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Abstract 

Multi-objective linear programming problems (MOLPP) are a decision-making tool in many 

real-world disciplines, such as distribution, production, economics, and ecology. Uncertainty in 

data makes optimization problems more challenging to resolve since they become fuzzy 

optimization problems. In this thesis, we look at how well different approaches work in 

different situations when it comes to addressing fuzzy multi-objective linear programming 

problems (FMOLPPs).  

The ultimate objective of the research is to discover a solution to FMOLPP. The main goal is to 

make the fuzzy problem simpler to comprehend. Several researchers have employed 

defuzzification as a method to deal with them. Complex fuzzy numbers are notoriously 

challenging to decipher, in contrast to basic fuzzy numbers for which defuzzification studies are 

straightforward. First, to apply defuzzification techniques to any inherent data, a universal 

classification of all fuzzy numbers is necessary. To finish this job, we classify fuzzy integers 

according to their components and then give three separate defuzzification methods for each 

class. After implementing these defuzzification strategies, both basic and complex fuzzy data 

can be handled. The results from the real-life manufacturing case study show that the two 

defuzzification methods, α-cut and centroid of area, can effectively handle any balanced 

intrinsic data. 

When dealing with MOLPP concerns that arise from converting fuzzy problems into them, 

there are various solutions available, both fuzzy and non-fuzzy. The fuzziness that comes with 

having multiple objectives is frequently too much for traditional, crisp optimization approaches 

to manage. Modeling complex systems using fuzzy logic, which includes degrees of 

membership instead of binary judgments, is more realistic. The study conducts a critical 

analysis of traditional fuzzy methods through their application to real-world case studies, 

highlighting their shortcomings and practical applications. By looking at these examples, the 

study explores how intuitionistic and dual-hesitant fuzzy numbers, along with other advanced 

fuzzy set types, affect optimization results, and how association functions influence both non-

linear and linear forms. We use this thorough examination to refine and choose suitable fuzzy 

strategies for complex, real-world decision-making.  
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Functions are unfairly treated by existing approaches because of the large variety of functional 

values. Because of this, the current effort is focused on finding a better normalized distance 

parameter for membership functions. To validate its usefulness in a controlled situation, we first 

incorporate it within the basic fuzzy technique, which provides a fundamental framework. After 

we've proven its worth, we apply it to intuitionistic and dual hesitant fuzzy models, two 

advanced extensions of fuzzy sets, to see how it does in more complicated decision-making 

settings. The theoretical basis is fortified, and the normalized distance function's adaptability 

and robustness across different levels of uncertainty are demonstrated by this gradual 

integration. To ensure scientific rigor, the investigation begins by analyzing efficacy using 

hypothetical cases.  

After knowing the importance of normalized distance functions and the extension of fuzzy sets 

in improving the effectiveness of fuzzy multi-objective optimization, the next study focuses on 

demonstrating their practical implementation across a variety of real-world domains. The study 

begins by applying the enhanced fuzzy approach with triangular fuzzy numbers to biomimetic 

systems and transportation problems in smart cities, gradually transitioning from linear to non-

linear membership functions to evaluate their impact on optimization outcomes. This 

progression continues with the application of the enhanced approach to material science, 

particularly in modeling the composition of titanium alloys. The methodology is further 

expanded through the integration of triangular intuitionistic fuzzy models within a 

manufacturing context, showcasing the improvements brought by the normalized distance 

concept. Lastly, the dual hesitant fuzzy optimization method is employed to address complex 

production problems, capturing deeper uncertainties through combined hesitant and 

intuitionistic behaviors. This structured sequence of applications facilitates a comprehensive 

comparative analysis and effectively demonstrates the robustness, adaptability, and practicality 

of the proposed methods across diverse, uncertain decision-making environments.  

The main contribution of this thesis is the comprehensive and innovative approach it offers for 

dealing with fuzzy multi-objective optimization issues. It begins with fuzzy logic basics and 

moves on to practical modeling, comparative analysis, and real-world case applications; it 
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introduces new methodologies and advances in optimization techniques, defuzzification, and 

fuzzy set extensions. In a variety of complicated real-world situations, the resulting solutions 

provide decision-makers with strong tools to deal with uncertainty, increase efficiency, and 

make more informed choices.  
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Chapter 1  

Introduction 

Prior to diving into advanced approaches, it is crucial to have a solid grasp of basic ideas. To 

construct the theoretical framework that is utilized throughout the thesis, this chapter offers the 

essential terminology and terminologies pertaining to fuzzy set theory and optimization problems. 

We hope that by covering these ground rules, the following chapters will provide fuzzy-based 

optimization strategies with clarity and consistency in their formulation, analysis, and 

implementation. 

Multi-objective optimization (MOO) is an essential tool in the toolbox of decision science and 

operational study for optimization problems with several competing goals [1]. In MOO, rather than 

optimizing just one factor as in single-objective optimization, the goal is to discover a group of 

solutions for multiple objectives. The resulting solution maximizes Pareto efficiency, which means 

that improving one objective would inevitably lead to the degradation of another objective [2]. 

Because of this, MOO is especially useful in everyday life, where balancing competing goals is 

unavoidable. As MOO is a vast area for research, we discuss here only the multi-objective linear 

programming problem (MOLPP). MOLPP deals only with linear constraints and objective 

functions. 

Fuzzy multi-objective linear programming problem (FMOLPP) builds on conventional MOLPP 

by utilizing fuzzy set theory. Fuzzy set was first proposed by L. Zadeh in 1965 [3] to deal with the 

uncertainties that are intrinsic to numerous real-world issues. Fuzzy logic provides a sophisticated 

and adaptable method to deal with imprecision and uncertainty in decision-making. True or false 

is not always the best way to evaluate a statement; this is the essential premise of fuzzy logic. 

Fuzzy sets and linguistic variables are essential parts of fuzzy logic. Sets can be defined with more 

subtle ambiguity when elements have degrees of membership defined by fuzzy membership 

functions. One component of fuzzy logic is linguistic variables, which connect the two extremes 

of mathematical expression precision and human language's inherent imprecision [4]. It provides 

a way to make quantitative decisions that also take qualitative factors into account. One example 
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of using linguistic variables is to convey concepts like "high," "medium," or "low" in a form that 

people can understand, making it easier to explain and analyse complicated systems. In many 

different fields, fuzzy logic, fuzzy sets, and language variables have proven to be practical. By 

applying fuzzy logic to control systems, we can create intelligent and adaptive controllers capable 

of handling uncertain input data and changing situations. Due to its ability to represent human 

reasoning, fuzzy logic is well-suited for use in decision support systems in industries including 

healthcare, banking, and transportation [5]. According to Zimmermann [6], the concept of fuzzy 

sets offers a solid foundation for dealing with data inaccuracies and unpredictability. In FMOLPP, 

we express parameters or variables for objectives and constraints as fuzzy collections, while the 

functions of membership describe the extent to which a component contributes to a fuzzy set. 

Fuzzy sets transform into fuzzy numbers once they meet certain characteristics. Depending on the 

number of components, there are several varieties of fuzzy numbers that alter the behaviour of the 

membership function. Here are some examples of these fuzzy numbers: 

a) Triangular Fuzzy Numbers: Defined by three parameters to convey ambiguity 

straightforwardly and effectively. 

b) Trapezoidal Fuzzy Numbers: Defined by four parameters for a more versatile form. 

c) Icosikaitetragonal Fuzzy Numbers: Defined a very complex picture of uncertainty and 

involves 24 parameters. 

Before we can use fuzzy numbers in optimization as parameters, we have to defuzzify the problem. 

Commonly used methods include the min-max, centroid, the mean of α-cut, and bounded area, 

etc. These methods allow for the processing of fuzzy objectives and constraints that can be used 

by standard optimization methods after converting them into crisp values that are equivalent. After 

the conversion of FMOLPP into MOLPP, the issue is to solve it. 

Over the last few decades, classical MOLPP methods have undergone a remarkable evolution. One 

of the first approaches is the weighted sum method [7], which uses weighted parameters to merge 

many goals into one. Another is the ε-constraint method, which improves a single goal while 

transforming the others into limitations with bounds [8], [9]. Similarly, other non-fuzzy approaches 

are also defined with some advantages and limitations. Although these strategies offer a basic 
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framework for MOLPP, they frequently fail to address the intricacy and unpredictability that come 

with real-life issues. 

To deal with uncertainty, Zimmermann uses fuzzy set theory in his fuzzy approach to solve 

optimization issues involving many objectives [10]. This technique uses association functions to 

represent fuzzy goals for each target. It uses the max-min operator, which maximizes the minimal 

level of fulfilment across every target, to transform many goals into a clear single-objective issue 

by identifying ideal and nadir points of objectives. This transition enables the application of fuzzy 

optimization techniques to achieve a fair and robust solution. Zimmermann's method offers a 

versatile framework for maximizing competing goals while accurately modelling uncertain data. 

Intuitionistic fuzzy set (IFS) is introduced by Atanassov in 1986, which adds some uncertainty to 

fuzzy set theory and makes it even more refined. By combining a membership function, a non-

membership function, and a hesitation margin, an intuitionistic fuzzy set can more accurately 

portray uncertainty [11]-[13]. This extra layer of knowledge allows for more delicate decision-

making, particularly when the level of certainty is unclear. The intuitionistic fuzzy approach for 

MOLPP considers the function of membership and non-membership, as well as the hesitation 

margin, while optimizing for goals with restrictions [14]. This method provides a more thorough 

evaluation of uncertainty than simple fuzzy sets, which in turn produces more reliable optimization 

results. Several applications, like engineering design and resource allocation, have demonstrated 

promising results when using intuitionistic fuzzy sets in MOLPP to help decision-makers balance 

competing goals in the face of ambiguity. 

To provide for several participation values for a single element, Torra expanded the idea of fuzzy 

sets in 2010 with the introduction of the hesitant fuzzy set (HFS) [15]. This represents the fact that 

decision-makers may feel hesitant or unsure while deciding on membership levels. When there are 

multiple perspectives or insufficiently accurate data to identify a single participation number, 

hesitant fuzzy sets come in handy. Hesitant fuzzy sets represent the goals in a hesitant fuzzy 

approach for MOLPP, which deals with multiple membership degrees for a single element. 

Although numerous membership values increase complexity, they offer a more robust framework 

than simple fuzzy sets for dealing with uncertainty, which the optimization process must consider 
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[16]. To optimize the process, researchers use techniques like hesitant fuzzy weighted averaging 

and hesitant fuzzy aggregation operators to merge the many attributes of membership into a single 

corresponding value. 

Dual hesitant fuzzy set (DHFS), an extension of hesitant fuzzy collections, offers a dual 

perspective on uncertainty by integrating both hesitant participation and hesitant non-participation 

values [17]. The sets capture situations where decision-makers are uncertain about the level of 

membership and non-membership. DHFS provides a comprehensive method for simulating 

complex MOLPP uncertainty. By using a triangular dual-hesitant fuzzy number to describe goals, 

dual-hesitant fuzzy MOLPP can be applied. The approach achieves a more complex and well-

rounded optimization result by considering both hesitant membership and hesitant non-

membership values. Researchers have used methods such as distance measurements and dual 

hesitant fuzzy aggregation operators [18] to assess and integrate the two hesitant parameters for 

efficient decision-making. 

1.1 Fuzzy Set 

According to classical set theory, there are only two possible partnerships of components of a set: 

either the item in question is a member of the set, or it is not. To indicate membership, a fuzzy set 

uses an assessment level ranging from 0 to 1. An element's role in a fuzzy set depends on how well 

it matches its attributes. Let the membership function be denoted as  ḿ�̃� for each element in a 

given fuzzy set �̃�, presuming that the provided space is 𝑋. Consequently, the mathematical 

representation of a fuzzy set looks like this: 

 �̃�  =  {(𝑥,ḿ�̃�(𝑥)): ∀ 𝑥 ∈  𝑋} (1.1) 

1.1.1 Membership Function 

Assigning a relationship value to an element within the set of all things allows us to determine the 

likelihood of its inclusion in the fuzzy group. We refer to the function describing this relationship 

as the membership function. We provide a mathematical illustration of this function over �̃�, which 

can be defined as follows: 

 ḿ�̃�: 𝑋 →  [0,1] (1.2) 
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In the present study, we have used various linear and non-linear membership functions for fuzzy 

approaches that have used left triangular fuzzy numbers. All membership functions are described 

mathematically and geometrically in Figure 1.1 - 1.5 to describe almost every scenario of real-life 

situations associated with these functions for the goal of maximization.  

Linear: The simplest form of membership function is linear, according to which the marginal rate 

of the membership function, concerning the value of 𝑥, is constant, which means the value of the 

membership function increases/decreases from 0 to 1 linearly for the value of 𝑥 from minimum to 

maximum in the case of a maximization problem. Linear membership functions are easy to 

compute and are often used when the relationship between variables is straightforward. These can 

be concluded from Figure 1.1, and the mathematical expression of it is given below: 

 
ḿ�̃�(𝑥) =

𝑥 −𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛 (𝑥)
 (1.3) 

 

Figure 1.1: Linear membership function 

Parabolic: A parabolic membership function is a quadratic function that describes a parabolic 

curve. It is typically symmetric and represents a gradual increment of slope [19]-[21]. In this case, 

the rate of the membership function is relatively lower when the value of 𝑥 is in a weaker position, 

as given below mathematically and geometrically by eq (1.4) and Figure 1.2, respectively: 

 

ḿ�̃�(𝑥) = (
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
)

2

 
(1.4) 
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Figure 1.2: Parabolic membership function 

Hyperbolic: The hyperbolic similarity scale is characterised by a convex factor for certain values 

of 𝑥 and a concave factor for the remaining values [19]-[21]. When the decision maker (DM) 

improves their place regarding an aim, the marginal rate of satisfaction tends to increase up to a 

specific value. A convex shape can be used to illustrate this quality in terms of membership degree. 

After that specific value, when the DM improves their place regarding an aim, the marginal rate 

of satisfaction tends to drop. This type of action is represented by the concave part of the 

membership function as shown in Figure 1.3. Here is the entire idiom: 

 

ḿ�̃�(𝑥) =
1

2
 𝑡𝑎𝑛ℎ [(𝑥 −

𝑚𝑎𝑥(𝑥) + 𝑚𝑖𝑛(𝑥)

2
)𝛼] +

1

2
 

(1.5) 

 

Figure 1.3: Hyperbolic membership function 

Exponential: The exponential curve is typically symmetric and represents a gradual increase in 

slope [22]. The marginal rate of the membership function is relatively higher when 𝑥 is making 

progress toward a goal. It can be concluded mathematically and graphically by eq (1.6) and Figure 

1.4, respectively: 
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ḿ�̃�(𝑥) = 𝜂𝑖 [1 − 𝑒𝑥𝑝 {−𝜌𝑖
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
}] 

(1.6) 

 

Figure 1.4: Exponential membership function 

Sigmoidal: Sigmoidal membership functions are S-shaped curves that represent a smooth, gradual 

transition from one state to another [22]. The function starts slowly, accelerates in the middle, and 

then slows down again. This type of membership function is defined using the sigmoid function, 

which is mathematically represented as a logistic function. The S-shape is ideal for modelling 

gradual and smooth transitions between states. They look like hyperbolic functions, but their slopes 

differ from each other. The mathematical and geometrical formations of it are given below via eq 

(1.7) and Figure 1.5, respectively: 

 

ḿ�̃�(𝑥) = 1 − [
1

1 + 𝐵𝑒
𝑎(

𝑥−min(𝑥)
(max(𝑥)−min(𝑥))

)
] 

(1.7) 

 

Figure 1.5: Sigmoidal membership function 

Each of these membership functions offers unique advantages depending on the nature of the fuzzy 

system and the relationship between the input variables and their corresponding membership 
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values. By selecting the appropriate type of membership function, the fuzzy system can be better 

tailored to reflect the real-world phenomena it is intended to model. 

1.1.2 𝛂-cut 

The 𝛼-cut (or the strong 𝛼 -cut) of a fuzzy set �̃� is the crisp set �̃�𝛼 (or the crisp set �̃�𝛼+) that 

contains all the elements of the universal set 𝑋 whose membership grades in �̃� are greater than or 

equal to (or strictly greater than) the specified value of 𝛼. 

  �̃�𝛼 = {𝑥|ḿ�̃�(𝑥) ≥ 𝛼} (1.8) 

  �̃�𝛼+ = {𝑥|ḿ�̃�(𝑥) > 𝛼} (1.9) 

1.1.3 Support 

The support of �̃� is the same as the strong 𝛼-cut of �̃� for 𝛼 =  0, which means it contains all the 

elements of the universal set 𝑋 whose membership grades in �̃� are greater than 0.  

 𝑆(�̃�) = {𝑥|ḿ�̃�(𝑥) > 0} (1.10) 

1.1.4 Convex fuzzy set 

A fuzzy set �̃� on 𝑋 is convex iff its membership function follows the following inequality: 

 ḿ�̃�(λ𝑥1 + (1 −  λ)𝑥2) ≥  𝑚𝑖𝑛 {ḿ�̃�(𝑥1),ḿ�̃�(𝑥2)} (1.11) 

  for all 𝑥1, 𝑥2 𝜖 𝑋 and all 𝜆 𝜖 [0, 1], where min denotes the minimum operator.  

1.1.5 Height of fuzzy set 

The height, ℎ(�̃�), of a fuzzy set �̃� is the largest membership grade that is obtained by any element 

in that set. Formally, it is represented as: 

 ℎ(�̃�)  =  𝑠𝑢𝑝
𝑥∈𝑋

ḿ�̃�(𝑥) (1.12) 

1.1.6 Normal fuzzy set 

A fuzzy set �̃� is called normal when the height of the fuzzy set is equal to 1, which can be 

mathematically represented by the following: 

 ℎ(�̃�)  =  1 (1.13) 



9 

 

Which means ḿ�̃�(𝑥)  =  1 for at least one 𝑥𝜖𝑋, or mathematically, which can be represented as: 

 ∃ 𝑥 𝜖𝑋 ∶ ḿ�̃�(𝑥)  =  1 (1.14) 

1.1.7 Fuzzy Number 

The term "fuzzy number" refers to a fuzzy set that meets the following three criteria: 

• ḿ�̃�(x) = 1 for at least one 𝑥𝜖𝑋. 

• The crisp set, which contains all the elements of the universal set 𝑋 whose membership 

grades in �̃� are greater than or equal to any value in [0,1], should be a closed interval. 

• The crisp set defined above containing the strict inequality should be bounded. 

1.1.8 Triangular Fuzzy Number (TFN) 

A fuzzy number  �̃�𝑇 is a triangular fuzzy number when it can be represented in the form of eq 

(1.15), according to [23]: 

 �̃�𝑇  = {([𝑡1, 𝑡2, 𝑡3 ], ḿ�̃�𝑇𝐼
(𝑥)); ∀ 𝑥 ∈  𝑋} (1.15) 

and the membership function of it is represented by: 

 

ḿ�̃�𝑇
(𝑥) =  

{
 
 

 
 

0   ;   𝑖𝑓 𝑥 ≤ 𝑡1
𝑥 − 𝑡1
𝑡2 − 𝑡1

  ;   𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

𝑡3 − 𝑥

𝑡3 − 𝑡2
  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3

 0  ;  𝑖𝑓  𝑥 ≥  𝑡3

 

 

(1.16) 

 

Figure 1.6: Symmetric triangular fuzzy number 

 

Figure 1.7: Asymmetric triangular fuzzy number 
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For the traditional fuzzy set, the non-membership degree is always 1 minus the membership 

degree. Two types of triangular fuzzy numbers exist, which are shown above in Figure 1.6 and 

Figure 1.7. 

• Symmetrical: When 𝑡2 − 𝑡1 = 𝑡3 − 𝑡2 

• Asymmetrical: When 𝑡2 − 𝑡1 ≠ 𝑡3 − 𝑡2. 

1.2 Extension of Fuzzy Set 

This subsection delves into the distinctive mathematical frameworks and features of advanced 

topics in fuzzy set analysis, including intuitionistic fuzzy sets, hesitant fuzzy sets, and dual hesitant 

fuzzy sets. We conclude our discussion of their applications by examining their combination with 

triangular fuzzy numbers. By merging these advanced fuzzy sets, we demonstrate their expanded 

power to reflect uncertainty and hesitation in decision-making processes in the next chapters. We 

provide exact mathematical expressions and geometric interpretations to demonstrate the 

application of these extensions to real optimization problems. 

1.2.1 Intuitionistic fuzzy set 

Intuitionistic fuzzy set theory expands upon both the traditional set and the collection of fuzzy 

items. According to this theory, a pair of parameters with real values in the unitary range [0,1] can 

be used to assess components: one for participation and one for absence of participation. You can 

find the mathematical formula for this below: 

 𝐹�̃�  =  {(𝑥,ḿ�̃�(𝑥), ń�̃�(𝑥)); ∀ 𝑥 ∈  𝑋} (1.17) 

where; 0 ≤ ḿ𝐹�̃� 
(𝑥) + ń𝐹�̃�(𝑥) ≤ 1. 

Fuzzy accumulations can be generated from intuitionistic fuzzy sets when the condition ḿ𝐹�̃�
(𝑥) +

ń𝐹�̃�(𝑥) = 1 is satisfied, since the connected values of these sets are variants on involvement and 

failure to participate functions.  

1.2.1.1 Intuitionistic triangular fuzzy number (ITFN)  



11 

 

When triangular fuzzy numbers represent the properties of the intuitionistic fuzzy set, then it can 

be defined as �̃�𝑇𝐼  = {([𝑡1, 𝑡2, 𝑡3 ], ḿ�̃�𝑇𝐼
(𝑥)) , ([𝑡1

′ , 𝑡2, 𝑡3
′ ], ń�̃�𝑇𝐼(𝑥)) ; ∀ 𝑥 ∈  𝑋}, whose functions, 

membership, and non-membership are 𝑚�̃�𝑇𝐼
(𝑥) and 𝑛�̃�𝑇𝐼(𝑥), respectively: 

 

ḿ�̃�𝑇𝐼
(𝑥) =  

{
 
 

 
 

0   ;   𝑖𝑓 𝑥 ≤ 𝑡1
𝑥 − 𝑡1
𝑡2 − 𝑡1

  ;   𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

𝑡3 − 𝑥

𝑡3 − 𝑡2
  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3

 0  ;  𝑖𝑓  𝑥 ≥  𝑡3

 

 

(1.18) 

 

ń�̃�𝑇𝐼(𝑥) =  

{
  
 

  
 

1   ;   𝑖𝑓 𝑥 ≤  𝑡1 ̍
𝑡2 − 𝑥

𝑡2 − 𝑡1 ̍
  ;   𝑖𝑓 𝑡1 ̍ ≤ 𝑥 ≤ 𝑡2

𝑥 − 𝑡2
𝑡3 ̍ − 𝑡2

  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3 ̍

 1  ;  𝑖𝑓  𝑥 ≥   𝑡3 ̍

 

 

(1.19) 

Here, ḿ�̃�𝑇𝐼
(𝑥) + ń�̃�𝑇𝐼(𝑥) ≠ 1 . 

 

Figure 1.8: Intuitionistic fuzzy number 

For a geometrical representation of these types of fuzzy numbers, please refer to Figure 1.8. 

1.2.2 Hesitant fuzzy set 

A hesitant fuzzy set is defined by the function from the universal set 𝑋 to [0,1] and is denoted by: 
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 �̃�𝐻   =  {(𝑥, ℎ�̃�𝐻(𝑥)): ∀ 𝑥 ∈ 𝑋}  (1.20) 

Here, ℎ�̃�𝐻(x) is the hesitant fuzzy element, which is a set of discrete values in [0,1] as the 

membership degree.  

1.2.2.1 Hesitant Triangular Fuzzy Number (HTFN) 

When triangular fuzzy numbers represent the properties of the dual hesitant fuzzy sets then it can 

be defined as �̃�𝐻𝑇  = {[𝑡1, 𝑡2, 𝑡3 ];  ℎ�̃�𝐻𝑇(𝑥)}, whose membership degree for element 𝑥 according 

to 𝑒𝑡ℎ expert is ḿ�̃�𝐷𝐻𝑇

𝑒
(𝑥). Figure 1.9 displays the geometric representation, while eq. (1.16) 

provides the mathematical representation: 

 

ḿ�̃�𝐻𝑇

𝑒
(𝑥) =  

{
 
 

 
 

0   ;   𝑖𝑓 𝑥 ≤ 𝑡1

ѡ𝑒 (
𝑥 − 𝑡1
𝑡2 − 𝑡1

)  ;   𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

ѡ𝑒 (
𝑡3 − 𝑥

𝑡3 − 𝑡2
)  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3

 0  ;  𝑖𝑓  𝑥 ≥  𝑡3

 

 

(1.21) 

Where ℎ�̃�𝐻𝑇(𝑥) is a set of discrete values in [0,1] and 0 ≤ ѡ𝑒 ≤ 1. 

 

Figure 1.9: Hesitant triangular fuzzy number 
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1.2.3 Dual hesitant fuzzy set 

The fuzzy set is formed by the combination of the properties of the hesitant and intuitionistic fuzzy 

set, it is called the dual hesitant fuzzy set. A dual hesitant fuzzy set has a set of non-membership 

degrees for a single element in addition to a membership degree. It is denoted by: 

 �̃�𝐷𝐻   =  {(𝑥, ℎ�̃�𝐷𝐻(𝑥), 𝑔�̃�𝐷𝐻(𝑥)): ∀ 𝑥 ∈ 𝑋} (1.22) 

1.2.3.1 Dual Hesitant Triangular Fuzzy Number (DHTFN)   

When triangular fuzzy numbers represent the properties of the dual hesitant fuzzy sets, then it can 

be defined as �̃�𝐷𝐻𝑇  = {([𝑡1, 𝑡2, 𝑡3 ];  ℎ�̃�𝐷𝐻𝑇(𝑥)), ([𝑡1
′ , 𝑡2, 𝑡3

′ ]; 𝑔�̃�𝐷𝐻𝑇(𝑥))} whose membership and 

non-membership degrees for element 𝑥 according to the 𝑒𝑡ℎ expert are ḿ�̃�𝐷𝐻𝑇

𝑒
(𝑥) and ń�̃�𝐷𝐻𝑇

𝑒 (𝑥), 

respectively. Figure 1.10 illustrates the dual hesitant triangular fuzzy number in a geometric 

manner.  

 

Figure 1.10: Dual hesitant triangular fuzzy number 

 

ḿ�̃�𝐷𝐻𝑇

𝑒
(𝑥) =  

{
 
 

 
 

0   ;   𝑖𝑓 𝑥 ≤ 𝑡1

ѡ𝑒 (
𝑥 − 𝑡1
𝑡2 − 𝑡1

)  ;   𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

ѡ𝑒 (
𝑡3 − 𝑥

𝑡3 − 𝑡2
)  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3

 0  ;  𝑖𝑓  𝑥 ≥  𝑡3

 

 

(1.23) 
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ń�̃�𝐷𝐻𝑇
𝑒 (𝑥) =  

{
  
 

  
 

1   ;   𝑖𝑓 𝑥 ≤  𝑡1 ̍

ѡ𝑒 (
𝑡2 − 𝑥

𝑡2 − 𝑡1̍
)  ;   𝑖𝑓 𝑡1 ̍ ≤ 𝑥 ≤ 𝑡2

ѡ𝑒 (
𝑥 − 𝑡2

𝑡3̍ − 𝑡2
)  ;   𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3 ̍

 1  ;  𝑖𝑓  𝑥 ≥   𝑡3 ̍

 

 

(1.24) 

 

1.3 Fuzzy Operations 

In theory, novel commands such as union, intersection, and complement can improve knowledge 

about the fuzzy sets. The level of fuzziness for every component in each set determines the course 

of action. The construction of uncertain union, intersection, and complement [24] between two 

fuzzy sets, �̃�1 and �̃�2, are represented below: 

1.3.1 Fuzzy union (�̃�𝟏⋃�̃�𝟐) 

In mathematical terms, fuzzy union is defined by using the greatest possible value of the 

membership function. 

 ḿ(�̃�1∪ �̃�2)
(𝑥) =  𝑚𝑎𝑥 {ḿ�̃�1

(𝑥),ḿ�̃�2(𝑥)} (1.25) 

1.3.2 Fuzzy intersection (�̃�𝟏⋂�̃�𝟐) 

In mathematical terms, fuzzy intersection is defined by using the lowest possible value of the 

membership function. 

 ḿ(�̃�1∩ �̃�2)
(𝑥) =  𝑚𝑖𝑛 {ḿ𝐹1̃

(𝑥),ḿ𝐹2̃
(𝑥)} (1.26) 

1.3.3 Fuzzy complement (�̃�𝒄) 

For a fuzzy set, the membership degree of any element of its complement is one minus the degree 

of that element in that set. 

 ḿ(�̃�𝒄)(𝑥) =  1 − ḿ(�̃�)(𝑥) (1.27) 
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1.4 Linear Programming Problem (LPP) in Crisp Environment 

In this section, we present the exact model of the linear programming problem (LPP) for both 

one and more objective functions and their representation for standard transportation issues. 

1.4.1 Single-objective linear programming problem 

On the assumption that each of the goal functions belongs to the maximization category, the 

following is the usual representation of a single-objective linear optimization problem:  

 
𝑚𝑎𝑥 𝑓 = ∑𝑝𝑘𝑥𝑘

𝑛

𝑘=1

 
(1.28) 

For the goal, which is represented by 𝑓, for every choice variable 𝑥𝑘 with parameters 𝑝𝑘 and 𝑐𝑘
𝑗
 as 

parameters for the objective and each 𝑗𝑡ℎ constraint, respectively, there is a limit 𝑑𝑗. For all 𝑘 =

1,2, . . 𝑝 and 𝑗 = 1,2, … 𝑞. Subjected to constraints such as: 

 𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗 (1.29) 

 𝑥𝑘 ≥ 0 (1.30) 

If minimization functions are given, then they can be converted into maximization types by 

multiplying them by -1. The purpose of the LPP is to maximize (or minimize) the objective 

function by determining the values of the choice variables 𝑥1, 𝑥2, . . 𝑥𝑝 that are consistent with all 

the restrictions. The objective function and restrictions in LPP are both linear. Production planning, 

resource allocation, transportation logistics, financial management, and an extensive number of 

other optimization purposes all make use of linear programming. 

1.4.2  Integer linear programming problem 

In most real-life applications, we need several units of products as decision variables to find out 

the best solution to optimize the target value. We cannot interpret the number of product units as a 

decimal or negative number; instead, they must be of the non-negative integer variety. We refer to 

this issue as an integer-linear programming problem. We provide mathematical representation of 

these problems such as: 
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𝑚𝑎𝑥 𝑓 = ∑𝑝𝑘𝑥𝑘

𝑛

𝑘=1

 
(1.31) 

For all 𝑘 = 1,2, . . 𝑝 and 𝑗 = 1,2, … 𝑞. Subjected to constraints as: 

 𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗 (1.32) 

 𝑥𝑘 ≥ 0 (1.33) 

 𝑥𝑘 𝜖 𝑍
+ ∪ 0 (1.34) 

1.4.3 Multi-objective linear programming problem 

When the number of goals in a linear programming problem becomes more than one, it will be a 

multi-objective linear programming problem. The following is the usual representation of a multi-

objective linear optimization problem:  

 
𝑚𝑎𝑥 𝑓𝑖 =∑𝑝𝑘

𝑖 𝑥𝑘

𝑛

𝑘=1

 
(1.35) 

For each goal, it is represented by 𝑓𝑖; for every choice variable 𝑥𝑘 with parameters 𝑝𝑘
𝑖  and 𝑐𝑘

𝑗
 for 

each 𝑖𝑡ℎ objective function and 𝑗𝑡ℎ restriction, respectively, there is a limit 𝑑𝑗. Let, 𝐹 =

(𝑓1, 𝑓2, … . . 𝑓𝑙) be a vector-valued function. For all 𝑖 = 1,2,3, . . 𝑙;  𝑘 = 1,2, . . 𝑟, and 𝑗 =

1,2, … 𝑞 constraints are defined as given in eq (1.29-1.30). 

1.4.4 Transportation problem 

Let us take p number of origins and q number of targets. 𝑥𝑟𝑠 are the number of units transported 

from the 𝑟𝑡ℎ origin to the 𝑠𝑡ℎ target. Let 𝑓𝑖 be the 𝑖𝑡ℎ goal from 𝑙 number of goals that we have to 

optimize.  

 

𝑚𝑎𝑥/𝑚𝑖𝑛 𝑓𝑖 =∑∑𝐶𝑟𝑠
𝑖

𝑞

𝑠=1

𝑥𝑟𝑠

𝑝

𝑟=1

 

(1.36) 

For all 𝑖 = 1,2,3, . . 𝑙, subjected to: 

Supply 

∑𝑥𝑟𝑠

𝑝

𝑟=1

= 𝑆𝑠;  ∀ 𝑠 = 1,2, . . 𝑞 

(1.37) 
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Demand 

∑𝑥𝑟𝑠

𝑞

𝑠=1

= 𝐷𝑟;  ∀ 𝑟 = 1,2, . . 𝑝 

(1.38) 

Non-negativity 𝑥𝑟𝑠 ≥ 0 (1.39) 

Balancing condition 

∑𝑆𝑟

𝑝

𝑟=1

=∑𝐷𝑠

𝑞

𝑠=1

 

(1.40) 

If the balanced conditions on the linear transportation problem have an acceptable solution, we 

will refer to the state of balance criterion as an if requirement. There are precisely 𝑝𝑞 variables 

and 𝑝 + 𝑞 constraints in a transportation problem. 

1.5 Organisation of Thesis 

Seven chapters make up the entire thesis, and here is a summary of them: 

Chapter 1 includes a brief introduction, and basic definitions of keywords used in the thesis, which 

contain fuzzy sets, extensions of fuzzy sets, and related operations. The thesis delves into the 

fundamental framework of linear optimization issues and expands these problems to encompass 

integer, fuzzy, and multi-objective optimization problems. Here, the basic structure of the standard 

transportation problem is defined. 

Chapter 2 covers research on fuzzy multi-objective optimization, methods for simplifying fuzzy 

numbers, fuzzy techniques for tackling multi-objective optimization, and advanced fuzzy methods 

such as intuitionistic and dual hesitant fuzzy approaches. It also outlines the research gaps that 

previous studies have identified, along with the research goals aimed at addressing them. To 

achieve the goals, it summarizes the study's chapters. 

Chapter 3 includes a classification of various fuzzy numbers based on the number of components 

on which the functional behaviour changes from the previous one. The chapter defines three types 

of fuzzy numbers. It provides a complete explanation of the icosikaitetragonal fuzzy number, a 

complex fuzzy number with 24 components. We also delve into the mathematical and geometric 

representations of all fuzzy numbers, regardless of their symmetry, linearity, or non-linearity. We 

discuss a variety of defuzzification techniques for all fuzzy numbers and define a generalized 
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approach. A real-life case study of a manufacturing problem provides a comparative analysis of all 

approaches, resulting in a conclusion. 

Chapter 4 delves into the various real-life areas that fuzzy theory can enhance. As a result, light-

period automation, which is under multi-criteria decision-making issues, can make use of fuzzy 

logic. When it comes to sustainability-focused multi-objective optimization problems in 

manufacturing, we can apply a preexisting fuzzy technique. It includes intuitionistic fuzzy 

methods, which improve upon fuzzy methods by incorporating non-membership functions. The 

results of the comparison study cover every conceivable combination of different membership and 

non-membership activities. Additionally, it covers the fuzzy methods that have been created using 

dual hesitant fuzzy sets. 

Chapter 5 includes fuzzy methods for optimizing several objectives, one of which is using a 

normalized distance function as the linear membership function. We expand this approach by 

adding non-linear membership functions that have curved shapes, like parabolic, hyperbolic, 

exponential, and sigmoidal. By improving an existing method and adding a non-membership 

function, we produce a novel intuitionistic fuzzy method. We define both linear and non-linear 

(best combination) functions using the intuitionistic fuzzy technique. The dual hesitant method, 

which combines the intuitionistic method with the hesitant fuzzy technique, produces superior 

results. It covers methods involving the optimal combination of non-linear functions resulting from 

previous discussion. 

Chapter 6 outlines various factors that are used to compare all the functions in the enhanced fuzzy 

approach with triangular fuzzy numbers. We achieve this by examining a real-life case study of 

transportation in a smart city. Real-life case studies in biomimetic and material science employ the 

extended approach. We then implement an enhanced intuitionistic approach with a linear and non-

linear nature, using intuitionistic triangular fuzzy numbers, on a real-life manufacturing problem 

and compare it with existing techniques. The chapter provides a real-world case study of a 

manufacturing problem and compares the enhanced dual-hesitant fuzzy approach with previous 

ones. It also provides a comparative study to showcase the uniqueness of our work. 

Chapter 7 concludes this thesis. It outlines the goal of the work, and the methods used to achieve 

it. It also provides directions for new researchers to further study in this area.  
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Chapter 2  

Literature Review 

For multi-objective linear programming problems (MOLPP) to represent real-life decision-making 

situations effectively, it is necessary to include uncertainty and vagueness. Beginning with real-

world examples of fuzzy multi-objective optimization problems, this chapter shows how 

uncertainty is relevant in many different fields. The work continues by discussing defuzzification 

methods, which reduce complex problems to straightforward multi-objective optimization issues. 

These methods are essential for turning fuzzy, imprecise data into clear, actionable numbers. 

Simple, intuitionistic, and dual hesitant fuzzy techniques—which offer more flexible 

representations of uncertainty to manage diversity of objectives—are included in the fuzzy-based 

approaches reviewed and categorized in the chapter. We formulate particular objectives for the 

current study based on the identification of research gaps that have been uncovered by this 

extensive evaluation. An organized summary is provided at the end of the chapter to help the reader 

understand the concepts clearly and keep track of them. The research presented in the following 

chapters builds on the groundwork laid out in Figure 2.1, which explains the systematic flow and 

aids in comprehending the necessity of sophisticated fuzzy optimization approaches. 

 

Figure 2.1: Conceptual flow and organization of the chapter 
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2.1 Review of Real Life Fuzzy Multi-Objective Optimization Problems  

Maximizing or minimizing a linear target function within the limitations of a set of linear 

restrictions is known as a linear programming problem (LPP), a basic technique in the field of 

operations research. A major step forward in effectively addressing LPP was the simplex approach, 

which was developed by George Dantzig, according to [25]. It entails navigating through the 

permissible region's points until the optimal solution emerges. John von Neumann's works in 

duality theory and game theory established the conceptual foundations of LPP [26]. Many other 

areas have found uses for LPP throughout the years, including transportation, manufacturing, and 

inventory problems [27]-[29]. It is worth mentioning that in 1984, Karmarkar [30] devised an 

algorithm to improve the computational speed by solving LPP in time with polynomials. According 

to article [31], the researchers Kuhn and Tucker initially addressed the vector-maximization issue, 

which is the origin of multi-objective optimization involving more than one objective.  

 

Figure 2.2: Classification of multi-objective optimization approaches 

Multiple academics and professionals in operations research, mathematics, and engineering have 

contributed to the creation of MOO [32]. According to [33], [34], many issues in economics and 

engineering, such as the compromise between value and efficiency, involve multiple goals that are 

not binary. Recently, chemical engineers and manufacturers have increasingly used multi-objective 

optimization. Some of which include [35] chemical recovery, [36] heat treatment, [37] incomplete 
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oxidation, etc. Solving an MOO issue is more complicated than solving a traditional single-

objective optimization problem because there is more than one optimal solution. Finding an 

optimal solution to a problem with many objectives has, thus, been described differently by various 

scholars. Using various philosophies, we can discover the best outcomes. Different non-fuzzy 

approaches are classified into two categories, as shown in Figure 2.2, based on DM’s involvement 

in solution selection [38], [39]. 

One consists of methods that do not include the decision-maker’s preference [40]. The second 

method incorporates preference, further subdividing it into three types: priori, posteriori, and 

interactive. Priori considers the preferences of the DM before initiating the process, utilizing 

various approaches such as goal programming [41], [42], lexicographic order [43], to find 

solutions. Posteriori, which includes methods such as the scalarization method [44]-[47], ε-

constraint, and evolutionary algorithms (EAs) [48]-[50], considers preference after the process has 

been completed. Lastly, the interactive method takes preference into account at each iteration level, 

with various methods incorporating different preference parameters [51], [52]. The weighted-sum 

approach uses a weighted vector to aggregate all issues into a single problem. Usually, we set the 

sum of weights to 1. Despite the weighted-sum method's user-friendliness and simplicity, it comes 

with two disadvantages. To begin, choosing weights for issues of varying sizes is a challenge [53], 

[54]. Finding a compromise solution will thus be biased. Additionally, if the optimized problem is 

not convex, an issue can arise. The ε-constraint method is employed to conquer challenges in 

multiple non-convex issues. Only one issue is optimized using the ε-constraint approach, while the 

remaining issues are turned into limits. For every problem, the Îµ vector is found and the limit is 

applied. This method's optimization of all issues leads to the optimal solution for specific Îµ 

vectors. By adjusting Îµ, we can get multiple optimal solutions. One drawback of this approach is 

that it does not work for specific Îµ vectors [8], [9]. Algorithms that employ evolution follow the 

lead of evolution and natural selection to find the best possible answers. One drawback of EAs is 

that the algorithm's parameters, such as population size, variation and crossover rates, selection 

process, and termination criteria, can have a significant impact on how well they work. Finding 

the optimal values for these parameters to achieve high performance in a variety of problem areas 

is not an easy or quick task. Goal programming streamlines the optimization problem by 

emphasizing the need to minimize each objective's deviation from current levels. Its limitation is 
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that it might not always discover Pareto-optimal responses, depending on the target values chosen. 

Similarly, all approaches have some limitations with their benefits, taking into consideration [55], 

[56]. One of these approaches' most preferred limitations is that they do not consider uncertainty, 

which is the most essential parameter for real-life studies. Fuzzy approaches remove the 

limitations. Table 2.1 discusses some real-life case studies that MOO helps to resolve using a 

variety of fuzzy and non-fuzzy methods. 

Table 2.1: Various fuzzy and non-fuzzy approaches for MOO problems in real-life case studies 

Ref Intuitionistic 

fuzzy approach 

Non-fuzzy 

approach 

Linear 

membership/non-

membership 

function 

Non-Linear 

membership/non-

membership 

function 

Case study area 

[57] ⨯ NSGA-II ⨯  ✔ Industrial 

[58] ⨯ Goal 

Programming 
 ✔  ⨯ Agriculture 

[59] ⨯ GRA ✔ ⨯ Transportation 

[60] ⨯ Weighted sum ⨯ ✔ Energy storage 

[61] ✔ ⨯ ✔ ⨯ Three bar truss 

[62] ✔ GA ✔ ✔ Reliability 

[63] ✔ ⨯ ✔ ⨯ Irrigation 

[64] ⨯ ⨯ ✔ ✔ Transportation 

[65] ✔ ⨯ ⨯ ✔ Three bar truss 

[66], 

[67] 
✔ ⨯ ⨯ ✔ Designing 

[67] ✔ ⨯ ✔ ✔ Production planning 

[68] ⨯ ⨯ ✔ ✔ Production planning 

[69] ✔ ⨯ ✔ ⨯ Portfolio selection 

[70] ✔ ⨯ ✔ ⨯ Transportation 

problem 

It is common, though, for individuals making decisions to be unaware of the exact value of a 

parameter. Furthermore, numerous optimization problems [71]-[74] have shown the presence of 

parameters with uncertain values, known as fuzzy programming problems. Mathematical 

modelling is one of several fields that make heavy use of linear programming problems with 

uncertain choice variables or factors.  
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Figure 2.3: Various types and groupings of fuzzy linear programming problems 

According to [75], one should interpret the variables and parameters in a fuzzy linear programming 

problem as fuzzy numbers. The literature has published seven main groups of fuzzy linear 

programming models, as shown in Figure 2.3. These are variables treated as fuzzy numbers 

(FVLPP), parameters treated as fuzzy numbers (FNLPP), and both fully fuzzy linear programming 

problems (FFLPP). They are all subclasses of the larger fuzzy linear programming problem 

(FLPP). 

2.2 Review of Defuzzification Techniques 

When certain membership procedure requirements are considered, fuzzy sets transform into fuzzy 

numbers. The factors' representations might take several forms, reflecting the variety of real-world 

scenarios. Research publications [76], [77] provide a variety of pictures of fuzzy numbers with 

triangular, trapezoidal, and pentagonal shapes. It becomes increasingly challenging to handle the 

situations when the uncertainty of data increases and data ranges expand [78]. The uncertainty 

concept inspires Icosikaitetragonal fuzzy numbers, which express difficulties with twenty-four 

elements due to incomplete knowledge and ambiguity [79]. Many studies exist to address the 

uncertainty associated with the objective function’s coefficients. Some of these studies convert a 

single objective into multiple objectives, utilizing strategies such as pushing the critical points in 
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the right direction [80], establishing laxicographic order relations [81], [82] using rank correlation 

are defined for simple fuzzy numbers. Other techniques involve using defuzzification techniques 

to convert these fuzzy numbers into crisp ones. Similarly, there are various methods to manage the 

uncertainty associated with constraints. One approach involves separating the components from 

the inequalities, while another involves applying defuzzification techniques. "Defuzzification" 

refers to the process of converting fuzzy deduction results into more precise numerical values. It 

has numerous applications in operational research and is, therefore, an essential component of 

fuzzy logic. You can use the centroid approach [83], the mean of maxima, the bisector of area, the 

smallest of maxima, graded mean integral values [84], and a variety of other methods [85] to 

eliminate fuzzy environment. Studies [78], [86], [87] discuss various defuzzification techniques 

for both simple and complex fuzzy numbers. These algorithms cannot guarantee defuzzified value 

accuracy in all cases. We chose the centroid method, the mean of the α-cut, and the bounded area 

approach for this study because they are the most accurate for both linear and non-linear 

generalized fuzzy numbers with uniformity according to [88]. Some studies require comparisons 

of different fuzzy numbers, like game theory. To address these situations, researchers introduce 

various ranking functions for different fuzzy numbers. Table 2.2 discusses some of these ranking 

functions or defuzzification techniques. 

Table 2.2: Studies with various defuzzification and ranking functions for different fuzzy numbers 

Work Fuzzy number Ranking function/ Defuzzification technique 

[89] Triangular, Trapezoidal Magnitude  

[90] Ordered fuzzy number Centre of circles 

[91] Triangular Signed distance 

[92] Triangular, Trapezoidal Graded Mean Integration Value 

[93] Triangular, Trapezoidal, Pentagonal Signed distance, Graded Mean 

[94] Triangular, Trapezoidal max-membership, centroid, weighted-average and mean-

max 

[95] Hexagonal Centroid, α-cut 

[88] Hexadecagonal Centroid, α-cut, average of removal of bounded area, 

bounded area 

2.3 Review of Fuzzy Techniques for MOLPP 

Fuzzy methods for multi-objective optimization are a big step forward in applying fuzzy set theory 

to complicated decision-making situations with a lot of competing goals. With fuzzy optimization, 

decision-makers can express and implement personal beliefs and uncertainties in the optimization 



25 

 

procedure, providing a natural and simple solution to handle the choices and uncertainties 

associated with multi-objective choices [96]. For each target, there is a proposed linear 

membership function to specify fuzzy goals. The linear role of membership has many real-world 

uses due to its simplicity and ease of implementation. To provide a structure to deal with ambiguity 

in multifaceted decision-making, Zimmermann's method reduced the fuzzy MOLPP issue to a 

clear single-objective problem by employing the max-min operator. The incorporation of fuzzy set 

theory into multi-objective optimization frameworks has been the subject of a significant amount 

of research, with many papers offering novel algorithms and approaches that successfully address 

a wide range of practical problems. These methods attempt to deal with the complexity and 

unpredictability of decision-making contexts, including many objectives, by utilizing fuzzy 

association operators and fuzzy logic. Newer studies have recognized the importance of both linear 

and non-linear participation functions. Linear functions are used to explain how goals and 

solutions interact. These formulas are not suited to the problem landscape because they do not 

capture the complex and nonlinear nature of goals. Many studies have investigated fuzzy multi-

objective optimization schemes that use non-linear relationship functions [97], [98] to improve the 

accuracy of the solutions and the robustness of the algorithms. For more studies, please refer to 

Table 2.3. Some relevant studies [99]-[101] offer computer programs to fix multi-objective 

optimization problems that come up because of these complex fuzzy methods. 

Table 2.3: Different nature of membership functions for fuzzy approach 

Study Nature of membership function Shape of membership function 

[102] Linear Linear 

[103] Non-linear Hyperbolic 

[104] Non-linear Inverse hyperbolic 

[105] Non-linear Exponential 

[106] Non-linear Sigmoid 

[107] Linear Piecewise 

2.4 Review of Intuitionistic Fuzzy Techniques for MOLPP 

The advantage of intuitionistic fuzzy sets is that the level of dissatisfaction is considered in addition 

to the degree of adoption, as it also takes decision-makers' inability into account. Angelov [108], 

extends the concept of fuzzy optimization to intuitionistic fuzzy optimization, focusing on 

maximizing adoption and minimizing rejection. Because intuitionistic fuzzy optimization has so 
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many applications in a wide range of issues related to optimization, researchers have been 

interested in the theory and practice of this optimization technique.  

 

Figure 2.4: Generalized steps for the intuitionistic fuzzy approach 

In situations where traditional fuzzy sets are insufficient to describe an uncertain set, one 

alternative approach is to utilize the concept of an IFS. IFS theory is just fuzzy set theory with a 

wider scope. Given the radically deficient and unpredictable nature of human judgment and 

comprehension, it is reasonable to assume that IFS could mimic these processes. In 2016, Sarkar 

and Roy [109] introduced an Intuitionistic Fuzzy Optimization (IFO) method, shown in Figure 2.4. 

It takes into account the functions that are not members and are not linear. In this study, researchers 

examined two target functions as constraints: bridge weight and displacement of the loaded joint, 

with stress in the truss components serving as a limiting factor. Li (2008) [110] created a way to 

solve problems with more than one attribute in an intuitive fuzzy setting by using linear 

programming techniques for multidimensional analysis of preference (LINMAP). Through 

numerical examples, the author demonstrates the use of LINMAP's ability to address multiple-

attribute problems in both fuzzy and crisp environments, including Atanassov's intuitionistic fuzzy 
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environment. Hernandez and Uddameri (2010) used a multi-criteria selection methodology based 

on Atanassov's Intuitionistic Fuzzy Sets (A-IFS) concept to determine agricultural optimal 

management methods [111]. They demonstrate A-IFS through a case analysis in the South Texas, 

USA, region. In the end, the solution ranks the options and determines that "brush control" and 

"irrigation scheduling" were the best and worst choices, respectively. Table 2.4 provides an 

estimate of the approach's application areas. 

Table 2.4: Various intuitionistic fuzzy approaches in different real-life sectors 

Study Nature of membership function Nature of non-membership function Application area 

[112] Linear Linear Irrigation system 

[113] Linear & Non-linear Linear & Non-linear Production planning 

[114] Linear Linear Transportation 

planning 

[115] Linear Linear Structural modelling 

[116] Linear Linear Agriculture production 

[117] Linear Linear Portfolio selection 

[118] Linear Linear Vendor selection 

2.5 Review of Dual Hesitant Fuzzy Techniques for MOLPP 

Contrary to popular belief, specialists do not agree on the optimal values for optimizing problem's 

factors; as a result, a single degree of participation is insufficient to solve the optimization issue 

effectively; instead, an assortment of parameter grades is required. In this case, hesitant fuzzy sets, 

not intuitionistic or fuzzy sets, are crucial [119]. When it comes to decision-making, both 

intuitionistic and hesitant fuzzy sets work well with parallel relationship functions [120]. Using 

dual hesitant fuzzy sets, which consider the fact that the two category values don't behave in a 

straight line, adds more detail to the model for ambiguity and is a significant improvement [121]. 

This technique provides a more robust structure to express and resolve optimization issues with 

multiple goals, particularly in cases where the uncertainty is complex and multifaceted. 

2.6 Research Gaps from Existing Studies 

While several studies have provided defuzzification techniques for various fuzzy numbers and 

various fuzzy approaches using simple and extended fuzzy sets to solve fuzzy multi-objective 

optimization problems, there are still several research gaps that need to be filled to fully understand 

fuzzy set theory in a multi-objective optimization environment. Some of them are given below: 
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• Conventional defuzzification strategies, including the centroid area, mean of α-cut, and 

bounded area, have been around for a while, but they haven't been tested on complex 

imprecise numbers like icosikaitetragonal fuzzy numbers. 

• Due to the substantial variation in the values of the functions, the simple distance function 

from the ideal solution for association functions is not effective. 

• Non-linear association functions can handle the complexity present in real-world, multi-

objective optimization problems. As a result, it is necessary to associate these functions 

with modified approaches. 

• No study has ever taken an intuitionistic fuzzy framework that depicts all real-world 

scenarios and methodically looked at every possible combination of various linear and non-

linear functions for membership and non-membership functions. 

2.7 Objectives of the Research 

The purpose of this thesis is to conduct a thorough review of all existing studies, identify any gaps, 

and develop new, enhanced fuzzy techniques for solving multi-objective optimization problems 

using various membership functions and fuzzy numbers. Then, we have to apply these new 

techniques to various real-life applications, conducting comparative studies between the results 

obtained from these techniques and those from existing technologies. The following list outlines 

the primary goals of the thesis: 

• Study and analyze the existing optimization techniques in a fuzzy, multi-objective 

optimization environment. 

• Develop a range of optimization strategies for multi-objective optimization problems 

employing a variety of membership functions and fuzzy numbers to improve ideal 

outcomes. 

• Apply effective methods to real-world circumstances and compare them to the methods 

now in use, as well as come up with situation-based strategies for addressing multi-

objective optimization difficulties in a fuzzy or uncertain environment. 
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Chapter 3  

Classification of Various Fuzzy Numbers with Defuzzification 

Techniques 

Defuzzification techniques are known to be the initial step in solving fuzzy multi-objective 

optimization issues by reducing them to simpler optimization problems. Numerous defuzzification 

strategies exist for basic fuzzy numbers, as discussed in the previous chapter. However, as real-

world issues have become more complex and uncertain, new forms of advanced fuzzy numbers 

have emerged. To accurately characterize and solve these complicated fuzzy numbers, broad and 

flexible defuzzification algorithms are required.  

Consequently, this chapter starts with describing different fuzzy number representations and sorts 

them according to the number of components they have. Then we discuss here three of the most 

preferred defuzzification techniques for all these fuzzy numbers. After that, an icosikaitetragonal 

complex fuzzy number, just found, is appropriately described. We use an icosikaitetragonal fuzzy 

number in a real-life case study of the manufacturing department to validate the effectiveness of 

all discussed defuzzification techniques. This chapter concludes based on these results. From fuzzy 

number categorization and representation to defuzzification technique application and case study 

evaluation, Figure 3.1 lays out the chapter's structure to help with understanding and organizing. 

This image serves as a visual roadmap to guide readers through the theoretical advancements and 

practical implementations discussed in this chapter.  

 

Figure 3.1: Conceptual flow and organization of the chapter 
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3.1 Introduction 

Once some properties are added, a fuzzy set can be transformed into a fuzzy number. We can 

categorize the fuzzy numbers into different kinds based on their distinct characteristics. Here, we 

categorize fuzzy numbers based on the number of components that change their behaviour. We 

categorize fuzzy numbers into two types: one with odd-numbered components such as triangular, 

pentagonal, heptagonal, etc., and another with even-numbered components. We further sub-

categorize even-numbered fuzzy numbers into two types: those with multiples of 4, such as 

tetragonal, octagonal, etc., and those without multiples of 4, such as hexagonal, decagonal, etc. 

Depending on the situation, uncertainty can be present as fuzzy numbers from any of these 

categories. Researchers have conducted defuzzification studies for simple fuzzy numbers, or those 

with fewer components, to address this uncertainty. However, complex fuzzy numbers have not 

been the focus of these studies. So, a generalized study is required to handle any type of situation. 

Although fuzzy numbers can exhibit both symmetric and asymmetric behaviour, here we will 

discuss only symmetric fuzzy numbers. With the help of existing approaches, we have developed 

mathematical formulations and representations for each fuzzy number, explaining various 

defuzzification techniques for them. We use a real-life case study of manufacturing to demonstrate 

the novelty of our work and conduct a comparative analysis among various techniques based on a 

specific situation. The introduction of a new fuzzy number with 24 constituent elements occurred 

recently. Rare studies exist to provide information about this fuzzy number. Therefore, we have 

conducted a thorough analysis of its representation and the methods that have been used to 

defuzzify it. We conduct the case study in the context of this fuzzy number. 

3.2 Fuzzy Number with Odd Numbered Components 

The membership function for such types of fuzzy numbers can be mathematically represented by 

the function defined in eq (3.1). The graphical representation of the membership function is defined 

by (𝑛 − 1) intervals. Its behavior is increasing up to (
𝑛+1

2
)
𝑡ℎ

 component, then decreasing, but the 

slope of the increment can be different for various intervals. If the fuzzy number is non-linear as 

shown in Figure 3.2, then the change rate in each interval will not be constant. 
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(3.1) 

When 𝑝 = 1 in eq (3.1), the fuzzy number behaves linearly as shown in Figure 3.3; otherwise, it 

behaves non-linearly.  

 

Figure 3.2: Non-linear symmetric fuzzy number with an 

odd number of components 

 

Figure 3.3: Linear symmetric fuzzy number with an odd 

number of components 

3.3 Fuzzy Number with Even Numbered Components (Not multiple of 4) 

Out of (𝑛 − 1) intervals of the function, the function's behavior is increasing up upto (
𝑛

2
− 1)

𝑡ℎ

 

intervals, then constant for one interval. The function decreases from (
𝑛

2
+ 1)

𝑡ℎ

interval to 

(𝑛 − 1)𝑡ℎ interval. In the case of a non-linear fuzzy number, the rate of change in every interval is 
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not constant. The mathematical representation is given through eq (3.2) with 𝑝 =  1, then the fuzzy 

number shows linear behavior as in Figure 3.5; otherwise, it is non-linear as in Figure 3.4. 
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2

≤ 𝑥 ≤ 𝑡𝑛+4
2

… …

(
2

𝑛 − 1
) (

𝑡𝑛−2 − 𝑥

𝑡𝑛−1 − 𝑡𝑛−2
)
𝑝

𝑖𝑓 𝑡𝑛−2 ≤ 𝑥 ≤ 𝑡𝑛−1

(
2

𝑛 − 1
) (

𝑡𝑛−1 − 𝑥

𝑡𝑛 − 𝑡𝑛−1
)
𝑝

𝑖𝑓 𝑡𝑛−1 ≤ 𝑥 ≤ 𝑡𝑛

0 𝑖𝑓 𝑥 ≥ 𝑡𝑛

 

 

 

 

 

 

 

(3.2) 

 

Figure 3.4: Non-linear symmetric fuzzy number with an 

even number (not multiple of 4) of components 

 

Figure 3.5: Linear symmetric fuzzy number with an even 

number (not multiple of 4) of components

3.4 Fuzzy Number with Even Numbered Components (multiple of 4) 

From the first interval of (𝑛 − 1) intervals, the membership function increases, becomes constant 

in the next interval, and then the same pattern increases and decreases. This pattern continues until 
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the (
𝑛+2

2
)
𝑡ℎ

 component, at which point the function exhibits decreasing behavior instead of 

increasing; otherwise, it remains unchanged.  

 

Figure 3.6: Non-linear symmetric fuzzy number with an 

even number (multiple of 4) of components 

 

Figure 3.7: Linear symmetric fuzzy number with an even 

number (multiple of 4) of components 

The mathematical formulation of the membership function is given below with eq (3.3): 

 

ḿ(𝑥) =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

0 𝑖𝑓 𝑥 < 𝑡1

(
2

𝑛 − 1
) (

𝑥 − 𝑡1

𝑡2 − 𝑡1
)
𝑝

𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

1 𝑖𝑓 𝑥 ≤ 𝑡3

(
2

𝑛 − 1
) (

𝑥 − 𝑡2

𝑡3 − 𝑡2
)
𝑝

𝑖𝑓 𝑡3 ≤ 𝑥 ≤ 𝑡4

1 𝑖𝑓 𝑡4 ≤ 𝑥 ≤ 𝑡5

… . . .

(
2

𝑛 − 1
)(

𝑥 − 𝑡𝑛−2
2

𝑡𝑛
2
− 𝑡𝑛−2

2

)

𝑝

𝑖𝑓 𝑡𝑛−2
2

≤ 𝑥 ≤ 𝑡𝑛
2

1 𝑖𝑓 𝑡𝑛
2
≤ 𝑥 ≤ 𝑡𝑛+2

2

(
2

𝑛 − 1
)(

𝑡𝑛+4
2

− 𝑥

𝑡𝑛+4
2

− 𝑡𝑛+2
2

)

𝑝

𝑖𝑓 𝑡𝑛+2
2

≤ 𝑥 ≤ 𝑡𝑛+4
2

… …

1 𝑖𝑓 𝑡𝑛−4 ≤ 𝑥 ≤ 𝑡𝑛−3

(
2

𝑛 − 1
) (

𝑡𝑛−2 − 𝑥

𝑡𝑛−1 − 𝑡𝑛−2
)
𝑝

𝑖𝑓 𝑡𝑛−3 ≤ 𝑥 ≤ 𝑡𝑛−2

1 𝑖𝑓 𝑡𝑛−2 ≤ 𝑥 ≤ 𝑡𝑛−1

(
2

𝑛 − 1
) (

𝑡𝑛−1 − 𝑥

𝑡𝑛 − 𝑡𝑛−1
)
𝑝

𝑖𝑓 𝑡𝑛−1 ≤ 𝑥 ≤ 𝑡𝑛

0 𝑖𝑓 𝑥 ≥ 𝑡𝑛

 

 

 

 

 

 

 

(3.3) 
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In the case of a non-linear fuzzy number as in Figure 3.6, the rate of change in every interval of a 

non-linear fuzzy number is not constant. If in eq (3.3), 𝑝 = 1; the rate of change becomes constant 

as shown in Figure 3.7. 

3.5 Icosikaitetragonal Fuzzy Number 

The 24 defining components of the icosikaitetragonal fuzzy number make them unique among all 

existing fuzzy numbers. For modelling complicated real-world situations where accuracy is 

paramount, this number provides a fine-grained and thorough depiction of uncertainty.  

 

ḿ(x)=

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 𝑖𝑓 𝑥 < 𝑡1

(
1

6
) (

𝑥−𝑡1

𝑡2−𝑡1
)
𝑝

𝑖𝑓 𝑡1 ≤ 𝑥 ≤ 𝑡2

1/6 𝑖𝑓 𝑡2 ≤ 𝑥 ≤ 𝑡3
1

6
+ (

1

6
) (

𝑥−𝑡3

𝑡4−𝑡3
)
𝑝

𝑖𝑓 𝑡3 ≤ 𝑥 ≤ 𝑡4

2/6 𝑖𝑓 𝑡4 ≤ 𝑥 ≤ 𝑡5
2

6
+ (

1

6
) (

𝑥−𝑡5

𝑡6−𝑡5
)
𝑝

𝑖𝑓 𝑡5 ≤ 𝑥 ≤ 𝑡6

3/6 𝑖𝑓 𝑡6 ≤ 𝑥 ≤ 𝑡7
3

6
+ (

1

6
) (

𝑥−𝑡7

𝑡8−𝑡7
)
𝑝

𝑖𝑓 𝑡7 ≤ 𝑥 ≤ 𝑡8

4/6 𝑖𝑓 𝑡8 ≤ 𝑥 ≤ 𝑡9
4

6
+ (

1

6
) (

𝑥−𝑡9

𝑡10−𝑡9
)
𝑝

𝑖𝑓 𝑡9 ≤ 𝑥 ≤ 𝑡10

5/6 𝑖𝑓 𝑡10 ≤ 𝑥 ≤ 𝑡11
5

6
+ (

1

6
) (

𝑥−𝑡11

𝑡12−𝑡11
)
𝑝

𝑖𝑓 𝑡11 ≤ 𝑥 ≤ 𝑡12

1 𝑖𝑓 𝑡12 ≤ 𝑥 ≤ 𝑡13
5

6
+ (

1

6
) (

𝑡14−𝑥

𝑡14−𝑡13
)
𝑝

𝑖𝑓 𝑡13 ≤ 𝑥 ≤ 𝑡14

5/6 𝑖𝑓 𝑡14 ≤ 𝑥 ≥ 𝑡15
4

6
+ (

1

6
) (

𝑡16−𝑥

𝑡16−𝑡15
)
𝑝

𝑖𝑓 𝑡15 ≤ 𝑥 ≤ 𝑡16

4/6 𝑖𝑓 𝑡16 ≤ 𝑥 ≤ 𝑡17
3

6
+ (

1

6
) (

𝑡18−𝑥

𝑡18−𝑡17
)
𝑝

𝑖𝑓 𝑡17 ≤ 𝑥 ≤ 𝑡18

3/6 𝑖𝑓 𝑡18 ≤ 𝑥 ≤ 𝑡19
2

6
+ (

1

6
) (

𝑡20−𝑥

𝑡20−𝑡19
)
𝑝

𝑖𝑓 𝑡19 ≤ 𝑥 ≤ 𝑡20

2/6 𝑖𝑓 𝑡20 ≤ 𝑥 ≤ 𝑡21
1

6
+ (

1

6
) (

𝑡22−𝑥

𝑡22−𝑡21
)
𝑝

𝑖𝑓 𝑡21 ≤ 𝑥 ≤ 𝑡22

1/6 𝑖𝑓 𝑡22 ≤ 𝑥 ≤ 𝑡23

(
1

6
) (

𝑡24−𝑥

𝑡24−𝑡23
)
𝑝

𝑖𝑓 𝑡23 ≤ 𝑥 ≤ 𝑡24

0 𝑖𝑓 𝑥 ≥ 𝑡24

 

 

 

 

 

 

 

 

 

 

 (3.4) 
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24 is a multiple of 4, so it falls under the second category with the second subcategory. 

Consequently, we can derive their non-linear membership function from eq (3.3). If they are non-

linear, their geometric expression can be represented through Figure 3.8, and their mathematical 

representation via eq (3.4). The transformation into linear expressions, as depicted in Figure 3.9, 

takes place when we apply p=1 into eq (3.4). 

 

Figure 3.8: Non-linear representation of a symmetric 

icosikaitetragonal fuzzy number 

 

Figure 3.9: Linear representation of a symmetric 

icosikaitetragonal fuzzy number 

3.6 Defuzzification  

The bounded area method, centroid method, and mean of α-cut are the three defuzzification 

strategies that we have used in this research. We chose these methods due to their superior accuracy 

[88]. Techniques for defuzzification are defined for all of the categories of fuzzy numbers with 

linear nature discussed in sections 3.2, 3.3, and 3.4, considering cases 1, 2, and 3, respectively. 

3.6.1 Centroid of area method 

This technique focuses on the membership function’s centre of gravity to get a discrete value. 

Many smaller areas make up the overall dispersion of the membership function, which represents 

the entire control operation. To extract the defuzzified number from a continuous, ambiguous set, 

one must first determine the area and centre of each sub-region and then add all these parts together. 

In the context of continuous membership functions, the COA-defuzzified value 𝑥∗ is characterized 

as:  
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𝑥∗ =

∑ 𝑡𝑘ḿ(𝑥)𝑘
𝑛
𝑘=1

∑ ḿ(𝑥)𝑘
𝑛
𝑘=1

 
(3.5) 

Here 𝑡𝑘 indicates the sample element, ḿ(𝑥)𝑘 is the membership function, and n represents the 

number of elements in the sample. For continuous membership function, 𝑥∗ is defined as: 

 
𝑥∗ =

∫𝑥ḿ(𝑥)𝑑𝑥

∫ḿ(𝑥)𝑑𝑥
 

(3.6) 

• Case 1  

∫𝑥ḿ(𝑥)𝑑𝑥

=

(𝑡𝑛
2 + 2𝑡𝑛−1

2 +⋯+ 2𝑡𝑛+3
2

2 + 𝑡𝑛+1
2

2 + 𝑡𝑛+1
2
𝑡𝑛+3
2
+ 𝑡𝑛+3

2
𝑡𝑛+5
2
+. . +𝑡𝑛−1𝑡𝑛)

3(𝑛 − 1)

−

(𝑡1
2 + 2𝑡2

2 +⋯+ 2𝑡𝑛−1
2

2 + 𝑡𝑛+1
2

2 + 𝑡𝑛−1
2
𝑡𝑛+1
2
+ 𝑡𝑛−1

2
𝑡𝑛−3
2
+. . +𝑡1𝑡2)

3(𝑛 − 1)
 

 

 

(3.7) 

∫ḿ(𝑥)𝑑𝑥 =
(𝑡𝑛 + 2𝑡𝑛−1 +⋯+ 2𝑡𝑛+3

2
+ 2𝑡𝑛−1

2
+. . +2𝑡2 + 𝑡1)

(𝑛 − 1)
 

(3.8) 

• Case 2 

∫𝑥ḿ(𝑥)𝑑𝑥

=

(𝑡𝑛
2 + 2𝑡𝑛−1

2 +⋯+ 2𝑡𝑛
2
+2

2 + 𝑡𝑛
2
+1

2 + 𝑡𝑛
2
+2
𝑡𝑛
2
+1
+ 𝑡𝑛

2
+3
𝑡𝑛
2
+2
+. . +𝑡𝑛−1𝑡𝑛)

3(𝑛 − 2)

−

(𝑡1
2 + 2𝑡2

2 +⋯+ 2𝑡𝑛
2
−1

2 + 𝑡𝑛
2

2 + 𝑡𝑛
2
𝑡𝑛
2
−1
+ 𝑡𝑛

2
−1
𝑡𝑛
2
−2
+. . +𝑡1𝑡2)

3(𝑛 − 2)
 

 

 

(3.9) 

∫ḿ(𝑥)𝑑𝑥

=
(𝑡𝑛 + 2𝑡𝑛−1 +⋯2𝑡𝑛

2
+2
+ 𝑡𝑛

2
+1
+ 𝑡𝑛

2
+ 2𝑡𝑛

2
−1
+ 2𝑡𝑛

2
−2
+. . +2𝑡2 + 𝑡1).

(𝑛 − 2)
 

 

(3.10) 
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• Case 3 

∫𝑥ḿ(𝑥)𝑑𝑥

=

(𝑡𝑛
2 + 𝑡𝑛−1

2 +⋯+ 𝑡𝑛
2
+2

2 + 𝑡𝑛
2
+1

2 + 𝑡𝑛
2
+1
𝑡𝑛
2
+2
+ 𝑡𝑛

2
+3
𝑡𝑛
2
+4
+. . +𝑡𝑛−1𝑡𝑛)

6𝑛
4

−

(𝑡1
2 + 𝑡2

2 +⋯+ 𝑡𝑛
2
−1

2 + 𝑡𝑛
2

2 + 𝑡𝑛
2
𝑡𝑛
2
−1
+ 𝑡𝑛

2
−2
𝑡𝑛
2
−3
+. . +𝑡1𝑡2)

6𝑛
4

 

 

 

(3.11) 

∫ḿ(𝑥)𝑑𝑥 =
(𝑡𝑛 + 𝑡𝑛−1 +⋯+ 𝑡𝑛

2
+ 𝑡𝑛

2
−1
+. . +𝑡2 + 𝑡1).

𝑛
2

 
(3.12) 

3.6.2 Mean of 𝜶-cut method 

The 𝛼-cut of a fuzzy number is the collection of all the elements of the fuzzy number whose 

membership degree is greater than or equal to 𝛼. 𝛼 −cut is categorized as left 𝛼 −cut collected 

from left of the center of the domain and right 𝛼 −cut collected from the right of the center of 

domain. Appendix A provides a mathematical definition for the left 𝛼 -cut and the right 𝛼 -cut for 

all categories of fuzzy numbers. We gather all the collections and then calculate the average of 

these collections for all 𝛼𝜖[0,1], presenting the results mathematically: 

 
𝑥∗ = ∫

(𝐿−1(𝛼) + 𝑅−1(𝛼))

2

1

𝛼=0

𝑑𝛼 
(3.13) 

• Case 1 

 

𝑥∗ =
(𝑡𝑛 + 2𝑡𝑛−1 +⋯+ 2𝑡𝑛+1

2
+ 2𝑡𝑛−1

2
+. . +2𝑡2 + 𝑡1)

2(𝑛 − 1)
 

(3.14) 

• Case 2 

 
𝑥∗ =

(𝑡𝑛 + 2𝑡𝑛−1 +⋯2𝑡𝑛
2
+2
+ 𝑡𝑛

2
+1
+ 𝑡𝑛

2
+ 2𝑡𝑛

2
−1
. . +2𝑡2 + 𝑡1)

2(𝑛 − 2)
 

(3.15) 
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• Case 3 

 
𝑥∗ =

(𝑡𝑛 + 𝑡𝑛−1 +⋯𝑡𝑛
2
+2
+ 𝑡𝑛

2
+1
+ 𝑡𝑛

2
+ 𝑡𝑛

2
−1
. . +𝑡2 + 𝑡1)

𝑛
 

(3.16) 

3.6.3 Bounded area method 

The defuzzification process in this case involves calculating the mean of the areas. We first 

calculate the area for each 𝑖𝑡ℎ trapezium. Next, we calculate the mean of all these areas. The 

mathematical formulation for mean value is given below: 

 
𝑥∗ =

∑𝐴𝑖
|𝑖|

 
(3.17) 

• Case 1 

 

𝑥∗ =
(𝑡𝑛 + 2𝑡𝑛−1 +⋯− 2𝑡𝑛−1

2
+ 2𝑡𝑛+3

2
−. . −2𝑡2 − 𝑡1)

(𝑛 − 1)
 

(3.18) 

• Case 2 

 
𝑥∗ =

(𝑡𝑛 + 2𝑡𝑛−1 +⋯2𝑡𝑛
2
+2
+ 𝑡𝑛

2
+1
− 𝑡𝑛

2
− 2𝑡𝑛

2
−1
. . −2𝑡2 − 𝑡1)

(𝑛 − 1)
 

(3.19) 

• Case 3 

 
𝑥∗ =

(𝑡𝑛 + 𝑡𝑛−1 +⋯𝑡𝑛
2
+2
+ 𝑡𝑛

2
+1
− 𝑡𝑛

2
− 𝑡𝑛

2
−1
. . −𝑡2 − 𝑡1).

𝑛
2

 
(3.20) 

3.6.4 Icosikaitetragonal fuzzy number 

The defuzzification techniques for the number that we have discussed in sections 3.6.1-3.6.3 are 

given below:  

Centroid of Area Method: 

 
𝑥∗ =

∑ 𝑡𝑖
224

𝑖=13 + ∑ 𝑡2𝑖𝑡2𝑖−1
12
𝑖=7 − ∑ 𝑡𝑖

212
𝑖=1 − ∑ 𝑡2𝑖𝑡2𝑖−1

6
𝑖=1

3∑ 𝑡𝑖
24
𝑖=1

 
(3.21) 
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Mean of 𝜶-cut method: 

𝑥∗ =
∑ 𝑡𝑖
24
𝑖=1

24
 

 

(3.22) 

Bounded area method: 

 
𝑥∗ =

∑ 𝑡𝑖
24
𝑖=13

12
−
∑ 𝑡𝑖
12
𝑖=1

12
 

 

(3.23) 

3.7 Manufacturing Problem in Fuzzy Environment 

In a manufacturing optimization challenge, for instance, it is not necessary for every item to be of 

high quality and fully marketable at a given price. The products may have flaws that prevent them 

from selling at the set price. Due to unforeseen circumstances, the market price of the final product 

and the raw materials that have been used to make it can fluctuate. Therefore, prices and/or 

productions are not completely predictable, but rather, they are often imprecise or non-

deterministic. Consequently, optimization issues involving these variables necessitate the use of 

non-classical approaches. To clarify a real-life scenario, we applied the symmetric 

icosikaitetragonal fuzzy number to the data provided in [122]. The study delves into a park of six 

machine types that will be used to manufacture three distinct items. There is a current capacity 

portfolio available, with prices based on machine type and machine hours per week. Table 3.1 

shows all the data about the issue. Here all the parameters are given according to eq (2.24) - (2.26) 

from chapter 2. 

Table 3.1: Data for the manufacturing problem in the icosikaitetragonal fuzzy numbered environment 

Element 

of array 

Fuzzy number 

𝑝1
1 (6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98) 

𝑝2
1 (12,20,28,36,44,52,60,68,76,84,92,100,108,116,124,132,140,148,156,164,172,180,188,196) 

𝑝3
1 (6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5,14.5,15.5,16.5,17.5,18.5,19.5,20.5,21.5,22.5,23.5,24.5,25.5,26.5,27.5,28.5,29.5) 

𝑝1
2 (26,32,38,44,50,56,62,68,74,80,86,92,98,104,110,116,122,128,134,140,146,152,158,164) 

𝑝2
2 (20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135) 
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𝑝3
2 (6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98) 

𝑝1
3 (3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49) 

𝑝2
3 (12,20,28,36,44,52,60,68,76,84,92,100,108,116,124,132,140,148,156,164,172,180,188,196) 

𝑝3
3 (20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135) 

𝑐1
1 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24) 

𝑐2
1 (6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29) 

𝑐1
2 (0.8,1,1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4) 

𝑐2
2 (3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15) 

𝑐3
2 (2.5,3, 3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14) 

𝑐1
3 (1.2,2,2.8,3.6,4.4,5.2,6,6.8,7.6,8.4,9.2,10,10.8,11.6,12.4,13.2,14,14.8,15.6,16.4,17.2,18,18.8,19.6) 

𝑐2
3 (2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25) 

𝑐3
3 (4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) 

𝑐1
4 (1.8,2,2.4,2.8,3.2,3.6,4,4.4,4.8,5.2,5.6,6,6.4,6.8,7.2,7.6,8,8.4,8.8,9.2,9.6,10,10.4,10.8) 

𝑐3
4 (5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28) 

𝑐2
5 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24) 

𝑐3
5 (1.5,2,2.5,3, 3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13) 

𝑐1
6 (4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5) 

𝑐2
6 (4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5) 

𝑐3
6 (1.8,2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6,6.2,6.2,6.4) 

d1 (1180,1200,1220,1240,1260,1280,1300,1320,1340,1360,1380,1400,1420,1440,1460,1480,1500,1520,1540,1560,1580,

1600,1620,1640) 

d2 (835,850,865,880,895,910,925,940,955,970,985,1000,1015,1030,1045,1060,1075,1090,1105,1120,1135,1150,1165,118

0) 

d3 (1475,1500,1525,1550,1575,1600,1625,1650,1675,1700,1725,1750,1775,1800,1825,1850,1875,1900,1925,1950,1975,

2000,2025,2050) 

d4 (1105,1125,1145,1165,1185,1205,1225,1245,1265,1285,1305,1325,1345,1365,1385,1405,1425,1445,1465,1485,1505,1

525,1545,1565) 

d5 (735,750,765,780,795,810,825,840,855,870,885,900,915,930,945,960,975,990,1005,1020,1035,1050,1065,1080) 

d6 (910,925,940,955,970,985,1000,1015,1030,1045,1060,1075,1090,1105,1120,1135,1150,1165,1180,1195,1210,1225,11

40,1155) 

3.7.1 Defuzzification with proposed techniques 

Here, the suggested methods are used to defuzzify the fuzzy parameters in the manufacturing case 

study. The defined fuzzy numbers are sequentially subjected to the Centroid of Area Method, 
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Alpha-Cut Method, and Bounded Area Method, with the corresponding formulations described in 

eq (3.21), (3.22), and (3.23). To facilitate additional analysis and comparison, these procedures are 

used to transform the fuzzy data into crisp values as shown in Table 3.2. 

Table 3.2: Defuzzified values of manufacturing data 

Element of 

array 

Centroid method 𝜶-cut Bounded area 

𝑝1
1 52 52 48 

𝑝2
1 104 104 96 

𝑝3
1 18 18 12 

𝑝1
2 95 95 72 

𝑝2
2 77.5 77.5 60 

𝑝3
2 52 52 48 

𝑝1
3 26 26  

𝑝2
3 104 104 96 

𝑝3
3 77.5 77.5 60 

𝑐1
1 12.5 12.5 12 

𝑐2
1 17.5 17.5 12 

𝑐1
2 3.1 3.1 2.4 

𝑐2
2 9.25 9.25 6 

𝑐3
2 8.25 8.25 6 

𝑐1
3 10.4 10.4 9.6 

𝑐2
3 13.5 13.5 12 

𝑐3
3 15.5 15.5 12 

𝑐1
4 6.2 6.2 2.4 

𝑐3
4 16.5 16.5 12 

𝑐2
5 12.5 12.5 12 

𝑐3
5 7.25 7.25 6 

𝑐1
6 9.75 9.75 6 

𝑐2
6 9.75 9.75 6 

𝑐3
6 4.1 4.1 2.4 

d1 1410 1410 240 

d2 1007.5 100.75 96 

d3 1762.5 1762.5 300 

d4 1335 1335 240 
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d5 907.5 907.5 180 

d6 1082.5 1082.5 180 

3.7.2 Results 

• We can see in Table 3.2 that the Centroid of Area technique and the Mean of the α-Cut 

method produce the same results when the intervals between the components of symmetric 

fuzzy numbers are equal. This proves that they remain stable when subjected to conditions 

of uniform distribution. 

• There is a noticeable difference using the Bounded Area technique. The Bounded Area 

technique does not capture the true diversity in fuzziness because it consistently yields the 

same result for all fuzzy integers with the same component intervals. 

3.8 Conclusion 

The chapter's study allows for the geometrical representation of any type of fuzzy number, 

facilitating a more accurate understanding of uncertainty situations. In situations where the interval 

between any two components is identical for symmetric fuzzy numbers, the results obtained using 

the centroid area method and the mean of the α-cut method are identical, as shown in Table 3.1. 

However, the results can vary when using the bounded area method. In crisp conditions, we can 

see that the two approaches produce identical results. However, when we apply the bounded area 

method to fuzzy numbers displaying the same interval difference between components, its 

shortcoming becomes apparent. The outcomes are the same for different numbers. So, for the sake 

of this production model, we shall restrict ourselves to using just the two processes in which 

centroid area and α-cut are taken into consideration. 

3.8.1 Major Findings 

• We can capture more information and complexity when depicting ambiguity with arbitrary 

fuzzy numbers, enhancing flexibility in modelling uncertainty.  

• Since the Bounded Area method is not sensitive enough to be used for the current 

production model, further optimization will be carried out utilizing the centroid and α-cut 

techniques exclusively.  
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Chapter 4  

Conventional Fuzzy-Decision Making and Multi-Objective 

Optimization Techniques Utilizing Various Fuzzy Numbers 

Prior to solving fuzzy multi-objective optimization problems, it is crucial to simplify them using 

defuzzification techniques, which were covered extensively in the preceding chapter. The 

following chapters expand on this idea by constructing fuzzy-based methods for solving these 

reduced optimization issues. In this chapter, we start by looking at different real-life case studies 

to assess existing fuzzy techniques. Because of this, we can better comprehend the effects of non-

linear and linear association functions on optimization results in real-world settings and analyze 

the effects of extended fuzzy sets. 

The chapter's organizational flow is shown in Figure 4.1. It starts with the use of triangular fuzzy 

numbers in traffic light management to show how fuzzy set theory can be used to decision-making.  

Next, it moves on to different traditional fuzzy optimization approaches, such as the min-max 

technique and more complex ones using intuitionistic and dual hesitant fuzzy sets.   

 

Figure 4.1: Conceptual flow and organization of the chapter 

In each part, we compare the two types of association functions, linear and non-linear, and see how 

well they handle MOLPP.  By following this structured procedure, we will be able to fully grasp 
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the latest developments in fuzzy models as they pertain to real-world case studies. Then, a method 

using triangular, dual-hesitant fuzzy numbers was described that is valuable for the scenario of 

having multiple experts define association functions. 

4.1 Introduction  

The use of fuzzy logic and its inference rules can enhance the results of automation systems with 

multi-criteria decision-making problems. Here we have taken a problem of this type in which green 

light duration for traffic symbols is examined through them. When it comes to the ever-changing 

traffic patterns of growing cities, the old-fashioned fixed durations for green lights at junctions just 

aren't worth it. This has led to an increased awareness of the need to use novel strategies, most 

notably a system to automatically choose the green light period [123]. This chapter aims to 

dynamically increase green light durations using fuzzy logic inference algorithms to tackle the 

complex relationship between traffic congestion and urbanization. The concept of traffic 

management encompasses a holistic approach to address urban congestion and improve 

transportation efficiency. Due to these issues, numerous studies on intelligent transportation 

systems are currently underway. This encompasses a wide range of research topics, including 

traffic control with automated traffic signals [124], fuzzy logic [125],[126], swarm intelligence 

[127], genetic algorithms [128], and multiagent-oriented networks [129]. Researchers of 

[128],[130] have utilized a wireless sensor network for real-time traffic tracking, integrating it with 

fuzzy logic to determine the length of the green light and dynamically manage traffic at 

intersections. Systems based on fuzzy logic can make instantaneous adjustments to signal timing 

in response to incoming data. Because it can handle vague or incomplete data, fuzzy logic works 

well. Numerous studies [131], [132] have shown that fuzzy logic-based traffic signal control 

improves traffic flow and reduces congestion. Fuzzy logic's applications go far beyond tweaking 

signal timing. It is becoming more commonplace in real-time traffic management systems that 

account for factors like congestion, road conditions, and even the weather. We demonstrated the 

malleability of fuzzy logic to handle intricate decision-making by introducing a real-time traffic 

control system based on it. Several criteria oversee managing traffic lights, but a growing number 

of criteria will make it difficult to compute inference rules. A process to determine the relative 

weight of each criterion is required to select the more appropriate criteria for calculation. To 

provide insight into the relative relevance of the choice criteria under consideration, multi-criteria 
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decision-making (MCDM) approaches make use of criterion weights [133]. Researchers have 

developed various models to assess the relative importance of these characteristics. Methods such 

as Best Worst (BWM), Full Consistency (FUCOM), Level-Based Weight Assessment (LBWA), 

and AHP are well-known. Several types of investigations have made use of the SWARA approach 

because of its straightforward and minimally invasive procedure [134]. But its biggest flaw is that 

it can't verify results using consistency levels [135]. The ability to identify the measurement of 

consistency has led to increased use of FUCOM, BWM, LBWA, and AHP recently. Among the 

methods, the FUCOM algorithm handles the fewest pairwise contrasts [136]. BWM becomes 

exceedingly complex when dealing with many pairwise comparisons [137]. The LBWA model 

[137] is similar to the FUCOM approach, and it enables weight computation using a minimum 

number of pairwise comparisons. This strategy offers the benefit of adding criteria without 

complicating the algorithm. Besides these advantages, the LBWA model should highlight the 

decision-maker's ability to further adjust the weight coefficients using the elasticity coefficient 

[138]. Scientific article [139] extensively references the AHP as a framework for multiple-criteria 

decision-making. According to [140], the AHP method's hierarchical structure allows for more 

efficient and transparent targeting of each criterion. But when dealing with subjective human 

assessments, the ambiguity and vagueness make the AHP approach ineffective. To deal with this 

limitation, the strategy is enhanced by [141] to effectively manage variability and ambiguity. By 

fusing AHP with fuzzy set theory, this modification, also known as fuzzy AHP, combines AHP 

with fuzzy set theory, resulting in more plausible and precise illustrations of the decision-making 

procedure. Fuzzy integers and linguistic variables in fuzzy AHP can express the relative 

importance of each set of criteria. For this research, we used fuzzy AHP. The AHP technique's 

ease of use and the fact that users can input judgment data easily without needing complicated 

mathematical expertise are the two major benefits. 

From the above study, we can be aware of using membership functions for linguistic variables and 

their inference rules, which provide the direction for the use of membership functions in MOO. 

The first fuzzy approach for MOO is developed by Zimmerman. The use of this approach is 

discussed for sustainability issues in this study. The urgency of taking action to reduce greenhouse 

gas emissions is increasing all the time [142]. Due to the significant contribution of emissions from 

storage and manufacturing to global warming, business leaders must devise a sustainable green 
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supply chain [143] in the manufacturing sector. Existing studies [144],[145] do not include the 

improved inventory model, which considers shortages to reduce costs and environmental concerns, 

in their sustainability requirements. This chapter's work will determine the necessary quantity for 

manufacturing and backordering, aiming to optimize profits while minimizing the ecological costs 

associated with industrial emissions and waste management. The inventory cost function 

encompasses the costs associated with initial setup, inventory, and any shortages. It has also 

considered several goals, including the production system's per-cycle waste and the overall penalty 

cost. The model also considers defects in the manufacturing process and shortages, thereby 

enhancing its realism. This case induces a multi-objective optimization problem due to the 

simultaneous involvement of multiple goals. Several non-fuzzy techniques exist to solve these 

problems, but Zimmerman's fuzzy approach, as discussed in Chapter 1, is more appropriate. As a 

result, the fuzzy technique transforms the multi-objective crisp problem into a single-objective 

optimization problem by considering the linear degrees of the membership function. The model is 

used to determine the quantity of products per production cycle to maintain sustainability 

(economic as well as environmental). The membership function's non-linearity influences our 

discussions in Chapter 2. To determine the impact of various non-linear functions, we conduct a 

financial portfolio analysis. Studies on intuitionistic fuzzy sets and MOO have previously focused 

on linear membership and non-membership functions. Fuzzy approaches with non-linear 

membership functions outperformed linear ones in accurately capturing uncertainty's intricacies, 

according to the results of the case study about financial portfolios. Despite these advancements, 

a significant gap remains in the literature: no research has ever approached a real-world 

intuitionistic fuzzy framework that systematically examined every conceivable combination of 

membership and non-membership functions. Since most prior research has focused on singular 

cases, little is known about how these combinations compare in various real-world contexts. 

Therefore, this research uses a case study from the agricultural sector to investigate the matter. 

Most of the time, experts disagree on the optimal degrees’ assignment for the elements in the 

optimization problem, necessitating multiple levels of involvement and a variety of parameter 

grades to find a solution. This goes against popular opinion. In this context, hesitant fuzzy sets, 

not intuitionistic or fuzzy sets, are crucial [119].  In the context of parallel relationship functions, 

both intuitionistic and hesitant fuzzy sets are equally effective for decision-making [120] Dual-
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hesitant fuzzy sets are an innovative tool for modelling ambiguity, which consider the non-linear 

behaviour of the two category values and give an extra-detailed model [121]. However, the same 

restriction remains when applying the method to the class of non-linear functions. Our study, based 

on the comparison results with the intuitionistic approach, provides the formulation of a strategy 

with the optimal combination of association functions. 

4.2 Fuzzy Decision-Making in Signal Control with Triangular Fuzzy Number 

The Analytic Hierarchy Process (AHP), which streamlines the selection process, allows for the 

assignment of weights to various criteria. This weight assignment allows criteria to be prioritized 

based on their perceived relevance, aligning with end-user preferences and priorities. A strategic 

approach reduces computational complexities and ensures that the decision-making criteria 

accurately reflect the concerns and expectations of all parties involved. So, customer preference 

analysis and green light period management are the two primary components of the proposed 

method. The complete process encompasses two distinct phases for the entire process, as illustrated 

in Figure 4.2: 

 

Figure 4.2: Different phases of automatic green light signal control process 

Phase 1: Examining the preferences of the criteria: To consider customer preferences in the 

decision-making process complicates criteria selection. Moreover, figuring out what people really 

want is not a simple task. Drivers can input data into our automatic traffic signal period selection 

system through a designated mobile app. Having this information at their disposal can help 

decision-makers to understand consumers' views on service and, consequently, choose the right 

criteria to satisfy customers' expectations. The process involves several steps, which are shown in 

Figure 4.3.
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Figure 4.3: Research flow diagram for criteria preference 

procedure 

 

Figure 4.4: Research flow diagram of fuzzy rules for traffic 

light period control

 

• Step 1: Selection of criteria 

Several criteria can be taken into consideration for the selection process of vehicles based on the 

requirements of various decision-makers. Here we are discussing some of them. An explanation 

of each desired criterion considered is as follows: 

i. Vehicle Density: The density of vehicles measures the number of automobiles there are per 

unit area. The duration of green lights should be adjusted based on the number of vehicles 

on the road to avoid congestion and keep traffic moving smoothly. 

ii. Intersection Type and Geometry: Vehicles' travel times are affected by the geometry and 

intricacy of the intersection. We can think about things like turn lanes and different 

approaches, which effect the vehicles crossing speed at signal points. 
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iii. Pedestrian and Cyclist Activity: A more inclusive and safe traffic signal design would 

include enough green time for pedestrian crossings and room for bicycles. 

iv. Waiting time: Improving traffic flow requires reducing wait times at crossings. Vehicles are 

expected to spend less time waiting at red lights if green light lengths are adjusted. 

v. Weather condition: Inconvenient weather conditions, including rain, can affect the flow of 

transportation. To compensate for decreased visibility and changed driving conditions 

caused by heavy rain, the length of time that green lights remain on might be changed. 

vi. Safety concern: The first priority is to make sure that vehicles are operated safely. The 

durations of green lights should be sufficient to provide safe acceleration and deceleration, 

therefore decreasing the likelihood of accidents. 

• Step 2: Prioritization of green light period selection criteria 

At this point, we have to calculate the relative strengths of each criterion from the perspective of 

a single traveler. We can utilize fuzzy linguistic variables, transformed into fuzzy integers, to 

denote the relative significance of each set of criteria. The representation of the fuzzy evaluation 

matrix, which is based on a pairwise comparison of fuzzy numbers, is as follows: 

 

�̃� = [

𝑚11̃ 𝑚12̃

𝑚21̃ 𝑚22̃

… 𝑚1�̃�

… 𝑚2�̃�… …
𝑚𝑙1̃ 𝑚𝑙2̃

… …
… 𝑚𝑙�̃�

] 

(4.1) 

In which 𝑚𝑙�̃� denotes the relative weight of criterion 𝑙 in respect of 𝑘, with 𝑙 =  𝑘 = {1,2. . . , 𝑛}. 

The number of matrices obtained is proportional to the number of passengers who consented to 

answer the survey using the on-demand method. 

• Step 3: Construct aggregated fuzzy decision matrix. 

A group judgment and an approximation of the collective choices can be obtained by fusing these 

individual traveler opinions once the prioritization of the green light period evaluation criteria has 

been completed. To do this, we employ the definitions offered by [146] to build an aggregated 

fuzzy decision matrix. Let the responses be in the simplest form of fuzzy numbers, which is a 
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triangular fuzzy number. That is represented by �̃�𝑙𝑘= (𝑎𝑙𝑘, 𝑏𝑙𝑘, 𝑐𝑙𝑘), and 𝑀′̃ is the aggregated 

matrix. Then: 

 𝑎′𝑙𝑘 = min
𝑚𝜖{1,2,..𝑝}

𝑎𝑙𝑘𝑚 (4.2) 

 

𝑏′𝑙𝑘 = (∏𝑏𝑙𝑘𝑚

𝑝

𝑚=1

)

1/𝑝

 

(4.3) 

 𝑐′𝑙𝑘 = max
𝑚𝜖{1,2,..𝑝}

𝑐𝑙𝑘𝑚 (4.4) 

• Step 4: Weighing the significance of criteria 

At this stage, we can compute the weight vector 𝑊 =  (𝑤1,𝑤2, . . . , 𝑤𝑛) of the selected criteria, 

which signifies the weight 𝑤𝑗 of each criterion 𝑗. We apply the steps given in the study [147] to 

determine the precedence variable of the fuzzy matrix 𝑀′̃ using the extent analysis technique. 

 

𝑀′̃ = [

𝑚′11̃ 𝑚′12̃

𝑚′21̃ 𝑚′22̃

… 𝑚′1�̃�

… 𝑚′2�̃�… …

𝑚′𝑙1̃ 𝑚′𝑙2̃
… …

… 𝑚′𝑙�̃�

] 

 

(4.5) 

Here; 𝑚′̃𝑙𝑘= (𝑎′𝑙𝑘, 𝑏′𝑙𝑘, 𝑐′𝑙𝑘). 

I. First, use fuzzy arithmetic procedures to determine the total number of elements in every 

row of the fuzzy matrix 𝑀′̃. 

 
𝑅𝑆𝑙 =∑𝑚′̃𝑙𝑘

𝑛

𝑘=1

 
(4.6) 

II. Next, standardize the sums of the rows by doing the following: 

 
𝑁�̃� = 𝑅𝑆𝑙/∑𝑅𝑆𝑘

𝑛

𝑘=1

 
(4.7) 

III. Thirdly, determine the level of certainty that 𝑁�̃� ≥  𝑁�̃� , that is described as: 

 

𝐷(𝑁�̃� ≥  𝑁�̃�)= {

1 𝑖𝑓  𝑏𝑙 > 𝑏𝑘
𝑐𝑙 − 𝑎𝑘

(𝑐𝑙 − 𝑏𝑙) + (𝑏𝑘 − 𝑎𝑘)
𝑖𝑓  𝑎𝑘 < 𝑐𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(4.8) 
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IV. Lastly, the following equation is used to calculate the degree of perspective with respect to 

the other (𝑛 − 1) fuzzy integers: 

 𝐷(𝑁�̃� ≥  𝑁�̃�|𝑘 = 1,2…𝑛; 𝑙 ≠ 𝑘) = min
𝑘𝜖{1,2,..𝑛;𝑙≠𝑘}

𝐷(𝑁�̃� ≥  𝑁�̃�) (4.9) 

V. It is concluded by defining the weight vectors of the fuzzy matrix  𝑀′̃ as 𝑊 =
(𝑤1,𝑤2,𝑤3, . . 𝑤𝑙), where: 

 
𝑤𝑙 =

𝐷(𝑁�̃� ≥  𝑁�̃�|𝑘 = 1,2…𝑛; 𝑙 ≠ 𝑘)

∑ 𝐷(𝑁�̃� ≥  𝑁�̃�|𝑘 = 1,2…𝑛; 𝑙 ≠ 𝑘)𝑛
𝑖=1

 
(4.10) 

Phase 2: Traffic Light Period Control: A fuzzy rule base is a critical component of a fuzzy logic-

based traffic light control system. A set of IF-THEN rules governs the control of traffic lights in 

real-time traffic conditions. We design these rules to capture the complex and often imprecise 

relationships between different variables that affect traffic flow. We explain the fuzzy rule base in 

a traffic light control system below, based on the flow diagram provided in Figure 4.4. 

• Step 1: Real-time data collection 

This step includes the procedure to collect the real-time data, meaning the values of selected 

criteria at a specific time, which can be in the form of a quantitative or qualitative pattern. 

• Step 2: Fuzzification 

Before creating fuzzy rules, we need to define linguistic variables that represent aspects of the 

traffic situation, such as "vehicle density," "traffic flow," "waiting time," and "road occupancy" 

that we have discussed earlier. Typically, different membership functions divide these variables 

into categories like "low," "medium," and "high." For more information on how this scale is 

created, see Rao [148], [149]. 

• Step 3: Fuzzy Rules 

The linguistic variables guide the development of fuzzy rules. Each rule consists of an IF part 

(antecedent) and a THEN part (consequent). The IF part specifies the conditions or input variables, 

while the THEN part specifies the control action or output variable. For example, a fuzzy rule 



52 

 

might be: If vehicle density is high and waiting time is long, then increase the green time for that 

direction, means the green light period should be high. 

• Step 4: Rule Aggregation 

Concurrently applying multiple rules requires aggregation of their outputs. Typically, we do this 

by considering the "firing strength" of each rule, which relies on how well the input variables meet 

the conditions in the IF part of the rule. 

• Step 5: Defuzzification 

We need to convert the aggregated result back into a crisp, non-fuzzy value to control the traffic 

lights. This process is called defuzzification. 

4.2.1 Numerical experiment 

We provide hypothetical data here to demonstrate the impact of the proposed approach. For 

simplification, only two respondents are considered for phase 1. Given that the solution will take 

two phases, we have divided the problem into the two parts listed below. 

Phase 1: Examining the preferences of the criteria: Here we have discussed the criteria that are 

selected for consideration and their preference weights associated with them. 

• Step 1 

Here we have a decision-making situation where six criteria, C1, C2, C3, C4, C5, and C6, are 

being considered. The criteria are the same as we have discussed in the earlier section. 

• Step 2 

Two reaction matrices, 𝑀1 and 𝑀2, are produced when two decision-makers separately offer their 

respective comparisons of the criteria provided through Table 4.1 and Table 4.2, respectively. The 

matrix elements 𝑚𝑖𝑗
1  and 𝑚𝑖𝑗

2   show the preference scores for the relative comparison of criteria Ci 

and Cj, as given by the first and second decision-makers, respectively. Use the given matrices to 

determine the aggregated weight preferences for each criterion. The estimation values in this case 

come from the [0,10] interval.  
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Table 4.1: Response of first rider towards different criteria 

𝑴𝟏 C1 C2 C3 C4 C5 C6 

C1 (1,1,1) (8,9,10) (8,9,10) (6,7,8) (2,3,4) (2,3,4) 

C2 (8,9,10)-1 (1,1,1) (6,7,8) (4,5,6) (2,3,4) (2,3,4) 

C3 (8,9,10)-1 (6,7,8)-1 (1,1,1) (4,5,6) (2,3,4) (2,3,4) 

C4 (6,7,8)-1 (4,5,6)-1 (4,5,6)-1 (1,1,1) (4,5,6) (4,5,6) 

C5 (2,3,4)-1 (2,3,4)-1 (2,3,4)-1 (4,5,6)-1 (1,1,1) (4,5,6) 

C6 (2,3,4)-1 (2,3,4)-1 (2,3,4)-1 (4,5,6)-1 (4,5,6)-1 (1,1,1) 

Table 4.2: Response of second rider towards different criteria 

𝑴𝟐 C1 C2 C3 C4 C5 C6 

C1 (1,1,1) (8,9,10) (4,5,6) (8,9,10) (8,9,10) (2,3,4) 

C2 (8,9,10)-1 (1,1,1) (2,3,4) (4,5,6) (4,5,6) (8,9,10) 

C3 (4,5,6)-1 (2,3,4)-1 (1,1,1) (8,9,10) (6,7,8) (8,9,10) 

C4 (8,9,10)-1 (4,5,6)-1 (8,9,10)-1 (1,1,1) (2,3,4) (6,7,8) 

C5 (8,9,10)-1 (4,5,6)-1 (6,7,8)-1 (2,3,4)-1 (1,1,1) (6,7,8) 

C6 (2,3,4)-1 (8,9,10)-1 (8,9,10)-1 (6,7,8)-1 (6,7,8)-1 (1,1,1) 

 

• Step 3 

The aggregated weight for criterion Ci results from combining the preferences in both matrices. 

The final weight vector ought to show an all-encompassing perspective that considers the feedback 

from both decision-makers. To determine appropriate and consistent weights for each criterion, 

the calculation makes use of a technique like the Analytic Hierarchy Process (AHP), which uses 

pairwise comparison matrices. 

After aggregation of the above two matrices, the resulting matrix 𝑴′̃ is provided in Table 4.3: 

Table 4.3: Aggregation of matrices given in table 4.1 and 4.2 

𝑴′̃ C1 C2 C3 C4 C5 C6 

C1 (1,1,1) (8,9,10) (4,6.7,10) (6,7.9,10) (2,5.2,10) (2,3,4) 

C2 (0,1,2) (1,1,1) (2,4.6,8) (4,5,6) (2,3.9,6) (2,5.2,10) 

C3 (0,2.2,6) (2,4.6,8) (1,1,1) (4,6.7,10) (2,4.6,8) (2,5.2,10) 

C4 (0,1.7,4) (4,5,6) (0,2.2,6) (1,1,1) (2,3.9,6) (4,5.9,8) 

C5 (0,2.6,8) (4,5.9,8) (2,4.6,8) (4,5.9,8) (1,1,1) (4,5.9,8) 
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C6 (6,7,8) (0,2.6,8) (0,2.6,8) (2,3.9,6) (2,3.9,6) (1,1,1) 

 

• Step 4 

Specifically, we want to find the weight vector 𝑊 in a mathematical sense so that: 

An array of weights, 𝑊 = (𝑤1,𝑤2,𝑤3,𝑤4,𝑤5,𝑤6), exists. By using formula eq (4.6) - (4.10): 

 𝑊 =  (0.196,0.152,0.171,0.15,0.173,0.156) (4.11) 

Now any number of criteria can be selected based on these weight factors. 

Phase 2: Green light period calculation: Let the three criteria that are chosen according to weight 

factors are weather factors, vehicle density, and waiting time in our fuzzy logic-based traffic light 

control. Weather conditions can significantly affect traffic flow, and integrating them into the 

control system can further enhance its adaptability.  

• Step 1 

We continue to collect real-time data from sensors at the intersection, including vehicle density 

(V) and waiting time (W). Additionally, we now collect weather-related data, such as rain intensity 

(R) in millimeters per hour. For this example, let's assume that vehicle density is 40 

vehicles/minute, waiting time is 60 seconds, and rain intensity is 5 mm/hour. We have the 

following data: 

• Step 2  

We define fuzzy numbers for linguistic variables for vehicle density (V), waiting time (W), and 

rain intensity (R) through Table 4.4: 

Table 4.4: Data used for analysis according to DM 

Criteria Fuzzy number Linguistic variable 

 0,15,30 Low(L) 

Vehicle Density (vehicles/minute) 20,35,50 Medium(M) 

 40,55 High(H) 

 0,15,30 Short(S) 

Waiting time (second) 20,40,60 Medium(M) 

 50,70 Long(L) 

 0,2.5,5 Light(L) 

Rain Intensity(mm/hr) 4,7,10 Moderate(M) 

 9,12 Heavy(H) 

 0,15,30 Small 
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Green light period(seconds) 25,40,55 Medium 

 50,65 High 

Figure 4.4 and Table 4.5, respectively, display the geometrical representation and mathematical 

formulation of the given criteria: 

Table 4.5: Linear membership functions' formulation for all criteria 

Criteria Level Membership Function 

 Low(L) 

ḿ𝑉𝐿(𝑥) = {

0 𝑖𝑓 𝑥 ≥ 30
(30 − 𝑥)

15
𝑖𝑓 15 < 𝑥 < 30

1 𝑖𝑓 𝑥 ≤ 15

 

Vehicle density(vehicle/minute) Medium(M) 

ḿ𝑉𝑀(𝑥) =

{
 
 

 
 
(𝑥 − 20)

15
𝑖𝑓 20 < 𝑥 ≤ 35

(50 − 𝑥)

15
𝑖𝑓 35 < 𝑥 ≤ 50

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 High(H) 

ḿ𝑉𝐻(𝑥) = {

0 𝑖𝑓 𝑥 ≤ 40
(𝑥 − 40)

15
𝑖𝑓 40 < 𝑥 < 55

1 𝑖𝑓 𝑥 ≥ 55

 

 Short(S) 

ḿ𝑊𝑆(𝑥) = {

0 𝑖𝑓 𝑥 ≥ 30
(30 − 𝑥)

15
𝑖𝑓 15 < 𝑥 < 30

1 𝑖𝑓 𝑥 ≤ 15

 

Waiting time (second) Medium(M) 

ḿ𝑊𝑀(𝑥) =

{
 
 

 
 
(𝑥 − 20)

20
𝑖𝑓 20 < 𝑥 ≤ 40

(60 − 𝑥)

20
𝑖𝑓 40 < 𝑥 ≤ 60

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Long(L) 

ḿ𝑊𝐿(𝑥) = {

0 𝑖𝑓 𝑥 ≤ 50
(𝑥 − 50)

20
𝑖𝑓 50 < 𝑥 < 70

1 𝑖𝑓 𝑥 ≥ 70

 

 Light(L) 

ḿ𝑅𝐿(𝑥) = {

0 𝑖𝑓 𝑥 ≥ 5
(5 − 𝑥)

2.5
𝑖𝑓 2.5 < 𝑥 < 5

1 𝑖𝑓 𝑥 ≤ 2.5

 

Rain intensity(mm/hour) Moderate(M) 

ḿ𝑅𝑀(𝑥) =

{
 
 

 
 
(𝑥 − 4)

3
𝑖𝑓 4 < 𝑥 ≤ 7

(10 − 𝑥)

3
𝑖𝑓 7 < 𝑥 ≤ 10

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Heavy(H) 

ḿ𝑅𝐿𝑂(𝑥) = {

0 𝑖𝑓 𝑥 ≤ 9
(𝑥 − 9)

3
𝑖𝑓 9 < 𝑥 < 12

1 𝑖𝑓 𝑥 ≥ 12
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 Small(S) 

𝑚𝐺𝑆(𝑥) = {

0 𝑖𝑓 𝑥 ≥ 30
(30 − 𝑥)

15
𝑖𝑓 15 < 𝑥 < 30

1 𝑖𝑓 𝑥 ≤ 15

 

Green light period(G) Medium(M) 

ḿ𝐺𝑀(𝑥) =

{
 
 

 
 
(𝑥 − 25)

15
𝑖𝑓 25 < 𝑥 ≤ 40

(55 − 𝑥)

15
𝑖𝑓 40 < 𝑥 ≤ 55

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 High(H) 

ḿ𝐺𝐻(𝑥) = {

0 𝑖𝑓 𝑥 ≤ 50
(𝑥 − 50)

15
𝑖𝑓 50 < 𝑥 < 65

1 𝑖𝑓 𝑥 ≥ 65

 

 

(a) 

 

(c) 

 

(b)  

 

(d) 

Figure 4.5: Membership assignment for various functions (a) Vehicle density (b) Rain intensity (c) Waiting time (d) Green 

light period 
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• Step 3 

The decision maker can combine the three given criteria to create 27 fuzzy rules, as shown in Table 

4.6 below: 

Table 4.6: Fuzzy rules decided by decision maker 

Green light period Cases (Vehicle density, waiting time, rain intensity) 

High LLL, LLM, MLL, MLM, HSL, HSM, HML, HMM, HLL, HLM, HLH 

Small LSM, LSH, LMH, MSH, MMH, 

Medium LSL, LML, LMM, LLH, MSL, MSM, MML, MMM, MLH, HSH, HSM, HMH 
 

• Step 4 

Here the data of all criteria are collected and aggregated according to their membership values to 

define the condition according to the fuzzy rules defined in step 3.  

• Step 5  

We need to convert the aggregated result back into a crisp, non-fuzzy value to control the traffic 

lights. This process is called defuzzification. Common methods include the centroid area, the mean 

of 𝛼 -cut, and the bounded area method, all of which we have discussed in Chapter 3. In our study, 

we will focus on the mean of 𝛼 -cut. 

4.2.2 Solution 

The solution to the above issue will be broken into two problems. In the first problem, we must 

choose the required criteria, and in the second, we must calculate the green light period based on 

the selected criteria. 

Phase 1: Let's consider an example where we have considered all six criteria, but we need to select 

only three criteria to simplify the calculation. Please identify these three criteria. 

The criterion's weight preferences are listed as follows: 

𝐶1 > 𝐶5 > 𝐶3 > 𝐶6 > 𝐶2 > 𝐶4 
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Based on this order, we can choose any number of criteria according to our suitability. We 

prioritize the criteria with the highest weight parameters. So, the preferred three criteria are: 

𝐶1, 𝐶5, 𝐶3. 

Phase 2: After the selection of criteria, the second phase starts for the selection of timing for the 

green light period. 

• Step 1 

Let us take an example of a data set for which, at a given time, vehicle density is 22, waiting time 

is 20 seconds, and rain intensity is 5 mm/hr. Next, we must determine the time of the green light 

signal. 

• Step 2 

The procedure to define the fuzzy rules is included. Here, we have considered the rules described 

in Table 4.6. 

• Step 3 

At this stage, the value of membership functions associated with the given quantities of criteria is 

calculated in Table 4.7 according to the defined membership functions in Table 4.5.  
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Table 4.7: Membership functions defined for different criterias 

Criteria Membership function’s value 

Membership functions satisfied by vehicle density (22) 

ḿ𝑉𝐿(22) = {

0 𝑖𝑓 𝑥 ≥ 30
(30 − 𝑥)

15
𝑖𝑓 15 < 𝑥 < 30

1 𝑖𝑓 𝑥 ≤ 15

= 8/15 

ḿ𝑉𝑀(22) = {

(𝑥−20)

15
𝑖𝑓 20 < 𝑥 ≤ 35

(50−𝑥)

15
𝑖𝑓 35 < 𝑥 ≤ 50

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  =2/15 

Membership functions satisfied by waiting time (20) 

ḿ𝑊𝑆(20) = {

0 𝑖𝑓 𝑥 ≥ 30
(30 − 𝑥)

15
𝑖𝑓 15 < 𝑥 < 30

1 𝑖𝑓 𝑥 ≤ 15

= 2/3 

ḿ𝑊𝑀(20) =

{
 
 

 
 
(𝑥 − 20)

20
𝑖𝑓 20 < 𝑥 ≤ 40

(60 − 𝑥)

20
𝑖𝑓 40 < 𝑥 ≤ 60

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 0 

Membership functions satisfied by rain intensity (5) 

ḿ𝑅𝐿(5) = {

0 𝑖𝑓 𝑥 ≥ 5
(5 − 𝑥)

2.5
𝑖𝑓 2.5 < 𝑥 < 5

1 𝑖𝑓 𝑥 ≤ 2.5

= 0 

ḿ𝑅𝑀(5) =

{
 
 

 
 
(𝑥 − 4)

3
𝑖𝑓 4 < 𝑥 ≤ 7

(10 − 𝑥)

3
𝑖𝑓 7 < 𝑥 ≤ 10

0 𝑖𝑓 𝑥 ≥ 10

= 1/3 

• Step 4 

Total resulted combinations: LSL, LSM, LML, LMM, MSL, MSM, MML, MMM. 

• Step 5 

By applying the mean of the 𝛼-cut method of defuzzification for all the eight combinations:  
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𝐿𝑆𝐿: (

8

15
,
2

3
, 0)  =  0.466    

𝐿𝑆𝑀: (
8

15
,
2

3
,
1

3
)  =  0.55

𝐿𝑀𝐿: (
8

15
, 0, 0)  =  0.133 

𝐿𝑀𝑀: (
8

15
, 0,
1

3
)  =  0.2167

𝑀𝑆𝐿: (
2

15
,
2

3
, 0)  =  0.2

𝑀𝑆𝑀: (
2

15
,
2

3
,
1

3
)  =  0.283

𝑀𝑀𝐿: (
2

15
, 0, 0)  =  0.033

𝑀𝑀𝑀: (
2

15
, 0,
1

3
)  =  0.1167}

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

(4.12) 

4.2.3 Results 

Now, the maximum of all these values is 0.55, which aligns with the LSM condition and, based 

on fuzzy rules, indicates a brief period of green light. 

After applying the membership functions for a small portion of the green light period along the 

membership degree 0.55, the crisp values are as follows: 
(30−𝑥)

15
= 0.55 =>  𝑥 = 21.75 

So, the time for the green light signal will be 21.75 seconds.  

4.3 Conventional Fuzzy Min-Max Approach for Multi-Objective Linear 

Programming Problems  

The optimal solution 𝑥′ for the standard MOLPP, as determined by equations (1.25) - (1.27), exists 

only for any other value of 𝑥: 

𝑓𝑖(𝑥
′) ≥ 𝑓𝑖(𝑥),   ∀ 𝑖 =  1, …  𝑙 𝑜𝑟    𝑓𝑖(𝑥

′)
> 𝑓𝑖(𝑥),   with a minimum of 𝑜𝑛𝑒 𝑖 𝜖{1, . . . 𝑙} 

(4.13) 

According to this approach, once we have determined the extremes for each objective activity, we 

can use a distance minimization method based on two hyperplanes. To develop participation 

measures, we can approximate these distances using fuzzy parameters. This rule states that 

increasing the value of the fuzzy parameter will result in a decrease in the perpendicular distances. 
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As the values for the objective parameters converge on the optimal value, we find a locally optimal 

solution. 

In this context, we assume the set of constraints for the original MOLPP to be a convex closed set. 

Therefore, the distance function (measured in units of 𝑥, separation from the hyperplane, denoted 

by (𝑓
𝑖
− 𝑓𝑖(𝑥))) is defined as follows:  

 ᴆ𝑖(𝑥) = |𝑓
𝑖
− 𝑓𝑖(𝑥)| (4.14) 

If we are given some constraints, we may determine the maximum value of a single objective using 

the notation 𝑓
𝑖
 = maximum value of 𝑓𝑖(𝑥). The formula for the optimal possible 𝑓𝑖(𝑥) can be found 

in terms of the distance parameter: 

 𝑓
𝑖
− 𝑓𝑖(𝑥) = 0 (4.15) 

The functional value that characterizes the maximum separation of any two hyperplanes can be 

expressed as follows: 

 𝑀𝑎𝑥 ᴆ𝑖(𝑥) = 𝑓
𝑖
− 𝑓i

𝑛,   ∀ 𝑖 = 1,2, … 𝑙 (4.16) 

Here 𝑓𝑖
𝑛 is the nadir point of the 𝑛𝑡ℎ function. Let ᴆ̅𝑖= {(𝑀𝑎𝑥  ᴆ𝑖(𝑥)) ∀ 𝑖 =  1,2, … 𝑙}. The next 

step is to figure out the best way to set up a distance membership function: 

 

ḿ(ᴆ𝑖(𝑥)) =

{
 

 
0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

  

(4.17) 

Our participation functions' connection to one another is represented by a new kind of 

characteristic. For inclusion of all membership functions, the minimum operator is defined as 

follows: 

 
γ ≤

(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
 

(4.18) 

Now our aim is to maximize the association function’s value to minimize the distance. So, the 

situation can be boiled down to a single objective. 
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 Max γ

Subjected to: − 𝑓𝑖(𝑥) + ᴆ̅𝑖γ ≤ ᴆ̅𝑖 − 𝑓𝑖

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

j

𝑥𝑘 ≥ 0 }
 
 

 
 

 

    

(4.19) 

That is amenable to the usual optimization tools and methods for solving. 

4.3.1 Sustainability in manufacturing 

This section provides a specific aspect of the model formulation for sustainable manufacturing and 

inventory planning [150]. First, the basic ideas behind the framework's creation and the 

mathematical models used are explained. Next, we break down the decision variables. Next to this, 

the sustainability goals that need to be improved are listed, and lastly, the necessary limits are laid 

out.  

a) Assumptions:  

• There is just one cycle time for the product. 

• After clearing the backlog, the demand is fully satisfied. 

• Price changes do not affect demand. 

• Stock is routinely replenished. 

• It's possible to have shortages approved. 

• The horizon (in terms of time) is infinite. 

• The cost of stocking supplies and their acquisition price are both known and stable in theory. 

• There are no quantity discounts offered. 

• We only keep a single supply of each item in stock. 

• Prevention of pollution and safe disposal are essential tenets of the waste management industry. 

• We are reducing harmful emissions and adjusting inventories and output accordingly. 

• We measure the potential cost of pollution as a percentage of production. 

• Acceptance of a broken manufacturing element. 

Symbol Meaning 

𝐷𝑅  Average yearly demand 

𝑃𝑆  Selling price per item 
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𝛼 Factor of incorrect product production 

𝑡𝑖  Inventory time 

𝑡𝑠  Shortage time 

𝑄 Output Quantity per cycle 

𝑄𝑆 Shortage quantity per cycle 

𝐶𝑃  Cost of manufacturing a single unit 

𝐶𝑆  Cost of setup on a per-item basis 

𝐶𝑖  Cost of maintaining inventory per quantity held and per cycle 

𝐶𝑠ℎ𝑜𝑟𝑡  Shortage cost per unit quantity per cycle  

Ѱ Unit cost of waste disposed to the environment per item 

𝐶𝑖𝑒  Industrial emission cost associated per item per cycle 

𝐶𝑒𝑐  Electricity consumption cost associated per item per cycle 

𝐶𝑣𝑒  Vehicle emission cost associated per item per cycle 

𝐶Ѱ Total waste penalty cost available per production 

𝐶𝑝𝑐  Total pollution control cost available per production 

𝑟 Space required per item 

𝑅 Total space available per cycle 

𝐵𝑇 Total inventory budget available per cycle 

𝑇𝑡 Total time of one cycle 

b) Decision variables: 

To optimize our objective of maintaining a healthy ecosystem while meeting the needs of our 

customers and cutting down on waste, we must calculate the current output and backlog of our 

operations. In this case, the deciding factors are treated as whole numbers. 

c) Objective Functions: 

This part outlines three equations of objectives for optimization. The initial goal is to maximize 

the inventory system's profit for each unit of time. 
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Figure 4.6: Inventory level model for one cycle 

The inventory system's second goal is to minimize waste generation throughout each cycle, while 

the third goal aims to minimize potential financial losses due to penalties during each cycle. The 

inventory model, which includes destruction and shortage factors, is provided in Figure 4.6. Here 

are the corresponding mathematical equations for each goal: 

Profit 
𝑀𝑎𝑥 𝑃 =

𝑃𝑆𝑄(1 − 𝛼)

𝑇𝑡
−
𝐶𝑃𝑄

𝑇𝑡
−

𝐶𝑆𝐷𝑅
(1 − 𝛼)𝑄

−
𝐶𝑖(𝑄(1 − 𝛼) − 𝑄𝑆)

2

2𝑄(1 − 𝛼)
−
𝐶𝑠ℎ𝑜𝑟𝑡𝑄𝑆

2

2𝑄(1 − 𝛼)
 

(4.20) 

Waste 𝑀𝑖𝑛 𝑊 =  𝑄Ѱ𝛼 (4.21) 

Penalty 𝑀𝑖𝑛 𝐸 =  𝑄(𝐶𝑖𝑒 + 𝐶𝑒𝑐) + 𝐶𝑣𝑒𝑄(1 − 𝛼) (4.22) 

Restrictions 𝑄(1 − 𝛼) − 𝑄𝑆
𝑡𝑖

=
𝑄𝑆
𝑡𝑠
=
𝑄(1 − 𝛼)

(𝑡𝑖 + 𝑡𝑠)
= 𝐷𝑅 (4.23) 

d) Constraints associated: 

This part outlines the numerous constraints or limitations required to accomplish multi-objective 

optimization. There are a total of five equations there. Regardless of outcomes, eq (4.24) sets the 

initial investment as the limit for the right-hand side of the equation. As shown in eq (4.25), the 

storage facility has a limited capacity and can only store a specific number of units at any given 

time. Eq (4.26) determines the maximum allowable level of environmental waste disposal in the 

inventory system. To keep the cost of pollution control as low as possible throughout inventory 

manufacturing, eq (4.27) makes some conservative assumptions. Alternatively, the model 

prohibits negative quantities and ordering costs, citing eq (4.28). The following mathematical form 

illustrates the limitations: 
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Total budget 
𝐶𝑃𝑄 −

𝐶𝑆𝐷

(1 − 𝛼)𝑄
−
𝐶𝑖(𝑄(1 − 𝛼) − 𝑄𝑆)

2

2𝑄(1 − 𝛼)
−
𝐶𝑠ℎ𝑜𝑟𝑡𝑄𝑆

2

2𝑄(1 − 𝛼)
≤ 𝐵𝑇 

(4.24) 

Space capacity 𝑟𝑄(1 − 𝛼) ≤ 𝑅 (4.25) 

Waste restriction 𝑄Ѱ𝛼 ≤ 𝐶Ѱ (4.26) 

Pollution cost 𝑄(𝐶𝑖𝑒 + 𝐶𝑒𝑐) + 𝐶𝑣𝑒𝑄(1 − 𝛼) ≤ 𝐶𝑝𝑐 (4.27) 

Non-negativity 𝑄, 𝑄𝑆, 𝑃,𝑊, 𝐸 ≥ 0 (4.28) 

4.3.1.1 Numerical experiment 

Here, we have used industrial data provided in Table 4.8 to simulate realistic conditions, which is 

taken from a secondary source [151]. The experiment will show all the procedures, from 

manufacturing to selling, followed by any firm to maximize its profit while minimizing penalty 

costs.  

Table 4.8: Values of parameters according to case study 

Parameter  Value 

Demand rate per unit time (year) �̃�𝑅 496.66 

Unit selling price �̃�𝑆 2408.33 

Production factor of defective product per cycle �̃� 0.15 

Production cost per unit item �̃�𝑃 1091.66 

Setup cost per cycle �̃�𝑆 38.83 

Inventory holding cost per unit quantity per cycle �̃�𝑖 26.33 

Shortage cost per unit quantity per cycle  �̃�𝑠ℎ𝑜𝑟𝑡 32.16 

Unit cost of waste disposed to the environment per item Ѱ̃ 445 

Unit cost of industrial emissions associated per cycle �̃�𝑖𝑒 129.33 

Unit cost of electricity consumption associated per cycle �̃�𝑒𝑐 109.16 

Unit cost of vehicle emissions associated per cycle �̃�𝑣𝑒 124.16 

Total waste penalty cost available per production �̃�Ѱ 5450 

Total pollution control cost available per production �̃�𝑝𝑐 42166.66 

Space required per item 𝑟 2 

Total space available per cycle 𝑅 42 

Total inventory budget available per unit time per cycle �̃�𝑇 1000000 
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4.3.1.3 Formulation of MOLPP: 

With the aid of the aforementioned objective functions and constraints, we formulate the MOLPP 

problem as follows: 

 
𝑀𝑎𝑥 𝑃 = 558257.82 −

22688.59

𝑄
−
15.49(0.85𝑄 − 𝑄

𝑆
)
2

𝑄
−
18.92𝑄

𝑆
2

𝑄

𝑀𝑖𝑛  𝑊 =  66.75𝑄

𝑀𝑖𝑛 𝐸 =  343.696𝑄

𝑆𝑢𝑏. 𝑡𝑜: 637863.36 +
22688.59

𝑄
+
15.49(0.85𝑄 − 𝑄

𝑆
)
2

𝑄
+
18.92𝑄

𝑆
2

𝑄
≤ 1000000

1.7𝑄 ≤ 42

66.75𝑄 ≤ 5450

343.696𝑄 ≤ 42166.66

𝑄(1 − 𝛼)

�̃�𝑡
= 𝐷𝑅

𝑄, 𝑄
𝑆
, �̃�𝑡, 𝑃, 𝑊, 𝐸 ≥ 0 }

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

(4.29) 

4.3.1.4 Solution by proposed approach: 

LINGO 18.0 × 64 software calculates the best possible objective function values given the 

constraints you provide.  

Max 𝑃 = �̅� = 557164.7 at point (24,9) 

Min 𝑊 = �̅� =  66.75  at point (1,1)  

Min 𝐸 = �̅� =   343.696  at point (1,1) 

So, the nadir points for all objectives are: 

𝑃𝑛 = 535549.96 at (1,1) ,𝑊𝑛 = 1602 at (24,9), 𝐸𝑛 = 8248.704 𝑎𝑡 (24,9) 

Now, the model-predicted distance functions are as follows: 

 
ᴆ1 = |�̅� − 𝑃| =  557164.7 − (558257.82 −

22688.59

𝑄
−
15.49(0.85𝑄 − 𝑄𝑆)

2

𝑄
−
18.92𝑄𝑆

2

𝑄
) 

(4.30) 

 ᴆ2 = |�̅� −W| = 66.75 − 66.75𝑄 (4.31) 

 ᴆ3 = |�̅� − E| = 343.696 − 343.696𝑄 (4.32) 

Maximum separations for two objectives can be expressed as: 
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 𝑀𝑎𝑥 ᴆ1 = |�̅� − 𝑃𝑛| = 21614.74 (4.33) 

 𝑀𝑎𝑥 ᴆ2 = |�̅� − 𝑊𝑛| = 1535.25 (4.34) 

 𝑀𝑎𝑥 ᴆ3 = |�̅� − 𝐸𝑛| = 7905.008 (4.35) 

The resulting single objective optimization problem will be: 

 𝑀𝑎𝑥 γ

𝑆𝑢𝑏. 𝑡𝑜: 21614.74γ ≤ 20521.62 −
22688.59

𝑄
−
15.49(0.85𝑄 − 𝑄

𝑆
)
2

𝑄
−
18.92𝑄

𝑆
2

𝑄
 

−1535.25𝛾 ≤ −1602 + 66.75𝑄

−7905.008𝛾 ≤ −7905.008 + 343.696𝑄

1.7𝑄 ≤ 42

66.75𝑄 ≤ 5450
343.696𝑄 ≤ 42166.66

𝑄, 𝑄
𝑆
 ≥ 0

0 ≤  𝛾 ≤ 1 }
 
 
 
 

 
 
 
 

 

 

 

 

(4.36) 

The membership functions of the objective show linear behaviour from their nadir point to the 

maximum point as given in Figure 4.7. The following graph of objective function values and 

satisfaction levels of membership grade: 

 

(a) 

 

(b) 

 

(c) 

Figure 4.7: Membership grade’s graph for all functions (a) Profit function (b) Waste function (c) Penalty function 

4.3.1.5 Results 

We use LINGO 18.0 × 64 software to achieve the outcomes. The value of the satisfaction level is  

0.8260850. By plugging in values for the choice variables and using the provided equality 

constraints, the model determines the optimal solutions provided in Table 4.9.  
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Table 4.9: Optimum values for resulted variables by proposed model 

Decision variable Optimum value  

𝑄 5 

𝑄𝑆 1 

𝑇𝑡 0.01007 

𝑡𝑖 0.00805655 

𝑡𝑠 0.002013 

γ 0.8260850  

𝑃 553683.59 

𝑊 333.75 

𝐸 1718.48 

4.4 Conventional Fuzzy Approach with Non-linear Membership Functions 

The approach will be the same as described in Section 4.3, besides the nature of membership 

functions. Chapter 1 describes the non-linear type of the membership function [152]. For the 

distance parameter, these membership functions act like the one given below: 

Hyperbolic Membership function: Eq (1.5) assists to define the hyperbolic membership function 

associated with the function in terms of the distance parameter. In particular, the hyperbolic level 

of membership can be characterised as follows: 

 

ḿ(ᴆ𝑖(𝑥)) =

{
 

 
(
1

2

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

(𝑡𝑎𝑛ℎ ((−ᴆ𝑖(𝑥) +
ᴆ𝑖(𝑥)̅̅ ̅̅ ̅̅ ̅

2
)𝛿) +

1

2
) 𝑖𝑓0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

 

 

(4.37) 

Here, 𝛿 = |
6

�̅�𝑖(𝑥)+𝑓i
𝑛(𝑥)

|. 

Parabolic membership function: Eq (1.4) assists in defining the parabolic membership function 

associated with the function in terms of the distance parameter. In particular, the parabolic level 

of membership can be characterised as follows: 
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ḿ(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓ᴆ𝑖(𝑥) ≤ 0
(ᴆ̅𝑖 − ᴆ𝑖(𝑥))2

(ᴆ̅𝑖)2
𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

 

 

(4.38) 

Exponential membership function: Eq (1.6) assists in defining the exponential membership 

function associated with the function in terms of the distance function. Each objective goal has 

been associated with the following exponential membership function [22]: 

 

ḿ(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓ᴆ𝑖(𝑥) ≤ 0

 𝜌𝑖[1 − 𝑒𝑥𝑝 {−𝜂𝑖
|ᴆ̅𝑖 − ᴆ𝑖(𝑥)|

(ᴆ̅𝑖)
}] 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

 

 

(4.39) 

In this case, 𝜌 and 𝜂 must be positive or they must be negative.  

Sigmoidal membership function: Eq (1.7) assists in defining the sigmoidal membership function 

associated with the function in terms of the distance parameter. In this chapter, we formally define 

the S-curve membership function [153]: 

 

ḿ(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓ᴆ𝑖(𝑥) ≤ 0

1 − (
1

1 + 𝐵𝑒
𝛼(
ᴆ̅𝑖−ᴆ𝑖(𝑥)
(ᴆ̅𝑖)

)

) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

 

 

(4.40) 

In eq (4.34), the symbol ḿ(ᴆi(𝑥)) denotes the participation value forms for which 𝛼 > 0. When 𝛼 

→∝, ambiguity grows, but when 𝛼 = 0, precision is shown. Experts using a combination of 

hypotheses and trials must determine the value of the parameter. One advantage of the revised S-

curve is that its membership function can be tailored to the data at hand.To simplify, we'll set 𝛼 = 

13.813, B = 0.001001001 for this study on the basis of the results of existing studies. 

4.4.1 Finantial Situation 

The data is taken from the secondary source [80]. A company is considering participating in three 

projects aimed at enhancing the quality of life in their city, with the intention of creating investment 

plans spanning a period of four years. Right now, the company has $4 million to invest in projects. 
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Table 4.11 illustrates the projected return on financing, expressed in millions of dollars, for the 

company's financing over a four-year period. Table 4.11 also displays cash flow streams for these 

three projects, assuming full participation. As time goes on, the accuracy of the earnings from 

earlier investments may decrease. Interest earnings from investment accounts, for instance, 

fluctuate with economic conditions. Therefore, these fluctuations take the form of fuzzy triangular 

numbers. The uncertain range has a triangular probabilistic model (4, 4.5, and 5.7) with the most 

likely result set at 4.5, the foremost defeatist at 4, and the highest idealistic at 5.7. The company 

will take over the management of some older, middle-class housing as part of the second project, 

with the stipulation that it will be burned down after four years unless certain initial improvements 

are made. The business has the option to obtain one-year loans with variable interest rates ranging 

from (5,6,6.7), (5,6,7), (4.5,5.8,6.5), (5.5,6.2,7.2) percent for each of the first four years. At any 

given time, the maximum loan amount is $2,000,000, and the total principal due cannot exceed 

$4,000,000. You can invest excess cash at various annual rates ranging from (3,3.7,4), 

(3.5,4.5,5.2), (4,4.8,5.5), and (4.5,5,6) percent annually. Consider the question of how to maximize 

the firm's net worth after four years. Ignore taxes and assume that the firm's less-than-full 

ownership of a project will have a proportional impact on all of the project's cash outflows. Next, 

we can model this issue as a linear program. To accomplish this, Table 4.10 talks about the 

assumed symbols. 

Table 4.10: Symbols used in mathematical formulation of financial situation 

A Part of contribution in 1st project 

B Part of contribution in 2nd project 

C Part of contribution in 3rd project 

Dk borrowing costs for time periods k = 1,2,3,4 

Li money lend in year i= 1,2,3,4 

W total wealth after four phases 

a) Objective function: 

To maximize the total wealth: 

Wealth 𝑀𝑎𝑥 𝑊  ≈  (4.5,5.2,6.7)𝐴 + (−2,−1.8, −1.2)𝐵 + (5.7,6.1,6.5)𝐶 

− (1.055,1.062,1.072)𝐷4 +  (1.045,1.05,1.06)𝐿4  
(4.41) 
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c) Constraints associated: 

• First investment can never be greater than $4 million, and interest will not be considered 

with borrowed money. 

 

• Investment for every period cannot be greater than its income stream. 

• Company can only take out a loan and invest in a surplus fund of up to $2,000,000 at any 

given time. 

Sub. to. 2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  + 𝐿1  ≤  4
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + (1.05,1.06,1.067)𝐷1  − (1.03,1.037,1.04)𝐿1  − 𝐷2  + 𝐿2  ≲  (0.34, 0.39, 0.42)
−𝐴   −  0.5𝐵  −   𝐶 + (1.05,1.06,1.07)𝐷2  − (1.035,1.045,1.052)𝐿2  − 𝐷3  + 𝐿3  ≲  (0.3, 0.36, 0.47)
−1.4𝐴 −  1.8𝐵 − 2𝐶 + (1.045,1.058,1.065)𝐷3  − (1.04,1.048,1.055)𝐿3  − 𝐷4  + 𝐿4 ≲ (0.32, 0.35, 0.4)

𝐴, 𝐵, 𝐶 𝜖 [0,1] , 𝐷𝑘 , 𝐿𝑖𝜖 [0,2] }
 
 

 
 

 
(4.42) 

4.4.1.1 Numerical Data: 

The numerical data for the cash flow in three years is given here in Table 4.11. 

Table 4.11: The Financing Situation: Managing Projects Over Time (in million dollars) 

Period (year)     0 1 2 3 4 

Income stream          4 (0.34, 0.39, 0.42) (0.3, 0.36, 0.47) (0.32, 0.35, 0.4) (0.35, 0.37, 0.39) 

Project   1             -2.5 -0.8 1 1.4 (4.5,5.2,6.7) 

Project   2             -2.5 0.6 0.5 1.8 (-2,-1.8,-1.2) 

Project   3 -2.0 -1.9 1 2 (5.7,6.1,6.5) 

4.4.1.2 Formulation of MOLPP: 

Using the defuzzification method (lexicographic order relation) [81], [82] for the fuzzy objective 

function and using the ranking method [41],[154] for the defuzzification of constraints, the above 

problem given by eq (4.42) is converted into the following classical multi-objective optimization 

problem: 
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 𝑚𝑎𝑥   (5.2𝐴 − 1.8𝐵 + 6.1𝐶 − 1.062 𝐷4 +  1.05𝐿4)
𝑚𝑎𝑥 − (2.2𝐴 +  0.8𝐵 + 0.8𝐶 + 0.017𝐷4  +  0.015𝐿4)
𝑚𝑎𝑥 (11.2𝐴 − 3.2𝐵 +  12.2𝐶 +  2.127𝐷4  +  2.105𝐿4)

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  + 𝐿1  ≤  4
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405
− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36
− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 
−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35
−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335
−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴,𝐵, 𝐶 𝜖 [0,1] , 𝐷𝑘, 𝐿𝑖𝜖 [0,2] }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

(4.43) 

The optimal value of the objective functions subject to the specified restrictions is determined by 

the simplex method. 

Max 𝑓1 = 𝑓
1
= 12.0911 and nadir point of 𝑓1 = 𝑓1

𝑛 = −3.924. 

Max 𝑓2 = 𝑓2 = 3.2854 and nadir point of 𝑓2 = 𝑓2
𝑛 = 0. 

Max 𝑓3 = 𝑓3 = 24.9859 and nadir point of 𝑓3 = 𝑓3
𝑛 = −7.454. 

4.4.1.3 Solution by proposed approach 

The membership functions with different natures for all functions move from their nadir point to 

the maximum point. The single-objective optimization problems after using the above method with 

different membership functions are provided below and shown in Figure 4.8 – Figure 4.12: 

a) Linear Membership Function: 

 

Figure 4.8: Linear membership degrees associated with wealth functions 
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 𝑚𝑎𝑥 𝛾

𝑠𝑢𝑏. 𝑡𝑜: 16.0151𝛾 − (5.2𝐴 − 1.8𝐵 + 6.1𝐶 − 1.062 𝐷4 +  1.05𝐿4) ≤ 3.924

3.2854𝛾 + (2.2𝐴 +  0.8𝐵 + 0.8𝐶 + 0.017𝐷4  +  0.015𝐿4) ≤ 3.2854

32.4399𝛾 − ( 11.2𝐴 − 3.2𝐵 +  12.2𝐶 +  2.127𝐷4  +  2.105𝐿4) ≤ 7.454

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  +  𝐿1  ≤  4

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴, 𝐵, 𝐶 𝜖 [0,1], 𝐷𝑘, 𝐿𝑖𝜖 [0,2], 0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

(4.44) 

b) Hyperbolic membership function:  

 𝑚𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜:𝛾 ≤ (
1

2
) (𝑡𝑎𝑛ℎ (𝑊 −

8.1671

2
) (

6

8.1671
)) +

1

2

𝛾 ≤   (
1

2
) (𝑡𝑎𝑛ℎ (𝑊 −

(−3.284)

2
) (

6

−3.284
)) +

1

2

𝛾 ≤ (
1

2
) (𝑡𝑎𝑛ℎ (𝑊 −

17.5319

2
) (

6

17.5319
)) +

1

2

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  +  𝐿1  ≤  4
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴, 𝐵, 𝐶 𝜖 [0,1], 𝐷𝑘, 𝐿𝑖𝜖 [0,2], 0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 (4.45) 
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Figure 4.9: Hyperbolic membership degrees associated with wealth functions 

c) Parabolic membership function:  

 

 𝑚𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜: 256.48342801𝛾 ≤  (5.2𝐴 − 1.8𝐵 + 6.1𝐶 − 1.062𝐷4  +  1.05𝐿4 + 3.924)
2

10.79385316𝛾 ≤   ((2.2𝐴 +  0.8𝐵 + 0.8𝐶 + 0.017𝐷4  +  0.015𝐿4) − 3.2854)
2

1052.34711201𝛾  ≤ (11.2𝐴 − 3.2𝐵 +  12.2𝐶 −  2.127𝐷4  +  2.105𝐿4 + 7.454)
2

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  +  𝐿1  ≤  4
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴, 𝐵, 𝐶 𝜖 [0,1], 𝐷𝑘 , 𝐿𝑖𝜖 [0,2], 0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

(4.46) 

 

Figure 4.10: Parabolic membership degrees associated with wealth functions 
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d) Exponential membership function: (taking 𝜂𝑞 = 1.2, 𝜌𝑞 = − 𝑙𝑛 (
1

6
))  

 

 𝑚𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜: 𝛾 ≤ (1.2)(1 − 𝑒𝑥𝑝

(𝑙𝑛 (
1

6
) (−5.2𝐴 + 1.8𝐵 − 6.1𝐶 + 1.062𝐷4 −  1.05𝐿4 − 3.924))

16.0151
)

𝛾 ≤   (1.2)(1 − 𝑒𝑥𝑝

(𝑙𝑛 (
1

6
) (2.2𝐴 +  0.8𝐵 + 0.8𝐶 + 0.017𝐷4  +  0.015𝐿4 − 3.2854))

3.2854
)

  𝛾 ≤ (1.2)(1 − 𝑒𝑥𝑝

(− 𝑙𝑛 (
1

6
) (11.2𝐴 − 3.2𝐵 +  12.2𝐶 −  2.127𝐷4  +  2.105𝐿4 + 7.454))

32.4399
)

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  +  𝐿1  ≤  4

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴, 𝐵, 𝐶 𝜖 [0,1], 𝐷𝑘, 𝐿𝑖𝜖 [0,2], 0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(4.47) 

 

Figure 4.11: Exponential membership degrees associated with wealth functions 
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e) Sigmoidal membership function:  

 

 𝑚𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜: 𝛾 ≤  1 − (
1

1 + (0.001001001)𝑒
0.843766196(5.2𝐴 −1.8𝐵 +6.1𝐶 −1.062𝐷4+ 1.05𝐿4+3.924)

)

𝛾 ≤ 1 − (
1

1 + (0.001001001)𝑒
(−4.2043587)(((2.2𝐴 + 0.8𝐵 +0.8𝐶 +0.017𝐷4 + 0.015𝐿4)−3.2854))

)

  𝛾 ≤ 1 − (
1

1 + (0.001001001)𝑒
(0.425803)(11.2𝐴 −3.2𝐵 + 12.2𝐶 − 2.127𝐷4 + 2.105𝐿4+7.454)

)

2.5𝐴 + 2.5𝐵 + 2𝐶 − 𝐷1  +  𝐿1  ≤  4
0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.06𝐷1  − 1.037𝐿1  − 𝐷2  + 𝐿2  ≤  0.39

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.055𝐷1  − 1.0335𝐿1  − 𝐷2  + 𝐿2  ≤  0.365

0.8𝐴 − 0.6𝐵 + 1.9𝐶 + 1.0635𝐷1  − 1.0385𝐿1  − 𝐷2  + 𝐿2  ≤  0.405

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.06 𝐷2  −  1.045𝐿2  − 𝐷3  + 𝐿3  ≤  0.36

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.055 𝐷2  −  1.04𝐿2  − 𝐷3  + 𝐿3  ≤  0.33

− 1𝐴  −  0.5𝐵  −   𝐶 +  1.065 𝐷2  −  1.0485𝐿2  − 𝐷3  + 𝐿3  ≤  0.415 

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.058𝐷3  − 1.048𝐿3  − 𝐷4  + 𝐿4  ≤  0.35

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0515𝐷3  − 1.044𝐿3  − 𝐷4  + 𝐿4  ≤  0.335

−1.4𝐴 −  1.8𝐵 − 2𝐶 +  1.0615𝐷3  − 1.0515𝐿3  − 𝐷4  + 𝐿4  ≤  0.375

𝐴, 𝐵, 𝐶 𝜖 [0,1], 𝐷𝑘, 𝐿𝑖𝜖 [0,2], 0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(4.48) 

 

Figure 4.12: Sigmoidal membership degrees associated with wealth functions 

4.4.1.4 Results 

From the above study, we can see that the different membership functions give different 

satisfaction levels. Table 4.12 below presents the numerical satisfaction level results from various 

membership functions: 
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Table 4.12: Numerical results of satisfaction level 

Membership Function  Optimal Value 

Linear 0.739628 

Hyperbolic 0.972218 

Parabolic 0.547049 

Exponential 0.884991 

Sigmoidal 0.964761 

Based on the data in Table 4.12, we can conclude that the hyperbolic membership function 

provides superior solutions to the given numerical problem. Therefore, we can rank the models 

based on their ability to ensure either DM pleasure or success. Thus, you could base model 

effectiveness on DM approval or performance: hyperbolic > s-curve > exponential > linear > 

parabola. 

4.5 Conventional Intuitionistic Fuzzy Multi-Objective Optimization Approach 

The definitions of membership functions use the simple distance functions we discussed in eq 

(4.14), but the range of functions for membership and non-membership will differ in an intuitive 

fuzzy approach. In the case of an intuitionistic fuzzy approach, the minimum value of the function 

will be less than that considered for the membership function. We can attribute this phenomenon 

to the existence of hesitation. Therefore, the distance operator's maximum value will vary for the 

two association functions listed below: 

f) For membership function: 

 𝑀𝑎𝑥 ᴆ𝑖(𝑥) = 𝑓
𝑖
− 𝑓𝑖

𝑛,   ∀ 𝑖 = 1,2, … 𝑙 (4.49) 

g) For non-membership function: 

 𝑀𝑎𝑥 ᴆ′𝑖(𝑥) = 𝑓
𝑖
− 𝑓𝑖

𝑤,   ∀ 𝑖 = 1,2, … 𝑙 (4.50) 

Where 𝑓i
𝑛, 𝑓i

𝑤 are the nadir and worst values of functions whose separation defines the hesitancy 

level. Let ᴆ̅𝑖= {{𝑀𝑎𝑥  ᴆ𝑖(𝑥)}, ᴆ′̅𝑖 = {{𝑀𝑎𝑥  ᴆ′𝑖(𝑥)}; ∀ 𝑖 =  1,2, … 𝑙}. The next step is to figure out 

the best way to set up a distance relationship function: 
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ḿ(ᴆ𝑖(𝑥)) =

{
 

 
0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.51) 

 

ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

1 −
(ᴆ′̅𝑖 − ᴆ𝑖(𝑥))

ᴆ′̅𝑖
𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.52) 

New features represent the relationship between our participation and non-participation functions. 

We aim to enhance the value of membership and diminish the value of non-membership functions, 

so we have determined two distinct parameters for each function. 

 
γ ≤

(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
 

(4.53) 

 
δ ≥ 1 −

(ᴆ′̅𝑖 − ᴆ𝑖(𝑥))

ᴆ′̅𝑖
 

(4.54) 

This statement reduces the situation to a single goal. 

 𝑀𝑎𝑥 𝛾 − 𝛿

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝛾 ≤
(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖

𝛿 ≥ 1 −
(ᴆ′̅𝑖 − ᴆ𝑖(𝑥))

ᴆ′̅𝑖

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗

𝑥𝑘 ≥ 0
0 ≤ 𝛾, 𝛿 ≤ 1
𝛾 + 𝛿 ≤ 1

0 ≤ 𝛾 − 𝛿 ≤ 1 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

(4.55) 

For minimization and maximization, the nature of the functions shows different natures of 

membership functions and non-membership functions as we move from the minimum to the 

maximum value of functions. The intuitionistic approach to maximization says that the minimum 

value of the objective function goes down for non-membership degrees because the sum of 

membership and non-membership degrees should be less than or equal to 1. Figure 4.13 shows 
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this. However, in the case of minimization, the maximum value will exceed the expectation, as 

shown in Figure 4.14. 

 

Figure 4.13: Membership and non-membership degree for 

maximization according to the intuitionistic approach 

 

Figure 4.14: Membership and non-membership degree for 

minimization according to the intuitionistic approach 

4.5.1 Transportation Problem 

Let there be two production sites, 𝑂1 and 𝑂2, for the company, as well as three warehouses: 𝑇1, 𝑇2, 

and 𝑇3, and transportation cost and time per unit quantity of commodity from origins 𝑂1 and 𝑂2 to 

destinations 𝑇1, 𝑇2, and 𝑇3, represented by the notation 𝐶𝑟𝑠,𝑇𝑟𝑠 from the 𝑟𝑡ℎ site to the 𝑠𝑡ℎ target. 

4.5.1.1 Numerical data: 

The cost and time values for source r to destination s are given by the corresponding elements of 

matrices  𝐶𝑟𝑠 and  𝑇𝑟𝑠, respectively. 

  𝐶𝑟𝑠 = [
5 7 2
5 3 3

] (4.56) 

  𝑇𝑟𝑠 = [
5 4 5
3 7 4

] (4.57) 

The second source has 90 units available, and the first one has 40 units available. The desired 

quantity for each item is 35, 30, and 65 units for the first, second, and third warehouses, 

respectively. The company aims to minimize the overall transportation cost and time by 

determining the optimal amount of product to ship from each starting point to each ending point. 

4.5.1.2 Formulation of MOLPP: 

The problem can be stated in standard form, which is given in Chapter 2, as follows: 

Cost 𝑀𝑖𝑛 𝑓1  =  5𝑥11 + 7𝑥12 + 2𝑥13 + 5𝑥21 + 3𝑥22 + 3𝑥23  (4.58) 
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Time 𝑀𝑖𝑛 𝑓2  = 5𝑥11 + 4𝑥12 + 5𝑥13 + 3𝑥21 + 7𝑥22 + 4𝑥23  (4.59) 

Demand 𝑥11 + 𝑥21 = 35
𝑥12 + 𝑥22 = 30
𝑥13 + 𝑥23 = 65

} 
(4.60) 

Supply 𝑥11 + 𝑥12 + 𝑥13 = 40
𝑥21 + 𝑥22 + 𝑥23  = 90

} 
(4.61) 

Non-negativity 𝑥𝑟𝑠 ≥ 0 (4.62) 

4.5.1.3 Solution: 

The membership functions are defined from the nadir point to the maximum point of functions and 

non-membership from the worst to the maximum points with a linear nature. We reduce the given 

problem to a single objective LPP after applying the proposed approach: 

 𝑀𝑎𝑥 (𝜆 − 𝛿)
𝑠𝑢𝑏. 𝑡𝑜. 50𝜆 ≤ 570 − (5𝑥11 + 7𝑥12 + 2𝑥13 + 5𝑥21 + 3𝑥22 + 3𝑥23) 

120𝜆 ≤ 615 − (5𝑥11 + 4𝑥12 + 5𝑥13 + 3𝑥21 + 7𝑥22 + 4𝑥23)
160𝜇 ≥ −420 + (5𝑥11 + 7𝑥12 + 2𝑥13 + 5𝑥21 + 3𝑥22 + 3𝑥23)
155𝜇 ≥ −495 + (5𝑥11 + 4𝑥12 + 5𝑥13 + 3𝑥21 + 7𝑥22 + 4𝑥23)

𝑥11 + 𝑥21 = 35
𝑥12 + 𝑥22 = 30
𝑥13 + 𝑥23 = 65

𝑥11 + 𝑥12 + 𝑥13 = 40
𝑥21 + 𝑥22 + 𝑥23  = 90

𝑥𝑟𝑠 ≥ 0 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

(4.63) 

 

Figure 4.15: Graphical representation of satisfaction and dissatisfaction level 

By LINGO 18.0 × 64 software solution, the issue is given as: λ = 0.5 and 𝜹= 0.46875 at 

point (0,15,25,35,15,40) which can be seen from Figure 4.15. At this point, functional values are 

given by  𝑓1 = 495 and 𝑓2 = 555. 
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4.5.1.4 Results 

The study aims to increase the satisfaction level and decrease the dissatisfaction level through an 

intuitionistic approach. Therefore, according to Table 4.13, the intuitionistic fuzzy approach 

represents a novel departure from the traditional fuzzy approach.   

Table 4.13: Satisfaction and dissatisfaction values for fuzzy and intuitionistic approaches 

Parameter Fuzzy Approach Intuitionistic Fuzzy Approach 

𝝀 0.3170732 0.5 

𝜹 0.6829268 0.4687500 

4.6 Conventional Intuitionistic Approach with Combination of Linear and Non-

linear Association Functions 

In chapter 1, we covered five different types of association functions. We generate a total of 25 

scenarios for the global approximation of association functions, utilizing these five functions for 

both membership and non-membership parameters. We explain the linear and non-linear 

membership functions in equations (4.17), (4.31) - (4.34). So, we show only the mathematical 

formulation for the non-membership functions here: 

4.6.1 Non-membership function  

Non-membership functions are typically defined by their opponents. When satisfaction rises from 

0 to 1, dissatisfaction falls. For the fuzzy technique, the non-membership function is therefore 1 

minus the membership function. The intuitionistic fuzzy approach, on the other hand, requires an 

objective function minimum that is lower than the fuzzy approach's minimum. In this study, we 

used the lowest level of the objective function as the minimum level, even though it represents the 

membership function's lowest point. The function for the objective of the non-participation (ṅ) 

function having 𝑓(𝑥)
𝑖
 and 𝑓(𝑥)𝑤

𝑖
  as positive and negative ideal values, respectively, is presented 

for maximization objectives from 1 ≤ 𝑖 ≤ 𝑙: 

a) Linear non-membership function: 
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ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

1 −
(ᴆ′̅𝑖 − ᴆ𝑖(𝑥))

ᴆ′̅𝑖
𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.64) 

b) Hyperbolic non- membership function:  

 

ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

1

2
(𝑡𝑎𝑛ℎ((−ᴆ𝑖(𝑥) +

ᴆ′̅𝑖
2
)𝛿)) −

1

2
 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.65) 

c) Parabolic non- membership function:  

 

ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

1 −
(ᴆ′̅𝑖 − ᴆ𝑖(𝑥))

2

ᴆ′̅𝑖
2 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.66) 

d) Exponential non-membership function:  

 

ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

1 − 𝜂 [1 − 𝑒𝑥𝑝 {−𝜌
|ᴆ′̅𝑖 − ᴆ𝑖(𝑥)|

(ᴆ′̅𝑖)
}] 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.67) 

e) Sigmoidal non-membership function:  

 

ń(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅′𝑖

(
1

1 + 𝐵𝑒
𝛼(
ᴆ′̅̅̅𝑖−ᴆ𝑖(𝑥)

(ᴆ′̅̅̅𝑖)
)

) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ′̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(4.68) 

We can choose a membership function in five different ways, as well as a non-membership 

function in five different ways. By combining different aspects of the two roles, we can realize 25 

distinct hybrid scenarios. 
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4.6.2 Agriculture case study 

Here we discuss crop production planning for a district, Baksa, in Assam. The data includes details 

about different crops in different seasons, along with the availability of land, fertilizers, and labour 

schedules. It also defines the production of every crop and the profit per unit land area. We must 

maximize total production while maximizing profit. We describe a total of 12 types of crops here. 

To maximize total profit and production with limited resources, we must maximize the area for 

each crop. Table B of [155] provides the data.  

4.6.2.1 Numerical data: 

We worked with secondary data on the agriculture programming problem in [155]. Table B of 

[155] provides the data. 

4.6.2.2 Formulation of MOLPP: 

Different parts of problems are defined below: 

a) Decision variable: 

The decision variables, listed below, determine the values of the objective function, necessitating 

our optimization of the functions: 

𝑥11 Winter Rice 

𝑥12 Rape and Master 

𝑥13 Jute 

𝑥14 Gram 

𝑥21 Summer Rice 

𝑥22 Lentil 

𝑥23 Ginger 

𝑥24 Turmeric 

𝑥25 Garlic 

𝑥26 Potato 

𝑥31 Autumn 

𝑥32 Maize 

b) Objective function: (Maximization) 
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The objective functions, profit and production, are what we need to optimize in this scenario: 

Production 𝑃1= 3849𝑥11 + 1880𝑥12+ 2290𝑥13 + 870𝑥14+ 4460𝑥21 + 1122𝑥22 

+ 17212𝑥23 + 27910𝑥24 + 5410𝑥25 + 25015𝑥26 + 3155𝑥31 + 

3079𝑥32 

(4.69) 

Profit 𝑃2= 75265𝑥11 + 13322𝑥12+ 18009𝑥13 + 40777𝑥14+ 95992𝑥21 + 

41064𝑥22 + 695142𝑥23 + 1504078𝑥24 + 132746𝑥25 + 118245𝑥26 

+ 49955𝑥31 + 37842𝑥32 

(4.70) 

c) Constraints: 

The restrictions listed below determine the availability or demand for resources and products, 

respectively: 

Kharif 

Season 

{
 
 

 
 
150𝑥11 + 80𝑥12 + 170𝑥13 + 80𝑥14 ≤ 310

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ 137955
60𝑥11 + 40𝑥12 + 20𝑥13 + 15𝑥14 ≤ 464300
20𝑥11 + 35𝑥12 + 20𝑥13 + 35𝑥14 ≤ 530500
40𝑥11 + 15𝑥12 + 20𝑥13 + 0𝑥14 ≤ 169400

 

 

(4.71) 

Rabi 

Season 

{
 
 

 
 
150𝑥21 + 80𝑥22 + 188𝑥23 + 300𝑥24 + 120𝑥25 + 120𝑥26 ≤ 310

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 ≤ 137955
40𝑥21 + 15𝑥22 + 20𝑥23 + 30𝑥24 + 100𝑥25 + 60𝑥26 ≤ 99200
20𝑥21 + 35𝑥22 + 60𝑥23 + 50𝑥24 + 80𝑥25 + 50𝑥26 ≤ 140700
20𝑥21 + 0𝑥22 + 20𝑥23 + 60𝑥24 + 60𝑥25 + 50𝑥26 ≤ 92200

 

 

(4.72) 

Summer 

Season 

{
 
 

 
 
150𝑥31 + 100𝑥32 ≤ 310
𝑥31 + 𝑥32 ≤ 137955

40𝑥31 + 60𝑥32 ≤ 271000
20𝑥31 + 40𝑥32 ≤ 302200
20𝑥31 + 40𝑥32 ≤ 88600

 

 

(4.73) 

Production 

limit {

3849𝑥11 + 4460𝑥21 + 3155𝑥31 ≤ 650
1122𝑥22 ≥ 40
25015𝑥32 ≥ 450

 

(4.74) 

Non-neg. 𝑥𝑖𝑗 ≥ 0  (4.75) 

4.6.2.3 Solution:  

After solving both objectives separately with constraints by LINGO 18.0 × 64: 

Max 𝑃1= 𝑃1̅= 80952.17 at point (0.1688750, 3.558359, 0, 0, 0, 0.03565062, 0, 0, 0, 2.559566, 0, 

3.1). 

Max 𝑃2= 𝑃2̅̅ ̅= 1808004 at point (0, 0, 0, 3.875, 0, 0.03565062, 0, 1.016631, 0, 0.01798921, 0, 3.1). 
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Nadir point of 𝑃1 = 𝑃1
𝑛= 41780.32 at point (0, 0, 0, 3.875, 0, 0.03565062, 0, 1.016631, 0, 

0.01798921, 0, 3.1). 

Nadir point of 𝑃2 = 𝑃2
𝑛= 481544.874 at point (0.1688750, 3.558359, 0, 0, 0, 0, 0, 0.03565062, 0, 

0, 0, 2.559566, 0, 3.1). 

Worst point of 𝑃1 = 𝑃1
𝑤= 0, worst point of 𝑃2 = 𝑃2

𝑤= 0. 

We assign the membership and non-membership functions to both functions and then use the 

provided methodology to transform the multiple objectives problem into a single objective 

problem, utilizing a hybrid approach to the functions' natures. To avoid duplication, the 

representation of a single-objective optimization problem does not specify the problem's initial 

constraints, which are the same as those included in the resulting new problem. Only new 

constraints are shown here. 

Association functions lead to additional constraints: The approach transforms membership 

functions into restrictions for a single objective's problem. Here, a total of 25 cases are given, so 

for every case the restrictions generated are graphically defined in Figure 4.16.  

1) Linear-Linear (LL) 

γ ≤  
𝑝1 − 41780.32

80952.17 − 41780.32

γ ≤  
𝑝2 − 481544.874

1808004 − 481544.874

δ ≥  
80952.172 − 𝑝1
80952.172

 δ ≥
1808004 − 𝑝2
1808004

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(a)  

2) Linear-Parabola (LP) 

γ ≤  
𝑝1 − 41780.32

80952.17 − 41780.32

γ ≤  
𝑝2 − 481544.874

1808004 − 481544.874

δ ≥  (
80952.172 − 𝑝1
80952.172

)
2

 δ ≥ (
1808004 − 𝑝2
1808004

)
2

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(b)  
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3) Linear-Hyperbolic (LH) 

 

γ ≤  
𝑝1−41780.32

80952.17−41780.32

γ ≤  
𝑝2−481544.874

1808004−481544.874

δ ≥  
1

2
−

1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

80952.17

2
) (

6

80952.17
))

 δ ≥
1

2
−

1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

1808004

2
) (

6

1808004
))

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(c) 

4) Linear-Exponential (LE) 

γ ≤  
𝑝1 − 41780.32

80952.17 − 41780.32

γ ≤  
𝑝2 − 481544.874

1808004 − 481544.874

δ ≥  1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1

(80952.17)
}]

 δ ≥ 1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2

(1808004)
}]

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(d)  

5) Linear-sigmoidal (LS) 

 

γ ≤  
𝑝1−41780.32

80952.17−41780.32

γ ≤  
𝑝2−481544.874

1808004−481544.874

δ ≥  
1

1+0.001001001exp(13.813×
𝑝1

80952.17
)

 δ ≥
1

1+0.001001001exp(13.813×
𝑝2

1808004
)

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 
 

(e)  

6) Parabolic-Linear (PL) 

γ ≤  (
𝑝1 − 41780.32

80952.172 − 41780.32
)2

γ ≤  (
𝑝2 − 481544.874

1808004 − 481544.874
)2

δ ≥  
80952.172 − 𝑝1
80952.172

 δ ≥
1808004 − 𝑝2
1808004

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(f)  
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7) Parabolic-Parabolic (PP) 

  

γ ≤  (
𝑝1 − 41780.32

80952.172 − 41780.32
)
2

γ ≤  (
𝑝2 − 481544.874

1808004 − 481544.874
)
2

δ ≥  (
80952.172 − 𝑝1
80952.172

)
2

 δ ≥ (
1808004 − 𝑝2
1808004

)
2

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(g) 

8) Parabolic-Hyperbolic (PH) 

 

γ ≤  (
𝑝1−41780.32

80952.172−41780.32
)2

γ ≤  (
𝑝2−481544.874

1808004−481544.874
)2

δ ≥  
1

2
−

1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

80952.17

2
) (

6

80952.17
))

 δ ≥
1

2
−

1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

1808004

2
) (

6

1808004
))

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(h) 

9) Parabolic-Exponential (PE) 

 

γ ≤  (
𝑝1 − 41780.32

80952.172 − 41780.32
)2

γ ≤  (
𝑝2 − 481544.874

1808004 − 481544.874
)2

δ ≥   1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1

(80952.17)
}]

 δ ≥ 1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2

(1808004)
}]

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(i) 

10) Parabolic-Sigmoidal (PS) 

 

γ ≤  (
𝑝1−41780.32

80952.172−41780.32
)
2

γ ≤  (
𝑝2−481544.874

1808004−481544.874
)
2

δ ≥   
1

1+0.001001001 exp(13.813×
𝑝1

80952.17
)

 δ ≥
1

1+0.001001001 exp(13.813×
𝑝2

1808004
)

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

(j) 
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11) Hyperbolic-Linear (HL) 

 

γ ≤   
1

2
+

1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

𝑃1̅̅ ̅+𝑃1
𝑛

2
) (

6

𝑃1̅̅ ̅+𝑃1
𝑛))

γ ≤  
1

2
+

1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

𝑃2̅̅ ̅+𝑃2
𝑛

2
) (

6

𝑃2̅̅ ̅+𝑃2
𝑛))

δ ≥  
80952.172−𝑝1

80952.172

 δ ≥
1808004−𝑝2

1808004

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(k) 

12) Hyperbolic-Parabolic (HP) 

γ ≤   
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

𝑃1̅̅̅ + 𝑃1
𝑛

2
) (

6

𝑃1̅̅̅ + 𝑃1
𝑛))

γ ≤  
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

𝑃2̅̅ ̅ + 𝑃2
𝑛

2
) (

6

𝑃2̅̅ ̅ + 𝑃2
𝑛))

δ ≥  (
80952.172 − 𝑝1
80952.172

)2

 δ ≥ (
1808004 − 𝑝2
1808004

)2

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(l) 

13) Hyperbolic-Hyperbolic (HH) 

γ ≤   
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

𝑃1̅̅̅ + 𝑃1
𝑛

2
) (

6

𝑃1̅̅̅ + 𝑃1
𝑛))

γ ≤  
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

𝑃2̅̅ ̅ + 𝑃2
𝑛

2
) (

6

𝑃2̅̅ ̅ + 𝑃2
𝑛))

δ ≥  
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

80952.17

2
) (

6

80952.17
))

 δ ≥
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

1808004

2
) (

6

1808004
))

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 

(m) 

14) Hyperbolic-Exponential (HE) 

γ ≤   
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

𝑃1̅̅̅ + 𝑃1
𝑛

2
) (

6

𝑃1̅̅̅ + 𝑃1
𝑛))

γ ≤  
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

𝑃2̅̅ ̅ + 𝑃2
𝑛

2
) (

6

𝑃2̅̅ ̅ + 𝑃2
𝑛))

δ ≥  1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1

(80952.17)
}]

 δ ≥  1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2

(1808004)
}]

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

 

 
 

(n) 
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15) Hyperbolic-Sigmoidal (HS) 

γ ≤   
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

𝑃1̅̅̅ + 𝑃1
𝑛

2
) (

6

𝑃1̅̅̅ + 𝑃1
𝑛))

γ ≤  
1

2
+
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

𝑃2̅̅ ̅ + 𝑃2
𝑛

2
) (

6

𝑃2̅̅ ̅ + 𝑃2
𝑛))

δ ≥  
1

1 + 0.001001001 exp (13.813 ×
𝑝1

80952.17
)

 δ ≥  
1

1 + 0.001001001 exp (13.813 ×
𝑝2

1808004
)

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 
 

 
 
 
 
 

 

 

(o) 

16) Exponential-Linear (EL) 

 

γ ≤   1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1−41780.32

(80952.17−41780.32)
}]

γ ≤  1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2−481544.874

(1808004−481544.874)
}]

δ ≥  
80952.172−𝑝1

80952.172

 δ ≥  
1808004−𝑝2

1808004

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(p) 

17) Exponential-Parabolic (EP) 

 

γ ≤   1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1−41780.32

(80952.17−41780.32)
}]

γ ≤  1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2−481544.874

(1808004−481544.874)
}]

δ ≥  (
80952.172−𝑝1

80952.172
)2

 δ ≥  (
1808004−𝑝2

1808004
)2

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(q) 

18) Exponential-Hyperbolic (EH) 

 

γ ≤   1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1−41780.32

(80952.17−41780.32)
}]

γ ≤  1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2−481544.874

(1808004−481544.874)
}]

δ ≥  
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

80952.17

2
) (

6

80952.17
))

 δ ≥  
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

1808004

2
) (

6

1808004
))

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(r) 
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19) Exponential-Exponential (EE) 

 

γ ≤   1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1−41780.32

(80952.17−41780.32)
}]

γ ≤  1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2−481544.874

(1808004−481544.874)
}]

δ ≥  1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1

(80952.17)
}]

 δ ≥  1 − 1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2

(1808004)
}]

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(s) 

20) Exponential-Sigmoid (ES) 

 

γ ≤   1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝1−41780.32

(80952.17−41780.32)
}]

γ ≤  1.2 [1 − 𝑒𝑥𝑝 {−1.79
𝑝2−481544.874

(1808004−481544.874)
}]

δ ≥  
1

1+0.001001001 exp(13.813×
𝑝1

80952.17
)

 δ ≥  
1

1+0.001001001 exp(13.813×
𝑝2

1808004
)

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

(t) 

21) Sigmoidal-Linear (SL) 

 

γ ≤   1 −
1

1+0.001001001exp(13.813×
𝑝1−41780.32

(80952.17−41780.32)
)

γ ≤  1 −
1

1+0.001001001exp(13.813×
𝑝2−481544.874

(1808004−481544.874)
)

δ ≥  
80952.172−𝑝1

80952.172

 δ ≥  
1808004−𝑝2

1808004

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 

 
 
 

  

 

(u) 

22) Sigmoidal-Parabolic (SP) 

 

γ ≤   1 −
1

1+0.001001001 exp(13.813×
𝑝1−41780.32

(80952.17−41780.32)
)

γ ≤  1 −
1

1+0.001001001 exp(13.813×
𝑝2−481544.874

(1808004−481544.874)
)

δ ≥  (
80952.172−𝑝1

80952.172
)
2

 δ ≥  (
1808004−𝑝2

1808004
)
2

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

(v) 
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23) Sigmoidal-Hyperbolic (SH) 

 

γ ≤   1 −
1

1+0.001001001 exp(13.813×
𝑝1−41780.32

(80952.17−41780.32)
)

γ ≤  1 −
1

1+0.001001001 exp(13.813×
𝑝2−481544.874

(1808004−481544.874)
)

δ ≥  
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃1 −

80952.17

2
) (

6

80952.17
))

 δ ≥  
1

2
−
1

2
𝑡𝑎𝑛ℎ ((𝑃2 −

1808004

2
) (

6

1808004
))

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

(w) 

24) Sigmoidal-Exponential (SE) 

 

γ ≤   1 −
1

1+0.001001001exp (13.813×
𝑝1−41780.32

(80952.17−41780.32)
)

γ ≤  1 −
1

1+0.001001001exp (13.813×
𝑝2−481544.874

(1808004−481544.874)
)

δ ≥  1 − 1.2[1 − 𝑒𝑥𝑝 {−1.79
𝑝1

(80952.17)
}]

 δ ≥   1 − 1.2[1 − 𝑒𝑥𝑝 {−1.79
𝑝2

(1808004)
}]

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

(x) 

25) Sigmoidal-Sigmoidal (SS) 

 

γ ≤   1 −
1

1+0.001001001exp (13.813×
𝑝1−41780.32

(80952.17−41780.32)
)

γ ≤  1 −
1

1+0.001001001exp (13.813×
𝑝2−481544.874

(1808004−481544.874)
)

δ ≥  
1

1+0.001001001exp (13.813×
𝑝1

80952.17
)

 δ ≥   
1

1+0.001001001exp (13.813×
𝑝2

1808004
)

1 ≥ (𝛾 + 𝜹) ≥ 𝛾 ≥ 𝜹 ≥ 𝟎 }
 
 
 
 

 
 
 
 

  

 

 

(y) 

Figure 4.16: Graphical approach for various scenarios under intuitionistic fuzzy environment (a) Linear v/s Linear association 

functions (b) Linear v/s Parabolic association functions (c) Linear v/s Hyperbolic association functions (d) Linear v/s Exponential 

association functions (e) Linear v/s Sigmoidal association functions (f) Parabolic v/s Linear association functions (g) Parabolic 

v/s Parabolic association functions (h) Parabolic v/s Hyperbolic association functions (i) Parabolic v/s Exponential association 

functions (j) Parabolic v/s Sigmoidal association functions (k) Hyperbolic v/s Linear association functions (l) Hyperbolic v/s 

Parabolic association functions (m) Hyperbolic v/s Hyperbolic association functions (n) Hyperbolic v/s Exponential association 

functions (o) Hyperbolic v/s Sigmoidal association functions (p) Exponential v/s Linear association functions (q) Exponential v/s 

Parabolic association functions (r) Exponential v/s Hyperbolic association functions (s) Exponential v/s Exponential association 

functions (t) Exponential v/s Sigmoidal association functions (u) Sigmoidal v/s Linear association functions (v) Sigmoidal v/s 

Parabolic association functions (w) Sigmoidal v/s Hyperbolic association functions (x) Sigmoidal v/s Exponential association 

functions (y) Sigmoidal v/s Sigmoidal association functions 

4.6.2.4 Results 
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These optimized points, obtained from LINGO 18.0 × 64, are used to determine the values of 

numerous parameters. In resulting Tables 4.14-4.16, rows show the behaviours of membership 

functions, while columns show the behaviours of non-membership functions. We obtain the 

comparison parameters in the following way: 

• Satisfaction level: Minimum of both membership degrees. 

 𝛾 = min
𝑖=1,2

ḿ𝑖 (4.76) 

• Dissatisfaction level: Maximum of both non-membership degrees. 

 𝛿 = max
𝑖=1,2

ń𝑖 (4.77) 

• Difference between satisfaction and dissatisfaction level:  

 𝛾 − 𝛿 (4.78) 

The values for them are given below with the help of Table 4.14: 

Table 4.14: Satisfaction values for 25 different scenarios 

                  Linear Parabolic Hyperbolic Exponential Sigmoid 

Linear 0.507365 0.2575933 0.5225943 0.6740341 0.5259385 

Parabolic 0.5075339 0.2575937 0.5225941 0.7162412 0.5259386 

Hyperbolic 0.4776326 0.2190315 0.5225941 0.6800204 0.5259384 

Exponential 0.5075365 0.2575927 0.5225941 0.7162414 0.5259384 

Sigmoid 0.4880472 0.2343881 0.5225941 0.6892932 0.5259384 

Table 4.15: Dissatisfaction values for 25 different scenarios 

 Linear Parabolic Hyperbolic Exponential Sigmoid 

Linear 0.3613005 0.3613005 0.3613004 0.3259659 0.3613006 

Parabolic 0.1305389 0.1305382 0.1305380 0.1305381 0.1305381 

Hyperbolic 0.1261184 0.1168038 0.1591729 0.1160492 0.1591729 

Exponential 0.1825291 0.1825287 0.1825291 0.1825291 0.1825291 

Sigmoid 0.1072492 0.1034007 0.1283527 0.09692229 0.1283528 

Table 4.16: Difference between satisfaction and dissatisfaction values for 25 different scenarios 

 Linear Parabolic Hyperbolic Exponential Sigmoid 
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Linear 0.146236 -0.1037072 0.1612938 0.3480682 0.1646379 

Parabolic 0.3769951 0.1270554 0.3920561 0.5857031 0.3954005 

Hyperbolic 0.3515142 0.1022277 0.3634213 0.5639711 0.4844681 

Exponential 0.3250074 0.07506407 0.3400650 0.5337124 0.3434093 

Sigmoid 0.3807980 0.1309874 0.3942415 0.5923709 0.3975857 

We can conclude from the tables that the preferences of various combinations are based on 

different parameters. Below, we present the most preferred approach for various parameters, which 

preferred maximizing the level of satisfaction and difference between satisfaction and 

dissatisfaction levels but minimizing the level of dissatisfaction: 

• Satisfaction level (0.7162414): Exponential v/s Exponential    

• Dissatisfaction level (0.09692229): Exponential v/s Sigmoidal 

• Difference between satisfaction and dissatisfaction level (0.5923709): Exponential v/s 

Sigmoidal. 

4.7 Conventional Dual Hesitant Fuzzy Approach with Linear Association Functions 

for MOLPP 

The distance function will be the same as defined in eq (4.14) of this chapter. Here, the number of 

membership or non-membership functions for an objective function will not be single due to the 

presence of hesitant properties, according to which the membership and non-membership values 

at a point will be set. We provide a set of membership and non-membership functions below for 

your reference: 

 

ḿ𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

ѡ𝑒

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

(
(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

𝐷
) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

(4.79) 

 

ń𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖′

ѡ𝑒 (1 −
(ᴆ̅𝑖′ − ᴆ𝑖(𝑥))

ᴆ̅𝑖′
) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

(4.80) 
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Here 0 ≤ ѡ𝑒 ≤1, which is provided by the 𝑒𝑡ℎ expert, are a total of n in numbers. Similar to the 

intuitionistic approach, we define two parameters for each expert, denoted by 𝛾𝑒and 𝛿𝑒, and 

provide their mathematical framework as follows:  

 
𝛾𝑒 ≤ ѡ𝑒 (

(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
) 

(4.81) 

 
𝛿𝑒 ≥ ѡ𝑒 (1 −

(ᴆ̅𝑖′ − ᴆ𝑖(𝑥))

ᴆ̅𝑖′
) 

(4.82) 

The issue has been simplified to a single goal LPP, as demonstrated in: 

 
max  (

𝛾1 + 𝛾2+. . +𝛾𝑛

𝑛
) − (

𝛿1 + 𝛿2+. . +𝛿𝑛

𝑛
)

sub. to: 𝛾𝑒 ≤ ѡ𝑒 (
(ᴆ̅𝑖 − ᴆ𝑖(𝑥))

ᴆ̅𝑖
)

𝛿𝑒 ≥ ѡ𝑒 (1 −
(ᴆ̅𝑖′ − ᴆ𝑖(𝑥))

ᴆ̅𝑖′
)

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

j

𝑥𝑘 ≥ 0
0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1

𝛾𝑝 ≥ 𝛿𝑝 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

(4.83) 

4.8 Conventional Dual Hesitant Fuzzy Approach with Non-linear Association 

Functions for MOLPP 

Due to the development of dual hesitant sets with the aid of intuitionistic sets. As they involve the 

properties of intuitionistic sets, we provide a set of membership and non-membership functions 

that are preferred based on the maximum number of parameters from the study of the intuitionistic 

approach, which can be seen from Figure 4.17. Functions are defined below: 

ḿ𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

ѡ𝑒

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖

1.2 [1 − 𝑒𝑥𝑝(− 𝑙𝑛 (
1

6
) (

|ᴆ̅𝑖 − ᴆ𝑖(𝑥)|

(ᴆ̅𝑖)
))] 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

 

(4.84) 
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ń𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ ᴆ̅𝑖′

ѡ𝑒

(

 
1

1 + (0.001001001𝑒
13.813(

ᴆ𝑖(𝑥)

(ᴆ′̅𝑖)
)

)

 𝑖𝑓 0 < ᴆ𝑖(𝑥) < ᴆ̅𝑖′

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

 

(4.85) 

 

Figure 4.17: Membership and non-membership functions' graphical representation 

These association functions assume additional parameters as discussed in the previous section. The 

ultimate single-objective programming challenge will be: 

 
𝑚𝑎𝑥  (

𝛾1 + 𝛾2+. . +𝛾𝑛

𝑛
) − (

𝛿1 + 𝛿2+. . +𝛿𝑛

𝑛
)

𝑠𝑢𝑏. 𝑡𝑜: 𝛾𝑒 ≤ ѡ𝑒1.2 [1 − 𝑒𝑥𝑝(− 𝑙𝑛 (
1

6
) (

|ᴆ̅𝑖 − ᴆ𝑖(𝑥)|

(ᴆ̅𝑖)
))]

𝛿𝑒 ≥ ѡ𝑒 (
1

1 + (0.001001001𝑒
13.813(

ᴆ𝑖(𝑥)

(ᴆ′̅̅̅𝑖)
)

)

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗

𝑥𝑘 ≥ 0

0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1
𝛾𝑝 ≥ 𝛿𝑝 }

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

(4.86) 

4.9 Conclusion 

Finally, a strong and promising way to manage traffic signs is to use fuzzy inference rules to figure 

out how long a green light lasts, as well as the Analytic Hierarchy Process (AHP) to figure out the 
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choice of criteria. The AHP-provided hierarchical decision process allows for an open and 

methodical evaluation of criteria, laying the groundwork for future adaptation using fuzzy logic. 

To optimize traffic flow and blockages in metropolitan areas, the fuzzy inference system improves 

the adaptability and understanding of traffic signal control by handling imprecise input and 

adjusting to fluctuating traffic patterns.  

In the present chapter, we looked at the environmental benefits of using inventory and production 

management technology. We present a multi-objective, single-item inventory model that at the 

same time maximizes profit with total back-ordered quantity, optimizes costs associated with 

inventory holding, accounts for different emission costs, and takes steps to mitigate any 

environmental damage that may result from managing inventory production. To enhance the 

results' realism, we formalize the suggested model using fuzzy goal programming and the distance 

function. A numerical study then quantitatively demonstrates the results, and LINGO 18.0 × 64 

optimization software solves the model. We can find an efficient and optimal trade-off between its 

financial advantages (profit) and its contribution to the environment by minimizing the costs of 

environmental pollution, electricity usage throughout manufacturing, and emissions resulting from 

the transportation of final products. 

The primary objective of our study was to explore the potential applications of linear, hyperbolic, 

parabolic, exponential, and sigmoidal functions in capturing vagueness and ambiguity due to 

multiplicity of objectives in decision-making. Our research has helped us understand the rationale 

behind selecting specific membership and non-membership functions in specific scenarios. In 

cases where uncertainty follows a smooth and consistent pattern, linear functions are a suitable fit 

due to their simplicity and interpretability. For a global approximation of the situation for non-

linear association functions, hyperbolic, parabolic, exponential, and sigmoidal natures are taken 

into consideration. This is because they can show maximum areas or sudden changes in uncertainty 

degrees. The comparative study, with the help of a financial case study, concludes that the 

membership function's hyperbolic nature provides the best result. 

In this chapter, we solve the transportation planning problem using an intuitionistic fuzzy 

programming method. We use a hypothetical situation to highlight the innovative nature of the 

intuitionistic method. In the results section, we observe that intuitionistic fuzzy programming 
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produces results that are closer to ideal ones, and it also leads to an increase in satisfaction levels. 

The integration of fuzzy programming into the transportation problem's solution enhances its 

realism. This chapter goes into great detail about how important it is to choose the right 

membership and non-membership functions for intuitionistic fuzzy sets (IFS) based on different 

parameters in a wide range of real-life situations that give the best mix of exponential and 

sigmoidal nature for membership and non-membership functions, respectively, on the basis of the 

maximum number of parameters. 

There is a new way to solve multi-objective linear optimization problems in this study. It uses a 

set to find the value of the association function at a certain point. This is called a dual-hesitant 

fuzzy optimization method. The inclusion of non-linear behavior in the best combination of these 

functions makes the study more robust. 

4.9.1 Major findings 

• The study provides the fundamental information to handle linguistic variables for further 

research, and it also provides information about how to define and handle membership 

functions. 

• The min-max fuzzy model offers a productive and encouraging optimal solution 

incorporating comprehensive success values that satisfy decision-makers with multiple 

objectives and adapt to changing variables. 

• A comprehensive comparative analysis of all combinations of linear and non-linear 

association functions across various fuzzy extensions revealed the most effective 

combination, enabling the selection of the best-suited nature of association functions for 

improved solution quality in multi-objective optimization problems. 

• Improved capacity to manage complicated multi-objective decision-making issues was 

shown by extended fuzzy models (intuitionistic/ dual hesitant) with modified association 

functions.  
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Chapter 5  

Enhanced Approaches with Normalized Distance Function 

Including Various Membership Functions and Fuzzy Numbers 

As established in the previous chapter, the extension of fuzzy sets and the non-linear behavior of 

association functions play a crucial role in enhancing the modeling capability of fuzzy multi-

objective optimization problems. In real-world applications, large variations in the scale of 

objective function values often create imbalance and hinder accurate comparison across objectives. 

To address this, the normalized distance function is introduced in this chapter as a robust tool to 

standardize these values, ensuring fair and consistent evaluation. We begin by incorporating this 

function within the simple fuzzy approach, which provides a fundamental framework to validate 

its effectiveness in a controlled setting. Once its benefits are established, we progressively apply 

it to more advanced extensions of fuzzy sets—such as intuitionistic and dual hesitant fuzzy 

models—to explore its performance in more complex decision-making environments. Similarly 

non-linearity is also introduced in all these approaches. This stepwise integration as shown in 

Figure 5.1 not only strengthens the theoretical foundation but also highlights the adaptability and 

robustness of the normalized distance function across varying levels of uncertainty.  

 

Figure 5.1: Conceptual flow and organization of the chapter 
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5.1 Introduction 

Several studies exist that provide applications of Zimmerman's fuzzy approach in different real-

life sectors that we discussed in the previous chapter. But in most cases, the range of functions 

varies widely, so existing methods don't treat all functions equally. This chapter introduces a fuzzy 

approach that uses the normalized distance parameter for an association function. This approach 

produces superior outcomes in multi-objective linear programming problems in terms of the 

satisfaction level value and the total normalized distance between the resultant values and their 

ideal values. A major step forward in solving the complicated decision-making difficulties 

encountered in real life has been using non-linear participation in fuzzy approaches for multiple 

goal optimization techniques. The non-linear nature of the links between the different objectives 

means that traditional linear membership functions may not be able to show how choice variables 

and goals are interdependent in many real-world situations [103].  

Fuzzy and intuitionistic fuzzy optimization methods are enhanced by non-membership measures 

and the non-linear behaviour of assignment functions, respectively, and can better depict 

complicated decision spaces with non-linear interactions [62]. In real-world queries regarding 

optimization, inconsistencies and ambiguities are inherent. Non-linear measures allow for more 

flexible and nuanced membership responsibilities, which better capture these issues. This 

improvement results in better and more reliable decision-making, allowing users to investigate and 

take advantage of non-linear trade-offs and correlations among various goals [65]. The present 

study enhances the intuitionistic approach with the help of the normalized distance function. A 

new approach is then developed using the optimal combination of non-linear association functions 

identified in the previous chapter. 

As discussed in the previous chapter, the dual hesitant approach involves the properties of 

intuitionistic as well as hesitant fuzzy sets and improves the situations associated with the 

intuitionistic fuzzy approach. So, here we have developed a dual hesitant fuzzy approach with the 

help of an improved intuitionistic fuzzy approach. The linear and non-linear behaviour are 

discussed separately for this approach. 
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5.2 Enhanced Fuzzy Multi-Objective Optimization Approach with Triangular Fuzzy 

Number 

To enhance the fuzzy approach, we have used the normalized distance function [156]. For the 

normalized fuzzy approach, the normalized distance function for the objective 𝑓i(𝑥) is defined as 

follows: 

 
ᴆ𝑖(𝑥) =

|𝑓
i
− 𝑓𝑖(𝑥)|

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

  

(5.1) 

Here, the coefficients linked to the 𝑘𝑡ℎ decision variables and the 𝑖𝑡ℎ objective function, as 

described by equation 1.35, are denoted by 𝑝𝑘
𝑖 . If we are given some constraints, we may determine 

the maximum value of a single objective using the notation 𝑓
𝑖
 = positive ideal value of 𝑓𝑖(𝑥). The 

formula of the distance function for the largest possible  𝑓𝑖(𝑥) is: 

 𝑓
𝑖
− 𝑓𝑖(𝑥) = 0 (5.2) 

The function that characterizes the separation of any two hyperplanes can be expressed as follows: 

 
𝑀𝑎𝑥 ᴆ𝑖(𝑥) =

|𝑓
𝑖
− 𝑓𝑖

𝑛|

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

,   ∀ 𝑖 = 1,2, … 𝑙 

(5.3) 

Here 𝑓i
𝑛 is the nadir point of the 𝑛𝑡ℎ function. Let ᴆ̅𝑖 = {{𝑚𝑎𝑥 ᴆ𝑖(𝑥)}; ∀ 𝑖 =  1,2, … 𝑙} and for a 

common limiting value of membership functions, we consider 𝐷 = 𝑠𝑢𝑝 {(𝑚𝑎𝑥 ᴆ𝑖(𝑥)); ∀ 𝑖 =

 1,2, … 𝑙}. The next step is to figure out the best way to set up a distance relationship function, 

which can have different behaviour. 

5.2.1 Approach with linear membership function 

Here, the membership function is used as a linear function, which is the simplest form. 

Membership's value increases constantly as the distance between its functional value and its ideal 

value decreases, as defined below: 
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ḿ(ᴆ𝑖(𝑥)) = {

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷
(𝐷 − ᴆ𝑖(𝑥))

𝐷
𝑖𝑓 0′ < ᴆ𝑖(𝑥) < 𝐷

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.4) 

A new type of characteristic represents the connection between our participation functions. In the 

direction of the intersection of all functions, the minimum operator is defined as follows: 

 
γ ≤

(𝐷 − ᴆ𝑖(𝑥))

𝐷
 

(5.5) 

This statement reduces the situation to a single goal. 

Max γ

Subjected to: − 𝑓i(𝑥) + 𝐷(√∑ 𝑝𝑘
𝑖 2

𝑟

𝑘=1
)γ ≤ 𝐷(√∑ 𝑝𝑘

𝑖 2
𝑟

𝑘=1
) − 𝑓

i

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

j

𝑥𝑘 ≥ 0 }
  
 

  
 

 

 

(5.6) 

These can be solved using the standard optimization tools and techniques. 

5.2.1.1 Numerical Experiment: 

Here a hypothetical example of MOLPP is considered: 

 𝑚𝑎𝑥 𝑓1 = 2.5𝑥1 + 4𝑥2
𝑚𝑎𝑥   𝑓2 = 7𝑥1 + 2.75𝑥2
𝑠𝑢𝑏 𝑡𝑜  2𝑥1 +  3𝑥2 ≤ 3 

2𝑥1 +  1𝑥2  ≤ 7
5𝑥1 +  4𝑥2 ≤ 7 
3𝑥1 +  4𝑥2 ≤ 9 
7𝑥1 +  6𝑥2 ≤ 10 
4𝑥1 +  6𝑥2 ≤ 11 

𝑥1,𝑥2 ≥ 0 }
 
 
 
 

 
 
 
 

 

 

 

(5.7) 

Let us take both objective functions individually and find their maximal values with the graphical 

method under the given constraint: 

At point (0, 1): 𝑓
1
= 4   
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At point (1.4, 0): 𝑓
2
 = 9.8 

5.2.1.2 Solution 

Now, distance functions are provided as follows in accordance with the model: 

 

ᴆ1(𝑥) = ||
𝑓
1
− 𝑓1(𝑥)

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

|| =
2.5𝑥1 + 4𝑥2 − 4

4.72
 

 

(5.8) 

 

ᴆ2(𝑥) = ||
𝑓
2
− 𝑓2(𝑥)

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

|| =
7𝑥1 + 2.75𝑥2 − 9.8

7.52
 

 

(5.9) 

The following are the maximum separations for two goal functions: 

 
Max ᴆ1(𝑥) =

𝑓
1
− 𝑓1

𝑛

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

=
0.5

4.72 

(5.10) 

 
Max ᴆ2(𝑥) =

7.05

7.52
 

(5.11) 

As:  Max ᴆ2(𝑥) > Max ᴆ1(𝑥)     

 
=> D =

7.05

7.52
 

(5.12) 

Now, membership functions will be: 

 

ḿ(ᴆ1(𝑥)) =

{
  
 

  
 0 if ᴆ1(𝑥) ≥

7.05

7.52

(
7.05
7.52

−
2.5𝑥1 + 4𝑥2 − 4

4.72 )

7.05
7.52

if 0′ < ᴆ1(𝑥) <
7.05

7.52

1 if ᴆ1(𝑥) ≤ 0

 

(5.13) 

 

ḿ(ᴆ2(𝑥)) =

{
  
 

  
 0 if ᴆ2(𝑥) ≥

7.05

7.52

(
7.05
7.52

−
7𝑥1 + 2.75𝑥2 − 9.8

7.52
)

7.05
7.52

if 0′ < ᴆ2(𝑥) <
7.05

7.52

1 if ᴆ2(𝑥) ≤ 0

 

(5.14) 

So, the new single-objective formed LPP is given as: 
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 Max γ
Subjected to  4.42γ ≤ 2.5𝑥1 + 4𝑥2 + 0.42

7.52γ ≤ 7𝑥1 + 2.75𝑥2 − 2.28
2𝑥1 +  3𝑥2 ≤ 3 
2𝑥1 +  1𝑥2  ≤ 7
5𝑥1 +  4𝑥2 ≤ 7 
3𝑥1 +  4𝑥2 ≤ 9 
7𝑥1 +  6𝑥2 ≤ 10 
4𝑥1 +  6𝑥2 ≤ 11 

𝑥1,𝑥2 ≥ 0 }
 
 
 
 
 

 
 
 
 
 

 

 

 

(5.15) 

Since it defines membership degree, the range of γ will be the same as that of membership degree, 

which is between 0 and 1, since it is the minimum of all membership functions associated with 

each objective function. By using the simplex method, the value of γ =0.9484 and the point of 

maxima is (1.2912, 0.136). At this point, the values of the objective functions are 𝑓1=3.772 and 𝑓2= 

9.5824. 

5.2.1.3 Results and Comparative analysis 

By using Zimmerman’s method, the value of γ =0.9082 and the point of maxima is (1.21835, 

0.2271). At this point, the values of the objective functions are 𝑓1=3.9542 and 𝑓2= 9.152776. 

Table 5.1: Values of different parameters for the Zimmerman's and proposed approach 

Parameter Ideal value for 1st 

function 

Ideal value for 2nd 

function 

Zimmerman’s 

approach 

Proposed 

approach 

γ --- ---  0.9082 0.9484  

Optimal point (0,1) (1.4, 0) (1.21835, 0.2271) (1.2912, 0.136) 

𝑓1 4  3.5 3.9542  3.772  

𝑓2 2.75 9.8 9.152776 9.5824 

Total functional 

value 

6.75 13.3 13.106976 13.3544 

Deviation --- --- 0.09577041 0.07724125 

As shown in Table 5.1, the proposed approach decreases the total deviation from ideal values while 

increasing both the satisfaction level and the total functional value that we desire. 
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5.2.2 Approach with non-linear membership function 

The membership function after taking the non-linear nature, which is described in Chapter 4, and 

taking 𝐷 in place of ᴆ�̅�(𝑥), is defined below [157]: 

a) Hyperbolic Membership Function: 

 

ḿ(ᴆi(𝑥)) =

{
 
 

 
 

(
1

2

1 𝑖𝑓 ᴆi(𝑥) ≤ 0

𝑡𝑎𝑛ℎ ((−ᴆi(𝑥) +
𝐷

2
) 𝛿) +

1

2
) 𝑖𝑓0 < ᴆi(𝑥) < 𝐷

0 𝑖𝑓 ᴆi(𝑥) ≥ 𝐷

 

 

(5.16) 

Here, 𝛿 = |
6

�̅�𝑖(𝑥)+𝑓𝑖
𝑛(𝑥)

|. 

b) Parabolic membership function: 

 

ḿ(ᴆi(𝑥)) =

{
 
 

 
 1 𝑖𝑓ᴆi(𝑥) ≤ 0
(D − ᴆi(𝑥))2

(𝐷)2
𝑖𝑓 0 < ᴆi(𝑥) < 𝐷

0 𝑖𝑓 ᴆi(𝑥) ≥ 𝐷

 

 

(5.17) 

c) Exponential membership function: 

 

ḿ(ᴆi(𝑥)) =

{
 
 

 
 

𝜂

1 𝑖𝑓ᴆi(𝑥) ≤ 0

[1 − 𝑒𝑥𝑝 {−𝜌
|D − ᴆi(𝑥)|

(𝐷)
}] 𝑖𝑓 0 < ᴆi(𝑥) < 𝐷

0 𝑖𝑓 ᴆi(𝑥) ≥ 𝐷

 

 

(5.18) 

d) Sigmoidal membership function:  

 

ḿ(ᴆi(𝑥)) =

{
 
 

 
 

1 𝑖𝑓ᴆi(𝑥) ≤ 0

1 − (
1

1 + 𝐵𝑒
𝛼(
D−ᴆi(𝑥)
(𝐷)

)

) 𝑖𝑓 0 < ᴆi(𝑥) < 𝐷

0 𝑖𝑓 ᴆi(𝑥) ≥ 𝐷

 

 

(5.19) 

The parametric values are used the same as described in the previous chapter. After taking these 

membership functions, the approach will go in the same sense as described in the above section 

described by eq (5.5), (5.6). 
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5.3 Enhanced Fuzzy Multi-Objective Optimization Approach with Intuitionistic 

Triangular Fuzzy Number 

Here, apart from the conventional approach, the distance function is defined with normalization.  

 
ᴆ𝑖(𝑥) =

|𝑓
𝑖
− 𝑓𝑖(𝑥)|

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

 

(5.20) 

Both association functions, listed below, will have a different maximum value for the distance 

operator: 

a) For membership function: 

 
𝑀𝑎𝑥 ᴆ𝑖(𝑥) =

|𝑓
𝑖
− 𝑓𝑖

𝑛|

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

,   ∀ 𝑖 = 1,2, … 𝑙 

(5.21) 

b) For non-membership function: 

 
𝑀𝑎𝑥 ᴆ′𝑖(𝑥) =

|𝑓
𝑖
− 𝑓𝑖

𝑤|

√∑ 𝑝𝑘
𝑖 2𝑟

𝑘=1

,   ∀ 𝑖 = 1,2, … 𝑙 

(5.22) 

Where 𝑓i
𝑛 and 𝑓i

𝑤 are the nadir and worst values of functions whose difference defines the 

hesitancy level. Let D= 𝑠𝑢𝑝{(𝑀𝑎𝑥  ᴆ𝑖(𝑥)); ∀ 𝑖 =  1,2, … 𝑙, 𝐷′ = 𝑠𝑢𝑝{(𝑀𝑎𝑥  ᴆ′i(𝑥)); ∀ 𝑖 =

 1,2, … 𝑙}. The next step is to define membership and non-membership functions with linear and 

non-linear behaviour based on the best results from the previous section. 

5.3.1 Approach with linear association function 

We treat both membership and non-membership functions here as linear functions that vary 

continuously with the normalized distance. 

 

ḿ(ᴆ𝑖(𝑥)) = {

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷
(𝐷 − ᴆ𝑖(𝑥))

𝐷
𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

(5.23) 
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ń(ᴆ𝑖(𝑥)) =

{
 

 
1 −

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷′

(𝐷′ − ᴆ𝑖(𝑥))

𝐷′
𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷′

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.24) 

New characteristics represent the relationship between participation and non-participation 

functions. We aim to enhance the value of membership and diminish the value of non-membership 

functions. So, we have determined two distinct parameters for each function. 

 
𝛾 ≤

(𝐷 − ᴆ𝑖(𝑥))

𝐷
 

(5.25) 

 
𝛿 ≥ 1 −

(𝐷′ − ᴆ𝑖(𝑥))

𝐷′
 

(5.26) 

This statement reduces the situation to a single goal. 

 𝑀𝑎𝑥 𝛾 − 𝛿

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝛾 ≤
(𝐷 − ᴆ𝑖(𝑥))

𝐷

𝛿 ≥ 1 −
(𝐷′ − ᴆ𝑖(𝑥))

𝐷′

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗

𝑥𝑘 ≥ 0
0 ≤ 𝛾, 𝛿 ≤ 1
𝛾 + 𝛿 ≤ 1

0 ≤ 𝛾 − 𝛿 ≤ 1 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

(5.27) 

This statement reduces the situation to a single goal. 

5.3.2 Approach with non-linear association functions 

We look at both membership and non-membership functions as non-linear functions based on the 

earlier chapter's comparison and the normalized distance. 

 

ḿ(ᴆ𝑖(𝑥)) =

{
 
 

 
 

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷

1.2 [1 − 𝑒𝑥 𝑝(−𝑙 𝑛 (
1

6
) (
(𝐷 − ᴆ𝑖(𝑥))

𝐷
))] 𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.28) 
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ń(ᴆ𝑖(𝑥)) =

{
  
 

  
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷′

(

 
 1

1 + (0.001001001𝑒
13.813(

𝐷′−ᴆ𝑖(𝑥)

𝐷′
)
)
)

 
 

𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷′

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

 

(5.29) 

Figure 5.2 illustrates the geometric behaviour of these association functions in detail. The method 

follows the same steps as the previous approach using linear functions, resulting in a single 

objective LPP: 

 𝑀𝑎𝑥 𝛾 − 𝛿

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝛾 ≤ 1.2 [1 − 𝑒𝑥 𝑝(−𝑙 𝑛 (
1

6
) (
(𝐷 − ᴆ𝑖(𝑥))

𝐷
))]

𝛿 ≥

(

 
 1

1 + (0.001001001𝑒
13.813(

𝐷′−ᴆ𝑖(𝑥)

𝐷′
)
)
)

 
 

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗

𝑥𝑘 ≥ 0
0 ≤ 𝛾, 𝛿 ≤ 1
𝛾 + 𝛿 ≤ 1

0 ≤ 𝛾 − 𝛿 ≤ 1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

(5.30) 

 

Figure 5.2: Graphical representation of exponential membership and sigmoidal non-membership function 
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5.3.2.1 Numerical Experiment: 

Here a hypothetical problem of MOLPP is considered, given below: 

 

{
  
 

  
 
𝑀𝑎𝑥 𝑓1 = 2𝑥1 − 3𝑥2
𝑀𝑎𝑥 𝑓2 = 𝑥1 + 5𝑥2
s. t. 𝑥1 − 3𝑥2 ≤ 15
2𝑥1 + 𝑥2 ≤ 25
1𝑥1 + 5𝑥2 ≤ 20
2𝑥1 + 3𝑥2 ≤ 22
𝑥1, 𝑥2 ≥ 0

 

 

 

(5.31) 

To solve both functions separately using LINGO 18.0 × 64: 

Max 𝑓1=𝑓1̅=22; at the optimal point (11,0)  

Max 𝑓2=𝑓2̅=20; at the optimal point (7.14,2.57)  

Nadir point of 𝑓1 = 𝑓1
𝑛

 = 6.57; at the point (7.14,2.57). 

Nadir point of 𝑓2 = 𝑓2
𝑛

=11; at the point (11,0). 

Minimum point of 𝑓1 = 𝑓1
𝑤

= -12  

Minimum point of 𝑓2 = 𝑓2
𝑤

= 0 

5.3.2.2 Solution  

The expected first- and second-function levels increased simultaneously. The first function's nadir 

and ideal values are 6.57 and 22, respectively, which form the basis for a participation function 

with an exponential character. The ideal value remains constant, and the non-membership measure 

exhibits a sigmoidal pattern. However, intuitionistic characteristics lead to an even worse 

minimum value of -12 when considering the supremum normalized distance. Membership is 

defined here as a value that ranges from zero at the bottom to the number one at the top; non- 

membership is the opposite. In the second objective, 20 is the best, -28.08 is the worst, and -1.823 

is the nadir number, as shown in Figure 5.3. The goal of this strategy is to widen the difference 

between the two functions' satisfaction and dissatisfaction ratings. We have now reduced the 

problem to a single-objective LPP: 
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Figure 5.3: Results with assignment function according to non-linear and normalized intuitionistic fuzzy approach 

  Max γ − δ

 

s. t. γ ≤ 1.2[1 − 𝑒𝑥𝑝{−1.79

15.43

√13
− (

22 − (2𝑥1 − 3𝑥2)

√13
)

15.43

√13

}] 

γ ≤ 1.2[1 − 𝑒𝑥𝑝 {−1.79

15.43

√13
− (

20 − (𝑥1 + 5𝑥2)

√26
)

15.43

√13

}

𝛿 ≥
1

1 + 0.001001001exp (13.813 ×

34

√13
− (

22 − (2𝑥1 − 3𝑥2)

√13
)

34

√13

)

𝛿 ≥
1

1 + 0.001001001exp (13.813 ×

34

√13
− (

20 − (𝑥1 + 5𝑥2)

√26
)

34

√13

)

𝑥1 − 3𝑥2 ≤ 15
2𝑥1 + 𝑥2 ≤ 25
1𝑥1 + 5𝑥2 ≤ 20
2𝑥1 + 3𝑥2 ≤ 22
𝑥1, 𝑥2 ≥ 0

0 ≤ 𝛾 + 𝛿 ≤ 1
𝛾 ≥ 𝛿 }

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(5.32) 
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The range of γ and δ, which are the lowest and maximum of all membership and non-membership 

functions associated with each objective function, respectively, will be from 0 to 1, because these 

functions essentially determine the degrees of membership and non-membership. 

5.3.2.3 Results and Comparative Analysis 

LINGO 18.0 × 64 is used to obtain the optimal point and the level of satisfaction and 

dissatisfaction based on the problem findings of the numerical trial. We determine the values of 

multiple variables based on this optimum point, listed in Table 5.2. 

Table 5.2: Various parameter’s values after optimization with different techniques for an illustrative example 

Parameter IFA (Linear, Non-

normalized) 

IFA (Linear, Normalized) IFA (Non-linear, 

Normalized) 

𝛾 0.5000231             0.7419355 0.8622071 

𝛿 0.2269013             0.1827957 0.0000001 

𝛾 − 𝛿 0.2731219 0.5591398 0.862207 

Optimal point (9.071, 1.286) (9.873,0.751) (9.873,0.751) 

𝑓1 14.284 17.493 17.493 

𝑓2 15.501 13.63 13.63 

Total functional 

value 

29.785 31.123 31.123 

Deviation 3.02236 2.4993 2.4993 

Table 5.2 displays the intended outcome of our study, which shows a 13.95% increase in 

satisfaction levels compared to linear techniques. 35.2% and 68.3% increment in the gap between 

satisfaction and dissatisfaction levels compared to the current linearly normalized and non-

normalized techniques, respectively. Improving overall functional value and decreasing 

normalized operational value disparity from ideal locations are our primary goals. The Table 5.2 

shows that the total functional values from using linear and non-linear normalized methods were 

4.3% higher than those from the non-normalized findings. The normalized distance decreased by 

17.31% compared to the non-normalized method. 
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5.4 Enhanced Fuzzy Multi-Objective Optimization Approach with Dual Hesitant 

Triangular Fuzzy Number 

The normalized distance function will be the same as defined in earlier chapters. Here, the number 

of membership or non-membership functions for an objective function is not single due to the 

presence of hesitant properties, according to which the membership and non-membership values 

at a point form a set. We provide a set of membership and non-membership functions below for 

your reference. The analysis shows that normalized techniques are better to calculate functional 

and deviational values. Non-linearity with normalization enhances the satisfaction level with 

decreased dissatisfaction value. 

5.4.1 Approach with linear association functions 

The membership functions are linear in accordance with the normalized distance function. The 

membership function declines with an increase in the distance function, while the non-membership 

function rises for any expert, as illustrated below: 

 

ḿ𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

ѡ𝑒

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷

(
(𝐷 − ᴆ𝑖(𝑥))

𝐷
) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.33) 

 

ń𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷′

ѡ𝑒 (1 −
(𝐷′ − ᴆ𝑖(𝑥))

𝐷′
) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷′

0 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.34) 

Here 0 ≤ ѡ𝑒 ≤1, which is provided by the 𝑒𝑡ℎ expert, which are total n in numbers. Like the 

intuitionistic approach, we define two parameters for each expert, denoted by 𝛾𝑒and 𝛿𝑒, and 

provide their mathematical framework as follows:  

 
𝛾𝑒 ≤ ѡ𝑒 (

(𝐷 − ᴆ𝑖(𝑥))

𝐷
) 

(5.35) 

 
𝛿𝑒 ≥ ѡ𝑒 (1 −

(𝐷′ − ᴆ𝑖(𝑥))

𝐷′
) 

(5.36) 

The issue has been simplified to a single goal LPP, as demonstrated in: 
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max  (

𝛾1 + 𝛾2+. . +𝛾𝑛

𝑛
) − (

𝛿1 + 𝛿2+. . +𝛿𝑛

𝑛
)

sub. to: 𝛾𝑒 ≤ ѡ𝑒 (
(𝐷 − ᴆi(𝑥))

𝐷
)

𝛿𝑒 ≥ ѡ𝑒 (1 −
(𝐷′ − ᴆi(𝑥))

𝐷′
)

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

j

𝑥𝑘 ≥ 0
0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1

𝛾𝑝 ≥ 𝛿𝑝 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

(5.37) 

5.4.2 Approach with non-linear association function 

Due to the involvement of intuitionistic fuzzy sets into dual hesitant fuzzy sets, the study provides 

a set of membership and non-membership functions with the same non-linear behaviour, best 

concluded in Chapter 4 from a comparison study of different association functions. Functions are 

defined below: 

ḿ𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

ѡ𝑒

0 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷

1.2 [1 − 𝑒𝑥𝑝(− 𝑙𝑛 (
1

6
)(
(𝐷 − ᴆ𝑖(𝑥))

𝐷
))] 𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

(5.38) 

ń𝑒(ᴆ𝑖(𝑥)) =

{
 
 

 
 

1 𝑖𝑓 ᴆ𝑖(𝑥) ≥ 𝐷′

ѡ𝑒 (
1

1 + (0.001001001𝑒
13.813(

𝐷′−(ᴆ𝑖(𝑥))

𝐷′
)

) 𝑖𝑓 0 < ᴆ𝑖(𝑥) < 𝐷′

1 𝑖𝑓 ᴆ𝑖(𝑥) ≤ 0

 

 

 

(5.39) 
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Figure 5.4: Membership and non-membership functions' graphical representation 

These association functions incorporate additional parameters known as satisfaction and 

dissatisfaction levels, which can be seen geometrically from Figure 5.4. For a particular expert, 

satisfaction is the minimum of all membership degrees, and dissatisfaction is the maximum of all 

non-membership degrees. Now the aim is to maximize the difference between average satisfaction 

and dissatisfaction levels. This will be the ultimate single-objective programming challenge: 

 
𝑚𝑎𝑥  (

𝛾1 + 𝛾2+. . +𝛾𝑛

𝑛
) − (

𝛿1 + 𝛿2+. . +𝛿𝑛

𝑛
)

𝑠𝑢𝑏. 𝑡𝑜: 𝛾𝑒 ≤ ѡ𝑒1.2 [1 − 𝑒𝑥𝑝(− 𝑙𝑛 (
1

6
) (
(𝐷 − ᴆ𝑖(𝑥))

𝐷
))]

𝛿𝑒 ≥ ѡ𝑒

(

 
1

1 + (0.001001001𝑒
13.813(

𝐷′−(ᴆ𝑖(𝑥))

𝐷′
)
)

 

𝑐𝑘
𝑗
𝑥𝑘 ≤ 𝑑

𝑗

𝑥𝑘 ≥ 0
0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1

𝛾𝑝 ≥ 𝛿𝑝 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

(5.40) 

The problem can be solved by conventional simplex method. 

5.5 Conclusion 

When analysing all the characteristics with a normalized separation value, the proposed fuzzy 

method becomes much more robust and dependable. Such an approach is critical when making 
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decisions in real life, where scale parameter variations play a significant role. However, the data 

we looked at shows that non-linearity doesn't change the normalized methods used to rank 

objective function results and normalized distance parameters. However, in this scenario, the level 

of satisfaction is higher.  

The study's results highlight the importance of using modern computer techniques to tackle 

MOLPP problems, such as standard separation tasks and non-linearity in an intuitionistic fuzzy 

framework. The proposed approach effectively incorporates the inherent inconsistency and 

unpredictability of everyday decision-making scenarios, providing decision-makers across 

numerous domains with a practical and efficient solution. Since it can generate ideas that are close 

to the intended outcomes while managing several competing goals, this technique is appropriate 

and pertinent to challenging optimization situations. Analysing the most preferred non-linear 

association function from the above comparative study with a normalized separation value 

significantly enhances the robustness and reliability of the proposed method. However, looking at 

the data shows that non-linearity does not change the normalized methods used to rank the results 

of the objective function and the normalized distance parameters. By this approach, both levels of 

satisfaction and the difference between satisfaction and dissatisfaction are higher. The 

computational technique outperforms traditional methods and gives a comprehensive solution to 

optimization problems with many objectives. 

When faced with the complexity and unpredictability of industrial processes, the suggested dual-

hesitant fuzzy optimization method, which incorporates both membership and non-membership 

functions performed better, as discussed in the previous chapter. Using a normalized distance 

operation, which places all objective functions on the same scale, increases the approach's 

trustworthiness and inclusion of hesitant sets with the intuitionistic approach, making them more 

realistic with several experts’ opinions. 

5.5.1 Major Findings 

• The strategy ensures consistent and comparable findings by eliminating scale 

dependability, allowing decision-makers to make intelligent decisions regardless of the size 

of the factors. 
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• Results confirm the distinctiveness and efficiency of the proposed methodologies when 

compared to existing methodologies. 

• The data analysis shows that the placement of results acquired using normalized methods 

applied to the distance parameters is unaffected by the inclusion of non-linearity. 
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Chapter 6  

Enhanced Technologies in Various Real-Life Circumstances 

Continuing from the last chapter, which highlighted the importance of normalized distance 

functions and fuzzy set extensions for improving multi-objective optimization, this chapter 

shows how these tools can be used in various real-world contexts. Starting with biomimetic 

systems and smart city transportation, we applied the improved fuzzy method using triangular 

fuzzy numbers, gradually moving from linear to non-linear membership functions to see how 

they affect the system. In addition, the method is expanded to include titanium alloy 

composition-related material science applications. After that, the chapter delves into how to 

apply dual hesitant fuzzy approaches to complicated production challenges and then how to 

apply enhanced triangular intuitionistic fuzzy optimization to the manufacturing sector. This 

methodical procedure as shown in Figure 6.1 verifies the efficacy of each approach in practical 

settings and permits comparative analysis among fuzzy extensions. 

 

Figure 6.1: Conceptual flow and organisation of the chapter 
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6.1 Introduction 

The focus of this study into the possible uses of applied systems and MOLPP in the field of 

tissue engineering is on wound healing and the problems that come with having serious skin 

injuries. The use of scaffold-based 3D bioprinting, an additive manufacturing technique well-

known for producing cell-laden structures, is revolutionizing traditional tissue engineering. A 

multifaceted approach is required to tackle the intricacies of living tissues and the mechanical 

characteristics they possess. We can use several different bioprinting methods to repair 

damaged tissues [152]. Their results are based on a variety of criteria. The aim is to determine 

the bioprinting technology that is superior based on a variety of criteria. For the most 

appropriate choice of method, we need to optimize these factors. Therefore, we employ multi-

objective optimization to address this problem. According to section 4.1, fuzzy theory 

generates fuzzy numbers to deal with the parameter's linguistic outcomes. The enhanced fuzzy 

approach with linear quality is then applied to this problem.  

We conduct a comparative analysis to pinpoint the optimal non-linear membership function, 

considering the transportation issues in smart cities. We apply the best approach to a real-life 

case study to determine the optimal composition of titanium alloy. Identifying the significant 

relationships between mechanical properties and chemical component proportions can enhance 

our understanding of the material's behaviour. We can achieve these objectives by applying 

linear regression analysis. Since fuzzy-based optimization is adapted to deal with imprecise 

and ambiguous data, it can help with a complex decision-making process that aims to find a 

middle ground between competing goals. By optimizing component proportions, this study 

provides material engineers with a workable framework for improving mechanical 

performance in a variety of contexts. 

Our research utilizes an advanced intuitionistic fuzzy technique with a normalized distance 

function, utilizing both linear and non-linear association functions to simultaneously optimize 

multiple objectives in a real-life manufacturing management case study. This approach 

leverages the most efficient (exponential v/s sigmoidal) behaviour of associated functions. The 

intuitionistic fuzzy approach is a flexible and useful way to solve multi-purpose optimization 

problems in manufacturing planning and administration. It does this by using a normalized 

distance function, membership and non-membership operations with exponential and 

sigmoidal (non-linear) behaviour and combining them in a way that makes sense. 
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An enhanced dual-hesitant fuzzy approach analyses the manufacturing problem based on a 

real-life case study. We assign both linear and non-linear association functions to find the 

optimal compromise solution. A comparative study has been done to find the effects of 

improved approaches in relation to conventional approaches. 

6.2 Application of Enhanced Linear/Non-linear Fuzzy Multi-Objective 

Optimization with Triangular Fuzzy Number 

As in Chapter 5, we enhance the fuzzy approach with a triangular fuzzy approach utilizing a 

normalized distance function. We will discuss three different case studies: one focusing on the 

linear behaviour of the membership function, another on the comparative analysis of various 

non-linear functions, and the final one focusing on the resulting non-linear membership 

function. 

6.2.1 Linear approach in biomimetic 

We are using an improved fuzzy method with triangular fuzzy numbers for a biomimetic 

application, including the straight-line shape of the membership function from section 5.2.1 of 

Chapter 5. 

Inkjet, laser, extrusion, stereolithography, and microfluidic bioprinting are the most common 

forms of contemporary skin 3D bioprinting technologies. Inkjet bioprinting procedures expel 

liquid drops containing biomaterials and cells from the nozzle tip [158]. By shining high-energy 

pulses of laser light on a thin surface covered with laser-absorbing substances, as in laser 

bioprinting [159], the bioink particles force the biomaterial and cells to separate from the 

backing plate and place on the surface of the platform. In extrusion bioprinting, either air 

pressure or a machinery-driven nozzle deposits bioink on a platform to form a two-dimensional 

structure. As the nozzle or generating platform moves along the z-axis, bioink builds in layers 

to produce a three-dimensional structure [160]. In stereolithography bioprinting [161], a UV 

lamp or laser casts light onto a polymer solution, polymerizing it into the desired shape. 

Collecting potatoes from mashed potatoes, diced potatoes, filar potatoes, and sheet potatoes, 

respectively, is analogous to established 3D bioprinting techniques such as laser, inkjet, 

extrusion, and stereolithography bioprinting. In contrast to conventional bioprinters, the 

microprinting apparatus used in micro bioprinting may produce artificial skin in a shorter 
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amount of time [162]. Table 6.1 provides data through a secondary source [163] about the 

technologies. 

Table 6.1: Parametric responses for various techniques of bioprinting 

Parameter Inkjet (I) Laser (L) Extrusion (E) Stereolithography (S) Microfluidic (M) 

Cost (C) Low High Medium Low Low 

Cell viability(V) >85% >95% 40–80% >85% >80% 

Print speed(S) Fast Medium Slow Fast Fast 

Resolution(R) High High Medium High High 

Cell density(D) Low Medium High Medium High 

a) Fuzzification of linguistic variables: 

We define fuzzy numbers for linguistic variables for cost, resolution, cell density, print speed, 

and cell viability, as described in Table 6.2, with the help of triangular fuzzy numbers: 

Table 6.2: Fuzzy numbers corresponding to linguistic variables 

Criteria Fuzzy number Linguistic variable 

 (0,1,2) Low(L) 

Cost (C), Resolution (R), Cell density (D) (2,3,4) Medium(M) 

 (4,5,6) High(H) 

 (0,1,2) Slow(S) 

Print speed (S) (2,3,4) Medium(M) 

 (4,5,6) Fast(F) 

 (0,1,2) 40-80% 

Cell viability(V) (2,3,4) >80% 

 (4,5,6) >85% 

 (6,7,8) >95% 

Now we have to minimize cost, maximize resolution, cell density, print speed, and cell viability. 

We now present the updated Table 6.3, obtained by fuzzifying the data presented in Table 6.1: 

Table 6.3: New table with numerical responses of various techniques 

Parameters I L E S M 

C (0,1,2) (4,5,6) (2,3,4) (0,1,2) (0,1,2) 

S (4,5,6) (2,3,4) (0,1,2) (4,5,6) (4,5,6) 

V (4,5,6) (6,7,8) (0,1,2) (4,5,6) (2,3,4) 

R (4,5,6) (4,5,6) (2,3,4) (4,5,6) (4,5,6) 

D (0,1,2) (2,3,4) (4,5,6) (2,3,4) (4,5,6) 
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b) Defuzzification of fuzzy numbers: 

After applying 𝛼- cut technique of defuzzification, the resulting values of Table 6.3 are given 

as in Table 6.4: 

Table 6.4: Values of parameters after defuzzification 

Parameters I L E S M 

C 1 5 3 1 1 

S 5 3 1 5 5 

V 5 7 1 5 3 

R 5 5 3 5 5 

D 1 3 5 3 5 

6.2.1.1 Problem formulation 

We treat the methods as choice variables that can take on just two values: 1 if we use the method 

and 0 if we don't. Here is a description of how to formulate and resolve the resulting multi-

objective optimization problem: 

a) Decision variables: 

Here, we need to decide which bioprinting technique to employ. Therefore, we will use 

techniques (I, L, E, S, M) as decision variables to determine their adoption or rejection. We 

will take the value of the decision variable as 1 for the presence of the technique and 0 for its 

absence. 

b) Objective Functions: 

This section presents five equations that outline the objectives of the model under optimization. 

The initial goal is to maximize the total resolution parameter. The second goal is to maximize 

cell density; the third goal is to maximize cell viability; the fourth goal is to optimize printing 

speed; and the final is to minimize the technique's cost. Here are the corresponding 

mathematical equations for each goal: 

Resolution 𝑀𝑎𝑥 𝑅 = 5𝐼 + 5𝐿 + 3𝐸 + 5𝑆 + 5𝑀 (6.1) 

Cell density 𝑀𝑎𝑥 𝐷 = 𝐼 + 3𝐿 + 5𝐸 + 3𝑆 + 5𝑀 (6.2) 

Cell viability 𝑀𝑎𝑥 𝑉 = 5𝐼 + 7𝐿 + 1𝐸 + 5𝑆 + 5𝑀 (6.3) 

Speed 𝑀𝑎𝑥 𝑆 = 5𝐼 + 3𝐿 + 1𝐸 + 5𝑆 + 5𝑀 (6.4) 

Cost 𝑀𝑖𝑛 𝐶 = 1𝐼 + 5𝐿 + 3𝐸 + 1𝑆 + 1𝑀 (6.5) 
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c) Constraints associated: 

This section outlines the numerous constraints or limitations required to accomplish the multi-

objective optimization discussed in the previous section. There are a total of two equations. 

The first constraint specifies that we can only use one technique at a time, so the sum of all 

decision variables should be 1. The second constraint states that the value of variables should 

be between 0 and 1. The last one shows that the values for decision variables can be 0 or 1. The 

limitations are shown in the following mathematical form: 

 𝐼 + 𝐿 + 𝐸 + 𝑆 +𝑀 = 1
0 ≤ 𝐼, 𝐿, 𝐸, 𝑆,𝑀 ≤ 1
𝐼, 𝐿, 𝐸, 𝑆,𝑀 ∈ {0,1}

} 
(6.6) 

6.2.1.2 Solution 

LINGO 18.0 × 64 software calculates the best possible objective function values on the basis 

of the constraints provided above.  

Max R =�̅�= 5 at multiple points, nadir point of R =𝑅𝑛= 3 at point (0,0,1,0,0) 

Max D =�̅�= 5 at multiple points, nadir point of D =𝐷𝑛= 1 at point (1,0,0,0,0)  

Max V =�̅�= 7 at point (0,1,0,0,0), nadir point of V =𝑉𝑛= 1 at point (0,0,1,0,0)  

Max S =𝑆̅= 5 at multiple points, nadir point of S =𝑆𝑛= 1 at point (0,0,1,0,0)  

Min C =𝐶̅= 1 at multiple points, nadir point of C =𝐶𝑛= 5 at point (0,1,0,0,0). 

Now, the model’s predicted distance functions are as follows: 

 
ᴆR(𝑥) = |

�̅� − R(x)

(109)1/2
| =

5 − (5𝐼 + 5𝐿 + 3𝐸 + 5𝑆 + 5𝑀)

√109
 (6.7) 

 
ᴆD(𝑥) = |

�̅� − D(x)

(69)1/2
| =

5 − (𝐼 + 3𝐿 + 5𝐸 + 3𝑆 + 5𝑀)

√67
 (6.8) 

 
ᴆV(𝑥) = |

�̅� − V(x)

(125)1/2
| =

7 − (5𝐼 + 7𝐿 + 1𝐸 + 5𝑆 + 5𝑀)

√125
 (6.9) 

 
ᴆ𝑆(𝑥) = |

𝑆̅ − S(x)

(85)1/2
| =

5 − (5𝐼 + 3𝐿 + 1𝐸 + 5𝑆 + 5𝑀)

√85
 (6.10) 

 
ᴆC(𝑥) = |

𝐶̅ − C(x)

(37)1/2
| =

−1 + (1𝐼 + 5𝐿 + 3𝐸 + 1𝑆 + 1𝑀)

√37
 (6.11) 

Maximum separations for two objectives can be expressed as: 
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 ᴆR(𝑥) =

2

√109
,  ᴆD(𝑥) =

4

√67
,  ᴆV(𝑥) =

6

√125
,

ᴆ𝑆(𝑥) =
4

√85
, ᴆ𝐶(𝑥) =

4

√37
 

(6.12) 

 => 𝑀𝑎𝑥 {ᴆR(𝑥), ᴆD(𝑥), ᴆV(𝑥), ᴆ𝑆(𝑥), ᴆ𝐶(𝑥)} = ᴆ𝐶(𝑥) (6.13) 

 
=>  D =

4

√37
= 0.657 (6.14) 

After applying the enhanced fuzzy approach with a triangular fuzzy number, the final single-

objective problem is given by: 

 

{
 
 
 
 

 
 
 
 

𝑀𝑎𝑥 γ 
Sub. to. 2γ ≤ 5𝐼 + 5𝐿 + 3𝐸 + 5𝑆 + 5𝑀 − 3

4γ ≤ 𝐼 + 3𝐿 + 5𝐸 + 3𝑆 + 5𝑀 − 1
6γ ≤ 5𝐼 + 7𝐿 + 1𝐸 + 5𝑆 + 5𝑀 − 1
4γ ≤ 5𝐼 + 3𝐿 + 1𝐸 + 5𝑆 + 5𝑀 − 1

4γ ≤ −(1𝐼 + 5𝐿 + 3𝐸 + 1𝑆 + 1𝑀) + 5
𝐼 + 𝐿 + 𝐸 + 𝑆 +𝑀 = 1
0 ≤ 𝐼, 𝐿, 𝐸, 𝑆,𝑀 ≤ 1
𝐼, 𝐿, 𝐸, 𝑆,𝑀 ∈ {0,1}

 

 

 

(6.15) 

 

 

6.2.1.3 Results 

After solving eq (6.7) with LINGO 18.0 × 64, the value of γ = 0.7277059 at point (0,0,0,0,1). 

The values of goals at this point are R = 5, D = 5, V = 5, S = 5, and C = 1. Table 6.5 provides 

the parametric values corresponding to this point. Based on these findings, it's clear that the 

microfluidic technique would come out on top in a comparison of bioprinting methods if only 

the five criteria are considered.  

Table 6.5: Parametric values according to proposed and conventional approaches 

Parameter Proposed Approach Conventional Approach 

𝛄 0.7277059 0.667 

𝛿 0.272294 0.333 

𝛾-𝛿 0.455412 0.334 

Optimal Point (0,0,0,0,1) (0,0,0,0,1) 

Total Functional Value 21 21 
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Total Normalized Distance 0.179 0.179 

6.2.1.4 Comparative Analysis 

Figure 6.2 shows that our proposed methodology provides more satisfaction and less 

dissatisfaction than the existing one. Other parameters will remain the same as the conventional 

approach, but improvement in satisfaction level make it more useful to apply in such types of 

studies. 

 

Figure 6.2: Comparative graph of parametric values with enhanced and conventional approaches 

6.2.2 Linear/Non-linear approach in transportation of smart city 

The enhanced fuzzy approach with triangular fuzzy numbers including the linear/non-linear 

nature of the membership function [157] provided in section 5.2.2 of chapter 5 is used here for 

the transportation application explained below: 

Let vehicle types 1 and 2 be present at a location that corresponds to their capacities and 

availability. The numerical comfort level of car no. 1 is 2 units, while that of car no. 2 is 3. 

After deducting all the ride's expenses, vehicle 1 can earn $3.5 per rider, whereas car 2 can lose 

$4. Then, after imposing some constraints provided in eq (6.18) on the vehicles available, we 

need to determine how many will make the final roster for the journey.  

6.2.2.1 Problem Formulation 

The problem encompasses two objectives for optimization under linear constraints, resulting 

in MOLPP. We define the problem's components as follows: 

0

0.2

0.4

0.6

0.8

1
𝛾

𝛿𝛾-𝛿

Proposed Approach Conventional Approach
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a) Decision variables: 

We need to determine the number of vehicles for each type. So, the decision variables will be 

the number of these vehicles denoted by 𝑥1 and 𝑥2 for types 1 and 2 respectively. 

b) Objective functions: 

There are two set objectives: We should pursue two primary goals simultaneously: (a) 

enhancing the comfort level as much as possible and (b) maximizing profits. 

 𝑀𝑎𝑥 𝑓1 = 2𝑥1 + 3𝑥2 (6.16) 

 𝑀𝑎𝑥 𝑓2 = 3.5𝑥1 − 4𝑥2 (6.17) 

c) Constraints: 

We define the constraints based on their budget and space capacity, as shown below: 

 𝑠𝑢𝑏. 𝑡𝑜. : −𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 

 
 

 

 

(6.18) 

 

 

6.2.2.2 Solution 

The optimal value of the objective functions subject to the specified restrictions are determined 

graphically. 

Max 𝑓1 = 𝑓
1
= 4.5 at point (0,1.5) and nadir point of 𝑓1 = 𝑓1

𝑛 = 1.6  at point (0.8,0). 

Max 𝑓2 = 𝑓2 = 2.8 at point (0.8,0) and nadir point of 𝑓2 = 𝑓2
𝑛 = −6 at point (0,1.5). 

Now, the model-predicted distance functions are as follows: 

 

ᴆ1(𝑥) = ||
𝑓
1
− 𝑓1(𝑥)

√∑ 𝑝𝑘
122

𝑘=1

|| =
4.5 − (2𝑥1 + 3𝑥2)

√13
 

(6.19) 
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ᴆ2(𝑥) = ||
𝑓
2
− 𝑓2(𝑥)

√∑ 𝑝𝑘
222

𝑘=1

|| =
2.8 − (3.5𝑥1 − 4𝑥2)

√28.25
 

(6.20) 

Maximum distance functions for two objectives can be expressed as: 

 
𝑀𝑎𝑥 ᴆ1(𝑥) =

2.9

√13
,𝑀𝑎𝑥 ᴆ2(𝑥) =

8.8

√28.25
 

(6.21) 

As 𝑀𝑎𝑥 ᴆ1(ұ) < 𝑀𝑎𝑥 ᴆ2(ұ) (6.22) 

 
=>  D =

8.8

√28.25
= 1.66 

(6.23) 

The curve of satisfaction level increases with the increment of the first functional values, and 

it increases from 0 to 1 for values -1.47 to 4.5. For second function, it increases from -6 to 2.8. 

Eq (6.24)-(6.28) provide the final problem with a single objective function that includes all 

membership functions, and Figures 6.3–6.7 provide a geometrical representation of them: 

a) With linear membership function: 

 𝑀𝑎𝑥 𝛾
𝑆𝑢𝑏. 𝑡𝑜. :  31.73𝛾 ≤ 10.62𝑥1 + 15.95𝑥2 + 7.81

8.8𝛾 ≤ 6 + 3.5𝑥1 − 4𝑥2
−𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 
 

 
 
 

 

 

 

(6.24) 

 

Figure 6.3: Linear membership (satisfaction) function corresponding to both objective functions 

b) With Parabolic membership function: 
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 𝑀𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜. :  1006.72γ ≤ (10.63𝑥1 + 15.95𝑥2 + 7.811)
2

2187.68𝛾 ≤ (31.89 + 18.60𝑥1 − 21.26𝑥2)
2

−𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 
 
 

 
 
 
 

 

 

 

(6.25) 

 

Figure 6.4: Parabolic membership (satisfaction) function corresponding to both objective functions 

c) With Hyperbolic membership Function: 

 

Figure 6.5: Hyperbolic membership (satisfaction) function corresponding to both objective functions 

 

 𝑀𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜. :  𝛾 ≤
1

2
tanh((3.624) (

4.4

√28.25
−
4.5 − 2𝑥1 − 3𝑥2

√13
)) +

1

2

𝛾 ≤
1

2
tanh((3.624) (

4.4

√28.25
−
2.8 − 3.5𝑥1 + 4𝑥2

√28.25
)) +

1

2

−𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

(6.26) 
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d) With Exponential Membership Function: 

 𝑀𝑎𝑥 𝛾
𝑆𝑢𝑏. 𝑡𝑜. :  γ ≤ (1.2)(1 − exp ((−0.0564)(10.63𝑥1 + 15.95𝑥2 + 7.811))

𝛾 ≤ (1.2)(1 − exp ((−0.2034)(31.89 + 18.60𝑥1 − 21.26𝑥2)
−𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 
 
 

 
 
 
 

 

 

 

(6.27) 

 

Figure 6.6: Exponential membership (satisfaction) function corresponding to both objective functions 

e) With Sigmoidal Membership Function: 

 

Figure 6.7: Sigmoidal membership (satisfaction) function corresponding to both objective functions 
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 𝑀𝑎𝑥 𝛾

𝑆𝑢𝑏. 𝑡𝑜. :  γ ≤ 1 − (
1

1 + 0.001001𝑒
8.343(

8.8

√28.25
−
4.5−2𝑥1−3𝑥2

√13
)
)

𝛾 ≤ 1 − (
1

1 + 0.001001𝑒
8.343(

8.8

√28.25
−
𝟐.𝟖−𝟑.𝟓𝒙𝟏+𝟒𝒙𝟐

√𝟐𝟖.𝟐𝟓
)
)

−𝑥1 + 2𝑥2 ≤ 5
2𝑥1 + 5𝑥2 ≤ 10
5𝑥1 − 4𝑥2 ≤ 4 
3𝑥1 + 4𝑥2 ≤ 6
𝑥1,𝑥2 ≥ 0 }

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

(6.28) 

6.2.2.3 Results 

Once we input all these problems into the LINGO 18.0 × 64 software, we obtain the optimal 

points, which serve as the basis for the values of the various parameters, as shown in Table 6.6. 

Table 6.6: Values of different parameters for various membership functions of enhanced fuzzy approach 

Parameter Linear Parabolic Hyperbolic Exponential Sigmoidal 

γ 0.9269007 0.8591475 0.99407685 0.9720973 0.9972602 

𝛿 0.0730993 0.1408525 0.00592315 0.0279027 0.0027398 

𝛾-𝛿 0.8538014 0.718295 0.9881537 0.9441946 0.9945204 

Optimal point (1.228849, 

0.5360615) 

(1.228381,0.5

354765) 

(1.228478, 

0.5355976) 

(1.228525,0.5

356558) 

(1.228738, 

0.5359223) 

𝑓1 4.0658825 4.0571915 4.0637488 4.0640174 4.0652429 

𝑓2 2.1567255 2.1574275 2.1572946 2.1572143 2.1568938 

Total functional 

value 

6.222068 6.214619 6.2210434 6.2212317 6.2221367 

Deviation 0.24163088046 0.2437092 0.2419156 0.2418562 0.2415804 

6.2.2.4 Comparative Analysis 

Here, we examine various membership functions by comparing them with various parameters. 

Some of these parameters are functional values, satisfaction and dissatisfaction levels, and 

value of normalized distance. These are properly explained below: 
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a) Values of goal functions: 

In consideration of the goal functions, we received three parameters, the values of which we 

compared with the comparative graph in Figure 6.7. 

 

Figure 6.8: Comparative graph of functional values with fuzzy approach having various membership functions 

The graph in Figure 6.8 demonstrates that the sigmoidal membership function increases the 

total value of all goals.  

b) 𝜹 and 𝜸 values: 

The satisfaction and dissatisfaction levels are important parameters for the comparison of fuzzy 

approaches, which can be calculated as: 

 𝛾= min
𝑖∈{1,2}

ḿ𝑖(𝑥) (6.29) 

 𝛿 =   1 − 𝛾 (6.30) 

 

Figure 6.9: Comparative graph of satisfaction values with fuzzy approach having various membership functions 
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This comparative analysis by Figure 6.9 shows that the technique with the sigmoidal 

membership function improves outcomes because we need to increase the value of the degree 

of fulfilment and the difference while decreasing the value of the discontent level. 

c) Value of normalized distance from ideal points: 

We can calculate the normalized distance from ideal points of functions using the following 

formula: 

 

ᴆ(𝑥) =∑

(

 
𝑓
𝑖
− 𝑓𝑖(𝑥)

√∑ 𝑝𝑘
𝑖 22

𝑘=1 )

 

2

𝑖=1

  
(6.31) 

 

Figure 6.10: Comparative graph of normalized distance values with fuzzy approach having various membership functions 

Figure 6.10 demonstrates how the normalized distance from ideal points of goal functions and 

the normalization procedure successfully reduces it. 

The analysis reveals that the sigmoidal membership function provides the lowest deviation 

value and the highest satisfaction (total functional value). Therefore, we will prefer the 

sigmoidal non-linear function for further calculation. 

6.2.3 Non-linear approach in composition of titanium alloy 

In the last section, we compared different methods using a better fuzzy approach with a 

triangular fuzzy number, looking at both linear and non-linear membership functions. The 

results indicated that the sigmoidal function yielded the best results. Therefore, we have to 

apply this approach to the material science application [164]. 

0.24163088
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Material science and engineering are based on mechanical properties [165]. Understanding 

how materials respond to mechanical forces is paramount to designing and developing 

structures and components that can withstand a wide range of loads, from the weight of an 

aircraft to the forces applied to a medical implant. These properties encompass a multitude of 

characteristics, such as strength, modulus of elasticity, and elongation, each of which is pivotal 

in determining how a material will perform under various conditions. In common usage, the 

word "modulus" denotes the stiffness measurement known as Young's modulus or modulus of 

elasticity. The stress-strain ratio is a mechanical characteristic that characterizes a material's 

behaviour during deformation [166]. Tensile strength is the ultimate stress that a material can 

withstand before giving way under controlled stretching or pulling. A material begins to deform 

plastically when it reaches its yield point, a characteristic known as yield strength or yield 

stress. A mechanical component's maximum allowed load is often determined by calculating 

its yield strength, which is the highest force that can be applied without permanently deforming 

the component. A material's elongation is its measurably measured propensity to lengthen 

under stress [167]. One material that has captured the attention of engineers and researchers 

alike for its exceptional mechanical properties is titanium, both in its pure form and as a central 

component in a myriad of titanium alloys. Chemical composition, temperature, and pressure 

all have an impact on these characteristics. This investigation, however, centres on the 

concentration of chemical components. Research [168], shows that one mechanical property 

of unalloyed titanium improves as the concentration of a specific component declines at 

different chemical concentrations. Because it is too expensive and takes too long to do the 

experiments needed to look at these mechanical properties at different chemical concentrations, 

we need to come up with a way to use computers to find the relationship between these 

properties and the best condition for all the mechanical qualities to be at their best at the same 

time. Our research provides a solution to this constraint. Through an in-depth examination of 

the mechanical properties, their significance, and their role in chemical component selection 

and design, we aim to provide a comprehensive understanding of the pivotal role that these 

properties play in materials science and engineering. 

a) Data Collection: 

We have two data sets: one shows the metal materials' percentages, and the other shows their 

mechanical properties. Table 6.7 describes the total information. 
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Table 6.7: Data of unalloyed titanium 

Grade Tensile 

strength(T) 

Yield 

strength(Y) 

Elongation 

(E) 

Modulus 

(M) 

O2 N Fe C H Ti 

grade1 240 170 24 102 0.18 0.03 0.2 0.08 0.015 99.495 

grade2 345 275 20 102 0.25 0.03 0.3 0.08 0.015 99.325 

grade3 450 380 18 102 0.35 0.05 0.3 0.08 0.015 99.205 

grade4 550 483 15 104 0.4 0.05 0.5 0.08 0.015 98.955 

b) Data Pre-processing: 

The multiple linear regression process eliminates the component proportions of carbon and 

hydrogen, which are the same in all four grades. Thus, the resulting data will be as shown in 

Table 6.8: 

Table 6.8: Processed data of unalloyed titanium 

Grade T Y E M O2 N Fe Ti 

grade1 240 170 24 102 0.18 0.03 0.2 99.495 

grade2 345 275 20 102 0.25 0.03 0.3 99.325 

grade3 450 380 18 102 0.35 0.05 0.3 99.205 

grade4 550 483 15 104 0.4 0.05 0.5 98.955 

To process the data in this study, we have used R Studio. Our model, known as multiple linear 

regression, assumes that the dependent variable linearly depends on the compositions of 

chemical components. We assume the intercept is zero since the mechanical property is zero 

without metal or chemicals. We adopt the following mathematical form: 

 𝑓 =  𝛽1 ∗ 𝑂2 +  𝛽2 ∗ 𝑁 + 𝛽3 ∗ 𝐹𝑒 + 𝛽4 ∗ 𝑇𝑖  (6.32) 

c) Multiple Linear Regression Analysis: 

According to the data provided in Table 6.8, all mechanical properties do not follow the same 

pattern with similar chemical components. As we can see, when nitrogen is fixed and the other 

two chemical components proportions increase, then the modulus remains the same, tensile 

and yield strength increase, but elongation decreases. When ferrous remains the same 

proportion but the other two chemical components increase, then the modulus remains the 

same, tensile and yield strength increase, but elongation decreases, but not in the same 

proportion as in the earlier case. In the last case, when all three components increase, then 

modulus, yield strength, and tensile strength increase, but elongation decreases. Considering 
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all this analysis, we can conclude that the coefficients in linear regression do not exhibit a 

positive trend. 

d) Interpretation of Regression Results: 

 T = 1222.29173 O2  −861.04160 N + 194.51395 Fe + 0.06951 Ti
Y = 1188.2210 O2 − 695.1123 N + 217.1099 Fe − 0.6679 Ti
E = − 55.2664 O2  + 178.0669 N − 0.8219 Fe + 0.2892 Ti
M = − 21.2257 O2  + 112.1076 N + 16.5521 Fe + 0.9965 Ti

} 

 

(6.33) 

6.2.3.1 Problem formulation 

The problem provides 4 goals and 5 limitations with a linear nature, which means it involves 

the application of MOLPP, whose components are given below: 

a) Decision Variables: 

Oxygen, nitrogen, ferrous, and titanium are the four variables whose values determine the 

values of goal functions, which means they will act as decision variables. 

b) Objective function formation: 

This section's four equations outline the model's optimization goals. First and foremost, we 

want to maximize the tensile strength of the metal. Keeping the yield strength to a minimum is 

the second objective; maximizing the elongation factor is the third; and maximizing the 

modulus is the fourth. We evaluate these objectives.  

c) Constraints associated: 

The maximum amount of the phase components should not exceed the maximum amount of 

that component in the given data set, and the total proportion of all the components should be 

equal to100%: 

 Oxygen proportion: 0.18 <=  O2 <=  0.4 
Nitrogen proportion: 0.03 <=  N <=  0.05 
Ferrous proportion: 0.2 <= Fe <= 0.5 

Titanium proportion: 98.955 ≤ Ti ≤ 99.495
Total: O2  +  N +  Fe +  Ti =  99.915 }

 
 

 
 

 

 

(6.34) 

The resulting MOLPP by using eq (6.22) and (6.23) as objectives and constraints, respectively, 

are given below: 
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 Max T = 1222.29173 O2  −861.04160 N + 194.51395 Fe + 0.06951 Ti
Max Y = 1188.2210 O2 − 695.1123 N + 217.1099 Fe − 0.6679 Ti
Max E = − 55.2664 O2  + 178.0669 N − 0.8219 Fe + 0.2892 Ti
Max M = − 21.2257 O2  + 112.1076 N + 16.5521 Fe + 0.9965 Ti

Sub. to. 0.18 <=  O2 <=  0.4 
0.03 <=  N <=  0.05 
0.2 <= Fe <= 0.5 

98.955 ≤ Ti ≤ 99.495
O2  +  N +  Fe +  Ti =  99.915 }

 
 
 
 

 
 
 
 

 

 

 

(6.35) 

6.2.3.1 Solution 

LINGO 18.0 × 64 finds the optimal values for the objective functions based on the constraints 

we specify. 

Max M=�̅�=108.8987 at point (0.18,0.05,0.5,99.185) and nadir point 𝑀𝑛 =100.99 at point 

(0.4,0.03,0.5,98.985). 

Max T= �̅�= 567.2229 at point (0.4,0.03,0.5,98.985) and nadir point 𝑇𝑛 =222.76 at point 

(0.18,0.05,0.2,99.485). 

Max Y=�̅�= 496.8779 at point (0.4,0.03,0.5,98.985) and nadir point 𝑌𝑛=156.1 at point 

(0.18,0.05,0.2,99.485). 

Max E=�̅�= 27.56208 at point (0.18,0.05,0.2,99.485) and nadir point 𝐸𝑛 =11.45 at point 

(0.4,0.03,0.5,98.985). 

Here are the distance measures that the model has predicted: 

ᴆ𝑀(𝑥) = ||
M̅ − M

√∑ 𝑝𝑘
𝑀24

𝑘=1

|| =
108.8987 − (−21.2257 O2 + 112.1076 N + 16.5521 Fe + 0.9965 Ti)

115.3
 

(6.36) 

ᴆ𝑇(𝑥) = ||
T̅ − T

√∑ 𝑝𝑘
𝑇24

𝑘=1

|| =
567.2229 − (1222.29173 O2  − 861.0416 N + 194.51395 Fe + 0.06951 Ti)

1507.72
 

(6.37) 

ᴆ𝑌(𝑥) = ||
Y̅ − Y

√∑ 𝑝𝑘
𝑌24

𝑘=1

|| =
496.8779 − (1188.221  O2 − 695.1123 N + 217.1099 Fe −  0.6679 Ti)

1393.62
 

(6.38) 

ᴆ𝐸(𝑥) = ||
E̅ − E

√∑ 𝑝𝑘
𝐸24

𝑘=1

|| =
27.56208 − (−55.2664  O2 + 178.0669 N − 0.8219 Fe + 0.2892 Ti)

186.45
 

(6.39) 

We can express the maximum differences for each goal as: 
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  ᴆ̅𝑀(𝑥) = 0.069, ᴆ̅𝑇(𝑥) = 0.228, ᴆ̅𝑌(𝑥) = 0.245, ᴆ̅𝐸(𝑥) = 0.0864   (6.40) 

 =>  𝑀𝑎𝑥 {ᴆ̅𝐸(𝑥), ᴆ̅𝑀(𝑥), ᴆ̅𝑇(𝑥), ᴆ̅𝑌(𝑥)} = ᴆ̅𝑌(𝑥) (6.41) 

 => 𝐷 =  0.245 (6.42) 

After applying sigmoidal membership function new LPP issue with a single objective: 

 𝑚𝑎𝑥 𝛾

𝑠𝑢𝑏. 𝑡𝑜.  𝛾 ≤ 1 − (
1

1 + 0.001001e
56.38(

−80.65+(−21.2257 O2+112.1076 N+16.5521 Fe+0.9965 Ti)
115.3

)
)

γ ≤ 1 − (
1

1 + 0.001001e
56.38(

−197.83+(1222.29173 O2 −861.0416 N+194.51395 Fe+0.06951 Ti)
1507.72

)
)

γ ≤ 1 − (
1

1 + 0.001001e
56.38(

−155.441+(1188.221  O2−695.1123 N+217.1099 Fe− 0.6679 Ti)
1393.62

)
)

γ ≤ 1 − (
1

1 + 0.001001e
56.38(

18.12+(−55.2664  O2+178.0669 N−0.8219 Fe+0.2892 Ti)
186.45

)
)

 0.18 <= O2 <=  0.4 
0.03 <=  N <=  0.05 
0.2 <= Fe <= 0.5 

98.955 ≤ Ti ≤ 99.495
O2  +  N +  Fe +  Ti =  99.915 

0 ≤ 𝛾 ≤ 1 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

(6.43) 

6.2.3.2 Results 

We create a sigmoidal participation function (where 0 is the lowest level and 1 is the highest) 

to find the best values for modulus (80.65, 108.8987), tensile strength (-197.832, 567.2229), 

yield strength (156.1, 496.88), and elasticity (-18.12, 27.56). The response to the previously 

described LPP, with LINGO 18.0 × 64 assistance, is as follows: 

The value of 𝛾 = 0.9810621 at point (0.3501639, 0.05, 0.5, 99.01484). At this point, values 

of M=105.12, T=489.09, Y=423.74, and E=17.78. 

Table 6.9: Normalized distance parameter values for various optimal points 

Function Ideal 

values 

At point 

(0.18,0.05,0.2,99.485) 

At point 

(0.4,0.03,0.5,98.985) 

At point 

(0.18,0.05,0.5,99.185) 

Proposed 

Approach 

Modulus 108.8987 0.0405 0.068 0 0.033 

Tensile strength 567.2229 0.23 0 0.19 0.052 

Yield strength 496.8779 0.24 0 0.197 0.052 

Elongation 27.56208 0 0.086 0.0018 0.052 

Total  0.5105 0.1544 0.3888 0.137 
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According to Table 6.9, the total normalized distance of the objective functions from their ideal 

points is the minimum for our proposed approach in comparison to single-objective results. 

The study analyses the optimal values of chemical components in Table 6.10. 

Table 6.10: The optimal proportions of chemical components 

Chemical Component Optimal Proportion 

Nitrogen 0.05 

Oxygen 0.3501639 

Ferrous 0.5 

Carbon 0.8 

Hydrogen 0.015 

6.3 Application of Linear/Non-Linear Enhanced Fuzzy Multi-Objective 

Optimization with Triangular Intuitionistic Fuzzy Number in Manufacturing 

As in Chapter 5, we enhance the fuzzy approach with an intuitionistic triangular fuzzy approach 

utilizing a normalized distance function. Two different case studies will be discussed here: one 

for the linear behaviour of the membership function and the second one for the resulting non-

linear membership function from the case study of Section 5.3.2. Below is a real-life case study 

for the manufacturing problem, which will serve as the basis for a comparative analysis of 

various techniques. 

6.3.1 Manufacturing problem 

The data provided below is derived from a secondary source [169] with certain parameters and 

is sourced from the Chocoman firm in the United States. This company uses a variety of raw 

materials and procedures to manufacture chocolate bars, candies, and wafers. The Chocoman 

company's manufacturing process produced eight distinct chocolate items, requiring the 

blending of eight different raw materials in varying proportions and the use of nine different 

procedures. The primary concern in the initial instance is resolving an optimization problem 

with multiple goals. By the time the procedure for solving the problem reaches the optimal set 

of variables, the issue's multi-objective functions will have 8 parameters that need optimization 

and 29 restrictions that must be satisfied.  

6.3.1.1 Problem Formation 
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Here is the complete mathematical description of the problem previously discussed as a multi-

objective linear programming problem: 

a) Decision variable: 

We must identify the following products, known as decision variables, to optimize the values 

of objective functions: 

Number of units Product (chocolate type) 

𝑥1 Milk (250g) 

𝑥2 Milk (100g) 

𝑥3 Crunchy (250g) 

𝑥4 Crunchy(100g) 

𝑥5 With nuts (250 g) 

𝑥6 With nuts (100g) 

𝑥7 Candy 

𝑥8 Wafer 

b) Objectives Formulation: 

The functions that we have to optimize with the help of products are called objectives. Below, 

we describe five functions in total for optimization: 

Revenue 𝑀𝑎𝑥 𝑓1 = 375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5
+ 175𝑥6 + 400𝑥7 + 150𝑥8 

(6.44) 

Profit 𝑀𝑎𝑥 𝑓2 = 180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6
+ 208𝑥7 + 83𝑥8 

(6.45) 

Market 

share 
𝑀𝑎𝑥 𝑓3 = 0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑥6

+ 0𝑥7 + 0𝑥8 

(6.46) 

Production 𝑀𝑎𝑥 𝑓4 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 (6.47) 

Plant 

Utilization 
𝑀𝑎𝑥 𝑓5 = 1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5

+ 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8 

(6.48) 

c) Constraints associated: 

The conditions that are applied to products on the basis of different criteria are taken as 

restrictions, which are defined below: 
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 𝑥1 − 0.6𝑥2 ≤ 0
𝑥3 − 0.6𝑥4 ≤ 0
𝑥5 − 0.6𝑥6 ≤ 0

−56.25𝑥1 − 22.5𝑥2 − 60𝑥3 − 24𝑥4 − 63𝑥5 − 26.25𝑥6 + 400𝑥7 + 150𝑥8 ≤ 0

} 

 

(6.49) 

Eatable 

items 

usage 

87.5𝑥1 + 35𝑥2 + 75𝑥3 + 30𝑥4 + 50𝑥5 + 20𝑥6 + 70𝑥7 + 12𝑥8 ≤ 100000
62.5𝑥1 + 25𝑥2 + 50𝑥3 + 20𝑥4 + 50𝑥5 + 20𝑥6 + 30𝑥7 + 12𝑥8 ≤ 120000

0𝑥1 + 0𝑥2 + 37.5𝑥3 + 15𝑥4 + 75𝑥5 + 30𝑥6 + 0𝑥7 + 0𝑥8 ≤ 60000
100𝑥1 + 40𝑥2 + 87.5𝑥3 + 35𝑥4 + 75𝑥5 + 30𝑥6 + 210𝑥7 + 24𝑥8 ≤ 200000

72𝑥8 ≤ 200000 }
 
 

 
 

 

 

(6.50) 

Packing 

items 

usage 

500𝑥1 + 500𝑥3 + 250𝑥8 ≤ 500000
450𝑥1 + 450𝑥3 + 450𝑥5 ≤ 500000

60𝑥1 + 120𝑥2 + 60𝑥3 + 120𝑥4 + 60𝑥5 + 120𝑥6 + 1600𝑥7 + 250𝑥8 ≤ 500000
} 

 

(6.51) 

Facility 

usage 

0.5𝑥1 + 0.2𝑥2 + 0.425𝑥3 + 0.17𝑥4 + 0.35𝑥5 + 0.14𝑥6 + 0.6𝑥7 + 0.096𝑥8 ≤ 1000
0.15𝑥3 + 0.06𝑥4 + 0.25𝑥5 + 0.1𝑥6 ≤ 200

0.75𝑥1 + 0.3𝑥2 + 0.75𝑥3 + 0.3𝑥4 + 0.75𝑥5 + 0.3𝑥6 + 0.9𝑥7 + 0.36𝑥8 ≤ 1500
0.25𝑥3 ≤ 200
0.3𝑥8 ≤ 100

0.5𝑥1 + 0.1𝑥2 + 0.1𝑥3 + 0.1𝑥4 + 0.1𝑥5 + 0.1𝑥6 + 0.2𝑥7 + 0𝑥8 ≤ 400
0.25𝑥1 + 0.25𝑥3 + 0.25𝑥5 + 0.1𝑥8 ≤ 400

0.05𝑥1 + 0.3𝑥2 + 0.05𝑥3 + 0.3𝑥4 + 0.05𝑥5 + 0.3𝑥6 + 2.5𝑥7 + 0.15𝑥8 ≤ 1000 }
 
 
 
 

 
 
 
 

 

 

 

(6.52) 

Labour 0.3𝑥1 + 0.3𝑥2 + 0.05𝑥3 + 0.3𝑥4 + 0.3𝑥5 + 0.3𝑥6 + 2.5𝑥7
+ 0.25𝑥8 ≤ 1000 

(6.53) 

Demand 𝑥1 ≤ 500
𝑥2 ≤ 800
𝑥3 ≤ 400
𝑥4 ≤ 600
𝑥5 ≤ 300
𝑥6 ≤ 500
𝑥7 ≤ 200
𝑥8 ≤ 400}

 
 
 

 
 
 

 

 

 

(6.54) 

Non-

negativity 
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 ≥ 0 & ∈ 𝑍 (6.55) 

By solving all the functions separately by LINGO 18.0 × 64: 

Max 𝑓1=𝑓1̅=614613.2; optimal point= (2.52,800,260,600,300,500,75.42,333.33)  

Max 𝑓2=𝑓2̅=267187.7; optimal point = (2.52, 800,260,600,300,500,75.42,333.33)  

Max 𝑓3=𝑓3̅=357.1429; optimal point= (257.14,428.57,300,500,300,500,0,0)  

Max 𝑓4=𝑓4̅= 2871.274; optimal point = (2.52, 800,260,600,300,500,75.42,333.33)  

Max 𝑓5=𝑓5̅=3519.757; optimal point= (0,769.29,260,600,300,500,111.27,232.18)  
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Nadir point of 𝑓1 = 𝑓1
𝑛

 =574160.5; optimal point = (257.14,428.57,300,500,300,500,0,0). 

Nadir point of 𝑓2 = 𝑓2
𝑛

=237756.51; optimal point= (257.14,428.57,300,500,300,500,0,0). 

Nadir point of 𝑓3 = 𝑓3
𝑛

 =326.929; optimal point = (2.52, 800,260,600,300,500,75.42,333.33). 

Nadir point of 𝑓4 = 𝑓4
𝑛

=2285.71; optimal point= (257.14,428.57,300,500,300,500,0,0). 

Nadir point of 𝑓5 = 𝑓5
𝑛

 =2912.494; optimal point = (257.14,428.57,300,500,300,500,0,0). 

Minimum point of 𝑓1 = 𝑓1
𝑤

=0  

Minimum point of 𝑓2 = 𝑓2
𝑤

=0 

Minimum point of 𝑓3 = 𝑓3
𝑤

=0  

Minimum point of 𝑓4 = 𝑓4
𝑤

=0 

Minimum point of 𝑓5 = 𝑓5
𝑤

=0  

ᴆ1(𝑑) =
614613.2 − (375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5 + 175𝑥6 + 400𝑥7 + 150𝑥8)

859.215
 (6.56) 

ᴆ2(𝑑) =
267187.7 − (180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6 + 208𝑥7 + 83𝑥8)

373.945
 (6.57) 

ᴆ3(𝑑) =
357.1429 − (0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑑6 + 0𝑥7 + 0𝑥8)

0.2175
 (6.58) 

ᴆ4(𝑑) =
2871.274 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)

2.828
 (6.59) 

ᴆ5(𝑑) =
3519.757 − (1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5 + 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8)

31.092
 (6.60) 

When the normalised distance parameter is set to its maximum value, the results are: 

 ᴆ̅1(𝑥) = 47.081, ᴆ̅2(𝑥) = 78.705, ᴆ̅3(𝑥) = 138.914, ᴆ̅4(𝑥) = 207.059, ᴆ̅5(𝑥) = 19.55   
(6.61) 

 
=>  𝐷 =

585.564

2.828
 (6.62) 

 
ᴆ̅′1(𝑥) = 715.32, ᴆ̅′2(𝑥) = 714.51, ᴆ̅′3(𝑥) = 1642.04, ᴆ̅′4(𝑥) = 1015.3, ᴆ̅′5(𝑥) = 113.21   

(6.63) 

 
=> 𝐷′ =

357.1429

0.2175
 (6.64) 

6.3.1.2 Solution by proposed linear approach 

Here, the expected all-function levels increase simultaneously, as provided in Figure 6.11. The 

first function's nadir and ideal values, 436705.001 and 574160.5, respectively, form the basis 

for a participation function with a linear character. Similarly, nadir points for second, third, 

fourth, and fifth functions are 237756.51, 326.929, 2285.71, and 2912.494, respectively, and 
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ideal values are 267187.7, 357.1429, and 3519.757, respectively. The ideal values stay the 

same, and the non-membership measure is also linear, but due to intuitionistic characteristics, 

the minimum value gets even worse: -796217.83, -346843.45, 0, -1772.404, and -47534.43, 

respectively, when the supremum normalized distance is taken into consideration. Membership 

is defined as a value from zero to one; lack of membership is the opposite. The goal of this 

strategy is to widen the difference between the two functions' resulting satisfaction and 

dissatisfaction ratings. The best solution was found with the following parameters resulting 

from LINGO 18.0 × 64 (76.85,800,260,600,300,500,0,231.31) and a difference level of 

0.92405. 

The problem has now been reduced to a single objective LPP with constraints defined in eq 

(6.49)-(6.55): 

 

(a) 
 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 6.11: Different satisfaction and dissatisfaction functions with linear association functions: (a) Revenue function (b) 

Profit function (c) Market share function (d) Production function (e) Plant utilization function 

 

𝑚𝑎𝑥 𝛾 − 𝛿

𝑠𝑢𝑏. 𝑡𝑜: 𝛾 ≤

585.564
2.828

− (
614613.2 − (375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5 + 175𝑥6 + 400𝑥7 + 150𝑥8)

859.215
)

585.564
2.828

𝛾 ≤

585.564
2.828

− (
267187.7 − (180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6 + 208𝑥7 + 83𝑥8)

373.945
)

585.564
2.828

𝛾 ≤

585.564
2.828

− (
357.1429 − (0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑑6 + 0𝑥7 + 0𝑥8)

0.2175
)

585.564
2.828

𝛾 ≤

585.564
2.828

− (
2871.274 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)

2.828
)

585.564
2.828

𝛾 ≤

585.564
2.828

− (
3519.757 − (1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5 + 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8)

31.092
)

585.564
2.828

𝛿 ≥
(
614613.2 − (375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5 + 175𝑥6 + 400𝑥7 + 150𝑥8)

859.215
)

357.1429
0.2175

𝛿 ≥
(
267187.7 − (180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6 + 208𝑥7 + 83𝑥8)

373.945
)

357.1429
0.2175

𝛿 ≥
(
357.1429 − (0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑑6 + 0𝑥7 + 0𝑥8)

0.2175
)

357.1429
0.2175

𝛿 ≥
(
2871.274 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)

2.828
)

357.1429
0.2175

𝛿 ≥
(
3519.757 − (1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5 + 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8)

31.092
)

357.1429
0.2175

𝛾 ≥ 𝛿, 0 ≤ 𝛾 + 𝛿 ≤ 1 }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(6.65) 
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6.3.1.3 Solution by proposed non-linear approach 

The limiting points for the objective value remain the same in both linear and non-linear cases. 

Here, the expected membership functions level increase exponentially, and non-membership 

functions decrease simultaneously as provided in Figure 6.12. The problem has now been 

reduced to a single objective LPP with constraints defined in eq (6.49)-(6.55): 

 

(a) 

 

(b) 

  

(c) 

 

(d) 

 

(e) 

Figure 6.12: Different satisfaction and dissatisfaction functions with non-linear association functions: (a) Revenue function 

(b) Profit function (c) Market share function (d) Production function (e) Plant utilization function 
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𝑚𝑎𝑥 𝛾 − 𝛿

 

sub. to: γ ≤ 1.2[1 − 𝑒𝑥𝑝 {−1.79

585.564
2.828

− (
614613.2 − (375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5 + 175𝑥6 + 400𝑥7 + 150𝑥8)

859.215
)

585.564
2.828

} 

γ ≤ 1.2[1 − 𝑒𝑥𝑝{−1.79

585.564
2.828

− (
267187.7 − (180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6 + 208𝑥7 + 83𝑥8)

373.945
)

585.564
2.828

}

γ ≤ 1.2[1 − 𝑒𝑥𝑝{−1.79

585.564
2.828

− (
357.1429 − (0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑑6 + 0𝑥7 + 0𝑥8)

0.2175
)

585.564
2.828

}

γ ≤ 1.2[1 − 𝑒𝑥𝑝{−1.79

585.564
2.828

− (
2871.274 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)

2.828
)

585.564
2.828

}

γ ≤ 1.2[1 − 𝑒𝑥𝑝 {−1.79

585.564
2.828

− (
3519.757 − (1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5 + 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8)

31.092
)

585.564
2.828

}

𝛿 ≥
1

1 + 𝐵𝑒𝑥𝑝 (13.813 ×

357.1429
0.2175

− (
614613.2 − (375𝑥1 + 150𝑥2 + 400𝑥3 + 160𝑥4 + 420𝑥5 + 175𝑥6 + 400𝑥7 + 150𝑥8)

859.215
)

357.1429
0.2175

)

𝛿 ≥
1

1 + 𝐵𝑒𝑥𝑝 (13.813 ×

357.1429
0.2175

− (
267187.7 − (180𝑥1 + 83𝑥2 + 153𝑥3 + 72𝑥4 + 130𝑥5 + 70𝑥6 + 208𝑥7 + 83𝑥8)

373.945
)

357.1429
0.2175

)

𝛿 ≥
1

1 + 𝐵𝑒𝑥𝑝 (13.813 ×

357.1429
0.2175

− (
357.1429 − (0.25𝑥1 + 0.1𝑥2 + 0.25𝑥3 + 0.1𝑥4 + 0.25𝑥5 + 0.1𝑑6 + 0𝑥7 + 0𝑥8)

0.2175
)

357.1429
0.2175

)

𝛿 ≥
1

1 + 𝐵𝑒𝑥𝑝 (13.813 ×

357.1429
0.2175

− (
2871.274 − (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)

2.828
)

357.1429
0.2175

)

𝛿 ≥
1

1 + 𝐵𝑒𝑥𝑝 (13.813 ×

357.1429
0.2175

− (
3519.757 − (1.65𝑥1 + 0.9𝑥2 + 1.975𝑥3 + 1.03𝑥4 + 1.75𝑥5 + 0.94𝑥6 + 4.2𝑥7 + 1.006𝑥8)

31.092
)

357.1429
0.2175

)

𝛾 ≥ 𝛿, 0 ≤ 𝛾 + 𝛿 ≤ 1 }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(6.66) 

6.3.1.4 Results 

For the optimal point and level of fulfilment or discontent, LINGO 18.0 × 64 is used to obtain 

conclusion from case study regarding manufacturing strategy. Table 6.11 presents the values of 

various variables derived from this improved point. The outcomes of the case study of the 

manufacturing problem are identical in the case of total functional value and deviation but 

better for the non-linear nature in the case of satisfaction and discontent levels.  

Table 6.11: Various parameters’ values after optimization with different techniques for case study 

Parameter IFA (Linear, Normalized) IFA (Non-linear, Normalized) 

𝛾 0.8239022 0.9254065             

𝛿 0.02220574 0.001359175 

𝛾 − 𝛿 0.8016965 0.92405             

Optimal point (76.85,800,260,600,300,500,0,231.31) (76.85,800,260,600,300,500,0,231.31) 
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𝑓1 597015.25  597015.25 

𝑓2 256411.73 256411.73 

𝑓3 349.21 349.21 

𝑓4 2768.16 2768.16 

𝑓5 3206.0003 3206.0003 

Total functional 

value 

859750.3503 859750.3503 

Deviation 132.324 132.324 

The proposed approach successfully resolves the manufacturing problem. Table 6.11 displays 

our study's intended outcome, which is a 10.9% increase in satisfaction levels compared to 

linear techniques and a 13.24% increase in the gap between satisfaction and dissatisfaction 

levels compared to the current linear normalized technique. 

6.3.1.5 Comparative Analysis 

Here, we examine various intuitionistic approaches by comparing them with the following 

parameters: 

a) Value of goal functions: 

The values of different objective functions and total values of them are taken from Table 6.11. 

 

Figure 6.13: Comparison of various normalized techniques by using functional values via case-study of manufacturing 

When comparing various normalized methods, the graph in Figure 6.13 shows that the values 

remain the same for both normalized techniques. 

0 100 200 300 400 500 600 700

First Objective(10^3)

Second Objective(10^3)

Third Objective

Forth Objective(10)

Fifth Objective(10)

IFA (Non-linear, Normalized) IFA (Linear, Normalized)
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b) 𝜹 and 𝜸 values 

Which can be calculated as: 

 𝛾=  min
𝑖=1𝑡𝑜5

ḿ𝑖 (6.67) 

 𝛿 =   max
𝑖=1 𝑡𝑜 5

ń𝑖 (6.68) 

 

Figure 6.14: Satisfaction, dissatisfaction and their separation corresponding to various techniques for case-study 

In Figure 6.14, we can see the results of comparing the level of fulfilment and displeasure 

levels, as well as the variances between them, for the two approaches we used in the research 

we conducted for the numerical issue and the real-world investigation, respectively. Since we 

need to raise the value of the degree of fulfilment and the difference while lowering the value 

of the discontent level, the non-linear methodology improves the outcomes, as displayed in 

these comparative graphs. 

c) Value of normalized distance from ideal points: 

Normalized distance from ideal points of goal functions can be calculated by the following 

formula: 

 

ᴆ(𝑥) =∑

(

 
𝑓
𝑖
− 𝑓𝑖(𝑥)

√∑ 𝑝𝑘
𝑖 22

𝑘=1 )

 

2

𝑖=1

 

 

(6.69) 
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Figure 6.15: Total normalized deviation for various normalized approaches 

Figure 6.15 demonstrates how the normalized distance from ideal points of goal functions for 

normalized procedures will be the same for every technique. 

6.4 Application of Linear/Non-linear Dual Hesitant Fuzzy Multi-Objective 

Optimization in Production 

The resulting problem from Section 7 of Chapter 3 is used here as a multi-objective 

optimization problem, which can be formulated in standard form as: 

6.4.1 Production Problem 

Here is the complete mathematical description of the problem previously discussed as a multi-

objective linear modelling problem: 

a) Decision variable: 

The products that we have to find out are decision variables, which are given below: 

Number of units Product  

𝑥1 Product 1 

𝑥2 Product 2 

𝑥3 Product 3 

 

 

 

50%50%

IFA (Linear, Normalized) IFA (Non-linear, Normalized)
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b) Objectives: 

The functions that we have to optimize with the help of products are called objectives. Here, 

total five functions are described for optimization, which are given below: 

Profit 𝑀𝑎𝑥 𝑓1 = 52𝑥1 + 104𝑥2 + 18𝑥3 (6.70) 

Quality 𝑀𝑎𝑥 𝑓2 = 95𝑥1 + 77.5𝑥2 + 52𝑥3 (6.71) 

Worker Satisfaction 𝑀𝑎𝑥 𝑓3 = 26𝑥1 + 104𝑥2 + 77.5𝑥3 (6.72) 

c) Constraints associated: 

The conditions that are applied to products on the basis of different criteria are taken as 

restrictions, which are defined below: 

 12.5𝑥1 + 17.5𝑥2 + 0𝑥3 ≤ 1410
3.1𝑥1 + 9.255𝑥2 + 8.25𝑥3 ≤ 1007.5
10.4𝑥1 + 13.5𝑥2 + 15.5𝑥3 ≤ 1762.5
6.2𝑥1 + 0𝑥2 + 16.5𝑥3 ≤ 1335
0𝑥1 + 12.5𝑥2 + 7.25𝑥3 ≤ 907.5
9.75𝑥1 + 9.75𝑥2 + 4.1𝑥3 ≤ 1082.5

𝑥1, 𝑥2, 𝑥3 ≥ 0 }
  
 

 
 
 

 

 

 

(6.73) 

To solve all the functions separately by LINGO 18.0 × 64, the ideal points of all functions are 

calculated, and with the help of all these points, the functional values at these points are found 

out to find the nadir points of functions, which are given in Table 6.12: 

𝑓1̅= 8130.720; at point (11.16,72.6,0)  

𝑓2̅= 11108.36; at point (91.45,0,46.54)  

𝑓3̅=9423.908; at point (44.74,48.62,41.35)  

Table 6.12: Calculation of ideal, nadir and minimal points of various functions 

Function (11.16,72.6,0) (91.45,0,46.54) (44.74,48.62,41.35) Nadir values Worst values 

𝑓1 8130.720 5593.12 8127.26 5593.12 0 

𝑓2 6686.7 11108.36 10168.55 6686.7 0 

𝑓3 7840.56 5984.55 9423.908 5984.55 0 

By using the formula for normalized distance function: 

 
ᴆ1(𝑥) =

8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
 

(6.74) 
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ᴆ2(𝑥) =

11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
 

(6.75) 

 
ᴆ3(𝑥) =

9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
 

(6.76) 

At its highest value, the normalised distance parameter produces: 

 𝑚𝑎𝑥 ᴆ1(𝑥) = 21.57,𝑚𝑎𝑥 ᴆ2(𝑥) = 33.2,𝑚𝑎𝑥 ᴆ3(𝑥) = 26 (6.77) 

 𝑚𝑎𝑥 ᴆ′1(𝑥) = 69.1,𝑚𝑎𝑥 ᴆ′2(𝑥) = 83.41,𝑚𝑎𝑥 ᴆ′3(𝑥) = 71.24 (6.78) 

The values of the greatest distance variables for these two positions are: 

 
𝐷 =  

4421.66

133.17
, 𝐷′ =

11108.36

133.17
 

(6.79) 

With ѡ1, ѡ2, and ѡ3 as 1,0.98, and 0.96, respectively, the membership and non-membership 

functions are given as linear and non-linear types in the following subsections:  

6.4.1.1 Solution by proposed linear approach 

The problem has now been reduced to a single objective LPP with constraints defined in eq 

(6.59) with the following objective shown in eq (6.80) and additional constraints generated 

from the membership function by eq (6.81), due to non-membership functions by eq (6.82): 

 

Figure 6.16: Geometrical representation of various linear association functions according to various decision makers 

 

 
𝑚𝑎𝑥  (

𝛾1 + 𝛾2 + 𝛾3

3
) − (

𝛿1 + 𝛿2 + 𝛿3

3
) (6.80) 
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𝑠𝑢𝑏. 𝑡𝑜: 𝛾1 ≤

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

 

𝛾2 ≤ 0.98(

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

) 

𝛾3 ≤ 0.96(

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

)

𝛾1 ≤

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

𝛾2 ≤ 0.98(

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

)

𝛾3 ≤ 0.96(

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

)

𝛾1 ≤

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

𝛾2 ≤ 0.98(

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

)

𝛾3 ≤ 0.96(

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

)

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(6.81) 

In this case, we see the anticipated simultaneous rise in all function levels, as shown in Figure 

6.16. A linear participation function is based on the first function's minimum and ideal values, 

which are 4224.8 and 8130.720, respectively. Similarly, the second function has a minimum 

point of 6686.7, while the third function has 5032.212 and an ideal value of 11108.36 and 

9423.908, respectively. For the linear non-membership measure, the ideal values stay the same. 

However, when the supremum normalized distance is taken into account, the lowest value for 

all functions becomes zero. This is because of intuitionistic features. However, the minimal 

values decrease more for the maximum distance chosen in the case of the worst points, as 

shown in Figure 6.16. We can describe a membership status here as a number between zero 

and one, where zero represents the most extreme form of membership and one represents the 

least extreme form. The plan's objective is to make the gap between the two functions' ultimate 

ratings of happiness and discontentment wider. 
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𝛿1 ≥
(
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

𝛿2 ≥ 0.98(
(
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

)

𝛿3 ≥ 0.96(
(
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

)

𝛿1 ≥
(
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

11108.36
133.17

𝛿2 ≥ 0.98(
(
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

11108.36
133.17

)

𝛿3 ≥ 0.96(
(
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

11108.36
133.17

)

𝛿1 ≥
(
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

11108.36
133.17

𝛿2 ≥ 0.98(
(
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

11108.36
133.17

)

𝛿3 ≥ 0.96(
(
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

11108.36
133.17

)

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

\ 

 

 

 

 

 

 

 

(6.82) 

 0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1 ∀ 𝑝 = 1,2,3
𝛾𝑝 ≥ 𝛿𝑝 ∀𝑝 = 1,2,3

} (6.83) 

6.4.1.2 Solution by proposed non-linear approach: 

The limiting points for the objective value remain the same in both linear and non-linear cases. 

Here, the expected membership function levels increase exponentially, and non-membership 

functions decrease simultaneously as provided in Figure 6.17. 

The problem has now been reduced to a single objective LPP with constraints defined in eq 

(6.59): 
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𝑚𝑎𝑥  (

𝛾1 + 𝛾2 + 𝛾3

3
) − (

𝛿1 + 𝛿2 + 𝛿3

3
) (6.84) 

 

𝑠𝑢𝑏. 𝑡𝑜: 𝛾1 ≤ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

}] 

𝛾2 ≤ 0.98 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

}] 

𝛾3 ≤ 0.96 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

4421.66
133.17

}]

𝛾1 ≤ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

}]

𝛾2 ≤ 0.98 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

}]

𝛾3 ≤ 0.96 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

4421.66
133.17

}]

𝛾1 ≤ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

}]

𝛾2 ≤ 0.98 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

}]

𝛾3 ≤ 0.96 ∗ 1.2 [1 − 𝑒𝑥𝑝 {−1.79

4421.66
133.17

− (
9423.908 − (26𝑥1 + 104𝑥2 + 77.5𝑥3)

132.28
)

4421.66
133.17

}]

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(6.85) 
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𝛿1 ≥
1

1 + 𝐵𝑒𝑥 𝑝(13.813 ×

11108.36
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

)

𝛿2 ≥
0.98

1 + 𝐵𝑒𝑥 𝑝(13.813 ×

11108.36
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

)

𝛿3 ≥
0.96

1 + 𝐵𝑒𝑥 𝑝(13.813 ×

11108.36
133.17

− (
8130.720 − (52𝑥1 + 104𝑥2 + 18𝑥3)

117.66
)

11108.36
133.17

)

𝛿1 ≥
1

1 + 𝐵𝑒𝑥 𝑝(13.813 ×

11108.36
133.17

− (
11108.36 − (95𝑥1 + 77.5𝑥2 + 52𝑥3)

133.17
)

11108.36
133.17

)

𝛿2 ≥
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(6.86) 

 0 ≤ 𝛾𝑝 + 𝛿𝑝 ≤ 1 ∀ 𝑝 = 1,2,3
𝛾𝑝 ≥ 𝛿𝑝 ∀𝑝 = 1,2,3

} (6.87) 
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Figure 6.17: Geometrical representation of various non-linear association functions according to various decision makers 

6.4.1.3 Results 

The optimal solution is defined by the following LINGO 18.0 × 64 parameters: point of 

solution (44.74, 48.62, 41.35) with a difference level of 0.9913376. The satisfaction levels for 

the first, second, and third decision makers are 0.9949962, 0.9950963, and 0.9969139, while 

the dissatisfaction levels are 0.0050038, 0.0049037, and 0.0037861, respectively. 

Table 6.13 shows how we calculate the values of various variables using the average levels of 

satisfaction, dissatisfaction, and their discrepancies. We also measure all functional values for 

their total normalized distance from their ideal counterparts.  

Table 6.13: Various parameter’s values after optimization with different techniques for real-life case study 

Parameter HIFA (Linear, Non-

normalized) 

DHFA (Linear, 

Normalized) 

DHFA (Non-Linear, 

Non-Normalized) 

DHFA (Non-linear, 

Normalized) 

𝛾 0.8150149             0.7803881 0.91060373 0.9956688 

𝛿 0.065672             0.1710167 0.0024705 0.004564533 

𝛾 − 𝛿 0.7493429 0.6093714 0.9081332 0.9913376  

point (52.42, 40.36, 43.38) (45.81, 47.85, 41.3) (52.42, 40.36, 43.38) (44.73, 48.61, 41.34) 

𝑓1 7704.12 8101.92 7704.12 8125.52 

𝑓2 10363.56 10207.925 10363.56 10166.55 

𝑓3 8922.31 9368.21 8922.31 9422.27 

Total  26989.99 27678.055 26989.99 27714.34 

Deviation 13.01049 7.4273798 13.01049 7.08662685 

In comparison to non-linear and non-normalized techniques, our study increases the 

satisfaction level by 9.34%. Table 6.13 shows that we reached this goal, resulting in a 9.16% 
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bigger difference between satisfaction and dissatisfaction levels, a 2.68% rise in total functional 

values, and a 45.53% drop in how far off we are from ideal values. Similarly, compared to the 

current linear normalized and non-normalized methods, the satisfaction level has risen by 

27.59% and 22.17%, while the difference between satisfaction and dissatisfaction levels has 

increased by 63.68% and 32.29%. The total functional values have increased by 0.13% and 

2.684%, while the total deviation from ideal values has decreased by 4.5% and 45.53%, 

respectively. Our goal is to improve overall functional value and reduce the discrepancy 

between optimal locations and normalized operational value.  

6.4.1.4 Comparative Analysis 

Here, we examine various approaches by comparing them with the following parameters: 

a) Value of goal functions 

The values of objective functions according to the responses corresponding to various 

approaches are given below: 

 

Figure 6.18: Comparison of various techniques by using 

various functional values 

 

Figure 6.19: Comparison of various techniques by using 

total functional value
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Figures 6.18 and 6.19 show a graph analysing the status existing with normalized approaches; 

the results show that the second objective function and the total value of all goals are both 

increased by the normalized procedures. In the instance of non-linear functions, however, the 

values are greater for both normalized methods. 

b) 𝜹 and 𝜸 values: 

Which can be calculated as: 

 
𝛾=   

𝛾1 + 𝛾2 + 𝛾3

3
 

(6.88) 

 
𝛿 =   

𝛿1 + 𝛿2 + 𝛿3

3
 

(6.89) 

 

Figure 6.20: Satisfaction, dissatisfaction and their separation corresponding to various techniques for case-study of 

production sector 

Figure 6.20 shows the outcomes of comparing the levels of satisfaction and dissatisfaction, 

together with the associated variations, for the four methods employed in our research on the 

real-world investigation. This comparative graph shows that the proposed technique improves 

the outcomes, which is great because we need to increase the value of the degree of fulfilment 

and the difference while decreasing the value of the discontent level. 

c) Value of normalized distance from ideal points 

Our aim is to decrease the normalized distance from ideal points of goal functions, and the 

normalization procedure decreases it successfully, which can be observed from Table 6.13 and 

graphically in Figure 6.21. 
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Figure 6.21: Normalized distance for different approaches 

Normalized distance from ideal points of goal functions can be calculated by the following 

formula: 

 

ᴆ(𝑥) =∑

(

 
𝑓
𝑖
− 𝑓𝑖(𝑥)

√∑ 𝑝𝑘
𝑖 22

𝑘=1 )

 

2

𝑖=1

 

 

(6.90) 

6.5 Conclusion 

In the field of skin tissue engineering, 3D-skin bioprinting using inkjet, laser, extrusion, 

stereolithography, and microfluidic technologies are crucial processing techniques. However, 

comparing these methods is challenging as they each optimize unique characteristics. 

Therefore, this research provides a multi-objective optimization method that can maximize all 

parameters concurrently and select the most appropriate bioprinting methodology. 

The proposed approach effectively incorporates the inherent inconsistency and unpredictability 

of everyday decision-making scenarios, providing decision-makers across numerous domains 

with a practical and efficient solution. Since it can generate ideas that are close to the intended 

outcomes while managing several competing goals, this technique is appropriate and pertinent 

to challenging optimization situations. 

Multiple linear regression analysis provides a quantitative understanding of the chemical 

characteristics and mechanical properties of unalloyed titanium. We have looked at how 

nitrogen, oxygen, iron, carbon, and hydrogen levels affect the stretching, stiffness, yield, and 

strength of titanium. These findings show how important it is to carefully manage the chemical 

makeup of titanium during production to achieve desired mechanical properties. Furthermore, 

the regression model provides a framework for predicting mechanical properties based on 

32%

18.09%
32%

17.91%

HIFA (Linear, Non-normalized) DHFA (Linear, Normalized)

DHFA (Non-Linear, Non-Normalized) DHFA (Non-linear, Normalized)
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chemical compositions, which assists in the optimization and design of titanium materials for 

various engineering applications. We use multi-objective optimization with a fuzzy technique 

and multiple linear regression to find the best chemical component combinations that improve 

multiple mechanical qualities at once. We reduce the gap between the best values for 

mechanical properties by examining different designs, using elongation, modulus, yield, and 

tensile strength as our targets and chemical components as our choices. Using this approach, 

we are able to create titanium materials with improved overall performance and get customized 

solutions that balance conflicting goals. When analysing the most preferred non-linear 

association function for triangular intuitionistic fuzzy numbers from the comparative study 

with a normalized separation value, the proposed method becomes much more robust and 

dependable. The strategy ensures consistent and comparable findings by eliminating scale 

dependability, allowing decision-makers to make intelligent decisions regardless of the size of 

the factors. This attribute is crucial when making decisions in real life, where parameter 

variations in scale play a significant role. Applying the concept to a production problem and 

seeing positive results further confirms its relevance and feasibility in real-world settings.  

The study provides an improved dual-hesitant fuzzy optimization method, which offers a new 

way to solve multi-objective linear optimization issues in the industrial sector. When faced 

with the complexity and unpredictability of industrial processes, the suggested dual-hesitant 

fuzzy optimization method, which incorporates both membership and non-membership 

functions with multiple experts’ opinions, performed better. Using a normalized distance 

operation, which places all objective functions on the same scale, increases the approach's 

trustworthiness. The manufacturing sector can greatly profit from applying the dual-hesitant 

fuzzy technique. These techniques improve both performance and decision-making by helping 

producers deal with uncertainty more effectively, increase operational efficiency, and produce 

higher-quality products. 

6.5.1 Major Finding 

• The improved fuzzy method uses basic and more complex triangular fuzzy numbers to 

effectively solve multi-objective optimization problems in different real-life fields, 

such as biomimetics, smart cities, manufacturing, and material science. 

• The recommended methods are strong, adaptable, and work well for different industries 

that have conflicting goals and unclear data, based on the analysis of real-life examples. 
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Chapter 7  

Conclusion 

7.1 Findings 

The thesis delves deeply into fuzzy multi-objective linear programming problems, illuminating 

the intricacies and practical uses of fuzzy theory in contexts where decisions are fraught with 

uncertainty and inaccuracy. Beginning with the basic ideas of fuzzy sets and continuing through 

the complex methodology of intuitionistic and dual-hesitant fuzzy procedures, the research 

delves into a wide range of issues before finally applying these theories to practical 

applications. 

• Defuzzification techniques can be fine-tuned by categorizing fuzzy numbers according 

to the number of components and their degree of symmetry.  To address manufacturing 

issues, three methods were utilized: cantered area, α-cut, and confined area.  While the 

α-cut and centroid of area methods work well with symmetric fuzzy numbers, the 

bounded area method shows inconsistent results, according to a comparison analysis. 

• Using examples from sustainable manufacturing, financial portfolio optimization, and 

green light control systems, the thesis proves that traditional fuzzy min-max methods 

work.  When dealing with situations with several objectives, these strategies provide 

balanced trade-offs because binary logic can't handle complex judgments. 

• Further investigation on normalized fuzzy multi-objective optimization is underway to 

resolve the issue of objective functions with different scales.  Using distance-based 

measures to compare results, this is vital.  It is demonstrated that non-linear functions 

provide more modelling flexibility and realism, particularly in areas like as materials 

science, biomimetic design, and smart transportation, as compared to linear 

membership functions such as sigmoidal, parabolic, hyperbolic, and exponential. 

• The intuitionistic fuzzy method improves decision modelling by combining 

membership and non-membership functions; it is based on intuitionistic triangular 

fuzzy numbers.  The method's performance in addressing conflicting industrial 

objectives is greatly improved when supplemented with normalized distance metrics 

and non-linear association functions. 
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• An improved dual-hesitant fuzzy method, incorporating aspects of intuitionistic and 

hesitant fuzzy sets, is also presented in the thesis.  Strong trade-off mechanisms for 

uncertain multi-objective settings are provided by the approach, which incorporates the 

non-linear functions shown in previous research.  The method's ability to achieve 

sustainable and balanced judgments has been shown by its use in production systems. 

A thorough framework for solving fuzzy MOLPPs is presented in the thesis, which begins with 

a survey of previous methods and the identification of areas where further research is needed.  

Novel defuzzification approaches are proposed, complicated fuzzy set extensions are explored, 

and practical normalized fuzzy procedures are developed.  These additions not only deepen our 

theoretical knowledge but also provide useful resources for decision-makers in fields were 

optimizing many criteria in the face of uncertainty is crucial. 

7.2 Areas for further investigation 

• Investigate new and improved defuzzification techniques for dealing with complex 

fuzzy numbers that are not symmetrical, especially in cases where more accuracy and 

precision are crucial. 

• To improve the efficacy and effectiveness of multi-objective optimization models, 

investigate the combination of the fuzzy approach with other artificial intelligence 

techniques like neural networks, genetic algorithms, and deep learning. 

• Check if hybrid fuzzy models can be used to solve multi-objective optimization 

problems in various fields. These models can include intuitionistic, dual-hesitant, and 

other fuzzy set extensions to help people make decisions and deal with uncertainty 

better. 

• To tackle complicated, real-world problems, apply hybrid fuzzy multi-objective 

optimization methods to new areas, including smart city artificial intelligence, 

sustainable energy management, and advanced manufacturing processes. 
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Appendix A 

As α-cut for fuzzy numbers are in the form of intervals for every value of 𝛼 ∈ [0,1]. So, the 

interval can be represented in the form of [𝐿, 𝑅]. Based on these intervals left and right α-cut 

are defined for the defuzzification approach, mean of α-cut. Here left and right α-cut for every 

case denoted by 𝐿−1 and 𝑅−1 respectively are given below: 

Case 1: 

 
𝐿−1(𝛼) = 𝑡𝑘+1 + (

𝛼

2/(𝑛 − 1)
)

1
𝑝
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