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ABSTRACT 
 

Significant economic and social concerns are raised by the global proliferation of chronic 

and lifestyle-related maladies. Therefore, this study looks into healthcare tracking systems in 

more depth in order to solve these issues. Deep learning and cloud-based analytics are used in 

the Smart Patient Monitoring and Recommendation (SPMR) platform. 

Reviewing existing healthcare monitoring systems is the first step in the investigation, 

which concludes with the creation of the SPMR framework. This system enables ongoing 

monitoring and predictive insights into a patient's current health status by using data from 

contextual behaviors and vital signs collected by Ambient Assisted Living devices. 

Categorical Cross Entropy (CCE) optimization is used by SPMR's predictive deep learning 

component to estimate real-world health outcomes from imbalanced datasets collected from 

instances of chronic blood pressure disorder. By eliminating the need to replicate Machine 

Learning (ML) models and associated processes in local settings, SPMR's ability to provide real-

time preventative measures and treatments is unaffected by an Internet or cloud connection, 

improving operational efficiency. 

A comparative analysis of our proposed SPMR model with comparable models reveals its 

substantial efficacy, with accuracy enhancements ranging from 8 to 18 percent. In addition, the 

emergency class F-score and the aggregate F-score demonstrate substantial improvements of 

17% and 36%, respectively. These results underscore the critical significance of SPMR, 

particularly during periods of crisis, emphasizing its relevance in healthcare monitoring systems. 

Additionally, our research addresses the critical aspect of security in Smart Healthcare 

Systems (SHSs) through the introduction of HealthGuard, an innovative security architecture. 

HealthGuard employs machine learning algorithms to detect potentially detrimental behaviors 

performed by users inside SHSs, monitoring vitals of connected devices and distinguishing 

normal from abnormal activity. Four different machine learning-based detection techniques are 

used in the architecture (Random Forest, Artificial Neural Network, Decision Tree, and k-

Nearest Neighbor), demonstrating a 91% success rate and an F1-score of 90% in defending 

against various attacks. 

Overall, the integration of DL, cloud-based analytics, IoT, and ubiquitous computing in 

SPMR and the implementation of HealthGuard represent a paradigm shift in real-time vital sign 
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monitoring and healthcare security. These developments indicate that they will offer 

considerable enhancements in patient safety, healthcare administration, and decision-making in 

response to the growing security threats and challenges. 
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Chapter 1: Introduction 
 

Overview 

In this chapter, an augmented real-time monitoring system based on machine learning methods is 

implemented and the traditional systems for monitoring vital signs are examined in detail. It 

investigates the vital signs monitoring, the specific features and type of the vital signs which are 

monitored, standard monitoring devices and its limitation. This chapter also explores applications 

of machine learning within healthcare technology and its potential to enhance real time 

monitoring through anomalies detection, predictive analysis and tailoring care for individual 

patients. It also clarifies the objectives and main features of the proposed system with an emphasis 

on its innovative aspect for the betterment of the healthcare monitoring systems. 

1.1.Background and Motivation 

1.1.1. Vital sign monitoring methods 

Traditional vital sign monitoring techniques have been widely used in healthcare for a long time 

to provide important information about a patient's physiological state. Most of these procedures 

involve the examination and monitoring of several vital signs, which are important indicators of 

general health and well-being [1]. The most commonly used conventional vital signs include: 

• Heart Rate (HR): A very important indication of cardiovascular health, the heart rate 

measures the beats per minute (bpm), which is an important statistical measure. It can 

usually be evaluated by means of electrocardiograms or ECGs, by pulse oximeters, or by 

manual pulse location palpation [2]. 

• Blood Pressure (BP): The blood pressure represents forces exerted by blood when flowing 

through arteries and impacting their walls. The measurement for blood pressure consists of 

systolic and diastolic pressures during and between the heartbeats, in millimeters of 

mercury: mmHg. Such blood pressure can be found using sphygmomanometer and any 

other related equipment used in taking blood pressure readings. 

• Respiratory Rate (RR): Also known as the RR, the number of breaths taken per minute 

indicates how well the lungs are functioning and the respiratory system is operating. Breath 

rates are measured from chest movements or special apparatuses. 
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• Temperature: The amount of heat present in the body, also called body temperature, is 

essential for determining the metabolic rate and the health status of the individual. The 

measurement is done by using thermometers which are in most instances placed in the 

mouth, rectum or armpit [4-5]. 

• Oxygen Saturation (SpO2): This value is expressed as a percentage which is derived by 

determining the fraction of oxygen saturation of hemoglobin in the blood. To monitor this 

parameter, which is very important in evaluating a patient’s breathing, pulse oximeters are 

used, which are non-invasive devices. 

Electrocardiograms, thermometers, blood pressure monitors, and even thermometers are among 

the various devices used to monitor vital signs according to the standard procedures. These primary 

indicators are collected by a nurse or a doctor and evaluated during periodic testing, clinical visits 

or emergency consultations. Although these measures succeed to provide important data, they do 

impose some limitations [6]. 

1.1.2. Limitations of Traditional Vital Sign Monitoring 

Blood pressure, heart rate and temperature continue to be checked with devices inside 

hospitals. On the other hand such devices may create concerns and could negatively impact 

the safety of patients. 

• Intermittent Monitoring: At each round, vital signs are measured, but the patient’s health 

can change without warning. For example, a post-visit drop in oxygen saturation could be 

found on the next check, even though it happened important hours away [7-8]. 

• Manual Analysis and Recording: Staff and nurses gather data manually and handle its 

analysis later, as technology improves. Doing things manually may mean waiting longer 

and requiring more steps to keep control of the process. In one case, a UK hospital was 

unable to treat patients in septic shock because their vital signs were recorded on paper 

which took too much time [9]. 

• Subjectivity: Because of personal biases, one data set may be analyzed differently by 

different individuals. How people understand data completely depends on them. To cite an 

example, one of the nurses in a U.S. case was less experienced and, after seeing 

combination symptoms confused them for early heart distress [10]. 
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• Restricted Data Examination: Because old systems do not represent a patient’s progress 

step by step, it’s hard to notice small ongoing changes. No notifications were available at 

some legacy ICUs for slower oxygen drop cycles at night which limited staff from acting 

on such situations [11]. 

• Patient Adherence: Participating in steps such as blood pressure or temperature checks 

requires patients to be still. This situation probably causes difficulty for infants, those who 

are unconscious or people with mental health disorders [12]. 

• Demanding on Resources: Standard monitoring involves a doctor, along with the use of 

cuff monitors and thermometers. During busy hospital times or emergencies like COVID-

19, having enough staff was a big problem for the health system [13]. 

• Scalability and Accessibility: It can be very hard to observe and monitor lots of patients 

in remote settings at the same time. In India, some small clinics face challenges providing 

monitoring of patients who need emergency care because they often lack both staff and 

necessary devices [14]. 

Case Study: Recently, a patient who had just gone through surgery in a New York hospital had a 

sudden crash because abnormal vital signs were caught but not identified in time. The information 

from the vital signs was paper recorded, but there wasn’t a quick check on it. The patient would 

have survived if an alert had been sent right away [13]. 

Today’s devices watch for changes in a patient’s vital signs, inform caregivers right away and may 

use Artificial Intelligence to spot potential issues early. Improving patient care at this point is both 

helpful and can save lives [14]. 

Problems with Technology: 

• Categories of Concern Data Privacy: The use of wearables to collect and send health 

information creates major concerns about privacy. There are credible concerns about where 

the data resides, who can work with it and how it is protected. 

• Old Systems Compatibility: Much hospital software is still developed by a single vendor 

and used throughout the organization. Using the latest monitoring platforms and AI with 

old systems is often very expensive, requires a lot of time and is not simple. 
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• Resistance Acceptance: Just like with any new innovation, healthcare staff have to be 

given the proper training. There are those who oppose new innovations or settle for 

approaches they have used for a while. 

Even with some obstacles, bringing in smart technology to monitor patients in real time makes 

patient care quicker, safer and more precise, mainly when a patient’s condition is urgent [5-6].  

1.1.3. Advancements with Real-Time Monitoring and Machine Learning 

Monitoring vital signs in traditional means has, replacing the ever medium of monitoring paitients 

and providing medical attention to them. The procedure involves a periodic assessment of critical 

parameters of the body such as pulse, temperature, respiration rate and blood pressure, so as to 

certify the physiological condition of a patient. Unlike the usual methods of monitoring patients’ 

status, it still requires the collection of data which is quite sporadic, dependent on people and also 

makes it difficult for sustained monitoring to be done. [15].  

However, the use of machine learning algorithms and real time monitoring systems seamlessly 

resolve these issues by allowing for unprecedented active monitoring of the vitals of a patient in a 

seamless manner. With real time monitoring devices, it becomes possible to stream multiple data 

points about a patient’s physiologic condition as a single bulk. [16-17]. This data can then be 

analyzed through machine learning algorithms where patterns, trends and abnormalities that show 

deviations in the patients’ condition can be detected in real time.  

The integration of machine learning algorithms in real time surveillance systems has no doubt 

transformed the way healthcare facilities used to monitor and assess vital signs and their response 

to them [18]. The following mechanisms highlight how machine learning improves on real-time 

monitoring: 

• Continuous Data Acquisition: Surveillance systems enhanced by machine learning are 

equipped to consistently gather essential vital sign information from peripheral devices, 

Internet of Things sensors, and electronic health records. This guarantees an ongoing and 

up-to-date stream of information [19]. 
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• Automated Analysis and Pattern Recognition: Machine learning algorithms can 

independently analyze extensive amounts of vital sign data to identify anomalies, trends, 

and patterns that could signal health risks or shifts in a patient's condition. [20]. 

• Predictive Analytics: Machine learning algorithms possess the ability to anticipate future 

health outcomes, predict negative events, and provide early warning alerts to healthcare 

professionals by leveraging historical data and predictive modeling [21]. 

• Tailored Insights: By tailoring insights according to patient profiles, medical histories, 

and risk factors, ML algorithms can aid in crafting customized interventions and treatment 

strategies. [22]. 

• Scalability and Efficiency: Monitoring systems powered by machine learning can adeptly 

handle large datasets, support remote monitoring initiatives, and enhance the distribution 

of healthcare resources [23]. 

• Feedback Loop and Learning: Machine learning algorithms possess the capacity to gain 

knowledge and refine their predictive abilities as time progresses, thus creating a cycle that 

enhances the accuracy and relevance of monitoring insights. 

1.2. Real-Time Monitoring Systems Enhanced by Machine Learning 

1.2.1. Continuous Data Collection and Analysis 

The real-time monitoring system employs a network of connected devices and sensors to 

continuously capture vital signs. This network essentially aims to chart a variety of physiological 

metrics like heart rate, blood pressure, respiratory rate, temperature, and oxygen saturation. The 

collected data is then sent for further analysis to the main database or the cloud and includes a 

timestamp [24-25]. 

1.2.2. Machine Learning Algorithms for Pattern Recognition 

New health monitoring systems use machine learning to spot particular patterns and adjustments 

in your health data. They check through data that people cannot process and warn medical staff 

when needed. There are three main groups into which machine learning techniques in such systems 

are classified: 

• Supervised Learning: In Supervised Learning, the system relies on provided data along 

with its correct answers to learn. Feeding knowledge this way is not much different than 
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teaching someone with flashcards and giving answers. For example, a supervised learning 

model is taught about heart issues by exposing it to data on regular and irregular ECG 

patterns [26].  

• Unsupervised Learning: The system performs its analysis without being given directions 

regarding the study’s parameters. It sorts like records and points out any that stray a lot 

from the others as unusual. This approach could detect exact changes in a patient’s vital 

signs that might hint at risk to their health [27-28].  

• Deep Learning: Deep learning is included under the more general field known as deep 

learning. Deep learning is considered a complex branch of artificial intelligence (or 

machine learning) involving a lot of detailed data. It links new data without being shown 

steps and behaves like human reasoning for data that varies with time such as heart rate 

and blood pressure. RNNs and CNNs are the main neural network models for analyzing 

time data series. They are capable of finding patterns and links that might affect how a 

patient’s health is changing [29]. 

1.2.3. Adaptive and Predictive Insights 

An essential benefit of incorporating machine learning into real-time surveillance systems is the 

production of insightful observations that are both predictive and adaptive: 

• Adaptive Insights: Adaptation of machine learning models to fluctuating physiological 

conditions and individual patient variations is possible. By modifying alert thresholds in 

accordance with a patient's baseline vital sign parameters, for instance, an adaptive 

monitoring system can decrease false alarms and increase the system's precision [30]. 

• Predictive Insights: Machine learning models have the capability to predict trends and 

prospective health outcomes through the analysis of both historical data and real-time 

inputs. By analyzing current vital sign patterns and medical history, predictive analytics 

can, for instance, assess which patients are at danger of declining or forecast the probability 

of particular medical events [31]. 
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1.2.4. Data Fusion 

Information from wearable gadgets, EHRs and x-ray images can all be collected by real-time 

monitoring systems. Using machine learning and data fusion, these systems make it possible to 

process and review this data to fully understand a patient’s health [32]. 

1.2.5. Continuous Model Refinement 

In order to function as real-time monitoring systems, machine learning models are consistently 

updated and refined in response to feedback and new data. The implementation of this iterative 

procedure guarantees that the models maintain their precision and efficacy in anomaly detection, 

outcome prediction, and the provision of practical insights for healthcare providers [25]. 

1.3. Healthcare Machine Learning: Uses and Possibilities 

ML (machine learning) is a concept that must be defined prior to discussing its application in 

healthcare. ML is concerned with developing statistical models and techniques that enable 

computers to make forecasts or choices based on data, which is a branch of AI. ML Systems 

execute better over time without being explicitly programmed, in contrast to traditional 

programming which requires explicit instructions. These algorithms acquire knowledge from data 

patterns and experiences [26]. 

1.3.1. Machine Learning Algorithms 

Using ML, a computer can decide on a task by learning from data, instead of requiring software 

for each single job. They make it possible for computers to pick out data patterns and analyze them 

by themselves. Fig. 1 displays the main classifications of algorithms into four types: 
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Figure 1. Different Machine Learning Forms. 

i. Supervised Learning: If we use supervised learning, we feed the computer data with 

predetermined answers. It is a little like handing a student examples of problems and the 

solutions together. 

In order for a computer to predict house prices, we give it the home’s size, number 

of rooms and garden information alongside the actual house prices. When the computer 

has seen enough new and old house prices, it starts making accurate predictions for new 

homes [33].  

• Forecasting, regression, and classification are all included under the general heading 

of supervised learning.: 

a. Classification: During classification, a computer uses previous examples (from the 

training dataset) to help it make predictions or choices. The main thing is to place data 

into groups such as telling an email is spam or picking out the gender of someone’s 

voice [33]. 

• Types of Classification Algorithms: 

• Naive Bayes classifier: This classifier which works with probability, assumes that 

every feature is unrelated to every other feature and uses Bayes' theorem. It’s a 

simple and effective approach for labelling text such as organizing emails or 

reviewing how people feel about something [34]. 

• Decision Trees: Decision trees are adaptable algorithms that generate a tree-like 

structure of decisions by recursively dividing the data along its features. An 

internal node corresponds to a feature, an outer branch to a decision, and a leaf 
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node to a class label or result. They are user-friendly, intuitive, and capable of 

processing categorical and numeric data [34]. 

• Logistic Regression: As the name implies, this classification technique is used for 

binary classification problems. The possibility of a binary result is represented by 

a logistic function (e.g., true/false or yes/no). Its efficacy for linearly separable 

data, simplicity, and interpretability contribute to its widespread application [30]. 

• K-Nearest Neighbors (KNN): K-Nearest Neighbors (KNN) is a straightforward 

technique using which the computer examines the closest data points to determine 

the group a new sample belongs to. It lends itself well to bringing together similar 

items, but sometimes it struggles with data that is both messy and complex [32]. 

• Support Vector Machine (SVM): Support Vector Machine (SVM) is a method 

designed to sort out data points. It does so by figuring out the best spot or feature 

to separate one group from another. SVM uses kernels which are special tools, to 

ensure it can handle simple as well as challenging data and draw lines that match 

what is required [33]. 

• Random Forest Classification: This classification method involves constructing 

different decision trees and practically combine their results to boost consistency. 

For challenging datasets, it is particularly successful, stays free from usual 

obstacles like overfitting and guides you to focus on the factors making the 

decision [34]. 

b. Regression: The purpose of using regression is to discover the function that associates 

the input variables (x) with the continuous output variable (y). If we want to predict a 

number, we use regression. We could predict age, salary or house prices given 

particular features we observe [34]. 

• Types of Regression Algorithms: 

• Simple Linear Regression: Simple Linear Regression, also called regression, is 

the key method used to explore the influence of one factor on another. It lets 

you make a straight connection between two things such as height and weight 

for a person. With this technique, we can see the influence of a variable upon 

another variable [35]. 



27 

 

• Multiple Linear Regression: Multiple Linear Regression is a kind of Simple 

Linear Regression that is extended to several independent variables. Assuming 

a linear relationship, it simulates how two or more independent variables relate 

to a dependent variable. The model equation is y = a0 + a1x1 + a2x2 +... + anxn, 

where x's are independent variables and b's are coefficients [35]. 

• Polynomial Regression: This technique is used when the link between variables 

isn’t a line. In linear regression, each trend is shown by a line, but polynomial 

regression uses a range of curves (such as x², x³ and other exponential forms) 

to track data with more distracting changes. As a result, it can point out designs 

that are not noticeable if we rely solely on a straight-line tracker [35]. 

• Decision Tree Regression: The Decision Tree Regression technique is used to 

predict numerical results by creating a tree structure. It explains every decision 

step by step, ending up with a predicted value at the end of each path. Using 

logistic regression on difficult datasets is not complicated, but this approach can 

cause the model to make wrong predictions with unfamiliar data because it 

focuses on the training data too much [35].  

• Random Forest Regression: Random Forest Regression uses various decision 

trees to help make predictions. It reduces its dependence on just one tree and 

this makes the prediction more reliable and stable. Minimizing errors and 

overfitting are better with this method than if you only use a single tree [35]. 

• Ensemble Method: Using multiple models to join results and see an improved 

outcome is called ensemble method. They find better outcomes by using several 

models compared to just one. Other machine learning algorithms are Random 

Forest, Gradient Boosting and Bagging. Often such methods are better than 

single models as they bring together predictions and remove errors. 

c. Forecasting: Forecasting is the practice of projecting future tendencies, using 

information from the past and the present. People often use it when forecasting the 

weather or predicting sales [35]. 

ii. Semi-supervised learning: Semi-supervised learning uses information from both datasets 

that have answers and those that don’t. It is most helpful when getting all the data is either 
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difficult or too costly. The computer uses the samples from the small data collection to help 

with the larger, unlabeled data [36]. 

iii. Unsupervised Learning: With unsupervised learning, computers use raw data that hasn’t 

been arranged or given special tags. They search for and discover patterns or collections 

among those things on their own. 

It can play a key role in catching fraud thanks to spotting unusual actions that are 

out of the ordinary. You can use it to select places for emergency centers such as hospitals, 

in areas likely to experience accidents. Accident hotspots are discovered by the computer, 

grouped into clusters and then the computer proposes the best location in every cluster to 

put a hospital, so more people can be helped in less time [37]. 

• Types of Unsupervised Learning Algorithms: 

a. Clustering Algorithms: In the absence of pre-existing knowledge regarding group 

membership, these algorithms aggregate data points that exhibit similarity. For instance, 

K-means clustering can be employed to differentiate distinct consumer segments based on 

their purchasing behaviours. 

• K-Means Clustering: In order to reduce the variation within each cluster, the method 

uses similarity metrics to partition the data into 'k' clusters [37]. 

• Hierarchical Clustering: A hierarchical representation resembling a tree is generated 

to depict clusters, in which data elements that are similar are organized together at 

varying degrees of granularity. 

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Cluster 

identification is performed by DBSCAN using data density to categorize points as core, 

border, or noise points [38]. 

b. Dimensionality Reduction Algorithms: 

These algorithms are implemented to decrease the feature count of a given dataset while 

maintaining critical information. For instance, PCA can be utilized to extract meaningful 

features for facial recognition in image processing. 

• Principal Component Analysis (PCA): PCA reduces the dimension of high-

dimensional data while preserving the maximum amount of variance. 

• t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is used for visualizing 

high-dimensional data by preserving local structures and emphasizing clusters [38]. 
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c. Association Rule Learning: 

In the context of large datasets, this category of algorithm discerns patterns and 

relationships. In the retail industry, for instance, the Apriori algorithm can assist with 

strategic product positioning by revealing which items are frequently purchased together. 

• Apriori Algorithm: Frequently implemented in market basket analysis, this algorithm 

mines frequent item sets from transactional databases in order to identify associations 

between items [39]. 

iv. Reinforcement Learning: Reinforcement Learning trains machines via the actions they 

take. The model experiments with several techniques to see how each one works. Getting 

good results pays off; failing does not. By studying both victories and defeats, the model 

finds the effective way to reach the specified target. It’s a bit like learning through 

experience and discovery [40].  

Example: Think about an infant trying to learn how to walk. When she takes the 

chocolate, she feels happy - something positive happens. She gets upset when she can’t 

reach the chocolate because she has hit a chair and cannot pick it up. The baby finds out 

which direction gives them the reward. 

This form of learning means the model (ifs the baby’s mind) explores different 

solutions, understands the results and improves over and over to achieve success [40]. 

1.3.2. Machine Learning in Healthcare 

Using machine learning helps doctors and their teams to make wiser decisions in medicine. 

It considers a broad range of medical information, obtained via fitness trackers, genetic tests, health 

records and scans, to look for useful trends, predict outcomes and provide treatment advice. The 

outcome is faster support, more accurate diagnoses and treatments adjusted for every patient [41]. 

Doctors can do more with patient care and medical data thanks to machine learning. This 

field program computers to use human-like thought and choice. Technology is used in hospitals to 

arrange patient data, find trends in health and suggest suitable treatments. More and more medical 

establishments realizing the usefulness of machine learning opens up fresh employment 

opportunities [42]. IDC expects India’s AI market will expand by more than 100% between 2020 

and 2025. 
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With more growth in the sector, startups will need more AI knowledge and extra jobs in 

healthcare will also be created. When you look through the details, "artificial intelligence" and 

"machine learning" are based on everyday programming and math. After you understand the main 

points, you can move forward and look into interesting jobs in healthcare and related fields. It 

gives experts fast career growth, contentment and a wide range of development opportunities [43]. 

1.3.3. Rise of ML in healthcare settings 

With the continuous advancement of technology, machine learning presents a promising 

prospect in the healthcare sector to enhance diagnostic precision, individualize medical care, and 

discover innovative resolutions to longstanding challenges. By programming computers to make 

predictions and connections and to extract vital insights from massive quantities of data that 

healthcare providers might otherwise overlook, machine learning can have a direct effect on the 

health of your community [44]. 

The objective of machine learning is to generate medical insights that were previously 

inaccessible and enhance patient outcomes. It enables the validation of the reasoning and decisions 

of physicians via predictive algorithms. Consider the scenario in which a physician prescribes a 

particular medication to a patient. Consequently, machine learning can verify the efficacy of this 

treatment regimen by identifying a patient who has undergone the identical intervention and shares 

a comparable medical history [44]. 

1.4. Healthcare applications of machine learning along with the Internet of Healthcare 

Products 

One must depend on a dataset of patient information that is always changing when using machine 

learning in healthcare. Medical experts may use this data store to find patterns that will help them 

detect new illnesses, evaluate risks, and predict how treatments will work. Integrating medical 

devices into a centralized network is a practical way to aggregate large amounts of data, especially 

considering the large number of patients and the broad variety of medical technologies utilized for 

data collecting [45]. 

Interconnected medical equipment and apps that may communicate over internet networks make 

up what is known as the Internet of Medical Things (IoMT). Nowadays, a lot of medical equipment 
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has Wi-Fi built in, so it can talk to other devices on the same network or even in the cloud. With 

this feature, a lot of things become possible, such keeping medical records up-to-date, monitoring 

data from wearable devices, and remote patient monitoring. For example, ambulances all 

throughout India are getting sensors that connect to the Internet of Medical Things (IoMT), as 

mentioned in a study on the Indian healthcare system by PWC The Bengal Chamber. Medical staff 

at healthcare institutions may now access critical patient records and data prior to the patient's 

arrival, thanks to this deployment. In the near future, the IoMT is expected to see exponential 

expansion because to the widespread use of wearable devices and internet-enabled medical 

instruments [46]. 

1.4.1. Types of AI relevant to healthcare 

Artificial intelligence encompasses machine learning as well. Although there are several forms of 

AI, the healthcare business may benefit from certain forms. Healthcare machine learning experts 

often work on improving healthcare records and other administrative systems, mining massive 

clinical data sets for patterns, and developing tools to aid doctors in patient care [47]. 

Among the most popular forms of AI employed in these key domains are: 

i. Deep learning and neural networks in machine learning: Neural networks are a type of 

machine learning that aims to mimic the neural networks seen in the human brain. These 

networks are referred to by several names, such as simulated neural networks (SNNs) and 

artificial neural networks (ANNs). In healthcare, ANNs may mimic human reasoning for 

diagnosis by generating computer-generated results that are comparable to the latter [48].  

Deep learning an ANN's capacity to get knowledge from large datasets is based on 

ANNs. Using deep learning, medical professionals may examine magnetic resonance 

imaging (MRI) and other imaging studies for anomalies. Although medical professional's 

work is still crucial, this enables them to diagnose patients more quickly and start treating 

them, which improves their performance [48]. 

ii. Natural language processing: NLP is a branch of machine learning that aims to make 

computers better at comprehending, analysing, and producing natural language. Natural 

language processing enables interaction and communication with the computer. One use 

of NLP in healthcare is the extraction of data from medical records [48]. 
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iii. Physical robots: Just what they sound like: robots that can interact with a doctor in person. 

Surgical robots can assist doctors with intricate operations that call for pinpoint accuracy. 

The less invasive nature of robotic surgery often leads to better results with fewer problems 

[48]. 

iv. Robotic process automation: When it comes to data input and other manual operations, 

robotic process automation uses machine learning to imitate human behaviors. 

Organizations in the healthcare industry automate these processes with the use of machine 

learning. Doctors and hospital management will have more time to focus on what really 

matters when this is taken care of [48]. 

1.4.2. Applications of machine learning in healthcare 

Despite the constant emergence of novel machine learning applications, the majority of these 

applications in healthcare focus on enhancing the standard of care and the health outcomes for 

patients. Machine learning has many potential applications in healthcare, so you may focus on one 

area if you choose. Gaining familiarity with the many machine learning healthcare applications 

(such as the ones mentioned below) might assist in selecting the module or specialization that 

aligns most closely with your interests and aspirations [49-50]. 

• Improve trauma-care response: There may be less delay in providing life-saving care to 

patients by developing sensors and equipment that can transmit their critical vital signs to 

the hospital prior to their arrival by emergency transport, such as an ambulance [49-50]. 

• Disease prediction: Machine learning allows you to discover patterns, establish 

associations, and derive conclusions from massive datasets. Predicting community-wide 

illness outbreaks and monitoring patient disease-causing behaviors are examples of what 

this encompasses [49-50]. 

• Visualisation of biomedical data: Using machine learning, biomedical data, such as RNA 

sequences, structures of proteins, and genetic profiles, can be represented in three 

dimensions [49-50]. 

• Improved diagnosis and disease identification: Discover novel symptom patterns that 

have not been seen before and compare them to bigger datasets to detect illnesses at an 

earlier stage [49-50]. 
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• More accurate health records: Ensure that all medical institutions have up-to-date, 

accurate, and easily transportable patient records, doctors, and personnel [49-50]. 

• AI-assisted surgery: Assist surgeons with complicated tasks as they work, improve their 

visibility of the operating field, and demonstrate how to execute operations [49-50]. 

• Personalised treatment options: Machine learning allows you to examine data from 

several modalities and, using all of the available treatment choices, make judgments that 

are specific to each patient [49-50]. 

• Medical research and clinical trial improvement: Using ML, you can improve clinical 

trial participant selection, data collecting, and analysis [49-50].  

• Developing medications: Machine learning may help you find new drug development 

routes and create creative treatments for a wide range of medical issues [49-50]. 

1.4.3. Ethics of machine learning in healthcare 

Although ML offers healthcare a fresh and exciting possibility, it also brings up significant ethical 

issues. First, when medical decision-making is delegated to smart devices, privacy, transparency, 

and reliability issues surface. The diagnostic process may be made more stressful and uncertain by 

the fact that, unlike with a doctor, machines cannot talk about a patient's condition. Furthermore, 

rather of a machine, individuals would prefer to hear terrible health news from a trusted physician 

[51-52]. 

Additionally, medical facilities can want to avoid accountability for a misdiagnosis made by AI, 

and patient diagnostic mistakes are most likely unavoidable. Prediction accuracy may be impacted 

by racial and gender characteristics, and machine learning engineers may unintentionally create 

biased algorithms [53–54]. To prevent unforeseen consequences, regulators and healthcare 

providers must establish early norms, accountability, and restrictions on the application of machine 

learning in healthcare [55]. 

1.5.Link machine learning attributes to healthcare framework 

Fig. 2 showcases the diverse range of intelligent and compassionate characteristics linked to the 

ML culture and its vast range of healthcare services. Included in this are the many digital and 

intelligent technologies used in healthcare, such as cloud data performances and artificial 

intelligence. Creating EMRs is a tremendous boon to the healthcare industry, and it doesn't break 
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the bank. Intelligently created reports, digital notes, records maintenance, etc. are a few more 

significant areas where ML concepts demonstrate their value in healthcare. In order to keep an eye 

out for possible epidemics, healthcare facilities throughout the globe are using ML systems [56].  

By compiling information from the web, satellite data, and social media updates in real-time, this 

digital system may predict when diseases will spread [57-58]. It may be a lifesaver for developing 

nations without proper medical infrastructure. 

 

Figure 2. Machine learning capabilities tailored to the healthcare sector. 

A lack of access to the right healthcare practitioner, lengthy and overly complicated appointment 

processes, excessive concern of costs, and long lineups are all symptoms of underlying problems 

that ML and similar data-driven approaches aim to solve. Traditional organizations have been 

dealing with similar problems for decades, and ML approaches are already contributing to the 

answer. This is due to the fact that ML systems' strength their extensive databases and clever search 

algorithms do very well when faced with optimization or pattern matching problems [56–57].  

Merging empathy with a profit-generating aim is essential for powerful ML technologies to 

distinguish themselves from conventional systems in hospital operations management. The goal is 

to determine the best course of therapy based on each patient's individual medical history, lifestyle 

choices, genetic information, as well as pathology testing. This is a very challenging and time-
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consuming process. Naturally, the problem will demand the best artificial intelligence techniques, 

including probabilistic graphical models, neural networks with deep connections, powered by AI 

search algorithms/advanced reinforced learning, and semi-supervised learning. By using machine 

learning (ML) to healthcare, they may make judgments more rapidly by employing insights 

gleaned from historical data, such as details on genetic abnormalities, family histories, and 

illnesses [58-59].  

More and more people are using ML for anything from social media recommendation systems 

to factory process automation because to the proliferation of affordable hardware and cloud 

computing. The healthcare business is also one that adapts to new circumstances. Due to the large 

amount of data collected for each patient, ML algorithms in healthcare have great promise [60-

61]. The flip side is that they may save money and provide a better experience for patients by 

planning ahead and suggesting comprehensive treatments. The healthcare business is fortunate to 

have ML. The medical history of a patient, their family, and any prior treatments all include large 

amounts of unstructured data. By analyzing patients' medical records, ML helps doctors anticipate 

serious health problems [62–63]. The shift to healthcare management and delivery based on 

information has been expedited by the growth of this technology.  

Information systems driven by ML are essential to the modern interdisciplinary effort to 

enhance healthcare outcomes via better imaging and genetically-based personalized treatment 

models. Additionally, ML will produce outcomes far more quickly, enabling therapy to commence 

earlier, even though a healthcare practitioner and an ML algorithm would likely arrive at the 

identical conclusion using the same dataset. Another perk of using ML approaches in healthcare 

is that it eliminates some human intervention, which in turn reduces the possibility of human 

mistake. This is particularly the case when it comes to process automation tasks, as human error 

is most prevalent in mundane, repeated tasks [64–65]. When it comes to diagnosing an illness, 

deciding on a course of therapy, spotting any problems, and improving the overall efficiency of 

patient care, clinical decision support technologies are invaluable. ML's rising popularity in recent 

years is due in large part to the fact that it is a strong approach that helps doctors perform their jobs 

faster and more accurately, which in turn lessens the risk that they would prescribe inefficient 

therapy or make an inaccurate diagnosis [66]. This is because many data points, including medical 
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pictures, have been digitized and electronic health records have been more widely used. In the 

medical field, X-rays and other similar pictures remained analogue for a very long time.  

Anomaly identification, case categorization, and sickness research have all been hindered by 

this. Thankfully, ML and other types of data analysis have found more substantial prospects as a 

consequence of the industry's digitization. In order for ML to find patterns and draw conclusions 

faster, healthcare data must be prepared. Annotation over the input is the human-run process that 

identifies and labels dataset components. Data analysis, rule writing, and machine performance 

optimization are all areas in which clinical professionals excel. On the other hand, accurate and 

meaningful annotation of the data is crucial for healthcare ML systems to learn quickly and 

effectively by extracting key ideas with suitable context. Performing surgical procedures requires 

pinpoint accuracy, the capacity to quickly adjust to new circumstances, and a steady hand over a 

long period of time [67-68]. A potential future use of machine learning in healthcare is the ability 

for robots to carry out surgical procedures, even though trained humans already possess all of these 

abilities. Using historical data on active pharmaceutical ingredients and their effects on the body, 

ML systems may model how an active ingredient might work in a different, comparable setting 

[69-70].  

A lot of resources, including time and money, are needed for research and clinical trials. In 

addition to providing reliable results, ML-based predictive analytics help keep clinical trial budgets 

and timelines in check. Machine learning (ML) technology has many more uses beyond only 

finding people to participate in clinical trials; it can also access their medical information, keep 

tabs on them while they're in the study, choose the most appropriate testing samples, and even 

remove data-based mistakes. By using ML, healthcare personnel may enhance their industry, 

simplify various activities, and, in the end, save lives. Machine learning (ML) is essential for 

prevention purposes in addition to its direct applications in healthcare. This innovation enhances 

surveillance by letting experts see problems that may not be obvious at first glance but might 

endanger our lives if left unchecked. Emerging illnesses, pandemics, and pollution are only a few 

of the many potential threats to human health in the future [71–73]. On a worldwide scale, 

healthcare institutions may use ML to anticipate issues that have not yet affected the patient. 

Because of this, medical professionals may provide remedies that either prevent the issue from 

happening or greatly mitigate its impact once it does. Because early diagnosis is so crucial in 



37 

 

cancer therapy, it is of utmost importance. With the help of ML, cutting-edge healthcare 

innovations like smart imaging have become a reality. One of the things that healthcare depends 

on significantly is patient records. Enhancing and streamlining patient data may empower 

healthcare providers to foresee future challenges, address current ones, and evaluate individual 

cases. A patient's medical history includes not only their current and past illnesses, but also 

information on their mental and physical well-being. With the help of ML, smart patient records 

are starting to materialize and are finding extensive use in healthcare. The value of smart patient 

records to medical practitioners is enhanced in almost every way due to their simplification and 

streamlining [74-75]. 

1.6. Pillars of machine learning for healthcare 

There are a number of ways in which the healthcare sector has benefited from the idea of ML and 

its flexible capabilities. The many quality pillars and enablers that aid and care for healthcare units 

are examined in Fig. 3. The well-known ML idea has further expanded its services for the benefit 

of society via healthcare, with features such as the capacity to anticipate outbreaks, diagnose 

medical imaging, modify behavior, record patient data, etc. When these services are needed in 

healthcare procedures, the important foundations are undoubtedly provided by the efficacy and 

performance of these ML features [76-78]. ML entails feeding computers data and an algorithm in 

order to train them to identify patterns. Disease detection is a challenging manual process; ML is 

crucial in identifying the patient's illness, tracking his vitals, and suggesting preventative measures. 

It may vary from relatively harmless conditions to deadly ones like cancer, which can be hard to 

see in its early stages [77, 79].  

A application case for ML in healthcare may include learning about and forecasting issues 

related to mental health on a global or sector-specific scale. As a result, mental health professionals 

are better able to pinpoint which populations are most vulnerable to catastrophic events like 

pandemics. In order to choose molecules with appropriate physicochemical properties and 

biological activity, it may evaluate their absorption, distribution, metabolism, and excretion 

characteristics [80-82]. Scholars and practitioners in the medical field are now using 

crowdsourcing to get access to massive amounts of data that individuals have voluntarily 

contributed. The future of medicine is profoundly affected by such real-time health data. 
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Figure 3. Foundations of healthcare-related machine learning. 

With this gear, we can sift through mountains of data collected from sources like social media, 

satellites, websites, and government databases in real time. From malaria outbreaks to other major 

infectious disease forecasts, networks may help make sense of this data. It takes a lot of effort and 

money to keep health records up to date and accurate. When it comes to streamlining the data entry 

process, this technology is crucial. Still, because to the need for human intervention, the majority 

of procedures still take an excessive amount of time to complete. Here is where machine learning 

comes into play. They say it will save costs, save time, and simplify things [83-84]. Machine 

learning (ML) may help move healthcare away from a reactive and toward a preventative model 

by providing personalised treatment suggestions. With its help, doctors will be able to treat each 

patient with a personalized plan that takes into account their specific symptoms and characteristics. 

Consequently, fewer people may likely experience adverse effects from their prescribed drug. 

Disease outbreaks may be better predicted and monitored with the use of ML algorithms in 

healthcare. Also, ML may lessen the negative effects of epidemics [85-86].  

Machine learning has the potential to streamline clinical trials and enhance the drug 

development process. Pharmaceutical businesses face a multitude of challenges in this domain. 

Clinical trial planning has always been a laborious process due to the large number of variables 

that must be considered. This means that there are a number of criteria that prospective clinical 

trial participants must pass through in order for the findings to be reliable. In order to ensure the 
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safety and efficacy of the treatments, this technology continuously monitors and analyzes vast 

amounts of data [87-88]. Machine learning allows computers to autonomously understand ideas, 

analyze data, and provide the outputs that users want. Many different types of learning techniques, 

including supervised and unsupervised learning, are used by ML models to learn how to 

understand data via clauses and conditions. This makes them a good fit for making predictions and 

recommendations. Also, by notifying patients about their appointments, report collecting, and 

other activities in a timely manner, ML helps optimize patient engagement and recovery.  

When it comes to medical applications of ML, illness detection and diagnosis are among the 

most important. While issues like cancer and inherited disorders are notoriously hard to spot in 

their early stages, they may be identified with pinpoint accuracy with the help of well-trained ML 

solutions [89-90]. ML is finding several uses in healthcare, including problem solving. Patients' 

quality of life is enhanced when they are able to get the right treatment, and the health care system 

may guarantee effective use of resources by providing patients with appropriate therapies. ML has 

the potential to support a value-based strategy for cancer treatment, which highlights the 

significance of having access to linked health data and working together among different public 

and private stakeholders. The administrative and organizational parts of healthcare delivery, 

including managing patients and beds, conducting remote monitoring, scheduling appointments, 

and compiling duty rosters, are greatly improved by this technology. On a daily basis, healthcare 

staff are unable to provide the care that patients need because they are too busy with administrative 

tasks, record maintenance, and claims processing.  

Automation and the removal of human involvement in places may be achieved via the 

deployment of ML models [91-93]. Many patients with chronic diseases, such as diabetes, go for 

years without experiencing any symptoms at all. Because of this, individuals often find out about 

their diabetes after it has progressed too far to treat. But ML models might help us prevent these 

kinds of situations. We may now use ML-based models to help us recognize these unconscious 

habits and make necessary changes to our way of life. Something as simple as a wristband or an 

app that tells us to get up and walk about after sitting for a while may fall into this category [94, 

95]. The quick development of COVID-19 vaccines was only possible using data-driven 

development approaches. The accuracy of radiology diagnoses was enhanced with the use of 

image recognition algorithms for the detection of small abnormalities, such cancer metastasis. 
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Social media postings and wearable medical records are two examples of the types of data used to 

predict health problems and illnesses. Many uses, including sensor alarms, need a decrease in false 

positives.  

A false positive happens when a test incorrectly identifies the presence of a condition, such an 

illness, when in fact it isn't. Diagnostic data is enhanced by using technologies to reduce false 

positives and false negatives [96-97]. With the advent of ML came several useful solutions that 

helped entrepreneurs make their firms more lucrative and customer-centric, like telemedicine, self-

driving vehicles, hyper-targeted marketing, and many more. ML has now become an integral 

component of many sectors. Medical practitioners may benefit greatly from ML's array of tools 

and approaches, which have a direct bearing on patient outcomes. Fields that work with massive 

datasets may reap the advantages of ML software's clever prediction algorithms right away [98-

99]. High cholesterol levels, obesity, cancer, diabetes, heart disease, and mental health issues are 

all greatly increased when people are not physically active. Conversely, it is possible to avoid these 

illnesses and halve death rates with regular physical activity of at least one hour each week. 

Customization of the advice to each person is a crucial component. With ML, personalized 

coaching and reward systems that provide suggestions depending on daily activity performance 

may be provided in real-time and on an ongoing basis. Some people need an external push to get 

them started, others are performing some exercise but might use more motivation to step up their 

game, and so on. Machine learning (ML) helps medical professionals by learning from large 

amounts of data and making predictions and forecasts. Some of the most investigated ailments are 

ML tools, cardiovascular disease, and problems of the brain system. An important step toward 

better early detection and diagnosis is the ability of self-trained systems to learn using both 

supervised and unsupervised approaches. To function properly, self-trained systems need ongoing 

interaction with data from clinical studies, suggesting that human intervention is intrinsically 

related to ML. Finance and banking is a perfect area to use AI and ML since there is a lot of 

structured data compared to other sectors. Investment banks pioneered the application of AI 

innovations many years ago. The industry has come a long way since then, improving the lives of 

both practitioners and clients. Machine learning (ML) is an emerging area of computer science 

that teaches computers to accomplish more complex tasks than just following rules. The errors of 

others may teach them a thing or two. It enhances the quality of patient treatment and is used for 
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predictive analysis. Predictive analysis is the process of using data and information to make 

predictions about the future [100]. 

1.7. Research Problem and Objectives 

In the field of health care, it is a massively researched topic. There are a lot of studies looking at 

IoT, ML, and AI. Nevertheless, there is a substantial additional hurdle for ML-based medical 

health care applications when contrasted with conventional IoT-based health care application 

systems [101-103]. Currently, the app's only feature is the ability to see data from sensors visually. 

Installing sensors in a wide variety of devices makes it very difficult to maintain, monitor, and 

power all of them at once [104–106]. There are now known research gaps as a result of the 

aforementioned fields' analyses.  

• Vital signs, medical rules with active contexts can be used to identify a patient's critical 

state remotely [11-14], [17-18], [35-36], [44-45].  

• Patients with chronic diseases also having autism spectrum disorder (ASD) who are 

monitored by healthcare professionals and AAL devices has no real-time health status 

assessed using ML models [15-19], [21-22], [37], [42-44].  

• Big data analysis in unstructured and unbalanced datasets can be handled more effectives 

[20-22], [28-30] [38], [46-48].  

• A real-time ML-based analytical information system for monitoring vital signs is lacking 

in the current medical equipment using both local and cloud-based categorization models 

[23-27] [31-34], [54-55].  

Motivated by the lack of empirical research towards all the above research questions we come up 

with following objectives have been identified.  

1. To analyze existing machine learning based vital sign monitoring systems. 

2. To propose a novel real-time vital sign monitoring system using machine learning. 

3. To evaluate the performance of the proposed system using few performances metrics. 
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1.8. Evaluation Methodology 

The suggested innovative real-time vital sign monitoring system that makes use of machine 

learning is going to be evaluated using a rigorous approach that covers all the bases in terms of 

performance, efficacy, and dependability. To fill in the gaps and accomplish the goals in the 

existing study, as well as to ensure the safety of the device, this technique will test how well the 

Smart Patient Monitoring and Recommendation (SPMR) architecture works [101-102]. 

1.8.1. Data Collection and Preparation 

Gathering varied and representative datasets pertaining to monitoring vital signs, patient health 

condition, contextual activities, and medical guidelines is the first step of the assessment approach. 

To accurately reflect real-world scenarios and variations in medical conditions, it is essential for 

these datasets to encompass both structured and unstructured data. To ensure the data remains 

consistent and compatible for the training and testing of machine learning models, various 

preparation methods are employed to clean, standardize, and convert the data [103-104]. 

1.8.2. Machine Learning Model Training 

The subsequent phase involves training machine learning models using the acquired and refined 

data. The predictive component of the SPMR framework employs advanced techniques, 

particularly focusing on Deep Learning (DL) and CCE Optimization, to effectively train its 

models. The models utilize historical data and employ supervised learning techniques for training. 

This enables a comprehensive understanding of trends, correlations, and predictive connections 

among patient health outcomes, medical guidelines, and vital signs [105]. 

1.8.3. Performance Metrics 

The evaluation of the real-time vital sign monitoring system, which utilizes machine learning, is 

conducted through various performance measures: 

• Precision: Assesses the general correctness of the suggestions produced by the models. 

• Accuracy: is a metric that evaluates the proportion of true positive results against the total 

number of positive predictions made. 
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• Recall: It computes the quantity of correctly identified positive cases as a fraction of the 

number of all actual positive occurrences. 

• The F1-score is a metric that balances accuracy and recall, giving a fair overall measure of 

how well the model performs.  

• An important measure for evaluating the differentiating ability of a model among more 

than two classes is the area under the receiver operating characteristic curve, which is 

known as AUC-RO. 

The results are derived from the test datasets and cross validation which confirms their reliability 

and universality [106-108]. 

1.8.4. Comparative Analysis 

We conduct an analysis of the proposed real-time vital sign monitoring system in comparison to 

both established machine learning systems and traditional Internet of Things (IoT) healthcare 

applications to ascertain its relative performance. This study evaluates various aspects: accuracy, 

predictive power, real-time monitoring and efficiency. However, it does so by drawing 

comparisons with similar models. Although there are many factors to consider, the findings 

suggest a nuanced understanding is necessary because the systems differ in their operational 

capabilities. This indicates that while one system may excel in accuracy, it could fall short in 

efficiency [109]. 

1.8.5. Security and Reliability Testing 

The evaluation method additionally includes examining the reliability and security aspects of the 

SPMR framework. The evaluation of the system's capacity to endure potential security threats, 

data integrity issues, and operational disruptions is conducted through stress testing and simulated 

attack scenarios. To ensure that the real-time monitoring system remains operational under various 

loads and conditions, reliability testing is performed [120].  

1.8.6. Performance Evaluation 

The metrics, in conjunction with the results derived from comparative analyses, security 

assessments and reliability evaluations, function to gauge the overall performance of the proposed 
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system. This review seeks to illustrate the efficacy of a real-time vital sign monitoring system that 

employs machine learning to enhance healthcare management, decision-making processes and 

patient outcomes [121]. 

1.9. Thesis Contributions 

This work introduces significant advancements within the realm of healthcare monitoring systems, 

particularly emphasizing real-time vital sign tracking via the utilization of machine learning and 

IoT technologies. The contributions can be encapsulated in the following manner: 

• Development of Smart Patient Monitoring and Recommendation (SPMR) 

Framework 

This work's main contribution is the introduction of a Smart Patient Monitoring and 

Recommendation framework (SPMR). The suggested framework aims at proactively providing 

input and enhancing continuous monitoring of the patient's health condition by deeply integrating 

complex technologies such as deep learning, cloud-based analytics, and IoT principles. Despite 

the adoption of IoT in the health sector, it tries to bridge the research gaps and overcome the pitfalls 

of existing IoT-based healthcare applications through autonomously monitoring patients using 

machine learning algorithms for personalized recommendations [121-123]. 

• Novel Approach to Vital Sign Monitoring 

A novel approach is presented for monitoring the vital signs through the integration of machine 

learning models within the SPMR framework. The approach improves the accuracy, reliability, 

and speed of the vital sign data analysis, enabling quick health issue detection, personalized 

treatment proposals, and better outcomes for the patient. 

• Evaluation and Comparative Analysis 

A widespread evaluation approach has been developed to assess the proper working of the SPMR 

framework. The research gives insight into the precision, recall, accuracy, F1 score, and AUC-

ROC measurements for the machine learning approaches which were employed in real-time 
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monitoring. Furthermore, the analysis of the comparison of the SPMR framework to already 

existing health monitoring systems showcases its efficacy and the various developments made. 

• Security and Reliability Testing 

This work makes a significant contribution to literature on healthcare cybersecurity by reviewing 

security and reliability tests on the SPMR framework. The study combines stress tests, reliability 

testing, and simulations of attack cases to evaluate its ability to protect from security threats, 

operations failures, and threats to information integrity. This allows the system to sustain 

continuous and periodic monitoring capabilities [124-126]. 

• Advancements in Healthcare Management and Decision-Making 

The findings from this research contributed to significant improvements in healthcare 

administration and decision-making. The incorporation of deep learning, cloud analytics, and IoT 

concepts in the SPMR framework provided a holistic approach for real-time vital sign monitoring, 

enabling caregivers to optimize patient care via informed decisions and timely interventions [127-

129]. 

1.10. Thesis Organization 

The organization of my work is based on the studies that I undertook during my research journey. 

This outlines the contents of each of the chapters and their description. 

i. Introduction 

a. Background and Context of Real-Time Vital Sign Monitoring 

• Explain the operations of continuous monitoring of the vital signs and their importance 

in healthcare. 

• Examine the obstacles encountered in conventional healthcare monitoring systems. 

• Discuss how machine learning and IoT technologies contribute to enhancing real-time 

monitoring capabilities. 

b. Problem Statement and Research Objectives 

• Identify the research issue concerning the shortcomings of current healthcare 

monitoring systems. 
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• Articulate the precise aims of the study, encompassing the creation of the Smart Patient 

Monitoring and Recommendation (SPMR) framework. 

ii. Literature Review 

a. Overview of Machine Learning in Healthcare Monitoring 

• Deliver an in-depth analysis of the utilization of machine learning within the healthcare 

sector. 

• Examine the progression of healthcare monitoring applications that utilize IoT 

technology. 

• Examine pertinent research and progress in the area of real-time vital sign tracking 

through the application of machine learning, IoT, and the incorporation of Cloud 

Analytics and Deep Learning in healthcare monitoring and recommendation systems. 

c. Derived from Research Papers: 

• Sundas, Amit, et al. "Evaluation of Autism Spectrum Disorder Based on Healthcare 

by Using Artificial Intelligence Strategies." (Journal of Sensors, 2023) 

• Sundas, Amit, and Sumit Badotra. "Comprehensive Study of Machine Learning-Based 

Systems for Early Warning of Clinical Deterioration." (International Journal of 

Performability Engineering, 2022) 

• Sundas, Amit, et al. "Sensor Data Transforming into Real-Time Healthcare 

Evaluation: A Review of IoT Healthcare Monitoring Applications." (2023 International 

Conference on Intelligent and Innovative Technologies in Computing, Electrical and 

Electronics) 

iii. Proposing a Novel Real-Time Vital Sign Monitoring System Using Machine Learning 

a. Development of Smart Patient Monitoring and Recommendation (SPMR) Framework 

• Outline the elements of the SPMR framework, encompassing Deep Learning (DL), 

cloud-based analytics, and IoT principles. 

• Discuss the methods employed for gathering and organizing data to train machine 

learning models. 

• Detail the approach for assessing performance indicators, performing comparative 

evaluations, and examining security and dependability. 

b. Derived from Research Papers: 
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• Sundas, Amit, et al. “Smart Patient Monitoring and Recommendation (SPMR) using 

Cloud Analytics and Deep Learning". IEEE Access. 

• Sundas, Amit, & Badotra, S. "Recurring Threats to Smart Healthcare Systems Based 

on Machine Learning." (ICRITO, 2022) 

iv. Performance Evaluation of the Proposed Real-Time Vital Sign Monitoring System 

a. Performance Evaluation of SPMR Framework 

• Provide the outcomes of precision, accuracy, recall, the F1 score, and AUC-ROC 

indicators for the machine learning models employed in real-time monitoring. 

• Examine the comparative outcomes in relation to current healthcare monitoring 

systems. 

• Examine the results of testing for security and reliability. 

b. Interpretation of Results and Comparative Analysis 

• Analyze the results from the performance assessment and comparative study. 

• Analyze the advantages and disadvantages of the SPMR framework in relation to 

current systems. 

• Emphasize the significance of the findings for the administration of healthcare and the 

processes involved in making informed decisions. 

c. Derived from Research Papers: 

• Sundas, Amit, et al. "Streamlined Patient Care with Smart Monitoring and Deep 

Learning-Based Recommendations." (ICCS-2023) 

• Sundas, Amit, et al. "Optimizing Length of Stay Prediction After Intubation: An 

Advanced Machine Learning Model with Real-time Vital Sign Integration"", In 2023 

Seventh International Conference on Image Information Processing (ICIIP -2023), 

Jaypee University of Information Technology, Waknaghat, District Solan, Near 

Shimla, Himachal Pradesh, India.  (https://www.juit.ac.in/iciip_2023/). 

• Sundas, Amit, et al. "Investigating the Role of Machine Learning Algorithms in 

Predicting Sepsis Using Vital Sign Data." (IJACSA, 2023) 

• Sundas, Amit, et al. "Internet of Health Things-enabled Monitoring of Vital Signs in 

Hospitals of the Future." (First International Conference on Applied Data Science and 

Smart Systems) 
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v. Securing Healthcare Infrastructures: Machine Learning Solutions for System 

Integrity 

a. Introduction of HealthGuard Security based on Machine Learning-based Detection 

Approaches: 

• Recognize the security challenges encountered by SHS, such as disruptions to device 

performance, the introduction of fraudulent data, and the tampering of medical devices 

by harmful entities. 

• Highlight the essential requirement for strong security protocols to safeguard sensitive 

medical information and maintain the integrity of SHS functions. 

• Detail the assessments performed to determine HealthGuard's capability in protecting 

against three different types of malicious attacks. 

b. Derived from Research Papers: 

• Sundas, Amit, et al. "HealthGuard: An Intelligent Healthcare System Security 

Framework Based on Machine Learning." (Sustainability, 2022). 

vi. Conclusion and Future Directions 

a. Summary of Thesis Contributions 

• Highlight the main achievements of the research, focusing on the creation of the SPMR 

framework and the progress made in real-time monitoring of vital signs. 

• Examine the importance of the study in enhancing healthcare methods. 

b. Future Directions and Recommendations 

• Propose possible avenues for further investigation stemming from the results and 

constraints recognized. 

• Offer suggestions for improving the SPMR framework and its uses in the healthcare 

sector. 

vii. References 

Include all cited references from the research papers and sources used throughout the thesis. 
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Chapter 2: Literature Review 
 

Overview 

This chapter on historical research provides a comprehensive overview of applying machine 

learning techniques to healthcare monitoring systems. First, it presents a broad case study of the 

widespread application of machine learning in healthcare, which displays machine learning's 

transformative role across different areas of patient care and medical diagnosis. Underlying this 

chapter is an analysis of the evolution of IoT-based health monitoring applications by comparing 

the progression of sensor technology and data gathering processes that have radically 

transformed real-time patient monitoring. It speaks about how these IoT devices, combined with 

machine learning algorithms, improved the accuracy, efficacy, and safety of vital sign monitoring. 

Furthermore, it critically discusses other studies and innovations related to real-time vital sign 

monitoring based on machine learning and IoT. The section looks at key methodologies, 

algorithms, and frameworks that progress managerial monitoring systems, and focus on predictive 

analysis, anomaly detection, and customized patient care. 

2.1. Introduction 

Data creation and sharing is amazing in the healthcare sector and is foreseen to cross over 1,656 

zettabytes by 2025 [1]. With proper research and analysis, the clinical, financial, and operational 

value of these healthcare data sets can be unlocked. (ML) Artificial intelligence is providing 

another way to process healthcare data in the current settings. More recently, multiple applications 

in healthcare based on machine learning have been introduced to enable various healthcare 

functions, such as early diagnosis, disease detection, development of a cure, and planning of 

treatment [2]. The identification and evaluation of clinical markers through ML has undoubtedly 

sped up and improved the accuracy of medical treatment [3]. Personalized medication and care 

driven by ML's ability to extract the critical feature set necessary for focused analysis may improve 

outcomes, save clinic expenses, and promote stronger rapport between physician and patient. 

There will be a $34 billion market for ML solutions in healthcare by 2025 [4-5]. ML is mainly 

applied in the healthcare sector to process patient data, create new medical treatment procedures, 

and manage chronic illnesses. Though ML has improved significantly, models still suffer from 



50 

 

adversarial examples, which present a special case of the broader problem of unexplained and 

overconfident behavior of ML models outside the training distribution. Vulnerabilities in advanced 

technologies ML systems have been exposed thanks to the discovery of adversarial examples [6-

8]. An adversarial example is data that has been carefully crafted to fool machine learning models. 

Undoubtedly, there has been ample traction gained for adversarial ML within health care due to 

the very potential limitations availed by the existing ML models. For example, an adversary may 

provide fresh covert data to a healthcare ML model so that it misclassifies a patient with 

hypothyroidism. Among several other reports documenting recurrent/adversarial attacks on ML 

models in medical healthcare image processing are those who aim to distort the finding-through 

sound addition-based alterations, for example, misclassifying a benign mole as cancerous. On the 

other hand, the healthcare sector has quickly advanced ML-based systems, which have upgraded 

their capabilities for improving disease detection and patient care. The chapter writes this overall 

class that fits many of the defense strategies pernicious of adversarial machine learning based real-

time monitoring for vital signs. 

2.2. Extensive Analysis of Healthcare Machine Learning-Based Systems 

Abnormal vital signs frequently predict patient progression and unpleasant outcomes [1, 2]. These 

symptoms often manifest anywhere from a few hours to a few days before the occurrence, giving 

people a window of opportunity to take preventative action [3]. Considering this Early Warning 

Systems (EWS) for clinical decision support was created [4]. These systems use routine 

monitoring of vital signs in conjunction with a set of specified criteria or a cut-off range to notify 

doctors when a patient's condition worsens. Observing vital signs such as peripheral oxygen 

saturation (SpO2), respiration rate (RR), blood pressure (BP), heart rate (HR), core body 

temperature (core BT), and sometimes awareness state are the most common parameters used in 

EWS [5].  Multiple vital signs and other patient data are aggregated into one weighted EWS, and 

these criteria are all explicitly articulated. Each of these signs is given a weight based on a 

predetermined cutoff, and a total risk score is then determined by putting all of the weighted values 

together [6]. The Modified Early Warning Score (MEWS) [7], the National Early Warning Score 

(NEWS) [8], and the Hamilton Early Warning Score [9] are all aggregate weighted EWS used to 

predict cardiorespiratory insufficiency and mortality; they all include health parameters and 
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cognitive performance (Alert, Verbal, Pain, Unresponsive [AVPU]), but they all have different 

limits for evaluating performance.  

Limitations in predicting power are present in weighted EWS aggregate. Initially the results, 

only reflect the patient's current risk without including trends or providing data pertaining to the 

prospective a path fraught with danger [9]; hence, the ratings do not convey the extent to which 

the patient is gaining ground or worsening as well as the pace of this change [10]. Second, because 

the score for each parameter is generated separately, the scores do not reflect any relationships 

between the parameters [6]. (e.g., depending on the individual, the significance of a given HR or 

RR reading might change when core body temperature is considered). Modern EWS methods use 

machine learning (ML). Machine learning (ML) models eliminate the need for predetermined rules 

by instead figuring out these patterns and correlations on their own [11].  

ML models are computationally costly, but they have advantages over aggregate weighted 

EWS, including the ability to integrate patterns in risk ratings, compensate for a wide range of a 

medical variables, and tailor recommendations to specific populations and treatment settings [12]. 

ML models, like other EWS, may be embedded into EHRs to continually evaluate vital sign 

readings and offer outcome predictions among other components of a medical decision-making 

system [13]. ML models' capacity to predict medical worsening in patients who are adults based 

on vital signs was examined in two recent systematic studies [8, 14].  

Only two retrospective studies fulfilled the inclusion criteria of Ghosh et al. [15] evaluation 

of the usefulness intriguing patterns in non-constant vital signs data individuals above the age of 

18 admitted to any hospital department (HD). Vital sign trends were shown to be useful in 

identifying clinical worsening, but the study also stated that there is a dearth of research on 

sporadically observed trends in vital signs and emphasized the necessity of clinical trials. Gokhale 

et al. [16] did a review contrasting the efficiency of aggregate-weighted EWS with that of ML-

based EWS with regards to both accuracy and effort. Six research studies were found that 

published the measures for the efficiency of both the EWS and ML-based and the aggregate-

weighted EWS, and the analysis was limited to studies reporting transfers of adult patients to ICUs 

or death as the outcomes. According to the findings of the review, ML modeling outperformed 

aggregate weighted models whenever clinical burden was being generated. Also, they stressed the 
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need of defining degradation outcomes consistently and using defined performance signs. These 

are crucial findings, but there hasn't been a comprehensive analysis of the research on ML-based 

EWS that considers the frequency with which vital signs are measured, the type of care provided, 

or the clinical outcomes achieved to identify limits of present methods and emerging tendencies 

in research and recommend avenues for future study. The goal of this study was to systematically 

analyze the literature on ML-based EWS that use data from vital signs to predict the likelihood of 

physiological deterioration in both inpatient and outpatient populations. When one category has 

much fewer or more samples than another, the dataset is said to be imbalanced. 

Several studies were undertaken in different hospital settings, whereas Gokhale et al. [16] 

looked at patients in the community. While three research [5–7] sought to create a Residence-

Based Supervision Equipment, the vital signs data utilized came from the Medical Information 

Mart for Intensive Care (MIMIC and MIMIC-II) databases [8,9], which compile information from 

patient monitors in various intensive care units. Five studies [8,10-13] took place on wards with 

general, four research [14,16-18] were conducted in emergency departments; seven studies [14, 

17,19,20-23] were conducted in intensive care units; two studies [15,21] were carried out in 

recovery wards; and four research [8,11,13,14] were conducted within the context of acute care 

wards (step-down units, medical admission unit). The research included as little as 12 patients in 

their cohorts [19] and as many as 10,967,518 patients in their cohorts; [20] all are incorporated in 

Table 1. 

Table 1. Prediction algorithms and comparisons based on machine learning (ML) 

Ref.  The samples 

include  

Quantity  

of 

occurrences  

Modelling 

using 

Machine 

Learning 

(s)  

Problems 

with 

Missing 

Data  

Characteristi

cs of the Top 

ML Model  

comparisons 

between ML 

models  

Forecasting time 

frame  

[1]  Over 35,000 people 
were accepted.  

199 cardiac 
arrests; 1161 

unplanned ICU 

hospitalizations; 
1789 fatalities; 

3149 any outcome  

The Use of a 
Decision Tree  

Generally 
Unknown  

AUROC=0.708 
for cardiac arrest 

prediction; ICU 

admission (ICU)  

Generally 
Unknown  

During the past 
twenty-four-hour 

period  

[2]  Eighteen hundred 

and eighty patients 
(1971 admissions)  

The percentage of 

patients who had 
a CRIe episode 

was 53.6%, or 

997 out of a total 
of 1056 patients 

admitted.  

Classification 

method based 
on a variant of 

the random 

forest with 
non-random 

splits  

Generally 

Unknown  
Random forest 

AUCs were 
stable at 0.58 and 

0.60 before rising 

from 0.57 to 0.89.  

Recovery yielded 

an AUC of 0.7 
with logistic 

regression and 

0.82 with lasso 
logistic regression 

Prior to the start of the 

event and within 4 
hours of it  

[3]  214 individuals  Outcome was 
achieved in 40 

k-nearest 
neighbour 

Generally 
Unknown  

F1 score=0.50, 
AUPRC=0.35, 

F1=0.10, 
AUPRC=0.10, 

The 30 days before to 
the event.  
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individuals (18.7 
%).  

(KNN), 
Support vector 

machine 

(SVM), 
random forest 

(RF), gradient 

boosting (GB) 
and adaptive 

boosting (AB),  

precision 
(PPVg)=0.62, 

and recall=0.50 

were all used to 
predict death 

within 30 days 

due to sepsis 
using gradient 

boosting.  

PPV=0.33, 
recall=0.6 for k-

nearest neighbor; 

F1=0.35 for 
random forest; 

F1=0.27 for 

adaptive boosting; 
F1=0.40 for 

PPV=0.43, 

recall=0.38 for 
SVM; F1=0.43 for 

Adaptive 

Boosting, 
AUPRC=0.31, 

PPV=0.43, 

recall=0.38.  
[4]  Major heart surgery 

patients who were 

categorized by risk 

(n=13,631)  

For every 100 
patients admitted 

to the intensive 

care unit, 499 will 
be readmitted 

unexpectedly, for 

a total of 578 
(4.2%) successful 

outcomes and 
3.66%) 

readmissions.  

Logistic 
regression  

Missing-value 
observations 

were omitted.  

24 hours before 
the occurrence, 

logistic 

regression 
predicted it. 12 

hours ahead: 

AUROC=0.815; 
6 hours ahead: 

AUROC=0.841  

Generally 
Unknown  

Approximately 24, 12, 
and 6 hours before the 

start of the event  

[5]  Number of 

Registrants: 269,000  
The number of 

results is 16,452. 
(6.09 percent)  

Two types of 

statistical 
analysis are 

often used: 

univariate and 
bivariate.  

Median value 

imputation, and 
forward 

imputation  

slope improved 

AUC by 0.014, 
Trends increased 

model accuracy 

(AUC 0.74 vs. 
0.75)  

Generally 

Unknown  
Within the prior four 

hours  

[6]  Two hundred 

patients recovering 
after surgery for 

oesophageal or 

gastric cancer  

Generally 

Unknown  
Kernel 

estimation, 
one-class 

support vector 

machines, 
Gaussian 

processes, and 

classifiers  

When a 

channel isn't 
present, its 

average is 

substituted.  

AUC=0.26, 

Accuracy=0.94, 
partial 

specificity=0.92, 

sensitivity=0.95  

Gaussian mixture 

models: 0.90, 
specificity=0.84 

sensitivity=0.97, 

partial AUC=0.24; 
Gaussian 

processes: 0.90, 

specificity=0.89; 
sensitivity=0.91, 

partial AUC=0.26, 

kernel density 
estimate: 0.91, 

specificity=0.87, 

sensitivity=0.94, 
partial AUC=0.26. 

Generally Unknown  

[7]  Resulting in 22,853 

Intensive Care Unit 

Admissions  

11.28 percent, or 

2577 inpatient 

stays, include 
patients with 

proven sepsis.  

Analytical 

classifier  
Imputation 

results are 

carried over.  

AUROC for 

sepsis at start is 

0.888, APRl is 
0.60, and 

accuracy is 0.80; 
for sepsis 4 hours 

before start, 

AUROC is 0.74, 
APRl is 0.28, and 

accuracy is 0.57.  

Not specified  At the time of the 

event's start and during 

the previous 4 hours  

[8]  There were 85 

individuals.  
Generally 

Unknown  
J48 Analyze 

classifier 
output using 

random tree, 

decision tree, 
and sequential 

minimum 

optimization 
(SMO, 

simplified 

SVM). 

If 1 vital sign is 

absent but 
others are 

clean, assume 

recoverability 
and median-

pass and k-

nearest-
neighbour 

imputation.  

The 24 classifier 

combinations' 
Hamming scores 

varied from 90% 

to 95%, with an 
F1-micro average 

of 70% to 84% 

and accuracy 
between 60% and 

77%.  

Generally 

Unknown  
The immediate prior 

hour  
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[9]  There were 4893 
individuals.  

Generally 
Unknown  

MapReduce 
random forest, 

sequential 

minimum 
optimization, 

random forest, 

and the J48 
decision tree  

We don't save 
data that has 

gaps that are 

too close 
together over a 

lengthy time 

frame.  

For 60-minute, 
90-minute, and 

120-minute 

prediction 
horizons, random 

forest earned F 

scores of 0.96, 
95.86%, 0.95, 

95.35%, and 

0.95, 95.18%.  

Within a 60-
minute forecast 

horizon, the J48 

decision tree F 
score is 0.93 with 

an accuracy of 

92.46, 0.92 with an 
accuracy of 91.59, 

and 0.91 with an 

accuracy of 91.30; 
Event prediction 

using sequential 

minimum 
optimization: 

Within 60 minutes, 

F=0.91 with 90.72 
accuracy; within  

An Hour before the 
show  

[10]  There were 297 

people who were 

accepted.  

A total of 127 

individuals (43% 

of the total) had at 
least one 

clinically 

significant CRI 
incident while in 

the step-down 
setting.  

TITAp rules, a 

rule fusion 

approach, and 
a rule-based 

feature-to-

random forest 
classifier-

learned 
prediction 

model.  

Generally 

Unknown  
Seventeen to 

fifty-one seconds 

after CRI start 
(inaccurate alarm 

every twelve 

hours); ten to 
fifty-eight 

seconds. 

eleven seconds, 

twenty-five 

seconds before 
CRI (false alarm 

each twelve 

hours); five 
minutes, fifty-two 

seconds prior 
(event prediction) 

(false alarm each 

24 hours). 

Prior to the 

commencement of 

CRI, between 17 
minutes and 51 

seconds  

[11]  total no. of 763 
individuals  

There were 197 
individuals who 

had a cardiac 

arrest incident 
(25.8 percent).  

Transfer 
learning 

modelling 

(TTL-Reg)  

Similar-age 
and-gender 

median 

imputations  

The AUC for 
predicting events 

with TTL-Reg is 

0.63.  

Generally 
Unknown  

Earlier than 6 hours 
before the start time  

[12]  Attendance at the 

Emergency 
Department for 

Reasons Other Than 

Emergencies  

There were 

374,605 visits to 
the ED out of 

233,763 patients 

who were 
eligible; 1097 

(0.3%) 

individuals had a 
cardiac arrest.  

ANNq with 

MLP, ANN 
with LSTMr, 

and hybrid 

ANN vs. 
random forest 

with logistic 

regression  

Generally 

Unknown  
Multilayer 

perceptron, 
LSTM, and 

hybrid ANN all 

have AUROCs of 
0.929 for event 

prediction.  

The area under the 

receiver operating 
characteristic 

curve for a random 

forest is 0.923%, 
while for a logistic 

regression, it is 

0.914%.  

Within the prior 

twenty-four  

[13]  total no. of 52,131 

individuals  
There were 419 

cases of cardiac 

arrest (0.8%); 814 
unattempt Ed 

fatalities (1.56%).  

RNNs with 

three LSTM 

layers handle 
data from time 

series better 

than logistic 
regression and 

random forest. 

When no 

recent data was 

available, the 
median value 

was used 

instead.  

Recurrent Neural 

Networks for 

Event Prediction: 
AUROC=0.85, 

AUPRCt=0.044  

logistic regression 

AUPRC 0.007, 

AUROC 0.613 
Random forest 

AUPRC 0.014;  

AUROC 0.78  

30-240 hours before 

the big day  

[14]  Seven hundred and 
two individuals with 

non-traumatic chest 

discomfort with no 
clear cause  

Primary result 
was achieved in 

29 participants 

(4.13%).  

Random forest 
was used in an 

ensemble 

learning-based 
framework to 

choose 

independent 
variables.  

Generally 
Unknown  

The predictive 
ensemble 

learning model 

has AUC=0.812, 
cut-off 

specificity=63.4

%, score=43, and 
sensitivity=82.8

%. 

Generally 
Unknown  

Come to the ED within 
72 hours.  

[15]  total no. of 2809 
individuals  

Instances of 
tachycardia, n = 

787  

Random forest 
classifiers with 

regularized 

logistic 
regression  

Heart rate and 
respiration rate 

data gaps were 

filled using 
discrete Fourier 

transform and 

cubic-spline 
interpolation.  

Random forest 
for event 

prediction: 

AUC=0.869, 
accuracy=0.806  

Using L1 
regularization for a 

logistic regression, 

we get an AUC of 
0.8284 and an 

accuracy of 

0.7668.  

Within the prior three 
hours  
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[16]  There were 90,353 
patients in UCSFw 

and 21,604 in 

MIMICx-III.  

1179 instances of 
sepsis (1.3%), 349 

cases of severe 

sepsis (0.39%), 
and 614 cases of 

septic shock 

(0.68%) at UCSF; 
1.91%, 2.82%, 

and 3.82% at 

MIMIC-III (4.36 
percent)  

transfer 
learning using 

MIMIC-III as 

source and 
Gradient tree 

boosting 

UCSF as 
destination. 

Imputation 
results are 

carried over.  

We could identify 
sepsis with an 

AUROC of 0.92, 

severe sepsis with 
0.87, septic shock 

with 0.96, and 

severe sepsis 
prediction with 

0.85.  

Generally 
Unknown  

As early as severe 
sepsis or sepsis 

symptoms manifest; 

within four hours of 
developing server 

sepsis or sepsis.  

[17]  total no. of 178 

individuals  
160 patients 

(89.9%) had at 

least one 
microevent during 

admission; 116 

(65.2%) had one 
lasting more than 

15 minutes.  

Classification 

using Random 

Forest  

Generally 

Unknown  
RF 

accuracy=92.2%, 

specificity=93%, 
AUROC=96.9%, 

sensitivity=90.6

%  

Generally 

Unknown  
Generally Unknown  

[18]  Patients undergoing 
a variety of 

unplanned 

treatments  

Cases of sepsis: 
242  

The Logistic 
Elastic Net 

Classifier  

When several 
measurements 

were available, 

the median was 
used; 

otherwise, 

earlier values 
were preserved 

(sample-and-

hold 
extrapolation); 

mean 

imputation 
filled gaps. 

An elastic net 
logistic classifier 

trained with only 

entropy features 
had an AUROC 

of 0.67 (accuracy 

47%), one trained 
with social 

demographics 

and EMR 
features had an 

AUROC of 0.7 

(accuracy 50%), 
and one trained 

with all features 

produced an 
AUROC of 0.78 

(accuracy 61%)  

Generally 
Unknown  

Within 4 hours of start 

[19]  total no. of 2995 
individuals  

There were 343 
cases of sepsis 

(11.5%) among 

patients.  

Random 
dropout 

prevents 

overfitting in 
CNN (raw 

patient data 

pictures) and 
multilayer 

perceptron.  

Generally 
Unknown  

CNN classifies 
events with 

86.1% accuracy 

using minute-by-
minute 

observations and 

78.2% accuracy 
using 10-minute 

sample intervals.  

One-minute 
observation 

frequency: 

multilayer 
perceptron, 76% 

accuracy; ten-

minute observation 
frequency: 71% 

accuracy.  

Generally Unknown  

[20]  PACU, Rigs 

Hospitalet, 
Copenhagen 

University  

Bedside monitors 

(IntelliJ Vue 
MP5, BMEYE 

Nexfin) used for 

postoperative 
patients admitted 

to the intensive 
care unit  

We have 178 

individuals.  
160 patients 

(89.9%) had at 
least one 

microevent on 

admission, and 
116 (65.2%) 

did so 
afterwards. 

lasting more 

than 15 
minutes.  

Create a model to 

predict PACU 
patient outcomes 

using real-time 

cardiopulmonary 
vital indicators.  

SpO2, MAP, ASD, 

SBP and HR  
Continuous 

monitoring of vital 
signs (SpO2, BP, and 

HR) every minute and 

recording of results 
every 15 (MAP) and 

ASD every 10 hours  

[21]  Care for adults in 

the intensive care 

unit  

Bed master 

system intensive 

care unit bedside 
monitors; 

continuous 

monitoring for up 
to 24 hours  

Patients 

undergoing a 

variety of 
unplanned 

treatments  

Cases of 

sepsis: 242  
Vital signs may 

predict sepsis 

within 4 hours.  

HR, ASD, MAP, 

SBP, DBP, SpO2, 

RR, temperature, 
gender, weight, 

race, 

comorbidities, 
admission unit, 

surgical specialty, 

wound kind,  

1 reading per hour  

[22]  John Radcliffe 

Hospital's general 

wards in Oxford, 
England  

Continuous 

patient monitoring 

for at least one 
full day  

150 inpatients 

on the g.i.  
Generally 

Unknown  
Check your heart 

rate, respiration 

rate, oxygen 
saturation, skin 

Respiration rate,  

HR, SPO2, Temp, 

standard/diastolic 
blood pressure  

Five seconds every 

thirty minutes (BP) 

(other vitals)  
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temperature, and 
blood pressure 

averages.  
[23]  Tennessee's 

Methodist 
LeBonheur Medical 

Center in Memphis  

Cerner 

CareAware iBus, 
a system of 

bedside monitors,  

We have 2995 

individuals.  
There were 343 

cases of sepsis 
(11.5%) among 

patients.  

Divide person 

into non-sepsis & 
sepsis groups 

using data within 

12 hours of 
admission.  

Heart rate, mean 

arterial pressure, 
diastolic and 

systolic BP, SPo2, 

age, race, gender, 
and blood oxygen 

percent change.  

60 Seconds  

 

i. Comparative Analysis of Aggregate-Weighted EWS 

A total of nine investigations evaluated the efficacy of ML-based EWS as compared to total-

weighted EWS. The NEWS [2,5], MEWS [2,5,6,16], and the TIMI score, [16] were all been 

compared in studies examining cardiorespiratory consequences, physiological decline, or death. 

SIRS criteria, qSOFA, and SOFA, as well as Acute physiology score (II) simplified, were all used 

in the three studies examining sepsis-related outcomes [8,12]. The Acuity and Korean Triage Score 

[1], the Model of Sepsis in the Singapore Emergency Department [12], and the post anesthesia 

care unit alert system are just a few examples of regionally or locally specific scoring systems that 

have been compared in a few studies. 

ML models outperformed total weighted EWS systems for every clinical result in all 9 experiments 

apart from a heart attack in the research of Bojanova et al [11]. For instance, Chi et al. [13] found 

that an LSTM-based neural network outperformed MEWS (AUROC = 0.886) on the same dataset, 

with an LSTM-based network achieving an AUROC = 0.933. Hackmann et al. [17] found that 

recurrent neural networks outperformed MEWS (0.603) and the KTA Score (0.785) with an 

AUROC of 0.85. Badriyah et al. [18] observed substantially smaller gains, with logistic regression 

producing an AUROC of 0.779 compared to MEWS's 0.754 for the same 24-hour prediction 

window. 

This scoping study reveals that ML-based EWS models have a great deal of potential, but that 

more work needs to be done before they can be successfully deployed in clinical practice. 

ii. Forecasting Timeframe 

The time frame during which a model may reliably foretell the occurrence of a negative outcome 

is known as the prediction window. Our study found that most studies predicted clinical worsening 
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anywhere from 30 minutes [16] to 72 hours [16] in advance. Too short of a prediction window is 

unable to provide a positive effect on patient health (it will not provide a medical staff enough time 

to assist), while too long of a prediction window has been shown to decrease model performance 

in many studies [17,19, 21,23] (e.g., The AUROC decreases from 0.88 at event beginning to 0.74 

four hours beforehand). Instead of focusing only on optimizing a model performance parameter 

like AUROC, prospective studies of ML EWS aim to strike a compromise among a medically 

meaningful prediction window and clinically acceptable model performance. 

iii. Clinically Implementable Considerations 

This evaluation includes studies on the building of ML models; However, it does not specify the 

manner in which the results will be conveyed to medical practitioners. Due to the opacity of several 

ML models [16,17], doctors may not know the cause of an alert until they examine the patient, 

which might cause delays in time-sensitive situations. Explainable ML approaches have recently 

advanced, and the medical community and regulators may embrace them [18,19]. Several 

explanation techniques may currently describe the decision-making process of convolutional 

neural networks [15]. Other explain ability algorithms are model agnostic; therefore, they may be 

employed with any model [20]. Chiu et al. [22] created an explainable EWS on top of a temporal 

convolutional network with its own explanation module. While both techniques show potential, 

EWS has seen limited use. The objective evaluation of explanation strategies' efficacy is a 

complex, ongoing problem, but ML-based EWS research is vital for clinical use [23]. 

iv. Enhanced Study Environments 

The vast majority of the listed research took place in hospital wards. In addition to their usefulness 

in the hospital environment, EWS have a sizable clientele in the outpatient sector, especially after 

patients have been released. Specifically, 1.8% die in 30 days following surgery, as shown by the 

VISION research [8]. Three to four weeks [8] after surgery, patients seldom see their surgeon 

again for postoperative follow-up. It has been found that many patients have significant 

postoperative complications such as hypoxemia [14] and hypotension [16] that go unnoticed for 

an extended length of time during this time. Most EWS research has been carried out in hospitals 

because of the abundance of continuous vital signs data, but advances in wearables and remote 
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monitoring present an option to shift the focus of EWS studies to outpatient care facility, where 

there is a pressing need for clinical trials. 

v. Evaluation retrospective versus prospective 

It is possible that the effectiveness of an algorithm in a situation could be poorer than that attained 

in a well-planned look back scenario [8], since all but one of the studies combined into a single 

behavior. However, it is not known how frequently Such EWS might identify signs of clinical 

decline that was hardly previously observed by medical staff. In addition, Doctors may disregard 

indicators of clinical worsening, even when the likelihood of degradation has been precisely 

determined [13] due to alert fatigue. A prospective study of an ML-based EWS by Tarassenko et 

al. [21] demonstrated that in contrast with preexisting combinational-weighted-alarm-system, RF 

classifier reduced error levels by eighty-five percent and the omitted alarm by warnings was 73%. 

Although 2 physician experts assessed the severity of the forecasts separately, no further research 

was done to analyze the clinical significance of these warnings, leaving the topic of therapeutic 

value unresolved. Prospective assessment of model correctness (as a means of assessing quality of 

the model changed when presented using actual patient records) and measurements of health 

outcomes is an important next step for ML-based EWS research (an effort to learn if warnings 

really have clinical advantages) [129-130]. 

vi. Performance Measurement Standardization 

One major takeaway from this synthesis is the absence of a universally accepted norm for reporting 

performance metrics across studies within the scientific community. In cases there is duplication, 

it is unclear if most applicable to clinical practice measurements were used, making meaningful 

comparisons between the results of these studies problematic. It is typical in the ML literature for 

the AUROC to serve as the primary performance parameter reported in the research reviewed here. 

However, it has been suggested that AUROC is insufficient for gauging the EWS's efficacy in a 

clinical situation [17]. 

According to Churpek et al. [20], the incidence of physiological decline may be less than 0.02 per 

day in a typical inpatient context, although this information is not included into AUROC. As a 

result, AUROC may be a deceptive indicator that causes clinicians to overestimate therapeutic 
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benefit while underestimating clinical burden and resources. [18] It is possible that too even a very 

sensitive and selective model will never result in conclusive evidence for a favorable outcome after 

testing when the prevalence is low (0.1) [14]. As a result, it is preferable to use metrics for reporting 

purposes that consider the frequency of occurrence. 

Early result detection vs. issuing fewer false-positive warnings to reduce alarm fatigue [22] are 

two aims that affect the performance of an EWS. The proportion of correct predictions made in a 

given time frame may be used as an indicator of sensitivity, making it a useful statistic for judging 

progress toward the first objective. There is a high degree of confidence in the results, which 

accounts for good predictive value, and it could be utilized to assess the detrimental effects of 

false-positive alarms on patient care since it provides a proportion of successful therapeutic 

interventions. The number of patients that require further evaluation to discover one outcome may 

be a helpful metric of the clinical value and cost-efficiency of each warning. The clinical value of 

the EWS may be shown by all these parameters for examine balancing result detection with 

workload [18]. The F1 score is the arithmetic average of the recall and accuracy scores and is also 

a helpful value because it reveals how accurate the model is as a whole (sensitivity). A deeper 

evaluation of the algorithm's effectiveness may result from a more even weighting of the two 

indicators [18]. 

vii. Compared to the "Reference Standard" EWS 

In a similar manner, only 9 of the research we reviewed compared their "gold standard" aggregate-

weighted EWS, such as NEWS or MEWS, using machine learning. In order to more accurately 

compare different EWS models, it would be helpful to have a frequently used aggregate weighted 

EWS reported in future studies. Considering that all of NEWS's input variables can be monitored 

automatically and in real time by devices, it might prove to be an invaluable tool in this line of 

investigation [130-131]. 

viii. The review's strengths 

The search was exhaustive without being too narrow in its emphasis on clinical outcomes, sample 

sizes, or time constraints. This made it easy to include as many papers as possible. Our search 

method was thorough since no further studies were found via citation monitoring following the 
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first search. The review's inclusion criteria allowed for the comparison of results from studies 

performed in different clinical settings, such as ambulatory care and specialized units or wards, 

which had not been done in earlier reviews. This aided in describing application of prediction 

models based on ML in a variety of healthcare settings, each with their own unique clinical 

outcomes. Data from the original research was used to evaluate how well the ML models analyzed 

compared to the aggregate weighted EWS. This demonstrates the variation in the models' ability 

to predict clinical deterioration [132]. 

ix. The review's limitations 

There are some restrictions with what these results can do. All evidence in the scoping review 

consisted of published findings which may have changed the outcomes by omitting relevant 

unpublished information. In addition, differences in patient characteristics, kinds of treatments and 

research methods can make the findings less generally applicable. In different studies, selecting a 

clinical outcome was not standardized, some using varied criteria or mixes of EWS and others 

including from a single measurement to several vital sign recordings. Because there were so many 

machine learning techniques, different time periods for making predictions and ways to report 

results, it was not sensible to combine the studies for analysis [133]. 

2.3. Artificial Intelligence (AI) Approaches for Autism Spectrum Disorder (ASD) 

Assessment in Healthcare 

 

In this section, we will delve into AI Approaches for Autism Spectrum Disorder (ASD) 

Assessment in Healthcare, which addresses one of the most challenging and difficult issues faced 

by caregivers and families dealing with autistic children. The integration of Internet of Things 

(IoT) systems has garnered significant curiosity recently, particularly in the realm of ASD 

treatment and diagnosis. Despite numerous publications focusing on ASD, there remains a scarcity 

of studies that comprehensively explore ASD from an AI perspective [135-136]. 

Aldahiri et al. [8] examined problems in a variety of smart devices, sensors, and systems 

linked to health difficulties, which are directly relevant to our research. As per [7], the Internet of 

Things (IoT) has surfaced as a contemporary information technology. Storing the information 

gathered from monitoring physiological characteristics like heart rate is one of the most intriguing 
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applications for the increasing number of wearable sensors in the medical field. The main elements 

of this technology are wireless body area network (WBAN), cloud computing, and the Internet of 

Things (IoT). The efficacy of IoT-powered wireless "SS networks" depends on machine learning 

techniques since a lot of data has to be intelligently handled [137]. 

As Zhang et al. [9] illustrate, amnesia is a symptom shared by individuals with Alzheimer's disease 

and dementia as well as youngsters with autism spectrum disorder. Consequently, people are more 

prone to face perilous situations, such escaping their houses. Meanwhile, this device lets autistic 

kids stay put, which is a huge relief for them. To solve these issues, the Alzimio platform was 

developed, which is based on Internet of Things devices. Medical personnel may see their patients' 

precise whereabouts on their cellphones thanks to a system created by [10] AlSkaif et al. [10]. 

Patients who have left their comfort zones may find these methods very helpful.  

Bojanova et al. [11] used data mining techniques such as regression, clustering, and 

classification to make early diagnoses of ASD. The provision of suitable education and assistance 

to patients and their careers depends on the early identification of ASD. According to their 

findings, classification algorithms provide the most precise diagnosis. 

Chen et al. [12] investigated how therapies for autism affect appropriate behavior using 

data mining techniques. Using this strategy, we may better understand and anticipate the needs of 

children with autism. They were able to differentiate between appropriate and inappropriate 

actions based on these strategies. 

Chi et al. [13] examined forty-five articles that addressed ASD using supervised machine learning 

and classification methods. The models that were most often used were; SVM, Decision Trees, 

Random Forest, LASSO, Neutral Network, regression, Conditional Forest, Naive Bayes, ENet, 

Random Tree, and Flex Tree. In their investigation, Koumpouros and colleagues surveyed 83 

papers that were published after the year 2000. The articles vowed to use computing power and 

wearable technologies to intervene while dealing with autism spectrum disorders. [14]. 

The Robota robot toy, used in Ghosh et al. [15] to showcase the possibilities of the 

AuRoRA project, may be helpful for autistic children. Three autistic children's progress was 

examined using an assessment tool called Conversation Analysis (CA). This led them to the 
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conclusion that the children are really communicating with the grown-up robot. The research 

characterized shared attention in autistic children and emphasized computer and robot treatment 

for ASD [137-138].  

For each study, a thorough examination of both internal and external factors was conducted 

to establish a connection between the technical aspects of the Systematic Literature Review (SLR) 

method and its use in ASD methods. Subsequently, these queries were used to carry out the 

research investigation. 

a. Which methodologies pertaining to autism spectrum disorder are being examined and 

evaluated in this analysis? 

b. What methods and procedures are used in the management of autism spectrum disorder? 

c. What are the performance metrics for ASD? 

d. ASD approaches use several platforms and sensors.? 

i. ASD approaches 

People with autism have to cope with the disorder every day of their life since it is not treatable. It 

is much easier to put the therapeutic treatments into motion quickly if you can identify when they 

are needed. Research on ASD is given considerable weight in this section. In order to enhance 

ways to treating ASD, the papers should be researched further. Figure 4 shows that our research 

methodology had two parts: methods for diagnosing and evaluating the severity of autism spectrum 

disorder (ASD) in children, and programs to improve the quality of life for these children. Feature 

selection, data mining, virtual reality, object-oriented, genetic algorithms, reporting on DL, peer-

to-peer (P2P) and electroencephalography (EEG) were some of the methods utilized in subsequent 

investigations to accomplish these goals [139-140]. 
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Figure 4. Presented taxonomy for the ASD approaches. 

ii. Individual with ASD may be diagnosed, and their condition severity measured using a 

variety of different methods. 

Two of the most challenging aspects of ASD are forecasting and monitoring. A person with autism 

may see the world differently, which may have an effect on the health care and education systems. 

The Internet of Things (IoT) has accelerated the process of diagnosing and treating pediatric 

illnesses, both minor and severe [141]. 

   This improvement in health and education services would help the people. The assessment 

factors that were investigated, the basic idea, the applied approach, the platforms, and the sensors 

are all shown in Table 2.  

Badriyah et al. [18] put up a system for autonomous health monitoring based on wearable sensors 

that can detect brainwaves. On a frequent basis, those who care for autistic people were apprised 

of their loved ones' development. By tracking electrical activity in the brain, sensors may alert 

doctors and employers when a patient's condition is critical. Brain data improves sickness 

prediction. 

Wearable technology established on social sensing, blending privacy audio features, environment 

sensing, and behavior monitoring was introduced by Chen et al. [19]. The platform for monitoring 

well-being designed audio privacy wellness features to assess information and voice quality 

without saving raw audio data. They built an app that demonstrates the long-term link between 

physical and psychological data using Android devices and servers. It's all part of their case study. 
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It may also be tested in clinical studies on real people. Additionally, an Internet of Things (IoT) 

system for tracking critical patient parameters and health events was introduced by Churpek et al. 

[20]. A smartphone or other gadget sends this data to a server in the cloud. By combining the user's 

recorded metrics—including heart rate, oxygen saturation percentage, and body temperature—

with cloud computing, we can ascertain the user's health state. Data collected from a user's mobile 

device may be shown on a pre-programmed computer or mobile device [142]. 

In order to aid autistic people, Chiew et al. [21] created a Service-Oriented Architecture (SOA). It 

is possible to track the physiological status of autistic people and their surroundings with the help 

of the suggested wearable sensors. For the benefit of elderly and disabled patients in the comfort 

of their own homes, Chiu et al. [22] created an Internet of Things (IoT) therapeutic system using 

cheap and easily available gadgets like mobile, cameras, and other wireless goods. They helped 

create a more health-conscious family by treating patients using image processing and integrated 

computers. The writers laid forth the importance of accuracy and cognitive theory. This treatment 

has the potential to improve facial expression for those with autism spectrum disorder (ASD) and 

Parkinson's disease. Clifton et al. [23] documented some of the behaviors and responses of autistic 

individuals, including changes in voice pitch, non-verbal communication, and complicated tactics. 

Table 2. A comparison of the approaches used for diagnosing and monitoring the degree of 

illness with autism spectrum disorder (ASD). 

 
Ref. Key Points Method  Characteristics of evaluation 

   Time Specificity Accuracy Sensitivity 

[18]. using brain signals to focus 

attention on one's health using 

SS network 

Data Mining ✓ ✗ ✓ ✗ 

[19]. Long-term use of wearable 

technologies to evaluate 

psychological health 

Reporting ✓ ✗ ✓ ✗ 

[20]. Using IoT to monitor healthcare Feature Selection ✗ ✗ ✓ ✗ 

[21]. Avoid obtaining injured by 

autistic people who aren't at 

responsibility. 

Genetic algorithm ✗ ✗ ✓ ✗ 

[22]. Emotional and visual indicators 

in a smart home 

DL ✗ ✗ ✓ ✗ 

[23]. Recognize the emotions of 

children with autism 

DL ✗ ✓ ✓ ✗ 

[24]. Monitoring the actions of an 

autistic person might be quite 

risky. 

Feature Selection ✓ ✗ ✓ ✗ 



65 

 

[25]. Autism condition can be 

detected early if it is recognized 

using SS network. 

Feature Selection ✓ ✓ ✓ ✓ 

[26]. Autism children's situation can 

be properly appreciated with 

virtual reality therapy. 

Virtual reality ✓ ✗ ✗ ✗ 

[27]. A reliable strategy for the early 

detection of autistic spectrum 

disorders in youngsters 

Feature selection ✓ ✓ ✓ ✓ 

[28]. A framework for detecting 

autism in children using SS 

network 

Data mining ✗ ✓ ✓ ✓ 

[29]. ML-based ASD detection Feature selection ✓ ✗ ✗ ✗ 

[30]. Autism spectrum disorder 

assessment in children using SS 

network 

Data Mining ✓ ✗ ✓ ✗ 

[31]. IoT sensors detect autism-related 

special needs in youngsters. 

Data Mining ✓ ✗ ✗ ✗ 

[32]. Providing instructors of autistic 

children with the greatest 

possible feedback 

Data Mining ✓ ✗ ✓ ✗ 

[33]. Removing the autistic learner 

from reliance on others' help and 

support 

Data Mining ✓ ✗ ✓ ✗ 

[34]. ASD's ability to recognise and 

express emotion 

Data Mining ✗ ✗ ✓ ✗ 

[35]. Acknowledging the necessity of 

ASD via PECS 

Data Mining ✓ ✗ ✗ ✗ 

[36]. Using robots to train autistic 

children and enhance their 

talents using SS network 

Genetic algorithm ✓ ✗ ✓ ✗ 

[37]. The recommended technological 

treatment for ADD/ADHD in 

parents using SS network 

Reporting ✓ ✗ ✓ ✗ 

[38]. Investigating the ways in which 

intelligent items assist autistic 

individuals 

Feature selection ✓ ✗ ✗ ✗ 

[39]. Intelligent technology has 

enabled autistic 

children to perform previously 

inaccessible tasks. 

Object- oriented ✗ ✗ ✓ ✗ 

[40]. In order to improve the autistic 

patient's heuristic detection 

issue, 

P2P ✓ ✗ ✗ ✓ 

[41]. Students' social and 

communication skills will be 

improved thanks to the robot 

Kasper to 

detect ASD. 

P2P ✓ ✗ ✗ ✗ 

[42]. To assess the effectiveness of 

human and robot-based 

treatment for children with 

autism spectrum disorder (ASD). 

Reporting ✗ ✗ ✗ ✗ 
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[43]. To develop an IoT-based 

assistive device for people with 

autism spectrum disorder (ASD). 

Reporting ✓ ✗ ✓ ✓ 

 

Technical and comparative analyses of current ASD methods are presented here. Some technical 

and statistical replies to the problems posed in Section 2.3 were as follows: 

a. Which methodologies pertaining to autism spectrum disorder are being examined and 

evaluated in this analysis? 

The fraction of existing therapy options for ASD is shown in Fig. 5. Improving the lives of children 

on the autism spectrum seems to be the primary emphasis of most publications. For the purpose of 

autism diagnosis, this approach has been used in sixteen investigations. In contrast, twelve articles 

covered every conceivable way of diagnosing and grading the seriousness of disease. Since there 

is currently no cure for autism, there is an enormous incentive to keep researching methods to 

make life better for those with the disorder. 

 

Figure 5. Variety of ASD treatment methods in the published literature 

Furthermore, at the earliest age of 3, parents or caregivers recognize autism and its severity and 

offer treatment solutions. Although there are numerous benefits to early autism detection [143]. 

b. What methods and procedures are used in the management of autism spectrum disorder? 

Figure 6 shows that data mining techniques are the most common. The figure is divided into two 

axes: the y-axis shows the number of papers, and the x-axis shows the various methodologies 
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employed in ASD. One of the main ways to obtain insightful information from huge datasets is to 

employ pattern-recognition algorithms. Effective early detection approaches and other clinical 

services technologies pertaining to diagnostic and medical data have been generated by data 

mining and the healthcare industry. Generalization, classification, characterization, grouping, 

evolution, data visualization,  association, pattern matching, and metarule guided extraction are all 

methods that fall under the umbrella of mining. Children on the autistic spectrum (ASD) are most 

often helped by data mining technology, according to this research. Wearable sensors and other 

smart devices that gather data are required for its usage. It should be noted that there are insufficient 

intelligence techniques in such technology. Instead of using it in the real world, it is employed in 

a controlled environment [144-145]. 

 

 

 

 

 

 

Figure 6. The Inclusion Rate of Procedures in ASD Approaches within Publications. 

The two most common methods for selecting features and reporting on them are covered in this 

paper. Feature selection techniques, like GA, or other methods may be used to choose a subset of 

the features input variables, allowing dimensionality to be minimized. The approaches utilized in 

the reporting were derived from papers that explored the use of robots to enhance patients' quality 

of life. Its purpose is to evaluate the perceived differences between human and machine care. You 

may consider them as an alternative because of their sufficient speed, but they still need further 

improvement. 
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Furthermore, GA, P2P and DL methods that provide a range of AI-powered services to ASD 

persons have been highlighted in recent articles. The methods are quick enough, but not precise 

enough, to be of any value in parallel computations carried out by Internet of Things devices. 

c. What are the performance metrics for ASD? 

As shown in Figure 7, the research publications were evaluated according to a number of quality 

criteria related to ASD methods, including sensitivity, accuracy, response time, and specificity. 

The most essential feature elements of autism spectrum disorder detection devices and systems 

based on the Internet of Things, according to our results, were response speed and efficiency. We 

spoke about four main processes and elements on the x-axis, but additional important things like 

CCR, dependability, processing speed, etc., might be looked at on the y-axis according to their 

numbers. 

 

 

 

 

 

Figure 7. Comparative Analysis of Quality Elements in ASD Approaches. 

d. ASD approaches use several platforms and sensors.? 

The number of research projects that employ ASD concepts with different platforms and sensors 

is depicted in Figure 8. These days, "wearable sensors" comprise a variety of sensors and 

technologies, such as pulse oximetry, heart rate variability (HRV), and smart belts. The ASD 

technique comparison across platforms and sensors is shown in the pie chart. 
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Figure 8. Analyzing Sensor and Platform Variations in ASD Techniques. 

iii. Unresolved problems 

Several issues and perspectives remain unaddressed in the current literature about the development 

of Internet of Things (IoT) methods for children with ASD. What follows is a list of some of the 

unanswered questions: 

• When it comes to identifying and assessing the severity of illness for individuals with 

object-oriented segmentation and ASD procedures help alleviate the unique demands 

placed on children with autism. 

• The use of different automatons to enhance the lives of children on the autistic spectrum is 

an area that still lacks clear answers in this regard. It is a way to teach youngsters with 

autism how to replicate hand motions as they talk. 

• Wearable devices are used in all categories of autism assessment methods, including 

electromyography (EMG), pulse oximetry, global positioning systems (GPS), and others. 

Any device, or even an entire garment, might include a sensor. 

• DL is a big question in ASD diagnosis, and there are many potential applications for it, 

such as multi-sided databases and brain imaging. 
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Furthermore, there are a number of issues brought up by the ASD that incorporates devices with 

an Internet of Things foundation, such as the following: 

• Integrity: All data must remain undamaged and safe while it travels from one device to 

another and finally reaches its destination. 

• Availability: In the event that various threats need it, availability guarantees that the 

authorized part may access any and all Internet of Things (IoT)-based healthcare services, 

whether those services are located locally, in the cloud, or globally. 

• Self-healing: Due to the potential for medical equipment failure, self-healing capabilities 

are crucial for networks based on the Internet of Things. It follows that supplementary 

interface devices should provide at least some degree of protection. 

2.4. Real-Time Healthcare Evaluation Through Sensor Data Transformation 

i. Introduction 

 

The healthcare landscape is facing increasingly complex challenges, particularly with rising rates 

of chronic illnesses and escalating healthcare expenditures, accentuated by aging populations 

globally [1, 2]. Traditional health monitoring methods have proven to be cumbersome and 

inadequate in meeting the demands of an aging society [7]. There is a pressing need for innovative 

healthcare solutions that can enhance patient care, reduce unnecessary hospital visits, and optimize 

healthcare costs. In India, government health expenditure is projected to rise significantly by 2060, 

highlighting the urgency for transformative changes in healthcare delivery [8]. 

The Internet of Things (IoT) holds significant promise in revolutionizing remote healthcare 

monitoring systems by bridging the gap between physical and digital realms [9]. This technology 

facilitates seamless communication and data exchange among interconnected devices, fostering 

real-time monitoring and informed decision-making in healthcare. IoT applications have garnered 

considerable attention in the medical industry, offering numerous possibilities for improving 

healthcare delivery and patient outcomes. 

To address the challenges in healthcare, this study proposes an IoT Tiered Architecture (IoTTA) 

designed to efficiently process sensor data for real-time healthcare evaluation. The IoTTA 

framework aims to encompass the entire system architecture, enabling the development of robust 

software solutions that integrate diverse clinical inputs seamlessly. 
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This study is motivated by several critical healthcare issues. Firstly, the global population is aging 

rapidly, with projections indicating a substantial increase in individuals aged 60 and above by 2050 

[1, 2]. Secondly, chronic illnesses such as, Chronic Obstructive Pulmonary Disease (COPD), 

Chronic Heart Failure (CHF) and Diabetes are on the rise, placing a significant burden on 

healthcare systems worldwide [3]. Thirdly, healthcare costs are escalating, as evidenced by 

substantial spending increases in hospital and medical services [5]. 

Existing medical IoT applications often lack cohesive frameworks and are implemented in narrow 

contexts. This study aims to give a thorough rundown of IoT technologies, propose the IoTTA 

framework for integrating healthcare systems, and illustrate potential applications of IoTTA in 

healthcare settings [12]. 

ii. Applications in healthcare based on the Internet of Things (IoT) 

IoT technology is widely used to enhance remote health monitoring systems, particularly for 

individuals requiring constant monitoring due to chronic illnesses, disabilities, or advanced age. 

These technologies enable continuous monitoring, early problem detection, and expedited 

treatment without compromising patient independence or their desire to live at home. Below is a 

summary of IoT applications in long-term care, elder care, and emergency situations. 

• Remote Monitoring for Chronic Illnesses 

o Studies like those by Ghosh et al. [15] focus on at-home monitoring devices for long-

term illnesses, reducing readmissions through early anomaly detection. 

o ECGaaS, a system integrating Cloud Platform as a Service (PaaS) and body sensor 

networks, monitors ECG data [16]. 

o Various systems monitor vital signs, including heart rate, blood pressure, and 

respiratory rate [11, 17-19]. 

• Tracking Seniors in Care 

o Telecare technologies, such as SilverLink by Gokhale et al. [16], aid in aging in place 

by analyzing sensor data for behavior deviations [21, 22]. 

o Systems like H2U by authors [23] use wearable devices and biosensors for real-time 

support and health monitoring of the elderly. 
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o IoT-aware healthcare monitoring systems, as in [24], promptly alert caregivers or 

physicians in emergencies, with adaptable alert criteria. 

o Solutions for medication adherence include RFID readers, smart pill boxes, and 

prescription reminders [25-27]. 

• Emergency Response 

o IoT emergency apps, as discussed by Guillame-Bert et al. [28], can detect anomalies 

and alert medical personnel, enabling timely response. 

o Telemedicine diagnosis and emergency telecare provide location-based emergency 

information and medical guidance [29]. 

o Fall prevention and detection systems, such as those utilizing wearable devices or depth 

sensors [31-33], play a critical role in eldercare. 

iii. IoT Tiered Architecture (IoTTA) 

 

The Internet of Things (IoT) integrates various technologies into systems like IoTTA, structured 

into five levels shows in fig. 9: sensing, transmitting, processing, storing, and mining. In brief: 

 

Figure. 9 Architecture of IoT multi-Tiered. 

• Sensing Layer: Gathers health data from sensors monitoring vital signs and activity levels, 

crucial for healthcare applications. 
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• Sending Layer: Facilitates data transmission through technologies like Bluetooth, ZigBee, 

RFID, and Wi-Fi, ensuring efficient communication. 

• Processing Layer: Involves data aggregation, analysis, and decision-making using 

hardware platforms and software applications. 

• Storing Layer: Handles vast data storage, computation, and analysis, often utilizing cloud 

systems for effective management. 

• Learning and Mining: Employs machine learning and data mining for insights and decision 

support, enhancing healthcare services. 

IoTTA's potential extends to real-time clinical input and autonomous feedback, marking a shift in 

healthcare IoT applications toward advanced, self-learning systems. 

iv. Transforming Sensor Data into Real-Time Healthcare Feedback: The Opportunities Of 

(IOTTA) 

Recent research using IoT in healthcare may be broken down into three categories based on our 

analysis: monitoring, self-care, and clinical assistance. The advantages and disadvantages of each 

category of uses are shown in Table 3. This research uses the SHARP framework [37] to assess 

the benefits and drawbacks of the studies that were included in the review. 

Table 3. Evaluation of studies using a delicately improved concept 
 

Strengths Studies that are 

relevant and Type 

of Application 

Weaknesses 

• Provides a means of identifying 

worsening health conditions 

before they become life-

threatening. 

• Similar to [14], it offers 

individualized diagnoses. 

• Delivers very precise prediction 

models, similar to [19]. 

Clinical Support 

[7], [11-12], [15-

16], [18], [20], 

[23-25], [30], [33-

34],[36] 

• Algorithms designed to aid clinicians 

are seldom used. 

• The data are not being mined 

efficiently, which limits the potential 

impact. 

• Sustains remote, round-the-

clock patient monitoring. 

• Enables online, real-time access 

to patients' medical records. 

• Offers precise detection using 

techniques similar to those 

described in [20], [22]. 

Monitoring  

[7], [10], [11-20], 

[22-25], [35- 36] 

• Lack of follow-up after first monitoring. 

• With manual systems like the one 

described in [10], for instance, patients 

are responsible for taking their own 

readings and documenting the 

outcomes. 
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• With the exception of [24], most 

systems don't allow for changes to be 

made during operation, such as the 

addition of additional sensors. 

• Allows for a diagnosis to be 

made with a high degree of 

precision. 

• Offers high-quality home 

medication management, 

particularly in [26]. 

Self-care 

[23, 24], [27-30], 

[35] 

• There is a lack of guidance and 

directions that have been proven 

effective in clinical settings. 

• Patient participation in medical 

decision-making remains low. 

Real-time, Sustainable, Adaptive, Holistic, and Precise (or SHARP for short) is an acronym for 

five characteristics that are taken into account while designing healthcare systems. Table 3 shows 

that most implementations prioritise programmes that monitor patients or provide clinical 

assistance, whereas just a minority prioritise applications that encourage patients to take 

responsibility for their own treatment. Using IoTTA will allow for the creation of systems that 

value the gathering and analysis of data at different levels. Table II displays the penetration of each 

IoTTA layer by evaluated research. According to the paper's study, two subfields of healthcare 

IoT development self-care, machine learning and data mining account for the majority of the 

industry's expansion. 

v. Care for Oneself 

One of the most challenging jobs doctors have today is assisting patients in providing adequate 

self-care [50]. Nonadherence to medicines and food, and a delay in seeking medical treatment for 

worsening symptoms, are two of the most prominent causes of poor outcomes for heart failure 

patients who attempt to care for themselves [38]. The authors argued that empowering patients to 

care for themselves required more than just imparting medical knowledge; it also required teaching 

them how to keep track of their own symptoms and signs. 

Table 4. Reviewed studies for applying IOTTA 

 

Conducted a study in terms of references Tier 

[6-7], [10], [14-21], [23-25], [27-28], [30], [33], [35- 36] Processing 

[11], [19-20], [23-24], [30], [34-35] Learning and Mining 

[5-7], [10], [16-20], [23-25], [27-28], [30], [33], [35] Sending 
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[5], [10-15], [16-21], [22-26], [28], [33-36] Sensing 

[6-7], [10], [14-21], [23-25], [27-28], [30], [33], [35- 36] Storing 

 

Patient-specific, real-time clinical feedback enabled by IoTTA in the future healthcare system may 

include instructions on how to take vitals, how to take medications, and advice for maintaining 

healthy ranges. These seem like efficient and inexpensive ways to help the elderly care for 

themselves at home. Also, customization of health solutions by adjusting to the persons 

characteristic plays an important role in increasing the quality of treatment [39]. 

vi. Machine Learning and Data Mining 

Table 4, which indicates that there were fewer research efforts that really utilized the mining and 

learning phase in most clinical applications, which mainly work by comparing patient data to 

predetermined norms and then sounding an alarm if any discrepancy arises. Alerts in clinical 

support applications should generate from a last resort position in order to avoid inundation of 

emergency services in the event of a false alarm. In turn, questionnaires or interviews can be 

employed when the monitored variable has been identified as anomalous. 

However, data mining technologies and machine learning tools could enhance IoT 

healthcare apps providing clinical support that helps patients more. Prediction and decision-

support vocations are expected to decrease the need for clinical interventions. This means that 

feedback from patients will include suggestions on medication, good food, and exercise without 

professionals whatsoever. 

2.5. Exploring the Integration of Cloud Analytics and Deep Learning in Patient Monitoring 

and Recommendation system. 

In this comprehensive examination, the section navigates through the landscape of healthcare 

monitoring systems, encompassing both IoT and ML-based approaches, establishing their 

prevalence and smart functionalities [29-31]. A meticulous review and comparison of 

contemporary research materials are presented in Table 5, providing insights into the existing 

landscape. 
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Table 5. Monitoring patients with chronic diseases: a review of healthcare regimes. 

Features [1] [3] [8] [16] [20] [21] 

Issues that 

have been 

addressed 

Chronic 

kidney 

disease 

(CKD) 

Diabetes Diabetes 

diagnosis 

Temperature 

and pulse 

Blood-

pressure 

disorders 

Chronic 

diseases 

Architecture Cloud-based 

hybrid (4-tier) 

Zion China 

Architecture 

3-tier WSN and 

IEEE 802.11 

are the 

foundations of 

this system. 

A hybrid 

architecture 

that includes 

both local and 

cloud-based 

components 

(3-tier) 

two-tier 

(Client and 

Cloud side) 

 

Experiment 

domains 

 

Cloud 

computing, 

Machine 

Learning 

IoT, Machine 

Learning, and 

Cloud 

Computing 

Big Data, 

IoT, Cloud, 

and Machine 

Learning are 

all terms used 

to describe the 

Internet of 

Things. 

 

Internet of 

Things. 

IoT, Machine 

learning, and 

cloud 

computing 

(three tiers) 

Analytics, 

cloud 

computing 

and IoT. 

Reliability Low High High Low High High 

Tools for 

ensuring 

reliability 

and the 

environment 

in which they 

are employed 

CloudSim 

package 

Windows 

Azure 

Business 

intelligence, 

Azure ML, 

SQL 

5.0 

generations of 

wearable 

technology, 

5G networks 

Sensors and 

Raspberry Pi 

3 

Weka Spark 

package and 

MATLAB 

R2016b (9.1) 

 

Amazon EC2 

Functionality 

(Prediction/ 

Classification

/Monitoring/

Analysis) 

Classification Prediction Evaluation as 

well as 

Forecasting 

Sense-making 

and Keeping 

an Eye On 

Classification Monitoring 

and Analysis 

Exhibited 

items 

Static Dynamic Environmenta

lly 

responsible 

and 

economical 

Stable Context-

aware 

Static 

Advice and 

suggestions 

Negative Negative Affirmative Negative Negative Negative 

Cost Modest Modest Modest Modest Raised It's about 

right. 

The difficulty 

of it all 

Low High High Medium High It's about 

right. 

Parameters Measures of 

Accuracy and 

F, as well as 

Error Rates 

Normal 

glucose levels 

were detected. 

Accuracy The 

correctness of 

reading 

Time, F-

measurement 

Accuracy, and 

Precision 

Accuracy of 

the ECG 

Dataset size Extremely 

tiny (306) 

Large Small Small MATLAB 

was used to 

produce a 

large dataset. 

Huge 
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Efficiency 

results 

(Accuracy) 

up to 97% up to 87% up to 92% up to 95% 76–99% up to 91% 

There are several benefits of using an Internet of Things-enabled remote health monitoring 

system instead of conventional methods. Conversion of analog information into digital format is 

one of the factors for continuous monitoring of the patient. This promotes self-care on the part of 

patients and allows for early detection of chronic illnesses. A few postulations on relevant research 

articles are given below. 

Shashikumar et al. [38] give an account of their efforts to conceptualize WIoT from technical, 

organizational, and logical standpoint in relation to wearable devices. Generally, an IoT 

architecture for wearables has got three major components: 1) The sensors get worn typically on 

several body parts; 2) The information acquired by the sensor may be transferred through 

Gateways connected to the Internet to the server or the cloud for storage and analysis; 3) This 

allows machine learning. Darshan et al. have investigated the role of IoT in healthcare and made 

a literature review on the same. In their proposed system, a multiple-layer: a) raw data should be 

put in through various sensors on the medical IoT devices (ECG sensor, EEG sensor, skin-

temperature sensor, etc.). 

Here, we take the information that has been filtered, processed, and categorized in order to 

analyze and predict. Tarassenko et al. [39] offered an introduction to the Internet of Things, its 

past and future, and how this relates to healthcare. Essentially, the concept of the Internet of Things 

evolved from Electronic Data Interchange (EDI) in 1999 to the Internet of People (Internet-M-

Internet) and is now a distinct entity. Furthermore, the Internet of Things benefits could also cover 

many different industries by other means, including implantable medical devices connecting with 

websites, medical professionals, and patients while being part of healthcare delivery. 

When it comes to e-health and the Internet of Things, Van et al. [40] provide a paradigm for 

intelligently providing medical services. The following are the stages of the proposed Internet of 

Things-based paradigm: The four main components of telemedicine are: A) Patient Records, which 

contain all data regarding the patient, acquired in real-time or from a dataset; B) Clinical Decision 

System, which provides DSS for the physicians based on connected knowledge; C) Remotely 

monitoring the patient through the use of sensors attached to the human body to collect data; and 
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D) Remote treatment, a crucial step because it facilitates contact with healthcare centers by easily, 

that gives the rural population better healthcare.  

Yoon et al. [41] provide the idea of how the Internet of Things (IoT) contributes to and 

enhances healthcare facilities. There are three tiers to the suggested system, the first of which is 

for sensing, which is the process of gathering data or information in real-time using sensors 

(temperature sensor, pulse rate sensor, etc.). The second level of transmission involves sensors 

sending their collected information to a data server. The doctor may view patient information and 

make diagnoses from inside the server with Tier-3 access. The suggested work consists of both 

digital (an Android app and a web page) and physical (an ATMEL 89s52 microcontroller, 

temperature sensor, pulse rate sensor, serial port, A/D converter, and IC-7805 voltage regulator) 

components.  

Barfod [42] offers a comprehensive review of IoT’s potential in healthcare. He talks about 

innovative approaches of providing healthcare, such as mHealth and 6LoWPAN-based healthcare. 

The mHealth framework consists of three main parts: 1) The Layer for Collecting Data There is a 

layer 2 for storing data and a layer 3 for processing it. The first step of a 6LoWPAN-based 

healthcare system is for sensors to collect data, and then the gateway would convert the data to 

IPV6 and send it to the server. They go on their talk about the latest complete architecture for 

healthcare smart systems. Individuals with chronic diseases like stroke, diabetes, cancer, etc., may 

efficiently monitor their own health with the help of a healthcare monitoring system developed by 

Hillman et al. [43], which makes use of the Internet of Things (IoT) and classifier algorithms for 

prediction. The suggested method for monitoring stroke patients consists of three parts: 1) The 

hardware tier consists of the microcontroller, blood pressure monitor, and glucose analyzer. 

Finally, at the application layer (web environment, cloud server), machine learning (ML) 

techniques such as Naive Bayes and Random Forest are deployed. The predictive accuracy of the 

Random Forest algorithm is 93%.  

In [44], McGaughey et al. propose an IoT-based cancer care system hosted in the cloud. The 

method used in this research involves attaching a body wireless sensor network (BWSN) to a 

patient and then collecting and converting data through the Zigbee protocol before saving it to a 

data set or the cloud for analysis. Conceptually, the Internet of Things (IoT) and its multi-tiered 
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architecture 1) The patient is outfitted with a network of sensors that are permanently attached to 

his or her body. 2) A management processing layer that acts as a conduit for information 

remapping. Fourth, the applications layer is where the action is on the Internet of Things since 

that’s where all the cool stuff occurs, including information processing, analytics, security, and 

device administration. The challenges associated with implementing IoT in healthcare systems 

were analyzed by Gao et al. [45] and discussed further. IoT-based healthcare monitoring system 

architecture proposed by Cecchinel et al. [46] uses ML algorithms to identify early warning 

symptoms of heart illness. The suggested system consists of three levels: At the first level, data is 

acquired via Internet of Things sensors carried by the user. Level 2 uses Apache HBase to store 

petabytes of information. Level-3’s data analytics skills are particularly useful in the field of 

cardiovascular disease forecasting. Machine learning algorithms (MLA) are implemented here. 

The results produced by the system are clearly superior.  

As suggested by Chen et al. [47], ensuring security via the use of IoT and cloud computing. 

Fuzzy Rule is an innovative approach to diagnosing various diseases that they present. There are 

a total of eight parts that make up the suggested system. These parts include medical sensors, the 

UCI Repository Dataset, cloud computing, data aggregation, a fuzzy temporal neural classifier, 

and more. The code was written in JAVA, and Amazon’s cloud servers hosted the finished 

application. K-NN, DT, NB, and SVM are four of the most common classifiers used in medical 

diagnosis. The final results are as follows: K- NN achieves 92% accuracy, DT achieves 95% 

accuracy, NB achieves 85% accuracy, and SVM achieves 80% accuracy. 

An intelligent method is presented by Chok et al. [48] for student diagnostics. The first step in 

the proposed three-stage process consists of data gathering from the IoT devices. The collected 

data are then passed onto an intermediary cloud server through the gateway. Second, the diagnosis 

should be performed after data processing and upon the features extraction and healthcare 

attributes measurement, analysis, etc. Finally, a health alert is sent to the family of the patient. The 

classifiers used are DT, k-NN, NB, and SVM. 

While many studies stress that ML improves early detection, personalized care and reduces clinic 

workloads, we have to notice certain practice issues in order for the system to work well and not 

face problems in the future. Problems in real projects do not always coincide with what is found 
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in ideal theoretical studies. Issues can be related to hospitals using aged IT systems, not all patients 

using wearable devices properly and maintaining devices, setting up their data and dealing with 

network problems during operations in poor-resource places. Frustrating false alarms, occasional 

system issues and unreliable sensor readings continue to affect how clinicians accept and trust 

wearable devices. 

Ensuring the privacy and safety of data gets more important as we rely on wearable sensors and 

remote monitoring systems more. The ongoing flow of health information leads people to ask how 

such data is protected, who can gain access to it and how companies stay compliant with privacy 

regulations. Should these problems be left unrepaired, hesitation by both institutions and patients 

may prevent broad acceptance. 

As a result, many interesting approaches, including systems that process information locally and, 

in the cloud, AI-enabled triage bots and systems that get relevant alerts fast, are now being 

evaluated in industry tests, experiments and small-scale healthcare projects. Although they give a 

good idea of what’s coming, they tend not to be acknowledged by academic reviews. 

Consequently, the process of reviewing technology should now include greater use of recent and 

varied evidence such as current practices and the feedback of health experts in different 

environments. 

Researchers can use experiences from multiple types of healthcare settings to help ML- and IoT-

based health care systems perform well in real life. This will improve the design of systems and 

guarantee that their uses benefit patients, can handle many situations and influence real-world 

healthcare. 

2.6.Research Gaps   

This opens a very significant field of study in the health care world. Numerous studies are being 

carried out to understand IoT, ML, and AI in health care. However, compared to standard IoT-

based health care applications system, ML-based medical health care applications present a 

significant extra barrier. The app has one main function: to visualize the data obtained from the 

various sensors. It is extremely difficult to maintain, monitor, and power all the devices 
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simultaneously, since the sensors are embedded in them. Following this, the research gaps were 

identified. 

● Remote Critical State Monitoring: Several health care applications based on machine 

learning today do not have reliable systems for the remote identification of a patient in 

urgent condition based on vital signs and medical rules in active contexts. Existing research 

[1-4], [8-10], [11-14], [17-18], [35-36] suggests potential in Theory; however, there exist 

hurdles for practical implementation.  

● Real-Time Health Assessment for Patients with Chronic & lifestyle disorders Diseases, 

like ASD, blood pressure and heart attack: Even considering recent advancements in 

healthcare monitoring with AAL devices, the real-time assessment of health status using 

Machine Learning models for patients with chronic diseases and ASD is still missing [15-

19], [21-25], [37-40], [44-51]. This gap imposes a limitation on the customizing timely 

interventions.  

● Enhanced Big Data Analysis: These challenges involve three specific cases that illustrate 

how unstructured and imbalanced datasets could be handled for largescale analysis [20-

22], [28-30], [38], [52-55], [60-62]. Enhanced ML techniques provide deeper insights into 

complex health data.  

● Real-Time ML-Based Vital Sign Monitoring System: A real-time machine-learning-based 

intelligent information modeling system that enables all forms of vital sign monitoring, 

both local and cloud-based, is yet to be invented [23-27], [31-34], [66-69]. The introduction 

of such a system would bring about a radical change to patient care supported with instant 

accurate health assessments overall. 

2.7. Chapter Summary 

In this chapter of Literature Review, the work presents a survey of integrating machine learning 

and IoT in healthcare, focused on live monitoring of patients' vital signs. The influence 

distinguishing machine learning and patient care, early warning systems as support for clinical 

decisions, AI-based approaches for the assessment of ASD, and the proposal of an Internet of 

Things Tiered Architecture (IoTTA) for healthcare evaluation are discussed. The research gaps 

left include remote monitoring, real-time assessments over time for chronic diseases, big data 
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analytics, and ML-based vital sign monitoring systems as important so that personalized 

interventions could be possible for better patient status. 
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Chapter 3: Proposing a Novel Real-Time Vital Sign Monitoring 

System Using Machine Learning 

Overview 

This chapter addresses the Smart Patient Monitoring and Recommendation (SPMR) framework 

as unified by means of DL, cloud analytics, and IoT principles to monitor the vital signs of patients 

in real time. The components of SPMR are discussed, including DL algorithms and cloud-based 

analytics, and IoT principles of data collection and transmission. It further details data collection 

and preparation processes required in the training of machine learning models within the SPMR 

framework. Besides, it elaborates on the model evaluation methodologies in terms of performance 

metrics, performing comparative analysis with similar models and testing the efficiency and safety 

of SPMR when implemented in health monitoring systems. 

3.1.Introduction 

To finalize our model for "Smart Patient Monitoring and Recommendation (SPMR) using Cloud 

Analytics and Deep Learning," we passed through a series of scrupulous tests on our alternating 

modes and schemes. Our testing phases comprised overall evaluations along the lines of reliability, 

functionality, cost, and efficacy. We mined insights from a comparative analysis that basically 

drew a detailed examination of the healthcare regimes that had been presented in the literature 

review section. 

The testing features included parameters like the relative accuracy, precision, F-measurement, and 

values for error rates. We took time to study all exhibiting features, architecture, experiment 

domains, reliability, tools employed, functionality, provides advice and suggestions, cost, difficult 

to implement, parameters, data set size, and efficiency results from the reviewed healthcare 

regimes. By systematically analyzing these aspects, we tried to ensure that our decided model 

would reliably pull off a standard function as per the outlined requirements of patient monitoring 

of chronic diseases. Such an elaborate testing approach would provide us with good ground for 

making an informed decision in the selection of the most appropriate model for our research, 

enhancing the robustness and effectiveness of the proposed SPMR framework. 
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3.2. SPMR Proposed Architecture 

AI-enabled, IoT, deep learning, and cloud computing gadgets have all found a home in modern 

healthcare facilities. Patients with chronic conditions can benefit from these hybrid 

technologies, which provide improved patient monitoring and referral systems. The SPMR 

framework allows hospitals and caregivers to provide better home care for patients. A DL 

model applied to vital signs and context data helps to acquire, store, monitor, and forecast the 

patient's health state. In Fig. 10, you can see the proposed SPMR's four-layer architectural 

structure. Sects. 3.2.1–3.2.4 describe the various layers. 

3.2.1. Ambient Assisted Living Layer 1 (AAL) 

Define Patients' vital signs and environmental conditions can be monitored and recorded using 

the AAL system and open-source e-health software such as My Signals [27]. (Humidity and 

Temperature). Additionally, AAL systems always keep track of the patient’s whereabouts and 

activity. Each AAL system has a distinct identifier within the cloud architecture. The patient's 

condition determines which devices are chosen. E-health systems support an extensive array 

of connectivity options and specialized medical sensors. A support system for sensors that 

detect light, smoke, temperature, and humidity is provided by the AAL layer. A layer that 

monitors key signs while simultaneously recording the surroundings around it. 

3.2.2. Local Intelligent Processing at The Second Layer (LIP) 

The LIP module collects, aggregates, stores, and processes data that is sent over intermediate 

communication protocols and makes it available to the rest of the system. Because of this, it 

may be used both in offline and online environments. It differs from previous frameworks in 

that it offers high-performance offline learning and recommendations. It includes the following 

parts: 

i. Edge Device 

IoT Gateway is another name for this device. Low-level data from sensors, intelligent devices, 

and the cloud can be exchanged and processed locally using hardware or software. 

ii. An On-Site Local Processing and Storage Facility Unit (LPSU) 
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An appropriate format is used to store and transform the AAL layer's data for the DL model in 

LPSU. This unit is also responsible for transforming features. Data exploration is carried out 

using a variety of strategies, including normalization. LPM receives the reworked components. 

Also, the LPSU has a Cloud Monitoring Module (CMM) that updates the general medical rules 

and medical records on a regular basis (CMM). 

Figure 10. Framework components and the proposed architecture of Smart Patient 

Monitoring and Recommendation (SPMR). 

iii. The Suggested Local Predictive Model Has the Following Characteristics: (LPM) 

Patients' health status and emergency scenarios are classified by LPM on the local side. The 

model in [28] downloads the model from the cloud, in contrast to this unit. Vital signs and 

current AAL data are used to develop the LPM unit's own categorization and prediction model. 

In the event of a network outage, a lack of cloud services, or any other type of emergency, the 

model will hold. Once the patient's health state has been accurately assessed, this layer takes 

the required and appropriate steps to contact medical professionals, caretakers, or other support 

services. The diagram in Fig. 11 provides an overview of the LIP model development and 

prediction process utilizing DL based on new CCE optimization. Sect. 3.2.5 provides a 

thorough explanation of the algorithm in use. 
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3.2.3. Cloud Monitoring Module Is Located in Layer 3. (CMM) 

The term "knowledge module" refers to the CMM as a unit of information. Clouds with patient-

specific information, assistance services, and knowledge databases are part of the package. 

Two or more clouds can be included in the CMM if the right permissions are obtained. When 

allowed and linked to these clouds, SPMR monitors the CMM. Medical specialists, hospitals, 

and carers are all involved in providing assistance. The most important aspects are covered 

here. 

i. Online Patent Database (OPDB) 

Information on the patient, such as age, sex, and weight, can be found in the OPDB. This 

program is also responsible for keeping track of a patient's medical records and investigation 

results, as well as their treatment and assistance plans, food, and any specific thresholds for 

vital signs. An OPDB cloud storage account is provided and monitored by a smart healthcare 

center or hospital. When it comes to patient-specific regulations and updates, OPDB and the 

medical cloud are in sync [29-30]. 

 

 

 

 

 

Figure 11. Proposed LPM (Lifestyle Prediction Mechanism) prediction mechanism. 

ii. (MC) The Medical Cloud 

Symptoms, vital signs to monitor, and broad rule ranges are all included in this cloud of current 

medical knowledge. Medical knowledge is based on the most recent studies and generic norms 

in MC, which are updated regularly. The OPDB syncs up with this information. 

 



87 

 

iii. Assistive Services 

Services supplied by a smart healthcare facility or hospital are also included in this category. 

Also included in this is the patient's family, friends, and caretakers. When a patient’s health 

began to decline or an emergency occurred, these services were activated. The LIP and CAM 

layers send   alerts to the team, which responds remotely to any issues that arise. 

3.2.4. Cloud Four Layers of Monitoring and Cloud Analytics Proposed (CAM) 

Physically situated cloud components that adhere to strict privacy standards and legislation can be 

found in this tier. The massive amounts of data generated by AAL are housed on massive cloud 

infrastructure. It's also accessible as a subscription service on several platforms (Software as a 

Service). To meet the needs of large data analysis, this framework was developed on an expandable 

cloud platform and is fast, efficient, and accurate [31, 32]. Together with layers 2 and 3, this layer 

accumulates the preceding two levels' data and rules. The CAM-administered machine learning 

model can analyse massive amounts of data and trends in order to anticipate a patient's health 

status. The GCP (Google Cloud Platform) Cloud Predictive Model (CPM) is included in this 

module and may be accessed online. The model's inputs and outputs are synchronized by layer 2, 

which is the second layer. The following components are included in this module: 

i. Workspace For GCP Machine Learning (MLW) 

To speed up prediction and classification, GCP-MLW [33] stores and distributes computation over 

many computer clusters. Machine learning models may be built and deployed using this 

programmed. ML Gallery, ML Studio, and Management of ML Web Services are all included in 

Microsoft's ML Workspace. 

ii. To Handle Large Data Sets, The Predictive Model (CPM) Is Implemented Using GCP 

Machine Learning (ML). 

There are typically five key steps to knowledge discovery using CPM: preprocessing, model 

training, testing and evaluating, and finally deployment. Microsoft's GCP ML platform covers all 

aspects of machine learning. The ML model was built and deployed using GCP's ML service. 

Packages and APIs for building machine learning models are available through the GCP ML 



88 

 

service, which may be used to construct web and mobile apps using these models. Fig. 12 depicts 

the use of the GCP ML service for the development and deployment of a predictive model. 

 

 

 

 

 

 

Figure 12. Predictive models built and deployed using the Google Cloud Platform ML service. 

3.2.5. SPMR'S Suggested DL Technique for LPM and CPM 

In the higher layer, AAL sends all of the recorded data. For the purposes of LPM and CPM, data 

are gathered, aggregated, stored, and analyzed in LIP. Predictive models are designed to 

demonstrate the most accurate categorical categorization accuracy for the benefit of patients and 

healthcare providers. The data has been processed using the technique shown below. The stages 

of the model development process are outlined in the following paragraphs. 

i. Data Gathering and Aggregation 

Unstructured data gathered from sensors and offline devices, alongside data obtained via the 

MySignals platform, is captured and buffered by the Edge device, according to SPMR. On the 

edge, raw data may be translated from a low-degree to a higher-degree abstraction using the High-

Level Feature Provider (HLPF), also known as the Context Aggregator [35]. 

Notations Algorithm 1: DL algorithm for LPM amd 

CPM 

Dataset with traits 1 through n: 

 

Framework Inputs: 

AAL data and Vital Signs 
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𝐴 =  𝑎1, 𝑎2, . . . . . . . . . . . . . 𝑎𝑛 
𝑊1  = 𝑤1, 𝑤1, . . . . . . . . . . . . . 𝑤1 

 

𝑊ℎ: denotes the weight that layer h set. 

 𝑊1 : shows the weight that was set at the 

first buried layer. 

 

Step functions are represented by f (). 

Activation function activation functions are 

represented by f (Z).  

 

ℎ𝑗
𝑖 =  𝑓(𝑍) 

The activation function used in hidden 

layers is rectified liner unit “relu”. 

 

● Output of linear equation = Z 

● bias = b 

● attribute value = a 

● overall amount of features = n 

● number of features extracted = m 

● average of the training sets = 𝛼 

● Training sample standard deviation = 

𝜎 

represents 𝑖𝑡ℎ neuron in 𝑖𝑡ℎ hidden layer. 

 

Superscript i denotes layer, subscripts 

neuron number. 

 

Number of classes = k 

 

 

 

 

 

 

𝑦̂ is probability set for { 𝑦1, 𝑦2, 𝑦3, 𝑦4} class 

labels i.e, Normal, Alert, Warning, and 

Emergency. 

 

 

 

Model Phases: 

Input: 

 

𝐴 =  𝑎1, 𝑎2, . . . . . . . . . . . . . 𝑎𝑛 
 

I. Pre-process: 

 

1. Convert types to numeric 

2. Apply z - Score for normalization: 

 

𝑧 −  𝑠𝑐𝑜𝑟𝑒 =  
𝑎 −  𝛼

𝜎
 

II. Feature Engineering: 

 

Extract features as per contexts 

 

𝐴 = 𝑎1, 𝑎2, . . . . . . . . . . . . . 𝑎𝑚  
 

III. Model Building (Learn Phase): 

 

1. Calculate 

 

𝑍 =  ∑

𝑚

𝑖=1

 𝑊𝑖
ℎ𝐴𝑖 +  𝑏 

 

2. Feed Z into f(Z), so that we get 

output at each hidden layer. 

 

ℎ𝑖
𝑖  =  𝑓(𝑍) 

 

3. Calculate the probability score of 

class 𝐶𝑗 given sample 𝑎𝑖. 

 

𝑃 (𝐶𝑗|𝑎𝑖) =  
𝑒𝑥𝑝(𝑍𝑗)

∑4
𝑘=1 𝑒𝑥𝑝 (𝑍𝑘)

 

 

IV. Test / Prediction: 

  

𝑦̂  =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑗𝜖 {1,2,3,4} 𝑃 (𝐶𝑗|𝑎𝑖) 

 

Apply softmax function at output 

layer 
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softmax (Z)  squashes the vector [Z] of real 

values into real values in the range [0,1] that 

add up to 1. 

 

 

 

Where 𝜇𝑖 is proposed individual Cross 

Entropy (CE) 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑍)  =  
𝑒𝑍𝑖

∑𝑖 𝑒𝑍𝑖
 

V. Optimization: 

 

Apply proposed CCE Optimization and 

calculate E(W): 

 

𝐸(𝑊) =  − ∑

𝑘

𝑖=1

𝜇𝑖   

Output: 

𝑦 ̂ = 
{𝑊𝑎𝑟𝑛𝑖𝑛𝑔, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝐴𝑙𝑒𝑟𝑡, 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦} 

Once the MySignals kit and HLFP data is converted into a unified contextual state by the LPSU, 

it is stored in a data repository. Data in the 'csv' format relating to the patient's physiological 

signals, environmental circumstances, and activities are included inside this section for the 

duration of the time period indicated. Numbers are used to represent both numerical and 

categorical data in DL models. As a result, the data are transformed into a numerical representation 

that is compatible with the DL model used in LIP and CAM. 

Additionally, the z-score normalization technique was employed in this study to standardize 

(normalize) the data. Each neuron in a Deep Neural Network (DNN) conducts arithmetic 

operations on the inputs and weights it receives. 

ii. Transformation of Data 

After the pre-procedure assessments are complete, the numerical value of an attribute is 

represented as a straightforward vector. If you've ever trained and operated a deep learning model 

using tensor transformation, then you'll know exactly what we're talking about here. Using this 

transformation, the model's features can be translated into the format that the model employs to 

make computations go more quickly and with less effort. Tensors represent vectors and matrices 

in greater dimensions. Within its internal structure, TensorFlow encapsulates tensors by utilizing 

collections of elemental data types that are n-dimensional in dimension. Tensors have the 

capability of extracting the maximum amount of performance from the System's hardware. 
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Primitives for optimal DL are also supplied for things like Activations, Pooling, and Inner 

Products, among other things. 

iii. Feature Engineering and Design 

The Spearman's correlation coefficient is deemed more suited for healthcare data that includes 

outliers (emergency cases in our study) [36]. For this purpose, we used the metric Spearman's 

correlation coefficient to identify the most correlated of n characteristics from the n input features. 

The DL model has been given the tensors of the m correlated features. A multitude of disease-

specific parameters, such as symptoms, vital signs, and so on, have been retrieved using the 

Spearman correlation coefficient for a variety of chronic illnesses. HR, DBP, SBP, RR, and 

symptoms were substantially linked with class designations in our research of BP patients. 

We employed tenfold stratified cross-validation to deal with the unbalanced dataset based 

on the reference [37]. The F-score of the feature selection approach was 0.98. For consistency in 

the training and testing sets, k-fold stratified cross-validation assures an equal percentage of each 

class. 

iv. Construction of a Model 

In our pursuit of selecting the optimal model for "Smart Patient Monitoring and Recommendation 

(SPMR) using Cloud Analytics and Deep Learning," we conducted a thorough analysis, comparing 

key features and attributes across various healthcare regimes. Table 6. summarizes the review of 

different healthcare regimes, highlighting essential aspects such as issues addressed, architecture, 

experiment domains, reliability, tools, functionality, exhibited items, advice, cost, difficulty, 

parameters, dataset size, and efficiency results. 

Table 6. A Sample Dataset of Patients with High Blood Pressure 

Time 

Stamp 

DBP SpO2 SBP DBP RR HR Act Amb L_Act Symp Med Class 

02-02-

2019 

00:00 

74 98 111 74 12 66 5 0 5 0 0 1 

02-02-
2019 
04:30 

107 64 52 107 23 180 3 2 4 56 1 4 
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This comparative analysis helped us in selecting an optimal model based on rigorous testing and 

specific criteria, ensuring that our chosen model aligns with the desired attributes for effective 

patient monitoring in the proposed SPMR framework. 

In NN, the output is determined by the input X and the weighted sum of the inputs: 

Z = WTX + b    (1) 

Z stands for a linear equation, WT stands for weights, and b stands for bias. The step function 

predicts either a binary or multi-class output based on the value of Z. Discrete output is the term 

for this type of output. 

Layers of computing are used to discover patterns from input data using the DL approach. 

Some information is taken at each layer, and the output of one layer is sent to the next [38]. In the 

realm of machine learning, it is recognized as a Deep Neural Network (DNN) and holds 

significance as a strong ML technique [39]. In order to predict a recurrent neural network (RNNs), 

convolutional neural networks (CNNs), and multilayer perceptron’s (MLPs) are three popular 

designs that have been developed as part of Deep Learning. Their purpose is to determine the 

health state or sickness of a patient by studying the vital signs of the patient and the environmental 

stimuli that they are exposed to. Up to and including three tiers, SPMR's five-layer deep model 

learning procedure made use of an optimal parameter configuration (MLP). Phases of CPM for 

each kind of patient are presented in Fig. 13 individually. The anticipated CCE optimization is 

described in Section 3.2.6. 

 

 

 

06-01-
2019 
03:30 

118 92 159 118 13 105 3 0 3 6 0 3 

06-01-
2019 
22:45 

89 93 130 87 6 97 1 1 6 26 1 2 
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Figure 13. Phases of (CPM) Cloud Predictive Models (DL) implementation on the GCP 

cloud. 

vi. Evaluation of the Model 

The models were built rigorously according to the procedures spelled out above, based on deep 

learning optimization, coupled with a method called Categorical Cross Entropy. A real computing 

platform-Google Cloud Platform-was used to measure the efficacy of the models, with evaluation 

techniques including correlation-based feature selection and stratified sampling. 

By deploying a novel CCE optimization technique and the power of cloud computing-Google 

Cloud Platform-the models have had an extraordinary ability to perform deep analysis with much 

data, particularly unstructured and imbalanced data. This approach achieves robustness and 

adaptability to real-world scenarios in healthcare. 
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The balance of the dataset was not carried out via SMOTE or GAN, which is crucial in 

maintaining the genuineness of the data and its representativeness of actual scenarios since the 

inherent characteristics of the dataset and specific study objectives guided the choice. 

Driven by patient data and contextual information, the classifier proves effective in 

predicting the patient's health status. The classifier incorporates false alarm minimization strategies 

to achieve balanced sensitivity and specificity, maximizing the accuracy of classification. This 

novel classifier not only provides reliable predictions but also reduces unnecessary alerts, thereby 

enhancing the efficiency of the healthcare monitoring system. 

In similar semesters, making requests for assistance revolves around a core set of processes. 

This embraces the seamless amalgamation of patient data, the invocation of the predictive model, 

and the interpretation of the outputs so produced. Really precise work on the entire set guarantees 

that the system operates accurately and credibly, providing a foundation for a highly efficient 

healthcare support system. 

vii. Security Measures and Threat Evaluation 

The robustness of the security measures proposed in "Smart Patient Monitoring and 

Recommendation (SPMR) using Cloud Analytics and Deep Learning" is paramount. This section 

gives a comprehensive overview of the security measures of the SPMR framework: an emphasis 

on their effectiveness against potential threats 

• Encryption Protocols and Data Integrity: SPMR utilizes state-of-the-art encryption protocols 

to protect patient data during transmission and storage. Strong encryption algorithms 

guarantee data confidentiality and integrity to avoid unauthorized access and tampering. 

• Access Control: The access control mechanisms enable the regulation of user access to 

sensitive healthcare information. Role-based access means that specific patient data can only 

be accessed by people who are authorized, such as medical professionals and caregivers, 

boosting overall system security. 
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• Constant Monitoring: The SPMR approach to security emphasizes constant monitoring. The 

system has introduced anomaly detection mechanisms to detect and address abnormal patterns 

or activities that will signal the administrator in real-time about possible security threats. 

• Offline Security: With no connection to the Internet or the cloud, SPMR keeps itself secure 

using its built-in offline security provisions. It therefore continues to deliver on-the-spot 

preventive measures and treatments, even in emergency situations. 

• Threat evaluation, countermeasures: Threat evaluation would comprehensively ascertain the 

possible threats posed to the healthcare monitoring system. Based on such evaluation, 

countermeasures, preventive and responsive, are instituted as safeguards against extensive 

security threats. 

3.2.6. Proposed CCE (Categorical Cross Entropy) Optimization Algorithm 

For the suggested DL, a unique CCE cost optimization is used. Our key aim is to minimize CCE 

losses in our model while using the entire training dataset. To build a fresh list of novel CCEs, the 

following algorithm is employed. As a result of the updated Cross Entropy (CE) values, Deep 

learning makes use of a number of different optimization strategies, some of which include 

stochastic gradient descent (SGD) and adaptive gradient descent (AdaGrad). could potentially lead 

to faster convergence. Average CE loss is calculated by removing the chance of an event that is 

much more likely than the average CE loss. When fewer epochs are used, the DL algorithms 

achieve their goal quicker [40-44]. 

Algorithm 2: Optimizations for the CCE 

Inputs: 

Actual probability list (P) 

Predicted probability list (Q) 

Initialize the List of resulting cross entropy R and variables i, j and Mean_CE 

 

for i to length (P): 

     Calculate (CE) as [-sum ([P[i]*log (Q[i])] 

     Append CE for each input to lisr R 

mean_CE = sum (R)/length (P) 

 

for j to length (R): 
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    if (R[j] > mean_CE): 

        R[j] = (R[j] - mean_CE) 

 

Outputs: New CE obtained in list R 

 

Where log(), sum(), and length() are implicit function for corresponding function-alities 

i. A Mathematical Model is Discussed in Detail 

After calculating the individual CE errors, first determine the mean CCE. 

E(W) =-1/N ∑(i-1) ^k y_i log (̂y ̂)         (2) 

Based on μ_i, where μ_i is the new individual CE, compute Fresh CCE, E(W) 

 μ_i (3) = y_i log (̂y ̂) − E(W) if y_i log (̂y ̂) > E(W)    (3) 

The more recent CE vector μ_i serves as the foundation for the new CCE and may be written as: 

E(W) =-∑ (i-1)^k μ_i 

3.3. Setup Experiment 

To test the credibility of SPMR and its constituent DL models, an experimental case study is 

offered here. Patients with persistent Blood Pressure (BP) issues can benefit from this study, which 

is currently being monitored. Patients with hypertension (P1), hypotension (P2), and normal blood 

pressure (P3) are all under observation [44-45]. 

3.3.1. Data Simulation for Long-Term Patient Monitoring. 

Due to a lack of detailed long-term data for patients with chronic problems such as hypertension, 

a simulated database was put together and is shown in Table 7. This database records important 

patient data gathered each 15 minutes for a period of one year from information in the MIMIC-II 

database from PhysioNet, for three different individuals. Similar data was added to the main 

dataset by using e-Medical IoT devices (My Signals) and joined to make a comprehensive group 

for testing. 
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We used parameters that are clinically used and got advice from healthcare experts to keep the 

data realistic. Using this process, the reliability and relevance of the data are both improved. 

The system was built according to SPMR principles to help with context-aware monitor 

transactions. It records the patient’s activity movements, start and end times, along with heart rate, 

breathing rate, blood oxygen saturation, blood pressure, symptoms, drugs taken and surrounding 

conditions. In CMM, doctors and caregivers monitor and operate the sensors included in Ambient 

Assisted Living (AAL) ecosystems [46] 

Patient data is grouped as normal, alert, warning or emergency depending on the given condition, 

as noted in Table 7. However, as the dataset is not evenly balanced, most normal cases are 

classified as normal instead of critical, as standard approaches tend to do. This often causes wrong 

reports and confused treatment. With SPMR, groups of patients can be put together based on their 

symptoms, bodily signs, medications and homes which permits more precise care and tracking. 

Table 7. Description of the Data Set Background for Three Patients in the SPMR 

A year of vital signs, ambient circumstances, symptoms, activities, and medicine (Med) are 

collected by SPMR as a big data source, encompassing metrics such as respiration rate (RR), heart 

rate, peripheral oxygen saturation (SPO), diastolic blood pressure (DBP), and systolic blood 

pressure (SBP) are the vital indicators observed in this case study (SpO2). For long-term 

monitoring of biomedical data, synthetic data creation has demonstrated its dependability in earlier 

research [47]. Class descriptions for unbalanced datasets may be found in Table 8 (see below). 

General medical criteria can only categories the data into normal and abnormal categories since 

the dataset is so unbalanced. False positives result from this categorization, putting patients at 

danger of receiving the wrong medicine and care. With the use of SPMR, it is now possible to 

Normal  Class Emergency Alert Warning Total contexts 

9307 (P1) Hypertensive  175 2404    23347 9307 

19455 (P2) Hypotensive  148 1627    14003 19455 

12517 Normotensive (P3) 109  1186    21421 35233 
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divide patients into several groups based on their activities, vital signs, symptoms, surrounding 

circumstances, and current drug intake. 

Table 8. Classification based on the medical model and actions administered to the patient. 

According to personal medical guidelines, the circumstantial categorization in Table 9 is utilised 

to anticipate classes. In addition, it lists the activities that must be completed in order to meet the 

expected class's requirements.  

Table 9. Description of the dataset’s attributes, as well as their type and range. 

Attribute Name and Symbol Format/Type Unit/Range 

Vital Signs (SBP, HR, DBP, SPO2 

and RR) 

All Numeric (50–230 mm/Hg, 30–220 beats/min, 30–140 

mm/Hg, 40–100 (%), 05–30 breaths/min) 

Timestamp “DD-MM-YYY 

HH:MIN” TimeStamp 

02-02-2019 00:00 and 06-01-2019 00:00  

Amenity circumstances ( 

temperature room) (Amb) 

All Numeric Hot 

Normal 

Cold 

A current activity and a previous one 

(L_Act and Act) 

 

All Numeric Eating 

Sleeping 

Household 

Walking 

Resting 

Action Classification  Class 

Call/SMS your doctor or physician 

to schedule an appointment and 

review your medical history. 

A condition of alert or if more than 

two vital parameters are within the 

warning range; and (symptoms 

greater than zero, or medication is 

equal to 1) 

Alert 

There is no action. All vital signs are within normal 

 limits. In other words, there are 

Zero - (0) symptoms. 

Normal 

Send an alert to caretakers via 

Monitor or use SMS via phone 

Any vital signs that are in the danger 

zone; or medication that is 1, or 

symptoms that are greater than 0 

Warning 

Call an ambulance, oxygen, a 

doctor, or anyone else who can help 

in an emergency. 

More than two alert range vital signs 

and (symptoms greater than 0, or 

medication is equal to 1) 

Emergency 
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Exercising 

Symptoms (Symp) All Numeric 0–62 

Class Numeric/Categorical 

 

Emergency 

Warning 

Normal 

Alert 

Medication (Med) Boolean Value True (Taken) / False (Not Taken) 

3.3.2. Setup of the Experiment Environment 

All tests were carried out on the same computer system with 8 GB of memory, which has an Intel 

Core i3 with a clock speed of 2 GHz. The software environment consists of version 3.7.7 with 

required Python packages for machine learning, data mining, data visualisation, and mathematical 

calculations. Graphics drivers are set up in a 64-bit version of Microsoft Windows 10. The 

implementation of the models works based on Google TensorFlow and Keras (Keras 

Documentation). It's an open-source software package designed to facilitate the design and training 

of machine learning (ML) models going from simple neural networks to high-level deep learning 

(DL). Due to the possibility of working with very complicated nonlinear systems, DL is the best 

and one of the robust learning models available today. 

For example, Matplotlib, Seaborn (0.9.1), Google TensorFlow (1.11.1), Pandas (0.23.4), 

NumPy (1.16.2), SciPy(1.1.0), Scikit-Learn (0.20.1), and Keras (2.2.4) were utilized to build the 

models (3.0.2). The development and deployment of LPM at Layer 2 is in local environments. The 

model located in Layer 4, in the cloud platform, is built and deployed using GCP resources cloud 

masters of labour welfare [48-49]. 

Core Technologies Used in SPMR: 

• IoT Sensors: IoT Sensors gather vital patient info and environmental values such as blood 

pressure, temperature and heart rate. 

• Cloud Platforms (GCP): Using Google Cloud Platform is suitable for data storage that 

expands as required, preparing models and performing analytics in real-time. 
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• Machine Learning Algorithms: The algorithms used are MLPs, CNNs and RNNs. All of 

them are optimized with the use of CCE. 

3.3.3. Key Benefits of the Proposed SPMR Framework 

• The system notifies healthcare providers right away when patient status changes, so care 

can be given faster. 

• Automated classification and prediction allow healthcare workers to stop watching patients 

carefully, as the machine does this job continuously. 

• By adding both medical data and the context of activity and surroundings to the model, the 

predictions become both more accurate and significant. 

• Even when the cloud is down, the system can track the environment and act offline from a 

local source. 

• All sensitive patient details are encrypted and only those permitted by access control 

measures can see them. 

3.4.Chapter Summary 

The chapter presents the Smart Patient Monitoring and Recommendation (SPMR) framework, 

which brings together AI, IoT, DL, and cloud computing for real-time monitoring of patient health. 

It describes a four-layer architecture-AAL, LIP, CMM, and CAM-functioning to support data 

collection, processing, and predictive modeling. The framework differentiates one for the accurate 

forecast of the state of health by employing advanced DL methodologies such as the Lifestyle 

Prediction Mechanism (LPM) and Cloud Predictive Models (CPM). Security procedures, 

experimental setups, and methods for collecting data are also discussed, emphasizing the SPMR 

capability for personalized and efficient healthcare management. 
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Chapter 4: Performance Evaluation of the Proposed Real-Time Vital 

Sign Monitoring System 

Overview 

In this chapter, an evaluation of the Smart Patient Monitoring and Recommendation (SPMR) 

framework efficiency will be unveiled. It opens with an introduction to using deep learning models 

for patient state classification and prognosis, which helps notify healthcare providers and support 

agencies. The analysis provides a comparative performance evaluation of local and cloud-based 

deep learning models and offers a consolidated evaluation against other classifiers in relevant 

works. Different optimization techniques in improving SPMR's performance are examined, 

including optimization methods, feature engineering, data augmentation, ensemble models, 

dynamic updating of models, adaptive thresholds with external data source integration, 

continuous monitoring, and assessment. 

4.1. Introduction 

To assess the performance status of the models suggested for SPMR purposes, numerous 

simulations were performed with diverse optimization setups. Classifying and forecasting the 

patient's status using the DL and CCE-based model in layer 2 keeps the doctors, carers, and 

assistance agencies notified [50-52]. Layer 4's CPM utilizes DL and performs similar duties as 

LPM. The work should be allowed to cover the performance comparison of both respects to each 

other for the successful identification of the patient's health state for proper recommendations for 

the patient. Therefore, this comparison covers both local and cloud-based models [53-58]. 

Comparison of DL+CCE with other classifiers developed in denomination or 

contemporary works is also present (see Table 10) [59-61]. The confusion matrix serves as the 

primary source of almost all data-mining parameters. Figs. 14a-c shows the CPM confusion matrix 

over cloud obtained for three patients on account of multiple classes addressed. 

Table 10. A comparison of this research to another recent study. 

Ref Experiment data Findings Results 
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[1]  Neural network design, hybrid logistic 

regression, feature extraction, and 

watermark embedding 

Chronic Kidney disease 

factors 

Accuracy = 

97% 

[8] DecisionTree 

ANN, SVM, and Ensemble are all 

examples of machine learning 

techniques. 

Data on physiology and 

context 

Accuracy = 

92% 

[14] Perceptron with Multiple Layers 

(MLP) 

Vital statistics 

Monitoring the context 

with AAL systems 

Accuracy on 

average = 

92.58 percent 

FPR for P1 

equals 0.117; 

FPR for P2 

equals 0.025; 

and FPR for P3 

equals 0.095. 

[20] Methods of sampling; Ensemble; Nave 

Bayes (NB) + SMOTE; SVM + 

SMOTE 

Data on vital signs in 

context 
Accuracy of NB + 

SMOTE = 92.5 percent 

Accuracy of SVM + 

SMOTE = 84.4 percent 

[21] One-class support vector machine 

(OCSVM) 

 

Vital parameter sign 

Monitoring of the ECG 

Accuracy = 91% 

This study Deep learning prediction 

Optimization of categorical cross 

entropy in a novel way 

AAL systems collect vital 

signs and patient context 

data. 

F-score (Emergency) = 

0.91–0.97 DL + Novel 

CCE (patient side): 

Accuracy = 99.93% 

Accuracy = 99.96% F-

score (Emergency) = 

0.9–0.97 

 

(a) 
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(b) 

 

(c) 

Figure 14. (a) Confusion matrix generated by Cloud Predictive Modeling (CPM) for an 

individual with hypertension (P1), (b) Confusion matrix for hypotensive patient (P2) and (c) 

Confusion matrix for a normal patient (P1) (P3) 

In seeking avenues to further enhance the performance of the Smart Patient Monitoring and 

Recommendation (SPMR) framework, several strategies can be explored: 
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• General techniques of optimization: Engineered to continuously adapt and implement the 

latest optimization techniques for DL models in the SPMR. Investigating alternative 

optimization algorithms, or even fine-tuning an existing one, to realize even faster 

convergences and gains in model performance. 

• Feature engineering: Deep feature engineering to find new relevant features that can boost 

predictions. Investigate contextual features, act of the patient, or life indicators that can 

provide insight toward health status in general, leading to a more reliable prediction 

capability of the system. 

• Data augmentation: Explore data-augmentation techniques in increasing both dataset size 

and diversity artificially. The model may be developed further against data imbalance 

challenges by augmenting the dataset with manipulated instances for further robustness of 

predictive models. 

• Ensemble Models: Investigate ensemble learning techniques that consist of combining 

multiple models to generate a final prediction. The ensemble model can, at times, 

outperform its individual counterparts by pooling strengths. Employing an ensemble 

approach to combine the LPM and CPM together would improve forecasting accuracy. 

• Dynamic execution: Build technologies enabling dynamic model updating through 

continuous learning. The model could be updated instantaneously when new data- on the 

evolution of patient engagement and healthcare-and a patient-centric model, becomes 

available. 

• Adaptive Thresholds: Investigate the establishment of adaptive thresholds for urgency 

classifications. Carefully individualize these sensitivity and specificity thresholds based on 

the pertinent health conditions or characteristics of various patients. This individualization, 

in turn, will contribute to better and clearer alerting mechanisms other data sources would 

be considered for integration, including current weather data, air quality data, or another 

environmental influence for a clearer contextual understanding of a patient's health. 

• Ongoing Monitoring and Assessment: Establish meaningful routines or processes for 

continuous model evaluation and assessments.  Develop the modes of feedback loops to 

enable the system to learn from outcomes and areas of improvement and change over time. 
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These explorations will help in not only ensuring the highest performance of SPMR but also 

adapting to the emerging demands in healthcare monitoring, thereby innovating iterative 

improvements for accuracy, efficiency, and adaptability. 

4.2.Performance Metrics 

Predictive models are evaluated based on the factors that best identify their predictive models 

Precision, F-measure, and Categorical Precision are the best metrics for assessment. An essential 

indicator for model comparison and demonstration of efficacy is the F-score (average) and the F-

score of the Emergency class. This F-score is often used to illustrate the efficacy of SPMR in 

emergency instances. It is the average of the F-scores produced from ten runs of the experiment 

using test data, which is the F-score (avg.). Only data from the Emergency class is used to calculate 

an F-score (Emergency). 

4.2.1. Accuracy of Prediction: Accuracy of prediction indicates how correctly the system 

performs. When accuracy is high, most predictions are correct which helps prevent 

mistakes in clinical monitoring. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠
 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

False Negative, True Positive and False Positive are all abbreviations for the same thing: "True 

Positive." A comparison of the accuracy of the predictions is provided (see Fig. 15). 

 

Figure 15. Predictive accuracy is compared against current research. 
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4.2.2. Representation F-Score 

Using the F-score or F1-score, is a way to examine how well the model is predicting on a specific 

dataset. We are now performing an evaluation of binary classification tools that classify instances 

as either positive or negative. It is found by averaging how accurate and how many are correctly 

identified by the model. 

• F-score (Average): Harmonic mean of precision and recall which helps give a fair 

measure. It gives useful insight when classes are disproportionate which is typical in 

healthcare data. 

• F-score (Emergency): F-score (Emergency) which is vital, tests whether the model is able 

to detect emergency cases for timely action. 

Search engines and various machine learning models, especially in conjunction with natural 

language processing, are usually rated by means of the F-score. 

 

Figure 16. P1, P2, and P3, the average F-score (Average) is compared to work done in the last 

one year. 
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Figure 17. Analysed in comparison to more current work over a period of one year, F-scores for 

P1, P2, and P3. 

Fig. numbers 16 and fig. number 17 represent the mean F-score and the F-score for emergency 

cases, respectively. 

𝐹 −  𝑠𝑐𝑜𝑟𝑒 =
2 ∗  (𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙  +   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
  

4.2.3. Representation Of Precision: 

True positives among all the times the model predicts positive. It makes fewer false alerts, 

increasing confidence in alarms among clinicians. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

4.2.4. Sensitivity/ Recall 

The capacity to spot real positive instances. Crucial for not missing any emergency. Statistics uses 

the term "sensitivity" to mark how accurate a binary classification is. Even so, the idea of "recall" 

is most commonly related to information engineering. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =      
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
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4.2.5. Comparison, Discussion and Results 

Integrating Deep Learning (DL) with a novel specific Categorical Cross Entropy (CCE) 

optimization in SPMR yields remarkable performance and convergence. Proposed SPMR, 

therefore, has manifestly improved accuracy over all patients compared to existing studies. The 

sensitivity ranges from 0.79 to 0.93 when looking at alternative models. It is notable that SPMR's 

Local Predictive Model (LPM) is an outstanding performer in hypertenive individuals, achieving 

a markedly high F-score (emergency); while the Cloud Predictive Model (CPM) slightly 

outperforms a bit in hypotensive and normotensive patients. All classifiers achieve an average F-

score above 0.90, which is a testament to the ability of SPMR to predict emergencies, alerts, 

warning signals, and normal occurrences despite data imbalances. 

The validation phase of the study carried out on "Smart Patient Monitoring and 

Recommendation (SPMR) using Cloud Analytics and Deep Learning" encountered a few 

limitations and constraints along the way. One such limitation involved the long-term monitoring 

data for patients suffering from chronic diseases, specifically high blood pressure, collected using 

the Internet of Things (IoT) sensors. There simply is not sufficient data available to create a sound 

and diverse dataset to train and test the SPMR framework. Moreover, the imbalance in the 

categories within the database, particularly regarding emergency and alert incidents, affected the 

performance metrics also. These shortcomings undoubtedly stress the need for further in-depth 

investigations and data-collection strategies that are all focused on enhancing the robustness and 

generalizability of the proposed framework to real-world healthcare provision. The validation 

phase provided an excellent opportunity for identifying these constraints, thus giving a proper basis 

for improvement and future development in these smart patient monitoring systems. Also, in Table 

11 we have added a summary of all above evaluation metrics. 

Table 11. SPMR Evaluation Metrics Summary. 

Model/Method Accuracy (%) F-score (Avg) 

F-score 

(Emergency) Precision 

Recall 

(Sensitivity) 

DL + CCE (SPMR 

Local - LPM) 99.93 0.94 0.91 High 

High 
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DL + CCE (SPMR 

Cloud - CPM) 99.96 0.95 0.97 High 

High 

● To show the effects of the SPMR framework, we have added different clinical impact 

scenarios from real patient instances. In fact, the system is accurate to 99.96% and can spot 

changing vital signs as an emergency with a score of 0.97. So, if one of these patients shows 

signs of trouble, the caregivers would be alerted to take action more quickly. Using these 

technologies means healthcare staff can focus more on cases that need the most attention. 

4.3.Cloud Analytics Infrastructure 

In this section, we bring to the open light the very important elements that will comprise the Cloud 

Analytics Infrastructure platform that is called "Smart Patient Monitoring and Recommendation( 

SPMR) using Cloud Analytics and Deep learning" in the field of healthcare innovation. This is 

done with the idea of advancing innovations that over-depend on the advent of Cloud computing 

facilities ever since. Leveraging the technology of DL and a cloud-based analytical structure, this 

is a sophisticated platform for real-time prediction and provision of continuous monitoring on the 

authentic health status of the patient. The incorporation of Categorical Cross Entropy (CCE) 

Optimization within the DL component emphasizes how this is very much aligned with working 

rationally so as to gel with real-world health conditions. Most importantly, SPMR will still render 

real-time preventive measures irrespective of the Sun Surfaces Internet or cloud services being 

unavailable, streaming information through seamless mode of operations. Comparative analysis 

vis-a-vis similar setups undoubtedly points to SPMR's model's performance in heightening 

accuracy along with more improved F-scores. Insightfully, this section gives an insight into taking 

forward Cloud Analytics Infrastructure of SPMR by showing how practical could being 

compatible with different platforms and technologies will enrich the newer healthcare monitoring 

systems. 

4.4.Chapter Summary 

The chapter assesses the merits of the performance of the SPMR framework through simulations 

and comparisons with some other models. It describes deeplearning with categorical cross-entropy 

optimization, having very high accuracy in predicting patient health states and proper 

recommendations for their timely outflows. Strategies are given for enhancing the performance of 
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the framework, as well as challenges during validation, like data scarcity and unbalanced data sets. 

The chapter provides a conclusion that mentions the robustness of the SPMR framework, 

mellowing it down to real-life healthcare situations inherent to its cloud analytics infrastructure. 
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Chapter 5: Securing Healthcare Infrastructures: Machine Learning 

Solutions for Healthcare System Integrity 

Overview 

This chapter investigates HealthGuard, a machine-learning-oriented security solution for Smart 

Health Systems (SHSs). It begins with an introduction to the ever-expanding importance of health 

care systems, the background of SHSs and their vulnerabilities, an argument on the problems in 

scope, an outline of the HealthGuard system, and an evaluation of its performance using different 

parameters. 

5.1. Introduction 

As the global population ages and healthcare expenses continue to rise, the need of a reliable 

healthcare system has become more apparent. Indeed, the most recent estimates indicate that the 

global healthcare industry's overall expenditure on medical services would reach $53.65 billion by 

2025 [1]. More precise diagnoses, more efficient treatments, and technology that improves 

everyone's quality of life have all been made possible by recent advances in medical technology. 

Therefore, Medical facilities are becoming ubiquitous and intelligent, owing to the fast 

development of Internet of Things devices and high-precision medical sensors and applications. 

More and more, Smart Healthcare Systems, or SHS, are finding uses outside of the traditional 

healthcare sector. In addition, SHSs include wearable and implanted medical devices that may 

collect, store, even when the individual in question is not in the hospital, examine a variety of 

physiological information [2]. 

By establishing connections to adjacent devices or the online, SHSs may identify medical concerns 

sooner or perhaps prevent them [3]. This includes gadgets like activity trackers, glucose monitors, 

wristwatches, and more. Healthcare providers might therefore benefit from SHSs in meeting the 

rising demand for healthcare systems that are more effective and error-free.  

Despite SHSs provide several advantages because to advancements in technology, they are also 

vulnerable to many cyber threats. One reason is that healthcare statistics tend to be more more 

comprehensive compared to those regarding other industries, like retail or finance. An illustration 

of a security issue is the need to disable the wireless pacemaker of an individual connectivity in 
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order to avoid attackers [4]. Academic research has shown many cyber attacks against 

commercially available implanted cardiac defibrillators (ICDs) and IMDs [5]. An intruder with 

access to an IMD or ICD might compromise medical operations or alter current ones. Finding a 

happy medium between privacy, usability, and security could be challenging in the healthcare 

sector. Any problem with someone's trustworthiness has to be dealt with swiftly and firmly due to 

the possibly fatal consequences. 

Researches in information security, makers of medical devices, and regulatory authorities must, 

therefore, immediately devote their whole focus to this matter. No comprehensive, uniform method 

to protect SHSs against harmful assaults has been proposed, despite the researchers' best efforts 

[6]. To combat these growing threats and SHS shortcomings, this research introduces 

HealthGuard, a novel security architecture that can detect malicious behavior in a SHS. We built 

our framework on the premise that a certain collection of medical devices has to be updated for 

every alteration in a patient's bodily functions. For a complete picture of the patient's health, 

HealthGuard keeps tabs on all of the SHS devices separately and compares their vital signs. In 

order to differentiate between healthy and diseased states, HealthGuard may also make use of other 

biological activities. To find malicious actions in a SHS, HealthGuard uses a number of detection 

techniques based on Machine Learning (ML). In order to train HealthGuard, an AI system, eight 

smart medical technologies and twelve innocuous activities were used. Furthermore, HealthGuard 

was subjected to three distinct assault types. Using an F1-score of 90% and an accuracy of 91%, 

HealthGuard was able to successfully detect dangerous activities in a SHS.  

Research Contributions: We have made a difference in three ways: 

• This chapter introduces HealthGuard is a computerized learning-based security of data 

solution to identify risks related to SHS. The authors of this research created HealthGuard. 

HealthGuard may detect hazardous behaviors in a (SHS) smart healthcare system by 

analyzing the relationship between tracking the vital signs and a patient's distinct bodily 

functions from different smart medical equipment. This is crucial for the detection of 

detrimental actions. 
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• A total of nine databases and twelve safe exercises were utilized in HealthGuard's training. 

The acts consisted of seven behaviors that are typical of users and five behaviors that are 

linked to disorders. 

• We tested the performance of HealthGuard by exposing it to three distinct threats.  

• Our comprehensive investigation reveals that HealthGuard exhibits a high degree of 

precision and achieves an F1 score in detecting various threats to the intelligent healthcare 

system. 

5.2.Background 

In this part, we give a brief introduction to a self-healing system (SHS) and go over the many 

design suppositions and considerations that we have made. 

5.2.1. A Smart, Networked Healthcare System 

A single device for healthcare or a system (SHS) of devices that employ several sensors to collect 

information about a patient's body and environment are referred to as smart health systems. Then, 

using this data, therapy decisions are made on their own. 

Integrating wired or wireless technology to promote the sharing of data and information 

between individuals and medical professionals may benefit the healthcare system in a number of 

ways. These benefits include improved availability of therapy, enhanced care quality, and 

increased overall effectiveness of the system. Examples of such technologies are Zigbee and 

Bluetooth. The intelligent healthcare system may include various intelligent medical devices, 

including wearable technology, wireless technology, implantable gadgets, as well as others. Our 

study focuses on self-heating systems (SHS) across a range of devices. 

SHS considers not just the aforementioned instruments, but also other additional non-medical 

aspects, like the patient's geographical location and physical state. To accurately forecast the 

outcome of an issue (such as a sickness or physiological condition). At this location, the devices 

gather a range of crucial measurements from the patient to give a thorough assessment of their 

health. Figure 17 illustrates the process of collecting, examining, and converting essential 

physiological measurements into digital format. This process occurs in order to get them ready to 

be sent to a Central Data Processing Unit (CDPU) via network packets [16]. The CDPU utilizes 
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data sent by intelligent medical devices to track patients' overall well-being and promptly alerts 

clinicians in case of a medical crisis. CDPU has the authority to use independent judgment in some 

situations, such as determining whether to suggest a new drug or modify a patient's dose. The 

patient's heart and brain activity are tracked in Figure 18 using an EEG and a cardiac rhythm 

monitor, respectively. If the patient's health or condition changes, the ECG and electrical brain 

wave patterns will also alter. Observing a change in the ECG or EEG signal by a medical 

professional might potentially suggest the presence of cardiac issues. In addition, SHS has the 

capability to identify and manage a range of predetermined conditions (such as atrial issues, 

myocardial infarction, etc.) without human intervention. 

5.2.2. Multisystem Involvement in Healthcare Analysis 

Whenever one organ isn't working adequately, it could have been possible a cascading impact on 

the whole functioning of the body [17]. An abrupt increase in heart rate may result in symptoms 

such as palpitations, breathlessness, and potential impairments in the functioning of other organs. 

Due to the ability of SHS to monitor many biological processes at the same time, any dependency 

between these processes may be identified and used as a characteristic for diagnosing the problem. 

The interconnectedness of body function is considered a characteristic for detecting aberrant 

behavior in SHS. Examples of among the risk factors for cardiovascular disease include sedentary 

lifestyles, tobacco use, and high blood pressure. The primary organs of focus are the vascular 

system, the nervous system, and chronic renal disease. Elevated blood pressure has been associated 

with sleep apnea, unfavorable drug responses, chronic renal illness, and other diseases [18]. An 

electroencephalogram (EEG), blood pressure, perspiration, glucose, oxygen, and sleep monitoring 

data can all be used to validate a patient's high blood pressure. 
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Figure 18. A Prototype of Intelligent Healthcare Framework. 

5.2.3. Exploring Deviations in Behavior 

In order to detect and categorize abnormal activity, it is essential to first define the criteria for 

determining what is considered "normal" behavior inside the system. Investigating Anomalous 

behavioral trends is very compatible with a intelligent architecture for healthcare security due to 

its ability to identify previously unknown attacks. Obtaining accurate information about typical 

behavior while minimizing the occurrence of false positives is a major challenge when using an 

analytical method in a smart home system (SHS). Our proposed answer to this problem is to 

analyze the devices for abnormal behavior depending on health and activity, with a focus on the 

patient's needs. During physical exercise, an individual's heart rate rises, oxygen levels decline, 

breathing rate accelerates, and certain brain waves undergo predictable changes. An effective 

security framework for a smart home system (SHS) should possess the ability to analyze the vital 

signs collected by connected smart health devices. By interpreting these vital signs, the framework 

may determine if the activity is normal or suspicious, based on its knowledge of the ongoing 

physiological operations of the human body. To understand the harmless acts and identify 

hazardous situations in a smart home system (SHS), we consider a range of everyday user 

behaviors and important bodily signs for certain illnesses. For example, a blood pressure monitor 

will emit a warning if an individual with healthy blood pressure eats meals that are high in 

cholesterol and the measurement exceeds 120 mm Hg on the systolic side. 
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By examining user habits and usage patterns, we take into account both the normal as well as 

disease-affected state of the equipment while building the foundation of HealthGuard. 

5.3.Problem scope 

At this point we offer an example of use to illustrate the variety of challenges that HealthGuard 

addresses. Moreover, we outline the several hazards examined by HealthGuard that might 

potentially pose a threat to SHSs. 

5.3.1. Scope of the Problem 

To get a perspective on the magnitude of the issue we are dealing with, let's consider a scenario 

where a (P) patient is brought to the medical facility with a complaint of prolonged chest pain. A 

secondary school is now under construction, equipped with several intelligent medical devices in 

order to keep an eye on the patient, essential indicators in case of an outbreak. To evaluate the 

electrical activity of their brain, P is outfitted with a number of monitoring devices, such as a 

magnetic resonance imaging (EEG), an oximeter for pulse and an ECG monitor. Furthermore, we 

assume that the system is entirely impervious to breaches and that no compromised devices have 

been introduced. Ultimately, the system is set up to quickly notify the physician and administer 

the necessary medical care in the case of a sudden change in the patient's pulse or rhythm. The 

electrocardiogram (ECG) ultimately alerted the doctor to the gradual decrease in heart rate 

irregularities. A brain scan and a device called a pulse oximeter readout, however, show normality, 

and the patient shows no signs of a change in heart rate. 

At this location, we provide HealthGuard, an exceptional framework for security that can evaluate 

the overall condition of the SHS and determine whether it has been targeted by an assault. 

HealthGuard effectively addresses many security concerns associated with SHS: (1) Is this 

warning originating from a solitary intelligent medical gadget, and is it benign or harmful in 

nature? Does the number (2) indicate the device's alert that indicates the presence of illness? Are 

there any external factors (natural or man-made) affecting the individual's vital signs? (4) The 

reliability of a system's pre-established course of operation (such as dispensing a fresh dosage of 

medicine). By tracking several interrelated patient vitals, our suggested framework may assess the 

system's overall health. Our technique does not depend just on the outcomes of a single device to 
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assess a patient's well-being. Instead, it considers a diverse array of interconnected indications. 

HealthGuard can also identify whether the system has been affected by an external source and alert 

the clinician to halt any possibly dangerous treatment. 

5.3.2. Model threat 

HealthGuard considers deceptive device behavior that might result in abnormal SHS operation, 

such as an unauthorized user altering the device's statuses. This part [19] provides a comprehensive 

analysis of the most severe scenarios that our work may encounter in terms of possible assaults. It 

considers the attackers' ability to disrupt, tools for disclosing information, and understanding of 

the system model. An assailant has the capacity to interrupt the functioning and accessibility of a 

system by interfering with its resources. Additionally, by breaching the system's privacy 

safeguards during an attack, they could get sensitive information about it. An assailant with a 

comprehensive comprehension of the system model has the capability to execute intricate assaults. 

To illustrate the 3 distinct characteristics of the malicious act environment that caught our 

attention, we selected three distinct assault types.  

The paradigm of threat we have includes three instances of fraudulent data injection, two instances 

of DoS assaults, and one instance of compromised medical equipment. An adversary having prior 

knowledge of the system and access to disclosure resources may execute a phony data injection 

attack. A denial-of-service (DoS) attack might only result in disruption to a resource, an assault 

carried out using compromised technology has the capability to both interrupt the resource and 

cause harm. For the purpose of simplifying the modeling process, we categorize possible hazards 

into three distinct classes: 

• Firstly, there is the potential for detrimental conduct, whereby an assailant is present and 

introduces fabricated data to execute malicious actions that modify the patient's 

physiological condition. There is a risk that false information may be inserted into a 

medical device [20]. 

• Furthermore, the installation of a malicious application might potentially introduce 

dangerous behavior into medical equipment, namely by preventing keeping the gadget 

from going into a state of sleep. Such a risk is an example of an attack carried out via the 

use of compromised equipment [21]. 
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• • Thirdly, acts with malicious intent If an assailant were there and able to tamper with any 

medical gadget nearby, it may momentarily become unworkable. There is a danger of a 

Denial of Service (DoS) attack [22]. 

Note: HealthGuard unquestionably offers no defense against passive threats like packet collection 

or eavesdropping. We are also positive that the SHS data is secure. 

5.4.Introduction to the System Architecture 

We give a brief introduction of HealthGuard here. HealthGuard's 4 primary parts are as follows: 

The system is made up of four parts: the first part is in charge of gathering data, the second part 

preprocesses the data, the third part finds abnormalities, and the fourth part controls actions. These 

components are represented in Figure 19. Information is gathered by the information collector 

module from a variety of advanced medical devices. Each of the devices in this collection offers 

data on a different aspect of the person's vital indicators. 

These disparate pieces of information are combined in the information compilation module to 

create a single array that depicts the patient's current state. To determine whether malicious activity 

is present inside the SHS, the detect anomalies module makes use of the array produced by the 

data preparation module. 

Finally, the hazardous behavior of the SHS is reported to the appropriate staff using the action 

management module. Below, you will find information on these parts. 
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Figure 19. A diagram representing smart healthcare system example 

5.4.1. Module is being used to Collect Data 

Data from many SHS medical devices is collected using the information module collector. A Smart 

Home System (SHS) allows for the networking and synchronized operation of several devices. 

The data collector module utilizes these sensors to aggregate details about the patient and securely 

keep it in a database system. Considering the data collected by all devices, the above equation may 

be utilized to describe the material acquired from each device: 

Data of Device, A = E1, E2, E3, .... En     (1) 

The set of device features chosen at time t1 is represented by E1, a group of device characteristics 

chosen at period t2 by E2, and so on. The information purification module receives a variety of 

data from each device for testing and integration with other data. 

5.4.2. Cleansing and Structuring Data 

To create a dataset with a variety of characteristics and combine them into a single array, the 

information collector module sends the information gathered to the cleaning of data module. To 

give a comprehensive picture of a patient's health, the data gathering module compiles readings 

from many sources. When integrating data, certain health metrics and evidence are taken into 

account.  
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Samples are collected at the appropriate pace for each unique medical equipment by the data 

preprocessing algorithm. An individual's heart rate can be measured in beats per minute using a 

heart rate monitor. An electrocardiogram (ECG) monitor, however, measures a patient's heart 

rhythm and rate every ten seconds. The data compilation module creates just one array from 

different devices by combining the data samples, which are frequently per-minute data. The data 

array serves as a temporary log of a SHS's (Solar Home System) overall performance. This 

collection may be stated mathematically as: 

Array of Data, D = {Dev1, Dev2, Dev3, ............ Devn}    (2) 

where Dev1, Dev2, ......, Devn is the collection of information collected from Device1, Device2, 

......, on a minute-by-minute basis. After that, the anomaly detection module receives the data array 

and uses it to train the statistical model that will detect dangerous conditions in the SHS.  

5.4.3. Module for Identifying Irregularities 

The data palettes produced by the preceding module might be used by the detection of anomaly 

module to train various algorithms for machine learning (ML) that could identify anomalous 

activity inside the SHS. 

When deciding on ML methods for HeatlhGuard, we took into account two factors: quick 

computation/detection and straightforward use. Because delays in anomaly identification might 

have catastrophic consequences for patients, minimizing computation/detection time is crucial. 

The ML algorithms employed in the anomaly detector must be easy to construct since smart 

healthcare devices have limited processing capacity. These criteria were met by the Decision Tree 

(DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Random Forest (RF) 

algorithms, which are also quick to calculate and easy to use [31], [32]. Below, we provide a quick 

overview of the ML techniques we used and the reasoning behind our decision to use them. 

The artificial neural network (ANN) is a computational model developed by scientists to detect 

anomalies. It is inspired by the structure and operation of real neural networks in the brain. This is 

done by creating a relationship map that tracks changes in the attributes of a dataset in a manner 

similar to how biological neurons follow each other [33]. The Multi-layer Perceptron (MLP) 
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approach was used to train the HealthGuard framework since our categorization is multiple-class 

rather than single and because it is a task requiring supervised learning. 

To solve issues of regression and classification, decision trees (DTs) employ a non-parametric 

modelling strategy. This is done by creating a relationship map that tracks changes in the attributes 

of a dataset in a manner similar to how biological neurons follow each other [33]. The Multi-layer 

Perceptron (MLP) approach was used to train the HealthGuard framework since our categorization 

is multiple-class rather than single and because it is a task requiring supervised learning. Due to 

the inherent hierarchical structures in the HealthGuard dataset, we conducted extensive testing 

using a decision tree. 

Random Forest (RF): An ensemble classifier that uses a large number of decision trees to construct 

its models is called a random forest. A randomly chosen subset of the entire training data is used 

in this instance to train every single tree. For the multi-class classification task [35], we opted for 

random forest since it provides a more accurate and reliable prediction. 

The K-Nearest Neighbors (KNN) algorithm is a form of instance-based learning that remembers 

just the training examples. On the other hand, it does not produce a unique model for categorising 

data. Each test sample is assigned to the same class as its nearest neighbor after the gap among 

every test and training sample is calculated. Because it takes minimal time to train on multi-class 

data sets, we chose K-nearest neighbor [36]. 

How non-technical readers can understand ML-based anomaly detection is this: patient 

data collected from various smart devices is then structured by the system. Using algorithms like 

Decision Trees, KNN, ANN and Random Forest, computer systems look at the data from health 

record systems and understand the usual metrics. When they are trained, these models find unusual 

events or problems that might mean someone is up to something wrong or something is wrong 

with the system. In case a heart monitor finds an unusual heart rhythm in sleep and doesn’t detect 

any stress sign, the model highlights it as concerning, relying on brains trained on past data. It 

reduces the chance of false alarms and detects threats in the moment with context. 
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5.4.4. Action Processing Module 

If any dubious behavior takes place inside the SHS, HealthGuard's action management module 

will alert the medical staff. HealthGuard stops the automated response to the system's autonomous 

decisions when it identifies that they are the result of malicious activity, therefore averting 

undesirable outcomes. 

5.5.Evaluation of performance 

In the following analysis, we evaluate the efficacy of HealthGuard in detecting malicious behavior 

inside a SHS (Smart Home System), and determine the feasibility of such detection. In this study, 

we investigate the efficacy of HealthGuard in preventing attacks by posing a range of research 

inquiries.  

• How well does HealthGuard differentiate between interactions involving sick and healthy 

users? (See Section 5.5.3) 

• How effective is HealthGuard in detecting different types of attacks on Smart Healthcare 

Systems (SHSs)? (See Section 5.5.4) 

• How does the large number of devices in an SHS impact the performance of HealthGuard? 

(See Section 5.5.5) 

• How does the frequency of attacks in an SHS affect HealthGuard’s ability to maintain 

security? (See Section 5.5.6) 

 

5.5.1. Methodological Framework and Training Environment 

In order to evaluate HealthGuard, data was collected from eight different Internet-connected 

intelligent medical equipment, including both healthy individuals and those with illnesses.  

An individual's blood pressure (BP), electrocardiogram (ECG), blood hemoglobin (HG), oxygen 

(OX) saturation, neural activity (NA), respiratory rate (BR), sleep (SL), blood alcohol (AL), 

human motion (HM), and blood glucose (GL) were measured using eight carefully chosen smart 

medical equipment. We postulated that a human state of good health was characterized by the 

period including the lowest and greatest values for vital indicators such blood pressure, 

SpO2  and heart rate. HealthGuard will categorize a person as being within a healthy range if their 
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oxygen saturation has hemoglobin levels among 12.3 as well as 17.5 g/dl and ranges from 94% to 

99%. Table 12 presents a concise overview of the devices together with a subset of their pertinent 

attributes and sources of data. Furthermore, we considered five specific scenarios of disease to 

provide a comprehensive understanding of how SHS might typically operate in such 

circumstances. From the selected smart medical devices, we gathered information on blood 

pressure, cholesterol, sweat rate (SW), oxygen saturation (O2), and glucose levels. 

A set of equipment, each specifically intended to identify a certain symptom of a disease, may 

yield readings that are unusually elevated or reduced, accordingly. 

Table 12. Analysis of Devices and Parameters for Monitoring Health Conditions. 

Resource List Kinds of Device 

Surveillance 

Framework Data Source Feature Metric 

[23] Systolic and 

Diastolic Pressure & 

Pulse Rate 

Automated Blood 

Pressure Reader 

Fetal ECG Data from 

Data.Gov 

Diastolic (80 mm 

Hg) and Systolic 

(120 mm Hg) 

minutes per beat (60-

100) 

[24] O2 Saturation Smart Oxygen Level 

Monitor 

Exploring the Trends 

in Oxygen Saturation 

Variations 

Level of SpO2 ≥ 

94% 

[25] Glucose Level MiniMed 670G 

Insulin Delivery 

System 

UCI Diabetes 

Classification Data 

Blood glucose range 

of 70 to 130 mg/dL 

[26] Kinetic Activity and 

Nocturnal Rest 

Fitbit Versa 

Wearable Device 

CAP Sleep Patterns 

Dataset 

Stages of Sleep: 

NREM and REM 

[27] Blood Hemoglobin Hb Hemoglobin 

Analyzer by 

Germaine 

Hemoglobin Data 

from DHS 

Between 12.3 and 

17.5 g/dl 

[28] Cognitive Activity Emotiv Insight EEG 

Device 

Event-Related 

Potential (ERP) and 

Electroencephalogra

m (EEG) Data 

ERP/EEG data, delta 

(0.5–4 Hz), alpha 

(8–12 Hz), theta (4–

8 Hz), and beta (16–

24 Hz) 

[29] Alcohol Content in 

Blood 

Halt Continuous 

Alcohol Detection 

Dataset from 

StatCrunch 

Eight hundredths of 

a gram per deciliter 

[30] Breathing and 

Perspiration Rate 

Qardio Heart 

Monitor 

BIDMC PPG and 

Respiration 

Monitoring Dataset 

Breaths per minute 

(range 12–20) = 0.5 

microns per minute 
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per square 

centimeter 

HealthGuard categorizes and recognizes this information as "data influenced by disease," whereas 

the SHS regards it as usual. Table 13 presents a comprehensive list of disorders along with their 

corresponding treatment alternatives. 

Table 13. Condition of the device in disease-affected environments. 

Ref. NA  BP  H

M 

SL  SW OX  HG  BR  GL AL  EC

G  

Kind of Disease 

[37] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ Elevated Cholesterol 

Levels 

[38] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ Oxygen Deficiency 

[39] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ Ab✗rmal Blood Glucose 

Levels 

[40] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ Profuse Sweating 

[41] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ Increased Blood Pressure 

The training was done against the backdrop of seven traditional user behaviors; walking, exercise, 

slumber, stress, drunkenness, heart attack, or stroke. Depending upon the chosen activity, the 

physiological signals of a group of devices tend to be different [42]. The heart rate will increase; 

blood sugar levels as well as oxygen levels will drop; sweating rates increase; brain waves will 

alter for an exercising person. Physiological responses to stress have been shown to consist of 

increased blood pressure and heart rate, increased breathing and sweating rate, and activation of 

one specific part of the brain [43]. As these activities don't put the system at risk, and are performed 

by relatively responsible users, we have labelled them standard SHS activities. A summary of 

health-imposed user actions under consideration by HealthGuard is provided in the table 14. 

Table 14. The state of the device in normal activity situations. 

Ref. NA AL  HG HM SW   OX  BR GL BP  ECG  SW Disease Type 

[42] Yes No No No Yes No Yes No Yes Yes Yes Stress 

[43] Yes No No No No No Yes No No Yes No Heart-Attack 
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[44] No No No No No Yes Yes Yes Yes Yes Yes Sleeping 

[45] Yes No Yes Yes No No No No Yes Yes Yes Stroke 

[46] Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Exercise 

[47] No Yes No No No No Yes Yes Yes No Yes Drunk 

[48] Yes No Yes Yes Yes Yes Yes Yes No Yes Yes Walking 

In order to generate the malevolent dataset, we used the adversary model described in Section 5.3 

to replicate three separate assaults on a SHS. Regarding Threat 1, we envisioned a scenario where 

malicious individuals infiltrate medical devices with fabricated information to execute their 

assaults.  

Our investigation classified a malicious application that disables the sleep function on a 

smartphone as Threat 2, namely a tampered device assault. We simulated a denial-of-service (DoS) 

assault on a smart medical device as our third potential threat. We simulated an assault using 

MATLAB's digital signal processing toolbox and the Poisson distribution. We decide to employ a 

Poisson distribution to categorize the assault scenarios as uncommon events within a sizable 

dataset.  

We gathered a dataset of 20,000 samples in order to fully evaluate HealthGuard. Of them, 

seventeen thousand cases involved both healthy and diseased people, while the remaining three 

thousand instances were data from simulated attacks. The gathered data was split into two equal 

sections: seventy per cent was utilized to train the design, while the other thirty percent served for 

testing along with a dataset that contained detrimental components [49]. 

5.5.2. Metric Performance 

The effectiveness of HealthGuard was measured by researchers using the criteria of Precision, 

Accuracy, F1-score, and Recall. 

Although precision indicates the percentage of valid affirmative identifications, accuracy 

quantifies the extent to which a measured quantity resembles the genuine value of that feature. By 

computing the recall, one may ascertain the true positive rate. One statistic that takes into account 

a test's accuracy and recall is the F1-score. 
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5.5.3. Analysis of activities affected by the disease and those unaffected 

Due to certain factors such as user behaviors and the status of the medical person body (e.g., 

sleeping, exercising, etc.), a person with a Sensory Hyper Sensitivity (SHS) may encounter a range 

of harmless but infrequent sensations. An effective security system must possess the capability to 

precisely detect and classify a diverse range of occurrences. HealthGuard's performance in 

recognizing benign activities was assessed by selecting 7 user behaviors and 5 individuals with the 

illness conditions that offer medical related data. Table 15 displays the evaluation results for many 

philanthropic initiatives. The observed accuracy on the F1score scale varies between 90% and 93% 

across different approaches. By using the DT approach, we achieved a remarkable accuracy rate 

of 93 percent and obtained the highest attainable F1 score. Ultimately, it is evident that 

HealthGuard's use of the RF algorithm resulted in the lowest accuracy rate of 89 percent. The K-

nearest neighbors (KNN) algorithm has a success rate of 90%, whereas the artificial neural network 

(ANN) algorithm achieves a higher success rate of 93%. HealthGuard's use of a decision tree 

algorithm enables it to achieve optimal accuracy and F1 score by effectively identifying non-

threatening behaviors. 

Table 15. HealthGuard’s effectiveness in identifying both benign and harmful incidents in SHS. 

 
Malicious Benign 

ANN DT RF KNN ANN DT RF KNN 

Recall 0.91 0.91 0.86 0.88 0.93 0.93 0.90 0.90 

F1-score 0.89 0.90 0.86 0.87 0.93 0.93 0.90 0.90 

Precision 0.90 0.91 0.86 0.88 0.92 0.92 0.90 0.90 

Accuracy 0.910 0.909 0.865 0.878 0.927 0.931 0.898 0.903 

5.5.4. Testing Under a Number of Attack Conditions 

HealthGuard underwent testing in a simulated healthcare setting (SHS) to evaluate its resilience 

against three primary forms of malicious attacks: tampering with devices, denial-of-service 

assaults, and the insertion of fabricated data. We conducted a comprehensive evaluation of 

HealthGuard by using 3000 distinct examples that accurately mirror the typical methods used in 

attacks. Table 15 shows that, out of all the methods that were studied, the method known as ANN 
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has the best quality (91%) and F1score (89%). It is clear that the F1 score hardly improves (90 

percent), while the DT algorithm's accuracy drops to 90%. Both KNN and RF have accuracy and 

F1 scores that range from 86% to 87%. To put it simply, the ANN algorithm is highly effective in 

identifying a variety of cyberthreats in SHS. 

Table 16. Impact of deployment size on HealthGuard’s effectiveness. 

Device 

Count 4 5 6 7 8 

Algo 

Precisio

n 
F1-score 

Accu

racy 
Recall 

Precisio

n 
F1-score 

Accurac

y 
Recall 

Precisio

n 

F1-

score 

Accurac

y 
Recall 

Precisio

n 

F1-

score 

Accurac

y 
Recall Precision 

F1-

score 

Accurac

y 
Recall 

 

RF  

0.83 0.81 0.839 0.84 0.86 0.85 0.866  0.87 0.91 0.90 0.909  0.91 0.87 0.82 0.851 0.86 0.91 0.90 0.909  0.91 

DT  

0.78  0.77 0.811  0.81 0.82  0.82 0.861  

 

0.86  

 

0.89  0.89 0.9111  0.91  0.84  0.78 0.832  0.84  0.90  0.89 0.910  0.91  

KNN 

0.82  0.78 0.812  0.81  0.84  0.83 0.845  0.84  0.88  0.87 0.878  0.88  0.83  0.78 0.831  0.83  0.88  0.87 0.878  0.88  

ANN 

0.75  0.76 0.772  0.77  0.79  0.79 0.804  0.80  0.86  0.86 0.865  0.86  0.77  0.78 0.777  0.79  0.86  0.86 0.865  0.86  

5.5.5. Assessment of Device Count Variations in HealthGuard 

A SHS has the capacity to support a diverse range of intelligent medical equipment, enabling 

thorough monitoring of user or patient conditions. We modified the configuration of SHS and 

conducted an extensive examination to determine the maximum number of HealthGuard devices 

that may be connected to it (Table 16). Within the context of SHS, it is evident that there is a 

negative impact of device count on performance metrics and both accuracy and F1score, wherein 

an increase in the quantity of devices leads to a reduction in both performance metrics. 

HealthGuard can more effectively identify events by analyzing a greater number of vital signs 

obtained from care receiver/end-user related equipment in the SHS. The ranges of F1 scores and 

accuracy for 8 and 4 connected devices are 77%-89% and 81%-91%, respectively. These results 

demonstrate that the artificial neural network (ANN) functions well. 
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In addition, the decrease in the amount of equipment/devices has a little impact on the F1score and 

accuracy, with reductions of just 7 percent and 9 percent, respectively. In general, Artificial Neural 

Network (ANN) attains the maximum F1score and accuracy for HealthGuard. On the other hand, 

the fewer devices in SHS have a less significant impact on Decision Tree (DT) performance. 

 

(i)  KNN                                                            (ii) DT 

 

 

(iii) RF                                                                  (iv) ANN 

Figure 20. Assessing HealthGuard’s Performance with Multiple Machine Learning Algorithms 
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5.5.6. Analyzing HealthGuard Performance in Simultaneous Threat Situations 

SHS, multiple coordinated attacks can happen on it in unison. We simulates some attacks on 

HealthGuard together for the purpose of the test to show how much the system could deal with in 

term of resistance when subjected to tremendous volumes of attacks. The results of several attacks 

against the HealthGuard are shown in Fig 20. Each of the detection techniques would be rendered 

as efficiently as can be based on the fact that there is only one active assault on the system. The 

accuracy reduces as the number of attacks increases. 

Upon comparing at the results from three scenarios (one, two, and three attacks), it appears that 

ANN always has the highest degree of accuracy. HealthGuard defends against one attack with 

93% accuracy, while two and three concurrent attacks are defended against with 95% and 91% 

accuracy respectively. 

5.5.7. Additional Techniques to Enhance Framework Security  

While HealthGuard relies on machine learning to discover security issues, extra approaches can 

improve the security of SHSs: 

• Blockchain Integration: By adding a blockchain to the device, changes in patient data and 

decisions can be checked and verified by others. 

• Federated Learning: Federated Learning offers an opportunity for model training across 

many healthcare nodes without exchanging confidential information which helps preserve 

privacy and enhances model generalizability. 

• Multi-Factor Authentication (MFA): With MFA, SHS administrators are made less 

vulnerable to unauthorized device control. 

• Behavioral Biometrics: Using the way someone acts while using a device such as their 

typing speed, for consistent authentication. 

• Zero Trust Architecture: To use zero trust, verify everything and everyone that requests 

access, whether they access the network from within or from outside. 

As a result, HealthGuard would be able to handle more kinds of cyber threats, as well as new and 

complex dangers in the digital healthcare field. Because the system uses adaptive threat 
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intelligence, it can detect attacks quickly by understanding and learning from current threats 

worldwide. Ensuring the use of regulatory compliance modules such as HIPAA and GDPR, will 

guarantee that your data is properly handled. In addition, protected APIs and containerization help 

kick out vulnerable parts from accessing the whole system. If HealthGuard has real-time 

behavioral analysis and sets-up automatic responses, it could catch and block hackers before they 

can harm patients or sensitive data stored in the system. 

5.6. Chapter Summary 

In this chapter, HealthGuard introduces a tool with which to fight against the increasing cyber 

threats plaguing Smart Healthcare Systems (SHSs). The author surveys the basic background on 

SHS, defines the scope of security challenges to be faced, explains the architecture and components 

of HealthGuard, evaluates its performance using ML algorithms, and discusses HealthGuard's 

overall effectiveness in detecting and preventing continuous targeted coherent attacks on Smart 

Healthcare Systems, accomplishing and attaining a satisfactory level of accuracy of 91% and an 

F1-score of 90%. 
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Chapter 6: Conclusion, and Future Directions 

Overview 

This chapter is the last section of the research work that is explained in the thesis and highlights 

the major achievements. Furthermore, it outlines the possible directions for the future research 

of the current study. 

6.1. Conclusion 

This thesis introduced the Smart Patient Monitoring and Recommendation (SPMR) system 

as an innovative way to implement real-time health monitoring for patients suffering from chronic 

diseases, such as hypertension and diabetes. The whole SPMR framework was implemented 

separately as both self-hosted and cloud-based, also included not only monitoring, but predictive 

monitoring considering unexpected events such as a loss of power or natural disasters. This feature 

hugely supports the use of the model when in unexpected and unpredictable scenarios. 

The performance of the system was evaluated using Continuous Cross-Entropy 

optimization for deep learning models that decreased prediction error and functionality, and 

convergence. Furthermore, the SPMR was deployed in the cloud on Microsoft Azure. Cloud 

deployment allowed the scaling of cloud infrastructure while information was processed quickly 

and accurately with large, unstructured health datasets. 

The framework provides additional potentially valuable features such as offline learning, 

which effectively encapsulates both aspects of interoperability and compatibility at a higher level, 

and it supports storing and processing large data streams, while being resilient in times of low 

connectivity. Data has well-defined methods and sampling structures that will further support a 

reduction of overfitting, which is every biomedical modelling problem. Implementation carried 

out with well-known artificial intelligence frameworks including Scikit-learn, TensorFlow, and 

Keras that began the process of possible improved implementations and models to be deployed in 

the future. 

Building on the SPMR system, the research enabled the introduction of HealthGuard, a 

machine learning-based security assurance tool for Smart Healthcare Systems. Testing conducted 

in hospital wards was successful in achieving a 91% accuracy for threat detection - showing that 

HealthGuard could fulfill its intended purpose of securing digital healthcare infrastructures - which 
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highlights HealthGuard's real-world applicability. Future work incorporates the integration of IoT 

and distributed cloud storage systems that will enhance the overall performance of the system, 

improve the real-time analytics, and improve decision making across the network of care delivery 

systems. 

Despite the significant advances made during this research, certain challenges do deserve 

mention. The distribution of the data set was imbalanced, with some patients not being represented 

in these conditions-which led to inconsistencies in the model performance. Furthermore, the initial 

testing was performed in simulated environments that, while mimicking the relevant clinical 

environment, controlled and consistent, did not replicate the variability and complexity of real 

clinical events. Hospital-based permissions have now been obtained, although additional live 

testing is necessary to validate the system's capability with any reliability in real clinical 

workflows.  

On a personal level, the research process has enhanced my learning on how intelligent 

systems can enable a technical innovation to be meaningful in human healthcare context. It has 

emphasized the need to develop solutions that are reliable, adaptable and secure. 

In summary, the combined work of the SPMR and HealthGuard systems proposes a 

proactive methodology in smart healthcare. As the systems continue to improve, there is the 

opportunity change patient monitoring, improve medical data security, and change the delivery of 

health care service, either in clinical or remote situations. 

6.2. Future Directions 

This research work has shown that DL packages such as Scikit-learn, Tensorflow and Keras, allow 

for the rapid and simple implementation of deep neural networks on local devices. In the future, 

the framework proposed might serve as a foundation to design different algorithms for deep 

learning. The context aware framework presented will be applied to other chronic diseases such as 

cancer. As cited in references [52-57], the proposed framework will be evaluated against research 

criteria on QoS, energy consumption, and SNS in the cloud. 
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