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Abstract 
 

 

 

This study considers the mathematical as well as numerical analysis of the fractional 

order single-species and multispecies mathematical models in population dynamics by 

incorporating the additive Allee effect. This study is done by making use of fractional 

order derivatives in the Caputo sense. According to the classical law of population 

dynamics, higher population densities cause competition for resources among species, 

whereas lower population densities reduce competition and thus promote growth. 

However, it has been observed that when population density is extremely low, the per 

capita birth rate in many populations falls. This may result in a zero or negative growth 

rate. This phenomenon is referred to as Allee's principle, also known as the Allee effect. 

There are two types of the Allee effect: weak and strong. The Allee effect is said to be 

strong when the birth rate becomes negative, and weak when the birth rate continues to 

fall while remaining positive. A population that is experiencing a strong Allee effect 

requires a minimum population known as the threshold level to survive; the population 

becomes extinct below this level.  

In recent decades, fractional order calculus has garnered significant interest from the 

scientific community to elucidate real-world phenomena in physics, particularly in the 

fields of engineering, viscoelasticity, epidemiology, and others. Fractional calculus is 

an extension of ordinary calculus, where differentiation and integration can be 

considered of any order, whether it be real or complex. The most important use of 

fractional calculus is that it provides the solutions dependent on the entire time interval 

(non-local) considered and the incorporation of memory retention, as each step builds 

upon the previous one. So, in this study, the single-species and multispecies models 

already existing in the literature on population dynamics are reconsidered by 

incorporating the Allee effect and by replacing the ordinary derivatives with Caputo 

fractional order derivatives. Newly formed models are analyzed mathematically for the 

uniqueness of the positive and bounded solutions. Local asymptotical stability of all 
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steady-state solutions is analyzed by considering weak and strong Allee effects. Global 

stability of all steady-state solutions is analyzed by the Lyapunov direct method. 

Numerical analysis of the models to validate the findings is done by using Roberto 

Garrappa created the PECE scheme for fractional differential equations in MATLAB. 

The proposed study's findings may help in determining the threshold level of 

populations suffering from the strong Allee effect, below which the affected species 

cannot survive. It will also aid in the analysis of the study's parameters, as varying them 

will allow the Allee effect to be controlled. Because fractional calculus works at the 

microscopic level and memorizes the entire development process, it assists us in 

identifying steady states that are unstable in integer-order modeling but can be 

stabilized using fractional-order modeling. This will assist in developing timely 

strategies to protect endangered species. Additionally, the obtained results can help to 

eliminate unwanted species by introducing the Allee effect through artificial strategies. 

From the above perspective, the mathematical models used in population dynamics, 

which include single species, multispecies with prey-predator interactions, and 

competitive interactions, are employed to achieve the following objectives: 

1. Study of single species population dynamics with Allee effect using fractional order 

differential equations. 

2. Mathematical modeling and analysis of two interacting species as prey predator 

population dynamics with Allee effect using fractional order differential equations. 

3. Mathematical modeling and analysis of two interacting species as competitive 

population dynamics with Allee effect using fractional order differential equations. 

4. Study and analysis of three interacting species population dynamics including food 

chain\ food web with Allee effect using fractional order differential equations. 

Chapter 1 provides an overview of population ecology and the evolution theory of 

mathematical models used to study patterns and changes in populations of the same and 

different species. Following this, there is a general introduction to fractional calculus, 

its general properties, and a brief review of the development process of fractional 

calculus. The literature review section discusses notable research on population 
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dynamics using various types of fractional derivatives. After conducting an extensive 

review of the literature, the research gap is identified, which leads to the study's 

objectives. Various mathematical definitions, theorems, and lemmas used in the study 

are discussed. Finally, a summary of the research work done is provided.  

Chapter 2 analyzes a single-species logistic growth model where the species is exposed 

to the Allee effect. Mathematical analysis is done by replacing the ordinary derivatives 

with Caputo’s definition of the fractional derivative. The Allee effect is studied 

additively. The model is evaluated for the uniqueness of positive and bounded 

solutions. The preconditions for local asymptotic stability and global stability of all 

steady-state solutions are determined. The threshold level of populations experiencing 

the strong Allee effect is calculated mathematically. All mathematical findings are 

validated through numerical simulations in MATLAB.  

Chapter 3 examines the fractional order Lotka-Volterra model in which the prey 

population is growing logistically and exposed to the Allee effect, which is studied 

additively by making use of the Caputo fractional order derivative. All basic theorems 

of population dynamics, like the existence of unique, positive, and bounded solutions, 

are discussed. The effect of prey capture rate by the predator has been studied 

numerically. Hopf bifurcation is studied at the coexistence point when populations are 

subjected to weak and strong Allee effects, with fractional order and capture rate of 

prey by predator as bifurcation parameters. This study shows that fractional order 

models offer wider stable regions by identifying equilibrium points that are unstable in 

ordinary integer order models, but are stable in fractionally ordered models. 

Chapter 4 examines the Lotka-Volterra competition model with the logistic growth of 

both populations and the additive Allee effect in one of the species, using both fractional 

and integer order modeling. The fractional derivative is taken in the Caputo sense. This 

study discovers that the incorporation of the Allee effect into the classical Lotka-

Volterra competition model can result in multistable steady states, depending on the 

potential of the Allee effect experienced by the population in different competition 

scenarios. According to the classical Lotka-Volterra competition model, competitive 

species can coexist only if intraspecific competition is stronger than interspecific 

competition. However, the inculcation of the Allee effect into the fractionally ordered 
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model allows the coexistence of the species even in the case of stronger interspecific 

competition. Moreover, fractional derivatives enrich the population dynamics by 

stabilizing the model at different coexistence points with different orders of the 

fractional derivatives.  Different intervals for Allee's constant are discovered in various 

competition scenarios to perform the stability analysis of the obtained equilibrium 

points. Furthermore, it has been observed that with the same value of Allee’s constant, 

different solutions exhibit stability depending on the value of the fractional order, 

beginning with the same populations. Additionally, the values of Allee’s constant are 

identified to determine the severity of the Allee effect, that is, when the Allee effect 

will influence weakly and strongly in the presence of competition. The model is 

evaluated for the uniqueness of positive and bounded solutions. The theoretical results 

obtained are also verified numerically. 

Chapter 5 delves into Caputo’s definition-based fractional order food chain model of 

three species that includes a prey, and two predators (intermediate predator, and top 

predator). In the proposed model, prey grows logistically while experiencing the Allee 

effect. Holing type II functional responses are used to represent interactions between 

prey and intermediate predators, as well as between intermediate predators and top 

predators. Numerical simulations of the proposed model are performed in traditional 

integer order models along with fractional order models, with and without exposing the 

prey population to the Allee effect. It is found that the exposure of prey to the weak 

Allee effect can play a significant (positive) role in the coexistence of all species under 

the restricted conditions of the parameters. It is observed through an example that, when 

prey are not exposed to the Allee effect, all populations in the proposed model show 

chaotic behavior in the integer order model, but exposure of the prey population to a 

weak Allee effect allows the stable coexistence of all populations in fractional as well 

as in integer-order models. It is also observed that the populations that fail to coexist in 

the integer model can coexist in the fractional order model even when prey are 

subjected to a strong Allee effect. Theorems like possessing unique, positive, and 

uniformly bounded solutions are derived. The global and local asymptotic stability 

requirements for each equilibrium are derived. 
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Chapter 6 highlights the key findings of the research in the form of a conclusion and 

outlines the future scope of the research. 

The bibliography in the final section provides support for the issues examined in the 

thesis. 
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Chapter 1 

 

General Introduction 
 

 

1.1 Introduction 

Ecology is an exploration of living organisms and how they interact among themselves 

and with their surroundings, such as climate, soil, and availability of water. This field 

of study involves examining life processes, adaptations, biodiversity, and the 

distribution and abundance of organisms. An ecosystem can be defined as a geographic 

area where biotic and abiotic factors work together to produce life. Biotic factors are 

living parts such as plants, animals, and other living organisms, whereas abiotic factors 

are non-living things such as the climate, temperature, humidity, water, sunlight, soil, 

etc. Population ecology is a specialized branch of ecology that specifically studies the 

patterns and changes in populations of different species, as well as how these 

populations interact with their surrounding environment. This field is the scientific 

examination of variables like rates of births and deaths, immigration, and emigration, 

and how these variables impact population size, growth, and lifespan patterns. 

Population ecology has three characteristics. 

1. Population size: It represents the total number of individuals. A larger population 

size depicts greater genetic variations, long-term survival, and overuse of 

resources, resulting in a population crash. 

2. Population density: It represents the total number of individuals per unit area. 

Lower density lowers the competition for survival, and high density leads to greater 

competition for survival. 

3. Population dispersion: It represents the nature of interaction within species and 

how and why species are dispersed [1]. 
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A population is defined as an assemblage of individuals from the same species who can 

coexist and interbreed in an ecosystem.  A community is an assembly of populations of 

different species coexisting and interacting with each other. Interactions can be within 

the same species as well as among different species. Interactions within the same 

species are known as intraspecific interactions, and interactions among different species 

of a community are known as interspecific interactions. The intraspecific interactions 

are competitive and density-dependent. In densely populated ecosystems, the organisms 

of the same species compete for resources, whereas in sparsely populated ecosystems, 

organisms compete for mates to reproduce. These interactions are essential in 

determining the composition and organization of ecological communities, and they 

have a significant impact on determining the dynamics and structuring of these 

communities. The Interspecific interactions are mainly of three types: competition, 

predation, and symbiosis. In interspecific competition, two or more species compete 

over the same resources. In predation, one species, known as the predator, kills another 

species known as prey to get food, and in symbiosis, two species help each other to live 

together [2]. These biological interactions many times lead to the exploitation of 

resources, which can be further harmful to the living organisms in an ecosystem, even 

sometimes resulting in the extinction of some species, which can destroy the food 

chains existing in nature. Human activities are also responsible for the damage to 

natural ecosystems, so to save the species from extinction, it becomes very important 

to study the biological interactions within species. 

Mathematical biology is the study of biological interactions using mathematics. 

Mathematical biology is concerned with modeling, studying, analyzing, and 

interpreting biological phenomena such as evolution, coexistence, and interaction with 

different species [3]. To study biological interactions, mathematical modeling is an 

effective tool, as it saves time, energy, and resources. Mathematical models are 

designed accurately to represent biological interactions. The modeling process requires 

carefully designing the variables, identifying the governing laws, and making some 

assumptions to make the model tractable [4]. Work on population dynamics using 

mathematical modeling started long ago. In the year 1202, Leonardo of Pisa wrote a 

book on arithmetic in which he used a mathematical model for growing the rabbit 
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population [2]. After that, many mathematical models were suggested to understand 

population dynamics. The very first useful work was done by Malthus in 1798 by 

developing an exponential growth model for a single species [5]. This model was 

practically impossible as it considers unlimited resources to survive. In the year 1838, 

Verhulst modified the exponential growth by introducing the logistic model in which 

initially population grows exponentially, but as saturation begins, the growth slows 

down, and at the level of maturity, growth stops [2]. Later, an improved model known 

as the Hutchison model was suggested, which considers the fact that the birth rate 

cannot act instantaneously, and there is a possibility of a delay in reaching maturity. 

This model is also known as the delay model [6]. All these models were used to describe 

the evolutionary progression of a single species. Vito Volterra, an Italian mathematician, 

in the year 1926, proposed a two-species model describing a prey-predator community, 

and at the same time, Lotka, an American ecologist and mathematician, proposed the 

same model, which is known as the Lotka-Volterra model [2,5]. In this model, prey 

grows at a constant rate in the absence of predators, but decreases linearly as a function 

of the density of the predators in their presence. The Lotka–Volterra model's structure 

was oversimplified because it makes numerous assumptions that are not entirely true. 

The assumptions include an uninterrupted pattern of prey species' food availability, the 

absence of adaptation of all interacting species, and the initial relationship between the 

size of every species and its rate of growth, which leads to exponential expansion if the 

species remains unaffected by others. To make this model more realistic, various types 

of functional responses that explain mathematically how predators grow on prey were 

suggested. A few of them are known as Holling type I, Holling type II, Holling type III, 

Holling type IV, Beddington-DeAngelis-type, Ratio-dependent type, Hassel-Verley-

type, etc [7]. Apart from the prey-predator model, there are many other types of Lotka-

Volterra models, such as the competition and cooperation model. In the year 1926, 

McKendrich proposed the first continuous age-dependent model (classical model of 

linear age-dependent population model) known as the Sharpe-Lotka-McKendrich 

model. In the year 1974, Gurtin and McCamy first introduced the non-linear age-

structured population model [8]. 
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Until now, there has been the development of various types of models with minor or 

major changes in the pre-existing models, but the commonality in all the models was 

the use of traditional, integer-order calculus. These traditional evolutionary theories 

frequently presume individuals have no memories of previous events or experiences. 

However, it is found that many species demonstrate the behavior, indicating that they 

preserve the memory of the past. Memory can affect an individual's fitness, 

reproductive success, and ability to adjust to changing situations [9]. It is observed that 

the fractional derivatives, the derivatives of arbitrary orders, real or complex, unlike 

traditional derivatives, are non-local, consider entire data of the past when evaluated, 

and hence solutions provided are dependent on the past; hence, fractional calculus helps 

in retaining memory. Therefore, modeling the natural phenomena using fractional 

calculus exhibits long-term memory [10]. The birth of fractional calculus is assumed to 

have been more than 300 years ago. In 1695, the famous mathematician Leibnitz wrote 

a letter to L'Hôpital in which he raised the question, “Can the meaning of derivatives 

of integer order be generalized to the derivative with non-integer order?” L’Hôpital 

replied, “What if the order will be ½?” Then Leibnitz replied, “It will lead to a paradox, 

from which one day the useful consequences will be drawn.” So, fractional order 

calculus is not much older than conventional calculus. In  1730, Euler, in 1772 J.L. 

Lagrange, in 1812 Laplace, in 1819 Lacrox, and in 1822 J.L.J. Fourier made a major 

contribution to the development of fractional calculus. In 1832, J. Liouville made a 

major contribution to fractional calculus, and he applied his definition to the problem. 

In 1867, A.K. Grunwald, and in 1892, G.F. B Riemann contributed to the fractional 

calculus. From 1868 to 1872, A.V. Letnikov wrote many papers on fractional calculus 

[11]. From 1900 to 1970, H.H. Hardy, S. Samko, H. Weyl, M. Riesz, S. Blair, and from 

1970 to date, J. Spanier, K.B. Oldham, B. Ross, K. Nishimoto, O. Marichev, A. Kilbas, 

H.M. Srivastava, R. Bagley, K.S. Miller, M. Caputo, I. Podlubny, and many others made 

noteworthy contributions in the development of fractional calculus [12].  

Fractional calculus is inextricably linked to the memory systems seen in numerous real-

world systems, and fractional derivatives are defined globally rather than locally 

[13,14]. The scientific community in recent years has changed its focus to describing 

real-world problems using fractional calculus since traditional derivatives cannot 
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capture the memory effect, but fractional differential operators do. Furthermore, 

various published studies have proved that fractional-order systems provide better 

insight into real-world phenomena as compared to ordinary integer-order systems [15-

17]. Hereditary properties due to memory preservation, and flexibility in degrees of 

freedom, fractional calculus have piqued the interest of the scientific community, 

particularly in different fields of physics, viscoelasticity, engineering, signal 

processing, etc. [18-24]. In the field of epidemiology, fractional order models are 

widely used nowadays, as results obtained using fractional order models fit better with 

the real world [25-32].  

Recent fractional derivatives include Riemann-Liouville, Caputo, Weyl, Jumarie, 

Hadamard, Davidson, Essex, Riesz, Erdelyi-Kober, and Coimbra. Furthermore, each 

definition has advantages and disadvantages when used in modeling real-life problems. 

One of the disadvantages of the Riemann-Liouville fractional derivative is that it does 

not assign a value of zero to a constant. Furthermore, if a function results in a constant 

value at the origin, then its fractional derivative will have a singularity at the origin, for 

instance, the exponential and Mittag-Leffler functions. The Riemann-Liouville 

fractional derivative has limited applications due to its disadvantages. Caputo's 

definition of a fractional derivative requires a higher level of regularity for 

differentiability. For a function to have a fractional derivative in the Caputo sense, it 

should be differentiable.  A function without a first-order derivative should have a 

Riemann-Liouville fractional derivative of an order less than one. If a function is not 

continuous at the origin, the calculation of the Jumarie fractional derivative is not 

possible. The Weyl fractional derivative has a significant disadvantage: the integral 

used to define it is improper, requiring additional restrictions on the function. 

Furthermore, the Weyl derivative of a constant has not been defined [33,34]. To address 

these limitations, Caputo and Fabrizio (CF) and Atangana and Baleanu (AB) proposed 

improved definitions of fractional-order operators that are dependent upon the 

exponential kernel and generalized Mittag-Leffler function, respectively.  However, it 

is revealed that out of these, Caputo's fractional derivative is preferred for studying the 

practical problems of the real world as it allows the inclusion of traditional boundary 

conditions while formulating the problem mathematically, assigns value zero to the 
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derivative of a constant, and is very simple to apply. Researchers have shown that while 

studying co-infection models through different fractional derivatives, Caputo 

derivatives give a better fit with real-world data [ 35-36].  

1.2 Review of Literature 

It is observed that history plays a crucial role in the evolution process of biological 

systems [9], and fractional derivatives have the property of retaining memory of the 

past, which is very helpful in understanding the complexity of the dynamical systems 

[10,13]. This property of fractional calculus motivated ecologists and mathematicians 

to analyze the mathematical models in population dynamics using fractional 

derivatives.  

Early work using fractional order derivatives in the research area of population 

dynamics was the study of the Lotka-Volterra predator-prey model by Ahmed et al. in 

2007. The author analyzed the fractional-order Lotka-Volterra model and the rabies 

model. The author compared the results obtained with the ordinary integer derivative 

model and found that for a particularly selected value of one parameter, one of the 

steady state solutions (equilibrium point) was the center of oscillation in the case of the 

integer order model, but when that solution was considered using fractional order model 

it was asymptotically stable and the results were verified by numerical simulations too 

[37]. El Sayed et al. published a paper analyzing the fractional-order logistic equation 

by taking different values of the fractional order. In the paper author established the 

stability conditions of all steady state solutions [38]. Das et al. studied the fractional 

order Lotka-Volterra model numerically using the Homotopy perturbation method. The 

author's findings include that populations in lower fractional order derivative models 

stabilize faster than in the higher fractional order derivative models [39]. Another 

theory in the same direction was on the same model by Adriana et al., however, by using 

the Caputo fractional derivatives. The author compared the results with the classical 

integer order model and found that in fractional-order models, solutions move more 

slowly than those in the integer order models. It was concluded that, in the fractional 

order models, populations take more time to reach the steady state solutions in 

comparison to those in the integer order model [40]. 
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One of the important factors in ecology is how populations interact with each other. 

These interactions can be represented in the form of a mathematical function. A function 

that describes how many prey are killed, consumed, and converted to predators (in 

terms of reproduction) by predators in a unit of time for the given densities of the 

populations is known as a functional response. In the ecological literature, many 

researchers have suggested different types of functional responses representing 

predator-prey interactions. Some of the important functional responses are Holling type 

I, Holling type II, Holling type III, Holling type IV, Beddington-DeAngelis-type, Ratio-

dependent type, Hassel-Verley-type, etc [7]. Classical Lotka-Volterra models are 

unrealistic as they do not consider the competition for resources due to overcrowding. 

The introduction of functional responses in the prey-predator models made the models 

more reliable for the future prediction of the interactive species. To study such 

interactions, George et al. published a paper on prey-predator interactions in which they 

used the Caputo fractional order derivative and functional response, Holling type II. 

The author established the prerequisites for the uniqueness, boundedness, and stability 

of the solutions [41]. Die et al. studied a stage-structured prey-predator, fractional-order 

model with functional response of Holling type III using modified Riemann-Liouville 

fractional derivatives. By constructing a suitable Lyapunov function author established 

the existence, uniqueness, and asymptotic stability of the positive equilibrium points 

[42]. Several studies proved that the interactions between predators and prey may 

depend upon the prey-predator ratio in the ecosystem, too. Such functional responses 

are known as ratio-dependent functional responses. Suryanto et al. studied a fractional-

order predator-prey system incorporating linear harvesting of both populations and 

ratio-dependent functional response by using Caputo's definition of fractional-order 

derivatives. Apart from establishing the conditions for stability of all steady state 

solutions, Hopf bifurcation is also explored by taking the order of the fractional 

derivative and the prey population's harvesting rate as parameters [43]. 

With the growing population of mankind, the exploitation of the ecosystem has 

increased. To fulfill the needs of human beings, harvesting of natural resources like 

fisheries and wild animals is done on a large scale. While harvesting a population or a 

resource, it is important to consider both human needs and the sustainability of the 
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ecosystem. Javidi and Nyamoradi published their study on the prey-predator system 

using Caputo's definition of fractional-order derivative, incorporating the functional 

response of Holling type II and harvesting of predators. The authors investigated the 

stability conditions of all steady state solutions (equilibrium points) and observed that 

in the fractional-order model, all populations reach their equilibrium points with time. 

Through various numerical simulations, the author proved that the system has stable 

cycle trajectories. It was shown using fractional derivatives that the optimal rate of 

harvesting can fulfill the food requirements of the populations, as well as ecosystems 

can be saved from exploitation [44]. Mandal et al. studied the fractional-order system 

of prey-predator incorporating harvesting of both populations and considering the 

interaction between them of Holling type II. The author studied the uniqueness, 

boundedness, and non-negativity of the solutions of the commensurate system as well 

as the incommensurate system. Stability conditions of solutions for both systems were 

established. Prerequisites for the system to show a Hopf bifurcation were also derived. 

Numerical simulations proved that the intrinsic growth rate of the prey population, 

biomass conversion rate, half-saturation constant, and harvesting of both populations 

can play an important role in controlling the populations [45]. Another study in this 

direction was published by Yavuz and Sene. In this paper, the author analyzed the 

fractional predator-prey system with the harvesting of the predator population by taking 

the Caputo fractional derivative. This model considered the harvesting rate proportional 

to the predator density until it reaches a threshold value, and after that harvesting rate 

assumes a constant value. Numerical simulations have shown that the harvesting rate 

plays a crucial role in determining the stability of the populations [46].  

It has been recognized that the interaction between predators and prey cannot be 

instantaneous. Contact of the predator with prey should be retarded due to a gestation 

period or due to some other factors; to make prey-predator systems more realistic, a 

time delay is incorporated. Song et al. published a paper on a fractional-order delayed 

predator-prey system with harvesting of both populations taking delay as a parameter, 

using Caputo fractional-order derivatives. The results obtained were compared with the 

results of the non-delayed model, and it was found that fractional-order delayed models 

are more realistic, and the order of fractional derivatives affects the stability as well as 
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the stability switching time. The theory established proved that by controlling the 

harvesting rates and using fractional order systems, populations moving towards 

extinction can be stabilized [47]. Rajivganthi and Rihan studied a predator-prey system 

with time delay and Holling type IV interaction using Caputo fractional order 

derivative. The author justified the delay by dividing the predators into two groups: 

juvenile (immature) and adult (mature) predators. The obtained results were compared 

with the non-delayed ordinary integer order model, and noted that fractional-order 

models provide more stable regions. Also, the solutions that were unstable in the model 

of integer order became stable when the model was considered by taking a fractional 

order. The theory established that the memory-retaining property of the fractional order 

derivative can help in preventing the oscillatory behaviors of the populations [48]. 

The herd behavior or social behavior of the prey population plays a significant role in 

their interactions with predators. In ecosystems, various prey populations are observed 

to be moving in groups to protect the offspring and the oldest ones from predation. Herd 

shape depicts the defense strategy adopted by prey against predators. This behavior 

ensures the increase of birth rate, smooth growth of the youngest prey, and long life for 

the oldest and weakest population. While moving in groups, the strongest prey remains 

at the outer bound of the pack, and others remain at the center of the pack. In this 

situation, predators can interact with some of the prey, but not with all. Such interactions 

cannot be explained with the help of Holling types I, II, III, or IV. Arjaldi et al. 

investigated such types of interactions and introduced some new functional responses 

representing the interactions between different populations moving in search of food 

using herd strategies [49]. Ghanbari and Djilali studied such type of interaction using 

Caputo fractional-order derivatives-based models. In this paper, the author considered 

one prey population showing herd behavior and two predators. One of the predators 

consumes only the prey population, while the other can consume prey as well as the 

predator. Through numerical simulations, the author proved that lesser values of the 

order of fractional derivatives help in the early stabilization of the populations, and the 

type of interaction plays a significant role in the coexistence of both populations. The 

author concluded that increasing the birth rate of prey populations by providing better 

living conditions and using suitable strategies for hunting can help the survival of all 
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species [50]. Another study in this sequence was by Bingnan Tang. In his paper, the 

author studied the dynamics of the fractional-order predator-prey model incorporating 

a group defense mechanism and Michaelis-Menten type (Holling type II) harvesting. 

This study was mainly focused on finding the critical value of the order of the fractional 

derivative below which the system can be stabilized, and after crossing that, the system 

shows a Hopf bifurcation [51]. Alidousti and Ghanfari studied the dynamic behavior of 

a one-prey and two-predator system with group defense mechanisms adopted by 

populations considering the interactions of the Monod-Haldane kind using Caputo's 

fractional-order derivative-based model. On comparing the classical integer order 

model results with the fractional order model results it was noticed that the prey 

population shows chaotic character for the lesser value of carrying capacity in the 

classical integer order model and in the fractional-order system value of carrying 

capacity obtained for showing chaotic behavior was relatively higher, hence it was 

concluded that fractional-order models provide more stable regions. Similar kinds of 

results were obtained if the intrinsic growth of prey and the half-saturation constant of 

the middle predator were taken as parameters. Therefore, it can be concluded that 

memory helps in achieving better stability conditions [52]. 

 The refuge is an interesting concept in population dynamics. It is the defensive strategy 

adopted by prey to protect themselves from predators. It has been observed that prey 

populations hide themselves in an area that is inaccessible to predators. Studies have 

shown that the existence of refuge helps the populations in coexistence. Li et al. 

published their study on the prey-predator model considering constant prey refuge 

along with feedback control employing Caputo's definition of fractional-order 

derivatives. On comparing the obtained results with the results of classical integer-order 

modeling, it was found that the fractional-order models provide larger stability regions 

than the classical model. Higher-order models converge to equilibrium points more 

speedly than lower-order models. Therefore, lowering the order of the fractional models 

helps to control the populations at an early stage. The study proved that the prey refuge 

mechanism and feedback control can play a positive role in the co-existence of 

populations [53]. Another study in this direction was published by Das and Samanta. 

The authors studied Caputo's fractional-order derivative definition-based food chain 



11 
 

model consisting of one prey, one middle predator, and one super predator. Holling type 

I interactions between prey and middle predator, as well as between middle predator 

and super predator, along with the fear effect of predation felt by the prey population, 

were incorporated. The author investigated the non-delayed as well as the delayed 

model. In the non-delayed model with higher orders of fractional derivative (close to 1) 

and higher prey refuge leads to the extinction of super predators, and on increasing the 

fear factor, both populations, prey and super predators, move towards extinction, and 

no Hopf bifurcation was observed. However, in the delayed model, the authors found a 

critical value of the delay at which stability switches to Hopf bifurcation. It is observed 

that the critical value of time delay depends upon the order of fractional derivatives. 

Lowering the order of fractional derivatives gives a higher value of critical delays and 

hence provides more stability regions [54]. Barman et al. published their research on 

fractional-order prey-predator interactions considering fear induced by predators on 

prey population and prey refuge using Caputo fractional derivatives and Holling II type 

functional response. Apart from establishing the existence, positivity, boundedness, and 

stability, it was found that fractional-order models provide wider stable regions than 

integer-order models. Hopf bifurcation was studied around the coexistence equilibrium 

point by taking the fear factor and prey refuge as parameters. It was found that when 

fear factor and prey refuge are taken at lower levels, the system moves towards stability 

by decreasing the order of the fractional derivative continuously, so it can be judged 

that memory plays an important role in the coexistence of all populations [55]. 

To fulfill the needs of the rising population, the exploitation of natural resources has 

increased.  The construction of factories, highways, development of tourism destroyed 

the natural habitats of wildlife. To survive, the wildlife has dispersed into different 

patches, so to study the population dynamics more realistically, the dispersion of 

populations is also considered by many researchers.  Gao and Zhao published a study 

using the Caputo fractional derivative-based model of a single species, taking the 

dispersal of the population into account. The authors studied existence, positivity, and 

boundedness and laid conditions for the stability of all solutions [56]. Li et al. published 

another paper analyzing the fractional-order single species system incorporating 

diffusion, using Caputo's fractional order derivative. The author considered the 
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dispersal of species in several patches. The study was done to see the impact of 

fractional derivatives on the population dynamics of a single species and observed that 

higher-order derivative models converge to equilibrium points with more speed as 

compared to the lower fractional-order model, so it was concluded that the order of 

fractional derivatives can help in controlling the population and dispersal of populations 

helps in coexistence [57]. Xie et al. analyzed the prey-predator system considering prey 

refuge and dispersal of the population using Caputo's fractional order derivatives' 

definition. By taking populations in two patches, the author proved that the fractional 

models provide stable solutions. Prey refuge in one patch helps the population in other 

patches from extinction, and diffusion rates also help in the survival of populations in 

different patches [58]. 

In ecosystems, some species can survive independently and benefit each other by living 

together. Such interactions are known as facultative mutualism. An example of such 

interaction can be observed between herbivorous crabs and coralline algae. Supajaidee 

and Moonchai studied facultative mutualism interactions in the fractional-order two-

species model, with harvesting taking Caputo's definition of the fractional derivative. 

The author mainly studied the conditions required for coexistence points to exhibit 

globally stable behavior [59]. Amirian et al. published their study considering a 

fractional-order model using Caputo fractional order derivative, consisting of two 

predators behaving in a mutualistic way (Dolphins and yellowfin tuna) and one prey 

(lanternfish) with the harvesting of all three populations. Numerical simulations of the 

model proved that the lower values of the order of the fractional derivative help in early 

stabilization of populations, and the fractional order helps to control the fluctuations in 

populations. Using the fractional-order model author established that economic 

harvesting helps in the coexistence of populations [60]. Tang proposed and studied the 

fractional-order competitor- competitor-mutualistic Lotka–Volterra system, taking the 

same feedback time delays in all species using Caputo derivative. The author 

established the conditions for existence, uniqueness, Hopf bifurcation, and local 

stability of non-negative solutions and proved that time delay, along with fractional  

order, has a significant effect in controlling the stability [61]. 
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Populations not only have to protect themselves from predation, but they must also 

struggle to get food when there are limited resources or overcrowding of populations. 

So, interspecific competition plays a crucial role in studying population dynamics. 

Wang et al. published a paper using a fractional-order delayed model consisting of one 

prey and two predators with interspecific competition using a fractional-order 

derivative. The author proved that the combined effects of gestation delay and fractional 

order give stable solutions. The author calculated the critical value of delay below 

which the system always remains stable and above which Hopf bifurcation appears. 

The study proved that a fractional-order derivative helps in finding the conditions for 

the co-existence of populations within competition too [62]. 

Eco-epidemiological models are very helpful in studying the interactions between prey 

and predator populations in which one or both populations suffer from infectious 

diseases. The main objective of studying such models is to control the spread of 

infection among populations. Many researchers studied such interactions using 

fractional order models where the fractional derivatives were taken in the Caputo sense. 

Moustafa et al. studied the eco-epidemiological system in which the prey population 

was exposed to an infectious disease, incorporating the attack rate of the predator and 

half-saturation constant as parameters. The authors successfully calculated the value of 

the order of the fractional derivative. Below that order, the disease-free equilibria were 

stable, and crossing that order system showed a Hopf bifurcation around that 

equilibrium point [63]. Lemnaour et al. studied the prey-predator interactions with 

disease in predators along with competition and toxicity using Caputo's definition-

based fractional order derivative model. The prey population was considered in two 

different areas: a reserve area and a harvest area. Results obtained were compared with 

the model of integer order, and it was found that fractional-order derivatives help in 

stability by damping the oscillations at lower values of the fractional derivatives [64]. 

Rihan and Rajivganthi studied the fractional-order delayed model of prey-predator in 

which predators were exposed to an infectious disease along with Holling type III 

interaction between both populations. It was observed that if no delay was incorporated, 

interior equilibrium is always unstable, but in the delayed model, there was always a 

possibility of finding a critical value of delay, below which all populations in the model 
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can be stabilized, and for different orders of fractional derivatives, different critical 

delays can be possible [65].  Perumal et al. considered a prey-predator system with 

infection in both populations using fractional order derivatives and compared the 

obtained results with those obtained by employing the classical integer model and found 

that the fractional derivatives of order less than one can minimize the risk of extinction 

of the species and help in damping of oscillations of the populations in relatively less 

time. It was spotted that in the fractional-order model, the disease-free equilibrium point 

was globally asymptotically stable [66]. Ghanbari and Djilali considered a fractional-

order prey-predator system in which the prey population was behaving socially and 

predators were suffering from an infectious disease. In the fractional-order model, it 

was observed that an endemic equilibrium is possible with a suitable order of fractional 

derivative, and the value of the fractional-order can be found, which can help in the 

eradication of the disease. Moreover, it was concluded that herd shape cannot help in 

the elimination of disease, but it can help in reducing the infection level [67]. Djilali 

and Ghanbari published another study to see the effect of non-fatal infectious disease 

developed in prey on the population dynamics of prey-predator, with the help of Caputo 

fractional order derivative. The prey population was considered in two compartments: 

susceptible and infected. Predators cooperated while hunting, and infection was 

supposed to be non-vertical. The authors observed that the disease-free equilibrium 

point is unstable in the case of the ordinary integer order model, but stable in the case 

of the fractional-order model, and proved that all species can coexist without extinction 

in the fractional-order model. It was also noticed that lower values of fractional 

derivatives helped in damping the oscillations of the population [68]. 

It has been recognized that individuals of many species can benefit from the presence 

of conspecifics [69]. This is simply contrary to the classical law of population 

dynamics, which states that a higher population density causes competition for 

resources, whereas a lower population density reduces competition and thus promotes 

growth.  However, it has been observed that when population density is critically low, 

per capita growth rates in many populations decline. This may lead to a zero-growth 

rate or even a negative growth rate. The primary reason behind this may be the 

possibility of not finding a mate for reproduction when the population is quite low. This 
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results in low reproductivity, which can lead to the extinction of the population. It is 

well observed that for a population to grow, a minimum density of that population is 

required, which is known as the critical density population or threshold level, below 

which that population cannot exist [70]. An American biologist, Eugene Odum, named 

this phenomenon Allee's principle in honor of its founder, Warder Clyde Allee, which 

is now acknowledged as the Allee effect [71].  The Allee effect can be caused not only 

due to disability to find mates at low population density but also due to social 

dysfunctioning due to low population density, inbreeding depression, swamping of 

enemies, allelic diversity, and food exploitation [72]. The Allee effect can affect 

population growth strongly or weakly depending upon its intensity [73]. The Allee 

effect is said to be strong when the birth rate becomes negative, and weak when the 

birth rate continues to decrease but remains positive. However, when a population is 

exposed to a strong Allee effect, it will require a minimum population known as the 

threshold level to survive; below this level, the population will become extinct [74-76]. 

Several studies have examined the Allee effect in various population systems and 

concluded that it can significantly affect population dynamics [77,78]. Moreover, the 

introduction of the Allee effect can change the system’s dynamic behavior by stabilizing 

or destabilizing it, or by switching the time to reach the equilibrium point [79]. Various 

published studies have addressed the Allee effect using integer order modeling. For 

instance in studying the stability of the prey predator interactions [80], dynamics of an 

age structured population with harvesting [81], prey predator model with Hawk and 

Dove tactics [82], predator prey system involving distributed delays [83], dynamics of 

a predator prey system with diffusion [84], dynamics of a predator prey system 

involving ratio dependent interactions [85], dynamics of a predator prey system when 

prey subject to disease [86], in studying prey predator model in which  predators were 

experiencing component Allee effect for reproduction [87], the complex dynamics of a 

prey predator system with diffusion [88], predator prey population dynamics involving  

intraspecific competition [89], deterministic and stochastic predator prey models with 

herd behavior [90], considering Holling type II interactions in predator prey model with 

disease in prey incorporating prey refuge a [91], in studying the dynamical analysis of 

model consisting of two prey and one predator [92], in  studying the intraspecific 

competition among  predators and their influence on a Gause type predation model [93], 
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predator prey model with Holling type I functional response [94], in comparative 

analysis of predator prey model when prey experienced fear effect of predation using 

Holling type I and II interactions [95], while studying prey predator model 

incorporating fear of predation among prey along with employing the strategy of prey 

refuge [96], to simplify the prey predator model [97], stability analysis along with Hopf 

bifurcation analysis with time delays in a three species system [98], the stability 

analysis and bifurcation analysis with fear factor in a predator-prey system [99].  

While studying population dynamics using mathematical modeling, the Allee effect can 

be studied in two ways, additively and multiplicatively. Bazykin [100] introduced the 

multiplicative Allee effect for a single species logistic growth model as, 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 ( 1 −  

𝑥

𝐾
 ) ( 𝑥 − 𝑚),                                                                                     (1.1)   

        

where 𝑥 is the population at any time 𝑡. 𝑟, 𝐾,𝑚 are all positive constants defined as, 

𝑟 population's per capita intrinsic growth rate, 𝐾 is the maximum population that the 

environment can support, and 𝑚 is Allee's threshold. The growth rate of the population 

will remain positive if 0 < 𝑚 < 𝑥 <  𝐾   and will be negative outside this interval. 

Another single-species logistic growth model was introduced by Brian Dennis [101], 

in which he introduced the additive Allee effect. The author considered the growth 

equation as, 

𝑑𝑥

𝑑𝑡
= [𝑟 (1 −

𝑥

𝐾
) −

𝛼𝑎

𝑥 + 𝑎 
] 𝑥.                                                                                     (1.2) 

         

Here, 𝑥 is the population at any time 𝑡. 𝑟, 𝐾,𝑚 are all positive constants defined as, 𝑟 

population's per capita intrinsic growth rate, 𝐾 is the maximum population that the 

environment can support, and 𝑎  is the population density at which fitness is half of its 

maximum value. Here, fitness is considered in terms of reproduction efficiency. The 

factor  𝑎\𝑥 + 𝑎 measures the relative fitness of the population due to the Allee effect. 

Therefore, a greater value of 𝑎 will reduce the fitness of the population due to the Allee 

effect. The term 𝛼, which is the constant of proportionality, denotes the severity of the 

Allee effect. By taking 𝛼𝑎 = 𝑚, equation (1.2) can be written as  
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𝑑𝑥

𝑑𝑡
= [𝑟 (1 −

𝑥

𝐾
) −

𝑚

𝑥 + 𝑎 
]  𝑥.                                                                                   (1.3)  

                                       

Here 𝑚 and 𝑎 depict the degree of the Allee effect. According to this model, if 0 < 𝑚 < 

𝑎𝑟, then the population is exposed to a weak Allee effect, and if 𝑚 > 𝑎𝑟, then the 

population is exposed strong Allee effect. Syed Abbas et al. [102] published a paper 

analyzing the fractional-order modified logistic equation of a single species 

incorporating the multiplicative Allee effect using Riemann-Liouville fractional 

derivatives and integrals. The author found that the population can grow only if the 

initial population lies between the Allee effect threshold parameter and the maximum 

population that can be supported by the environment. An initial population below the 

threshold parameter leads to extinction. It was observed that decreasing the order of 

fractional derivatives leads to an increase in the time taken to reach the steady state by 

the population. Using AB fractional derivatives, Nisar et al. [103] studied the fractional 

order food chain system with Holling Type II interactions among populations by 

exposing the prey population to the additive Allee effect. Given an extensive review of 

the literature, it is observed that the study of population dynamics incorporating the 

additive Allee effect is still unexplored using fractional order derivatives.  

1.3  Objectives of the proposed work 

Based on the literature review done above, and the found research gap, it is observed 

that there is a lot of scope to study the population dynamics incorporating the Allee 

effect using fractional order differential equations. The same can be achieved using the 

following objectives: 

1. Study of single species population dynamics with Allee effect using fractional order 

differential equations. 

2. Mathematical modeling and analysis of two interacting species as prey predator 

population dynamics with Allee effect using fractional order differential equations. 

3. Mathematical modeling and analysis of two interacting species as competitive 

population dynamics with Allee effect using fractional order differential equations. 
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4. Study and analysis of three interacting species population dynamics including food 

chain\ food web with Allee effect using fractional order differential equations. 

1.4 Mathematical Preliminaries 

Definition 1.4.1 Autonomous and non-autonomous systems [104] 

An autonomous system of a fractional order differential equation is defined as 

𝐷𝛼𝑥(𝑡) = 𝑓(𝑥), 𝑥(0) = 𝑥0. 

Here function does not depend upon the independent variable, whereas in non-

autonomous systems 

𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥), 𝑥(0) = 𝑥0. 

The function depends upon the independent variable. Where 𝛼 ∈ (0,1) is the fractional 

order. 

Definition 1.4.2 Equilibrium point [104] 

A constant 𝑥∗ is said to be the equilibrium point of the fractional order differential 

equation 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥),   iff   𝑓(𝑡, 𝑥∗) = 0. Where 𝛼 ∈ (0,1) is the fractional order. 

Definition 1.4.3 Stability of solution [104] 

(i) The solution 𝑥∗ of a fractional order system 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥),  is considered to 

be stable if for any 𝑡0 ∈ ℝ and any 𝜖 > 0, we can find 𝛿 =  𝛿(𝑡0, 𝜖) > 0, so that 

whenever we take  ‖𝑥(𝑡0) − 𝑥∗(𝑡0)‖ < 𝛿 it will imply  ‖𝑥(𝑡) − 𝑥∗(𝑡)‖ < 𝜖  for 

all  𝑡 > 𝑡0. 

(ii) The solution 𝑥∗ of a fractional order system 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥),  is considered 

asymptotically stable if the solution is stable, and for any 𝑡0 ∈ ℝ  we can find 

𝛿 =  𝛿(𝑡0) > 0, so that whenever we take ‖𝑥(𝑡0) − 𝑥∗(𝑡0)‖ < 𝛿 it will imply 

Lim
𝑡⟶∞

‖𝑥(𝑡) − 𝑥∗(𝑡)‖ = 0.  

(iii) The solution 𝑥∗ of a fractional order system 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥), is considered 

uniformly (globally) stable if the solution is stable and if for any 𝑡0 ∈ ℝ and 

any 𝜖 > 0, we can find 𝛿 =  𝛿(𝜖) > 0, so that whenever we take  

 ‖𝑥(𝑡0) − 𝑥∗(𝑡0)‖ < 𝛿 it will imply  ‖𝑥(𝑡) − 𝑥∗(𝑡)‖ < 𝜖 for all  𝑡 > 𝑡0.   
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(iv) A solution is said to be unstable if it is not stable. 

Definition 1.4.4 Caputo fractional derivative [104] 

If 𝛼 > 0. Caputo’s fractional order derivative of a function 𝑓(𝑥) is expressed as 

𝐷𝛼𝑓(𝑥) =
1

𝛤(𝑛 − 𝛼)     
∫ ( 𝑥 − 𝑡) 𝑛−𝛼−1 
𝑥

0

𝑓𝑛(𝑡) 𝑑𝑡,                                            (1.4) 

                                                                                                                                                                                               

where  𝑛 − 1 < 𝛼 < 𝑛.  If, 0 < 𝛼 < 1, 

𝐷𝛼𝑓(𝑥) =
1

𝛤(1 − 𝛼)     
∫ ( 𝑥 − 𝑡) −𝛼
𝑥

0

𝑓′(𝑡) 𝑑𝑡.                                                     (1.5) 

                                     

Definition 1.4.5 Mittag-Leffler function [104] 

The Mittag-Leffler function of a one-parameter family is defined as, 

𝐸𝛼(𝑧 ) =  ∑
𝑧𝑖

𝛤(𝑖𝛼 + 1)

∞

𝑖=0

, 

where 𝛼 > 0, and 𝑧 is a complex number. Mittag-Leffler function of the two-parameter 

family is defined as, 

𝐸𝛼,𝛽(𝑧) =  ∑
𝑧𝑖

Γ(𝑖𝛼 + 𝛽)

∞

𝑖=0

, 

where 𝛼 > 0, 𝛽 > 0, and 𝑧 is a complex number. 

Lemma 1.4.6 Lipschitz condition [54] 

Consider the fractional order differential equations 𝐷𝛼𝑥(𝑡) =   𝑓( 𝑡, 𝑥), where 𝛼 ∈

(0,1] , with initial condition 𝑥( 𝑡 = 𝑡0) = 𝑥0 > 0. Here 𝑓 : [𝑡0, ∞) × D → ℝ is a 

function. Then   𝑓(𝑥, 𝑡) is said to satisfy the Lipschitz condition w. r. t. variable 𝑥 in 

[𝑡0, ∞) × D, if there exists some real constant 𝐿 > 0, such that 

‖𝑓(𝑡, 𝑋(𝑡)) −  𝑓(𝑡, 𝑌(𝑡))‖ ≤ 𝐿‖𝑋(𝑡) − 𝑌(𝑡)‖, 

where 𝐿 is independent of 𝑡, 𝑋, and 𝑌, and D = { 𝑥 ∈  ℝ :  |𝑥| ≤ 𝑀 } and 𝑀 is a positive 

finite real constant. 
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Lemma 1.4.7 Solution of fractional order initial value problem [105] 

Consider the fractional order differential equation  

𝐷𝛼𝑥(𝑡) =   𝑓( 𝑡, 𝑥), 𝑥( 𝑡 = 𝑡0) = 𝑥0, 

where 𝑓 : [𝑡0, 𝑇] × D → ℝ, is a continuous function. Then every solution of the given 

initial value problem also satisfies  

𝑥(𝑡) = 𝑥0 +
1

𝛤(𝛼)
∫ ( 𝑡 − 𝑠) 𝛼−1
𝑡

0

𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠,                                                    (1.6) 

 and vice versa, where 𝑡 ∈ [𝑡0, 𝑇], 𝑇 < ∞ and D = { 𝑥 ∈  ℝ :  |𝑥| ≤ 𝑀 } and 𝑀 is a 

positive finite real constant. 

Theorem 1.4.8 Existence and uniqueness theorem [102] 

Consider the fractional order differential equation  

𝐷𝛼𝑥(𝑡) =   𝑓( 𝑡, 𝑥), 𝑥( 𝑡 = 𝑡0) = 𝑥0. 

Define ‖𝑥‖ = sup
t
|𝑒−𝑆𝑡 𝑥|,   𝑆 > 0.  𝑡 ∈ [ 𝑡0,  𝑇 ],   𝑇 <  ∞.  Clearly ‖𝑥‖ = sup

t
|𝑥|. If 

𝑓( 𝑡, 𝑥) satisfies the Lipschitz condition and ℱ(𝑡) be the solution of the given system. 

If the solution ℱ(𝑡) satisfies the inequality ‖ℱ(𝑥) −  ℱ(𝑦)‖ ≤  
𝐿

𝑠𝛼
 ‖𝑥 − 𝑦‖  with        

𝐿

𝑠𝛼
< 1, then the given fractional order differential equation has a unique solution. 

Lemma 1.4.9 [54] Let us assume that 𝛼 ∈ (0,1] and consider that the function 𝑓(𝑡) and  

𝐷𝛼𝑓(𝑡) ∈  C [a,  b ] for all t ∈  [a,  b ], where C [a,  b ] is the class of continuous 

functions on [a,  b ] and  𝐷𝛼 stands for the fractional order Caputo derivative. The 

function 𝑓(𝑡) is said to be non-decreasing on [a,  b ] if  𝐷𝛼𝑓(𝑡) ≥ 0, and the function 

𝑓(𝑡) is said to be non-increasing on [a,  b ] and if  𝐷𝛼𝑓(𝑡) ≤ 0. 

Theorem 1.4.10 [54] Let 𝛼 > 0,  𝑛 − 1 <  𝛼 < 𝑛, where 𝑛 ∈ ℕ. Assume 𝑈 (𝑡) is 

𝑛 times continuously differentiable function and 𝐷𝛼𝑈 (𝑡) is piecewise continuous on  

[𝑡0, ∞), then    

ℒ {𝐷𝛼𝑈 (𝑡)} = 𝑠𝛼 ℱ(𝑠) −  ∑𝑠𝛼−𝑗−1𝑈𝑗
𝑛−1

𝑗=0

(𝑡0),                                                        (1.7) 
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where  ℱ(𝑠) =  ℒ {𝑈(𝑡)} is the Laplace transform of U(t), 𝐷𝛼 is the Caputo fractional 

order derivative. 

Theorem 1.4.11 [54] Let 𝒞 be the complex plane. For each 𝑚 > 0,  𝑝 > 0, 𝑘 ∈  𝒞𝑛×𝑛. 

The Laplace transform of  𝑡𝑝−1 𝐸𝑚,𝑝( 𝑘 𝑡𝑚 ) is defined as, 

 ℒ { 𝑡𝑝−1 𝐸𝑚,𝑝( 𝑘 𝑡𝑚 )} =
𝑠𝑚−𝑝

𝑠𝑚  − 𝑘
,                                                                           (1.8) 

                                                                                   

ℜ (𝑠) > ‖𝑘‖1\𝑚,  where  ℜ (𝑠) is the real part of the complex number 𝑠, and 𝐸𝑚,𝑝 is 

the Mittag–Leffler function defined as 𝐸𝑚,𝑝(𝑧) =  ∑
𝑧𝑛

Γ(mn+p)
∞
𝑛=0  , and 𝜞 is the Gamma 

function. 

Theorem 1.4.12 Global Stability Theorem (Lyapunov Direct Method) [54] 

Let 𝐷𝛼  𝑥(𝑡) = 𝑓(𝑡, 𝑥), where 𝑥(𝑡0) > 0 be the non-autonomous system and 𝑥∗ ∈ Λ ⊂

ℝ𝑛 be the equilibrium point of the system. If 𝐹 ( 𝑡, 𝑥): [ 0,∞ ) ×  Λ → ℝ represents a 

continuous and differentiable function satisfying the conditions  

𝐷𝛼𝑓(𝑡, 𝑥)  ≤ − Ω1(𝑥), 

along with  

Ω2(𝑥) ≤  𝑓(𝑡, 𝑥)  ≤  Ω3(𝑥),   

for 𝛼 ∈ (0,1) and for all 𝑥(𝑡) ∈  Λ, then the equilibrium point 𝑥∗ becomes globally 

asymptotically stable, where Ω𝑖  , ( 𝑖 = 1,2,3 ) are positive definite continuous functions 

on Λ. 

Lemma 1.4.13 [54] If 𝑥(𝑡): ℝ ⟶ ℝ+ be a continuous and differentiable function. Then 

any time for 𝑡 > 𝑡0, 𝑥∗ ∈  ℝ,   

𝐷𝛼 ( 𝑥(𝑡) − 𝑥∗ − 𝑥∗ ln
𝑥(𝑡)

𝑥∗
 ) ≤ (  

𝑥 − 𝑥∗
𝑥

 )𝐷𝛼𝑥(𝑡).                                           (1.9) 

  Lemma 1.4.14 [104] If J(X) denotes the Jacobian matrix of a fractional order system 

at the equilibrium point X and 𝜆𝑖 (𝑖 = 1,2,3…𝑛) be the respective eigenvalues of the 
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Jacobian matrix J(X). Then the equilibrium point X is locally asymptotically stable if    

| arg 𝜆𝑖 | > 
𝛼𝜋

2
  for all  𝜆𝑖 (𝑖 = 1,2,3…𝑛). 

1.4.15 Routh–Hurwitz conditions [106] 

If  𝑃(𝜆) =   𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2 𝜆

𝑛−2 +⋯+ 𝑎𝑛, is the characteristic polynomial of the 

Jacobian matrix with all coefficients real. Then the Hurwitz matrix of order n can be 

written as  

𝐻𝑛 =

[
 
 
 
 
 
 

 

𝑎1 1 0 0 0 0 0… . 0
𝑎3 𝑎2 𝑎1 1 0 0 0… . 0
𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 1 0… . 0
. . . . . . … . .
. . . . . . … . .
. . . . . . … . .
0 0 0 0 0 0 0… . 𝑎𝑛

 

]
 
 
 
 
 
 

                                                    (1.10) 

.                                           

Let us define 𝐷1 = |𝑎1|, 𝐷2 = |
𝑎1 1
𝑎3 𝑎2

| , … , 𝐷𝑛 = det (𝐻𝑛) 

For 𝛼 = 1, the Routh-Hurwitz conditions for a polynomial equation to satisfy 

| arg  𝜆 | > 𝛼
𝜋

2
  are 𝐷1 > 0,𝐷2 > 0,…𝐷𝑛 > 0. 

For fractional order 𝛼 ∈ [0,1) Routh-Hurwitz conditions for a polynomial equation to 

satisfy  | arg  𝜆 | > 𝛼
𝜋

2
  are given below.  

(i) When n = 1, the condition is 𝑎1 > 0. 

(ii) When n = 2, the conditions are either Routh–Hurwitz conditions,  

  or 𝑎1 < 0, 4𝑎2 > (𝑎1
2),  |√tan−1( 4𝑎2 − 𝑎1

2)  /𝑎1| > 𝛼
𝜋

2
.  

(iii) When n = 3, first, we define the discriminant of 𝑃(𝜆) is defined as 

𝐷(𝑝) = 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)
2 − 4𝑎3(𝑎1)

3 − 4(𝑎2)
3 − 27(𝑎3)

2.                      (1.11) 

• If 𝐷(𝑝) > 0, then 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 > 𝑎3.  

• If   𝐷(𝑝) < 0, 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑎3 > 0, 𝛼 < 2
3 ⁄ . 

• If    𝐷(𝑝) < 0, 𝑎1 > 0, 𝑎2 > 0, 𝑎1𝑎2 = 𝑎3 for all 𝛼 ∈ [0,1). 
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1.4.16 Predictor-Corrector method to solve the Caputo fractional order 

differential equations [107] 

For numerical investigations, we have used the Adam-Bashforth-Moulton predictor-

corrector technique, and Roberto Garrappa developed the PECE scheme for fractional 

differential equations in MATLAB [108]. This is a very effective method to solve 

fractional order differential equations, and this applies to both linear and non-linear 

fractional order differential equations. This technique can be extended to solve the 

fractional differential equation with more than one differential operator. This method 

has an error bound 𝑂(ℎ𝑞), where 

𝑞 = 𝑚𝑖𝑛 = {1 + 𝛼, 2} = {
2,    𝑖𝑓 𝛼 ≥ 1,

(1 + 𝛼),    𝑖𝑓 𝛼 < 1.
}.                                                   (1.12) 

                                                                                          

The stability analysis has been done in [109]. Here we are giving the formula for the 

same. Consider an initial value fractional order differential equation 

𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 

with the initial condition 𝑥(0) =  𝑥0 > 0, and 𝑡 ∈ (0, 𝑇]. Consider the set of points 

{𝑥𝑖, 𝑡𝑖},  

where 𝑥𝑖(𝑡𝑖) =  𝑥𝑖,  𝑡𝑖 = 𝑖ℎ, 𝑖 = 1,2,3… . .  𝑁 ( 𝑖𝑛𝑡𝑒𝑔𝑒𝑟), 𝑇 = 𝑁ℎ. 

The general formula for the Predictor-Corrector method is 

𝑥𝑛+1 = ∑
𝑡𝑛+1
𝑗

𝑗!

⌈𝛼⌉−1

𝑗=0

𝑥0
𝑗
+

ℎ𝛼

𝛤(𝛼 + 1)
∑𝛾𝑘,𝑛+1 

𝑛

𝑘=0

𝑓(𝑡𝑘, 𝑥𝑘)

+ 
ℎ𝛼

𝛤(𝛼 + 2)
 𝛾𝑛+1,𝑛+1 𝑓(𝑡𝑛+1 , 𝑥𝑛+1 

𝑃 ).                                            (1.13) 

Where,   

𝛾𝑘,𝑛+1 

= {

𝑛𝛼+1 − (𝑛 − 𝛼)(𝑛 + 1)𝛼,                                         𝑖𝑓 𝑘 = 0,

(𝑛 − 𝑘 + 2)𝛼+1 + (𝑛 − 𝑘)𝛼+1 − 2(𝑛 − 𝑘 + 1)𝛼+1, 𝑖𝑓 1 ≤ 𝑘 ≤ 𝑛
1,                                                                     𝑖𝑓 𝑘 = 𝑛 + 1,                

,           (1.14) 
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𝑥𝑛+1 
𝑃 = ∑

𝑡𝑛+1
𝑗

𝑗!

⌈𝛼⌉−1

𝑗=0

𝑥0
𝑗
+

1

𝛤(𝛼)
∑𝛿𝑘,𝑛+1 

𝑛

𝑘=0

𝑓(𝑡𝑘, 𝑥𝑘),                                               (1.15) 

                    

𝛿𝑘,𝑛+1 = 
ℎ𝛼

𝛼
{(𝑛 + 1 − 𝑘)𝛼 − (𝑛 − 𝑘)𝛼}.                                                              (1.16) 

                                                                              

1.5  Main Terms Used in the Thesis 

 

• Population Dynamics: Population dynamics reveals critical insights into the 

changing patterns of living populations, their growth, and the environmental 

influences that affect how they evolve. 

• Single Species: A species is a collection of organisms that can interbreed or mate 

to create viable, productive offspring. 

• Prey: A prey animal is one that another animal hunts, captures, or kills for food.  

• Predator: A predator is an organism that feeds primarily by killing and consuming 

other organisms called prey. 

• Food Chain: A food chain is a cycle by which nutrients and energy in the form of 

food are transferred from one organism to another. 

• Hopf Bifurcation: A Hopf bifurcation takes place when altering a parameter 

switches an equilibrium that was originally a stable spiral to an unstable spiral. 

• Chaotic Behavior: Chaos is a scenario in which typical differential equation 

solutions do not converge to a steady or periodic function (of time), but instead 

continue to display unexpected behavior. 

1.6  Summary of the Thesis 

The work done in this thesis examines the mathematical and numerical analysis of 

fractional-order single and multispecies mathematical models in population dynamics, 

considering the additive Allee effect. The fractional derivative in Caputo's sense is 

considered for this research work. In this research work, the single-species and 

multispecies models existing in the literature of population dynamics are reconsidered 
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by incorporating the Allee effect and replacing ordinary derivatives with Caputo 

fractional order derivatives. Newly formed models are mathematically analyzed to 

determine the uniqueness of positive and bounded solutions. Asymptotic stability 

analysis of all steady-state solutions is done. Prerequisites for global stability of all 

equilibrium points are established using the direct Lyapunov method. To validate the 

findings, numerical analysis of the models is done by using Roberto Garrappa's PECE 

scheme for fractional differential equations in MATLAB.  

Key findings of the research include how exposure of the populations to the Allee effect 

affects their dynamics. The study's findings may help determine the threshold level of 

populations suffering from the Allee effect, below which the affected species cannot 

survive. It can additionally help in the study of the different parameters used in the 

study and how changing them will allow the Allee effect to be controlled. Because 

fractional calculus operates at the microscopic level and remembers the entire 

development process, it helps us identify steady states that are unstable in integer-order 

modeling but can be stabilized using fractional-order modeling. This will help us in 

developing timely strategies to protect endangered species. Furthermore, we can use 

the findings to eliminate unwanted species by introducing the Allee effect using an 

artificial strategy. 

The first chapter provides an overview of population ecology and the theory of 

mathematical models for studying patterns and changes in populations of the same and 

different species. Following that, a general introduction to fractional calculus and a 

summary of the development process of fractional calculus are given. The literature 

review section examines notable studies on population dynamics that employ various 

types of fractional derivatives. After a thorough review of the literature, the research 

gap is identified, resulting in the study's objectives. Several mathematical definitions, 

theorems, and lemmas used in the research are discussed. Finally, a summary of the 

research results is provided.  

Chapter 2 examines the mathematically and numerically, a single-species model with 

logistic population growth that incorporates the additive Allee effect, considering 

Caputo's fractional derivative. The model is examined for the uniqueness of positive 

and bounded solutions. The preconditions for the local asymptotic and global stability 
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of all steady-state solutions are established. The threshold level of populations with a 

strong Allee effect is calculated below which a suffering population will be unable to 

survive. Different values of the Allee's constant are found, determining the severity of 

the Allee effect. All mathematically established results are validated through MATLAB 

by running numerical simulations.  

Chapter 3 investigates the Lotka-Volterra prey-predator system incorporating logistic 

growth to the prey population and exposing it to the additive Allee effect using Caputo's 

fractional order derivative. Apart from all basic population dynamics theorems, and 

stability analysis of all steady state solutions, the Hopf bifurcation is also studied at the 

coexistence point using fractional order and capture rate of prey by predator as 

bifurcation parameters.  The impact of the prey's capture rate by the predator is 

investigated numerically. It is found that the Allee effect can be controlled through 

optimal harvesting. This study identifies equilibrium points that are stable in the 

fractional order model but remain unstable in the traditional integer order model, 

implying that fractional order models provide wider stability regions.  

Chapter 4 investigates the Lotka-Volterra competition system incorporating an additive 

Allee effect in one of the species, through both fractional and integer order modeling.  

For the study, Caputo's definition-based fractional derivative is used. Different intervals 

for Allee's constant are discovered in various competition scenarios to investigate the 

stable coexistence of competing species. Furthermore, Allee's constants are calculated 

to determine the severity of the Allee effect, when it is weak, and when it is strong in 

the presence of competition. Moreover, in some cases, it is found that with the same 

value of Allee's constant and the same initial conditions, different solutions exhibit 

stability depending upon the value of the fractional order. In other words, it is possible 

to find the value of fractional order below which one solution is stable, and after 

crossing that other solution shows stability, but initial conditions remain the same. 

Using lower fractional order models, it is discovered that both species can coexist 

despite stronger interspecific competition. The uniqueness of positive and bounded 

solutions is investigated. The theoretical results obtained have also been numerically 

validated.  
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Chapter 5 examines a Caputo fractional order three-species food chain comprising a 

prey, an intermediate predator, and a top predator. The prey population grows 

logistically while being exposed to the additive Allee effect. Holing type II functional 

responses are incorporated to depict interactions between prey, intermediate predators, 

and between intermediate predators and top predators. Uniqueness of positive and 

boundedness of solutions is established. All equilibrium points are examined for their 

local and global stability. Numerical analysis is done with and without the Allee effect 

in the integer order model as well as in the fractional order model. It is found that when 

the prey are not exposed to the Allee effect, all populations show chaotic behavior in 

the integer order model, whereas in the fractional models, populations can coexist 

stably. The introduction of the weak Allee effect in the prey population allows the stable 

coexistence of all populations in integer as well as fractional order models. However, 

when the prey population is subjected to the strong Allee effect, populations can coexist 

stably in the fractional model, but in the integer order model, all populations die out. 

Chapter 6 highlights the key findings of the research in the form of a conclusion and 

outlines the future scope of the research. 
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Chapter 2 

 

Dynamical Study of a Single Species through the 

Fractional Order Logistic Equation with 

Additive Allee Effect 

 

2.1 Introduction 

Many researchers revealed that the single-species modeling approach can help in 

ecosystem modeling, to provide practical ecosystem-based management in 

fisheries, pest management, epidemic avoidance, and management, optimal biological 

resource planning, cellular growth regulation, and many more [110]. There are many 

case studies in wildlife management where the single-species conservation approach 

helped to save biodiversity [111-113].  In population dynamics, there are three popular 

single-species models: the exponential growth model, the logistic growth model, and 

the delay model.  Many researchers have used quantitative analysis to obtain some 

advantageous characteristics of these models, and their findings help us to anticipate 

and control the actual production [114,115]. Various studies on the single-species 

logistic growth model for optimal harvesting [116,117], the extinction and permanence 

of single species by considering the logistic growth of the population in a polluted 

environment [118], the dynamical behavior of stochastic single species with Allee effect 

[119], Hopf bifurcation with delay [120], the stochastic growth of single species with 

limited resources [121] are witnessed in the literature.  

During the past few years, the scientific community has shifted its focus to explaining 

real-world problems using fractional calculus. Fractional calculus is inextricably linked 

with the memory systems seen in numerous real-world systems [13,14]. As discussed 

in Chapter 1, various published studies have proved that fractional order models provide 

a more appropriate explanation to real-world phenomena than those of ordinary integer-

order systems. Sayed et al. established the prerequisites for the uniqueness of the 
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solution and laid conditions for the stability of the steady state solutions of a fractional 

order single species logistic equation [38]. The authors applied Caputo's definition of 

fractional derivatives. Gao and Zhao used Caputo's definition-based fractional 

derivative to investigate the single-species model with species dispersion in n patches 

as a coupled system on a network [56]. Li et al. used Caputo fractional differential 

equations to study the single-species model incorporating population dispersion in 

several patches [57]. Abbas et al. used Riemann-Liouville’s definition-based fractional 

order differential equations to analyze the logistic equation incorporating the 

multiplicative Allee effect [102]. In this chapter, we are studying the fractional order 

single species logistic equation with the additive Allee effect by using Caputo's 

definition of the fractional derivative. The analysis of the model is done by exposing 

the population to the strong Allee effect as well as the weak Allee effect, and to find a 

threshold level for a population suffering from a strong Allee effect, mathematically 

and numerically.  

2.2 Mathematical Model 

The logistical growth equation of a single species when it is exposed to the additive 

Allee effect can be written as eq. (1.3). Replacing the ordinary derivative with the 

Caputo fractional order derivative, the model equation (1.3) can be represented as  

𝐷𝛼𝑥(𝑡) = [𝑟 (1 −
𝑥

𝐾
) −

𝑚

𝑥 + 𝑎 
]  𝑥,                                                                                 (2.1) 

                                                                                                     

subject to the starting condition 𝑥( 𝑡 = 𝑡0) = 𝑥0 > 0. Here 𝑥, 𝑟, 𝐾, 𝑎, and 𝑚 are all 

positive, depicting the number of individuals in the population, the species' intrinsic 

growth rate, the maximum population of the species that can be supported by the 

environment (carrying capacity), the population density of the species having fitness 

half of its extreme value, and the Allee's constant respectively. 𝐷𝛼 denotes Caputo 

fractional order derivative, and 𝛼 ∈ (0,1] represents the fractional order. 
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2.3 Primary Evaluation of the Model 

In this section, an analysis of the proposed model will be conducted to establish the 

properties of its solutions, including existence, uniqueness, positivity, and uniform 

boundedness. 

2.3.1 Existence of Unique Solution  

 

Theorem 2.1: Consider the interval I = [ 𝑡0,  𝑇 ],   𝑇 <  ∞ and the region  𝐷 =

{ 𝑥 ∈  ℝ :  |𝑥| ≤ 𝑀 }, here 𝑀 is a positive constant. Let C(I) denote a class of real-

valued functions defined on I that have continuous first-order derivatives on C(I). Then 

the initial value problem  𝐷𝛼𝑥(𝑡) =   𝑓(𝑡 , 𝑥), where 𝑓(𝑡 , 𝑥) =  𝑥 [𝑟 (1 −
𝑥

𝐾
) −

𝑚

𝑥+𝑎 
], 

with initial condition 𝑥( 𝑡 = 𝑡0) = 𝑥0 and 𝑓 : 𝐼 × 𝐷 → ℝ;  𝛼 ∈ (0,1] satisfies Lipschitz 

condition w.r.t the second variable 𝑥 and has a unique solution. 

Proof.  Consider a mapping 𝐺 : 𝐷 →  ℝ, where  𝐺(𝑥) =   𝑥 [𝑟 (1 −
𝑥

𝐾
) −

𝑚

𝑥+𝑎 
].  

Define ‖𝑥‖ = sup
t
| 𝑥𝑒−𝑆𝑡|,   𝑆 > 0, 𝑡 ∈ [ 𝑡0,  𝑇 ],   𝑇 <  ∞.   

Clearly ‖𝑥‖ = sup
t
|𝑥|. Let  𝑥 ,  𝑦 ∈ 𝐷.  Consider  

 ‖𝐺(𝑥) −  𝐺(𝑦)‖  =  |𝐺(𝑥) −  𝐺(𝑦)|,                                                                        (2.2) 

                                                                                                                             

= |𝑟 𝑥 −  
𝑟 𝑥2

𝐾
−

𝑚𝑥

𝑥 + 𝑎
− 𝑟𝑦 +

𝑟𝑦2

𝐾 
+  

𝑚𝑦

𝑦 + 𝑎
| , 

       

= |𝑟 (𝑥 − 𝑦) −
𝑟

𝐾 
 ( 𝑥2 − 𝑦2) − 𝑚 ( 

𝑥

𝑥 + 𝑎
−  

𝑦

𝑦 + 𝑎
)| , 

  

≤ |𝑟 (𝑥 − 𝑦)| + |
𝑟

𝐾 
 ( 𝑥2 − 𝑦2)| +  |𝑚 ( 

𝑥

𝑥 + 𝑎
−  

𝑦

𝑦 + 𝑎
)| , 

   

= 𝑟 |(𝑥 − 𝑦)| +  
𝑟

𝐾 
 | (𝑥 − 𝑦)| |(𝑥 + 𝑦)| + 𝑚 | 

𝑥 ( 𝑦 + 𝑎) − 𝑦 ( 𝑥 + 𝑎 )

( 𝑥 + 𝑎 )(𝑦 + 𝑎)
 | , 
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≤ 𝑟 |(𝑥 − 𝑦)| + 2 
𝑀𝑟

𝐾 
 | (𝑥 − 𝑦)| +  𝑚𝑎|( 𝑥 − 𝑦)|, 

= |(𝑥 − 𝑦)| (𝑟 +  2 
𝑀𝑟

𝐾 
+𝑚𝑎 ) =  𝐿 |(𝑥 − 𝑦)|.                                                     (2.3) 

Where, 

𝐿 = 𝑟 +  2 
𝑀𝑟

𝐾 
+𝑚𝑎. 

Therefore, 𝐺 satisfies the Lipschitz condition.  

Let H (𝑥) be the solution of the system (2.1). By Eq. (1.6),  

H (𝑥) = 𝑥 − 𝑥0 = 
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

𝐺(𝑥(𝑠)) 𝑑𝑠.                                                (2.4) 

Consider 

H(𝑥) −  H(𝑦) =  
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

  {𝐺(𝑥(𝑠)) − 𝐺(𝑦(𝑠))} 𝑑𝑠.                          (2.5) 

                    

|H(𝑥)  −  H(𝑦) | = |
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

  {𝐺(𝑥(𝑠)) − 𝐺(𝑦(𝑠))} 𝑑𝑠| , 

         

≤
1

Γ(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

|𝐺(𝑥(𝑠)) − 𝐺(𝑦(𝑠))| 𝑑𝑠.                                                        (2.6) 

Now consider 

𝑒−𝑝𝑡 (H(𝑥) −  H(𝑦)) ≤
1

Γ(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

 {𝐺(𝑥(𝑠)) − 𝐺(𝑦(𝑠))} 𝑒−𝑝𝑡𝑑𝑠, 

=
1

Γ(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

 𝑒−𝑝(𝑡−𝑠){𝐺(𝑋(𝑠)) − 𝐺(𝑌(𝑠))} 𝑒−𝑝𝑠 𝑑𝑠.                             

‖H(𝑋) −  H(𝑌)‖ ≤
1

Γ(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

 𝑒−𝑝(𝑡−𝑠)‖𝐺(𝑋(𝑠)) − 𝐺(𝑌(𝑠))‖ 𝑑𝑠,      

By using Eq. (2.3) 
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‖H(𝑋) −  H(𝑌)‖ ≤
(𝑟 +  2 

𝑀𝑟
𝐾 +𝑚𝑎 )

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

 𝑒−𝑝(𝑡−𝑠)‖𝑥 − 𝑦‖ 𝑑𝑠,   

=
(𝑟 +  2 

𝑀𝑟
𝐾 +𝑚𝑎 )

Γ(𝛼)
‖𝑥 − 𝑦‖ ∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

 𝑒−𝑝(𝑡−𝑠) 𝑑𝑠, 

 ≤
(𝑟 +  2 

𝑀𝑟
𝐾 +𝑚𝑎 )

Γ(𝛼)
‖𝑥 − 𝑦‖

Γ(𝛼)

𝑝𝛼
 =  

(𝑟 +  2 
𝑀𝑟
𝐾 +𝑚𝑎 )

𝑝𝛼
 ‖𝑥 − 𝑦‖. 

Choosing 𝑝 sufficiently large so that,  
(𝑟+ 2 

𝑀𝑟

𝐾 
+𝑚𝑎 )

𝑝𝛼
 < 1, then by Theorem (1.4.8), the 

model given by (2.1) has a unique solution. 

2.3.2 Positivity of the Solutions 

 

Theorem 2.3 Solutions to the given system (2.1) starting in  ℝ+are non-negative, where 

ℝ+ is the set of positive ordered reals including zero. 

Proof. Let 𝑥( 𝑡0) = 𝑥0 ∈ ℝ+ be the starting solution of the given fractional order system 

(2.1).  Let 𝑡 > 𝑡0 and we are to show that 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 𝑡0. Let us suppose that 

it does not hold. It means that there are some 𝑡1 such that  𝑡1  > 𝑡0 but  

{

                  𝑥(𝑡)  > 0      when 𝑡0 ≤ 𝑡 <  𝑡1,

𝑥(𝑡1 ) = 0,

                 𝑥( 𝑡)  < 0           when 𝑡1 ≤ 𝑡 <  t*.
}.                                                      (2.7) 

                                                                                        

Where t* is sufficiently close to 𝑡1. Now  𝑥(𝑡1) = 0  gives  𝐷𝛼𝑥( 𝑡1 ) =  0. 

Case 1. If 𝐷𝛼𝑥( 𝑡) ≥ 0, for all 𝑡 ∈ ( 𝑡1, t*]. 

Now, from Eq. (2.1), we can observe that 

𝐷𝛼𝑥( 𝑡)  > 𝑟 𝑥(𝑡).                                                                                                            (2.8) 

Applying the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝑋(𝑠) − 𝑠𝛼−1 𝑥(𝑡0) ≥  𝑟 𝑋(𝑠),                                                                                  

 where,  𝑋(𝑠) =  ℒ {𝑥(𝑡)}. This further gives, 
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(𝑠𝛼 −  𝑟 ) 𝑋(𝑠)   ≥ 𝑠𝛼−1 𝑥(𝑡0), 

𝑋(𝑠) ≥ 𝑠𝛼−1
𝑥(𝑡0)

(𝑠𝛼 - 𝑟 )
 .                                                                                                    (2.9) 

                                                                                                                                      

By applying the inverse Laplace transform to (2.9) and using Eq. (1.8), we have, 

𝑥(𝑡) ≥ ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 − 𝑟)
𝑥(𝑡0)} = 𝑥(𝑡0)𝐸𝛼,1 {𝑟 (t − 𝑡0)

𝛼}.                                  (2.10) 

Therefore, we have, 

𝑥(𝑡) ≥ 𝑥(𝑡0)𝐸𝛼,1 {𝑟 (t − 𝑡0)
𝛼} ≥ 0.                                                                          (2.11) 

                                                                                                                          

Therefore, we have 𝑥(𝑡) ≥ 0. It contradicts the assumption 𝑥( 𝑡)  < 0 for all 𝑡 ∈

( 𝑡1, t*]. 

Case 2. If 𝐷𝛼𝑥( 𝑡) < 0 for all 𝑡 ∈ ( 𝑡1, t*].                    

This implies  𝑥(𝑡) is a non-increasing function for all 𝑡 ∈ ( 𝑡1, t*]. 

Consider   

𝐷𝛼𝑥(𝑡) =  [𝑟 (1 −
𝑥

𝑘
) −

𝑚

𝑥 + 𝑎 
]  𝑥 = (𝑟 −

𝑚

𝑥 + 𝑎 
)  𝑥 −

𝑥2𝑟

𝐾
. 

 From this, we can have     

𝑥 [ 𝑟 ( 1 − 
𝑥

𝐾
) −

𝑚

𝑥 + 𝑎 
] > 𝑥 𝜌.                                                                                  (2.12) 

Here 𝜌 is the minimum value of  𝑟 ( 1 − 
𝑥

𝐾
) −

𝑚

𝑥+𝑎 
,   ∀ 𝑡 ∈ ( 𝑡1, t*].                           

This implies that for t1  < 𝑡 < t*,  𝐷𝛼𝑥 ≥  𝜌 𝑥.                                                                                            

By taking the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝑋(𝑠) − 𝑠𝛼−1 𝑥(𝑡0) ≥   𝜌 𝑋(𝑠),  

where,  𝑋(𝑠) =  ℒ {𝑥(𝑡)}. This further gives, 

(𝑠𝛼 −  𝜌) 𝑋(𝑠)   ≥ 𝑠𝛼−1 𝑥(𝑡0), 
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𝑋(𝑠) ≥ 𝑠𝛼−1
𝑥(𝑡0)

(𝑠𝛼 – 𝜌 )
,                                                                                                (2.13) 

 where,  𝑋(𝑠) =  ℒ {𝑥(𝑡)}.   

By taking the inverse Laplace transform and using Eq. (1.8), we have, 

𝑥(𝑡) ≥ 𝑥(𝑡0)𝐸𝛼,1 { 𝜌 (t − 𝑡0)
𝛼} ≥ 0.                                                                        (2.14)  

Therefore, again we have 𝑥(𝑡) ≥ 0, for all t1  < 𝑡 < t*. This again contradicts the 

assumption 𝑥(𝑡) < 0 for all 𝑡 ∈ ( 𝑡1, t*]. Hence, all solutions begin in ℝ+  are non-

negative. 

2.3.3   Uniform Boundedness of the Solutions 

 

Theorem 2.4 All non–negative solutions of the system (2.1) are uniformly bounded. 

Proof.  Consider    𝐷𝛼𝐹(𝑡) +  
𝐹(𝑡)

𝑚
,   

 where,  𝐹(𝑡) = 𝑥(𝑡).          

𝐷𝛼𝐹(𝑡) +  
𝐹(𝑡)

𝑚
= 𝑟𝑥 −

𝑟𝑥2 

𝐾 
−  

𝑚𝑥

𝑥 + 𝑎
+  

𝑥

𝑚
 ,                                                        (2.15) 

≤  𝑥 ( 𝑟 +  
1

𝑚
 ) −  

𝑟

𝐾
 𝑥2 = − 

𝑟

𝐾
 𝑥2 + ( 𝑟 +  

1

𝑚
)𝑥,   

= − 
𝑟

𝐾
 ( 𝑥2 −

𝐾

𝑟
( 𝑟 +  

1

𝑚
)𝑥 ) = − 

𝑟

𝐾
 [𝑥2 − (𝐾 +

𝐾

𝑟𝑚
)𝑥], 

= − 
𝑟

𝐾
[( 𝑥 −  

𝐿

2
 )
2

−  
𝐿2

4
] =

𝑟𝐿2

4𝐾
− 
𝑟

𝐾
 ( 𝑥 −  

𝐿

2
 )
2

, 

≤
𝑟𝐿2

4𝐾
= 𝑅. 

 Where, 𝐿 = (𝐾 +
𝐾

𝑟𝑚
).  Therefore, we have  

𝐷𝛼𝐹(𝑡) +  
𝐹(𝑡)

𝑚
≤ 𝑅.                                                                                                      (2.16)                                                                                               

By taking the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝐺(𝑠) − 𝑠𝛼−1 𝐹(𝑡0) +  
1

𝑚 
 𝐺(𝑠) ≤  

𝑅

𝑠
, 
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where  𝐺(𝑠) =  ℒ {𝐹(𝑡)}, 

( 𝑠𝛼 +  
1

𝑚
 )𝐺(𝑠) ≤  

𝑅

𝑠
+  𝑠𝛼−1 𝐹(𝑡0). 

This implies 

𝐺(𝑠) ≤  
𝑅

𝑠 ( 𝑠𝛼 +  
1
𝑚  )

+  
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  
1
𝑚  )

 

=
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  
1
𝑚  )

+  
𝑠𝛼−( 𝛼+1 )

( 𝑠𝛼 +  
1
𝑚  )

 𝑅.                                             (2.17)   

                                                                           

By taking the inverse Laplace transform and using Eq. (1.8) we have, 

𝐹(𝑡) ≤  𝐹(𝑡0) ℒ
−1 {

𝑠𝛼−1 

( 𝑠𝛼 +  
1
𝑚  )

 } + 𝑅 ℒ−1 {
𝑠𝛼−(𝛼+1) 

( 𝑠𝛼 +  
1
𝑚  )

 }, 

= 𝐹(𝑡0) 𝐸𝛼,1 {−
(𝑡 − 𝑡0)

𝛼

𝑚
 } + 𝑅 𝑡𝛼  𝐸𝛼,𝛼+1 {−

(𝑡 − 𝑡0)
𝛼

𝑚
 }.                           (2.18)  

                                                                                                                                                   

Now using the recurrence formula for Mittag-Leffler’s function, 

 𝐸𝛼,𝛽 {𝑧 } = 𝑧 𝐸𝛼,𝛼+𝛽 {𝑧 } +  
1

Γ(β)
,                                                                          (2.19)   

                                                                                                                                                               

we have 

𝐸𝛼,1 {−
(𝑡 − 𝑡0)

𝛼

𝑚
 }

=  −
(𝑡 − 𝑡0)

𝛼

𝑚
𝐸𝛼,𝛼+1 {−

(𝑡 − 𝑡0)
𝛼

𝑚
 } +   

1

Γ(1) 
.                  (2.20)  

                               

Which implies  

(𝑡 − 𝑡0)
𝛼𝐸𝛼,𝛼+1 {−

(𝑡 − 𝑡0)
𝛼

𝑚
 } =  −𝑚 [𝐸𝛼,1 {−

(𝑡 − 𝑡0)
𝛼

𝑚
 } − 1 ].          (2.21) 

                         

 Therefore, Eq. (2.18) implies, 
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𝐹(𝑡) ≤ 𝐹(𝑡0)𝐸𝛼,1 {−
(𝑡 − 𝑡0)

𝛼

𝑚
 } − 𝑅𝑚 [ 𝐸𝛼,1 {−

(𝑡 − 𝑡0)
𝛼

𝑚
 } − 1 ] , 

                                       

= ( 𝐹(𝑡0) − 𝑅𝑚 )𝐸𝛼,1 {−
(𝑡 − 𝑡0)

𝛼

𝑚
 } + 𝑅𝑚.                                                      (2.22)      

                                                           

Now as t⟶∞ ,  𝐸𝛼,1 {−
(𝑡− 𝑡0)

𝛼

𝑚
 }  ⟶ 0.  

Therefore, we see that,  

𝐹(𝑡) ≤  𝑅𝑚 =  
𝑟𝐿2𝑚

4𝐾
 .                                                                                              (2.23) 

                                                     

Therefore, all non–negative solutions of the given system (2.1) lie in the region 

{𝑥̅ ∈  ℝ+ :  𝑥̅ ≤
𝑟𝐿2𝑚

4𝐾
+ 𝑣,  𝑣 > 0 }. 

 

2.3.4 Equilibrium Points and Conditions for the Existence  

 

First, we define some mathematical representations for Allee’s constant that will be 

used for the whole analysis. 

 

{

𝑚𝑤 = 𝑎𝑟,

𝑚𝑐𝑟 =
𝐾𝑟

4
(1 +  

𝑎

𝐾
)
2

.
                                                                                                (2.24) 

                                                                                                                                                                                                                     

The steady-state solutions (equilibria) of system (2.1) are given by  

1. 𝑥𝑒 = 0, and this point exists without any condition.                                                                                    

2. 𝑥𝑠 =
𝐾

2
 [(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚 < 𝑚𝑐𝑟 (See Eq. (2.24)).  



37 
 

3. 𝑥𝑡 =
𝐾

2
[(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ] , provided 𝑚𝑤 < 𝑚 <  𝑚𝑐𝑟 (See Eq. 

(2.24)). 

Remark: Proofs of the existence conditions are given along with the stability proofs in 

Theorems 2.5, 2.6, and 2.7. 

2.3.5 Examination of the Equilibrium Points for Local Asymptotic Stability 

 

Firstly, we will explain the criteria to be used to inspect the local stability of all 

equilibria. 

Let 𝑥 = 𝑥∗ be the equilibrium point of the fractional order system 𝐷𝛼𝑥(𝑡) = 𝑓(𝑥(𝑡)).   

Then  𝑓(𝑥∗) = 0. 

To evaluate the asymptotical stability, let us perturb the equilibrium point by adding 

𝜖(𝑡).  

Let 𝑥(𝑡) =  𝑥∗ + 𝜖, then we have 

𝐷𝛼𝑥(𝑡) = 𝐷𝛼  (𝑥∗ + 𝜖 ) = 𝑓(𝑥∗ +  𝜖).                                                                 (2.25) 

Therefore,  

𝐷𝛼  (𝑥∗ + 𝜖 ) = 𝑓(𝑥∗ +  𝜖).                                                                                     (2.26) 

By using Taylor’s formula,   

𝑓(𝑥∗ +  𝜖) ≈ 𝑓(𝑥∗) + 𝑓
′ (𝑥∗) 𝜖 + ⋯                                                                    (2.27)                                                                      

As  𝑓(𝑥∗) = 0. Therefore, we have 

𝑓(𝑥∗ +  𝜖) ≈ 𝑓
′(𝑥∗)𝜖. 

Also, 

𝐷𝛼(𝑥∗ + 𝜖) = 𝐷
𝛼(𝑥∗ ) + 𝐷

𝛼(𝜖) = 𝐷𝛼(𝜖).                                                            (2.28) 

Therefore,  

𝐷𝛼(𝜖) =   𝑓′(𝑥∗) 𝜖.                                                                                                      (2.29) 

The solution of the above equation is given by, 
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𝜀(𝑡) = 𝜖(𝑡0) 𝐸𝛼,1(𝑓
′(𝑥∗)𝑡

𝛼).                                                                                    (2.30) 

Therefore, from Eqs. (2.25) to (2.29), we can have  

𝐷𝛼𝑥(𝑡) = 𝐷𝛼(𝜖(𝑡) ) =   𝑓′(𝑥∗)𝜖(𝑡0) 𝐸𝛼,1(𝑓
′(𝑥∗)𝑡

𝛼).                                       (2.31) 

If  𝜖(𝑡) increases or 𝐷𝛼(𝜖(𝑡) ) > 0, then the equilibrium point becomes unstable, and 

if 𝜖(𝑡)) decreases or 𝐷𝛼(𝜖(𝑡) ) < 0, the equilibrium point becomes stable. Therefore, 

stability or instability depends upon the sign of 𝑓′(𝑥∗). Therefore, the equilibrium point 

𝑥∗ will be stable or unstable according to the condition  𝑓′(𝑥∗) < 0, or 𝑓′(𝑥∗) > 0 [38]. 

Theorem 2.5 If 𝑚 >  𝑚𝑐𝑟 (See Eq. (2.24)), then the system (2.1) has only one 

asymptotically stable (locally) equilibrium point 𝑥𝑒. 

Proof. To find equilibria of the fractional order system (2.1), we set to zero eq. (2.1).  

[𝑟 (1 −
𝑥

𝑘
) −

𝑚

𝑥 + 𝑎 
]  𝑥 = 0. 

From above, either  𝑥 = 0  or  𝑟 (1 −
𝑥

𝑘
) −

𝑚

𝑥+𝑎 
= 0.  

This, on further simplification, gives 

1 

𝐾
 𝑥2 − (1 −

𝑎

𝐾
)  𝑥 + 

𝑚

𝑟
− 𝑎 = 0.                                                                          (2.32) 

                                                                                                                                                                                       

This is a quadratic equation, and its discriminant is given by 

𝔻 = (1 − 
𝑎

𝐾
)
2

− 
4

𝐾
 (
𝑚

𝑟
− 𝑎) = (1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
.                                           (2.33)  

                                                

To have only one solution 𝑥𝑒 = 0, the condition to be satisfied is given by                                                 

(1 + 
𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 < 0. 

This further gives 

𝑚 >  
𝐾𝑟

4
(1 +  

𝑎

𝐾
)
2

= 𝑚𝑐𝑟   (See Eq. (2.24)).          

For stability analysis, consider the given system (2.1) as  

𝐷𝛼𝑥 = 𝑓(𝑥), 
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where  

𝑓(𝑥) = [𝑟 (1 −
𝑥

𝑘
) −

𝑚

𝑥 + 𝑎 
]  𝑥. 

Its differential coefficient is given by                                               

𝑓′(𝑥) = 𝑟 − 
2𝑟𝑥

𝐾
− 

𝑚𝑎

(𝑥 + 𝑎)2
.                                                                                 (2.34)  

Now 𝑓′(𝑥𝑒) = 𝑟 − 
𝑚

𝑎 
< 0  gives 𝑚 > 𝑎𝑟 =  𝑚𝑤. Hence, combining the existence and 

stability conditions, we conclude that if 𝑚 > max {𝑚𝑐𝑟 , 𝑚𝑤} = 𝑚𝑐𝑟 (See Eq. (2.24)), 

the only equilibrium points of (2.1) are 𝑥𝑒 , which is asymptotically stable. 

Theorem 2.6 If 0 < 𝑚 < 𝑚𝑤 (See Eq. (2.24)), in other words, when a species is 

exposed to the weak Allee effect, then system (2.1) has two equilibrium points  𝑥𝑒 , and 

 𝑥𝑠. Where 𝑥𝑒 is always unstable and 𝑥𝑠 is asymptotically stable. 

Proof.  To have non-zero solutions along with 𝑥𝑒 = 0, the condition to be satisfied by 

the system (2.1) can be obtained from Eq. (2.32) as,               

(1 + 
𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 > 0.  

This on solving gives, 

𝑚 <
𝐾𝑟

4
(1 +  

𝑎

𝐾
)
2

=  𝑚𝑐𝑟  (See Eq. (2.24))   

On solving Eq. (2.32), we have 

𝑥𝑠 = 
𝐾

2
 [(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ],                                                               (2.35) 

                                                            

𝑥𝑡 = 
𝐾

2
 [(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ].                                                              (2.36) 

As 𝑥𝑠 > 0, and for 𝑥𝑡 > 0,  the condition to be satisfied is given by 



40 
 

(1 − 
𝑎

𝐾
) > √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
.                                                                                  

This, on further simplification, gives 𝑚 > 𝑚𝑤.  Therefore, 𝑚 < 𝑚𝑤 implies  𝑥𝑡 < 0. 

As we are interested only in non-negative solutions, system (2.1) has two feasible              

equilibrium points 𝑥𝑒 and  𝑥𝑠 when 𝑚 < 𝑚𝑤. Now for the stability of the point  𝑥𝑠, 

from Theorem 2.5, the differential coefficient of 𝑓(𝑥) is calculated as,                                 

 𝑓′(𝑥) = 𝑟 − 
2𝑟𝑥

𝐾
− 

𝑚𝑎

(𝑥 + 𝑎)2
.                                                                                 (2.37) 

 

Substituting for 𝑥𝑠 in the above equation, we can have 

𝑓′(𝑥𝑠)  = 𝑟 − 
2𝑟𝑥𝑠
𝐾

− 
𝑚𝑎

(𝑥𝑠 + 𝑎)2
.                                                                            (2.38)     

Now 

𝑥𝑠 + 𝑎 =  
𝐾

2
 [(1 + 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ],                                                  (2.39) 

               

(𝑥𝑠 + 𝑎)
2 =

𝐾2

4
[2 (1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
+ 2 (1 + 

𝑎

𝐾
) √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
].      (2.40) 

                 

𝑟 (1 − 
2𝑥𝑠
𝐾
) = 𝑟 [

𝑎

𝐾
− √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ].                                                    (2.41) 

On multiplying (2.40) and (2.41), we have,                      

𝑟 (1 − 
2𝑥𝑠
𝐾
) (𝑥𝑠 + 𝑎)

2 =
𝑟𝐾2

2
 [
𝑎

𝐾
− √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ] × 
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[(1 + 
𝑎

𝐾
)
2

− 
2𝑚

𝐾𝑟
+ (1 + 

𝑎

𝐾
) √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
], 

=
𝑟𝐾2

2
[
𝑎

𝐾
− 𝐴] [(1 + 

𝑎

𝐾
)
2

−  
2𝑚

𝐾𝑟
+ (1 + 

𝑎

𝐾
)  A].                                               

Where,  

A =  √(1 + 
𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
.  

Therefore, 

𝑟 (1 − 
2𝑥𝑠
𝐾
) (𝑥𝑠 + 𝑎)

2 

=
𝑟𝐾2

2
 [(
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴 +

2𝑚

𝐾𝑟
 (2 + 

𝑎

𝐾
) − (1 + 

𝑎

𝐾
)
2

 ] .                                 (2.42) 

Further considering                                                                              

𝑟 (1 − 
2𝑥𝑠
𝐾
) (𝑥𝑠 + 𝑎)

2 − 𝑎𝑚 

=
𝑟𝐾2

2
[(
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴 +

4𝑚

𝐾𝑟
 − (1 + 

𝑎

𝐾
)
2

 ] .                                                   (2.43) 

Now asymptotical stability of 𝑥𝑠, requires 𝑓′(𝑥𝑠) < 0. Applying this condition, we can 

have 

(
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴 +

4𝑚

𝐾𝑟
 − (1 + 

𝑎

𝐾
)
2

< 0.                                                             (2.44)  

This simplification gives 

(1 + 
𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
> (

2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴. 

This further implies  

𝐴2 > (
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴. 

Which further gives, 
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𝐴 > (
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
). 

Squaring both sides and substituting the value of  𝐴, it is observed that 

(1 + 
𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
>
4𝑚2

𝐾2𝑟2
+ (1 + 

𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
(1 + 

𝑎

𝐾
). 

On solving, we get,  

𝑚(𝑚 − 𝑎𝑟) < 0.                                                                                                            (2.45) 

                                                                      

This further gives, 0 < 𝑚 < 𝑎𝑟 = 𝑚𝑤.  From the stability analysis of  𝑥𝑒 , we found 

that  𝑓′(𝑥𝑒) < 0  gives 𝑚 > 𝑚𝑤, which proves that 𝑥𝑒 is unstable, and  𝑓′(𝑥𝑠)  < 0  

gives 0 < 𝑚 < 𝑚𝑤. Hence stability of 𝑥𝑠 is established when 0 < 𝑚 < 𝑚𝑤. 

Theorem 2.7 If 𝑚𝑤 < 𝑚 <  𝑚𝑐𝑟 (See Eq, (2.24)), there will be three equilibrium points 

of the system (2.1)  𝑥𝑒 , 𝑥𝑠,  𝑥𝑡. Out of which 𝑥𝑒 is stable, and 𝑥𝑠, 𝑥𝑡 both are unstable.   

Proof.  Following the last theorem 2.6 if 𝑚 <  𝑚𝑐𝑟 , system (2.1) has three steady-state 

solutions  𝑥𝑒 ,  𝑥𝑠,  𝑥𝑡. From Theorem 2.5,   

𝑓(𝑥) = [𝑟 (1 −
𝑥

𝑘
) −

𝑚

𝑥 + 𝑎 
]  𝑥. 

𝑓′(𝑥) = 𝑟 − 
2𝑟𝑥

𝐾
− 

𝑚𝑎

(𝑥 + 𝑎)2
. 

 𝑓′(0) < 0  gives  𝑚 > 𝑚𝑤  (See Theorem 2.5). 

𝑓′(𝑥𝑠)  < 0  gives 0 < 𝑚 < 𝑚𝑤 (See Theorem 2.6). 

𝑓′(𝑥𝑡) == 𝑟 − 
2𝑟𝑥𝑡
𝐾

− 
𝑚𝑎

(𝑥𝑡 + 𝑎)2
.                                                                        (2.46) 

Consider 

𝑥𝑡 + 𝑎 = 
𝐾

2
 [(1 + 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ].                                                (2.47) 
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(𝑥𝑡 + 𝑎)
2 =

𝐾2

4
[2 (1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
− 2 (1 + 

𝑎

𝐾
) √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
].   (2.48) 

Again consider 

𝑟 (1 − 
2𝑥𝑡
𝐾
) = 𝑟 [

𝑎

𝐾
+ √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ] .                                                      (2.49) 

On multiplying (2.47) and (2.48), we have 

𝑟 (1 − 
2𝑥𝑡
𝐾
) (𝑥𝑡 + 𝑎)

2 =
𝑟𝐾2

2
 [
𝑎

𝐾
+ √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ] × 

[(1 + 
𝑎

𝐾
)
2

− 
2𝑚

𝐾𝑟
− (1 + 

𝑎

𝐾
) √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
]. 

=
𝑟𝐾2

2
[
𝑎

𝐾
+ 𝐴] [(1 + 

𝑎

𝐾
)
2

−  
2𝑚

𝐾𝑟
− (1 + 

𝑎

𝐾
)  A]. 

Here,  A =  √(1 + 
𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
.   

Therefore,  

𝑟 (1 − 
2𝑥𝑡
𝐾
) (𝑥𝑡 + 𝑎)

2 

=
𝑟𝐾2

2
 [(
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴 +

2𝑚

𝐾𝑟
 (2 + 

𝑎

𝐾
) − (1 + 

𝑎

𝐾
)
2

 ] .                                (2.50) 

                                  

𝑟 (1 − 
2𝑥𝑡
𝐾
) (𝑥𝑡 + 𝑎)

2 − 𝑎𝑚 =
𝑟𝐾2

2
[(
2𝑚

𝐾𝑟
− 1 − 

𝑎

𝐾
)𝐴 +

4𝑚

𝐾𝑟
 − (1 + 

𝑎

𝐾
)
2

 ], 

=
𝑟𝐾2

2
[(1 + 

𝑎

𝐾
−
2𝑚

𝐾𝑟
)𝐴 +

4𝑚

𝐾𝑟
 − (1 + 

𝑎

𝐾
)
2

 ] .                                                  (2.51) 

 

 Now asymptotical stability of 𝑥𝑡, requires 𝑓′(𝑥𝑡) < 0. From this condition, we can 

have 
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(1 + 
𝑎

𝐾
−
2𝑚

𝐾𝑟
)𝐴 +

4𝑚

𝐾𝑟
 − (1 + 

𝑎

𝐾
)
2

< 0. 

This implies 

(1 + 
𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
> (1 + 

𝑎

𝐾
−
2𝑚

𝐾𝑟
)𝐴. 

This implies  

𝐴2 > (1 + 
𝑎

𝐾
−
2𝑚

𝐾𝑟
)𝐴. 

This further gives, 

𝐴 > (1 + 
𝑎

𝐾
−
2𝑚

𝐾𝑟
). 

Squaring both sides 

(1 + 
𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
>
4𝑚2

𝐾2𝑟2
+ (1 + 

𝑎

𝐾
)
2

−
4𝑚

𝐾𝑟
(1 + 

𝑎

𝐾
). 

On solving, we get,  

𝑚(𝑚 − 𝑎𝑟) < 0. 

This further gives, 0 < 𝑚 < 𝑎𝑟 = 𝑚𝑤. This is contradictory to the existence condition 

of the point. Hence 𝑥𝑒 = 0 is stable, but 𝑥𝑠 and 𝑥𝑡 are unstable.                                                                      

2.3.6 Examination of the Equilibrium Points for Global Stability 
 

Theorem 2.8 If 𝑟 − 
𝑚

𝑀+𝑎 
+ 

𝑟𝑥∗

𝐾
 < 0 and 

𝑚𝑥∗

𝑎
 − 𝑟𝑥∗ < 0,  where |𝑥| ≤ 𝑀,  then 

equilibria 𝑥𝑠 is globally stable where 𝑀 is a positive finite real constant. 

Proof.  Consider a function 

𝑉( 𝑥) = ( 𝑥 − 𝑥∗ − 𝑥∗ ln
𝑥

𝑥∗
 ),                                                                                  (2.52) 

where 𝑥(𝑡) = 𝑓(𝑥), and 𝑥∗ = 𝑥𝑠.    

Again consider,  



45 
 

𝐷𝛼  𝑉( 𝑥) = 𝐷𝛼 ( 𝑥 − 𝑥∗ − 𝑥∗ ln
𝑥

𝑥∗
 ).                                                                     (2.53) 

Using Eq. (1.9), we have, 

𝐷𝛼  𝑉( 𝑥) ≤  (  
𝑥 − 𝑥∗
𝑥

 ) 𝐷𝛼𝑥,                                                                                   (2.54) 

substituting the value of  𝐷𝛼𝑥, we can see                            

𝐷𝛼  𝑉( 𝑥) ≤  𝑟𝑥 − 
𝑚𝑥

𝑥 + 𝑎 
− 𝑟𝑥∗ + 

𝑟𝑥𝑥∗
𝐾

+ 
𝑚𝑥∗
𝑥 + 𝑎

, 

𝐷𝛼  𝑉( 𝑥) ≤ 𝑥 [𝑟 − 
𝑚

 𝑀 + 𝑎 
+ 
𝑟𝑥∗
𝐾
 ] + 

𝑚𝑥∗
𝑎
 − 𝑟𝑥∗ ≤ 0, 

if  𝑟 − 
𝑚

𝑀+𝑎 
+ 

𝑟𝑥∗

𝐾
 < 0  and 

𝑚𝑥∗

𝑎
 − 𝑟𝑥∗ < 0, then 𝑉 becomes a positive definite 

function (Lyapunov function) and hence the point 𝑥∗ = 𝑥𝑠 is globally stable. 

2.4 Numerical Analysis  

 

Table 2.1: Table for Values of Parameters Used for Numerical Simulations 

 

Parameters Value in 

Case 1 

 

Value in 

Case 2 

 

Value 

in Case 

3 

Value 

in Case 

4 

Source 

𝐾 10 10 10 10 [102] 

𝑟 0.5 0.5 0.5 0.5 [102] 

𝑎 2 2 2 2 Assumed 

𝑚 0 0.8 1.5 1.9 Assumed 

 

From these values of Allee’s constants are obtained as,  

 𝑚𝑤 = 1,   𝑚𝑐𝑟 = 1.8  (See Eq. (2.24)) 

Case1.When Allee’s constant  𝑚 = 0 
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 Firstly, we consider the population without the Allee effect. By taking Allee’s constant 

𝑚 = 0,  system (2.1) results in two equilibrium points as 𝑥 = 0, 𝑎𝑛𝑑 𝐾 = 10.  Figure 

2.1 is plotted by taking the initial population of 0.01 in various fractional order models 

and traditional models. In all models, populations are observed to be moving towards 

the equilibrium point 𝑥 = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2. When Allee’s constant  0 < 𝑚 < 𝑚𝑤 (See Eq. (2.24)) 

By taking Allee’s constant 𝑚 = 0.8  we obtain the value of the equilibrium point 𝑥𝑠= 

8.47. By Theorem 2.6, the stability criteria of the point 𝑥𝑠 is also satisfied. Figure 2.2 

is plotted by taking an initial population of 1.5 and different fractional order models, 

Figure 2.1 Showing local asymptotic stability of equilibrium point 𝑥𝑠 = 10 in different models 

when population is not experiencing the Allee effect. 

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Time

X
(t

)

 

 

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1.0



47 
 

along with the traditional model of order 1,  and populations are observed to be moving 

towards the equilibrium point 𝑥𝑠. Figure 2.3 is plotted in the fractional model of order 

0.9, with different initial populations, and the equilibrium point 𝑥𝑠  is observed to be 

globally stable in the fractional order model. So, it is proven numerically that when the 

population is exposed to a weak Allee effect, no minimum population will be required 

for its survival. 
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Figure 2.2 Showing local asymptotic stability of the equilibrium point 𝑥𝑠 =  8.47  in different 

models when populations are subjected to weak Allee effect (0 < 𝑚 < 𝑚𝑤)  
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Case 3. When Allee’s constant  𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟 (See Eq. (2.24)) 

By taking Allee’s constant 𝑚 = 1.5  we obtain the value of the equilibrium point 𝑥𝑠= 

6.45, and 𝑥𝑡 = 1.55. Figure 2.4 is plotted by taking an initial population of 1.5 < 𝑥𝑡 , 

and Figure 2.5 is plotted by taking an initial population size of 2 > 𝑥𝑡 respectively in 

various fractional models along with the traditional model of order 1. It is observed that 

in Figure 2.4, populations are moving towards the extinction point 𝑥𝑒 . From Figure 2.5, 

it is observed that in each model, populations are increasing and converging to a point 

𝑥𝑠 = 6.45. Thus, it is found numerically that when the population is exposed to a strong 

Allee effect, whenever the initial population is more than the value of 𝑥𝑡 ,  the population 

will converge to 𝑥𝑠 and whenever the initial population is less than 𝑥𝑡, the population 

will become extinct.  
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Figure 2.3 Showing global stability of equilibrium point 𝑥𝑠 =  8.47  in fractional model of order    

0.9 when populations are subjected to weak Allee effect (0 < 𝑚 < 𝑚𝑤) 
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Figure 2.4 Showing the bevior of population when initial population is less  than 𝑥𝑡 = 1.55 in the 

case when population is subjected to  strong Allee effect (𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟)  

Figure 2.5 Showing the stability of point 𝑥𝑠 = 6.45 when initial population is more than 𝑥𝑡 = 1.55 

and population is subjected to  strong Allee effect (𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟)   
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Figure 2.6 is plotted by taking the fractional order as 0.9 and with different initial 

populations, and it is observed that when the initial population is more than 1.55, the 

populations move toward 𝑥𝑠 = 6.45, and when the initial population is below 1.55, 

populations move toward extinction. Therefore, through numerical examples, it is 

shown that the populations exposed to the strong Allee effect require a threshold level 

to grow. 

Case 4. When Allee’s constant  𝑚 > 𝑚𝑐𝑟 (See Eq. (2.24)) 

For the next simulation, we have considered 𝑚 = 1.9 > 𝑚𝑐𝑟 . Figure 2.7 is plotted by 

taking different fractional order models along with an integer order model and an initial 

population of 10, which is equal to the carrying capacity. From the figure, it is observed 

that the populations are moving towards extinction in each model, both in fractional as 

well as in integer order models. Therefore, the results obtained in Theorem 2.5 are 

verified. It has been proved mathematically as well as numerically that when the 

population is exposed to such a high degree of Allee effect, even the strong enough 

populations can move towards extinction. 

 Figure 2.6 Showing 𝑥𝑡 is the threshold level for the populations suffering from strong Allee effect 
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2.5 Conclusion 

In this chapter, while investigating the fractional order single species logistic equation 

with additive Allee effect, it is found that if there is no Allee effect or populations are 

experiencing a weak Allee effect, i.e., when 0 ≤ 𝑚 < 𝑚𝑤 (See Eq. (2.24)), the 

population will not die, whatever may be the initial population, and their existence will 

remain globally stable (Figs. 2.1,2.2,2.3). However, when the population is under the 

strong Allee effect or when  𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟(See Eq. (2.24)), the threshold level of the 

population is given by  𝑥𝑡 (Figs. 2.4,2.5,2.6). But if the level of the Allee effect exceeds 

𝑚 > 𝑚𝑐𝑟 (See Eq. (2.24)), all populations will die irrespective of the initial population 

(Fig. 2.7). Therefore, this research established the result that the populations exposed 

to strong Allee effect require a minimum population for their survival, as already 

suggested by many researchers mathematically as well as theoretically [69-78,100-

Figure 2.7 Showing the stability of the extinction point when populations are subjected to strong 

Allee effect  (𝑚 >  𝑚𝑐𝑟)   
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102].  Abbas et al. [102] also worked on a fractional order logistic equation 

incorporating the multiplicative Allee effect by using Riemann-Liouville’s definition-

based fractional order differential equations. In his research, the authors found a 

threshold population numerically that depends only upon the carrying capacity of the 

environment for that population. However, the proposed research has found a 

mathematical expression for Allee’s constant ( 𝑚𝑐𝑟), which is the upper bound of the 

Allee effect. Whenever the Allee effect is less than this value, then there will always be 

a threshold population that will be required for the survival of the species, and crossing 

that level of the Allee’s constant survival of that population is not possible even if the 

initial population is equal to the carrying capacity. Moreover, it is also found that by 

incorporating the additive Allee effect, the threshold value of the population depends 

on all parameters used for the study. Once knowing the values of all parameters for a 

specific spatial distribution of a vulnerable species, a threshold level beyond which 

survival of that species is not possible can be calculated using the expression for 

𝑥𝑡(See Eq. (2.36)). Once knowing the threshold level of the population prone to the 

strong Allee effect, timely strategies can help in saving that population from extinction. 

The strong Allee effect notion is frequently used in pest control [77,78]. To eliminate 

the unwanted pest population, a strong Allee effect can be introduced in the pest 

population by reducing its number below the threshold level (independent of the 

method used), which can be computed.  Therefore, it is observed that exposure to the 

Allee effect of the population has introduced several equilibrium points depending upon 

the level of the Allee effect, and hence, we can have rich population dynamics in terms 

of several stable equilibrium points. The behavior of the fractional order derivatives is 

observed while studying the population dynamics. It is observed in the fractional order 

model that as the order of fractional derivatives is reduced, the time required for 

populations to reach the equilibrium point increases; hence, we found wider stability 

regions. Therefore, it is discovered that replacing the ordinary derivative with a 

fractional derivative does not affect the value of the equilibrium points and their 

stability; rather, it provides greater flexibility in the stability region of the equilibrium 

points. Therefore, fractional derivatives are relatively better as compared with integer 

order derivatives. According to Du et al. [13], fractional derivatives have learning and 

forgetting stages. Populations take less time to learn the behavior in lower fractional 
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order models and more time to learn the behavior in the higher order fractional 

derivative model. As a result, lower-order fractional derivatives preserve higher levels 

of memory, whereas integer-order models do not exhibit such behaviors. Thus, the use 

of fractional order models contributes to warning us of impending extinction at an early 

stage. Therefore, fractional order models provide opportunities to prevent population 

extinction by providing flexible stability regions.  
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Chapter 3 

 

Analyzing the Influence of Additive Allee Effect 

in Prey Population in Lotka-Volterra Predator-

Prey System through Fractional Order 

Derivative  

 

3.1 Introduction 

All populations in an ecosystem have interspecific as well as intraspecific relationships 

known as prey-predatory, competitive, mutualism, and parasitism [122]. The prey-

predator relationship in the natural world is the most common and has thus been studied 

extensively by ecologists [123]. The famous Lotka-Volterra model was developed for 

the first time by biophysicist A.J. Lotka [124] and mathematician V. Volterra [125]. The 

conventional Lotka-Volterra model structure is oversimplified because it makes 

numerous assumptions that are not precisely true. This includes an uninterrupted pattern 

of prey species' food availability, the absence of adaptation of all interacting species, 

and the initial relationship between the size of every species and its rate of growth, 

leading to exponential expansion if the species remains unaffected by others. 

Regardless of these assumptions, the Lotka-Volterra model has successfully explained 

the dynamics of a wide variety of biological interaction systems, including interactions 

between numerous species of fish, bacterial lake communities, and freshwater ciliates. 

In the past few years, Lotka-Volterra systems have proven to be an excellent analytical 

tool and, indeed, the standard for quantifying interactions within massive microbial 

communities. Lotka-Volterra models have also been presented in non-ecological 

contexts, such as to address pollution issues. Although Lotka-Volterra models are 

frequently regarded as archaic and insufficient for much more modern systems biology 

techniques, it has been discovered that the Lotka-Volterra model structure is remarkably 
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rich and capable of capturing any differentiable nonlinearities if the required number of 

supplementary variables is introduced into the model. Despite its simplicity and 

intuitive nature, the Lotka-Volterra model has proven to be an excellent baseline model 

for comparison with modern complex models. Lotka-Volterra models have been used 

in nearly 500 PubMed-listed studies in the last decade alone [126].  

For the first time using the Riemann Liouville fractional derivative, Ahmed et.al. 

studied the Lotka-Volterra prey-predator model and rabies model [37]. Since then, using 

fractional order differential equations, various studies have been reported on the 

modeling of the Lotka-Volterra system. Using Holling type III interactions, Xie et al. 

studied a fractional-order Lotka-Volterra system by incorporating logistic growth to the 

prey population and discontinuous predator harvesting [127].  Kumar et al. studied the 

Lotka-Volterra system with two different numerical schemes: the Adams-Bashforth-

Moulton scheme and the Haar wavelet scheme by considering the model with Caputo’s 

fractional order derivative [128]. Das et al. applied the Homotopy Perturbation method 

to solve the fractional order derivatives based Lotka-Volterra system [39]. Elsonbaty 

and Elsadany analyzed a discrete, fractionally ordered Lotka-Volterra model 

considering the logistic growth of the prey population [129]. Mesady et al. investigated 

how immigration affected an extended Lotka-Volterra model using Caputo’s fractional 

order derivative [130]. Panigoro et al. examined Allee effects multiplicatively with 

Michaelis–Menten harvesting in a prey-predator model using fractional order 

differential equations [131]. Xie and Zhang investigated a fractional order prey-

predator system by exposing prey to the Allee effect and fear effect of predation, 

incorporating prey refuge [132]. So far, we have not witnessed any study on the Lotka-

Volterra model incorporating the additive Allee effect. However, Kalra and Malhotra 

studied a logistic equation incorporating the additive Allee effect to the growth equation 

of the species by employing Caputo’s definition of fractional derivative [133].  Nisar et 

al. studied an AB fractional derivative-based food chain model by incorporating the 

additive Allee effect on prey populations and Holling Type II interaction among species 

[103]. Therefore, in this chapter, we are going to analyze the Lotka-Volterra model in 

which prey are growing logistically and are exposed to an additive Allee effect using 

Caputo’s definition based fractional order derivative. Model behavior will be observed 
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by exposing the prey to weak Allee effect as well as the strong Allee effect, along with 

changing the predation rate of prey in fractionally ordered as well as in integer order-

based models. 

3.2 Mathematical model 

The Lotka-Volterra model with logistic growth and additive Allee effect in the prey 

population by taking a fractional order derivative can be written as, 

{
𝐷𝛼  𝑥1 = 𝑥1  [𝑟 (1 −

𝑥1
𝐾
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2,

𝐷𝛼 𝑥2 = 𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2,
                                                   (3.1) 

 

with initial conditions  𝑥1(0)  ≥ 0, 𝑥2(0) ≥ 0. Here  𝑥1 > 0, 𝑥2 > 0  respectively 

represents the prey’s population and predator’s population at time t. All parameters 

𝑟, 𝐾,𝑚, 𝑎, 𝑓, 𝑐, 𝑒 are all positive depicting prey’s intrinsic growth rate, maximum prey 

population that can supported by the environment (carrying capacity), Allee’s constant, 

prey population having fitness half of its maximum value, the prey’s capture rate by 

predator, the prey’s conversion rate to predators, and predators’ intrinsic death rate 

respectively. 𝐷𝛼 is the time-fractional Caputo derivative, where 𝛼 ∈ (0,1].  

These equations are based on a few assumptions:  

1. In the absence of predators and the Allee effect, the prey grows exponentially 

when its population is far below the carrying capacity, as it reaches near the 

carrying capacity, growth slows down and becomes stable at the carrying 

capacity. 

2. Predators die of starvation in the absence of the prey population, 

3. Predators can consume any number of prey. 

4. Environmental conditions are homogeneous for both populations. 
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3.3 Primary Evaluation of the Model  

In this section, an analysis of the proposed model will be conducted to establish the 

properties of its solutions, including existence, uniqueness, positivity, and uniform 

boundedness. 

 

3.3.1 Existence of Unique Solution 
 

Theorem 3.1 Let us consider the interval I = [ 𝑡0,  𝑇 ],   𝑇 <  ∞ . Suppose that C(I) 

represents the class containing all real-valued functions having continuous first-order 

derivatives on I. Consider the region  𝐷 =  (𝑥1, 𝑥2) ∈  ℝ2 :  |𝑥1|, |𝑥2| ≤ 𝑀 }. Here 𝑀 is 

a positive constant. Then the problem  𝐷𝛼𝑥1(𝑡) =   ℎ( 𝑥1 𝑥2, 𝑡),  

𝐷𝛼𝑥2(𝑡) =   𝑔( 𝑥1 𝑥2, 𝑡),  with initial condition 𝑥1( 𝑡 = 𝑡0) = 𝑥10 , 𝑥2( 𝑡 = 𝑡0) = 𝑥20 

and 𝑓 : 𝐼 × 𝐷 → ℝ2;  𝛼 ∈ (0,1] have a unique solution 𝑋(𝑥1(𝑡), 𝑥2(𝑡)) ∈ 𝐷, with 

initial condition 𝑋(𝑥1(𝑡0 ), 𝑥2(𝑡0)) = 𝑋𝑡0, where,  

ℎ( 𝑥1 𝑥2, 𝑡) = 𝑥1  [𝑟 (1 −
𝑥1

𝑘
) −

𝑚

𝑥1+𝑎 
] − 𝑓 𝑥1𝑥2 , 𝑔( 𝑥1 𝑥2, 𝑡) =  𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2.   

Proof.  Consider a mapping  𝐹 : 𝐷 →  ℝ2  by  𝐹(𝑋) = ( 𝐹1(𝑋), 𝐹2(𝑋)),  

where  

𝐹1(𝑋) = 𝑥1[ [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2,        𝐹2(𝑋) =  𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2 

Define ‖𝐹(𝑥)‖ = sup
t
|𝑒−𝑆𝑡 𝐹(𝑥)|,   𝑆 > 0.  𝑡 ∈ [ 𝑡0,  𝑇 ],   𝑇 <  ∞.   

Clearly ‖𝐹(𝑥)‖ = sup
t
|𝐹(𝑥)|. 

For any 𝑋 , 𝑌 ∈ D;  Let 𝑋 = (𝑥1, 𝑥2 ) and  𝑌 = (𝑦1, 𝑦2 ).  

Consider 

‖𝐹(𝑋) −  𝐹(𝑌)‖ =  |𝐹1(𝑋) −  𝐹1(𝑌)| +  |𝐹2(𝑋) −  𝐹2(𝑌)|,                                 (3.2)                                   

= |𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 − 𝑦1 [𝑟 (1 −

𝑦1
𝑘
) −

𝑚

𝑦1 + 𝑎 
] + 𝑓 𝑦1𝑦2|

+   |𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2 −  𝑓 𝑐 𝑦1𝑦2 + 𝑒 𝑦2|, 



58 
 

= |𝑟𝑥1 − 
𝑟

𝐾
 𝑥1
2 − 

𝑚𝑥1
𝑥1 + 𝑎 

−  𝑓 𝑥1𝑥2 − 𝑟𝑦1 + 
𝑟

𝐾 
𝑦1
2 + 

𝑚𝑦1
𝑦1 + 𝑎

+ 𝑓𝑦1𝑦2|

+  |𝑓𝑐𝑥1𝑥2 − 𝑒𝑥2 − 𝑓𝑐𝑦1𝑦2 + 𝑒𝑦2|,                                               (3.3) 

≤ |𝑟(𝑥1 − 𝑦1)| + |
𝑟

𝐾
(𝑥1

2 − 𝑦1
2)| + |𝑚 ( 

𝑥1
𝑥1 + 𝑎

− 
𝑦1

𝑦1 + 𝑎 
)| + |𝑓 ( 𝑥1𝑥2 − 𝑦1𝑦2)|

+ |𝑓𝑐 ( 𝑥1𝑥2 − 𝑦1𝑦2)| + |𝑒 ( 𝑥2 − 𝑦2)| 

, 

≤ |(𝑥1 − 𝑦1| |𝑟 + 
𝑟

𝐾
( 𝑥1 + 𝑦1) +

𝑚𝑎

(𝑥1 + 𝑎) + (𝑦1 + 𝑎)
|

+  𝑓 |𝑥1( 𝑥2 − 𝑦2) + 𝑦2( 𝑥1 − 𝑦1)|  

+ 𝑓𝑐|𝑥1( 𝑥2 − 𝑦2) + 𝑦2( 𝑥1 − 𝑦1)| + 𝑒|𝑥2 − 𝑦2|, 

 

≤ |(𝑥1 − 𝑦1| ( 𝑟 + 
2𝑟𝑀

𝐾
+  𝑚𝑎 ) +  𝑓 𝑀|( 𝑥2 − 𝑦2)| +  𝑓𝑀 |(𝑥1 − 𝑦1|

+  𝑓𝑐𝑀|( 𝑥2 − 𝑦2)| +  𝑓𝑐𝑀 |(𝑥1 − 𝑦1| + 𝑒 |(𝑥2 − 𝑦2)|,  

 

= |(𝑥1 − 𝑦1| (𝑟 + 
2𝑟𝑀

𝐾
+  𝑚𝑎 + 𝑓𝑀 +  𝑓𝑐𝑀) + |𝑥2 − 𝑦2|( 𝑓𝑀 + 𝑓𝑐𝑀 + 𝑒), 

= 𝐾1|𝑥1 − 𝑦1| + 𝐾2|𝑥2 − 𝑦2|  ≤  𝒦 ‖𝑥 − 𝑦‖.                                                        (3.4) 

  Where,  

𝐾1 =  𝑟 + 
2𝑟𝑀

𝐾
+  𝑚𝑎 + 𝑓𝑀 +  𝑓𝑐𝑀,   𝐾2 = ( 𝑓𝑀 + 𝑓𝑐𝑀 + 𝑒), 

and  𝒦 =  max {𝐾1, 𝐾2}.  

Therefore, 𝐹 satisfies the Lipschitz condition.  

Let  𝐺(𝑋) be the solution of the given system. Then by Eq. (.16),  

𝐺(𝑋) = 𝑋 −  𝑋(0) =  
1

Γ(𝛼)
∫ 𝐹(𝑋(𝑠)) (𝑡 − 𝑠)𝛼−1
𝑡

0

 𝑑𝑠.                                      (3.5) 

Consider  
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𝐺(𝑋) −  𝐺(𝑌) =
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))} (𝑡 − 𝑠)𝛼−1
𝑡

0

  𝑑𝑠.                      (3.6) 

|𝐺(𝑋) −  𝐺(𝑌) | = |
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))} (𝑡 − 𝑠)𝛼−1
𝑡

0

   𝑑𝑠|,              (3.7)  

≤
1

Γ(𝛼)
 ∫ |𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))|(𝑡 − 𝑠)𝛼−1

𝑡

0

 𝑑𝑠. 

Now  

𝑒−𝑝𝑡 (𝐺(𝑋) −  𝐺(𝑌)) =  
1

Γ(𝛼)
 ∫ 𝑒−𝑝𝑡{𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))} (𝑡 − 𝑠)𝛼−1

𝑡

0

𝑑𝑠, 

=
1

Γ(𝛼)
 ∫ 𝑒−𝑝(𝑡−𝑠)𝑒−𝑝𝑠 {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}(𝑡 − 𝑠)𝛼−1

𝑡

0

   𝑑𝑠.                        (3.8) 

                            

‖𝐺(𝑋) −  𝐺(𝑌)‖ ≤
1

Γ(𝛼)
 ∫ 𝑒−𝑝(𝑡−𝑠)‖𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))‖(𝑡 − 𝑠)𝛼−1

𝑡

0

  𝑑𝑠, 

≤
𝒦

Γ(𝛼)
∫ 𝑒−𝑝(𝑡−𝑠)‖𝑥 − 𝑦‖ (𝑡 − 𝑠)𝛼−1
𝑡

0

  𝑑𝑠, (By Eq. (3.4)) 

    

=
𝒦

Γ(𝛼)
‖𝑥 − 𝑦‖ ∫ 𝑒−𝑝(𝑡−𝑠) (𝑡 − 𝑠)𝛼−1

𝑡

0

  𝑑𝑠, 

 ≤
𝒦

Γ(𝛼)
‖𝑥 − 𝑦‖

Γ(𝛼)

𝑝𝛼
= 
𝒦

𝑝𝛼
 ‖𝑥 − 𝑦‖.                                                                    (3.9) 

                                                                   

Choosing 𝑝 sufficiently large so that 
𝒦

𝑝𝛼
  < 1, then by Theorem (1.4.8), the model given 

by (3.1) has a unique solution. 

 

3.3.2 Positivity of the Solutions 

 

Theorem 3.2 Solutions to the given system (3.1) that start in ℝ+
2  are non-negative, 

where ℝ+
2  represents the set containing positive ordered reals including zero. 
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Proof.   Let us consider that 𝑋( 𝑡0) = (𝑥1(𝑡0), 𝑥2(𝑡0)) ∈ ℝ+
2  is the initial solution of 

the system (3.1). Let 𝑡 > 𝑡0 and we claim that 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 𝑡0. To establish the 

claim, we suppose that there exists some solution 𝑋(𝑡′) which do not lie in ℝ+
2  where 

𝑡′  > 𝑡0. This implies that either 𝑋(𝑡) crosses 𝑥1axis or 𝑥2 axis.  

If the solution crosses 𝑥2 axis, then we can find some 𝑡∗ so that  𝑡∗ ≥ 𝑡0  and 𝑥1(𝑡∗) =

0, and  some 𝑡′ > 𝑡∗ (𝑡
′ is sufficiently close to 𝑡∗) but 𝑥1(𝑡) < 0  for all  𝑡∗ < 𝑡 ≤ 𝑡′.  

Now there are two possibilities. 

Case1. If  𝐷𝛼  𝑥1(𝑡) < 0  ∀ 𝑡∗ < 𝑡 ≤ 𝑡′. 

This implies 

𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 < 0.                                                               (3.10) 

                                                     

But  

𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 > 𝑥1 𝜌      ∀ 𝑡 ∈ (𝑡∗, 𝑡

′].                           (3.11) 

Here 𝜌 is the minimum value of 

𝑟 ( 1 − 
𝑥1
𝐾
) −

𝑚

𝑥1 + 𝑎 
− 𝑓 𝑥2  ∀  𝑡∗ < 𝑡 ≤ 𝑡′. 

Hence, we have  

𝐷𝛼  𝑥1(𝑡)  >  𝜌 𝑥1.                                                                                                          (3.12) 

              

By taking the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝑋1(𝑠) − 𝑠
𝛼−1 𝑥1(𝑡0) ≥  𝜌 𝑋1(𝑠),      

where  𝑋1(𝑠) =  ℒ {𝑥1(𝑡)}. 

(𝑠𝛼 −   𝜌 )𝑋1(𝑠)  ≥ 𝑠𝛼−1 𝑥1(𝑡0). 

𝑋1(𝑠) >  
𝑠𝛼−1 𝑥1(𝑡0)

(𝑠𝛼 −   𝜌 )
.                                                                                                  (3.13) 
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On applying the inverse Laplace transform and using Eq. (1.8) we have, 

𝑥1(𝑡) ≥  ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 −  𝜌)
𝑥1(𝑡0)}  

= 𝑥1(𝑡0)𝐸𝛼,1 { 𝜌 (t − 𝑡0)
𝛼}.                                                             (3.14) 

Therefore, we have 𝑥1(𝑡) ≥ 0 for all  𝑡 ∈ (𝑡∗, 𝑡
′].  

This contradicts the assumption that  𝑥1(𝑡) < 0, ∀ 𝑡 ∈ (𝑡∗, 𝑡
′].   

Case 2. If  𝐷𝛼  𝑥1(𝑡) > 0 ∀ 𝑡 ∈ (𝑡∗, 𝑡
′]. 

This implies 

𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 > 0.                                                               (3.15) 

But 

𝑥1  [𝑟 (1 −
𝑥1

𝑘
) −

𝑚

𝑥1+𝑎 
] − 𝑓 𝑥1𝑥2 > 𝑟𝑥1.                                                                (3.16) 

This gives   

𝐷𝛼  𝑥1(𝑡) > 𝑟𝑥1. 

By applying the Laplace transform, 

𝑠𝛼 𝑋1(𝑠) − 𝑠
𝛼−1 𝑥1(𝑡0) ≥ 𝑟 𝑋1(𝑠), 

 where  𝑋1(𝑠) =  ℒ {𝑥1(𝑡)}. 

(𝑠𝛼 −  𝑟 )𝑋1(𝑠)  ≥ 𝑠𝛼−1 𝑥1(𝑡0). 

𝑋1(𝑠) >  
𝑠𝛼−1 𝑥1(𝑡0)

(𝑠𝛼 −  𝑟 )
.                                                                                                  (3.17) 

By applying the inverse Laplace transform we have, 

𝑥1(𝑡) ≥  ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 − r)
𝑥1(𝑡0)} = 𝑥1(𝑡0)𝐸𝛼,1 {𝑟 (t − 𝑡0)

𝛼} ≥ 0.                    (3.18) 

This is a contradiction to the supposition that 𝑥1(𝑡) < 0  for all  𝑡∗ < 𝑡 ≤ 𝑡′.  Similarly, 

if we take 𝑥2(𝑡) < 0 for some t > 𝑡0, we arrive at a contradiction. Hence all solutions 

start in ℝ+
2  lies in ℝ+

2 . 
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3.3.3 Uniform Boundedness of the Solutions 

 

Theorem 3.3 All non–negative solutions to the system (3.1) are uniformly bounded. 

Proof. Consider a function 

𝐹(𝑡) = 𝑥1(𝑡) + 
1

𝑐
 𝑥2(𝑡).                                                                                            (3.19) 

Now  

𝐷𝛼𝐹(𝑡) =  𝐷𝛼 [𝑥1(𝑡) + 
1

𝑐
 𝑥2(𝑡)],                                                                          (3.20) 

= 𝐷𝛼𝑥1(𝑡) +  
1

𝑐
𝐷𝛼𝑥2(𝑡), 

= 𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 + 𝑓 𝑥1𝑥2 − 

𝑒

𝑐
𝑥2,  

= 𝑟𝑥1 − 
𝑟

𝐾
 𝑥1
2 − 

𝑚

𝑥1 + 𝑎 
𝑥1 − 

𝑒

𝑐
𝑥2,                                                                        (3.21) 

< 𝑟𝑥1 − 
𝑟

𝐾
 𝑥1
2 − 

𝑚

𝐾 + 𝑎 
𝑥1 − 

𝑒

𝑐
𝑥2, 

= ( 𝑟 − 
𝑚

𝐾 + 𝑎 
 ) 𝑥1 − 

𝑟

𝐾
 𝑥1
2  −  

𝑒

𝑐
𝑥2, 

= ( 𝑟 − 
𝑚

𝐾 + 𝑎 
 ) 𝑥1 − 

𝑟

𝐾
 𝑥1
2 −  𝑒 𝐹(𝑡) + 𝑒𝑥1. (By Eq. (3.19)) 

Therefore, we found that 

𝐷𝛼𝐹(𝑡) +  𝑒 𝐹(𝑡)  < ( 𝑟 + 𝑒 − 
𝑚

𝐾+𝑎 
 ) 𝑥1  −  

𝑟

𝐾
 𝑥1
2,                                             (3.22)                     

= 𝑀1𝑥1 −𝑀2𝑥1
2,  

where,  𝑀1 = 𝑟 + 𝑒 − 
𝑚

𝐾+𝑎 
  and   𝑀2 =  

𝑟

𝐾
. 

Therefore,  

𝐷𝛼𝐹(𝑡) +  𝑒 𝐹(𝑡) <  −𝑀2  ( 𝑥1
2 − 

𝑀1
𝑀2
 𝑥1 + 

𝑀1
2

4𝑀2
2 ) +

𝑀1
2

4𝑀2
, 

= 
𝑀1
2

4𝑀2
−𝑀2 ( 𝑥1 − 

𝑀1
2𝑀2

)
2

≤ 
𝑀1
2

4𝑀2
= 𝑀3. 
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Where  𝑀3 = 
𝑀1
2

4𝑀2
.  

Therefore, we have 

 𝐷𝛼𝐹(𝑡) +  𝑒 𝐹(𝑡)  <  𝑀3.                                                                                          (3.23) 

By taking the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝐺(𝑠) − 𝑠𝛼−1 𝐹(𝑡0) +  𝑒 𝐺(𝑠) ≤  
𝑀3

𝑠
.                                                                (3.24)                                                              

Where  𝐺(𝑠) =  ℒ {𝐹(𝑡)}, this gives 

( 𝑠𝛼 +  𝑒 ) 𝐺(𝑠) ≤  
𝑀3

𝑠
+  𝑠𝛼−1 𝐹(𝑡0), 

which gives,  

𝐺(𝑠) ≤  
𝑀3

𝑠 ( 𝑠𝛼 +  𝑒 )
+  
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  𝑒)
,   

=  
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  𝑒)
+  

𝑠𝛼−( 𝛼+1 )

( 𝑠𝛼 +  𝑒)
 𝑀3.                                                                              (3.25) 

On applying the inverse Laplace transform and using Eq. (1.8) we have, 

𝐹(𝑡) ≤  𝐹(𝑡0) ℒ
−1 {

𝑠𝛼−1 

( 𝑠𝛼 +  𝑒 )
 } + 𝑀3 ℒ−1 {

𝑠𝛼−(𝛼+1) 

( 𝑠𝛼 +  𝑒 )
 } 

= 𝐹(𝑡0) 𝐸𝛼,1 {−𝑒(t − 𝑡0)
𝛼 } + 𝑀3 (t − 𝑡0)

𝛼 𝐸𝛼,𝛼+1{−𝑒(t − 𝑡0)
𝛼}.                 (3.26) 

Using 

𝐸𝛼,𝛽 {𝑧 } = 𝑧 𝐸𝛼,𝛼+𝛽 {𝑧 } +  
1

Γβ 
. 

We have 

𝐹(𝑡) ≤ 𝐹(𝑡0)𝐸𝛼,1 {−𝑒(t − 𝑡0)
𝛼 } −

𝑀3

𝑒
[ 𝐸𝛼,1 {−𝑒(t − 𝑡0)

𝛼 } − 1 ], 

= ( 𝐹(𝑡0) −
𝑀3

𝑒
 )𝐸𝛼,1 {−𝑒(t − 𝑡0)

𝛼 } +
𝑀3

𝑒
.                                                       (3.27) 

Now as t⟶∞ ,  𝐸𝛼,1 {−𝑒(t − 𝑡0)
𝛼 } ⟶ 0. Therefore, all solutions to system (3.1) 

starting in ℝ+
2  lies in region  
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{𝑋 ∈  ℝ+
2  :  𝑋 ≤

𝑀3

𝑒
+ 𝑣,  𝑣 > 0 }. 

 

 3.3.4 Equilibrium Points and Conditions for the Existence 

 

First, we define some mathematical representations for Allee’s constant that are going 

to be used for the whole analysis. 

{
 
 

 
 

𝑚𝑤 = 𝑎𝑟

𝑚𝑐𝑜 =
𝑟

𝑓𝑐
 ( 1 −

𝑒

𝑓𝑐𝐾
) ( 𝑒 + 𝑎𝑓𝑐)

𝑚𝑐𝑟 =
𝐾𝑟

4
(1 +  

𝑎

𝐾
)
2

                                                                          (3.28) 

 

The evaluation of equilibrium points of the fractional order system (3.1) is done by 

setting equal to zero both equations of the model (3.1).   

𝑥1  [𝑟 (1 −
𝑥1
𝐾
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 = 0.                                                               (3.29) 

𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2 = 0.                                                                                                     (3.30) 

Now Eq. (3.29) gives either 𝑥1 = 0  or  𝑓 𝑥2 = [𝑟 (1 −
𝑥1

𝐾
) −

𝑚

𝑥1+𝑎 
]. 

Eq. (3.30) gives either 𝑥2 = 0 or  𝑥1 = 
𝑒

𝑐𝑓
. 

Solving 𝑥2 = 0 and the expression 𝑓 𝑥2 = [𝑟 (1 −
𝑥1

𝐾
) −

𝑚

𝑥1+𝑎 
],   

we can have  

𝑟 (1 −
𝑥1
𝐾
) −

𝑚

𝑥1 + 𝑎 
= 0. 

Which can be represented as  

1 

𝐾
 𝑥1
2 − (1 −

𝑎

𝐾
) 𝑥1 + 

𝑚

𝑟
− 𝑎 = 0.                                                                          (3.31) 
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Which is the same as Eq. (2.32) in Chapter 2. As solved this equation in Chapter 2, its 

positive solutions are given by, 

𝑥1
′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (3.28)) 

𝑥1
′′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚𝑤  ≤ 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (3.28)) 

On substituting 𝑥1 = 
𝑒

𝑐𝑓
  in  𝑓𝑥2 = [𝑟 (1 −

𝑥1

𝐾
) −

𝑚

𝑥1+𝑎 
],  we obtain  

𝑥2 = 
𝑟

𝑓
−

𝑟𝑒

𝑐𝑓2𝐾 
− 

𝑚𝑐

𝑒+𝑎𝑓𝑐
.  

For 𝑥2 to be nonnegative, 
𝑟

𝑓
−

𝑟𝑒

𝑐𝑓2𝐾 
− 

𝑚𝑐

𝑒+𝑎𝑓𝑐
≥ 0.  

This on simplification gives 𝑚 < 𝑚𝑐𝑜 (See Eq. (3.28)), provided 
𝑒

𝑓𝑐𝐾
< 1. 

Therefore, the given fractional order system (3.1) has, 

1. E0 (0,0) as the equilibrium point without any condition, 

2. E1 (𝑥1
′ , 0) as the equilibrium point if  𝑚 ≤ 𝑚𝑐𝑟 (See Eq. (3.28)) 

3. E2(𝑥1
′′, 0) as equilibrium points, if  𝑚𝑤  ≤ 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (3.28)) 

4. E3 (𝑥1𝑠, 𝑥2𝑠) as equilibrium point if 𝑚 < 𝑚𝑐𝑜 and 
𝑒

𝑓𝑐𝐾
< 1 (See Eq. (3.28)) 

Where, 

  𝑥1
′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ],  

𝑥1
′′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ],  𝑥1𝑠 =

𝑒

𝑐𝑓
,  𝑥2𝑠 = 

𝑟

𝑓
−

𝑟𝑒

𝑐𝑓2𝐾 
− 

𝑚𝑐

𝑒+𝑎𝑓𝑐
. 

 

3.3.5 Examination of the Equilibrium Points for Local Asymptotical Stability 

 

To analyze the local asymptotic stability of equilibrium points, we will first evaluate 

the Jacobian matrix at each point and then find the eigenvalues of the Jacobian matrix.  
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The given system of equations can be expressed as, 

𝐷𝛼  𝑥1 = 𝑥1  [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
] − 𝑓 𝑥1𝑥2 = ℎ( 𝑥1, 𝑥2). 

𝐷𝛼  𝑥2 = 𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2 = 𝑔( 𝑥1, 𝑥2 ).  

𝜕ℎ

𝜕𝑥1
=  𝑟 − 

2𝑟𝑥1
𝐾

− 
𝑚𝑎

(𝑥1 + 𝑎)2
− 𝑓𝑥2,

𝜕ℎ

𝜕𝑥2 
= −𝑓𝑥1,

𝜕𝑔

𝜕𝑥1
= 𝑓𝑐𝑥2,

𝜕𝑔

𝜕𝑥2
= 𝑓𝑐𝑥1 − 𝑒.

 

Jacobian matrix of the model (3.1) is calculated as below, 

𝕁 ( ℎ, 𝑔) =

[
 
 
 
𝜕ℎ

𝜕𝑥1

𝜕ℎ

𝜕𝑥2  
𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2 ]
 
 
 

=  [
𝑟 − 

2𝑟𝑥1
𝐾

− 
𝑚𝑎

(𝑥1 + 𝑎)2
− 𝑓𝑥2 −𝑓𝑥1

𝑓𝑐𝑥2 𝑓𝑐𝑥1 − 𝑒 

].      (3.32) 

 

Theorem 3.4 The condition  𝑚 > 𝑚𝑐𝑟  (see Eq. (3.28)), guarantees the existence as 

well as the local asymptotic stability of the extinction point E0 (0,0). 

Proof. Substituting the point E0(0,0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

found as,                     

𝕁 ( 0,0) =  [
𝑟 − 

𝑚

𝑎
0

0 −𝑒
] (see Eq. (3.32)) . 

Being a diagonal matrix, its eigenvalues are given by 𝜆1 = 𝑟 − 
𝑚

𝑎
 , 𝜆2 = −𝑒 < 0. Now 

point E0 (0,0) will be asymptotically stable if | arg 𝜆1,2 | > 
𝛼𝜋

2
.  As eigenvalues are real, 

therefore | arg 𝜆1,2 | > 
𝛼𝜋

2
  will be satisfied iff both eigenvalues are negative. This will 

be possible only if 𝑟 − 
𝑚

𝑎
 < 0. This gives 𝑟 <  

𝑚

𝑎
  or  𝑚 > 𝑚𝑤(see Eq. (3.28)). 

However, if  𝑚 > 𝑚𝑐𝑟 the eq. (3.31) will not have any real solution. Therefore, on 

taking 𝑚 > max {𝑚𝑤, 𝑚𝑐𝑟} =  𝑚𝑐𝑟,  point E0 (0,0) will be the only equilibrium point 

of the model (3.1), and it will be locally asymptotically stable.  

Theorem 3.5 Whenever 𝑚𝑐𝑜 < 𝑚 < 𝑚𝑤, (See Eq. (3.28)) where 𝑚 > 0, the 

equilibrium point, E1(𝑥1
′ , 0) will be asymptotically stable.  
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Proof. Substituting the point E1(𝑥1
′ , 0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 

𝕁 (𝑥1
′ , 0) = [

𝑟 − 
2𝑟𝑥1

′

𝐾
− 

𝑚𝑎

(𝑥1
′ + 𝑎)2

−𝑓𝑥1
′

0 𝑓𝑐𝑥1
′ − 𝑒 

] (see Eq. (3.32)) . 

Eigenvalues of the matrix are given by 𝜆1 =  𝑟 − 
2𝑟𝑥1

′

𝐾
− 

𝑚𝑎

(𝑥1
′+𝑎)

2 , 𝜆2 =  𝑓𝑐𝑥1
′ − 𝑒 . 

The point E1(𝑥1
′ , 0) will be stable if  𝜆1  < 0 and 𝜆2  < 0, as eigenvalues are real. This 

further gives 𝑟 − 
2𝑟𝑥1

′

𝐾
− 

𝑚𝑎

(𝑥1
′+𝑎)

2  < 0 and  𝑓𝑐𝑥1
′ − 𝑒 < 0. On solving the inequation 

𝑟 − 
2𝑟𝑥1

′

𝐾
− 

𝑚𝑎

(𝑥1
′+𝑎)

2  < 0, we have 0 < 𝑚 < 𝑚𝑤, (see Theorem 2.6). Now the 

inequality 𝑓𝑐𝑥1
′ − 𝑒 < 0, gives, (1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
<

2𝑒

𝐾𝑓𝑐
. This on further 

solving gives, (1 + 
𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
< (

2𝑒

𝐾𝑓𝑐
+ 

𝑎

𝐾
− 1)

2

. On simplification, we can see  

𝑚 >
𝑟

𝑓𝑐
 ( 1 −

𝑒

𝑓𝑐𝐾
) ( 𝑒 + 𝑎𝑓𝑐) = 𝑚𝑐𝑜 .                                                                      (3.33) 

Hence predator-free equilibrium point E1( 𝑥1
′ , 0) will be asymptotically  locally stable 

if 0 < 𝑚 < 𝑚𝑤 and 𝑚 > 𝑚𝑐𝑜(see Eq. (3.28)). Combining the both obtained results,  

it is concluded that point E1(𝑥1
′ , 0) will exhibit asymptotically locally stable behavior 

whenever 𝑚𝑐𝑜 < 𝑚 < 𝑚𝑤. 

Theorem 3.6 The predator free equilibria E2(𝑥1
′′, 0) is always unstable. 

Proof. Substituting the point E2(𝑥1
′′, 0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 

𝕁 (𝑥1
′′, 0) = [

𝑟 − 
2𝑟𝑥1

′′

𝐾
− 

𝑚𝑎

(𝑥1
′′ + 𝑎)2

−𝑓𝑥1
′′

0 𝑓𝑐𝑥1
′′ − 𝑒 

] (see Eq. (3.32)). 

Eigenvalues of the matrix are given by 𝜆1 =  𝑟 − 
2𝑟𝑥1

′′

𝐾
− 

𝑚𝑎

(𝑥1
′′+𝑎)

2 ,   𝜆2 =  𝑓𝑐𝑥1
′′ − 𝑒. 

The point E2(𝑥1
′′, 0) will be stable if  𝜆1  < 0 and 𝜆2  < 0. This gives 𝑟 − 

2𝑟𝑥1
′′

𝐾
−

 
𝑚𝑎

(𝑥1
′+𝑎)

2  < 0 and  𝑓𝑐𝑥1
′′ − 𝑒 < 0. On solving the inequality 𝑟 − 

2𝑟𝑥1
′′

𝐾
− 

𝑚𝑎

(𝑥1
′′+𝑎)

2  < 0, 
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it is found that 0 < 𝑚 < 𝑚𝑤 (see Theorem 2.7). This is contrary to the existence 

condition of ( 𝑥1
′′, 0)  which is given by 𝑚 ≥ 𝑚𝑤 . Therefore, the point E2(𝑥1

′′, 0) is 

always unstable. 

Theorem 3.7 If any of the following conditions are satisfied, the coexistence point, E3 

(𝑥1𝑠, 𝑥2𝑠) will be locally asymptotically stable.  

i. 𝑇2 − 4Δ ≥ 0, and 𝑇 < 0. 

ii. 𝑇2 − 4Δ <  0, and 𝑇 < 0. 

iii. 𝑇2 − 4Δ <  0, 𝑇 > 0, and  0 < 𝛼 <  
2

𝜋
tan−1 |

√4 ∆−𝑇2

𝑇
|. 

iv.   𝑇 = 0 , and  ∆ > 0.                 

Where,  𝑇 =
𝑚𝑒𝑐𝑓

(𝑒+𝑎𝑓𝑐)2
 −

𝑟𝑒

𝐾𝑐𝑓
  and  Δ = 𝑒 [𝑟 −

𝑟𝑒

𝑐𝑓𝐾
− 

𝑚𝑐𝑓

𝑒+𝑎𝑓𝑐
]. 

Proof.  The value of the Jacobian matrix at E3 (𝑥1𝑠, 𝑥2𝑠) is as given below.  

𝕁 (𝑥1𝑠, 𝑥2𝑠) =  [
𝑟 − 

2𝑟𝑥1𝑠
𝐾

− 
𝑚𝑎

(𝑥1𝑠 + 𝑎)2
− 𝑓𝑥2𝑠 −𝑓𝑥1𝑠

𝑓𝑐𝑥2𝑠 𝑓𝑐𝑥1𝑠 − 𝑒 

] (see Eq. (3.32)) 

.                    

= [
𝑎11 𝑎12
𝑎21 𝑎22

]. 

𝑎11 =  𝑟 − 
2𝑟𝑥1𝑠
𝐾

− 
𝑚𝑎

(𝑥1𝑠 + 𝑎)2
− 𝑓𝑥2𝑠, 𝑎12 = −𝑓𝑥1𝑠,

𝑎21 = 𝑓𝑐𝑥2𝑠,     𝑎22 = 𝑓𝑐𝑥1𝑠 − 𝑒 = 0.

 

Now characteristic equation of 𝕁 (𝑥1𝑠, 𝑥2𝑠) can be written as, 

𝜆2 − 𝑇𝜆 +  Δ = 0. 

Here  

𝑇 = 𝑎11 + 𝑎22 = 𝑎11 =  𝑟 − 
2𝑟𝑥1𝑠
𝐾

− 
𝑚𝑎

(𝑥1𝑠 + 𝑎)2
− 𝑓𝑥2𝑠 =

𝑚𝑒𝑐𝑓

(𝑒 + 𝑎𝑓𝑐)2
 −

𝑟𝑒

𝐾𝑐𝑓
 

 Δ = 𝑎11𝑎22 − 𝑎12𝑎21 = − 𝑎12𝑎21 = − 𝑓2𝑐 𝑥1𝑠 𝑥2𝑠 = 𝑒 [𝑟 −
𝑟𝑒

𝑐𝑓𝐾
− 

𝑚𝑐𝑓

𝑒 + 𝑎𝑓𝑐
]. 

 Eigenvalues of the Jacobian matrix are given by  
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𝜆𝑖 = 
𝑇 ± √𝑇2 − 4 ∆

2
 , 𝑖 = 1, 2. 

Case 1. If   𝑇2 − 4Δ ≥ 0 

i. If  𝑇 > 0. Here both eigenvalues will be positive reals and hence |arg (𝜆1)| =

 |arg (𝜆2)| = 0 < 𝛼 
𝜋

2
 . Therefore E3 (𝑥1𝑠, 𝑥2𝑠) will be unstable. 

ii. If 𝑇 < 0, then both eigenvalues will be negative reals, and hence |arg (𝜆1)| =

 |arg (𝜆1)| =  𝜋 >  𝛼 
𝜋

2
 . Therefore E3 (𝑥1𝑠, 𝑥2𝑠)  will be locally stable. 

Case 2.  If   𝑇2 − 4Δ <  0          

i. If  𝑇 > 0. Then 𝜆1 = 
𝑇+𝑖 √4 ∆−𝑇2

2
 , 𝜆2 = 

𝑇 −𝑖 √4 ∆−𝑇2

2
  will be complex conjugates 

of one another, with their real parts positive. Therefore, |arg (𝜆1,2)| =

|tan−1(
√4 ∆−𝑇2

𝑇
)| =  tan−1 |

√4 ∆−𝑇2

𝑇
|. If it is possible to find the value of fractional 

order 𝛼, so that  tan−1 |
√4 ∆−𝛾2

𝑇
|  >  𝛼

𝜋

2
 , only then E3 (𝑥1𝑠, 𝑥2𝑠) will be stable. In 

other words, if it is possible to find 0 < 𝛼 <  
2

𝜋
tan−1 |

√4 ∆−𝑇2

𝑇
|, the equilibrium 

point will be stable where 𝛼 ∈ (0,1]. . 

ii. If  𝑇 < 0. Here again, both eigenvalues will be complex conjugates of each other 

with negative real parts. Here,  

|arg (𝜆1,2)| =  |−𝜋 + tan
−1(

√4 ∆−𝑇2

𝑇
) | =  | 𝜋 − tan−1(

√4 ∆−𝑇2

𝑇
) | >  𝛼 

𝜋

2
.  

         Hence, equilibrium point E3 (𝑥1𝑠, 𝑥2𝑠) will be stable. 

Case 3. If  𝑇 = 0, then (𝜆1,2) =  
±√−4∆

2
= ±√−∆ . 

i. Now if ∆ > 0. Then 𝜆1 and 𝜆2 will be the complex conjugate of each other and 

|arg (𝜆1,2)| =  
𝜋

2
 >  𝛼 

𝜋

2
, the equilibrium point will be stable. 

ii. If  ∆< 0, then  𝜆1 and 𝜆2 will be real numbers with one of the eigenvalues positive, 

say 𝜆1 > 0 and |arg (𝜆1)| = 0 < 𝛼 
𝜋

2
. So, the equilibrium point E3 (𝑥1𝑠, 𝑥2𝑠) will 

be unstable. 
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3.3.6 Bifurcation analysis 
 

Theorem 3.8 If  𝑇2 − 4Δ <  0, 𝑇 > 0, and when the fractional order 𝛼 passes its 

critical value, which is given by 𝛼0 = 
2

𝜋
tan−1 |

√4 ∆−𝑇2

𝑇
|, the given fractional order 

system shows Hopf bifurcation around coexistence equilibria E3 (𝑥1𝑠, 𝑥2𝑠).  

Proof. Following case 2 of the Theorem 3.7, the eigenvalues of the system (3) at E3 

(𝑥1𝑠, 𝑥2𝑠) are given by, 

𝜆𝑖 = 
𝑇 ±  𝑖 √4 ∆ − 𝑇2

2
=  
𝑇

2
 ±  𝑖 

√4 ∆ − 𝑇2

2
= 𝑢 ±  𝑖 𝑣. 

Here 𝑢 =  
𝑇

2
> 0,   𝑣 =  

√4 ∆−𝑇2

2
.  

Therefore, we have two eigenvalues that are complex conjugates of each other with 

positive real parts.  

Now min |arg (𝜆1,2)| =  tan
−1 (

𝑣

𝑢
).   

Now consider a function  

Ϝ(𝛼) =  
𝜋𝛼

2
−  min |arg(𝜆1,2)| =  

𝜋𝛼

2
− tan−1 (

𝑣

𝑢
) . 

 Now Ϝ(𝛼) = 0 gives 𝛼 = 
2

𝜋
 tan−1 (

𝑣

𝑢
), and  Ϝ′ (

2

𝜋
 tan−1 (

𝑣

𝑢
)) =  

𝜋

2
 ≠ 0.  

Therefore, when 𝛼 crosses the critical value 
2

𝜋
 tan−1 (

𝑣

𝑢
), the given fractional-order 

system will show a Hopf bifurcation near the coexistence point. 

 

3.3.7 Examination of the Equilibrium Points for Global Stability  
 

Theorem 3.9 If  𝑟 − 
𝑚

𝕄+𝑎
+
𝑟 𝑥1𝑠

𝐾
− 𝑓𝑥2𝑠  < 0, and  

𝑒

𝑐
𝑥2𝑠 + 

𝑚𝑥1𝑠

𝑎 
 − 𝑟 𝑥1𝑠  < 0, the 

equilibrium point E3 (𝑥1𝑠, 𝑥2𝑠) is globally asymptotically stable, where max  

{|𝑥1|, |𝑥2|} ≤ 𝕄. 

Proof.  Consider the positive definite function 



71 
 

𝑉( 𝑥1, 𝑥2) = ( 𝑥1 − 𝑥1𝑠 − 𝑥1𝑠 ln
𝑥1
𝑥1𝑠
 ) +

1

𝑐
( 𝑥2 − 𝑥2𝑠 − 𝑥2𝑠 ln

𝑥2
𝑥2𝑠
 ) .                (3.34)    

𝐷𝛼𝑉( 𝑥1, 𝑥2) = 𝐷
𝛼  [( 𝑥1 − 𝑥1𝑠 − 𝑥1𝑠 ln

𝑥1

𝑥1𝑠
 ) +

1

𝑐
( 𝑥2 − 𝑥2𝑠 − 𝑥2𝑠 ln

𝑥2

𝑥2𝑠
 )] , (3.35)  

= 𝐷𝛼 ( 𝑥1 − 𝑥1𝑠 − 𝑥1𝑠 ln
𝑥1
𝑥1𝑠
 ) + 

1

𝑐
 𝐷𝛼 ( 𝑥2 − 𝑥2𝑠 − 𝑥2𝑠 ln

𝑥2
𝑥2𝑠
 ),                   

 Using Eq. (1.9)                 

𝐷𝛼𝑉( 𝑥1, 𝑥2)  ≤ ( 
𝑥1 − 𝑥1𝑠
𝑥1

 ) 𝐷𝛼𝑥1 + 
1

𝑐
 ( 
𝑥2 − 𝑥2𝑠
𝑥2

 )𝐷𝛼𝑥2,                                (3.36) 

= (𝑥1 − 𝑥1𝑠) [𝑟 (1 −
𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
 − 𝑓 𝑥2] + 

1

𝑐
 ( 𝑥2 − 𝑥2𝑠 ) ( 𝑓𝑐𝑥1 − 𝑒 ), 

= 𝑟𝑥1 − 
𝑟𝑥1

2

𝐾
− 

𝑚𝑥1
𝑥1 + 𝑎

− 𝑓𝑥1𝑥2 − 𝑟 𝑥1𝑠 + 
𝑟 𝑥1𝑥1𝑠
𝐾

 + 
𝑚𝑥1𝑠
𝑥1 + 𝑎 

+ 𝑓 𝑥1𝑠𝑥2

+
1

𝑐
 ( 𝑓𝑐𝑥1𝑥2 − 𝑒𝑥2 − 𝑓𝑐𝑥1𝑥2𝑠 + 𝑒 𝑥2𝑠 ), 

≤  𝑟𝑥1 − 
𝑚𝑥1
𝑥1 + 𝑎

 − 𝑟 𝑥1𝑠 + 
𝑟 𝑥1𝑥1𝑠
𝐾

 + 
𝑚𝑥1𝑠
𝑥1 + 𝑎 

+ 𝑓 𝑥1𝑠𝑥2

+ 
1

𝑐
 ( −𝑒𝑥2 − 𝑓𝑐𝑥1𝑥2𝑠 + 𝑒 𝑥2𝑠 ), 

 ≤  𝑟𝑥1 −
𝑚𝑥1
𝕄+ 𝑎

 − 𝑟 𝑥1𝑠 +
𝑟 𝑥1𝑥1𝑠
𝐾

+ 
𝑚𝑥1𝑠
𝑎 

+ 𝑓 𝑥1𝑠𝑥2 − 
𝑒

𝑐
𝑥2 − 𝑓𝑥1𝑥2𝑠 + 

𝑒

𝑐
𝑥2𝑠,    

= 𝑥1  ( 𝑟 − 
𝑚

𝕄+ 𝑎
+
𝑟 𝑥1𝑠
𝐾

− 𝑓𝑥2𝑠 ) + 𝑥2  ( 𝑓𝑥1𝑠 − 
𝑒

𝑐
 ) +

𝑒

𝑐
𝑥2𝑠 + 

𝑚𝑥1𝑠
𝑎 

 − 𝑟 𝑥1𝑠. 

Using 𝑥1𝑠 = 
𝑒

𝑐𝑓
,   we have 

𝐷𝛼𝑉( 𝑥1, 𝑥2) ≤  𝑥1  ( 𝑟 − 
𝑚

𝕄+𝑎
+
𝑟 𝑥1𝑠

𝐾
− 𝑓𝑥2𝑠 )  +

𝑒

𝑐
𝑥2𝑠 + 

𝑚𝑥1𝑠

𝑎 
 − 𝑟 𝑥1𝑠  ≤ 0                                                                     

if 𝑟 − 
𝑚

𝕄+𝑎
+
𝑟 𝑥1𝑠

𝐾
− 𝑓𝑥2𝑠  < 0,

𝑒

𝑐
𝑥2𝑠 + 

𝑚𝑥1𝑠

𝑎 
 − 𝑟 𝑥1𝑠 < 0, then 𝑉 becomes a positive 

definite function (Lyapunov function), and therefore, the point ( 𝑥1𝑠, 𝑥2𝑠) will be 

globally stable. 
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Theorem 3.10 If 𝑟 −
𝑚

𝕄+𝑎
 +

𝑟 𝑥1
′

𝐾
 < 0,  𝑓 𝑥1

′ − 
𝑒

𝑐
 < 0 and  

𝑚𝑥1
′

𝑎 
 − 𝑟𝑥1

′  < 0, then 

equilibrium point (𝑥1
′ , 0)  will be globally asymptotically stable where max  {|𝑥1|} ≤

𝕄.  

Proof: Consider the positive definite function 

𝑉′( 𝑥1, 𝑥2) = ( 𝑥1 − 𝑥1
′ − 𝑥1

′ ln
𝑥1
𝑥1
′  ) +

1

𝑐
 𝑥2.                                                          (3.37) 

𝐷𝛼𝑉′( 𝑥1, 𝑥2) = 𝐷𝛼 [( 𝑥1 − 𝑥1
′ − 𝑥1

′ ln
𝑥1
𝑥1
′  ) +

1

𝑐
 𝑥2],                                          (3.38) 

= 𝐷𝛼 ( 𝑥1 − 𝑥1
′ − 𝑥1

′ ln
𝑥1
𝑥1
′  ) +

1

𝑐
 𝐷𝛼 𝑥2,                                                                  (3.39) 

≤ ( 
𝑥1 − 𝑥1

′

𝑥1
 ) 𝐷𝛼𝑥1 + 

1

𝑐
 𝐷𝛼 𝑥2, (using Eq. (1.9)) 

= ( 𝑥1 − 𝑥1
′) [𝑟 (1 −

𝑥1
𝑘
) −

𝑚

𝑥1 + 𝑎 
 − 𝑓 𝑥2] + 

1

𝑐
 (𝑓 𝑐 𝑥1𝑥2 − 𝑒 𝑥2 ),             (3.40) 

= 𝑟𝑥1 − 
𝑟𝑥1

2

𝐾
− 

𝑚𝑥1
𝑥1 + 𝑎

− 𝑓𝑥1𝑥2  − 𝑟 𝑥1
′ + 

𝑟 𝑥1𝑥1
′

𝐾
 + 

𝑚𝑥1
′

𝑥1 + 𝑎 
+ 𝑓 𝑥1

′𝑥2 + 𝑓𝑥1𝑥2

− 
𝑒

𝑐
 𝑥2, 

 ≤  𝑟𝑥1 − 
𝑚𝑥1
𝑥1 + 𝑎

 − 𝑟𝑥1
′  + 

𝑟 𝑥1𝑥1
′

𝐾
 + 

𝑚𝑥1
′

𝑥1 + 𝑎 
 + 𝑓 𝑥1

′𝑥2  −  
𝑒

𝑐
 𝑥2, 

 ≤  𝑟𝑥1 −
𝑚𝑥1
𝕄+ 𝑎

 − 𝑟𝑥1
′  +

𝑟 𝑥1𝑥1
′

𝐾
+ 
𝑚𝑥1

′

𝑎 
 + 𝑓 𝑥1

′𝑥2  −  
𝑒

𝑐
 𝑥2, 

= 𝑥1 ( 𝑟 −  
𝑚

𝕄+ 𝑎
 +
𝑟 𝑥1

′

𝐾
 ) + 𝑥2  ( 𝑓 𝑥1

′ − 
𝑒

𝑐
 ) + 

𝑚𝑥1
′

𝑎 
 − 𝑟𝑥1

′ ≤ 0, 

 if  𝑟 −
𝑚

𝕄+𝑎
 +

𝑟 𝑥1
′

𝐾
 < 0, 𝑓 𝑥1

′ − 
𝑒

𝑐
 < 0,

𝑚𝑥1
′

𝑎 
 − 𝑟𝑥1

′  < 0, then 𝑉′ becomes a positive 

definite function (Lyapunov function) and hence the point ( 𝑥1
′ , 0) is globally stable. 
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 3.4 Numerical Analysis  

 

Table 3.1: Table for Values of Parameters Used for Numerical Simulations 

 

Parameters Value in 

Case 1 

 

Value in 

Case 2 

 

Value in 

Case 3 

Value in 

Case 4 

Source 

𝐾 1 1 1 1 [51] 

𝑟 1 1 1 1 [51] 

𝑎 0.2 0.2 0.2 0.2 Assumed 

𝑚 0 0.1 0.25 0.37 Assumed 

𝑓 2,1, 0.5,0.1 2, 1, 0.1 2, 1, 0.5 2,1, 0.5,0.1 Assumed 

𝑐 0.5 0.5 0.5 0.5 [131] 

𝑒 0.1 0.1 0.1 0.1 [132] 

 

 

The values obtained for Allee’s constant (see Eq. (3.28))   

𝑚𝑤 = 0.2, 𝑚𝑐𝑟 = 0.36 

Case 1. When prey are not exposed to the Allee effect  

By selecting 𝑚 = 0, the prey population will not be experiencing the Allee effect. By 

selecting 𝑓 = 2, the coexistence point obtained is E3 (0.1,0.45). Numerical simulations 

are run by taking the initial population (0.2,0.5) in various fractional order models and 

integer order models of order 1, and Figure 3.1 is plotted, and it is found that 

populations are moving towards and stabilizing at E3(0.1,0.45). 

 

 



74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.35

0.4

0.45

0.5

0.55

0.6

X(1)

X
(2

)

 

 

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1.0

0.1 0.15 0.2 0.25 0.3 0.35
0.75

0.8

0.85

0.9

0.95

X(1)

X
(1

)

 

 

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1.0

Figure 3.2 Stability analysis of the coexistence point (0.2,0.8) in various models without Allee 

effect 

Figure 3.1 Stability analysis of the coexistence point (0.1,0.45) in various models without Allee 

effect 
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On taking  𝑓 = 1, and keeping all other parameters the same as in the previous 

simulation, the value of the coexistence point obtained is E3 (0.2,0.8). It is observed that 

the densities of the prey population as well as the predator population both rise. Figure 

3.2 is plotted in fractional as well as in integer order model of order 1 by taking the 

initial population (0.3, 0.9) to show that populations are stabilizing at the coexistence 

point E3 (0.2,0.8). On further decreasing the  𝑓 = 0.5, the value of the coexistence point 

was found to be E3 (0.4, 1.2). Figure 3.3 shows that populations are stable around the 

coexistence point in all models, integer order as well as in fractional order. On further 

decreasing the 𝑓 = 0.1, it is found that predators fail to exist, as the equilibrium point 

obtained is E1 (1,0). Figure 3.4 shows the stability of the predator-free point in various 

fractional order models and integer order models.  
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Figure 3.3 Stability analysis of the coexistence point (0.4, 1.2) in various models without Allee 

effect 
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Case 2. When Allee’s constant  𝑚 < 𝑚𝑤 (see Eq. (3.28))  

By selecting 𝑚 = 0.1, prey are exposed to the weak Allee effect. By selecting 𝑓 = 2, 

the coexistence point obtained is E3(0.1,0.3). Various values to check stability are given 

below. 

𝑇 =
1

90
> 0, ∆ =

17

300 
, 𝑇2 − 4 ∆=  −

1835

8100
< 0. 

By Theorem 3.7 (iii), the critical value of fractional order was found to be 𝛼 =

2

𝜋
tan−1 |

√4 ∆−𝑇2

𝑇
| = 0.985. Figures 3.5, 3.6, 3.7, and 3.8 are plotted by taking alpha = 

0.97, 0.98, 0.99, and 1respectively, with initial populations (0.2, 0.5). 
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Figure 3.4 Stability analysis of the axial point (1, 0) in various models without Allee effect 
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Figure 3.6 Stability analysis of the coexistence point (0.1,0.3) in fractional model with fractional 

order alpha = 0.98 
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Figure 3.5 Stability analysis of the coexistence point (0.1,0.3) in fractional model with fractional 

order alpha = 0.97 
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Figure 3.8 Stability analysis of the coexistence point (0.1,0.3) in integer model  

Figure 3.7 Stability analysis of the coexistence point (0.1,0.3) in fractional model with fractional 

order alpha = 0.98 
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It is observed that when alpha is less than its critical value of 0.985, the populations 

stabilize (Figs. 3.5,3.6) after fluctuating. As alpha crosses 0.985, populations start 

fluctuating and Hopf bifurcation appears (Fig. 3.7). In the integer order model size of 

fluctuations increases (Fig. 3.8).  

On decreasing the level of  𝑓 = 1, and keeping all other parameters the same the value 

of the coexistence point was found to be E3 (0.2,0.55). It is observed that prey density 

as well as predator density increase.  

𝑇 = −
3

40
> 0, ∆ = 0.055, 𝑇2 − 4 ∆= −0.214375 < 0. 

Therefore, by Theorem 3.7, conditions for the stability of the point E3 (0.2,0.55) are 

satisfied. Figure 3.9 is plotted to show the stability of obtained equilibrium point E3 

(0.2,0.55) in fractional models and integer model.  
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Figure 3.9 Stability analysis of the coexistence point (0.2,0.55) in different models   



80 
 

On further decreasing the 𝑓 = 0.1, it is found that predators fail to exist, as existence 

conditions of the axial equilibrium point E1 are satisfied. The equilibrium point obtained 

is E1 (0.91,0). In this case value of 𝑚𝑐𝑜 = −2.2  and 𝑚 = 0.1 is considered, and 

therefore, by Theorem 3.5, stability conditions of equilibria E1 are satisfied.  Figure 3.10 

shows the stable behavior of the predator-free point in various fractional-order and 

integer-order models.     

                                                          

                                                                                                                                                                        

Case 3. When Allee’s constant  𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟 (See Eq. (3.28)) 

By selecting 𝑚 = 0.25 the prey population is exposed to a strong Allee effect. By 

selecting 𝑓 = 2, the coexistence point obtained is E3(0.1,0.03). Mathematically, there 

is no change observed in the prey population as compared to the situation when it was 

experiencing a weak Allee effect; however, the predator population density 

significantly decreases. We obtain 

𝑇 = −
13

180
< 0, ∆ =

1

150
,   𝑇2 − 4 ∆=  −0.0214 < 0. 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Prey

P
re

d
a
to

r

 

 

alpha = 0.6

alpha = 0.7

alpha = 0.8

alpha = 0.9

alpha = 1

Figure 3.10 Stability analysis of the predator free point (0.91,0) in different models  
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By Theorem 3.7, the point E3(0.1,0.03) satisfies all conditions of local stability. Figure 

3.11 is plotted by taking different fractional orders and it is observed that in lower 

fractional order models’ population stabilizes at different coexistence points. As 

fractional order takes the value of 0.6, and higher both populations fail to exist. 

However, if the attack rate is decreased to  𝑓 = 1. The value of the coexistence point 

was found to be E3(0.2,0.175). We obtain 

𝑇 = 0.1125 > 0, ∆ = 0.0175, 𝑇2 − 4 ∆=  −0.05734375 < 0 ,

2

𝜋
tan−1 |

√4 ∆ − 𝑇2

𝑇
| = 0.7204. 

 By Theorem 3.7 (iii), the critical value of fractional order was found to be 𝛼 = 0.7204. 

Figure 3.12 is drawn to show the behavior of populations at point E3 when the initial 

population (0.5,0.2). It is found that the populations stabilize at the coexistence point in 

the fractional model of order 0.72. As fractional order takes a value of 0.73, a Hopf 

bifurcation (Theorem 3.8) appears around the coexistence point, and populations fail to 

exist when the fractional order takes a value of 0.74. 
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Figure 3.11 Stability analysis of the coexistence point (0.1,0.03) in different fractional models  
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To check the threshold level of the prey population simulation is run by taking the 

fractional model of order 0.73 with different initial populations, and it is found that for 

a given predator population of 0.2, the minimum prey population must be 0.5. Figure 

3.13 is drawn to show the threshold level desired by the prey population.  

On further decreasing the capture rate to 𝑓 = 0.5, the value of the coexistence point was 

found to be E3 (0.4, 0.37). We obtain  

𝑇 = −
1

15
< 0, ∆ =

11

600
, 𝑇2 − 4 ∆=  −61\900 < 0. 

Therefore, the stability conditions of E3 are satisfied. Figure 3.14 shows that 

populations are stable at coexistence points in all models’ integer order as well as 

fractional orders.  
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Figure 3.12 Stability analysis of the coexistence point (0.2,0.175) in different fractional model  
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Figure 3.13 Stability analysis of the coexistence point (0.2,0.175) in fractional model of order 0.73 

with different initial populations 

Figure 3.14 Stability analysis of the coexistence point (0.4,0.37) in different models  
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Case 4. When Allee’s constant  𝑚 > 𝑚𝑐𝑟 (See Eq. (3.28)) 

By selecting 𝑚 = 0.37 the prey population is exposed to the strong Allee effect of a 

very high degree. Stability conditions of E0(0,0) are satisfied by Theorem 3.4 

Simulations are run by taking attack rates of predators  𝑓 = 2,1, 0.5, 0.1 as shown in 

Figures 3.15, 3.16, 3.17, and 3.18 respectively with an initial population (1,0.5), and it 

is found that even prey population is at carrying capacity initially, populations are 

unable to survive whatever rate of predation may be.  
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Figure 3.15 Behavior of the populations when prey population is experiencing Allee effect 𝑚 >

𝑚𝑐𝑟  and 𝑓 = 2 
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Figure 3.16 Behavior of the populations when prey population is experiencing Allee effect             

𝑚 > 𝑚𝑐𝑟  and 𝑓 = 1 
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Figure 3.17 Behavior of the populations when prey population is experiencing Allee effect              

𝑚 > 𝑚𝑐𝑟   and 𝑓 = 0.5 
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3.5 Conclusion 

This chapter analyses Caputo’s definition-based fractional order Lotka-Volterra prey-

predator model in which the prey population is growing logistically and is exposed to 

the additive Allee effect. All basic theorems, like the existence of unique, positive, and 

bounded solutions, are derived. Conditions required for the existence and local 

asymptotic stability of all steady state solutions are derived. Global stability of the 

predator-free and coexistence points is also discussed. It is observed that when the prey 

population is not experiencing the Allee effect, both populations can coexist stably; 

however, their densities depend upon the rate of predation (Figs. 3.1,3.2,3.3). However, 

when the rate of predation falls to a considerably low value, then predators fail to exist 

(Fig. 3.4) and the prey reaches its maximum population (carrying capacity). In case the 

prey population is exposed to a weak Allee effect along with a higher attack rate of 

predators, the populations can oscillate through Hopf bifurcation (Figs. 3.5,3.6,3.7,3.8). 

However, the optimal rate of predation helps in the coexistence of both populations 

stably (Fig. 3.9). A very low rate of predation can make predators extinct but the prey 
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Figure 3.18 Behavior of the populations when prey population is experiencing Allee effect             

𝑚 > 𝑚𝑐𝑟  and 𝑓 = 0.1 
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population never reaches to the carrying capacity (Fig. 3.10).  It is also observed that 

when prey population is exposed to strong Allee effect, the suitably chosen attack rate 

of predators can help in stable coexistence of both populations (Fig. 3.14). However, 

when prey populations are subjected to a high rate of predation along with the strong 

Allee effect, both populations can coexist stably in fractional order models whenever 

the fractional order is less than the critical value (Fig., 3.12). It is also observed that in 

this situation requirement of the minimum population is felt by the prey to survive (Fig. 

3.13). As Fig. 3.11 shows, lower fractional order models are converging to different 

coexistence points with the same values of parameters. Therefore, fractional order 

models provide early insight into the trends that populations will observe over time. 

Timely strategies or artificial strategies can help to save the population. Also, it is found 

that when prey populations are subjected to the weak Allee effect or strong Allee effect, 

or there is no Allee effect, the attack rate of predators plays a very important role in 

preserving both populations, but the Allee effect crosses the critical value 𝑚𝑐𝑟 , (see Eq. 

(3.28) extinction of populations cannot be prevented even through a low attack rate of 

predators (Figs. 3.15,3.16,3.17,3.18).    

The Allee effect can make prey populations vulnerable to extinction, as their ability to 

recover from low densities is impaired. This can also make predator populations 

vulnerable to extinction as their food source becomes scarce. Therefore, the Allee effect 

can lead to unstable prey-predator systems, potentially causing oscillations or even the 

complete collapse of the system. Understanding the Allee effect can inform 

conservation and management strategies. By recognizing the potential for population 

collapse due to low densities, managers can implement interventions to support prey 

populations and mitigate the risk of extinction for both populations.                                                                                                                                                                        
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Chapter 4 

 

 

Impact of Additive Allee Effect on Fractional 

Order Lotka-Volterra Competition Model   

                                                                                                                                                                   
                                                               

4.1 Introduction 

A competition is an interaction between two or more members of the same species or 

between two or more species where one species adversely affects the other's access to 

a limited resource. Competition is classified into two types: intraspecific competition 

and interspecific competition. Intraspecific competition is among individuals from the 

same species. Competition among the individuals of the same species has negative as 

well as positive impacts. The negative impact is observed when a species in which all 

individuals consume the same amount of a limited resource till that resource is depleted, 

and all members of that population may die of starvation. And impact is positive if an 

individual competes and wins over a resource, and then it survives by exploiting that 

resource. Interspecific competition refers to the competition between individuals from 

different species. Competition between different populations affects both populations' 

fitness. Competition reduces access to resources and harms the population's 

reproductive success. When one population dominates over the availability of a limited 

resource entirely or partially, the availability of that resource for its competitor is 

reduced. This affects the persistence of the other species [134]. The mechanism to study 

how populations evolve through both space and time when subjected to such 

interactions is known as population dynamics. As discussed in Chapter 1, mathematical 

models are frequently used by ecologists to provide insight into population dynamics. 

Mathematical models are often presented in the form of differential equations, which 

describe how populations evolve through space and time or different phases of 
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development.  Lotka [124] and Volterra [125] in the year 1925 proposed for the first 

time a mathematical model depicting the relationship between two species competing 

for a limited resource, which is well known as the famous Lotka-Volterra competition 

model. Its model equations are given as, 

{
 
 

 
 𝑑𝑥1
𝑑𝑡

= 𝑥1 (𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
))

𝑑𝑥2
𝑑𝑡

= 𝑥2 (𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
))

                                                                   (4.1)  

                                                                                                                                                           

Here 𝑥1 > 0 and 𝑥2 > 0 represents two competing species with intrinsic growth rates 

𝑟1 and  𝑟2 respectively. 𝐾1 and   𝐾2 are their maximum populations respectively which 

environment can support in the absence of competition. 𝑎12 represents the inhibiting 

impact that species 𝑥2 has on the population growth of 𝑥1, and 𝑎21 represents the 

inhibiting impact that species 𝑥1 has on the population growth of 𝑥2. 

These equations are based on a few assumptions:  

1. All competition constants, intrinsic growth rates, and carrying capacities are 

assumed to be constant. 

2. Population diversification is not permitted. 

3. Every individual of each category is identical. 

4. The habitat is uniform.  

These equations are solved under four different scenarios: 

Scenario I:    
𝐾2

𝑎21
< 𝐾1 ,   

𝐾1

𝑎12
 > 𝐾2 

Scenario II:   
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2  

Scenario III: 
𝐾2

𝑎21
< 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2  

Scenario IV:  
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 > 𝐾2 
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In scenario I, the species (𝑥1) competitively exclude the second species (𝑥2). Scenario 

II is exactly opposite to the previous one, where the species (𝑥2) will competitively 

exclude the first species (𝑥1). In scenario III, the coexistence of both species is possible 

when the growth rate of both species becomes zero. However, this coexistence is 

unstable, as any environmental changes may trigger the extinction of one species. More 

explicitly, if the species 𝑥1 reaches its carrying capacity 𝐾1 and 𝐾1 > 𝐾2/𝑎21, the 

species 𝑥2 will move towards extinction, and if  𝑥2 touch its carrying capacity 𝐾2 and 

𝐾2 > 𝐾1/𝑎12, the species 𝑥1will move towards extinction. In the last scenario IV, both 

species reach a coexistence point when the population growth rate becomes zero, and 

both populations coexist stably regardless of the initial population size of both 

populations. In this circumstance, the intraspecific competition feels more potent than 

the interspecific competition [134]. 

Despite being simple, the Lotka-Volterra competition models stand out as a crucial tool 

for studying the coexistence of interacting species. There are various published studies 

on the population dynamics where the Lotka Volterra competition model turned out 

quite helpful, for example, in clarifying the dynamics and assessing coexistence in 

traditional two-species systems [135,136], population dynamics of river ecology [137], 

global dynamics with asymmetric dispersal of the two-species patch model [138], 

coexistence of multiple species with crowding effects [139], to predict the yields in 

multispecies [140], global competition among diverse taxa [141], in studying plant 

interspecific interactions to predict optimal combinations [142], in investigating the 

coexistence of diversified natural groups with size structure [143]. In the literature 

survey of fractional modeling in population dynamics, Zibaei and Namjoo investigated 

a discrete fractional order Lotka-Volterra competition model using a non-standard finite 

difference (NSFD) scheme [144], and Hassani et al. explored a Caputo fractional 

derivative-based breast cancer competition model [145]. After conducting a thorough 

literature review, we observed that the Lotka-Volterra competition model is not 

explored much using fractional derivatives.  Also, there are published studies on the 

Allee effect using fractional order derivatives [102,103,131,132,133] in population 

dynamics, but the Lotka-Volterra competition model incorporating the additive Allee 

effect is still unexplored. Motivated by the studies on population dynamics using 
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fractional order derivatives and the importance of the traditional Lotka Volterra 

competition model in various fields of population ecology and the Allee effect, we are 

studying in this chapter the classical Lotka Volterra competition model when one of the 

competing species is exposed to additive Allee effect by using fractional order 

derivative in Caputo sense. 

4.2 Mathematical model 

Lotka-Volterra's competition model, by taking fractional order derivatives, can be 

written as, 

{
 
 

 
 𝐷𝛼𝑥1 = 𝑥1 [ 𝑟1 ( 1 − 

(𝑥1 + 𝑎12𝑥2)

𝐾1
)] ,

𝐷𝛼𝑥2 = 𝑥2 [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)] .

                                                                 (4.2)   

                                                                                                                                                

Studying the Allee effect in population dynamics by introducing a negative factor 

𝑚/(𝑥 + 𝑎)  in one of the species' growth equations is defined as the additive Allee 

effect. When one of the species in the model (4.2) say 𝑥1 is subjected to the Allee effect 

additively, then the model equations can be written as,  

{
 
 

 
 𝐷𝛼𝑥1 = 𝑥1 [ 𝑟1 ( 1 − 

(𝑥1 + 𝑎12𝑥2)

𝐾1
) −

𝑚

𝑥1 + 𝑎 
] ,

𝐷𝛼𝑥2 = 𝑥2 [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)] ,

                                              (4.3)             

                                                                                                                                                                                       

with initial conditions  𝑥1(0)  ≥ 0, 𝑥2(0) ≥ 0. Here 𝑥1 > 0 and 𝑥2 > 0 represents two 

competing species with intrinsic growth rates 𝑟1 and  𝑟2 respectively. 𝐾1 and   𝐾2 are 

their maximum populations respectively which environment can support in the absence 

of competition. 𝑎12 represents the inhibiting impact that species 𝑥2 has on the 

population growth of  𝑥1, and 𝑎21 represents the inhibiting impact that species 𝑥1 has 

on the population growth of 𝑥2. 𝐷𝛼 is the Caputo fractional derivative and 𝛼 ∈ (0,1]. 
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4.3 Primary Evaluation of the Model 

  

In this section, an analysis of the proposed model will be conducted to establish the 

properties of its solutions, including existence, uniqueness, positivity, and uniform 

boundedness. 

 

4.3.1 Existence of Unique Solution 
 

Theorem 4.1 The initial value problem  𝐷𝛼𝑥1(𝑡) =   ℎ( 𝑥1 𝑥2, 𝑡),  𝐷𝛼𝑥2(𝑡) = 

  𝑔( 𝑥1 𝑥2, 𝑡),  where ℎ( 𝑥1 𝑥2, 𝑡) =  𝑥1 [ 𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎 )
 ], and 

 𝑔( 𝑥1 𝑥2, 𝑡) =  𝑥2 [ 𝑟2 ( 1 − 
(𝑥2+𝑎21𝑥1)

𝐾2
)], with initial condition 𝑥1( 𝑡 = 𝑡0) = 𝑥10 >

0, 𝑥2( 𝑡 = 𝑡0) = 𝑥20 > 0 and 𝑓 : 𝐼 × 𝐷 → ℝ2;  𝛼 ∈ (0,1] have a unique solution 

𝑋(𝑥1(𝑡), 𝑥2(𝑡)) ∈ 𝐷, with initial condition 𝑋(𝑥1(𝑡0 ), 𝑥2(𝑡0)) = 𝑋𝑡0. Here 𝑓 ∈ 𝐶 (𝐼), 

where 𝐶 (𝐼) is a class of continuously differentiable functions and I = [ 𝑡0,  𝑇 ],   𝑇 <  ∞  

and 𝐷 =  (𝑥1, 𝑥2) ∈  ℝ2 :  |𝑥1|, |𝑥2| ≤ 𝑀 }. 𝑀 is a positive constant.  

Proof.  Consider a mapping  𝐹 : 𝐷 →  ℝ2  by  𝐹(𝑋) = ( 𝐹1(𝑋), 𝐹2(𝑋)), where 𝑋 =

(𝑥1, 𝑥2 ), 𝑌 = (𝑦1, 𝑦2 ), 𝐹1(𝑋) =   ℎ( 𝑥1 𝑥2, 𝑡), and 𝐹2(𝑋) =  𝑔( 𝑥1 𝑥2, 𝑡). 

Define ‖𝐹(𝑥)‖ = sup
t
|𝑒−𝑆𝑡 𝐹(𝑥)|,   𝑆 > 0.  𝑡 ∈ [ 𝑡0,  𝑇 ],   𝑇 <  ∞.   

Clearly ‖𝐹(𝑥)‖ = sup
t
|𝐹(𝑥)|. 

Consider  

‖𝐹(𝑋) −  𝐹(𝑌)‖ =  |𝐹1(𝑋) −  𝐹1(𝑌)| +  |𝐹2(𝑋) −  𝐹2(𝑌)|,                                 (4.4) 

= |[ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ] 𝑥1

− [ 𝑟1 ( 1 − 
(𝑦1 + 𝑎12𝑦2)

𝐾1
) − 

𝑚

(𝑦1 + 𝑎 )
 ] 𝑦1|

+  |[ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)] 𝑥2 − [ 𝑟2 ( 1 − 

(𝑦2 + 𝑎21𝑦1)

𝐾2
)] 𝑦2|, 
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= |(𝑥1 − 𝑦1)𝑟1 − ( 
𝑥1
𝐾1
 (𝑥1 + 𝑎12𝑥2) − 

𝑦1
𝐾1
 (𝑦1 + 𝑎12𝑦2)) 𝑟1

−𝑚 ( 
𝑥1

𝑥1 + 𝑎
− 

𝑦1
𝑦1 + 𝑎

 )|

+ |(𝑥2 − 𝑦2)𝑟2 − ( 
𝑥2
𝐾2
 (𝑥2 + 𝑎21𝑥1) − 

𝑦2
𝐾2
 (𝑦2 + 𝑎21𝑦1)) 𝑟2|, 

= |(𝑥1 − 𝑦1)𝑟1 − 
𝑟1
𝐾1
( 𝑥1

2 − 𝑦1
2 ) −

𝑎12𝑟1
𝐾1

 (𝑥1𝑥2 − 𝑦1𝑦2) − 𝑚
𝑎(𝑥1 − 𝑦1)

(𝑥1 + 𝑎 )(𝑦1 + 𝑎 )
|

+ |(𝑥2 − 𝑦2)𝑟2 −
𝑟2
𝐾2
( 𝑥2

2 − 𝑦2
2 ) −

𝑎21𝑟2
𝐾2

 (𝑥1𝑥2 − 𝑦1𝑦2)|, 

= |(𝑥1 − 𝑦1)𝑟1 − 
𝑟1
𝐾1
( 𝑥1

2 − 𝑦1
2 ) −

𝑎12𝑟1
𝐾1

 (𝑥1𝑥2 − 𝑥1𝑦2 + 𝑥1𝑦2 − 𝑦1𝑦2)

− 𝑚
𝑎(𝑥1 − 𝑦1)

(𝑥1 + 𝑎 )(𝑦1 + 𝑎 )
|

+ |(𝑥2 − 𝑦2)𝑟2 −
𝑟2
𝐾2
( 𝑥2

2 − 𝑦2
2 )

−
𝑎21𝑟2
𝐾2

 (𝑥1𝑥2 − 𝑥1𝑦2 + 𝑥1𝑦2 − 𝑦1𝑦2)|, 

≤ |(𝑥1 − 𝑦1)𝑟1| + |
𝑟1
𝐾1
( 𝑥1

2 − 𝑦1
2 )| + |

𝑎12𝑟1
𝐾1

 (𝑥1𝑥2 − 𝑥1𝑦2 + 𝑥1𝑦2 − 𝑦1𝑦2)|

+ |𝑚
𝑎(𝑥1 − 𝑦1)

(𝑥1 + 𝑎 )(𝑦1 + 𝑎 )
| + |(𝑥2 − 𝑦2)𝑟2 | + |

𝑟2
𝐾2
( 𝑥2

2 − 𝑦2
2 )|

+ |
𝑎21𝑟2
𝐾2

 (𝑥1𝑥2 − 𝑥1𝑦2 + 𝑥1𝑦2 − 𝑦1𝑦2)|, 

= |(𝑥1 − 𝑦1)𝑟1| +
𝑟1
𝐾1
 |(𝑥1 + 𝑦1)||(𝑥1 − 𝑦1)| + |

𝑎12𝑟1
𝐾1

| |𝑥1(𝑥2 − 𝑦2) + 𝑦2( 𝑥1 − 𝑦1)|

+ 𝑚𝑎  |
(𝑥1 − 𝑦1)

(𝑥1 + 𝑎 )(𝑦1 + 𝑎 )
| + |(𝑥2 − 𝑦2)𝑟2 |

+
𝑟2
𝐾2
|(𝑥2 + 𝑦2)||(𝑥2 − 𝑦2)| + |

𝑎21𝑟2
𝐾2

| |𝑥1(𝑥2 − 𝑦2) + 𝑦2( 𝑥1 − 𝑦1)|, 
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≤ 𝑟1|(𝑥1 − 𝑦1)| +
2𝑀𝑟1
𝐾1

 |(𝑥1 − 𝑦1)| +
𝑎12𝑟1𝑀

𝐾1
 (|(𝑥2 − 𝑦2)| + |( 𝑥1 − 𝑦1)|)

+ 𝑚𝑎|(𝑥1 − 𝑦1)| + 𝑟2|(𝑥2 − 𝑦2)| +
2𝑀𝑟2
𝐾2

 |(𝑥2 − 𝑦2)|

+ 
𝑎21𝑟2 𝑀

𝐾2
 (|(𝑥2 − 𝑦2)| + |( 𝑥1 − 𝑦1)|), 

= |(𝑥1 − 𝑦1)| [ 𝑟1 +𝑚𝑎 + 
2𝑀𝑟1
𝐾1

+
𝑎12𝑟1𝑀

𝐾1
+ 
𝑎21𝑟2 𝑀

𝐾2
 ]

+ |(𝑥2 − 𝑦2)| [ 𝑟2 +𝑚𝑎 + 
2𝑀𝑟2
𝐾2

+
𝑎21𝑟2 𝑀

𝐾2
 +
𝑎12𝑟1𝑀

𝐾1
], 

= 𝑀1|(𝑥1 − 𝑦1)| + 𝑀2|(𝑥2 − 𝑦2)| ≤ 𝕄‖(𝑥 − 𝑦)‖.                                               (4.5) 

                                                              

Where,  

𝑀1 = 𝑟1 +𝑚𝑎 + 
2𝑀𝑟1
𝐾1

+
𝑎12𝑟1𝑀

𝐾1
+ 
𝑎21𝑟2 𝑀

𝐾2
,                                                    (4.6) 

𝑀2 =  𝑟2 +𝑚𝑎 + 
2𝑀𝑟2
𝐾2

+
𝑎21𝑟2 𝑀

𝐾2
 +
𝑎12𝑟1𝑀

𝐾1
,                                                   (4.7) 

and  𝕄 =  max {𝑀1, 𝑀2}. Therefore,  𝐹 satisfies the Lipschitz condition.  

Let  𝐺(𝑋) be the solution of the given system. Then,  

By Eq. (1.6) 

𝐺(𝑋) = 𝑋 −  𝑋(𝑡0) =  
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

𝐹(𝑋(𝑠)) 𝑑𝑠.                                      (4.8) 

Consider  

𝐺(𝑋) −  𝐺(𝑌) =
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}
𝑡

0

  (𝑡 − 𝑠)𝛼−1 𝑑𝑠. 

                           

|𝐺(𝑋) −  𝐺(𝑌) | =  ⌈
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}
𝑡

0

   (𝑡 − 𝑠)𝛼−1𝑑𝑠⌉, 

≤
1

Γ(𝛼)
 ∫ |𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))|

𝑡

0

(𝑡 − 𝑠)𝛼−1 𝑑𝑠.                                                    (4.9) 
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Now  

  𝑒−𝑝𝑡 (𝐺(𝑋) −  𝐺(𝑌)) =  
1

Γ(𝛼)
 ∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}

𝑡

0

  (𝑡 − 𝑠)𝛼−1 𝑒−𝑝𝑡𝑑𝑠, 

=
1

Γ(𝛼)
 ∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}

𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑒−𝑝(𝑡−𝑠) 𝑒−𝑝𝑠 𝑑𝑠.                       (4.10)  

‖𝐺(𝑋) −  𝐺(𝑌)‖ ≤
1

Γ(𝛼)
 ∫ ‖𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))‖

𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑒−𝑝(𝑡−𝑠)𝑑𝑠, 

≤
𝕄

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1
𝑡

0

 𝑒−𝑝(𝑡−𝑠)‖𝑥 − 𝑦‖ 𝑒−𝑝(𝑡−𝑠) 𝑑𝑠,   ( By Eq. (4.4)) 

=
𝕄

Γ(𝛼)
‖𝑥 − 𝑦‖ ∫ 𝑒−𝑝(𝑡−𝑠)

𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑑𝑠, 

 ≤
𝕄

Γ(𝛼)
‖𝑥 − 𝑦‖

Γ(𝛼)

𝑝𝛼
= 
𝕄

𝑝𝛼
 ‖𝑥 − 𝑦‖.                                                                    (4.11) 

Choosing 𝑝 sufficiently large so that 
 𝕄

𝑝𝛼
 < 1, then by Theorem (1.4.8), there exists a 

unique solution to the model given by (4.3). 

4.3.2 Positivity of the Solutions 

 

Theorem 4.2 Solutions to the given system (4.3) starting in ℝ+
2  are non-negative, where 

ℝ+
2  represents the set containing positive ordered reals, including zero. 

Proof.   Let 𝑋( 𝑡0) = (𝑥1(𝑡0), 𝑥2(𝑡0)) ∈ ℝ+
2  be the initial solution of system (4.3). Let 

𝑡 > 𝑡0 and we claim that 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 𝑡0. To establish the claim, we suppose 

that there exists some solution 𝑋(𝑡′) which do not lie in ℝ+
2  where 𝑡′  > 𝑡0. This implies 

that either 𝑋(𝑡) crosses 𝑥1axis or 𝑥2 axis.  

Case 1. If the solution crosses 𝑥2 axis, then we can find some 𝑡∗ satisfying the 

conditions,  𝑡∗ ≥ 𝑡0  and  𝑥1(𝑡∗) = 0, and there is some 𝑡′ is sufficiently close to 𝑡∗ and  

𝑡′ > 𝑡∗, but 𝑥1(𝑡) is less than zero for all  𝑡∗ < 𝑡 ≤ 𝑡′.   

Now there are two possibilities; 

Subcase (i) If  𝐷𝛼 𝑥1(𝑡) < 0 ∀ 𝑡 ∈ (𝑡∗, 𝑡
′].            
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This implies 

𝑥1 [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ] ≤ 0.                                                    (4.12) 

But  

[ 𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎)
 ] 𝑥1 >  𝜌𝑥1      ∀ 𝑡 ∈ (𝑡∗, 𝑡

′].                              (4.13)                                                                                

Here 𝜌 is the minimum value of 

𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎)
  ∀𝑡 ∈ (𝑡∗, 𝑡

′].  

By applying the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝑋1(𝑠) − 𝑠
𝛼−1 𝑥1(𝑡0) ≥ 𝜌 𝑋1(𝑠),                                                                          (4.14)  

where,  𝑋1(𝑠) =  ℒ {𝑥1(𝑡)}. This gives 

(𝑠𝛼 −  𝜌 ) 𝑋1(𝑠) ≥ 𝑠𝛼−1 𝑥1(𝑡0).   

This implies 

𝑋1(𝑠) >  
𝑠𝛼−1 𝑥1(𝑡0)

(𝑠𝛼 − 𝜌 )
.                                                                                                (4.15) 

By taking the inverse Laplace transform and using Eq. (1.8), we have, 

𝑥1(𝑡) ≥  ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 − 𝜌)
𝑥1(𝑡0)} = 𝑥1(𝑡0) 𝐸𝛼,1 {𝜌 (t − 𝑡0)

𝛼}.                        (4.16) 

From this, we have  

𝑥1(𝑡) ≥ 𝑥1(𝑡0) 𝐸𝛼,1 {𝜌 (t − 𝑡0)
𝛼} ≥ 0.                                                                  (4.17) 

Therefore, again, we have  𝑥1(𝑡) ≥ 0, for all  𝑡∗  <  𝑡 <   𝑡
′. This contradicts the 

assumption that  𝑥1(𝑡) < 0 ∀ 𝑡 ∈ (𝑡∗, 𝑡
′). 

Subcase (ii) If 𝐷𝛼  𝑥1(𝑡) ≥ 0 ∀𝑡 ∈ (𝑡∗, 𝑡
′].   

Now  

𝐷𝛼  𝑥1(𝑡) = [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ] 𝑥1 ≥ 𝑟1𝑥1.                     (4.18) 
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  Therefore, we have 

 𝐷𝛼  𝑥1(𝑡)  ≥ 𝑥1𝑟1.                                                                                                      (4.19) 

 By taking the Laplace transform on both sides and proceeding as in subcase (i), we 

have  

𝑥1(𝑡) ≥ 𝑥1(𝑡0)𝐸𝛼,1 {𝑟1(t − 𝑡0)
𝛼} ≥ 0.                                                                  (4.20) 

This contradicts our assumption that 𝑥1(𝑡) < 0,  for all  𝑡 ∈ (𝑡∗, 𝑡
′]. 

Case 2. If the solution crosses 𝑥1 axis, then proceeding as in case 1, we will arrive at a 

contradiction. Hence, all solutions start in ℝ+
2  lies in ℝ+

2 . 

4.3.3. Uniform Boundedness of Solutions 
 

Theorem 4.3 All non–negative solutions to the system (4.3) are uniformly bounded. 

Proof.  By considering a function  

𝐹(𝑡) =
𝐾1
𝑟1
𝑥1(𝑡) +

𝐾2
𝑟2
 𝑥2(𝑡).                                                                                    (4.21) 

Taking Caputo's fractional derivative on both sides, 

𝐷𝛼𝐹(𝑡) =  𝐷𝛼 [ 
𝐾1
𝑟1
𝑥1(𝑡) +

𝐾2
𝑟2
 𝑥2(𝑡) ] =

𝐾1
𝑟1
  𝐷𝛼𝑥1(𝑡) + 

𝐾2
𝑟2
 𝐷𝛼𝑥2(𝑡),       (4.22) 

                 

=  
𝐾1
𝑟1
𝑥1 [ 𝑟1 ( 1 − 

(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ]

+ 
𝐾2
𝑟2
 𝑥2 [ 𝑟2 ( 1 − 

(𝑥2 + 𝑎21𝑥1)

𝐾2
)] , 

  

= 𝐾1𝑥1 − 𝑥1
2 − 𝑎12𝑥1𝑥2 −

𝑚𝐾1𝑥1
𝑟1(𝑥1 + 𝑎)

+ 𝐾2𝑥2 − 𝑥2
2 − 𝑎21𝑥1𝑥2, 

< 𝐾1
2 + 𝐾2

2 −
𝑚𝐾1𝑥1

𝑟1(𝐾1 + 𝑎)
− 𝑥2

2 = 𝐾1
2 + 𝐾2

2 − 𝑥2
2 −

𝑚𝐾1
𝑟1(𝐾1 + 𝑎)

[
𝑟1
𝐾1 

𝐹 −
𝑟1𝐾2
𝑟2𝐾1

𝑥2]. 

Therefore, 
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𝐷𝛼𝐹(𝑡) +
𝑚

(𝐾1 + 𝑎)
𝐹 <  𝐾1

2 + 𝐾2
2 − 𝑥2

2 −
𝑚𝐾2

𝑟2(𝐾1 + 𝑎)
𝑥2, 

= 𝐾1
2 + 𝐾2

2 − (𝑥2
2 −

𝑚𝐾2
𝑟2(𝐾1 + 𝑎)

𝑥2 +
𝑚2𝐾2

2

4𝑟2
2(𝐾2 + 𝑎)2

) + 
𝑚2𝐾2

2

4𝑟2
2(𝐾2 + 𝑎)2

, 

= 𝐾1
2 + 𝐾2

2  +  
𝑚2𝐾2

2

4𝑟2
2(𝐾2 + 𝑎)2

− (𝑥2 −
𝑚𝐾2

2𝑟2(𝐾1 + 𝑎)
)
2

, 

= Α − (𝑥2 −
𝑚𝐾2

2𝑟2(𝐾1 + 𝑎)
)
2

<  Α. 

Where, 

Α =  𝐾1
2 + 𝐾2

2  +  
𝑚2𝐾2

2

4𝑟2
2(𝐾2 + 𝑎)2

 . 

 Therefore,  

𝐷𝛼𝐹(𝑡) +
𝑚

(𝐾1 + 𝑎)
𝐹 <  Α.                                                                                           

 𝐷𝛼𝐹(𝑡) + 𝑓𝐹 <   Α .                                                                                                    (4.23)   

Where, 

𝑓 =
𝑚

(𝐾1 + 𝑎)
. 

By taking the Laplace transform on both sides of (4.22) and using Eq. (1.7), we have  

𝑠𝛼 𝐺(𝑠) − 𝑠𝛼−1 𝐹(𝑡0) +  𝑓𝐺(𝑠) ≤  
 Α

𝑠
. 

Where,  𝐺(𝑠) =  ℒ {𝐹(𝑡)}. This gives 

( 𝑠𝛼 +  𝑓 )𝐺(𝑠) ≤  
 Α

𝑠
+  𝑠𝛼−1 𝐹(𝑡0). 

This implies 

𝐺(𝑠) ≤  
𝐴

𝑠 ( 𝑠𝛼 +  𝑓 )
+  
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  𝑓)
 =   

𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  𝑓)
+  

𝑠𝛼−( 𝛼+1 )

( 𝑠𝛼 +  𝑓)
Α.           (4.24) 

By taking the inverse Laplace transform and using Eq. (1.8) we have, 
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𝐹(𝑡) ≤  𝐹(𝑡0) ℒ
−1 {

𝑠𝛼−1 

( 𝑠𝛼 +  𝑓 )
 } +  Αℒ−1 {

𝑠𝛼−(𝛼+1) 

( 𝑠𝛼 +  𝑓 )
 }, 

= 𝐹(𝑡0) 𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)
𝛼 } +  Α(𝑡 − 𝑡0)

𝛼 𝐸𝛼,𝛼+1{−𝑓(𝑡 − 𝑡0)
𝛼 }.                     (4.25) 

Using  𝐸𝛼,𝛽 {𝑧 } = 𝑧 𝐸𝛼,𝛼+𝛽 {𝑧 } +  
1

ΓΑ 
,   

we can have 

𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)
𝛼} = −𝑓(𝑡 − 𝑡0)

𝛼𝐸𝛼,𝛼+1{−𝑓(𝑡 − 𝑡0)
𝛼 } +  

1

Γ1 
. 

This implies 

(𝑡 − 𝑡0)
𝛼𝐸𝛼,𝛼+1{−𝑓(𝑡 − 𝑡0)

𝛼 } = −
1

𝑓
[𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)

𝛼 } − 1].                      (4.26)   

Therefore,  

𝐹(𝑡) ≤ 𝐹(𝑡0)𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)
𝛼 } −

 Α

𝑓
[ 𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)

𝛼 } − 1 ], 

= ( 𝐹(𝑡0) −
 ℬ

𝑓
 ) 𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)

𝛼 } +
𝐴

𝑓
 .                                                             (4.27)                                  

Now as t⟶∞ ,  𝐸𝛼,1 {−𝑓(𝑡 − 𝑡0)
𝛼 } ⟶ 0.  Therefore, all solutions that start in ℝ+

2   

of the proposed system (4.3) lies in the region                  

 {𝑋 ∈  ℝ+
2  :  𝑋 ≤

𝐴

𝑓
+ 𝑣,  𝑣 > 0 }. 

4.3.4 Equilibrium Points and Conditions for the Existence 

 

First, we define some mathematical expressions for Allee’s constant that will be used 

for the whole analysis. 

 

 

{
 

 
𝑚𝑤 = 𝑎𝑟1

𝑚𝑡 = 𝑎𝑟1  ( 1 − 
𝑎12𝐾2

𝐾1
)

 𝑚𝑒 = 𝑟1 (𝑎 +
𝐾2

𝑎21
) ( 1 −

𝐾2

𝑎21𝐾1 
)
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 {
𝑚𝑐𝑜 =

𝑟1𝜓
2

4𝐾1(1−𝑎12𝑎21)

𝑚𝑐𝑟 =
𝐾1𝑟1

4
 ( 1 +

𝑎

𝐾1
 )
2                                                                                    (4.28) 

                                                                                                                     

                                                                                                                            

To evaluate equilibrium points of the proposed system (4.3), we will equate to zero both 

equations given by (4.3).  

𝑥1 [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ] = 0.                                                     (4.29) 

                                                              

                                                                                                                              

𝑥2 [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)] = 0.                                                                             (4.30) 

                                                                                                                                                                                                                    

Solving (4.28), either  𝑥1 = 0 or  𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎 )
= 0. 

Solving (4.29), either 𝑥2 = 0 or  ( 1 − 
(𝑥2+𝑎21𝑥1)

𝐾2
) = 0. 

On substituting 𝑥1 = 0 in 1 − 
(𝑥2+𝑎21𝑥1)

𝐾2
= 0, we found that 𝑥2 = 𝐾2. 

On substituting 𝑥2 = 0 in 𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎 )
= 0, we can have  

𝑟 (1 −
𝑥1

𝐾1
) −

𝑚

𝑥1+𝑎 
= 0.  

Which can be represented as  

1 

𝐾1
 𝑥1
2 − (1 −

𝑎

𝐾1
) 𝑥1 + 

𝑚

𝑟
− 𝑎 = 0.                                                                       (4.31) 

                                                                                                                                                   

This is the same as Eq. (2.32) in Chapter 2. As we solved this equation in Chapter 2, its 

positive solutions are given by, 

 𝑥𝑒 = 
𝐾1

2
[(1 − 

𝑎

𝐾1
) + √(1 + 

𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 ], provided 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (4.28)). 

𝑥𝑒
′ = 

𝐾1

2
[(1 − 

𝑎

𝐾1
) − √(1 + 

𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 ],   
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provided 𝑚𝑤  ≤ 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (4.28)). 

On solving 1 − 
(𝑥2+𝑎21𝑥1)

𝐾2
= 0, we have 𝑥2 = 𝐾2 − 𝑎21𝑥1. Put this value in   

𝑟1 ( 1 − 
(𝑥1+𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1+𝑎 )
= 0.  

On solving this, we have, 

1) 𝑥1
∗ = 𝑚𝐾1  

𝜑  +  √𝜓2−4𝜙

2𝜙𝑟1    
, provided 𝜓2 − 4𝜙 ≥ 0;  √𝜓2 − 4𝜙 > 𝜑, when 𝜑 <

0; (1 − 𝑎12𝑎21) > 0. 

2) 𝑥1
∗∗ = 𝑚𝐾1  

𝜑 −  √𝜓2−4𝜙

2𝜙𝑟1    
, provided 𝜓2 − 4𝜙 ≥ 0;  √𝜓2 − 4𝜙 < 𝜑, when 𝜑 >

0; (1 − 𝑎12𝑎21) > 0. 

Where,    

{
 

 
𝜑 = 𝑎(𝑎12𝑎21 − 1) + (𝐾1 − 𝑎12𝐾2 ),

𝜓 = (𝑎 + 𝐾1) − 𝑎12(𝑎𝑎21 + 𝐾2),

𝜙 =
𝑚𝐾1(1 − 𝑎12𝑎21)

𝑟1
.

                                                                   (4.32) 

 

The equilibrium points along with conditions of existence of the fractional order system 

(4.3) are given as, 

1. 𝐸0(0,0), 𝐸1(0, 𝐾2), without any conditions. 

2. 𝐸2(𝑥𝑒 , 0), where 𝑥𝑒 = 
𝐾1

2
  [(1 − 

𝑎

𝐾1
) + √(1 + 

𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 ],  

            provided  𝑚 < 𝑚𝑐𝑟 .  (See Eq. (4.28)) 

3. 𝐸3(𝑥𝑒
′ , 0), where 𝑥𝑒

′ = 
𝐾1

2
  [(1 − 

𝑎

𝐾1
) −  √(1 + 

𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 ], 

            provided  𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟. (See Eq. (4.28))          

4. 𝐸4(𝑥1
∗, 𝑥2

∗), where  𝑥1
∗ = 𝑚𝐾1  

𝜑  +  √𝜓2−4𝜙

2𝜙𝑟1    
, 𝑥2

∗ = 𝐾2 − 𝑎21𝑥1
∗,    

provided  𝜓2 − 4𝜙 ≥ 0;  √𝜓2 − 4𝜙 > 𝜑, when 𝜑 < 0; (1 − 𝑎12𝑎21) > 0; 
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            𝐾2 − 𝑎21𝑥1
∗ > 0. 

5. 𝐸5(𝑥1
∗∗, 𝑥2

∗∗), where  𝑥1
∗∗ = 𝑚𝐾1  

𝜑 −  √𝜓2−4𝜙

2𝜙𝑟1    
, 𝑥2

∗∗ = 𝐾2 − 𝑎21𝑥1
∗∗,    

            provided 𝜓2 − 4𝜙 ≥ 0;  √𝜓2 − 4𝜙 < 𝜑, when 𝜑 > 0; (1 − 𝑎12𝑎21) > 0; 

            𝐾2 − 𝑎21𝑥1
∗∗ > 0. 

  For 𝜑, 𝜓, 𝜙 see Eq. (4.31), and  𝜓2 − 4𝜙 ≥ 0  implies  𝑚 < 𝑚𝑐𝑜 . 

 

4.3.5 Examination of the Equilibrium Points for Local Asymptotic Stability 

 

To analyze the local asymptotic stability of all equilibrium points, first, we will 

calculate the eigenvalues of the Jacobian matrix at these points. Representing the given 

system of equations as follows, 

 

𝐷𝛼  𝑥1(𝑡) = [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ] 𝑥1 =  ℎ( 𝑥1, 𝑥2), 

𝐷𝛼  𝑥2(𝑡) = [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)] 𝑥2 =  𝑔( 𝑥1, 𝑥2), 

 
𝜕ℎ

𝜕𝑥1
= 𝑟1 − 

𝑟1
𝐾1
(2𝑥1 + 𝑎12𝑥2) − 

𝑚𝑎

(𝑥1 + 𝑎)2
,     

𝜕ℎ

𝜕𝑥2 
= − 

𝑟1
𝐾1
 𝑎12𝑥1, 

𝜕𝑔

𝜕𝑥1
= − 

𝑟2
𝐾2
 𝑎21𝑥2 ,     

𝜕𝑔

𝜕𝑥2
= 𝑟2 − 

𝑟2
𝐾2
(2𝑥2 + 𝑎21𝑥1).  

Now Jacobian matrix of the fractional order system (4.3) can be calculated as,            

𝕁 ( ℎ, 𝑔) =

[
 
 
 
𝜕ℎ

𝜕𝑥1

𝜕ℎ

𝜕𝑥2  
𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2 ]
 
 
 

, 

= [

𝑟1 − 
𝑟1
𝐾1
(2𝑥1 + 𝑎12𝑥2) − 

𝑚𝑎

(𝑥1 + 𝑎)2
− 
𝑟1
𝐾1
 𝑎12𝑥1

− 
𝑟2
𝐾2
 𝑎21𝑥2 𝑟2 − 

𝑟2
𝐾2
(2𝑥2 + 𝑎21𝑥1)

].               (4.33) 
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Theorem 4.4 The extinction point 𝐸0, is always unstable. 

Proof. Substituting the point E0(0,0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

found as, 

𝕁 (0,0) =  [
𝑟1 − 

𝑚

𝑎
0

0 𝑟2

] (See Eq. (4.33)) . 

Being a diagonal matrix, its eigenvalues are given by  𝜆1 = (𝑟1 − 
𝑚

𝑎
 )  and  𝜆2 = 𝑟2.  

As 𝑟2 > 0. Therefore | arg (𝜆2)| = 0 < απ /2. So, the extinction of both species is 

unstable. 

Theorem 4.5 The equilibrium point E2(𝑥𝑒, 0) is stable if 𝑚 <  𝑚𝑖𝑛 {𝑚𝑤, 𝑚𝑒 , 𝑚𝑐𝑟},  

(see Eq. (4.28)) and  𝐾1  > 𝐾2/𝑎21. 

Proof. Substituting the point E2(𝑥𝑒 , 0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 

𝕁(𝑥𝑒 , 0) =  [

𝑟1 − 
𝑟1
𝐾1
(2𝑥𝑒) − 

𝑚𝑎

(𝑥𝑒 + 𝑎)2
− 
𝑟1
𝐾1
 𝑎12𝑥𝑒

0 𝑟2 − 
𝑟2
𝐾2
(𝑎21𝑥𝑒)

] (See Eq. (4.33)) . 

Its eigenvalues are given by 𝜆1 = 𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒) − 

𝑚𝑎

(𝑥𝑒+𝑎)2
  and  𝜆2 = 𝑟2 − 

𝑟2

𝐾2
(𝑎21𝑥𝑒) .  

Now the condition, |arg (𝜆1,2)|  > απ /2 will be fulfilled if  𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒) − 

𝑚𝑎

(𝑥𝑒+𝑎)2
<

0,   and   𝑟2 − 
𝑟2

𝐾2
(𝑎21𝑥𝑒) < 0.  Solving  𝑟1 − 

𝑟1

𝐾1
(2𝑥𝑒) − 

𝑚𝑎

(𝑥𝑒+𝑎)2
< 0, as in Theorem 

2.6, we have  0 < 𝑚 < 𝑚𝑤. And on solving 𝑟2 − 
𝑟2

𝐾2
(𝑎21𝑥𝑒) < 0, we have  

𝐾2

𝑎21 
<

 
𝐾1

2
  [(1 − 

𝑎

𝐾1
) + √(1 + 

𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 ]. This further gives 

2𝐾2

𝑎21𝐾1 
− (1 − 

𝑎

𝐾1
) <

 √(1 + 
𝑎

𝐾1
)
2

− 
4𝑚

𝐾1𝑟1
 . Squaring both sides and solving, we have 𝑚 < 𝑟1 (𝑎 +

𝐾2

𝑎21
) ( 1 −

𝐾2

𝑎21𝐾1 
) =  𝑚𝑒 ,  provided  1 −

𝐾2

𝑎21𝐾1 
> 0, i.e. 𝐾1 > 𝐾2/𝑎21. But the existence of the 
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equilibrium point requires that  𝑚 < 𝑚𝑐𝑟 . Hence the point (𝑥𝑒 , 0) will be stable if 𝑚 <

 {𝑚𝑤, 𝑚𝑒 ,𝑚𝑐𝑟} (See Eq. (4.28)) and  𝐾1  > 𝐾2/𝑎21. 

Theorem 4.6 The axial equilibrium point 𝐸3(𝑥′𝑒 , 0) is inevitably unstable. 

Proof. Substituting the point 𝐸3(𝑥𝑒 , 0) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 

𝕁(𝑥𝑒
′ , 0) =  [

𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒

′ ) − 
𝑚𝑎

(𝑥𝑒
′+𝑎)

2 − 
𝑟1

𝐾1
 𝑎12𝑥𝑒

′

0 𝑟2 − 
𝑟2

𝐾2
(𝑎21𝑥𝑒

′ )
] (See Eq. (4.33)).  

Its eigenvalues are given by 𝜆1 = 𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒

′ ) − 
𝑚𝑎

(𝑥𝑒
′+𝑎)

2  and  𝜆2 = 𝑟2 − 
𝑟2

𝐾2
(𝑎21𝑥𝑒

′ ).  

Now |arg (𝜆1,2)|  > απ /2 will be satisfied if, 𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒

′ ) − 
𝑚𝑎

(𝑥𝑒
′+𝑎)

2 < 0                   

and  𝑟2 − 
𝑟2

𝐾2
(𝑎21𝑥𝑒

′ )  < 0. Now solving 𝑟1 − 
𝑟1

𝐾1
(2𝑥𝑒

′ ) − 
𝑚𝑎

(𝑥𝑒
′+𝑎)

2 < 0  as in Theorem 

2.7, it is found that 0 < 𝑚 < 𝑚𝑤 (See Eq. (4.28)) . This is contrary to the existence 

condition of the point (𝑥𝑒
′ , 0). Therefore (𝑥𝑒

′ , 0) is inevitably unstable. 

Theorem 4.7 The equilibrium point 𝐸4(𝑥1
∗, 𝑥2

∗) will be locally asymptotically stable 

whenever any of the conditions given below are satisfied: 

i. 𝛾2 − 4Δ ≥ 0 and  𝛾 < 0. 

ii. 𝛾2 − 4Δ <  0 and 𝛾 < 0. 

iii. 𝛾2 − 4Δ <  0, 𝛾 > 0, and 0 < 𝛼 <  
2

𝜋
tan−1 |

√4 ∆−𝛾2

𝛾
|. 

iv.  𝛾 = 0, and ∆ > 0. 

Here 𝛾 and ∆ respectively are the trace and determinant of the Jacobian matrix at the 

equilibrium point (𝑥1
∗, 𝑥2

∗). 

Proof. Substituting the point 𝐸4(𝑥1
∗, 𝑥2

∗) in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 
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𝕁(𝑥1
∗, 𝑥2

∗)

=  [

𝑟1
𝐾1
( 𝐾1 − 2𝑥1

∗ − 𝑎12𝑥2
∗) − 

𝑚𝑎

(𝑥1
∗ + 𝑎)2

− 
𝑟1
𝐾1
 𝑎12𝑥1

∗

− 
𝑟2
𝐾2
 𝑎21𝑥2

∗  
𝑟2
𝐾2
(𝐾2 − 2𝑥2

∗ − 𝑎21𝑥1
∗)
] (See Eq. (4.33)) , 

            

= [
𝑐11 𝑐12
𝑐21 𝑐22

]. 

Where,  

𝑐11 =
𝑟1
𝐾1
( 𝐾1 − 2𝑥1

∗ − 𝑎12𝑥2
∗) − 

𝑚𝑎

(𝑥1
∗ + 𝑎)2

, 𝑐12 = − 
𝑟1
𝐾1
 𝑎12𝑥1

∗,

𝑐21 = − 
𝑟2
𝐾2
 𝑎21𝑥2

∗,  𝑐22 =
𝑟2
𝐾2
(𝐾2 − 2𝑥2

∗ − 𝑎21𝑥1
∗),
       

 𝑥1
∗ = 𝑚 

𝜑  +   √𝜓2 − 4𝜙

4𝜙𝑟1    
, 𝑥2

∗ = 𝐾2 − 𝑎21𝑥1
∗, 

{
 

 
𝜑 = 𝑎(𝑎12𝑎21 − 1) + (𝐾1 − 𝑎12𝐾2 )

𝜓 = (𝑎 + 𝐾1) − 𝑎12(𝑎𝑎21 + 𝐾2)

𝜙 =
𝑚𝐾1(1 − 𝑎12𝑎21)

𝑟1
.

                                                                    (4.34) 

 Provided, 𝜓2 − 4𝜙 ≥ 0, (1 − 𝑎12𝑎21) > 0, 𝐾2 − 𝑎21𝑥1
∗ > 0.  

Now writing the characteristic equation of 𝕁(𝑥1
∗, 𝑥2

∗) as,  𝜆2 − 𝛾𝜆 +  Δ = 0.  

 Here   𝛾 = 𝑐11 + 𝑐22 , δ = 𝑐11𝑐22 − 𝑐12𝑐21. Eigenvalues of  𝕁(𝑥1
∗, 𝑥2

∗) are given by 

𝜆𝑖 = 
𝛾 ± √𝛾2−4 ∆

2
 , 𝑖 = 1, 2.  

 Case 1. If   𝛾2 − 4Δ ≥ 0 

i. If  𝛾 > 0. Here, both eigenvalues will be positive reals and hence |arg (𝜆1)| =

 |arg (𝜆2)| = 0 < 𝛼 
𝜋

2
 . Therefore  (𝑥1

∗, 𝑥2
∗) will be unstable. 

ii. If 𝛾 < 0, then both eigenvalues will be negative reals, and hence |arg (𝜆1)| =

 |arg (𝜆2)| =  𝜋 >  𝛼 
𝜋

2
 . Therefore (𝑥1

∗, 𝑥2
∗) will be locally stable. 

Case 2.  If   𝛾2 − 4Δ <  0          
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i. If  𝛾 > 0. Then 𝜆1 = 
𝛾+𝑖 √4 ∆−𝛾2

2
 , 𝜆2 = 

𝛾 −𝑖 √4 ∆−𝛾2

2
. Therefore, both eigenvalues 

are complex conjugates with their real parts positive. Therefore, |arg (𝜆1,2)| =

|tan−1(
√4 ∆−𝛾2

𝛾
)| =  tan−1 |

√4 ∆−𝛾2

𝛾
|. If it is possible to find the value of fractional 

order 𝛼, so that  tan−1 |
√4 ∆−𝛾2

𝛾
|  >  𝛼

𝜋

2
 , only then (𝑥1

∗, 𝑥2
∗)  will be stable. In other 

words, if it is possible to find 0 < 𝛼 <  
2

𝜋
tan−1 |

√4 ∆−𝛾2

𝛾
|, the equilibrium point 

will be stable. 

ii. If  𝛾 < 0. Here again, both eigenvalues will be complex conjugates of each other 

with negative real parts. Here,  

|arg (𝜆1,2)| =  |−𝜋 + tan
−1(

√4 ∆−𝛾2

𝛾
) | =  | 𝜋 − tan−1(

√4 ∆−𝛾2

𝛾
) | >  𝛼 

𝜋

2
.  

Hence equilibrium point will be stable. 

Case 3. If  𝛾 = 0, then (𝜆1,2) =  
±√−4∆

2
= ±√−∆ . 

i. Now if ∆ > 0. Then 𝜆1 and 𝜆2 will be the complex conjugate of each other and 

|arg (𝜆1,2)| =  
𝜋

2
 >  𝛼 

𝜋

2
, the equilibrium point will be stable. 

ii. If  ∆< 0, then  𝜆1 and 𝜆2 will be real numbers with one of the eigenvalues positive, 

say 𝜆1 > 0 and |arg (𝜆1)| = 0 < 𝛼 
𝜋

2
. So, the equilibrium point will be unstable. 

A similar analysis can be done to establish the local asymptotic stability of the other 

coexistence equilibrium point  𝐸5(𝑥1
∗∗, 𝑥2

∗∗). 

Theorem 4.8 The axial equilibria 𝐸1 (0, 𝐾2) will be stable whenever 𝑚 > 𝑚𝑡 (See Eq. 

(4.28)) 

Proof. Substituting the point 𝐸1 (0, 𝐾2)  in 𝕁 ( ℎ, 𝑔), the value of the Jacobian matrix is 

given as, 

𝕁 (0, 𝐾2) =  [
𝑟1 − 

𝑟1
𝐾1
(𝑎12𝐾2) − 

𝑚

𝑎
0

−𝑟2 𝑎21 −𝑟2

] (See Eq. (4.33)) . 

Its eigenvalues are given by 𝜆1 = 𝑟1 − 
𝑟1

𝐾1
(𝑎12𝐾2) − 

𝑚

𝑎
  and  𝜆2 = −𝑟2.  
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As |arg (𝜆2)| = π > απ /2. Therefore, the point (0, 𝐾2)  will be stable if and only if  

𝑟1 − 
𝑟1

𝐾1
(𝑎12𝐾2) − 

𝑚

𝑎
  < 0.  Upon simplification, it turns out that 𝑚 > 𝑎𝑟1  ( 1 −

 
𝑎12𝐾2

𝐾1
) = 𝑚𝑡.  

4.3.6. Examination of the Equilibrium Points for Global Stability 
 

Theorem 4.9 The equilibrium point 𝐸4( 𝑥1
∗, 𝑥2

∗) will be globally stable if, 𝑟1 +
𝑥1
∗  𝑟1

𝐾1
−

𝑚

(𝑀+𝑎 )
+ 𝑎21

𝑟1𝑥2
∗

𝐾1
< 0,

 2𝑟1𝐾2

𝐾1
−
𝑎21𝑥1

∗

𝐾1
+
𝑎12𝑥1

∗  𝑟1

𝐾1
< 0, and  

𝑚𝑥1
∗

𝑎
−
𝑟1𝐾2

𝐾1
𝑥2
∗ − 𝑟1𝑥1

∗ < 0, 

where max {|𝑥1|, |𝑥2|} ≤ 𝑀. 

Proof: Consider the positive definite function 

𝑉( 𝑥1, 𝑥2) = ( 𝑥1 − 𝑥1
∗ − 𝑥1

∗ ln
𝑥1
𝑥1
∗ ) +

𝑟1𝐾2
𝑟2𝐾1

( 𝑥2 − 𝑥2
∗ − 𝑥2

∗ ln
𝑥2
𝑥2
∗ ).                  (4.35)  

𝐷𝛼𝑉( 𝑥1, 𝑥2) = 𝐷
𝛼  [( 𝑥1 − 𝑥1

∗ − 𝑥1
∗ ln

𝑥1
𝑥1
∗ ) +

𝑟1𝐾2
𝑟2𝐾1

( 𝑥2 − 𝑥2
∗ − 𝑥2

∗ ln
𝑥2
𝑥2
∗ )], 

= 𝐷𝛼 ( 𝑥1 − 𝑥1
∗ − 𝑥1

∗ ln
𝑥1
𝑥1
∗ ) + 

𝑟1𝐾2
𝑟2𝐾1

 𝐷𝛼 ( 𝑥2 − 𝑥2
∗ − 𝑥2

∗ ln
𝑥2
𝑥2
∗ ),                     (4.36)  

By using Eq. (1.9) 

  ≤ ( 
𝑥1 − 𝑥1

∗

𝑥1
 ) 𝐷𝛼𝑥1 + 

𝑟1𝐾2
𝑟2𝐾1

 ( 
𝑥2 − 𝑥2

∗

𝑥2
 ) 𝐷𝛼𝑥2,                                                     (4.37) 

                  

= (𝑥1 − 𝑥1
∗) [ ( 1 − 

(𝑥1 + 𝑎12𝑥2)

𝐾1
)𝑟1 − 

𝑚

(𝑥1 + 𝑎 )
 ]

+
𝑟1𝐾2
𝑟2𝐾1

(𝑥2 − 𝑥2
∗) [ ( 1 − 

(𝑥2 + 𝑎21𝑥1)

𝐾2
)𝑟2], 

≤ (𝑥1 − 𝑥1
∗)𝑟1 +

(𝑥1 + 𝑎12𝑥2)

𝐾1
𝑥1
∗ 𝑟1 −

𝑚𝑥1
(𝑀 + 𝑎 )

+
𝑚𝑥1

∗

𝑎
+ 
𝑟1𝐾2
𝐾1

(𝑥2 − 𝑥2
∗)

+
𝑟1𝑥2

∗

𝐾1
(𝑥2 + 𝑎21𝑥1) −

𝑟1(𝑎12 + 𝑎21)

𝐾1
𝑥1𝑥2, 
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≤ 𝑥1 (𝑟1 +
𝑥1
∗ 𝑟1
𝐾1

−
𝑚

(𝑀 + 𝑎 )
+ 𝑎21

𝑟1𝑥2
∗

𝐾1
)

+ 𝑥2 (
𝑟1𝐾2
𝐾1

+
𝑟1𝑥2

∗

𝐾1
+ 𝑎12

𝑥1
∗ 𝑟1
𝐾1

−
𝑟1(𝑎12 + 𝑎21)

𝐾1
𝑥1)                       

+
𝑚𝑥1

∗

𝑎
−
𝑟1𝐾2
𝐾1

𝑥2
∗ − 𝑟1𝑥1

∗, 

≤ 𝑥1 (𝑟1 +
𝑥1
∗ 𝑟1
𝐾1

−
𝑚

(𝑀 + 𝑎 )
+ 𝑎21

𝑟1𝑥2
∗

𝐾1
) + 𝑥2 (

 2𝑟1𝐾2
𝐾1

−
𝑎21𝑥1

∗

𝐾1
+
𝑎12𝑥1

∗ 𝑟1
𝐾1

) +
𝑚𝑥1

∗

𝑎

−
𝑟1𝐾2
𝐾1

𝑥2
∗ − 𝑟1𝑥1

∗ ≤ 0, 

if  𝑟1 +
𝑥1
∗  𝑟1

𝐾1
−

𝑚

(𝑀+𝑎 )
+ 𝑎21

𝑟1𝑥2
∗

𝐾1
< 0, 

 2𝑟1𝐾2

𝐾1
−
𝑎21𝑥1

∗

𝐾1
+
𝑎12𝑥1

∗  𝑟1

𝐾1
< 0, 

𝑚𝑥1
∗

𝑎
−
𝑟1𝐾2

𝐾1
𝑥2
∗ −

𝑟1𝑥1
∗ ≤ 0, then 𝑉 becomes a positive definite function (Lyapunov function) and hence 

the point ( 𝑥1
∗, 𝑥2

∗) becomes globally stable. 

Theorem 4.10 The equilibrium point 𝐸2(𝑥𝑒 , 0) will be globally stable if, 𝑟1 +
𝑥𝑒𝑟1

𝐾1
−

𝑚

(𝑀+𝑎 )
< 0, and   

𝑀𝑟1

𝐾1
(𝐾2 + 𝑎12𝑥𝑒) − 𝑥𝑒𝑟1 +

𝑚𝑥𝑒

𝑎
< 0, where max {|𝑥1|, |𝑥2|} ≤ 𝑀 

Proof. Consider the positive definite function  

𝑉′( 𝑥1, 𝑥2) = ( 𝑥1 − 𝑥𝑒 − 𝑥𝑒 ln
𝑥1
𝑥𝑒
 ) +

𝑟1𝐾2
𝑟2𝐾1

𝑥2.                                                     (4.38) 

            

𝐷𝛼𝑉′( 𝑥1, 𝑥2) = 𝐷
𝛼 [( 𝑥1 − 𝑥𝑒 − 𝑥𝑒 ln

𝑥1
𝑥𝑒
 ) +

𝑟1𝐾2
𝑟2𝐾1

𝑥2] ,                                     (4.39) 

                                             

= 𝐷𝛼 ( 𝑥1 − 𝑥𝑒 − 𝑥𝑒 ln
𝑥1
𝑥𝑒
 ) +

𝑟1𝐾2
𝑟2𝐾1

𝐷𝛼𝑥2,                                                             (4.40) 

By using Eq. (1.9)            

≤ ( 
𝑥1 − 𝑥𝑒
𝑥1

 ) 𝐷𝛼  𝑥1 +
𝑟1𝐾2
𝑟2𝐾1

𝐷𝛼𝑥2,                                                                            (4.41) 
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= (𝑥1 − 𝑥𝑒) [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ]

+
𝑟1𝐾2
𝑟2𝐾1

𝑥2 [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)], 

≤ (𝑥1 − 𝑥𝑒) 𝑟1 + 𝑥𝑒𝑟1
(𝑥1 + 𝑎12𝑥2)

𝐾1
−

𝑚𝑥1
(𝑥1 + 𝑎 )

+
𝑚𝑥𝑒

(𝑥1 + 𝑎 )
+
𝑟1𝐾2
𝐾1

𝑥2, 

≤ 𝑥1 (𝑟1 +
𝑥𝑒𝑟1
𝐾1

−
𝑚

(𝑀 + 𝑎 )
) + 𝑥2 (

𝑟1𝐾2
𝐾1

+
𝑥𝑒𝑟1𝑎12
𝐾1

) − 𝑥𝑒𝑟1 +
𝑚𝑥𝑒
𝑎
, 

≤ 𝑥1 (𝑟1 +
𝑥𝑒𝑟1
𝐾1

−
𝑚

(𝑀 + 𝑎 )
) +

𝑀𝑟1
𝐾1

(𝐾2 + 𝑎12𝑥𝑒) − 𝑥𝑒𝑟1 +
𝑚𝑥𝑒
𝑎

≤ 0,           (4.42) 

if  𝑟1 +
𝑥𝑒𝑟1

𝐾1
−

𝑚

(𝑀+𝑎 )
< 0, 

𝑀𝑟1

𝐾1
(𝐾2 + 𝑎12𝑥𝑒) − 𝑥𝑒𝑟1 +

𝑚𝑥𝑒

𝑎
< 0, then 𝑉′ becomes a 

positive definite function (Lyapunov function) and hence the point ( 𝑥𝑒 , 0) becomes 

globally stable. 

Theorem 4.11 The equilibrium point 𝐸1(0, 𝐾2) will be globally stable if, 𝑟1 −
𝑚

(𝑀+𝑎 )
+

𝑎21𝑟1

𝐾1
< 0, 𝑀(𝐾2 + 1) − 𝐾2

2 < 0, where max {|𝑥1|, |𝑥2|} ≤ 𝑀. 

Proof. Consider the positive definite function 

𝑉′′( 𝑥1, 𝑥2) = 𝑥1 +
𝑟1𝐾2
𝑟2𝐾1

( 𝑥2 − 𝐾2 − 𝐾2 ln
𝑥2
𝐾2
 ) .                                                  (4.43) 

𝐷𝛼𝑉′′( 𝑥1, 𝑥2) = 𝐷𝛼 [𝑥1 +
𝑟1𝐾2
𝑟2𝐾1

( 𝑥2 − 𝐾2 − 𝐾2 ln
𝑥2
𝐾2
 )], 

= 𝐷𝛼𝑥1 +
𝑟1𝐾2
𝑟2𝐾1

𝐷𝛼 ( 𝑥2 − 𝐾2 − 𝐾2 ln
𝑥2
𝐾2
 ) ,                                                           (4.44) 

By using Eq. (1.9) 

≤ 𝐷𝛼𝑥1 +
𝑟1𝐾2
𝑟2𝐾1

( 
𝑥2 − 𝐾2
𝑥2

 ) 𝐷𝛼𝑥2,                                                                             (4.45) 
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= 𝑥1 [ 𝑟1 ( 1 − 
(𝑥1 + 𝑎12𝑥2)

𝐾1
) − 

𝑚

(𝑥1 + 𝑎 )
 ]

+
𝑟1𝐾2
𝑟2𝐾1

(𝑥2 − 𝐾2) [ 𝑟2 ( 1 − 
(𝑥2 + 𝑎21𝑥1)

𝐾2
)], 

≤ 𝑟1𝑥1 −
𝑚𝑥1

(𝑀 + 𝑎 )
+
𝑟1𝐾2
𝐾1

𝑥2 −
𝑟1𝐾2

2

𝐾1
+
𝑟1
𝐾1
(𝑥2 + 𝑎21𝑥1), 

  

≤ 𝑥1 (𝑟1 −
𝑚

(𝑀+𝑎 )
+
𝑎21𝑟1

𝐾1
) +

𝑟1

𝐾1
(𝑀(𝐾2 + 1) − 𝐾2

2) ≤ 0,                            (4.46)    

if 𝑟1 −
𝑚

(𝑀+𝑎 )
+
𝑎21𝑟1

𝐾1
< 0,   𝑀(𝐾2 + 1) − 𝐾2

2 < 0, then 𝑉′′ becomes a positive definite 

function (Lyapunov function), and therefore the point (0, 𝐾2) becomes globally stable. 

4.4 Numerical Analysis    

Scenario I: 
𝐾2

𝑎21
< 𝐾1 ,   

𝐾1

𝑎12
 > 𝐾2   

 Table 4.1: Table for Values of Parameters Used for Numerical Simulations  

Parameters Value in 

Case 1 

 

Value in 

Case 2 

Value in 

Case 3 

 

Value in    

Case 4 

Source 

𝐾1 49 49 49 49    [146] 

𝐾2 37.5 37.5 37.5 37.5    [146] 

𝑟1 0.074 0.074             0.074 0.074    [146] 

𝑟2 0.075 0.075 0.075 0.075    [146] 

𝑎12 0.6 0.6 0.6 0.6    [146] 

𝑎21 0.95 0.95 0.95 0.95    [146] 

𝑎 19.5 19.5 19.5 19.5 Assumed 

𝑚 0.7 0.83 1 1.8 Assumed 

 

 

The values obtained for Allee’s constant   
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 𝑚𝑡 = 0.78,    𝑚𝑒 = 0.85, 𝑚𝑐𝑜 = 1.07, 𝑚𝑤 = 1.443,   𝑚𝑐𝑟 = 1.77. (See Eq. (4.28)) 

Case 1. When Allee’s constant  𝑚 < 𝑚𝑡 (See Eq. (4.28)) 

By taking Allee’s constant 𝑚 = 0.7 <   𝑚𝑡, we obtain E2(41.3,0) as an equilibrium 

point. By Theorem 4.5, stability criteria are also satisfied. Figure 4.1 is plotted to show 

the local stability of the point E2(41.3,0) in integer order and fractional order models, 

and Figure 4.2 shows the global stability of the point E2(41.3,0) in the fractional model 

of order 0.9.      
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Figure 4.1 Behavior of populations in different models at the equilibrium point (41.3,0) when          

𝑚 = 0.7 < (𝑚𝑡), with initial populations (40,10)  
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Case 2.  When Allee’s constant 𝑚 ∈  (𝑚𝑡, 𝑚𝑒 ) (See Eq. (4.28)) 

By taking 𝑚 = 0.83, the equilibrium point obtained is 𝐸2(39.6,0). By Theorem 4.5, the 

stability criteria are satisfied. But it is found numerically that the stability of this 

solution is subject to the initial population. Figures 4.3 and 4.4 are plotted by taking the 

integer order model and the fractional model of order 0.9 to show that if the initial 

population of the second species is 37, then the minimum population required for the 

first species to reach the equilibrium point is 2. 
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 Figure 4.2 Behavior of populations at equilibrium point (41.3,0) in fractional model of order 0.9                          

when 𝑚 = 0.7 (< 𝑚𝑡), with different initial populations 
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Figure 4.3 Behavior of populations at the equilibrium point (39.6,0) in integer order model when 

𝑚 = 0.83 (𝑚𝑡 < 𝑚 < 𝑚𝑒)   
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Figure 4.4 Behavior of populations at the equilibrium point (39.6,0) in fractional model of order 

0.9 when 𝑚 = 0.83 (𝑚𝑡 < 𝑚 < 𝑚𝑒)   
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Case 3. When Allee’s constant 𝑚 ∈  ( 𝑚𝑒 , 𝑚𝑐𝑜 ) (See Eq. (4.28)) 

By taking Allee’s constant   𝑚 = 1, the value of the equilibrium point is found to be 

(31.36,7.7).  At this point, we have 𝛾2 − 4Δ = 0.0021 > 0, 𝛾 = −0.051 < 0. 

Therefore, the conditions of the local asymptotic stability (Theorem 4.6) are satisfied. 

Figure 4.5 is plotted by taking the initial population (25,10) and different fractional 

orders and integer order 1, to show that populations are converging to (31.36,7.7). 

Furthermore, the requirement of the minimum population for the survival of the first 

species for a given population of the second species is observed numerically. Figures 

4.6 (a) and 4.6 (b) are plotted by taking the initial population (12,30) and (11,30), 

respectively. It is shown that populations starting from (12,30) are converging to 

(31.36,7.7) and those starting from (11,30) are converging to (0,37.5) in the fractional 

order and integer order model as well. 

 

 

Figure 4.5 Behavior of populations in different models at the equilibrium point (31.36,7.7) by taking 

m = 1 ( me < m < mco) and the initial population (25,10) 
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Figure 4.6(b) Behavior of populations in fractional model of the order 0.9 at the equilibrium point 

(31.36,7.7) by taking  𝑚 = 1  ( 𝑚𝑒 < 𝑚 < 𝑚𝑐𝑜)  

 

 

Figure 4.6(a) Behavior of populations in integer model at the equilibrium point (31.36,7.7) by taking  

𝑚 = 1  (𝑚𝑒 < 𝑚 < 𝑚𝑐𝑜)  
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Case 4. When Allee’s constant  𝑚 > 𝑚𝑐𝑟 

By taking Allee’s constant 𝑚 =1.8, and the initial population (49,5), simulations are 

run in fractional as well as integer-order models. Figure 4.7 shows that when Allee’s 

constant  𝑚 > 𝑚𝑐𝑟, the extinction of the first species cannot be prevented. 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

-10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

X(1)

X
(2

)

 

 

alpha = 1

alpha = 0.9

alpha = 0.8

alpha = 0.7

alpha = 0.6

Figure 4.7 Behavior of populations in different models when 𝑚 = 1.8 ( 𝑚 > 𝑚𝑐𝑟) and the initial 

population (49, 5)   
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Scenario II: 
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2              

Table 4.2: Table for Values of Parameters Used for Numerical Simulations 

 

Parameters Value Source 

𝐾1 37.5    [146] 

𝐾2 49    [146] 

𝑟1 0.075    [146] 

𝑟2 0.074    [146] 

𝑎12 0.95    [146] 

𝑎21 0.6    [146] 

𝑎 15 Assumed 

𝑚 0.01 Assumed 

 

The values obtained for Allee’s constant are as, 

𝑚𝑤 = 1.125, 𝑚𝑡 = −0.2715, 𝑚𝑐𝑟 = 1.38,   𝑚𝑐𝑜 = 0.08,  𝑚𝑒 = −8.56. (See Eq. 

(4.28)) 

In this case, weaker species are exposed to the Allee effect. The only possible solution, 

which is locally as well as globally stable, should be the equilibrium point 𝐸1(0, 49) in 

traditional modeling. However, when Figure 4.8 is plotted by taking 𝑚 = 0.01 and the 

initial population (20,15) with different values of fractional orders, it is observed that 

lower fractional order models move slowly, stabilize faster, and converge to different 

coexistence points. As we increase the value of the fractional order from 0.2 to 0.8, the 

chances of coexistence start decreasing. When alpha takes a value of 0.9, the 

populations stabilize at 𝐸1(0,49). Therefore, lower fractional-order models help in the 

coexistence of both species even when the first species is subjected to the Allee effect.  
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Scenario III: 
𝐾2

𝑎21
< 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2  

Table 4.3: Table for Values of Parameters Used for Numerical Simulation 

           

Parameters Value in 1st 

Example 

Source Value in 2nd 

Example 

Source 

𝐾1       37    [146]     300 Assumed 

𝐾2       42    [146]     310 Assumed 

𝑟1      0.062    [146]      0.6 [59] 

𝑟2      0.069    [146]      0.4 [59] 

𝑎12      1.1    [146]      1.2 Assumed 

𝑎21      1.15    [146]      1.1 [146] 

𝑎      14.8 Assumed      25 Assumed 

𝑚      0.003 Assumed       2 Assumed 
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Figure 4.8 Dynamic analysis of the populations in different fractional models by taking 𝑚 = 0.01, 

and initial population (20,15)  
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 The values obtained for Allee’s constant in the 1st example are as, 

𝑚𝑐𝑜 = −21.25, 𝑚𝑡 = −0.28, 𝑚𝑒 = 0.041,𝑚𝑤 = 0.92, 𝑚𝑐𝑟 = 1.17  

(See Eq. (4.28)). 

By taking 𝑚 = 0.003, the equilibrium point was found 𝐸2(36.9,0). In this scenario, the 

stability conditions of both equilibrium points 𝐸2(36.9,0) (see Theorem 4.5) and  

𝐸1(0, 𝐾2) (see Theorem 4.8) are satisfied. Figure 4.9 (a) is plotted by taking the initial 

population (36,1) in the integer model as well as in the fractional model, and it is 

observed that populations are moving towards 𝐸2(36.9,0). Taking (36,2) as the initial 

population, the coexistence of populations is observed in Figure 4.9 (b) but with a very 

low density of the second species, and when the initial population is considered as 

(36,3) then populations in all models start moving towards the point (0,49) as shown in 

Figure 4.9 (c).   

 

 

  

 

 

 

 

 

 

 

 

Figure 4.9(a) Dynamic behavior of populations when 𝑚 = 0.003 with initial population (36,1) in 

different models 

35.8 36 36.2 36.4 36.6 36.8 37 37.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X(1)

X
(2

)

 

 

alpha = 1.0

alpha = 0.9

alpha = 0.8



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9(c) Dynamic behavior of populations when 𝑚 = 0.003 with initial population (36,3) in 

different models. 
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Figure 4.9(b) Dynamic behavior of populations when  𝑚 = 0.003 with initial population (36,2) in 

different models 
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The values obtained for Allee’s constant in the 2nd example are as, 

𝑚𝑐𝑜 = −16.67, 𝑚𝑡 = −3.6, 𝑚𝑒 = 11.16, 𝑚𝑤 = 15, 𝑚𝑐𝑟 = 52.8  

(See Eq. (4.28)). 

Here existence conditions of the coexistence point are not satisfied. By taking 𝑚 = 2, 

the equilibrium point was found 𝐸2(296.7,0). In this scenario, the stability conditions 

of both equilibrium points 𝐸2(296.7,0) (see Theorem 4.5) and  𝐸1(0, 𝐾2) (see Theorem 

4.8) are satisfied. By taking values of fractional order as 

0.2,0.3,0.4,0,0.5,0.6,0.7,0.8,0.9, and integral value 1, Figure 4.10 is plotted by taking 

the initial population as (23,10). It is seen that lower fractional order models (α = 

0.2,0.3,0,4,0.5) help in the coexistence of both species, as the order of the fractional 

derivative increases, populations start converging to the axial point (296.7,0), but in the 

ordinary integer order model populations stabilize at (0,310). Figure 4.11 is drawn to 

find the threshold value of the fractional order that can support the stability of two 

equilibria 𝐸2(296.7,0) and  𝐸1(0, 𝐾2) . By taking the initial population as (22,10). 

Numerical simulations are run by taking different values of fractional order between 

0.8 and 0.9, and it is found that populations are moving towards (296.7,0) initially, as 

alpha takes the value 0.8972, populations start moving towards (0,310). Therefore, the 

threshold memory (alpha) is 0.8972, which can support the affected species (from the 

Allee effect), after crossing that affected species will be unable to survive. 
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Figure 4.10 Dynamic behavior of populations in various models when first species is exposed to 

Allee effect in scenario  
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2 
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Figure 4.11. Showing the critical value of fractional order (α = 0.8972) at which one equilibrium is 

destabilized, and stability switches to other equilibria when the first species is exposed to the Allee 

effect in the scenario 
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 < 𝐾2,where α  ∈ [0.8,0.9] 
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Scenario IV: 
𝐾2

𝑎21
> 𝐾1 ,   

𝐾1

𝑎12
 > 𝐾2  

Table 4.4: Table for Values of Parameters Used for Numerical Simulations  

 

Parameters Value in 

Case 1 

 

Value in 

Case 2 

Value in 

Case 3 

 

Source 

𝐾1 49 49 49    [146] 

𝐾2 37.5 37.5 37.5    [146] 

𝑟1 0.074 0.074 0.074    [146] 

𝑟2 0.075 0.075 0.075    [146] 

𝑎12 0.95 0.95 0.95    [146] 

𝑎21 0.6 0.6 0.6    [146] 

𝑎 19.5 19.5 19.5 Assumed 

𝑚 0.3 0.4 0.5 Assumed 

 

The values obtained for Allee’s constant are as follows, 𝑚𝑒 = −1.67, 𝑚𝑡 = 0.394,

𝑚𝑐𝑜 = 0.416,𝑚𝑤 = 1.443. (See Eq. (4.28)) 

 Case 1. When Allee’s constant 𝑚 < 𝑚𝑡 (See Eq. (4.28)) 

By taking Allee’s constant 𝑚 = 0.3, we have a coexistence point 𝐸4(19.1,26.04). The 

values of 𝛾2 − 4Δ = 0.0045 > 0, 𝛾 = −0.007 < 0 are obtained. Therefore, the 

stability conditions of the coexistence point are satisfied (see Theorem 4.7). Figure 4.12 

is plotted by taking the initial population (20,25) to show the stability of the coexistence 

point in fractional as well as integer-order models. 
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Case 2. When Allee’s constant 𝑚 ∈  (𝑚𝑡, 𝑚𝑐𝑜) (See Eq. (4.28)) 

By taking Allee’s constant 𝑚 = 0.4, we have two coexistence points 𝐸4(10.73,31.06) 

and 𝐸5(0.87,37). At (10.73,31.06), the value of  𝛾 =  −0.078 < 0, and 𝛾2 − 4Δ =

0.003 > 0. At 𝐸5(0.87,37), the value of  𝛾 =  −0.054 < 0,  and 𝛾2 − 4Δ = 0.009 >

0.  Therefore stability conditions of the points 𝐸4(10.73,31.06) and 𝐸5 (0.87,37) are 

satisfied (see Theorem 4.7). Figure 4.13 is plotted by taking the initial population 

(15,35) to show the stability of the coexistence point in fractional as well as integer-

order models.  

Figure 4.12 Behavior of populations at the equilibrium point (19.1,26.04) when                                   

m = 0.3 (m < mt) with initial population (20,25)  
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Figure. 4.14 is plotted to show that the equilibrium point 𝐸5(0.87,37) is numerically 

unstable in integer order models as well as in fractional order models. Figure 4.14 (a) 

is plotted by taking the initial population (0.84,35) and (0.85,35). It is found that in both 

cases, when the initial population is (0.84,35), populations move towards 𝐸5(0.87,37). 

However, when the initial population is considered (0.85,35), the populations move 

away from 𝐸5(0.87,37) and similar behavior is observed in fractional models of orders 

0.9,0.8, and 0.7 too, as shown in Figures 4.14 (b), 4.14 (c), and 4.14 (d). This shows 

that point 𝐸5(0.87,37) is stable but not asymptotically. 
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Figure 4.13 Behavior of the populations at the equilibrium point (10.73,31.06) taking                        

𝑚 = 0.4 (𝑚𝑡 < 𝑚 < 𝑚𝑐𝑜) with the initial population (15,25) in various models 
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Figure 4.14(b) Stability analysis of the equilibrium point (0.87,37) in fractional model of order 0.9, 

when 𝑚 = 0.4 (𝑚𝑡 < 𝑚 < 𝑚𝑐𝑜) 

Figure 4.14(a) Stability analysis of the equilibrium point (0.87,37) in integer model  𝑚 =

0.4, 𝑤ℎ𝑒𝑛 (𝑚𝑡 < 𝑚 < 𝑚𝑐𝑜) 
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Figure 4.14 (d) Stability analysis of the equilibrium point (0.87,37) in fractional model of order 

0.7, when  𝑚 = 0.4, (𝑚𝑡 < 𝑚 < 𝑚𝑐𝑜) 
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Figure 4.14 (c) Stability analysis of the equilibrium point (0.87,37) in fractional model of order 0.8, 

when 𝑚 = 0.4 (𝑚𝑡 < 𝑚 < 𝑚𝑐𝑜) 
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Case 3. When Allee’s constant 𝑚 ∈  ( 𝑚𝑐𝑜, 𝑚𝑤 ) (See Eq. (4.28)) 

By taking Allee’s constant 𝑚 = 0.5, stability conditions of the point (0, 𝐾2) are satisfied 

(see Theorem 4.8). It is observed that in the integer order model, populations are 

moving toward the equilibrium point (0, 𝐾2),  whereas in the fractional models of 

different orders, populations are stabilizing at different coexistence points, as shown in 

Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4.5 Conclusion 

 

This study examines a fractional order Lotka-Volterra competition model exposed to an 

additive Allee effect to one of the species, where the fractional derivative in the Caputo 

sense is used. The mathematical analysis of the model is done to confirm the 

Figure 4.15 Behavior of the populations by taking 𝑚 = 0.5  (𝑚𝑐𝑜 < 𝑚 < 𝑚𝑤) with the initial 

population (40, 10) in various   models 
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uniqueness, positivity, and uniform boundedness of solutions. All necessary 

preconditions required for the existence and stability of the different equilibrium points 

are determined. The numerical analysis of the model is performed in each competitive 

scenario.  

In scenario I, there is competitive exclusion of the second species by the first species in 

the classical Lotka-Volterra competition model. However, the proposed model shows 

multistable behavior depending upon the different values taken by Allee’s constant. For 

the same values of parameters, as the value of Allee’s constant increases, the proposed 

model stabilizes at different equilibrium points. Initially, by taking Allee’s constant  

𝑚(< 𝑚𝑡) (See Eq. (4.28)), the proposed model behaves similarly to the traditional 

Lotka-Volterra model. The solution obtained as an equilibrium point 𝐸2 , which is found 

to be locally stable in integer as well as in fractional models (Figs. 4.1, 4.2). This shows 

that the first species (𝑥1) can competitively exclude the second species (𝑥2) regardless 

of the initial population. On increasing the value of Allee’s constant 𝑚, so that 𝑚𝑡 <

𝑚 < 𝑚𝑒 , (See Eq. (4.28)), the equilibrium point obtained again 𝐸2. However, it is 

found that on increasing the value of Allee’s constant, the population density of the first 

species (𝑥1) decreases, but it can still exclude the second species. Through numerical 

examples as shown in Figs. 4.3, 4.4, it is found that in this situation, the minimum initial 

population density of the first species (𝑥1) is required to exclude the second species 

(𝑥2), otherwise the second species (𝑥2) excludes the first by stabilizing at the 

equilibrium point 𝐸1(0, 𝐾2). On further increasing the value of Allee’s constant 𝑚, so 

that 𝑚𝑒 < 𝑚 < 𝑚𝑐𝑜 (See Eq. (4.28)), the equilibrium point obtained 𝐸2. Through 

numerical simulation, it is observed that both populations stabilize at 𝐸2  in fractional 

and integer order models (Fig. 4.5). However, at high densities of the second species 

(𝑥2), the first species (𝑥1) requires a minimum population to survive (Figs. 4.6(a), 

4.6(b)). On further increasing the value of Allee’s constant 𝑚, so that 𝑚 > 𝑚𝑐𝑜 (See 

Eq. (4.28)), the coexistence of the species destabilizes, and the second species (𝑥2) 

excludes the first species (𝑥1) competitively (Fig.4.7).   

In competitive scenario II, the first species (𝑥1) is a weaker one, and the value of Allee’s 

constant 𝑚 is found to be greater than 𝑚𝑡 (See Eq. (4.28)) always. In the integer order 

LVCM with an additive Allee effect, the first species fails to exist. However, when 
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simulations are run in the fractional order model, it is noticed that populations can 

coexist (Fig. (4.8). Also, it is found that with the increase in the fractional order from 

0.2 to 0.8, the first species (𝑥1)  keep on decreasing, whereas the second species (𝑥2) 

keep on increasing. When the fractional order takes a value of 0.9, the populations 

stabilize at (0, 𝐾2). Therefore, on changing the order in the fractional model, both 

populations stabilize at different coexistence points, starting from the same initial 

population. Therefore, on increasing the value of fractional order from 0.2 to 0.9, the 

memory of the system decreases, leading to a decrease in the chances of coexistence 

due to the Allee effect and competition imposed by the second species on the first 

species (𝑥1). Therefore, lower fractional-order models help in the coexistence of both 

species even when interspecific competition is stronger and the first species (𝑥1) is 

exposed to the Allee effect.  

In scenario III, according to the classical LVCM, either of the populations can survive 

stably depending on the initial populations. If the first species (𝑥1)  is near its carrying 

capacity, it will exclude the second species (𝑥2) competitively and vice versa. However, 

it is found by taking a numerical example that exposure to the Allee effect of the first 

species (𝑥1) can exclude the second species, even if the density of the second species 

is near to carrying capacity. Figs. 4.9 (a), 4.9 (b), and 4.9 (c) show that when the first 

species (𝑥1) is exposed to the Allee effect, it can survive by eliminating the second 

species  (𝑥2) only if the initial population density of the second species (𝑥2) is below 

3 in the integer order model, even if the initial density of the first species is very near 

its carrying capacity. As the initial population of the second species rises to 3, the first 

species (𝑥1) move toward extinction. In other words, a very small population density 

of the second species (𝑥2) can competitively exclude the first species (𝑥1) when the 

first species is exposed to the Allee effect. However, in fractional order models, both 

species can coexist, but with a very low density of the second species. The role of the 

memory (fractional order) is also observed in preserving the populations for a given 

initial population in this scenario. It is possible to find the value of fractional order 

(threshold) at which stability of the system switches, or in other words, whenever the 

fractional order is below that value system stabilizes at one equilibrium point, and after 

crossing that system stabilizes at other equilibria, as shown in Figs. 4.10, 4.11. 
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In scenario IV, in classical LVCM, both species can coexist stably. However, in the 

proposed model, multistability is observed depending upon the different values taken 

by Allee’s constant. When 𝑚 < 𝑚𝑡 (See Eq. (4.28)), the value of the equilibrium point 

obtained as 𝐸4. The population density of the first species (𝑥1) is lower than that of the 

second species (𝑥2)  because of the Allee effect and stronger intraspecific competition. 

However, this coexistence is stable in integer order and fractional order models (Fig. 

4.10).  On increasing the value of Allee’s constant 𝑚 > 𝑚𝑡  (See Eq. (4.28)), we find 

two equilibrium points 𝐸4 and 𝐸5. In both equilibrium points, the population of the 

second species (𝑥2) is quite high as compared to the first species (𝑥1). It is found 

numerically that both populations are stabilizing at the first equilibrium point 𝐸4 in both 

types of models, integer order as well as in fractional order models (Fig. 4.13). 

However, both species always deviate from the second coexistence equilibrium point, 

as shown in Figs. 4.14 (a), 4.14 (b), 4.14 (c), and 4.14 (d). On increasing the value of 

Allee’s constant 𝑚 > 𝑚𝑐𝑜 (See Eq. (4.28)), first species (𝑥1) in the integer order model 

moves towards extinction. However, in fractional models with different orders, 

populations stabilize at different coexistence points as shown in Fig. 4.15.  Hence, in 

this scenario, the proposed model has multistable behavior.  

It is observed that in the case of competition, whenever Allee’s constant  𝑚 < 𝑚𝑡 (See 

Eq. (4.28)), equilibrium points obtained in each scenario remain stable without any 

requirement for the minimum population of the first species (𝑥1). However, when 

Allee’s constant  𝑚 > 𝑚𝑡, a minimum population of the first species (𝑥1)  is required 

for its survival. Therefore, the Allee effect can be classified as weak if 𝑚 < 𝑚𝑡 and 

strong if  𝑚 > 𝑚𝑡 in the presence of competition. Moreover, it can be concluded that 

when one of the species in the classical Lotka-Volterra competition model is exposed 

to the Allee effect, the coexistence is promoted even in the case of stronger interspecific 

competition when the system is reconsidered by making use of Caputo’s fractional 

order differential equations. 
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Chapter 5 

 

Dynamical Study of Fractional Order One Prey 

Two Predator Food Chain Model with Allee 

Effect on Prey 

 

 5.1 Introduction  

A wide range of species have become extinct, with others alarmingly close to 

extinction, due to a variety of factors, including but not limited to overexploitation, 

environmental pollution, mismanagement of natural resources, and excessive 

predation. The coexistence of all species within ecological systems is of the utmost 

importance for resource management and long-term survival forecasting for each 

species [147]. In studying ecology, mathematical models can be used to describe a 

typical natural phenomenon: the interaction between different species. Food chain 

analysis is a fundamental aspect of ecology, and the application of mathematical models 

to food chains has significantly contributed to advancements in contemporary 

ecological research [148]. The initial food chain mathematical model was formulated 

by US physical chemist Alfred James Lotka [124] and Italian mathematician Vito 

Volterra [125]. The Lotka–Volterra model has been modified many times. To develop 

more accurate and believable mathematical models, it is crucial to carefully analyze 

factors like competition among species, prey or predator harvesting, and especially 

predator functional responses, which represent mathematically the average 

consumption rate of prey by predators.  Holling classified functional responses into 

three categories based on their effects on the rate of prey death: Holling type I, Holling 

type II, and Holling type III. Type I is the situation where the quantity of prey consumed 

varies directly with the available concentration of prey population, and type II is the 

situation where the consumption rate of each consumer falls as the prey density rises, 

eventually leveling off at a constant value. Type III behavior, characterized by a 
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sigmoidal pattern linked to learning behavior in the predator population, occurs when 

the slope of the curve rises and then falls with increasing prey density [149].  

Most mathematical models often consist of differential and integral equations with 

integer order. It is observed that fractional calculus is an effective instrument for 

describing systems or processes that have memory and hereditary properties. Most 

biological mathematical models have long-term memory, so fractional differential 

equations are more appropriate to describe the actual dynamic processes accurately and 

reliably [150,151]. Das and Samanta used Caputo’s fractional derivative to explore the 

stability of populations in a delayed as well as non-delayed three-species food web 

model incorporating a fear effect and refuge in the prey population [54]. Nisar et al. 

studied a delayed food chain model incorporating the Allee effect in the prey 

population, using a fractional derivative in the Atangana-Baleanu-Caputo sense. The 

authors used the fixed-point theorem to investigate the existence and stability of the 

system solution and used the Adams-Bashforth-Moulton method for numerical analysis 

[103]. Matouk et al. studied the behavior of the fractional order Hastings-Powell food 

chain system with a new discretization technique [152]. A fractional order food chain 

system comprising small herbivores, medium omnivores, and large carnivores 

(Hastings-Powell) is examined by Liu et.al. by using Caputo’s fractional derivative 

[153]. Using ordinary differential equations, Manna et al. investigated a food chain 

model comprising a prey, two predators, an intermediate, and a top predator [154]. In 

this study, the prey population is exposed to the strong Allee effect while growing 

logistically, where the Allee effect is considered a multiplicative type. Interactions 

between prey and intermediate predator, as well as between Intermediate predator and 

top predator, were considered Holling type II. The model equations are given as  

{
  
 

  
 
𝑑𝑥

𝑑𝑡
= 𝑥 (𝑟 ( 1 − 

𝑥

𝐾
) (
𝑥

𝑚
− 1) −

𝑏𝑦

𝑥 + 𝑝
) , 𝑥(0) > 0,

𝑑𝑦

𝑑𝑡
= 𝑦 (−𝑐 +

𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
) , 𝑦(0) > 0

𝑑𝑧

𝑑𝑡
= 𝑧 (−𝑓 +

𝑔𝑒𝑦

𝑞 + 𝑦
) , 𝑧(0) > 0.

                                           (5.1) 
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Here 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 are respectively prey density, intermediate predator density, and top 

predator density. 𝑟 represents the prey’s intrinsic growth rate, 𝐾 is the maximum prey 

population supported by the environment (carrying capacity). 𝑏, 𝑐, 𝑑, respectively, are 

the prey’s rate of predation by the intermediate predator, intermediate predator’s natural 

decay rate, and intermediate predator’s conversion rate from prey to predator. 𝑒, 𝑓, 𝑔 

respectively are the intermediate predator’s predation rate by top predator, top 

predator’s natural decay rate, and top predator’s conversion rate from intermediate 

predator to top predator. 𝑝 and  𝑞, respectively, are half-saturation constants for the 

intermediate and top predator. 𝑚 is the minimum population of prey that is required for 

the survival of that population. 

In this chapter, we are studying Caputo’s definition-based fractional order three-species 

food chain model that includes a prey, an intermediate predator, and a top predator. The 

interactions among species are of Holing type II, and prey are exposed to an additive 

Allee effect.  

 5.2 Mathematical Model Description 

 
Three-species food chain model in which prey are exposed to an additive Allee effect, 

and considering Holling type II interactions between the intermediate predator and prey 

population, as well as between the top predator and intermediate predator, using 

Caputo’s fractional derivative can be represented as,  

 

 

{
  
 

  
 𝐷𝛼𝑥 = (( 1 − 

𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
) 𝑥,

𝐷𝛼𝑦 = (−𝑐 +
𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
)𝑦,

𝐷𝛼𝑧 = (−𝑓 +
𝑔𝑒𝑦

𝑞 + 𝑦
) 𝑧.

                                                           (5.2)    
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Here 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 are respectively prey density, intermediate density, and top predator 

density. 𝑟 is the prey’s intrinsic birth rate, 𝐾 is the maximum prey population that the 

environment can support (carrying capacity). 𝑏, 𝑐, 𝑑, respectively, are the prey’s rate of 

predation by the intermediate predator, intermediate predator’s natural decay rate, and 

intermediate predator’s conversion rate. 𝑒, 𝑓, 𝑔 respectively are the intermediate 

predator’s predation rate by the top predator, the top predator’s natural decay rate, and 

the top predator’s conversion rate. 𝑝 and  𝑞 are the half-saturation constants for the 

intermediate and top predators, respectively. 𝑎 is the population density of prey at which 

mating is reduced to half of the maximum. 𝑚 > 0 is Allee’s constant. If 𝑚 < 𝑎𝑟, then 

the Allee effect is considered to be weak, and if 𝑚 > 𝑎𝑟, then the Allee effect is 

considered to be strong. 𝐷𝛼 is the Caputo fractional derivative, and 𝛼 ∈ (0, 1]. 

5.3 Primary Evaluation of the Model 

 

In this section, an analysis of the proposed model will be conducted to establish the 

properties of its solutions, including existence, uniqueness, positivity, and uniform 

boundedness. 

5.3.1. Existence of Unique Solution  

 

Theorem 5.1 The fractional order system given by (5.2) possesses a unique solution. 

Proof: Consider a mapping  𝐹 : 𝐻 →  ℝ3  by defining  𝐹(𝑋) = ( 𝐹1(𝑋), 𝐹2(𝑋), 𝐹3(𝑋)), 

where  

 

{
  
 

  
 𝐹1(𝑋) = [ ( 1 − 

𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥,

𝐹2(𝑋) = [−𝑐 +
𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
] 𝑦,

𝐹3(𝑋) = [−𝑓 +
𝑔𝑒𝑦

𝑞 + 𝑦
] 𝑧.

                                                         (5.3) 

                                                                                                                                  

 

Let 𝑋, 𝑌 ∈ 𝐻 be any two arbitrary elements. Where 𝑋 = (𝑥1, 𝑦1, 𝑧1 ) and  𝑌 =

(𝑥2, 𝑦2, 𝑧2 ).  
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Define ‖𝑋‖ = sup
t
|𝑒−𝑆𝑡 𝑋|,   𝑆 > 0.  𝑡 ∈ [ 𝑡0,  𝑇 ],   𝑇 <  ∞.  Clearly ‖𝑋‖ = sup

t
|𝑋|. 

Consider 

‖𝐹(𝑋) −  𝐹(𝑌)‖ =  |𝐹1(𝑋) −  𝐹1(𝑌)| +  |𝐹2(𝑋) −  𝐹2(𝑌)| +  |𝐹3(𝑋) −  𝐹3(𝑌)|, 

                                                                                                                                                 

=  |[ ( 1 − 
𝑥1
𝐾
)𝑟 −

𝑚

𝑥1 + 𝑎 
−

𝑏𝑦1
𝑥1 + 𝑝

] 𝑥1 − [ ( 1 − 
𝑥2
𝐾
) 𝑟 −

𝑚

𝑥2 + 𝑎 
−

𝑏𝑦2
𝑥2 + 𝑝

] 𝑥2|  

+ |[−𝑐 +
𝑏𝑑𝑥1
𝑝 + 𝑥1

−
𝑒𝑧1
𝑞 + 𝑦1

] 𝑦1 − [−𝑐 +
𝑏𝑑𝑥2
𝑝 + 𝑥2

−
𝑒𝑧2
𝑞 + 𝑦2

] 𝑦2|  

+  |[−𝑓 +
𝑔𝑒𝑦1
𝑞 + 𝑦1

] 𝑧1 − [−𝑓 +
𝑔𝑒𝑦2
𝑞 + 𝑦2

] 𝑧2|, 

≤ |𝑟(𝑥1 − 𝑥2)| + |
𝑟

𝐾
(𝑥1

2 − 𝑥2
2)| + |( 

𝑥1
𝑥1 + 𝑎

− 
𝑥2

𝑥2 + 𝑎 
)𝑚 |  

+ |(
𝑥1𝑦1
𝑥1 + 𝑝

−
𝑥2𝑦2
𝑥2 + 𝑝

)𝑏| + | (𝑦1 − 𝑦2)𝑐| + |𝑏𝑑 (
𝑥1𝑦1
𝑥1 + 𝑝

−
𝑥2𝑦2
𝑥2 + 𝑝

)|

+ |𝑒 (
𝑦1𝑧1
𝑞 + 𝑦1

− 
𝑦2𝑧2
𝑞 + 𝑦2

)| + 𝑓|𝑧1 − 𝑧2| + |𝑔𝑒 (
𝑦1𝑧1
𝑞 + 𝑦1

− 
𝑦2𝑧2
𝑞 + 𝑦2

)|, 

≤ |𝑥1 − 𝑥2| |𝑟 + 
𝑟

𝐾
( 𝑥1 + 𝑥2) +

𝑚𝑎

𝑐(𝑥1 + 𝑎)(𝑥2 + 𝑎)
+

𝑦2𝑏𝑝(1 + 𝑑)

(𝑥1 + 𝑝)(𝑥2 + 𝑝)
| 

+|𝑦1 − 𝑦2| |𝑐 +
𝑥1𝑥2𝑏(1 + 𝑑)

(𝑥1 + 𝑝)(𝑥2 + 𝑝)
+

𝑥1𝑏𝑝(1 + 𝑑)

(𝑥1 + 𝑝)(𝑥2 + 𝑝)
+

𝑧2𝑒𝑞(1 + 𝑔)

(𝑦1 + 𝑞)(𝑦2 + 𝑞)
|  

+ |𝑧1 − 𝑧2| |𝑓 +
𝑦1𝑦2𝑒(1 + 𝑞)

(𝑦1 + 𝑞)(𝑦2 + 𝑞)
+

𝑦1𝑔𝑒(1 + 𝑞)

(𝑦1 + 𝑞)(𝑦2 + 𝑞)
|, 

≤ |𝑥1 − 𝑥2| ( 𝑟 + 
2𝑟𝑀

𝐾
+  𝑚𝑎 +𝑀𝑏𝑝(1 + 𝑑))

+ |𝑦1 − 𝑦2|(𝑐 + 𝑏(1 + 𝑑) + 𝑀𝑏𝑝(1 + 𝑑) + 𝑀𝑒𝑞(1 + 𝑔))

+ |𝑧1 − 𝑧2|(𝑓 + 𝑒(1 + 𝑞) + 𝑀𝑔𝑒(1 + 𝑞)), 

= |𝑥1 − 𝑥2|𝐿1 + |𝑦1 − 𝑦2|𝐿2 + |𝑧1 − 𝑧2|𝐿3 ≤ 𝐿 ‖𝑥 − 𝑦‖.                                  (5.4) 

                                                                                                                                        

Where, 
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{
 
 

 
 𝐿1 = ( 𝑟 + 

2𝑟𝑀

𝐾
+  𝑚𝑎 + 𝑀𝑏𝑝(1 + 𝑑)) ,

𝐿2 = ( 𝑐 + 𝑏(1 + 𝑑) + 𝑀𝑏𝑝(1 + 𝑑) + 𝑀𝑒𝑞(1 + 𝑔))

𝐿3 = ( 𝑓 + 𝑒(1 + 𝑞) + 𝑀𝑔𝑒(1 + 𝑞)),

 ,                                   (5.5) 

                                                                                               

and 𝐿 = 𝑚𝑎𝑥{𝐿1, 𝐿2, 𝐿3}.  Therefore,  𝐹 satisfies the Lipschitz condition.  

Let the solution of the system (5.2) be 𝐺(𝑋).  

Therefore,  

𝐺(𝑋) = 𝑋 −  𝑋(0) =  
1

Γ(𝛼)
∫ 𝐹(𝑋(𝑠))
𝑡

0

 (𝑡 − 𝑠)𝛼−1𝑑𝑠.                                       (5.6) 

Consider 

𝐺(𝑋) −  𝐺(𝑌) =
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}
𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑑𝑠.                       (5.7) 

                                                                                                                               

|𝐺(𝑋) −  𝐺(𝑌) | =  |
1

Γ(𝛼)
∫ {𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}
𝑡

0
   (𝑡 − 𝑠)𝛼−1𝑑𝑠|,  

≤
1

Γ(𝛼)
 ∫ |𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))|

𝑡

0

 (𝑡 − 𝑠)𝛼−1𝑑𝑠.                                                   (5.8) 

Now  

  𝑒−𝑝𝑡 (𝐺(𝑋) −  𝐺(𝑌)) =  
1

Γ(𝛼)
 ∫  𝑒−𝑝𝑡

𝑡

0

{𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))}(𝑡 − 𝑠)𝛼−1 𝑑𝑠. 

                                                                                                                          (5.9) 

                                                                                                

=
1

Γ(𝛼)
 ∫  𝑒−𝑝𝑠

𝑡

0

 𝑒−𝑝(𝑡−𝑠){𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))} (𝑡 − 𝑠)𝛼−1𝑑𝑠.                        (5.10) 

                                                                                                                               

‖𝐺(𝑋) −  𝐺(𝑌)‖ ≤
1

Γ(𝛼)
 ∫ 𝑒−𝑝(𝑡−𝑠)

𝑡

0

 ‖𝐹(𝑋(𝑠)) − 𝐹(𝑌(𝑠))‖ (𝑡 − 𝑠)𝛼−1𝑑𝑠, 

(By Eq. (5.4)) 



139 
 

‖𝐺(𝑋) −  𝐺(𝑌)‖ ≤
𝐿

Γ(𝛼)
∫ 𝑒−𝑝(𝑡−𝑠)
𝑡

0

 ‖𝑥 − 𝑦‖(𝑡 − 𝑠)𝛼−1 𝑑𝑠,    

  

=
𝐿

Γ(𝛼)
‖𝑥 − 𝑦‖ ∫ 𝑒−𝑝(𝑡−𝑠)

𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑑𝑠,                                                          (5.11) 

                                                                        

 ≤
𝐿

Γ(𝛼)
‖𝑥 − 𝑦‖

Γ(𝛼)

𝑝𝛼
= 

𝐿

𝑝𝛼
 ‖𝑥 − 𝑦‖.                                                                   (5.12) 

                                                                      

Choosing 𝑝 sufficiently large so that 
𝐿

𝑝𝛼
  < 1, then by Theorem (1.4.8), the model given 

by (5.2) has a unique solution. 

5.3.2. Positivity of the Solutions 

 

Theorem 5.2 Solutions to the given system (5.2) start in ℝ+
3  are nonnegative, where 

ℝ+
3  is set of positive triplets including zero. 

Proof.   Let 𝑋( 𝑡0) = (𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)) ∈ ℝ+
3  be the initial solution of the given 

system, let 𝑡 > 𝑡0 and we are to show that 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 𝑡0 . Let us suppose that 

there exists some solution 𝑋(𝑡1) which do not lie in ℝ+
3  where 𝑡1  > 𝑡0. Let us suppose 

that, there exists some 𝑡∗ very near to 𝑡1 s.t.  

{

𝑥(𝑡) > 0, 𝑓𝑜𝑟 𝑡0 < 𝑡 <  𝑡1,

𝑥(𝑡1) = 0,

𝑥(𝑡) < 0, 𝑓𝑜𝑟 𝑡1 < 𝑡 ≤ 𝑡∗.

                                                                                      (5.13) 

                                                     

There are two possibilities:  

Case 1. If 𝐷𝛼  𝑥(𝑡) ≥ 0 ∀ 𝑡 ∈ [𝑡1, 𝑡
∗].                                                                     (5.14) 

Now 

𝐷𝛼  𝑥(𝑡) = [( 1 − 
𝑥

𝐾
)  𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥 ≥ 𝑟𝑥.                                               

We have 
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 𝐷𝛼  𝑥(𝑡)  ≥ 𝑟𝑥.                                                                                                               (5.15) 

By applying the Laplace transform, 

𝑠𝛼 Χ(𝑠) − 𝑠𝛼−1 𝑥(𝑡0) ≥  Χ(𝑠) 𝑟,                                                                                (5.16)  

where  Χ(𝑠) =  ℒ {𝑥(𝑡)} 

Χ(𝑠) (𝑠𝛼 − 𝑟)  ≥ 𝑠𝛼−1 𝑥(𝑡0).                                                                                      (5.17) 

We can have from this, 

Χ(𝑠) ≥  
𝑠𝛼−1

(𝑠𝛼 − 𝑟)
 𝑥(𝑡0).                                                                                               (5.18) 

By applying the inverse Laplace transform, 

𝑥(𝑡) ≥  ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 − 𝑟)
𝑥(𝑡0)} = 𝑥(𝑡0) 𝐸𝛼,1 {𝑟(𝑡 − 𝑡0)

α } ≥ 0.                        (5.19) 

This is a contradiction to the supposition that 𝑥(𝑡) < 0  for all  𝑡 ∈ (𝑡1, 𝑡
∗]. 

Case 2. If  𝐷𝛼  𝑥(𝑡) < 0 ∀ 𝑡 ∈ (𝑡1, 𝑡
∗].                                                          (5.20)            

This further implies, 

[ ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥 < 0.                                                                    (5.21) 

But 

[ ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥 > 𝑥 𝜌.                                                                (5.22) 

Here 𝜌 is the minimum value of ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥+𝑎 
−

𝑏𝑦

𝑥+𝑝
 ∀𝑡 ∈ [𝑡1, 𝑡

∗].  

Taking the Laplace transform on both sides and proceeding as above,  

𝑥(𝑡) ≥  ℒ−1 {
𝑠𝛼−1 

( 𝑠𝛼 − 𝑟)
𝑥(𝑡0)} = 𝑥(𝑡0) 𝐸𝛼,1 {𝜌 (𝑡 − 𝑡0)

α } ≥ 0.                   (5.23) 

This again contradicts the assumption that 𝑥(𝑡) < 0  for all  𝑡 ∈ (𝑡1, 𝑡
∗].  

Therefore, for 𝑡 > 𝑡0 , 𝑥(𝑡) > 0. Similarly, we can establish the positivity of  𝑦(𝑡), and  

𝑧(𝑡).  

5.3.3. Uniform Boundedness of the Solutions 

 

Theorem 5.3 All non–negative solutions to the system (5.2) are uniformly bounded. 
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Proof: Consider a function 

𝐹(𝑡) =  𝑥 + 
𝑦

𝑑
+ 

𝑧

𝑑𝑔
.                                                                                                   (5.24) 

𝐷𝛼𝐹(𝑡) =  [ ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥 +

𝑦

𝑑
[−𝑐 +

𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
]

+
𝑧

𝑑𝑔
[−𝑓 +

𝑔𝑒𝑦

𝑞 + 𝑦
],                                                                           (5.25) 

                                                                                                                                

= 𝑟𝑥 −
𝑟𝑥2

𝐾
−

𝑚𝑥

(𝑥 + 𝑎)
− 
𝑦𝑐

𝑑
−
𝑧𝑓

𝑑𝑔
.                                                                           (5.26) 

                                                                         

𝐷𝛼𝐹(𝑡) + 
𝑦𝑐

𝑑
+
𝑧𝑓

𝑑𝑔
=  𝑟𝑥 −

𝑟𝑥2

𝐾
−

𝑚𝑥

(𝑥 + 𝑎)
≤ 𝑟𝑥 − 

𝑟𝑥2

𝐾
 .                                 (5.27) 

                                                                                                        

Further solving, we get 

𝐷𝛼𝐹(𝑡) + 𝐹(𝑡) ≤ 𝑥 (1 + 𝑟)  − 
𝑟𝑥2

𝐾
,                                                                        (5.28) 

                                                                        

=
𝐾(1 + 𝑟)2

4𝑟
 − {𝑥2 − 

𝐾(1 + 𝑟)

𝑟
𝑥 +

𝐾2(1 + 𝑟)2

4𝑟2
}
𝑟

𝐾
.                                         (5.29) 

                                                                                

Therefore, (5.26) implies 

𝐷𝛼𝐹(𝑡) + 𝐹(𝑡) ≤
(1 + 𝑟)2

4𝑟
𝐾 = 𝑄.                                                                            (5.30) 

By taking the Laplace transform and using Eq. (1.7), we have  

𝑠𝛼 𝐺(𝑠) − 𝑠𝛼−1 𝐹(𝑡0) +  𝐺(𝑠) ≤  
𝑄

𝑠
,                                                                      (5.31) 

where  𝐺(𝑠) =  ℒ {𝐹(𝑡)}.  

This implies,                                                               

𝐺(𝑠) (𝑠𝛼 + 1)   − 𝐹(𝑡0) 𝑠
𝛼−1 ≤  

𝑄

𝑠
,                         

𝐺(𝑠)(𝑠𝛼 + 1)  <  
𝑄

𝑠
+ 𝑠𝛼−1 𝐹(𝑡0).                                                                            (5.32)   

This implies, 

𝐺(𝑠) <  
𝑠𝛼−1 𝐹(𝑡0) 

(𝑠𝛼 + 1)
+ 

𝑄

𝑠(𝑠𝛼 + 1)
, 
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𝐺(𝑠) <
𝑠𝛼−1 𝐹(𝑡0)

( 𝑠𝛼 +  1)
+  

𝑠𝛼−( 𝛼+1 )

( 𝑠𝛼 +  1)
 𝑄.                                                                        (5.33) 

By taking the inverse Laplace transform and using Eq. (1.8), we have, 

𝐹(𝑡) ≤  𝐹(𝑡0) ℒ
−1 {

𝑠𝛼−1 

( 𝑠𝛼+ 1)
 } + 𝑄 ℒ−1 {

𝑠𝛼−(𝛼+1) 

( 𝑠𝛼+ 1)
 },  

= 𝐹(𝑡0) 𝐸𝛼,1 {−(𝑡 − 𝑡0)
𝛼 } + 𝑄 (𝑡 − 𝑡0)

𝛼 𝐸𝛼,𝛼+1{−(𝑡 − 𝑡0)
𝛼 }.                       (5.34) 

Using   𝐸𝛼,𝛽 {𝑧 } = 𝑧 𝐸𝛼,𝛼+𝛽 {𝑧 } +  
1

Γβ 
, we have 

𝐹(𝑡) ≤ 𝐹(𝑡0)𝐸𝛼,1 {−(𝑡 − 𝑡0)
𝛼 } − 𝑄[ 𝐸𝛼,1 {−(𝑡 − 𝑡0)

𝛼 } − 1 ],                        (5.35) 

= ( 𝐹(𝑡0) − 𝑄 )𝐸𝛼,1 {−(𝑡 − 𝑡0)
𝛼𝛼  } + 𝑄, 

= ( 𝐹(𝑡0) − 𝑄 )𝐸𝛼,1 {−(𝑡 − 𝑡0)
𝛼} + 𝑄.                                                                    (5.36) 

Now as t⟶∞ ,  𝐸𝛼,1 {−(𝑡 − 𝑡0)
𝛼 } ⟶ 0. 

Therefore, all solutions to the given system start in ℝ+
3  lies in the region 

{𝑋 ∈  ℝ+
3  :  𝑋 ≤ 𝑄 + 𝑣,  𝑣 > 0 }. 

 

5.3.4. Equilibrium Points and Conditions for the Existence 
 

First, we define some mathematical representations for Allee’s constant that are going 

to be used for the whole analysis. 

{

𝑚𝑤 = 𝑎𝑟,

𝑚𝑐𝑟 =
𝐾𝑟

4
(1 +  

𝑎

𝐾
)
2

.
                                                                                                 (5.37)                                                            

               

To find equilibrium points of the system (5.2), equate to zero all equations of system 

(5.2), 

𝐷𝛼𝑥 = [( 1 − 
𝑥

𝐾
)  𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] 𝑥 = 0,                                                      (5.38) 

                                                                                         

𝐷𝛼𝑦 = [−𝑐 +
𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
] 𝑦 = 0,                                                                      (5.39) 
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𝐷𝛼𝑧 = [−𝑓 +
𝑔𝑒𝑦

𝑞 + 𝑦
] 𝑧 = 0.                                                                                      (5.40) 

         

                                                       

From Eq. (5.38), either  𝑥 = 0  or ( 1 − 
𝑥

𝐾
)  𝑟 −

𝑚

𝑥+𝑎 
=

𝑏𝑦

𝑥+𝑝
. 

From Eq. (5.39), either  𝑦 = 0 or  
𝑏𝑑𝑥

𝑝+𝑥
−

𝑒𝑧

𝑞+𝑦
= 𝑐. 

From Eq. (5.40), either 𝑧 = 0 or 𝑦 =
𝑓𝑞

(𝑔𝑒−𝑓)
. 

i) One of the obtained solutions is (0,0,0).  

ii) For the next solution, we put 𝑧 = 0, in  
𝑏𝑑𝑥

𝑝+𝑥
−

𝑒𝑧

𝑞+𝑦
= 𝑐, we have 𝑥 =

𝑝𝑐

𝑏𝑑−𝑐
,  and   𝑦 =

 
𝑟𝑝𝑑(𝑏𝑑− (𝑝+1)𝑐)

(𝑏𝑑−𝑐)2
− 

𝑚𝑝𝑑

𝑝𝑐+𝑎(𝑏𝑑−𝑐)
  is obtained by substituting the value of 𝑥 in the 

expression, ( 1 − 
𝑥

𝐾
)  𝑟 −

𝑚

𝑥+𝑎 
=

𝑏𝑦

𝑥+𝑝
. 

iii) For another solution, put  𝑦 = 0, in the equation ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥+𝑎 
−

𝑏𝑦

𝑥+𝑝
= 0. From 

this, we find ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥+𝑎 
= 0, which can be represented as  

𝑥2 

𝐾
 −  𝑥 (1 −

𝑎

𝐾
) + 

𝑚

𝑟
− 𝑎 = 0.                                                                               (5.41) 

                                                              

This equation is the same as Eq. (2.32) in Chapter 2. As we solved this equation in 

Chapter 2, its positive solutions are given by, 

 𝑥1
′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚 ≤  𝑚𝑐𝑟 (See Eq. (5.37)). 

𝑥1
′′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚𝑤  ≤ 𝑚 ≤  𝑚𝑐𝑟(See Eq. (5.37)). 
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iv) For the next solution, substitute 𝑦 =
𝑓𝑞

(𝑔𝑒−𝑓)
, in the expression ( 1 − 

𝑥

𝐾
) 𝑟 −

𝑚

𝑥+𝑎 
=

𝑏𝑦

𝑥+𝑝
,  to find the value of  𝑥. Then, to evaluate 𝑧,  substitute the obtained nonnegative 

value of  𝑥 and 𝑦   in the expression 
𝑏𝑑𝑥

𝑝+𝑥
−

𝑒𝑧

𝑞+𝑦
= 𝑐. 

Therefore, the equilibrium points along with the prerequisites for their existence are as 

follows: 

1. E0(0,0,0), without any condition. 

2. E1(𝑥1
′ , 0,0),  𝑥1

′ = 
𝐾

2
  [(1 − 

𝑎

𝐾
) + √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚 ≤  𝑚𝑐𝑟  

(See Eq. (5.37)). 

3. E1
′ (𝑥1

′′, 0,0), 𝑥1
′′ = 

𝐾

2
[(1 − 

𝑎

𝐾
) − √(1 + 

𝑎

𝐾
)
2

− 
4𝑚

𝐾𝑟
 ], provided 𝑚𝑤  ≤

𝑚 ≤  𝑚𝑐𝑟 (See Eq. (5.37)). 

4. E2(𝑥2, 𝑦2. 0), where 𝑥2 = 
𝑝𝑐

𝑏𝑑−𝑐
 , 𝑦2 =

(𝑥2+𝑏)

𝑏
[𝑟 ( 1 − 

𝑥2

𝐾
) −

𝑚

𝑥2+𝑎 
], provided 

𝑏𝑑 − 𝑐 > 0,𝑚 < 𝑟 (𝑎 +
𝑝𝑐

𝑏𝑑−𝑐
) (1 −

𝑝𝑐

𝐾(𝑏𝑑−𝑐)
) , 𝑏𝑑𝐾 > (𝐾 + 𝑝)𝑐. 

5. E3(𝑥3, 𝑦3, 𝑧3), where 𝑦3 = 
𝑓𝑞

(𝑔𝑒−𝑓)
, 𝑥3 is the solution of the equation 

𝑓𝑞

(𝑔𝑒−𝑓)
= [ 𝑟 ( 1 − 

𝑥3

𝐾
) −

𝑚

𝑥3+𝑎 
] (1 +

𝑥3

𝑏
),  𝑧3 = (

𝑞+𝑦3

𝑒
) [

𝑏𝑑𝑥3

(𝑝+𝑥3)
− 𝑐],  

         provided 𝑚 < 𝑎 (𝑟 −
𝑓𝑞

𝑔𝑒−𝑓
) , (𝑏𝑑 − 𝑐) 𝑥3 > 𝑝𝑐, 𝑔𝑒 − 𝑓 > 0. 

 

5.3.5. Examination of the Equilibrium Points for Local Asymptotic Stability 

 

Representing the given system of equations as follows, 

𝐷𝛼𝑥 = 𝑥 [ 𝑟 ( 1 − 
𝑥

𝐾
) −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] = 𝑓1(𝑥, 𝑦, 𝑧). 

𝐷𝛼𝑦 = 𝑦 [−𝑐 +
𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
] = 𝑓2(𝑥, 𝑦, 𝑧). 

𝐷𝛼𝑧 = 𝑧 [−𝑓 +
𝑔𝑒𝑦

𝑞 + 𝑦
] = 𝑓3(𝑥, 𝑦, 𝑧). 
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𝜕𝑓1
𝜕𝑥

= 𝑟 − 
2𝑟𝑥

𝐾
− 

𝑚𝑎

(𝑥 + 𝑎)2
− 

𝑏𝑝𝑦

(𝑝 + 𝑥)2
;   
𝜕𝑓1
𝜕𝑦

= − 
𝑏𝑥

(𝑝 + 𝑥)
;  
𝜕𝑓1
𝜕𝑧

= 0; 

𝜕𝑓2
𝜕𝑥

=  
𝑏𝑑𝑝𝑦

(𝑝 + 𝑥)2
;   
𝜕𝑓2
𝜕𝑦

=  −𝑐 + 
𝑏𝑑𝑥

(𝑝 + 𝑥)
− 

𝑒𝑞𝑧

(𝑞 + 𝑦)2
;   
𝜕𝑓2
𝜕𝑧

= −
𝑒𝑦

(𝑞 + 𝑦)
;  

𝜕𝑓3
𝜕𝑥

= 0; 
𝜕𝑓3
𝜕𝑦

=
𝑔𝑒𝑞𝑧

(𝑞 + 𝑦)2
 ;  
𝜕𝑓3
𝜕𝑧

= −𝑓 +
𝑔𝑒𝑦

(𝑞 + 𝑦)
 . 

𝕁 ( 𝑓1, 𝑓2, 𝑓3) =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑧

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑧 ]
 
 
 
 
 
 

, 

=

[
 
 
 
 
 
 𝑟 − 

2𝑟𝑥

𝐾
− 

𝑚𝑎

(𝑥 + 𝑎)2
− 

𝑏𝑝𝑦

(𝑝 + 𝑥)2
− 

𝑏𝑥

(𝑝 + 𝑥)
0

𝑏𝑑𝑝𝑦

(𝑝 + 𝑥)2
−𝑐 + 

𝑏𝑑𝑥

(𝑝 + 𝑥)
− 

𝑒𝑞𝑧

(𝑞 + 𝑦)2
−

𝑒𝑦

(𝑞 + 𝑦)

0
𝑔𝑒𝑞𝑧

(𝑞 + 𝑦)2
−𝑓 +

𝑔𝑒𝑦

(𝑞 + 𝑦)]
 
 
 
 
 
 

.  

                                                                                                                           (5.42) 

Theorem 5.4 The condition 𝑚 > 𝑚𝑤 (See Eq. (5.37)), ensures the local asymptotic 

stability of the extinction point E0(0,0,0). 

Proof: Substituting the point E0(0,0,0) in 𝕁 ( 𝑓1, 𝑓2, 𝑓3), the value of the Jacobian 

matrix is given as, 

𝕁 ( 0,0,0) = [
𝑟 − 

𝑚

𝑎
0 0

0 −𝑐 0
0 0 −𝑓

] (See Eq. (5.42)). 

. 

Its eigenvalues are given by  𝜆1 = 𝑟 − 
𝑚

𝑎
, 𝜆2 = −𝑐, 𝜆3 = −𝑓. The | arg (𝜆𝑖)| > απ /2 

requires that all eigenvalues should be negative. Therefore, 𝑟 − 
𝑚

𝑎
< 0. This gives 𝑚 >

𝑎𝑟 = 𝑚𝑤. Hence the proof. 
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Theorem 5.5 The equilibrium point E1(𝑥1
′ , 0,0) will be asymptotically stable, provided 

0 < 𝑚 < 𝑚𝑤 (See Eq. (5.42)), and 𝑥1
′ < 

𝑝𝑐

𝑏𝑑−𝑐
. 

Proof: Substituting the point E1(𝑥1
′ , 0,0) in 𝕁 ( 𝑓1, 𝑓2, 𝑓3), the value of the Jacobian 

matrix obtained as, 

𝕁 (𝑥1
′ , 0,0) =

[
 
 
 
 
 𝑟 − 

2𝑟𝑥1
′

𝐾
− 

𝑚𝑎

(𝑥1
′ + 𝑎)2

− 
𝑏𝑥1

′

(𝑝 + 𝑥1
′)

0

0 −𝑐 + 
𝑏𝑑𝑥1

′

(𝑝 + 𝑥1
′)

0

0 0 −𝑓]
 
 
 
 
 

 (See Eq. (5.42)) . 

 

Its eigenvalues are given by, 𝜆1 =  𝑟 − 
2𝑟𝑥1

′

𝐾
− 

𝑚𝑎

(𝑥1
′+𝑎)

2,  𝜆2 = −𝑐 + 
𝑏𝑑𝑥1

′

(𝑝+𝑥1
′)
,  𝜆3 =

−𝑓 < 0. |arg (𝜆𝑖)| > απ /2 requires 𝜆𝑖 < 0, 𝑖 = 1,2,3. Now  𝜆1 < 0, gives 𝑟 − 
2𝑟𝑥1

′

𝐾
−

 
𝑚𝑎

(𝑥1
′+𝑎)

2 < 0. Solving this inequality as in Theorem 2.6, we found that  0 < 𝑚 < 𝑚𝑤 

(See Eq. (5.37)). By taking  𝜆2 < 0, we have 
𝑏𝑑𝑥1

′

(𝑝+𝑥1
′)
< 𝑐. This implies that  𝑥1

′ < 
𝑝𝑐

𝑏𝑑−𝑐
.  

Hence the proof. 

 

Theorem 5.6 The axial equilibria E1
′ (𝑥1

′′, 0,0) is always unstable. 

Proof. Substituting the point E1
′ (𝑥1

′′, 0,0)  in 𝕁 ( 𝑓1, 𝑓2, 𝑓3), the value of the Jacobian 

matrix is given as, 

𝕁 (𝑥1
′′, 0,0) =

[
 
 
 
 
 𝑟 − 

2𝑟𝑥1
′′

𝐾
− 

𝑚𝑎

(𝑥1
′′ + 𝑎)2

− 
𝑏𝑥1

′′

(𝑝 + 𝑥1
′′)

0

0 −𝑐 + 
𝑏𝑑𝑥1

′′

(𝑝 + 𝑥1
′′)

0

0 0 −𝑓]
 
 
 
 
 

 (See Eq. (5.42)) . 

 Its eigenvalues are given by, 𝜆1 =  𝑟 − 
2𝑟𝑥1

′′

𝐾
− 

𝑚𝑎

(𝑥1
′′+𝑎)

2, 𝜆2 = −𝑐 + 
𝑏𝑑𝑥1

′′

(𝑝+𝑥1
′′)
,  𝜆3 =

−𝑓 < 0. |arg (𝜆𝑖)| > απ /2 requires 𝜆𝑖 < 0, 𝑖 = 1,2,3. Now  𝜆1 < 0, gives 𝑟 − 
2𝑟𝑥1

′′

𝐾
−

 
𝑚𝑎

(𝑥1
′′+𝑎)

2 < 0. Solving this inequality as in Theorem 2.7, in Chapter 2, we found that  
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0 < 𝑚 < 𝑚𝑤 (See Eq. (5.37)). This is contrary to the existence condition of the point 

E1
′ (𝑥1

′′, 0,0). Therefore, the proof is accomplished. 

 

Theorem 5.7 The planar equilibria E2(𝑥2, 𝑦2, 0) will be locally asymptotically stable if 

𝑓 >
𝑔𝑒𝑦2

(𝑞+𝑦2)
, and any of the conditions given below are satisfied: 

i. 𝜑1
2 − 4𝜑2 ≥ 0,𝜑1 < 0. 

ii. 𝜑1
2 − 4𝜑2 < 0, 𝜑1 < 0. 

iii. 𝜑1
2 − 4𝜑2 < 0, 𝜑1 > 0, 0 < 𝛼 <  

2

𝜋
tan−1 |

√4 𝜑2−𝜑1
2

𝜑1
|. 

Where  𝜑1 and 𝜑2 are described in the proof. 

Proof. Substituting the point E2(𝑥2, 𝑦2, 0)  in 𝕁 ( 𝑓1, 𝑓2, 𝑓3), the value of the Jacobian 

matrix is given as, 

 

𝕁 ( 𝑥2, 𝑦2, 0)

=

[
 
 
 
 
 
 𝑟 − 

2𝑟𝑥2
𝐾

− 
𝑚𝑎

(𝑥2 + 𝑎)2
− 

𝑏𝑝𝑦2
(𝑝 + 𝑥2)2

− 
𝑏𝑥2

(𝑝 + 𝑥2)
0

𝑏𝑑𝑝𝑦2
(𝑝 + 𝑥2)2

−𝑐 + 
𝑏𝑑𝑥2

(𝑝 + 𝑥2)
−

𝑒𝑦2
(𝑞 + 𝑦2)

0 0 −𝑓 +
𝑔𝑒𝑦2

(𝑞 + 𝑦2)]
 
 
 
 
 
 

. 

                                             

The characteristic equation is given as, 

(𝜆2 − 𝜑1𝜆 + 𝜑2) (𝜆 + 𝑓 −
𝑔𝑒𝑦2
(𝑠 + 𝑦2)

) = 0. 

Where,  

𝜑1 = 𝑟 − 
2𝑟𝑥2
𝐾

− 
𝑚𝑎

(𝑥2 + 𝑎)2
− 

𝑏𝑝𝑦2
(𝑝 + 𝑥2)2

− 𝑐 + 
𝑏𝑑𝑥2

(𝑝 + 𝑥2)
,  

𝜑2 = (𝑟 − 
2𝑟𝑥2
𝐾

− 
𝑚𝑎

(𝑥2 + 𝑎)2
− 

𝑏𝑝𝑦2
(𝑝 + 𝑥2)2

) (−𝑐 + 
𝑏𝑑𝑥2

(𝑝 + 𝑥2)
)

+ (
𝑏𝑥2

(𝑝 + 𝑥2)
) (

𝑏𝑑𝑝𝑦2
(𝑝 + 𝑥2)2

)  

Its eigenvalues are given by, 
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𝜆1 = 
𝑔𝑒𝑦2

(𝑞 + 𝑦2)
− 𝑓, 𝜆2,3 = 

𝜑1 ±√𝜑1
2 − 4𝜑2
2

. 

One of the conditions to be satisfied by the equilibrium point (𝑥2, 𝑦2, 0) to be 

asymptotically stable is  𝜆1 < 0, which implies  𝑓 >
𝑔𝑒𝑦2

(𝑞+𝑦2)
.  

Case 1. If 𝜑1
2 − 4𝜑2 ≥ 0,𝜑1 < 0 

Then, both eigenvalues given by 𝜆2,3 are negative but real, which gives  

|arg (𝜆2,3)| =  𝜋 >  𝛼 
𝜋

2
. Therefore, the equilibrium point will be stable. 

Case 2. If 𝜑1
2 − 4𝜑2 < 0,𝜑1 < 0  

Here, both eigenvalues will be complex conjugates of each other with negative real 

parts. Therefore, 

|arg(𝜆2,3)| =  |−𝜋 + tan
−1 (

√4 𝜑2 − 𝜑1
2

𝜑1
) | 

= | 𝜋 − tan−1 (
√4 𝜑2 − 𝜑1

2

𝜑1
) | >  𝛼 

𝜋

2
. 

Hence, stability of the equilibrium point is established. 

Case 3. If 𝜑1
2 − 4𝜑2 < 0, 𝜑1 > 0, 0 < 𝛼 <  

2

𝜋
tan−1 |

√4 𝜑2−𝜑1
2

𝜑1
|. 

Here stability criterion is automatically satisfied. 

 

Theorem 5.8 The equilibrium point E3(𝑥3, 𝑦3, 𝑧3) will be stable iff one of the 

conditions given below is satisfied: 

1. Θ(𝑃) > 0, 𝛽1 > 0, 𝛽3 > 0, 𝛽1𝛽2 > 𝛽3. 

2. Θ(𝑃) < 0, 𝛽1 ≥ 0, 𝛽2 ≥ 0, 𝛽3 > 0, 𝛼 <
2

3
. 

3. Θ(𝑃) < 0, 𝛽1 > 0, 𝛽2 > 0, 𝛽1𝛽2 > 𝛽3, 𝛼 ∈ (0,1).  

Where, 𝛽1, 𝛽2, 𝛽3, and Θ(𝑃) are defined below. 

Proof: The Jacobian matrix at point E3(𝑥3, 𝑦3, 𝑧3) is given as,  
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 𝕁 (𝑥3, 𝑦3, 𝑧3)

=

[
 
 
 
 
 
 𝑟 − 

2𝑟𝑥3
𝐾

− 
𝑚𝑎

(𝑥3 + 𝑎)2
− 

𝑏𝑝𝑦3
(𝑝 + 𝑥3)2

− 
𝑏𝑥3

(𝑝 + 𝑥3)
0

𝑏𝑑𝑝𝑦3
(𝑝 + 𝑥3)2

−𝑐 + 
𝑏𝑑𝑥3

(𝑝 + 𝑥3)
− 

𝑒𝑠𝑧3
(𝑞 + 𝑦)2

−
𝑒𝑦3

(𝑞 + 𝑦3)

0
𝑔𝑒𝑠𝑧3

(𝑞 + 𝑦3)2
−𝑓 +

𝑔𝑒𝑦3
(𝑞 + 𝑦3)]

 
 
 
 
 
 

, 

= [
𝛼11 𝛼12 0
𝛼21 𝛼22 𝛼23
0 𝛼32 𝛼33

] (See Eq. (5.42)) . 

 

𝛼11 = 𝑟 − 
2𝑟𝑥3
𝐾

− 
𝑚𝑎

(𝑥3 + 𝑎)
2
− 

𝑏𝑝𝑦3
(𝑝 + 𝑥3)

2
, 𝛼12 = − 

𝑏𝑥3
(𝑝 + 𝑥3)

, 

𝛼21 =
𝑏𝑑𝑝𝑦3
(𝑝 + 𝑥3)

2
, 𝛼22 = −𝑐 + 

𝑏𝑑𝑥3
(𝑝 + 𝑥3)

− 
𝑒𝑞𝑧3

(𝑞 + 𝑦3)
2
, 

 𝛼23 = −
𝑒𝑦3

(𝑞 + 𝑦3)
, 𝛼33 = −𝑓 +

𝑔𝑒𝑦3
(𝑞 + 𝑦3)

, 𝛼32 =
𝑔𝑒𝑞𝑧3

(𝑞 + 𝑦3)
2
 . 

 

Therefore, writing the characteristic equation of 𝕁 (𝑥3, 𝑦3, 𝑧3) as, 

𝜆3 + 𝛽1𝜆
2 + 𝛽2𝜆 + 𝛽3 = 0.                                                                                       (5.43) 

                                              

𝛽1 = − (𝛼11 + 𝛼22 + 𝛼33),                                                                                      (5.44) 

        

𝛽2 = (𝛼11𝛼22 + 𝛼22𝛼33 + 𝛼33𝛼11 − 𝛼12𝛼21 − 𝛼23𝛼32),                                   (5.45) 

    

𝛽3 = (𝛼11𝛼23𝛼32 + 𝛼12𝛼21𝛼33 − 𝛼11𝛼22𝛼33),                                                     (5.46) 

     

Θ(𝑃) = 18 𝛽1𝛽2𝛽3  +  (𝛽1𝛽2)
2  −  4𝛽1

2𝛽3  −  4𝛽2
2  −  27𝛽3

2.                                (5.47) 

                                                                                                           

Now, by using the Routh–Hurwitz conditions, the equilibrium point (𝑥3, 𝑦3, 𝑧3) will be 

stable iff one of the conditions given below is satisfied; 

1. Θ(𝑃) > 0, 𝛽1 > 0, 𝛽3 > 0, 𝛽1𝛽2 > 𝛽3.                         

2. Θ(𝑃) < 0, 𝛽1 ≥ 0, 𝛽2 ≥ 0, 𝛽3 > 0, 𝛼 <
2

3
.                          
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3. Θ(𝑃) < 0, 𝛽1 > 0, 𝛽2 > 0, 𝛽1𝛽2 = 𝛽3, 𝛼 ∈ (0,1).                                         (5.48) 

           

 

5.3.6. Examination of the Equilibrium Points for Global Stability 

 

Theorem 5.9 If 𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥3

𝐾
−

𝑏𝑦3

𝕄+𝑝
< 0,

𝑏𝑥3

𝑝
−

𝑐

𝑑
−

𝑒𝑧3

𝑑(𝑞+𝕄)
< 0, 

𝑒𝑦3

𝑑𝑞
−

𝑓

𝑑𝑔
< 0, and 

𝑚𝑥3

𝑎
− 𝑟𝑥3 +

𝑐𝑦3

𝑑
+ 

𝑓𝑧3

𝑔𝑑
< 0, the equilibrium point E3(𝑥3, 𝑦3, 𝑧3) is globally stable, 

where the max {|𝑥|, |𝑦|, |𝑧|} ≤ 𝕄. 

Proof: Consider the positive definite function 

𝑉( 𝑥, 𝑦, 𝑧) = ( 𝑥 − 𝑥3 − 𝑥3 ln
𝑥

𝑥3
 ) +

1

𝑑
( 𝑦 − 𝑦3 − 𝑦3 ln

𝑦

𝑦3
 )

+
1

𝑔𝑑
(𝑧 − 𝑧3 − 𝑧3 ln

𝑧

𝑧3
).                                                                 (5.49) 

                                                                                                   

𝐷𝛼𝑉( 𝑥, 𝑦, 𝑧) = 𝐷𝛼 [( 𝑥 − 𝑥3 − 𝑥3 ln
𝑥

𝑥3
 ) +

1

𝑑
( 𝑦 − 𝑦3 − 𝑦3 ln

𝑦

𝑦3
 )

+
1

𝑔𝑑
(𝑧 − 𝑧3 − 𝑧3 ln

𝑧

𝑧3
)], 

= 𝐷𝛼 ( 𝑥 − 𝑥3 − 𝑥3 ln
𝑥

𝑥3
 ) +

1

𝑑
𝐷𝛼 ( 𝑦 − 𝑦3 − 𝑦3 ln

𝑦

𝑦3
 ) +

1

𝑔𝑑
𝐷𝛼 (𝑧 − 𝑧3 − 𝑧3 ln

𝑧

𝑧3
) 

, 

≤ ( 
𝑥 − 𝑥3
𝑥

 )𝐷𝛼𝑥 + 
1

𝑑
 ( 
𝑦 − 𝑦3
𝑦

 )𝐷𝛼𝑦 +
1

𝑔𝑑
( 
𝑧 − 𝑧3
𝑧

 ) 𝐷𝛼𝑧,                             (5.50) 

                                                                                           

= (𝑥 − 𝑥3) [ ( 1 − 
𝑥

𝐾
) 𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] + 

(𝑦 − 𝑦3)

𝑑
 (−𝑐 +

𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
)

+
(𝑧 − 𝑧3)

𝑔𝑑
[−𝑓 +

𝑔𝑒𝑦

𝑞 + 𝑦
], 

= 𝑥𝑟 −
𝑟𝑥2

𝐾
− 

𝑚𝑥

𝑥 + 𝑎
− 𝑟𝑥3 + 

𝑟𝑥𝑥3
𝐾

+
𝑚𝑥3
𝑥 + 𝑎

+
𝑏𝑥3𝑦

𝑥 + 𝑝
−
𝑐𝑦

𝑑
+
𝑐𝑦3
𝑑
− 
𝑏𝑥𝑦3
𝑝 + 𝑥

+
𝑒𝑦3𝑧

𝑑(𝑞 + 𝑦)
− 
𝑓𝑧

𝑑𝑔
+ 
𝑓𝑧3
𝑔𝑑

−
𝑒𝑦𝑧3

𝑑(𝑞 + 𝑦)
, 
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≤ 𝑥 (𝑟 −
𝑚

𝕄+ 𝑎
+
𝑟𝑥3
𝐾
−

𝑏𝑦3
𝕄+ 𝑝

) + 𝑦 (
𝑏𝑥3
𝑝
−
𝑐

𝑑
−

𝑒𝑧3
𝑑(𝑞 +𝕄)

) + 𝑧 (
𝑒𝑦3
𝑑𝑞

−
𝑓

𝑑𝑔
)

+
𝑚𝑥3
𝑎

− 𝑟𝑥3 +
𝑐𝑦3
𝑑
+ 
𝑓𝑧3
𝑔𝑑

≤ 0,                                                     (5.51) 

if 𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥3

𝐾
−

𝑏𝑦3

𝕄+𝑝
< 0,  

𝑏𝑥3

𝑝
−

𝑐

𝑑
−

𝑒𝑧3

𝑑(𝑞+𝕄)
< 0, 

𝑒𝑦3

𝑑𝑞
−

𝑓

𝑑𝑔
< 0, 

𝑚𝑥3

𝑎
− 𝑟𝑥3 +

𝑐𝑦3

𝑑
+

 
𝑓𝑧3

𝑔𝑑
< 0, then 𝑉 becomes the Lyapunov function, the equilibrium point E3(𝑥3, 𝑦3, 𝑧3) 

become globally stable.  

Theorem 5.10 If 𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥2

𝐾
−

𝑏𝑦2

𝕄+𝑝
< 0,

𝑏𝑥2

𝑝
−

𝑐

𝑑
< 0, 

𝑒𝑦2

𝑑𝑞
−

𝑓

𝑑𝑔
< 0, and 

𝑐𝑦2

𝑑
−

𝑟𝑥2 +
𝑚𝑥2

𝑎
< 0, the equilibrium point E2(𝑥2, 𝑦2. 0) is globally stable, where the max 

{|𝑥|, |𝑦|, |𝑧|} ≤ 𝕄. 

Proof. Consider a positive definite function 

𝑉′( 𝑥,𝑦,𝑧) = ( 𝑥 − 𝑥2 − 𝑥2 ln
𝑥

𝑥2
 ) +

1

𝑑
( 𝑦 − 𝑦2 − 𝑦2 ln

𝑦

𝑦2
 ) +

𝑧

𝑔𝑑
.                     (5.52) 

                                                                                                                   

𝐷𝛼𝑉′( 𝑥, 𝑦, 𝑧) = 𝐷𝛼 [( 𝑥 − 𝑥2 − 𝑥2 ln
𝑥

𝑥2
 ) +

1

𝑑
( 𝑦 − 𝑦2 − 𝑦2 ln

𝑦

𝑦2
 ) +

𝑧

𝑔𝑑
], 

= 𝐷𝛼 ( 𝑥 − 𝑥2 − 𝑥2 ln
𝑥

𝑥2
 ) +

1

𝑑
𝐷𝛼 ( 𝑦 − 𝑦2 − 𝑦2 ln

𝑦

𝑦2
 ) +

1

𝑔𝑑
𝐷𝛼𝑧, 

≤ ( 
𝑥 − 𝑥2
𝑥

 )𝐷𝛼𝑥 + 
1

𝑑
 ( 
𝑦 − 𝑦2
𝑦

 )𝐷𝛼𝑦 +
1

𝑔𝑑
𝐷𝛼𝑧,                                                (5.53) 

                                                                                      

= (𝑥 − 𝑥2) [( 1 − 
𝑥

𝐾
)  𝑟 −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] + 

(𝑦 − 𝑦2)

𝑑
 (−𝑐 +

𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
)

+
𝑧

𝑔𝑑
[−𝑓 +

𝑔𝑒𝑦

𝑞 + 𝑦
], 

= 𝑥𝑟 −
𝑟𝑥2

𝐾
− 

𝑚𝑥

𝑥 + 𝑎
− 𝑟𝑥2 + 

𝑟𝑥𝑥2
𝐾

+
𝑚𝑥2
𝑥 + 𝑎

+
𝑏𝑥2𝑦

𝑥 + 𝑝
−
𝑐𝑦

𝑑
+  

𝑐𝑦2
𝑑
− 
𝑏𝑥𝑦2
𝑝 + 𝑥

+
𝑒𝑦2𝑧

𝑑(𝑞 + 𝑦)
− 
𝑓𝑧

𝑑𝑔
, 
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≤ 𝑥 (𝑟 −
𝑚

𝕄+ 𝑎
+
𝑟𝑥2
𝐾
−

𝑏𝑦2
𝕄+ 𝑝

) + 𝑦 (
𝑏𝑥2
𝑝
−
𝑐

𝑑
) + 𝑧 (

𝑒𝑦2
𝑑𝑞

−
𝑓

𝑑𝑔
) +  

𝑐𝑦2
𝑑
− 𝑟𝑥2

+
𝑚𝑥2
𝑎

≤ 0,                                                                                          (5.54) 

if 𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥2

𝐾
−

𝑏𝑦2

𝕄+𝑝
≤ 0,  

𝑏𝑥2

𝑝
−

𝑐

𝑑
≤ 0, 

𝑒𝑦2

𝑑𝑞
−

𝑓

𝑑𝑔
≤ 0, 

𝑐𝑦2

𝑑
− 𝑟𝑥2 +

𝑚𝑥2

𝑎
≤ 0, then 𝑉′ 

becomes the Lyapunov function, the equilibrium point E2(𝑥2, 𝑦2. 0) become globally 

stable.  

Theorem 5.11 If  𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥1

𝐾
< 0,

𝑏𝑥1

𝑝
−

𝑐

𝑑
< 0, and 𝑚 < 𝑎𝑟, the equilibrium point 

E1(𝑥1, 0, 0) will be globally stable, where the max {|𝑥|, |𝑦|, |𝑧|} ≤ 𝕄. 

Proof. Consider a positive definite function 

𝑉"( 𝑥, 𝑦, 𝑧) = ( 𝑥 − 𝑥1 − 𝑥1 ln
𝑥

𝑥1
 ) +

𝑦

𝑑
+
𝑧

𝑔𝑑
.                                                      (5.55) 

                                                                               

𝐷𝛼𝑉"( 𝑥, 𝑦, 𝑧) = 𝐷𝛼 [( 𝑥 − 𝑥1 − 𝑥1 ln
𝑥

𝑥1
 ) +

𝑦

𝑑
+
𝑧

𝑔𝑑
], 

≤ ( 
𝑥 − 𝑥1
𝑥

 )𝐷𝛼𝑥 + 
1

𝑑
 𝐷𝛼𝑦 +

1

𝑔𝑑
𝐷𝛼𝑧,                                                                   (5.56) 

                                                                  

= (𝑥 − 𝑥1) [ 𝑟 ( 1 − 
𝑥

𝐾
) −

𝑚

𝑥 + 𝑎 
−

𝑏𝑦

𝑥 + 𝑝
] +

𝑦

𝑑
[−𝑐 +

𝑏𝑑𝑥

𝑝 + 𝑥
−

𝑒𝑧

𝑞 + 𝑦
]

+
𝑧

𝑔𝑑
[−𝑓 +

𝑔𝑒𝑦

𝑞 + 𝑦
], 

= 𝑥𝑟 −
𝑟𝑥2

𝐾
− 

𝑚𝑥

𝑥 + 𝑎
− 𝑟𝑥1 + 

𝑟𝑥𝑥1
𝐾

+
𝑚𝑥1
𝑥 + 𝑎

+
𝑏𝑥1𝑦

𝑥 + 𝑝
−
𝑦𝑐

𝑑
−
𝑧𝑓

𝑔𝑑
, 

≤ 𝑥 (𝑟 −
𝑚

𝕄+ 𝑎
+
𝑟𝑥1
𝐾
) + 𝑦 (

𝑏𝑥1
𝑝
−
𝑐

𝑑
) −

𝑧𝑓

𝑔𝑑
+
𝑚𝑥1
𝑎

− 𝑟𝑥1 ≤ 0,                    (5.57) 

if 𝑟 −
𝑚

𝕄+𝑎
+
𝑟𝑥1

𝐾
< 0,  

𝑏𝑥1

𝑝
−

𝑐

𝑑
< 0, 𝑚 < 𝑎𝑟, then 𝑉" becomes the Lyapunov function 

and equilibrium point E1(𝑥1, 0,0) become globally stable. 
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5.4 Numerical Analysis 

Table 5.1:  Table for Values of Parameters Used for Numerical Simulations  

 

Parameters Values in 

Case 1 

Values in 

Case 2 

Values in 

Case 3 

Sources 

𝐾 1 1 1 [154] 

𝑟 0.5 0.5 0.5 [154] 

𝑎 0.3 0.3 0.3 Assumed 

𝑚 0 0.1 0.16 Assumed 

𝑏 0.5 0.5 0.5 [154] 

𝑐 0.01 0.01 0.01 [50]  

𝑝 0.5 0.5 0.5 [58] 

𝑑 0.9 0.9 0.9 Assumed 

𝑔 0.8 0.8 0.8 Assumed 

𝑒 0.16 0.16 0.16 Assumed 

𝑓 0.025 0.025 0.025 Assumed 

𝑞 0.9 0.9 0.9 Assumed 

 

The values obtained for Allee’s constant are as follows, 

𝑚𝑤 = 0.15,   𝑚𝑐𝑟 = 0.21 (see Eq. 5.37) 

Case 1. When Allee’s constant  𝑚 = 0 

To analyze the system without the Allee effect, we select  𝑚 = 0. Solving food chain 

system the value of the coexistence point obtained is E3 (0.84,0.22,1.9). To check the 

stability of the equilibria E3, the various values are as follows (see Theorem 5.8). 

𝛽1 = 0.263 > 0, 𝛽2 = 0.034 > 0, 𝛽3 = 0.001 > 0,

Θ(𝑃) =  −0.005 < 0, 𝛽1𝛽2 > 𝛽3. 

Therefore, by Theorem 5.8, the stability conditions of the coexistence point are satisfied 

for 𝛼 ∈ (0,1). Figures 5.1 and 5.2 are drawn by taking the fractional order from 0.8 and 
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0.85; it is observed that populations stabilize after small oscillations. However, for 

Figures 5.3 and 5.4, on increasing the fractional order to 0.9 and 0.95, respectively, the 

size of the oscillations increases. Figure 5.5 is plotted by taking the integer order model, 

and populations show the chaotic behavior in the traditional model.  
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Figure 5.1 Stability analysis of the coexistence point (0.84,0.22,1.9) in fractional model of order 0.8 

without Allee effect 
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Figure 5.3 Stability analysis of the coexistence point (0.84,0.22,1.9) in fractional model of order 

0.9 without Allee effect 

Figure 5.2 Stability analysis of the coexistence point (0.84,0.22,1.9) in fractional model of order 0.85 

without Allee effect 
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Figure 5.4 Stability analysis of the coexistence point (0.84,0.22,1.9) in fractional model of order 

0.95 without Allee effect 
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Figure 5.5 Stability analysis of the coexistence point (0.84,0.22,1.9) in integer model without 

Allee effect 
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Case 2. When Allee’s constant  0 < 𝑚 < 𝑚𝑤 

By selecting Allee’s constant 𝑚 = 0.1, the prey are exposed to a weak Allee effect, and 

solving the food chain system, the equilibrium point obtained is (0.58,0.22,1.68). It is 

observed that when prey are exposed to a weak Allee effect, the population density of 

the prey population as well as that of the top predator decreases, whereas the population 

density of the intermediate predator increases. The various values according to 

Theorem 5.8, to check the stability of the equilibria, are as follows. 

𝛽1 = 0.1246 > 0, 𝛽2 = 0.0088 > 0, 𝛽3 = 0.0008 > 0,

Θ(𝑃) =  −0.0008 < 0, 𝛽1𝛽2 > 𝛽3. 

Therefore, stability conditions of the coexistence point are satisfied in 𝛼 ∈ (0,1) (see 

Theorem 5.8). To check the stability of populations in a fractional order model and 

integer order models, simulations are run by taking different values of fractional orders 

and integer orders equal to one. Figure 5.6 is plotted, and it is observed that populations 

are stabilizing at the (0.56,0.22,1.68) in all models. Therefore, it is found that when the 

prey population was not experiencing the Allee effect, populations failed to coexist 

whenever fractional order takes values greater than 0.85, but exposure to weak Allee 

effect of prey population is helpful for all populations to coexist in each model. 
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Figure 5.6 Stability analysis of the populations in different models when prey is subjected to the 

weak Allee effect 
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Case 3. When Allee’s constant  𝑚𝑤 < 𝑚 < 𝑚𝑐𝑟 

By changing 𝑚 = 0.1 to 0.16, the prey are exposed to a strong Allee effect. Here  

𝑚 = 0.16 > 𝑎 (𝑟 −
𝑓𝑞

𝑔𝑒 − 𝑓
) = 0.0845, 

𝑚 = 0.16 > 𝑟 (𝑎 +
𝑝𝑐

𝑏𝑑 − 𝑐
) (1 −

𝑝𝑐

𝐾(𝑏𝑑 − 𝑐)
) = 0.154. 

Therefore, from section 5.3.4, the only possible solution is E1(𝑥1
′ , 0,0) =

(0.67,0,0).  But by Theorem 5.5, the stability conditions of this solution are not 

satisfied. Moreover, by Theorem 5.4, the stability conditions of the extinction point are 

satisfied. By taking the initial population as (0.9,0.2,1.5), simulations are run in 

different fractional order models and integer order models. Figure 5.7 is plotted, and it 

is found that all populations are moving toward extinction. However, the lower 

fractional order models are slow, showing that coexistence is possible even if the prey 

population is experiencing critical depensation (Strong Allee effect). 
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Figure 5.7 Stability analysis of the populations in different models when prey are exposed                             

to strong Allee effect 
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Table 5.2: Table for Values of Parameters Used for Numerical Simulations  

 

Parameters Values  Sources 

𝐾 1 [154] 

𝑟 0.5 [154] 

𝑎 0.3 Assumed 

𝑚 0.1 Assumed 

𝑏 0.5 [154] 

𝑐 0.05 Assumed  

𝑝 0.5 [58] 

𝑑 0.9 Assumed 

𝑔 0.5 Assumed 

𝑒 0.2 Assumed 

𝑓 0.03 Assumed 

𝑞 0.9 Assumed 

 

The values obtained for Allee’s constant are as follows, 

𝑚𝑤 = 0.15,    𝑚𝑐𝑟 = 0.21  (see Eq. 5.37) 

In this example, the prey population is under a weak Allee effect as 𝑚 < 𝑚𝑤 and 

natural decay rate of intermediate predator is increased from 0.01 to 0.05 and of the top 

predator from 0.025 to 0.03, the rate of predation of the top predator is also increased 

from 0.16 to 0.2 and the conversion efficiency of the top predator is decreased from 0.8 

to 0.5. It is observed that top predators move towards extinction, as the solution of the 

model comes out to be top predator-free as equilibrium point (0.0625,0.217,0). The 

various values to check the stability of the equilibria according to Theorem 5.7 are as 

follows. 
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𝑓 = 0.03,
𝑔𝑒𝑦2

(𝑞 + 𝑦2)
= 0.016,  𝜑1 = 0.0377 > 0, 𝜑2 = 0.0086.   

  Clearly  

𝑓 >   
𝑔𝑒𝑦2

(𝑞 + 𝑦2)
, 𝜑1

2 − 4𝜑2 = −0.033 < 0, 𝛼 =  
2

𝜋
tan−1 |

√4 𝜑2 − 𝜑1
2

𝜑1
| = 0.87.  

Therefore, by Theorem 5.7 stability conditions of the obtained equilibrium point are 

satisfied whenever 𝛼 < 0.87. By taking the initial population as (0.4,0.4,1.2), 

simulations are run in different models. Figure 5.8 is plotted in various models and it is 

found that prey and intermediate predator populations show stability around 

equilibrium point whenever we take fractional order less than 0.87, as fractional order 

crosses the value 0.87 prey population and the intermediate predator start oscillating 

around the equilibrium point and shows Hopf bifurcation and in integer order model 

size of the oscillations increases. However, the top predator always moves towards 

extinction in all models. 
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Figure 5.8 Stability analysis of the populations in different models at the equilibrium point 

(0.0625,0.217,0) when prey are exposed to weak Allee effect 
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Table 5.3: Table for Values of Parameters Used for Numerical Simulations  

Parameters Values  Sources 

𝐾 1 [154] 

𝑟 0.5 [154] 

𝑎 0.3 Assumed 

𝑚 0.1 Assumed 

𝑏 0.2 Assumed 

𝑐 0.05 Assumed  

𝑝 0.5 [58] 

𝑑 0.3 Assumed 

𝑔 0.5 Assumed 

𝑒 0.2 Assumed 

𝑓 0.03 Assumed 

𝑞 0.9 Assumed 

 

The values obtained for Allee’s constant are as follows, 

𝑚𝑤 = 0.15,    𝑚𝑐𝑟 = 0.21  (see Eq. 5.37). 

In this example, prey are exposed to a weak Allee effect as  

𝑚 < 𝑚𝑤  and prey’s rate of predation by intermediate predator has been decreased 

from 0.5 to 0.2 and the conversion efficiency of the intermediate predator is decreased 

from 0.9 to 0.3. Solving the above equations we have an equilibrium point (0.82,0,0) 

which shows that the intermediate as well as the top predator fails to exist. The various 

values to check the stability of the equilibria are as follows. 

𝑥1
′ = 0.82,

𝑝𝑐

𝑏𝑑 − 𝑐
= 2.5, 𝑚 = 0.1. 

Clearly  𝑥1
′ <

𝑝𝑐

𝑏𝑑−𝑐
,   and   𝑚 < 𝑚𝑤.  Therefore, by Theorem 5.5 stability conditions of 

the obtained equilibria are satisfied. To do the stability analysis numerically of the 

obtained solution, simulations are run in fractional as well as integer models by taking 
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the initial population as (0.7,0.4,0.2). In all models, populations are converging toward 

the equilibrium point as shown in Figure 5.9. Being the slow movement of the 

populations in fractional order derivative models, the populations of intermediate and 

top predators can be protected by using the fractional order modeling, though the 

population density of both predators will be quite low.  
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5.5 Conclusion 

This study examines a food chain model comprising a prey exposed to the Allee effect 

and growing logistically, an intermediate predator, and a top predator, with the help of 

Caputo fractional order differential equations. The Holling type-II interactions are 

considered to characterize the relationship between prey and intermediate predator, as 

well as between top and intermediate predators. The solutions of the model are 

investigated concerning their existence, uniqueness, nonnegativity, and boundedness. 

Discussion is given on the local stability and global stability of every steady state point. 

It is noticed that exposing the prey population to the Allee effect can impact the survival 

of all populations of the considered system negatively as well as positively. As it is seen 

that when prey are not exposed to Allee effect, all populations in the food chain model 

(Table 5.1) coexist stably in lower fractional models (Figs.5.1,5.2). However, 

population behavior is observed to be oscillatory and chaotic in the case of higher 

fractional orders and integer models, respectively (Figs. 5.3,5.4, 5.5). When the prey 
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Figure 5.9 Stability analysis of the populations in different models at the equilibrium point 

(0.82,0,0) when prey is subjected to the weak Allee effect 
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are exposed to the weak Allee effect, all populations coexist stably in all models; 

fractional order and integer order models (Fig.5.6). This shows that the exposure of the 

prey population to weak Allee effect can help in stable coexistence of the desired 

populations. When prey population is exposed to strong Allee effect, then all 

populations of model move towards extinction in all models fractional as well as in 

integer order models (Fig.5.7). However, it is also noticed that, when prey are exposed 

to weak Allee effect, the existence of top predator is quite sensitive to natural decay 

rate of both predators, attack rate and conversion efficiency of top predator. On 

increasing attack rate of top predator and natural death rate of both predators and 

decreasing the conversion efficiency of top predators we found that top predators are 

getting extinct in integer model and higher fractional order models. However, the prey 

and intermediate predators can coexist stably in lower fractional order models, oscillate 

in higher fractional order models, and turns chaotic in integer order models (Fig.5.8).  

On further decreasing the attack rate and conversion efficiency of the intermediate 

predator, it is found that intermediate predator along with top predator also moves 

towards the extinction in all models (Fig. 5.9). However, being slow movement of the 

populations in fractional order derivative models, the intermediate and the top 

predators’ population can be protected by using the fractional order modeling, though 

the population density of the both predators will remain quite low. Hence it can be 

judged that the fractional order models are better for studying population dynamics, as 

we have seen that via numerical simulations the points that are unstable in the integer 

order model can be stabilized using fractional order modeling. Lower fractional order 

models move slowly toward the equilibrium points, which shows that low fractional 

derivatives preserve the memory of the past. This shows that populations have not 

adopted the trend fully shown by the traditional modeling, so timely strategies can help 

in saving the population. As fractional order derivatives do not affect the equilibrium 

points, therefore assist us by warning at an early stage by demonstrating the trends that 

populations will exhibit in the future. 

The Allee effect is crucial to population ecology and conservation biology because it 

clarifies how difficult it can be for small populations to endure and expand. The 

presence of the Allee effect in the prey population can destabilize the stable equilibrium 
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state, and sometimes it can trigger chaotic behavior, where the system exhibits 

unpredictable and irregular fluctuations. In fact presence of the Allee effect can directly 

influence the entire food chains existing in nature. With the scarcity of food due to the 

Allee effect in the prey population, the predators can also move toward extinction. This 

can destroy the food chains existing in nature. 
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Chapter 6  

 

Conclusion and Future Scope 

 

In this chapter, we are going to conclude the findings of the research work done and the 

future scope of the study. 

 6.1 Conclusion 

The work done in the study considers the mathematical and numerical analysis of 

single-species and multispecies mathematical models in population dynamics, 

incorporating the additive Allee effect in one of the species by making use of fractional 

order differential equations, where the fractional derivative is considered in the Caputo 

sense. Populations that are suffering from the Allee effect are prone to extinction, so 

findings of the proposed work can help save the populations exposed to the Allee effect. 

Moreover, the findings of this work can also be exploited to get rid of the unwanted 

species. The use of fractional derivatives has helped in studying the hereditary 

properties of populations, which are often overlooked in the traditional models. This is 

crucial for studying the population dynamics, as past interactions or any environmental 

changes influence the present behavior. 

In Chapter 2, we studied the single-species logistical growth model by incorporating 

the additive Allee effect. Without the Allee effect, the logistic growth model population 

stabilizes at its maximum value (carrying capacity) irrespective of the initial population 

of the species. However, by incorporating the additive Allee effect, populations never 

reach to the carrying capacity, but in the case of weak Allee effect, depending upon the 

different values of Allee’s constant, the populations can be stabilized at different 

equilibrium points. These results can help maintain the desired level of the population. 

When a population is subjected to a strong Allee effect, it requires a minimum 

population to survive. We have found a mathematical expression for calculating the 
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threshold level of species that are feeling critical depensation (strong Allee effect), 

which is validated through numerical simulations. Knowing the values of all parameters 

for a specific spatial distribution of a vulnerable species, a threshold level beyond which 

the survival of that species is not conceivable can be calculated using the result of 

calculating the threshold level. Once knowing the threshold level of the population 

prone to the strong Allee effect, timely strategies can help in saving that population 

from extinction. The strong Allee effect notion is frequently used in pest control [77,78]. 

To eliminate the unwanted pest population, a strong Allee effect can be introduced in 

the pest population by reducing its number below the threshold level (independent of 

the method used), which can be computed.  

In Chapter 3, a prey predator model in which the prey are growing logistically along 

with suffering from additive Allee effect, is considered. It has been observed that when 

prey populations are exposed to a weak or strong Allee effect, the prey’s predation rate 

becomes an important factor, as controlling it can help save both populations. In 

situations when prey are exposed to a weak Allee effect with a higher rate of predation, 

both populations can oscillate through a Hopf bifurcation. However, the optimal rate of 

predation helps in the coexistence of both populations stably. A very low rate of 

predation can make predators extinct. In situations when prey are exposed to a strong 

Allee effect, a suitably chosen rate of predation can help both populations to coexist 

stably. This shows that the Allee effect can be controlled with the rate of predation. 

These findings can help in saving the populations where interactions are prey and 

predatory in nature. Findings of the study can help in making artificial strategies to save 

the desired populations. 

In Chapter 4, the traditional Lotka Volterra competition model is explored by 

incorporating the additive Allee effect in one of the species, making use of the Caputo 

fractional derivative. In this work, very interesting results are found. Exposure to Allee 

effect of one of the species in the competition model has provided the rich dynamics of 

populations by establishing the multistability of the populations in various competition 

scenarios with different levels of the Allee’s constant. Moreover, in some cases it is 

found that with same value of Allee’s constant, different solutions exhibit stability 

depending upon the value of the fractional order. In other words, it is possible to find 
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the value of fractional order below which one solution is stable and after crossing that 

other solution show stability starting with same conditions. In the traditional model 

without Allee effect, competing populations can coexist only if intraspecific 

competition is stronger than the interspecific competition, but in our model, populations 

can coexist even if interspecific competition is stronger than the intraspecific 

competition. Furthermore, values of Allee’s constant are identified to determine the 

severity of the Allee effect, that is, when the Allee effect will influence weakly and 

strongly in the presence of competition. 

 In Chapter 5, a food chain model comprising a prey, an intermediate predator, and a 

top predator is explored. In the proposed model the prey population grow logistically 

and a functional response of Holling type II is observed between intermediate predator 

and prey as well as between top predator and intermediate predator. It is found that the 

introduction of the weak Allee effect in prey populations and the usage of fractional 

derivatives can aid in the stable coexistence of all populations. In one of the examples, 

when prey population was not exposed to Allee effect, all populations were showing 

chaotic behavior in integer order models and were oscillating in higher fractional order 

models, but when prey were subjected to the weak Allee effect, the populations showed 

stable coexistence in all models. In the situations where prey were influencing the 

strong Allee effect, populations were coexisting in lower fractional models. However, 

it is also found that the optimal attack rate, fitness of the predators in terms of 

conversion efficiency, and death rate can also help in the coexistence of all populations. 

In each model, it is found that replacing the ordinary derivative with Caputo fractional 

derivatives has no effect on the values of equilibrium points, and the points that were 

stable in ordinary integral models remain stable in the fractional model too. Rather, the 

usage of fractional modeling provides greater flexibility in the stability region of the 

equilibrium points. While studying two and three-dimensional models, we found the 

equilibrium points that were not stable when considered in integer order models but 

turned out to be stable when considered in fractional order models. This is due to the 

long-term memory-preserving nature of the Caputo derivative. A lower fractional order 

model has less memory of the past, therefore stabilizes early, and takes much more time 

to reach the equilibrium points. However, as the fractional derivative's order rises, the 
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system's strong memory prevents it from forgetting the trend, allowing it to stabilize at 

the determined equilibrium points in a considerably shorter period. In many cases, 

populations in different fractional order derivative models can stabilize at different 

points. Fractional order models can also help in controlling the oscillatory and chaotic 

behavior of the populations. Therefore, it is always better to study the real-world 

phenomenon using fractional-order differential equations.  

Studying the Allee effect is important because it sheds light on how population size 

impacts individual fitness and the overall dynamics of the populations, especially at 

low density. This knowledge is crucial for understanding species’ risk of extinction, 

management of rare and endangered species, and the success of reintroduction 

programs. 

6.2 Future Scope 

In this research, we have incorporated the Allee effect (additive) in various fractional-

order population models that potentially eradicate the suffering species permanently. 

This study has the future scope to understand the mechanisms and causes of the Allee 

effect, such as mating behavior, inbreeding depression, cooperative behavior, and 

resource limitation. In mathematical modeling, there is scope for developing more 

accurate and sophisticated models incorporating the Allee effect to understand its 

nuances in different populations and ecosystems. In biomedical sciences, the study of 

the Allee effect has the scope to understand and manage the complex biological system, 

particularly in Cancer research and its treatment [145,155]. 

This research has been done by making use of the fractional derivative in the Caputo 

sense, and for numerical analysis, we have used the Adam Bashforth Predictor and 

Corrector method to solve the models. However, the other fractional derivatives 

currently in use are Atangana-Baleanu, Caputo-Fabrizio. These fractional derivatives 

are as suitable and efficient as the Caputo fractional derivative. Various numerical 

schemes are available to solve fractional-order differential equations. These include but 

are not limited to Laplace-Adomian decomposition technique (LADM), Homotopy 

analysis method (HAM), Homotopy perturbation method (HPM), Adomian 

decomposition method (ADM), Laplace transformation, Variational iteration with Pade 
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approximation, Corrected Fourier series, Natural decomposition method, and 

Fractional complex transformation, optimal q-HAM, etc. Therefore, the study can be 

further explored by using the above-mentioned fractional derivatives and the numerical 

schemes.  
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