂√𝑆
, 𝑑3 =

𝑑3̂

𝛼1̂𝛽2̂
2. 

The following equations make up the non-dimensionalized system: 

Table 1. Description of parameters. 

The indicant ′𝑖′ may have a rational value of 1 or 2. 

 

𝑑ℎ̂

𝑑𝑡
= ℎ̂ (1 − ℎ̂(𝑡 − 𝜏)) − √ℎ̂𝑦1 −√ℎ̂𝑦2,                                (4.4) 

Parameter Description 

ℎ̂ Density of Phytoplankton 

𝑦1 Density of First Zooplankton 

𝑦2 Density of Second Zooplankton 

𝑑�̂� Natural mortality rate 

𝛽�̂� Predatoriness rates 

 

�̂� rate of intraspecies competition 

𝛾 Phytoplankton's intrinsic growth rate 

𝑆 Carrying capacity 

𝛼�̂� Rate of conversion  
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𝑑𝑦1
𝑑𝑡

= 𝑘1𝑦1 (√ℎ̂ − 𝑑1)                                                            (4.5) 

𝑑𝑦2
𝑑𝑡

= 𝑘2𝑦2 (√ℎ̂ − 𝑑2 − 𝑑3𝑦2)                                             (4.6) 

𝑑ℎ

𝑑𝑡
= ℎ(1 − ℎ2(𝑡 − 𝜏)) − 𝑦1 − 𝑦2                                       (4.7) 

𝑑𝑦1
𝑑𝑡

= 𝑘1𝑦1(ℎ − 𝑑1)                                                               (4.8) 

𝑑𝑦2
𝑑𝑡

= 𝑘2𝑦2(ℎ − 𝑑2 − 𝑑3𝑦2)                                                (4.9) 

with starting parameters h (0) >0, y1(0) >0, y2(0) >0. 

4.3 Equilibrium of the Model 

The points of balance of the system (4.7) - (4.9) are given by: 

ℎ(1 − ℎ2(𝑡 − 𝜏)) − 𝑦1 − 𝑦2 = 0                                              (4.10) 

𝑘1𝑦1(ℎ − 𝑑1) = 0                                                             (4.11) 

𝑘2𝑦2(ℎ − 𝑑2 − 𝑑3𝑦2) = 0                                                       (4.12) 

On solving (4.10) - (4.12), following five points of balance or equilibrium for the 

system (4.7) - (4.9) are achieved: 

1) The point of origin 𝐸0 = (0,0,0). 

2) The point of axial equilibrium 𝐸𝐴 = (1,0,0). 

3) The point of equilibrium at the boundary 𝐸𝐵1 = (𝑑1, 𝑑1(1 − 𝑑1
2), 0)and 
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 𝐸𝐵2 = (ℎ̃, 0, 𝑦2̃) 

  where 𝑦2̃ = ℎ̃(1 − ℎ̃
2) and ℎ̃ represents the cubic equation’s positive root. 

                                           𝑑3ℎ̃
3 + (1 − 𝑑3)ℎ̃ − 𝑑2 = 0.                                         (4.13) 

The point of equilibrium at the boundary  𝐸𝐵1 occurs if 𝑑1 < 1 and boundary 

equilibrium point 𝐸𝐵2  exists if ℎ̃ < 1. 

4) The point of inner equilibrium 𝐸∗ = (𝑥1
∗, 𝑦1

∗, 𝑦2
∗) where 𝑥1

∗ = 𝑑1, 𝑦2
∗ =

𝑑1−𝑑2

𝑑3
 𝑎𝑛𝑑𝑦1

∗ = 𝑑1(1 − 𝑑1
2) −

𝑑1−𝑑2

𝑑3
. The point of inner equilibrium 𝐸∗exists 

if 𝑑1 > 𝑑2 𝑎𝑛𝑑 𝑑1𝑑3 + 𝑑2 > 𝑑1(1 + 𝑑1
2𝑑3). 

Dynamical actions when 𝜏 = 0 

We will now investigate the system's dynamical behaviour in relation to each of 

the five possible equilibria. The system's variational matrix (4.7)-(4.9) is 

𝑉 = [
1 − 3ℎ2 −1 −1
𝑘1𝑦1 𝑘1(ℎ − 𝑑1) 0
𝑘2𝑦2 0 𝑘2(ℎ − 𝑑2 − 2𝑑3𝑦2)

] 

The characteristic V at the equilibrium point equation E0 is 

(1 − 𝜆)(𝑘1𝑑1 +  𝜆)(𝑘1𝑑1 + 𝜆) 

The V-specific characteristic equation at 𝐸𝐴 is 

(2 + 𝜆)(𝑘1(1 − 𝑑1 + 𝜆)(𝑘1𝑑1 + 𝜆) = 0. 

The eigenvalues at 𝐸𝐴  are −2, 𝑘1(1 − 𝑑1) and 𝑘2(1 − 𝑑2), 𝑑1 > 1 and 𝑑2 > 1. 
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If the equilibrium point EA is fixed then further the points 𝐸𝐵1 , 𝐸𝐵2and 𝐸
∗do not 

occur.  

If 𝐸𝐵1 , 𝐸𝐵2and 𝐸∗exist then point EA is not stable. 

The point 𝐸𝐵1  will have the equation: 

(𝑘2(𝑑1 − 𝑑2) − 𝜆)(𝜆
2 + (3𝑑1

2 − 1)𝜆 + 𝑘1𝑑1) = 0                 (4.14) 

The points at 𝐸𝐵1 for (4.7) -(4.9) are locally asymptotically stable if 𝑑2 >

𝑑1 𝑎𝑛𝑑 𝑑1 >
1

√3
. 

Also, if 𝐸𝐵1  is stable then 𝐸∗ does not exist else it stable. 

The point 𝐸𝐵2will have the equation: 

(𝑘1(ℎ̃ − 𝑑1) − 𝜆)(𝜆
2 + (3�̃�2 + 𝑘2𝑑3�̃�2 − 1)𝜆 + 𝑘2�̃�2                   (4.15) 

The points at 𝐸𝐵2 for (4.7) -(4.9) possess local asymptotic stability if 𝑑1 > ℎ̃ and ℎ̃ >

1

√3
. 

The point 𝐸∗ will have the equation: 

𝜆3 + 𝐴1𝜆
2 +𝐴2𝜆 + 𝐴3 = 0                                         (4.16) 

𝐴1 = 𝑘2𝑑3𝑦2
∗ + 3𝑑1

2 − 1 

𝐴2 = (3𝑑1
2 − 1)𝑘2𝑑3𝑦2

∗ + 𝑘2𝑦2
∗ + 𝑘1𝑦1

∗ 

𝐴3 = 𝑘1𝑘2𝑦1
∗𝑑3𝑦2

∗ 
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Dynamical actions when 𝜏 > 0 

 The characteristic equation for (4.7)-(4.9) around at any equilibrium point is 

                    𝜆3 + 𝑃1𝜆
2 + 𝑃2𝜆 + 𝑃3 + 𝑒

−𝜆𝜏(𝑄1𝜆
2 +𝑄2𝜆 + 𝑄3) = 0              (4.17) 

where 

𝑃1 = −1 + 𝑘1𝑑1 + 𝑘2𝑑2 − 𝑘1ℎ − 𝑘2ℎ + ℎ
2 + 2𝑘2𝑑3𝑦2, 𝑄1 = 2ℎ

2, 

𝑃2 = −𝑘1𝑑1 − 𝑘2𝑑2 + 𝑘1𝑘2𝑑1𝑑2 + 𝑘1ℎ + 𝑘2ℎ − 𝑘1𝑘2𝑑1ℎ − 𝑘1𝑘2𝑑2ℎ + 𝑘1𝑘2ℎ
2 + 𝑘1𝑑1ℎ

2

+ 𝑘2𝑑2ℎ
2 − 𝑘1ℎ

3 − 𝑘2ℎ
3 + 𝑘1𝑦1 + 𝑘2𝑦2 − 2𝑘2𝑑3𝑦2 + 2𝑘1𝑘2𝑑1𝑑3𝑦2

− 2𝑘1𝑘2𝑑3ℎ𝑦2 +  2𝑘2𝑑3ℎ
2𝑦2 

𝑄2 = 2𝑘1𝑑1ℎ
2 + 2𝑘2𝑑2ℎ

2 − 2𝑘1ℎ
3 − 2𝑘2ℎ

3 + 4𝑘2𝑑3ℎ
2𝑦2, 

𝑃3 = −𝑘1𝑘2𝑑1𝑑2 + 𝑘1𝑘2𝑑1ℎ + 𝑘1𝑘2𝑑2ℎ − 𝑘1𝑘2ℎ
2 + 𝑘1𝑘2𝑑1𝑑2ℎ

2 − 𝑘1𝑘2𝑑1ℎ
3

− 𝑘1𝑘2𝑑2ℎ
3 + 𝑘1𝑘2ℎ

4 + 𝑘1𝑘2𝑑2𝑦1 − 𝑘1𝑘2ℎ𝑦1 + 𝑘1𝑘2𝑑1𝑦2

− 2𝑘1𝑘2𝑑1𝑑3𝑦2 − 𝑘1𝑘2ℎ𝑦2 + 2𝑘1𝑘2𝑑3ℎ𝑦2 + 2𝑘1𝑘2𝑑1𝑑3ℎ
2𝑦2

− 2𝑘1𝑘2𝑑3ℎ
3𝑦2 + 2𝑘1𝑘2𝑑3𝑦1𝑦2. 

𝑄3 = 2𝑘1𝑘2𝑑1𝑑2ℎ
2 − 2𝑘1𝑘2𝑑1ℎ

3 − 2𝑘1𝑘2𝑑2ℎ
3 + 2𝑘1𝑘2ℎ

4 + 4𝑘1𝑘2𝑑1𝑑3ℎ
2𝑦2 −

4𝑘1𝑘2𝑑3𝑥
3𝑦2. 

In order to ensure stability of the equilibrium point, all the eigenvalues in characteristic 

equation (4.17) must have a negative real component. It is challenging to determine the 

circumstances in which all of equation (4.17)'s roots will have a detrimental part. When 

𝜏 = 0, equation (4.17) changes to 

𝜆3 + (𝑃1 + 𝑄1)𝜆
2 + (𝑃2 + 𝑄2)𝜆 + (𝑃3 + 𝑄3) = 0                                (4.18)  
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By Routh-Hurwitz criterion, 

If (𝑃1 + 𝑄1) > 0, (𝑃3 + 𝑄3) > 0, (𝑃1 + 𝑄1)(𝑃2 + 𝑄2) > (𝑃3 + 𝑄3), therefore the real 

portions of all the roots of equation (4.10) will be negative. 

Assuming that 𝜆 = 0 is the solution to the equation (4.18), then (𝑃3 + 𝑄3) = 0. As a 

result, this condition conflicts with the second one. Therefore 𝜆 = 0 cannot be solution 

to equation (4.18). Let’s suppose that for some 𝜏 ≥ 0, 𝑖𝜔 with 𝜔 > 0 is a result of 

(4.18), so  

−𝑖𝜔3 −𝑃1𝜔
2 + 𝑖𝑃2𝜔 +𝑃3 + (𝑐𝑜𝑠𝜔𝜏 − 𝑖𝑠𝑖𝑛𝜔𝜏)(−𝑄1𝜔 + 𝑖𝑄2𝜔 +𝑄3) = 0(4.19) 

Putting the fictional and actual components apart, 

𝑃3 − 𝑃1𝜔
2 + (𝑄3 − 𝑄1𝜔

2)𝑐𝑜𝑠𝜔𝜏 + 𝑄2𝜔𝑠𝑖𝑛𝜔𝜏 = 0                                     (4.20) 

𝑃2𝜔 − 𝜔
3 + 𝑄2𝜔𝑐𝑜𝑠𝜔𝜏 − (𝑄3 −𝑄1𝜔

2)𝑠𝑖𝑛𝜔𝜏 = 0                                  (4.21) 

      which leads to               𝜔6 +𝑚𝜔4 + 𝑛𝜔2 + 𝑠 = 0                                           (4.22)                                                            

      where 

𝑚 = 𝑃1
2 − 𝑄1

2 − 2𝑃2, 𝑛 = 𝑃2
2 − 𝑄2

2 + 2𝑄1𝑄3 − 2𝑃1𝑃3, 𝑠 = 𝑃3
2 − 𝑄3

2 

      Let 𝑢 = 𝜔2,then equation (22) becomes  

                                       𝑢3 +𝑚𝑢2 + 𝑛𝑢 + 𝑠 = 0                                                     (4.23)                                        

Lemma 1: The following outcomes apply to the polynomial equation (4.23): 

1) There is at least one positive root in equation (5.15), if 𝑠 <  0. 

2) There is no positive root in equation (4.23), if 𝑠 ≥ 0 and( 𝑚2 − 3𝑛)  ≤ 0. 
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3) Equation (4.23) has positive roots if and only if 𝑠 ≥ 0 and( 𝑚2 − 3𝑛) > 0, and  

u1
∗ =

−m+√m2−3n

3
> 0 and ℎ(u1

∗) ≤ 0. 

Lemma 2: Suppose h(u0) = (3u0
2 + 2mu0 + n)≠ 0 and the conditions in (y1) 

are satisfied. For (j=0,1...), denote 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝜔(𝜏)be the root of equation 

(4.24) satisfying 𝛼(𝜏𝑗) = 0,𝜔(𝜏𝑗) =  𝜔0,where 

τj =
1

ω0
(arccos

−(Q2ω0
2(P2 −ω0

2) + (P3 − P1ω0
2)(Q3 − Q1ω0

2))

(Q3 − Q1ω02)2 + (Q2Q3 − Q1ω0)2
+ 2jΠ) 

Then±iω0are simple roots. In the event that the transversality requirement, 

(𝐲𝟐) α
′(τj) =

Reλ(τ)

dτ
|
λ=iω0

≠ 0 

holds, the system (4.7)-(4.9) experiences a Hopf bifurcation at any equilibrium point, 

and  𝜏 =  𝜏𝑗   

The evidence of Lemmas have been conveyed in the publication given by Ruan, S. 

& Wei; On the Zeros of a Third-Degree Exponential Polynomial with Applications to 

A Delayed Model for The Control of Testosterone Secretion, IMA J. Math. Appl. 

Medic. Biol., 18, pp. 41-52. 

4.4 Numerical Representation 

The use numerical simulations run in Matlab to support all of the prior analytical         

conclusions. Regarding the group of parameters, 𝑘1 = 1, 𝑘2 = 1,𝑑3 = 0.58, the 

parameter-dependent stability areas; 𝑑1 and 𝑑2.Plots showing the system's 

equilibrium points are shown. Here, the starting point is (41,.11,.11). 
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Figure 4.1: For 𝑑1 = .76, 𝑑2 = 1.6 𝑎𝑛𝑑 𝐸
∗ = (0.7600 , 0.0452 ,0.2760), the 

system exhibits asymptotic stability. 

 

Figure 4.2: For 𝑑1 = 0.76,  𝑑2 = .6 𝑎𝑛𝑑 𝐸
∗ = (0.76000.0452 0.2760), τ =

 0.95 and   𝜏0 = 0.920973. If τ < 𝜏0  the system exhibits asymptotic stability. 
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Figure 4.3: For 𝑑1 = .76, 𝑑2 = 0.6 𝑎𝑛𝑑 𝐸
∗ = (0.76000.0452 0.2760), τ =

.924  and𝜏0 = 0.920973. If τ > 𝜏0, the system becomes unstable, a Hopf-

bifurcation takes place. 

Similar result have been exhibited using Boundary and Axial Equilibrium. Numerical 

simulation for a certain set of parameters makes it clear that when only the system's 

Phytoplankton population survives, the delay is shortest; when all system species 

survive, it is longest. 

4.5 Analysis of the State Variables' Sensitivity to the Model's 

Parameters 

 The model in this study has constant values. For approximation of the general 

coefficients, the "Direct Method" is utilized as conveyed in the publication given by 

Rihan. Here the All parameters are taken to be constants, and the original framework 

is used to simultaneously solve sensitivity equations. Then doing partial differentiation 

of the solution relating to each parameter may be all that is required for sensitivity 
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analysis in this scenario if all of the parameters that appear in the system model (4.7)-

(4.9) are assumed to be constants.  

The solution (𝐻, 𝐶1, 𝐶2) of partial differentiation with respect to 𝑡, for example, result 

in the following set of sensitivity equations: 

𝜕𝑆1
𝜕𝑡

= (𝐾ℎ − 𝐾ℎ𝐶2) − 𝛼𝐻(𝑡 − 𝜏)𝐶1 − 𝛿1𝐻 

𝜕𝑆2
𝜕𝑡

= 𝛽𝐻(𝑡 − 𝜏)𝑦 − 𝛿2𝐶2 

𝜕𝑆3
𝜕𝑡

= 𝐼 − 𝛾𝐻𝐶1 − 𝛿3𝐶2 

Where 𝑆1 =
𝜕𝐻

𝜕𝑑1̂
, 𝑆2 =

𝜕𝐶1

𝜕𝑑1̂
 𝑎𝑛𝑑 𝑆3 =

𝜕𝐶2

𝜕𝑑1̂
. 

4.6 Variable Sensitivity to Parameter 𝒅�̂� 

 

Figure 4.4: An illustration of the time series between minor variations for various 

values of coefficient d1̂  
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Figures 4 ,demonstrates that as we decrease the value of 𝑑1̂  from 0.9 to 0.5, here is 

slight variation and shift in the state variables' values concentration of 𝐻 and 𝐶1, which 

ultimately remain constant and tend to zero. It predicts that state variables 𝐻 and 𝐶1 

will be less sensitive to the factor 𝑑1̂. However, given the same range of 𝑑1̂ values, the 

variable for state 𝐶2 experiences a significant change. It displays a decline in the 

delayed value. It also continues to be stable. 

Hence, we conclude that with increase in mortality rate overall 

population of Phytoplankton and Zooplankton is decreasing. 

4.7 Conclusion  

According to both our theoretical and numerical findings, the system exhibits 

asymptotic constancy around the internal equilibrium that is positive and represents the 

cohabitation of all species, for a particular threshold of the system parameters. 

Additionally, it is ascertained by the examination of the equilibrium points’ stability 

that when the ratio of a Zooplankton’s mortality rate along with the multiplication 

of its conversion effective performance and spoliation is more than the radical of 

one-third of the Phytoplankton inhabitants’ carrying capacity, the system is said to 

be coexisting. Limit cycles arise at all symmetry points when the time delay crosses 

a threshold value after taking the effective time delay on the body. This study also 

uses the direct method to examine the responsiveness of model solutions to 

modifications of delay differential system parameters. It is demonstrated that the 

sensitivity functions allow one to identify particular parameters and enhance one's 

comprehension of the role that particular model parameters play. The oscillation and 

value changes that go along with state variable sensitivity to parameter changes indicate 
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the parameter is essential to the model and that the solution is sensitive to changes in 

the parameter. The state variable nutrient concentration H is the parameter that is least 

sensitive, according to sensitivity analysis. While rates of plant biomass decrease with 

a decline in the delayed value of utilization coefficient and become unstable, rates of 

plant biomass increase with a decline in the delayed value of consumption coefficient 

and remain stable.  
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Chapter 5  

Phytoplankton-Zooplankton Interaction Harvesting Model: 

Dynamical Analysis 

Abstract 

In order to facilitate the commercial harvesting of certain species for food, we have 

created a model of the interaction between phytoplankton and zooplankton in this 

work. In order to keep the population at a suitable equilibrium level even when the 

species is continuously exploited, criteria for local stability, instability, and global 

stability are developed. Additionally, some threshold harvesting levels are investigated. 

However, if the species are spreading continuously, harvesting has limited 

opportunities to explore and keep the population at an appropriate equilibrium 

position. In light of additional research, this system’s biological and bioeconomic 

equilibrium is attained in such a way that an optimal harvesting policy is also 

supported commercially. The results obtained using the analytical approach at the 

end of model design are supported by simulations that were carried out using 

mathematical methods. As seen from the results, both the analytical strategies and 

mathematical simulations produced consistent results, thereby validating the 

model’s accuracy and reliability. 

Keywords—Phytoplankton-Zooplankton, Boundedness, Harvesting Policy.  
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5.1 Introduction 

The food web in marine habitats relies on the flow of energy, which serves as the base 

of the food chain and is generated and recycled by organisms within the ecosystem. 

Plankton, phytoplankton in particular is crucial for both environmental stability and 

aquaculture because they produce oxygen for living organisms and also remove half of 

the universe’s carbon dioxide. Aquatic ecologists have always been captivated by the 

disequilibrium dynamics of phytoplankton explosions, or abrupt rise and fall of 

population. Sarkar et al. (2005) and Chattopadhyay et al. (2002) examined the two 

major reasons for planktonic blooming that are frequently accompanied by massive cell 

lysis and fast population collapse.Also, the rapid increase in bacterial population leads 

to the fast deoxygenation of water which might be dangerous for aquatic life. While 

zooplankton species like jellyfish, krill, and acetes are exploited for food today, 

phytoplankton species like nori, kelp, and eucheuma have been a fascinating research 

area. According to Chakraborty et al. (2008) and Pal et al. (2007), the importance of 

different functional forms in phytoplankton-zooplankton interactions in the presence 

of nutrients in the plankton system has been studied using a variety of research models 

in recent years. A second-order fractional step method for two-dimensional delay 

parabolic partial differential equations with a small parameter was presented by L. 

Govindarao and Abhishek Das in 2022. M'Hammed Ziane and Abderrahim El 

Moussaouy (2023) talked about a new generalisation of Hopfian modules. 

It is discovered and reported after following research on the phytoplankton-

zooplankton system by Chakraborty et al. (2008) that phytoplankton that produces 

toxins may be utilized as regulating agents to stop plankton blooms. Subsequently, the 
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impact of harvesting on the plankton system has been rather insignificant. Lv et al. 

(2010) put forth a model for the harvesting of a phytoplankton-zooplankton system that 

produces toxins. Edwards and Brindley (1996); Ruan (1993) and Busenberg et al. 

(1990) studied one phytoplankton model with harvesting with two zooplankton. They 

found that only zooplankton with a higher biomass 

conversion ratio and a lower natural death rate survive in the absence of harvesting, 

whereas lower biomass conversion ratio and a higher natural death rate may become 

more common following harvesting. Several oscillation theorems for nonlinear 

fractional differential equations with impulsive effect were discussed by A. Rahee et al 

(2022). According to Murray (2002), both population growth and species interactions 

in this study follow the law of mass effect. New stability and stabilization criteria for 

continuous systems with time delays were discussed by M. Rathika (2021). 

The chapter begins by developing a problem model that outlines the significant 

parameters in section 2. Next, it examines the positivity and boundedness, and 

equilibrium of the model in section 3 and 4 respectively. Following this, specific 

theorems and propositions are applied to obtain results. Subsequently, in section 5, a 

harvesting policy is implemented, and simulations are conducted, leading to the final 

conclusions in section 7. 

5.2 Formation of Model 

In this section, a system of simultaneous differential equations is used to model the 

interaction between phytoplankton and zooplankton. These equations are represented 

by: 
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𝑑𝐻

𝑑𝑡
= 𝛾1𝐻 −

𝛾1𝐻
2(𝑡 − 𝜏)

𝑠1
− 𝑑1𝐻 − 𝑐1𝐸𝐻 − 𝛼1𝑃𝐶                            (5.1) 

 𝑑𝐶

𝑑𝑡
= 𝛾2𝐶 −

𝛾2𝐶
2(𝑡 − 𝜏)

𝑠2
− 𝑑2𝐶 − 𝑐2𝐸 − 𝛼2𝐻𝐶 − 𝛼𝐻𝐶                     (5.2) 

  with the initial conditions 𝐻(0)  =  𝐻0 > 0, 𝐶(0)  =  𝐶0 > 0. 

5.3 Description of Parameters: 

Parameters Description 

𝐻 Density of Phytoplankton population 

𝐶 Density of Zooplankton population 

𝛾1 The phytoplankton's inherent rate of expansion 𝐻 

𝛾2 The zooplankton’s inherent rate of expansion 𝐶 

𝑠1 Carrying Capacity of phytoplankton species 

𝑠2 Carrying Capacity of zooplankton species 

𝛼1 The predation rate of phytoplankton 𝐻  by zooplankton 𝐶 

𝛼2 Biomass conversion rate 

𝛼 Ratio of toxic production per unit of phytoplankton biomass 

𝑑1 Mortality rate of phytoplankton 𝐻   

𝑑2 Mortality rate of zooplankton 𝐶   

𝑐1, 𝑐2 Catchability coefficients 

E Harvesting Effort 

U Harvesting cost per unit effort 

B Hamiltonian  
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5.4 Positivity and Boundedness of Solution 

In this section, the positivity and boundedness of the system is discussed with values 

of H(t) and C(t) for all 𝑡 = 0 given as: 𝐻(0)  =  𝐻0 > 0, 𝐶(0)  =  𝐶0 > 0. 

𝐻(𝑡) = 𝐻(0)𝑒𝑥𝑝∫ (𝛾1 (1 −
𝐻

𝑠1
) − (𝑑1 + 𝑐1𝐸) − 𝛼1𝐶)𝑑𝑠 ≥ 0 

𝑡

0

            (5.3) 

and  

𝐶(𝑡) = 𝐶(0)𝑒𝑥𝑝∫ (𝛾2 (1 −
𝐶

𝑠2
) − (𝑑2 + 𝑐2𝐸) + (𝛼2 − 𝛼)𝐶)𝑑𝑠 ≥ 0             (5.4)

𝑡

0

 

Further, 
𝑑𝐶

𝑑𝑡
≤ 𝛾1𝐶 (1 −

𝐻

𝑠1
) − 𝑐1𝐸𝐻 and  

𝑑𝐻

𝑑𝑡
≤ 𝛾2𝐻 (1 −

𝐻

𝑠2
) − 𝑐2𝐸𝐶  

  By using a standard comparison theorem: 

lim
𝑡→+∞

𝐻(𝑡) ≤ 𝜉1  and  lim
𝑡→+∞

𝐶(𝑡) ≤ 𝜉2 

   Where 𝜉1 = max [𝐻(0),
𝑠1(𝛾1−𝑐1𝐸)

𝛾1
] and    𝜉2 = max [𝐶(0),

𝑠2(𝛾2−𝑐2𝐸)

𝛾2
]  

  Thus, under the specified initial conditions, all solution curves for the system equation 

(5.1) and equation (5.2) enter the region. 

5.5 Equilibrium of the Model 

The level of equilibrium of phytoplankton grows as the harvesting rate increases, 

whereas the host species’ equilibrium decreases. It is also noted that when harvesting 

rates increase, the balance of zooplankton species decreases. This part examines the 
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existence of Hopf bifurcation and observes the coexisting equilibrium’s local and 

global stability. The possible steady states of the system are as follows: 

i.   𝑅0 = (0,0) 

ii.  𝑅1 = (
(𝛾1−𝑑1−𝑐1𝐸)𝑠1

𝛾1
, 0), exist if 𝐸 <

𝛾1−𝑑1

𝑐1
 

iii.   𝑅2 = (
(𝛾2−𝑑2−𝑐2𝐸)𝑠2

𝛾2
, 0), exist if 𝐸 <

𝛾1−𝑑1

𝑐1
,and 

iv. The interior equilibrium 𝑅∗ = (𝐻∗, 𝐶∗) where 𝐻∗ =

(𝛾2(𝛾1−𝑑1−𝑐1𝐸)

𝛼1𝑠2
−(𝛾2−𝑑2−𝑐2𝐸)

(
𝛾1𝛾2
𝑠1𝑠2𝛼1

+𝛼2−𝛼)
   and 𝑍∗ =

(γ1−d1−c1E−
γ1𝐻∗
𝑠1

)

α1
  exist if  

γ2−d2

𝑐2
<

𝐸 <
(𝛾1−𝑑1−

γ1𝐻
∗

s
)

𝑐1
. 

Proposition 1. As given in equation (5.1) and equation (5.2), 𝑅0  =  (0, 0), 𝐸 >

 𝑚𝑎𝑥 (
𝛾1𝑑1

𝑐1
 ,

𝛾2𝑑2

𝑐2
)  it is asymptotically stable.  Further when 𝐸 <

𝛾1−𝑑1
𝑐1

 always hold, 

𝑅0, 𝑅1 exists and if 𝐸 <
𝛾1(𝛾2𝑑2)𝑠1(𝛼2−α)

𝛾1𝑐2−𝑐1𝑠1(𝛼2−α)
, the equilibrium of free 

zooplankton 𝑅1becomes stable asymptotically.  

Proposition 2. As given in equation (5.1) and equation (5.2), if 

𝛾1(𝛾2−𝜇2)−(𝑟1−𝜇1)𝐾1(𝜌2−α)

𝑟1𝐶2−𝐶1𝐾1(𝜌2−α)
< 𝐸 < 𝑚𝑖𝑛(

𝑟1𝜇1

𝐶1

𝑟2𝜇2

𝐶2
)R0 , R1 and R2 exist, and R0, R1 become 

unstable, R2 is locally asymptotically stable if  

𝐸 <
𝑟2(𝑟1𝜇1) − (𝑟2𝜇2)𝐾2𝜌1

𝑟2𝐶1 − 𝐶2𝐾2𝜌2
 

Characteristic equation at 𝑅∗ is, 𝜆2 − 𝑡𝑟𝑎𝑐𝑒𝐽 𝜆 + 𝑑𝑒𝑡𝐽 = 0 
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Where𝑡𝑟𝑎𝑐𝑒 𝐽 = (𝛾1 − 𝑑1 − 𝑐1𝐸) −
2𝛾1𝐻

∗

𝑠1
− 𝛼1𝐶

∗                                     (5.5)  

Theorem1. For the system equation (5.1), if, 

 
𝛾2−𝑑2

𝑐2
< 𝐸 <

𝛾1−𝑑1

𝑐1
−
𝛾1𝐻∗

𝑐1𝑠2
, then 𝑅∗ exists and is locally asymptotically stable if 

𝑡𝑟𝑎𝑐𝑒 𝐽 < 0 and 𝑑𝑒𝑡 𝐽 > 0. 

For the global stability of the equilibria, we have the following theorems: 

Theorem 2. 

The extinction equilibria 𝑅0 is globally asymptotically stable (GAS)if E >

 max [
𝛾1𝑑1

𝐶1
,
𝛾2𝑑2

𝐶2
]. 

Theorem 3.  

The interior equilibrium R* is globally asymptotically stable (GAS) in the positive 

quadrant. The proofs of the theorem can be verified from Salle & Lefschetz (1961). 

In this section, we shall only study dynamical behaviour of the interior equilibrium. It 

is obvious that system of equation (5.1) and equation (5.2) has a unique positive 

equilibrium. The equilibrium exponential characteristic equation is given by: 

|
𝜆 −𝑚1 −𝑚2

−𝑚3 𝜆 −𝑚4
|                                             (5.6)      

which gives us; 

𝜆2 − (𝑚1 + 𝑚4)𝜆 + 𝑚1𝑚4 −𝑚2𝑚3 = 0 where 

 𝑚1 = (𝑟1−𝜇1 − 𝑐1𝐸 − 𝜌1𝑍) −
𝑟1𝑃 𝑒

−𝜆𝜏

𝐾
, 𝑚2 = (𝜌2 − 𝛼)𝑍, 𝑚3 = 𝜌1𝑃 , 
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𝑚4=(𝑟2−𝜇2 − 𝑐2𝐸) + (𝜌2 − 𝛼)𝑃 − 
𝑟2

𝐾2
𝑍𝑒−𝜆𝜏 

5.6 Optimal Harvesting Policy 

The goal of this section is finding the best harvesting strategy for the highest sustainable 

yield, assuring that the regulatory body will accomplish its goal. We examine the 

current value by: 

𝑅 = ∫ 𝑒−𝛿𝑡(𝑝1𝑐1𝐻(𝑡) + 𝑝2𝑐2𝐶(𝑡) − 𝑈)𝐸(𝑡)𝑑𝑡
∞

0

 

where the instantaneous annual discount rate is represented by δ. Consequently, our 

goal is to maximize 𝑅∗ based on equation (5.1) and equation (5.2) and in relation to the 

control limits 0≤ E≤ Emax, where Emax is the maximum amount of harvesting that can 

be done. The related Hamiltonian function is obtained by applying the Pontryagin 

Maximum Principle: 

𝐻 = 𝑒−𝛿𝑡(𝑝1𝑐1𝐻 + 𝑝2𝑐2𝐶 − 𝑈)𝐸 + 𝜆1 (𝑟1𝐻 (1 − 
𝐻

𝐾1
) − (𝜇1 − 𝑐1𝐸)𝐻 − 𝑝1𝐻𝐶) +

𝜆2(𝑟2𝐶(1 −
𝐶

𝐾2
)2 − (𝜇2 + 𝑐2𝐸)𝐶 + (𝜌2 − 𝛼)𝐻𝐶) 

= 𝜎(𝑡)𝐸 + 𝜆1 (𝑟1 𝐻 (1 −
𝐻

𝐾1
) − 𝜇1𝐻 − 𝜌1𝐻𝐶) + 𝜆2 (𝑟2𝐶 (1 − 

𝐶

𝐾2
)−(𝜇2𝐶 + 𝜌2𝐻𝐶 −

𝛼𝐻𝐶). 

where 𝜆1,𝜆2 are the operators for the adjoint that fulfil the equations and σE represents 

the switching function: 

𝑑𝜆1
𝑑𝑡

=  
𝜕𝐵

𝜕𝐻
,                                                                   (5.7) 
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𝑑𝜆2
𝑑𝑡

=  
𝜕𝐵

𝜕𝐶
,                                                                   (5.8) 

In this instance, the optimization problem will yield only singular control since the 

Hamilton 𝐵 is a linear control variable 𝐸(𝑡).The following is therefore a prerequisite 

for maximizing Hamilton 𝐵 under the singular control variable 𝐸(𝑡): 

Putting 
𝜕𝐻

𝜕𝐸
= 0 becomes: 

𝑒−𝛿𝑡(𝑝1𝑐1𝐻 + 𝑝2𝑐2𝐶 − 𝑈) − 𝜆1𝑐1𝐻 − 𝜆2𝑐2𝐶) = 0 𝑜𝑟 (𝜆1𝑐1𝐻 + 𝜆2𝑐2𝐶) = 𝑒
−𝛿𝑡,   (5.9) 

As a result, equation (5.7) and equation (5.8) becomes: 

𝑑𝜆1
𝑑𝑡

= −𝑐1𝑝1𝐸𝑒
−𝛿𝑡 − 𝜆1 (𝑟1 − 

2𝑟1𝐻

𝐾1
− (𝜇1 + 𝑐1𝐸) − 𝑝1𝐶) − (𝑝2 − 𝛼)𝐶𝜆2     (5.10) 

𝑑𝜆2
𝑑𝑡

= −𝑐1𝑝1𝐸𝑒
−𝛿𝑡 + 𝑝1𝑝𝜆1 − 𝜆2 (𝑟2 −

2𝑟2
𝐾2
) − 𝜇2 + 𝑐2𝐸 + (𝑝2 − 𝛼)𝐻)          (5.11) 

 The ideal equilibrium in order to find the 

𝐸 =
𝑟1
𝑐1
[(1 −

𝐻∗

𝐾1
) − 𝜇1− 𝜌1𝐶∗] =  

𝑟2
𝑐2
[(1 −

𝐶∗

𝐾2
) − 𝜇2 + 𝜌

2 − 𝛼)𝐻∗]            (5.12) 

In the given equation (5.9) and equation (5.10), it is possible to obtain the simultaneous 

linear equation system that follows: 

𝑑𝜆1
𝑑𝑡

= −𝑐1𝑝1𝐸𝑒
−𝛿𝑡 +

𝑟1𝐻
∗𝜆1
𝐾1

 − (𝜌2 − 𝛼)𝐶
∗𝜆2                                     (5.13) 

𝑑𝜆2
𝑑𝑡

= −𝑐2𝑝2𝐸𝑒
−𝛿𝑡 + 𝜌1𝐻

∗𝜆1  
𝑟2𝐶

∗𝜆2
𝐾2

                                               (5.14) 

Eliminating λ2 from equation (5.13) and equation (5.14), we have: 
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𝑑𝜆1
𝑑𝑡

= −𝑇1𝜆1 = −𝑇2𝑒
−𝛿𝑡,                                                               (5.15) 

Where  𝑇1 =
𝑟1

𝑐1
+
(𝜌2−𝛼)𝑐1

𝑐2
𝐻∗ and 𝑇2 = 𝑐1𝑝1𝐸 +

(𝜌2−𝛼)

𝑐2
(𝑐1𝑝1𝐻

∗ + 𝑐2𝑝2𝐶
∗ − 𝑈   

On solving equation (5.15), we get, 𝜆1 =
𝑇2

𝑇1+𝛿
− 𝑒−𝛿𝑡 and using this value in equation 

(5.14), we obtain, 

𝑑𝜆1
𝑑𝑡

− 𝑅1𝜆1 = −𝑅2𝑒
−𝛿𝑡                                                        (5.16) 

Which results into   𝜆2 =
𝑅2

𝑅1+𝛿
𝑒−𝛿𝑡 

Where 𝑅1 =
𝑟2𝑍

∗

𝐾2
 and 𝑅2 = 𝑐2𝑝2E − 𝜌1

𝑇2

𝑇1+𝛿
− 𝐻∗ 

As t→∞, it remains bounded. Putting λ1 and λ2 in equation (5.9), It is possible to obtain 

the simultaneous linear equation system that follows: 

𝑐1 (𝑝1 −
𝑇2

𝑇1 + 𝛿
)𝐻 + 𝑐2 (𝑝2 −

𝑅2
𝑅1 + 𝛿

)𝑍 = 𝑈                                  (5.17) 

Considering the values of 𝑇1, 𝑇2, 𝑅1, 𝑅2 and from equation (5.17), it can now be deduced 

that: 

𝜋(𝐻, 𝐶, 𝐸) = 𝑐1𝑝1𝐻 + 𝑐2𝑝2𝐶 − 𝑈 = ( 
𝑐1𝑇2

𝑇1+𝛿
)H + 

𝑐2𝑁2

𝑁1+𝛿
 C →0 as δ →∞  (5.18) 

Consequently, 𝜋(𝐻∞, 𝐶∞, 𝐸, 𝑡) = 0 is the net economic revenue. This suggests that 

harvesting will cease to occur in the event of an infinite discount rate, as the net 

economic revenue falls to zero. Furthermore, equation (5.18) demonstrates that the 

optimal equilibrium will only see the net economic rent maximized if a zero discount 
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rate is provided. Once more, equation (5.18) demonstrates that 𝑐1𝑇2(𝑅1 + 𝛿)𝐻 +

𝑐2𝑅2(𝑇1 +  𝛿) is of  𝑄(𝛿) and (𝑇1 + 𝛿)(𝑅1 + 𝛿)𝐶 of 𝑄(𝛿2).Therefore, maximizing π  

occurs when δ = 0. 

5.7 Numerical Example 

(i) Allocating values 𝑟1 = 6, 𝑟2 = 0.1, K1 = 50, K2 = 30, ρ1 = 0.3, ρ2 = 0.25, α = 

0.04, μ1 = 0.05, μ2 = 0.08, c1 = 0.22, c2 = 0.1, E = 0.5 It is easy to find 

𝑟1𝜇1

𝑐1
=27.0455,  

𝑟2𝜇2

𝑐2
= 0.2, 

𝑟1𝜇1

𝑐1
− 

𝑟1𝐻
∗

𝑐1𝐾1
= 26.8005,Trace J = 0.1182 < 0 and Det J 

= 0.5490 > 0 then 𝑅∗ = (0.4490, 19.2871) is globally asymptotically stable. 

 

Figure 5.1 The graph shows that the system is globally asymptotically stable under 

above mentioned parameters. 

(ii) Choosing E = 30, it is easy to verify that E > (max
𝑟1𝜇1

𝑐1
,
𝑟2𝜇2

𝑐2
) = max (27.0455, 

0.2) = 27.0455,p1 = 2, p2 = 3, C = 5.9, δ = 0.03 and E = 0.5 or 1, the system 
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loses its stability and Hopf-Bifuracation occurs.  

 

Figure 5.2 The graph shows that the system loses its stability and Hopf- Bifurcation 

occurs when there is change of parameters. 

5.8 Conclusion 

The chapter explores a mathematical model elucidating the dynamics of 

phytoplankton-zooplankton interactions, considering the impact of harvesting on 

certain species exploited for commercial purposes. The study assumes logistic growth 

for both populations and incorporates the release of toxic substances by phytoplankton, 

affecting the grazing pressure of predators on their prey. The analysis reveals that 

excessive harvesting can lead to irreversible population extinction. The research 

establishes the existence and global asymptotic stability of an interior equilibrium 

under specific conditions. Numerical results indicate variations in population levels for 

phytoplankton and zooplankton in the presence and absence of harvesting. Specifically, 
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when harvesting is absent (E=0), an interior equilibrium is observed at a lower 

population level, denoted as R∗ = (0.0575, 19.8102), in contrast to the presence of 

harvesting, where the equilibrium is at R∗ = (0.2815, 19.3555). The chapter also 

investigates optimal harvesting policies, emphasizing the maximization of present 

value revenues and adherence to transversality conditions for constant shadow prices 

over time. Both analytical and numerical evidence demonstrates that the duration of the 

delay grows as the rate of harvesting rises and the specific growth rate of the host 

species falls. The study concludes that zero discounting optimizes economic revenue, 

while an infinite discount rate results in complete economic rent dissipation. Future 

research may entail a collaborative study of two phytoplankton and two zooplankton 

species to observe the alteration in system dynamics and its long-term effects in 

response to the evolving climate. 
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Chapter 6 

Conclusion & Future Scope 

6.1 Conclusion 

The culmination of this thesis offers a thorough analysis of the complex dynamics 

regulating aquatic environments, with a particular emphasis on the relationships 

between populations of zooplankton and phytoplankton that produce toxins. This 

research offers a strong foundation for comprehending these interactions and their 

consequences for ecosystem sustainability and stability through the accomplishment of 

three main objectives. 

First, the thesis models, together with a thorough stability study, how competing toxin-

producing phytoplankton affects a zooplankton population. Scientists have proved that 

toxin-producing phytoplankton play a role in regulating the death of plankton blooms. 

Both mathematical modelling and experimental data were used to obtain the result for 

the same.  The prior research, however, did not take into account the simultaneous 

presence of two different forms of hazardous phytoplankton and also failed to consider 

the possible effects of systemic delays in time as well. However, in this thesis, a more 

intricate model was designed to fill up these gaps. The model includes three key 

components: two types of toxic phytoplankton and one zooplankton. The main aim of 

this objective with the incorporation of these elements was to create a more realistic 

representation of the interactions within plankton communities. To comprehend the 

behaviour of these three-component systems, the study used numerical simulations in 

addition to theoretical analysis. The outcomes present that, in some circumstances, the 
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system may attain stability. Also, when the system’s parameters-like growth rates and 

interaction strengths-fall inside a specific threshold, the system reaches a stable state. 

Furthermore, in this case, the idea of a “positive interior equilibrium” is equally 

considered. Instead of one or more species going extinct, it alludes to a balanced 

situation in which the populations of all three species remain positive. When this 

balance is reached, it indicates that the ecosystem can support all three species over the 

long term, even in the face of competition and toxins. This implies that all three species-

two harmful phytoplankton species and one zooplankton species-can coexist without 

causing the others to totally disappear.  With the first objective thus accomplished, the 

study offers insight into the interactions and coexistence of multiple harmful species in 

marine environments and emphasises the significance of taking time delays and 

multiple competing species into account in ecological models, resulting in more precise 

predictions and possible management approaches for harmful algal blooms. 

The second objective of the study explores the Hopf bifurcation and direction analysis 

of a hazardous phytoplankton-zooplankton system. By extending the examination into 

the crucial turning points that may result in cyclical behaviours and maybe oscillatory 

dynamics within the ecosystem, this objective provides a greater understanding of the 

circumstances that give rise to these bifurcations. The goal was to investigate how time 

delays affect a complicated biological system that includes one kind of zooplankton 

and two types of phytoplankton. The system’s primary characteristic is the mutual 

support between the two phytoplankton populations in the face of zooplankton 

predation. This mutual aid might take the form of different ecological interactions, as 

when one species produces a good for the other, or it could take the form of indirect 
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advantages like changing the habitat to lessen the pressure from predators. Moreover, 

the dynamics of the system are greatly impacted by the addition of a time delay. The 

time it takes for the impacts of predation to affect phytoplankton development or for 

phytoplankton populations to react to environmental changes are two examples of real-

world processes that may be represented by time delays. Additionally, the study 

demonstrates that adding a certain time delay causes the system’s stable equilibrium 

point to become unstable. A Hopf bifurcation, which is the turning point from a stable 

condition to periodic oscillations, is caused by this instability. In other words, beyond 

a critical threshold of the delay parameter, the system no longer returns to its 

equilibrium but instead starts to oscillate. 

For this, the examination made use of mathematical methods to comprehend the nature 

of these oscillations. Using centre manifold reduction theorem and normal form theory, 

the study develops an explicit procedure to ascertain the stability (i.e., whether the 

oscillations are stable or unstable) and direction (i.e., whether the oscillations expand 

or diminish) of the solutions originating from the Hopf bifurcation. Consequently, the 

second objective of the thesis offers a thorough analysis of how time lags can cause an 

ecological system to become unstable and result in intricate oscillatory behaviour. 

Understanding these dynamics is crucial for predicting and managing ecological 

systems, particularly in scenarios where time delays cannot be ignored. 

In the third objective, the study models the dynamics of interacting aquatic populations 

using delay differential equations and sensitivity analysis. The objective considers the 

natural time lags in biological processes and assesses the impact these time lags have 

on ecosystem stability and dynamics.  All species live in the system, as shown by the 
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theoretical and numerical examination, which show that the system stabilises around a 

positive internal equilibrium. This stability happens when the square root of one-third 

of the phytoplankton’s carrying capacity is exceeded by the ratio of zooplankton 

mortality rate, together with its conversion efficiency and resource consumption. In 

addition, the introduction of time delays may result in limit cycles, which are periodic 

oscillations. When the time delay exceeds a crucial level, these cycles appear. The 

thesis examined how modifications to time delays and other system factors impact the 

model’s results using a direct approach. Sensitivity functions can aid in determining 

which parameters have the most effects on the model. The state variable nutrient 

concentration H is the parameter that is least sensitive, according to sensitivity analysis. 

On the other hand, changes in the utilisation and consumption coefficients’ delay values 

cause a significant reaction in the plant biomass rates. To be more precise, when the 

utilisation coefficient delays less, the system becomes unstable, but when the 

consumption coefficient delays less, it stays stable. 

Further, the model examines the interactions between phytoplankton and zooplankton 

as well as the impact of harvesting on commercially fished species. It is anticipated that 

both populations would expand significantly, with toxins released by phytoplankton 

impacting zooplankton feeding. Overharvesting has the potential to cause an 

irreversible drop in population. Under specific conditions, the analysis validates the 

existence and global asymptotic stability of an inner equilibrium. Examining the 

numerical findings, we find that the system reaches an internal equilibrium at lower 

population levels without harvesting (E=0): 𝑅∗=(0.0575,19.81102) 

R∗=(0.0575,19.81102). At higher population levels, however, harvesting causes the 

equilibrium to shift: 𝑅∗=(0.2815,19.3555) R∗=(0.2815,19.3555). The best harvesting 
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tactics that would maximise present value revenues while maintaining stable shadow 

prices over time. The findings indicate that longer delays are linked to greater rates of 

harvesting and lower rates of specific growth of the host species. The greatest amount 

of economic income is produced by zero discounting, but the entire amount of 

economic rent is dispersed by an infinite discount rate. 

Future research may entail a collaborative study of two phytoplankton and two 

zooplankton species to observe the alteration in system dynamics and its long-term 

effects in response to the evolving climate. Together, these objectives form a cohesive 

study that not only advances theoretical understanding but also provides practical 

insights for maintaining and managing aquatic ecosystems in the face of environmental 

challenges. 

6.2 Future Scope 

The stock market is a complicated system that is impacted by a wide range of factors, 

such as investor behaviour, economic data, and developments in geopolitics. 

Economists, mathematicians, and financial analysts have long struggled to comprehend 

and forecast its dynamics. The application of mathematical models to understand the 

behaviour of the stock market has gained attention in recent years. One such 

mathematical model is Delay differential equations (DDEs), which provide a potent 

framework for capturing time delays and feedback mechanism inherent in financial 

systems. The use of DDEs to simulate stock market dynamics and its consequences for 

financial analysis and decision-making is explored in this article: 
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6.2.1.  The Need for Mathematical Modelling in the Stock Market 

a. The dynamics of the stock market are complicated and sometimes 

nonlinear, making it difficult to comprehend using conventional 

approaches. 

b. A systematic way to examine and forecast market behaviour is offered 

by mathematical models, which are helpful for economists, 

policymakers, and investors. 

c. Conventional models, on the other hand, frequently overlook important 

elements like feedback loops and time delays, which have a big impact 

on market dynamics. 

Introduction to Delay Differential Equations:  

d. A set of differential equations is known as delay differential Equations 

(DDEs) which accounts for time delays into the dynamics of a system. 

e. They are perfect for researching financial systems with memory effects 

because they are especially well-suited for simulating phenomena where 

past conditions affect future behaviour. 

f. DDEs can record various aspects of the stock market, such as investor 

behaviour, herd behaviour, and the propagation of information through 

the market. 
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6.2.2. Application of Delay Differential Equations (DDEs) in Stock Market 

Modeling 

a. Incorporating time delays into account when modelling the dynamics of 

stock prices: DDEs may be used to simulate the time lag between the 

release of information and its effect on stock prices. 

b. DDE models have the ability to depict the feedback loop that exists 

between market prices and investor behaviour, providing insight into 

the formation of market bubbles and crashes. 

c. DDEs can assist in identifying the best trading strategies that take 

transaction costs and market dynamics into consideration by introducing 

time delays into trading algorithms. 

6.2.3. Challenges and Future Directions:  

a. Despite its potential, DDE models have difficulties with model 

validation and parameter estimates, particularly in strident and 

unpredictable market environments. 

b. Future studies may concentrate on improving DDEs models by 

including other variables such regulatory changes, market 

microstructure, and liquidity constraints. 

c. To create reliable DDEs models that can guide investment decisions and 

risk management strategies, collaboration between practitioners, 

economists, and mathematicians is essential. 

 In conclusion, Delay Differential Equations (DDEs) present a viable framework for 

simulating the complex dynamics of the stock market, offering perceptions into the 

views and behaviour of investors and strategies for trading. We are able to anticipate 
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and reduce financial risks more accurately and get a deeper understanding of the 

fundamental processes influencing stock prices by including time delays into 

mathematical models. The way we examine and negotiate the minutiae of the stock 

market might be completely transformed by more study and cooperation in this field. 

There are uses for Delay Differential Equations (DDEs) outside of the stock market. 

Here are some other domains in which DDE-based mathematical models may be used 

in the future: 

1) Epidemiology and Public Health: Since there is frequently a lag between an 

individual’s infection and the onset of their ability to infect others, DDEs may 

be utilised to simulate the spread of infectious diseases. By incorporating these 

delays, epidemiologists may enhance their comprehension of disease dynamics 

and assess the efficacy of treatments like immunisation drives and social 

distancing measures. 

2) Neuroscience: DDEs may be applied to simulate brain systems, where signal 

propagation delays between neurons are common. Researchers can gain a better 

understanding of brain processes including information processing, 

synchronisation, and neuronal oscillations by using these models. 

3) Chemical Engineering: DDEs may be used to model chemical reaction 

networks, which frequently have delays because of the time it takes for reactants 

to diffuse or to occur. Further, these models may be used to develop more 

effective reactors and optimise chemical processes. 

4) Ecology: In ecological systems, where there are frequently delays owing to 

gestation durations, maturation times, and migratory patterns, population 
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dynamics may be modelled using DDEs. These models may be used to forecast 

population fluctuations, interactions between species, and the effects of 

changing environmental conditions on ecosystems. 

5) Control Systems: DDEs may be used to simulate time-delayed systems, such 

industrial processes, transportation networks, and communication networks. In 

order to guarantee stability, performance, and dependability in complex 

systems, these models may be used to assist create strong control techniques. 

6) Climate Science: DDEs are useful for modelling climate feedback loops, in 

which variations in greenhouse gas emissions frequently take time to affect 

weather patterns and world temperatures. These models can assist in refining 

climate forecasts and assisting in the decision-making process for climate 

change mitigation policies. 

7) Economics and Finance: DDEs may also be used to simulate macroeconomic 

dynamics, interest rate dynamics, and exchange rate changes and can assist in 

the better understanding of economic risks and fluctuations by policymakers, 

central banks, and financial institutions. 

Thus, DDEs may be used to describe systems with time delays in various fields and 

real-world problems since they provide an adaptable framework. We may anticipate 

seeing increasingly complex and perceptive implementations of DDE models in the 

future as mathematical methods and computational power continue to evolve. 
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