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ABSTRACT 

Massive MIMO is a key technology enabling 5G networks to deliver high 

data rates, low latency, offering enhanced capacity, spectral efficiency and massive 

connectivity. However, ensuring Quality of Service (QoS) for diverse applications, 

such as real-time video streaming, autonomous vehicles, energy efficiency and 

Peak-to-Average Power Ratio (PAPR) management remain a key challenge in 

such systems. 

This thesis aims to develop advanced QoS provisioning mechanisms 

tailored for Massive MIMO systems. We propose a novel framework that 

leverages machine learning techniques to allocate resources and optimize system 

performance dynamically. By analyzing real-time channel conditions and traffic 

patterns, our approach enables intelligent resource allocation, interference 

mitigation, and power control. An energy-efficient harvesting algorithm for 

massive MIMO systems (EHMMS) is proposed to maximize energy harvesting 

while maintaining system performance. Additionally, a novel PAPR reduction 

technique is developed to improve signal quality and reduce power consumption. 

Through extensive simulations and experiments, it demonstrates the 

effectiveness of our proposed techniques in improving QoS metrics such as 

throughput, latency, residual energy, and reliability. Our findings provide valuable 

insights for the design and deployment of future 5G networks, ensuring a seamless 

and efficient user experience. Comparative analysis with existing approaches 

demonstrates that the proposed framework offers superior performance, providing 

a scalable and efficient solution for next-generation wireless networks. This thesis 

contributes significantly to advancing energy-efficient and high-performance 

communication in 5G systems. This thesis investigates energy-efficient techniques 

for Massive MIMO systems.  

Firstly, this thesis can analyze using state-of-the-art massive MIMO 

techniques, including precoding and channel estimation, to identify opportunities 

for energy savings. This thesis aims to study and analyze various massive MIMO 

techniques to identify their strengths and limitations. The Hybrid Spider Wasp 

Fick’s Law algorithm appears to offer an innovative approach to tackling the 

challenges of joint optimization in communication systems. 
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 Its name likely draws inspiration from the behavior of spider wasps and 

Fick's law, suggesting a combination of principles from nature and mathematical 

models to achieve its objectives. ZF with Symbol-level linear precoding, 

particularly when coupled with the Stacked Convolution Sparse BiLSTM Auto 

Encoder (SCS-BiLSTMAE) network, presents an effective solution for decreasing 

the PAPR in massive MIMO techniques. It employs a huge number of antennas to 

serve multiple users simultaneously, often encountering high PAPR, leading to 

distortion and inefficiencies in the transmission process. By integrating ZF 

precoding with advanced signal processing techniques like SCS-BiLSTMAE, it 

becomes feasible to mitigate PAPR efficiently. When integrated with techniques 

like Zero-Forcing with SLLP and SCS-BiLSTMAE network, adaptive 

constellation mapping and demapping provide a holistic solution for optimizing 

massive MIMO systems. 

During the second part, this thesis proposes a novel energy harvesting 

algorithm that maximizes energy extraction from ambient RF signals, thereby 

reducing the reliance on traditional power sources. Based on the findings, an 

energy-efficient harvesting algorithm for massive MIMO systems (EHMMS) is 

proposed to maximize energy harvesting while ensuring optimal system 

performance using SWIPT antenna switching and power splitting. 

Thirdly, to mitigate the adverse effects of high PAPR, we develop a novel 

PAPR reduction technique that is tailored for Massive MIMO systems. This 

technique effectively reduces PAPR while preserving system performance. 

Despite its potential, challenges such as energy efficiency and Peak-to-Average 

Power Ratio (PAPR) reduction persist. Additionally, a novel PAPR reduction 

technique is developed to enhance signal quality and minimize power 

consumption. Moreover, PAPR reduction not only enhances energy efficiency but 

also aids in reducing the BER by improving signal quality, thereby contributing to 

overall system performance and reliability. The EIBO algorithm emerges as 

another innovative approach for bolstering energy efficiency and curtailing PAPR 

in communication methods, especially within the realm of massive MIMO. 

Leveraging this algorithm suggests the system's capability to intelligently allocate 

resources, optimize power usage, or adjust transmission parameters to enhance 

energy efficiency effectively.  
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Moreover, it appears adept at reducing PAPR, a pivotal aspect in 

preserving signal quality and mitigating interference in wireless communication. 

By harnessing the Enhanced Influencer Buddy Optimization algorithm, 

communication systems can potentially achieve higher levels of performance, 

reliability, and sustainability. Conducting experiments in MATLAB enables 

researchers to analyze the performance of various algorithms, compare them 

against benchmarks, and validate their efficacy in achieving desired objectives.   

Finally, through rigorous simulations and analysis, it can evaluate the 

performance of the proposed techniques in terms of QoS, energy efficiency, and 

throughput. The results demonstrate significant improvements over existing 

methods, paving the way for more energy-efficient and sustainable 5G networks. 

The proposed methods are evaluated through comprehensive performance analysis 

using metrics such as throughput, energy efficiency, and residual energy. 

Comparative results demonstrate that the proposed framework significantly 

outperforms existing approaches, offering a scalable and efficient solution for 

next-generation wireless communication systems. 

1. Analyze different Massive MIMO techniques for 5G networks using linear 

precoding.  

2. Proposed an energy-efficient algorithm to maximize energy harvested   

from massive MIMO systems (EHMMS) using SWIPT. 

3. Proposed a novel PAPR reduction technique for the massive MIMO system 

4. Compared the performance analysis of the proposed technique to existing 

methods using potential parameters like throughput, energy efficiency, and 

residual energy.    
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Chapter 1 

INTRODUCTION 

1.1 Overview 

Massive MIMO is a momentous pillar in 5G networks because it uses a 

greater number of antennas. It provides many advantages to present communication 

systems in spectral efficiency, energy efficiency, and quality of service [1]. The 

complexity of signal processing for data detection in these systems is indeed a 

significant challenge. In massive MIMO scenarios, the number of parameters that 

need to be estimated and the complexity of operating these parameters grow rapidly 

[1]. This complexity becomes even more pronounced when high-order modulation 

schemes are used and multiple users are multiplexed simultaneously. 

To address this challenge, researchers have been exploring various 

suboptimal detection algorithms that strike a balance between performance and 

complexity. These algorithms include linear detection techniques like ZF and 

MMSE detection, as well as iterative detection and decoding techniques such as 

message-passing algorithms [1-2]. Additionally, machine learning and neural 

network approaches are gaining attention for their ability to handle the difficulty of 

massive MIMO systems more efficiently. 

Despite the challenges, it remains a key technology for 5G and beyond due 

to its ability to significantly increase spectral efficiency, enhance coverage, and 

improve overall network performance. Continued research and development in 

signal processing techniques will be essential to completely realize the potential of 

massive MIMO in future wireless communication systems. In this system, the 

primary focus is on facilitating large data transfers that are not feasible in 4G for a 

greater number of users [3]. 

Here are some key multi-carrier transmission techniques commonly used or 

considered for future generation wireless systems, such as Orthogonal Frequency 

Division Multiplexing (OFDM), Filter Bank Multi Carrier (FBMC), Non-

Orthogonal Multiple Access (NOMA), GFDM (Generalized Frequency Division 

Multiplexing), and UFMC (Universal Filter Multi Carrier) [4]. 
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 If the number of customers overshoots the quantity of offered antenna 

terminals (a scenario known as an underdetermined system), scheduling becomes 

essential to efficiently utilize the limited resources. Overall, user scheduling like ZF, 

multi-objective optimization, QoS-based scheduling, adaptive scheduling, MRT, 

and greedy scheduling algorithms plays a critical role in maximizing the throughput 

and efficiency of these systems, especially when the number of users increases [5]. 

By intelligently selecting users and allocating resources, scheduling 

algorithms can optimize system performance and enhance the user experience in 5G 

networks. Overall, achieving both more throughput and fairness in massive MIMO 

systems requires careful algorithm design and consideration of various factors, 

including channel conditions, QoS requirements, and fairness constraints. 

Continued research and innovation in scheduling algorithms are essential to address 

these challenges and unlock the full potential of this technology in the future [5-6]. 

1.2 Motivation 

4G, such as LTE, has been globally deployed, but ongoing research aims to 

develop fifth-generation (5G) technologies. The current 4G technology struggles to 

accommodate the exponential increase in data rates and the propagation of 

connected devices [6]. The advent of 5G seeks to address these challenges by 

enhancing wireless data rates, expanding coverage areas, and accommodating a vast 

array of devices. 

In the realm of wireless communications, effectively managing resources to 

meet the varied quality of service (QoS) demands is critical. These demands differ 

across services, particularly in terms of latency and data throughput. Tailoring 

resource allocation to accommodate these varied requirements ensures that all types 

of services maintain high performance and reliability, a necessity for modern 

communication networks [7]. 

OFDM, the modulation technique utilized in 4G mobile communication 

systems, faces certain limitations that may render it unsuitable for the next 

generation. Consequently, numerous researchers are exploring alternative 

modulation methods capable of overcoming OFDM's drawbacks.  

Among these alternatives, generalized frequency division multiplexing and 

FBMC have emerged as promising candidates for next-generation wireless 
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communications. GFDM and FBMC offer several advantages over OFDM. Firstly, 

they exhibit lower out-of-band emissions, addressing a key limitation of OFDM [8]. 

Moreover, 5G facilitates robust machine-to-machine (M2M) 

communications, crucial for automating industrial processes and improving 

efficiency across various sectors. The expansion of the Internet of Things is another 

critical application, where 5G enables countless devices to connect, communicate, 

and exchange data with minimal latency, supporting smart cities and automated 

homes [8-9]. 

5G technology stands as a cornerstone for transformative digital 

experiences, offering significantly higher data rates coupled with dependable 

connectivity. This next-generation wireless standard is pivotal for enhancing 

device-to-device (D2D) interactions, allowing for seamless communication 

between devices without the need for intermediary network services [9]. 

Additionally, 5G plays a transformative role in healthcare, improving 

telemedicine services, enabling remote monitoring, and supporting advanced 

technologies such as augmented reality for surgical procedures, thereby 

revolutionizing patient care and medical interventions. 5G is envisioned as an 

integration of various techniques and technologies, all aimed at revolutionizing 

wireless statement capabilities to meet the weight of present connectivity. Multi-

carrier transmission techniques play a crucial role in future-generation 

communication systems, especially in massive MIMO environments. 

 GFDM employs circular convolution with prototype filtering across 

individual subcarriers, thereby enhancing frequency localization and reducing 

interference. On the additional pass, FBMC achieves SE by eliminating the cyclic 

prefix (CP) present in OFDM, resulting in a more efficient use of available 

bandwidth. Through their unique characteristics and design principles, GFDM and 

FBMC present viable alternatives to OFDM for future wireless communication 

systems [9]. 

 

 

 



 

 

4 
 

1.3 Background 

This technology improves spectral efficiency and high communication 

reliability. Previous research works have extensively investigated OFDM systems, 

demonstrating the effectiveness of this technology for multimedia data transfer [10]. 

OFDM's high spectral efficiency and robustness make it well-suited for multimedia 

data transfer applications, including image transmission. The combination of 

OFDM with massive MIMO technology enables efficient and reliable transmission 

of large amounts of multimedia data over wireless channels, meeting the increasing 

demands of next-generation communication networks.  

          OFDM's robustness against frequency-selective fading and multipath 

propagation, coupled with the spatial diversity provided by massive MIMO systems, 

enhances communication reliability [10-12]. By leveraging a greater number of 

antennas for transmission and reception, these systems with OFDM combinations 

can further improve link reliability and mitigate the impact of fading and 

interference, resulting in more robust wireless communication links. 

           This thesis study reveals significant enhancements in image quality 

metrics within massive MIMO systems when employing FrFT and DWT compared 

to traditional FFT-based MIMO-OFDM configurations. This makes OFDM 

particularly effective for massive MIMO systems operating in environments with 

challenging channel conditions [10]. Specifically, when both FrFT and DWT are 

integrated into massive MIMO systems, there is a notable improvement in both 

PSNR and Structural Similarity Index Measure (SSIM) across various Signal-to-

Noise Ratios (SNRs) and user counts. This indicates that such transformations may 

offer more robust and efficient alternatives for handling multi-user scenarios and 

maintaining high-quality signal transmissions in wireless communication 

environments [11]. These techniques offer several advantages in terms of spectral 

efficiency, robustness to channel impairments, and flexibility in resource allocation. 

It explores the performance of a hybrid amalgamation of these combination 

schemes augmented with different transform techniques (FFT, FrFT, and DWT) for 

reliable image communication in 5G systems. Here's a breakdown of the key points 

and findings. 
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Hybrid Amalgamation: The combination of massive MIMO and OFDM is 

recognized as an effective methodology for fulfilling the requirements of modern-

day wireless communication systems.  

Evaluation Parameters: The performance of these systems is evaluated 

using metrics such as SNR vs. peak SNR and SNR vs. SSIM at the receiver. 

Simulation Environment: The analysis is conducted over Rayleigh fading 

channels, which are commonly encountered in wireless communication 

environments. M-ary phase-shift keying is measured to appraise the presentation of 

the planned systems under varying conditions. 

Table 1.1: Comparison of 1G to 5G [11] 

Generation 

Year of 

Introduction 

Key 

Features 

Data 

Speeds Latency Applications 

1G 1980s 

Analog voice 

calls 2.4 Kbps High Voice calls 

2G 1990s 

Digital voice 

calls, SMS 

14.4 - 

217.6 Kbps Medium 

Voice calls, 

SMS, basic 

data 

3G 2000s 

Mobile 

internet 

access, video 

calls 

384 Kbps - 

2 Mbps Low 

Mobile 

internet, 

video calls, 

basic mobile 

apps 

4G 2010s 

High-speed 

data, HD 

video 

streaming, 

online 

gaming 

100 Mbps - 

1 Gbps 

Very 

low 

High-

definition 

streaming, 

online 

gaming, 

advanced 

mobile apps 

5G 2019 

Ultra-fast 

speeds, low 

latency, 

massive 

capacity 

Up to 20 

Gbps 

Ultra-

low (<1 

ms) 

IoT, AR/VR, 

autonomous 

vehicles, 

high-

definition 

streaming 

Table 1.1 shows the comparison of 1G to 5G in terms of the parameters of data 

bandwidth, technology, multiplexing, switching, and core network.  
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5G has a data rate of up to 1 Gbps with packet switching. Each generation 

builds upon the previous one, offering increased capabilities and faster speeds [11]. 

The evolution from analog to digital and broadband technologies has significantly 

improved network performance. The shift from circuit switching to packet 

switching has enabled more efficient and flexible data transmission. The integration 

of the internet as a core network component has revolutionized mobile 

communication. In conclusion, each generation of mobile networks has brought 

significant advancements [12-13]. 

       

Figure 1.1: Overview of technology 

Figure 1.1 shows the number of connected devices, in billions, on a year-by-

year basis. For example, Marzetta introduced the term "large MIMO" in 2010 in 

conjunction with multiple cells and time-division duplexing (TDD) in order to 

describe some of the features of single cells and constrained antennas. One hundred 

or even hundreds of antennas are often deployed at each of the base stations in 

massive MIMO technology, which are several orders of magnitude more powerful 

than the previous communication technique. The fundamental model of this network 

is illustrated in Figure 1.1, highlighting the architecture that supports the exponential 

growth in wireless data traffic. Over the last decade, various innovative 

communication technologies, including massive MIMO, have experienced 

significant development to address this increasing demand [12]. 
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1.4 Massive MIMO Model 

Typically, massive MIMO systems comprise hundreds of antennas, 

representing a substantial increase in the number of antennas compared to traditional 

communication systems. Both 5G and 6G mobile communication systems accept it 

as a comprehensive tool. Its ability to deploy large-scale antenna arrays at the base 

station enables significant improvements in system performance, including increased 

spectral efficiency, enhanced capacity, and improved reliability. In large-scale 

MIMO systems, the base station employs antenna arrays consisting of hundreds to 

several hundreds of elements (typically between 100 and 300). These antenna arrays 

enable the exploitation of spatial diversity and multiplexing gains, allowing for 

efficient communication with multiple users simultaneously. Overall, massive 

MIMO technology represents a primary shift in the design and implementation of 

these systems [12]. By deploying large-scale antenna elements at the BS, massive 

MIMO systems can achieve unprecedented levels of performance in 5G and 6G. 

Massive MIMO network architecture has evolved to accommodate large-

scale antenna arrays at base stations, allowing for the exploitation of spatial 

multiplexing, spatial diversity, and advanced beamforming techniques. 

Implementing these advanced transformations allows for the simultaneous 

accommodation of numerous user equipments on identical time and frequency 

resources, enhancing the system capacity. Yet, this progress is not without its 

hurdles. Variability in service quality and persistent difficulties in cell-edge 

performance remain significant challenges, complicating the full-scale deployment 

of cellular networks [13]. 

 These issues underscore the need for ongoing research and optimization 

strategies to ensure that advancements in technology translate into uniformly 

improved user experiences across all network areas [14-15]. 

To address these challenges, the DL framework has been engaged to 

discover this system. By integrating deep learning algorithms with massive MIMO 

technology, researchers aim to further optimize network performance and meet the 

growing demands of modern wireless systems [15].  
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Advanced research into THz ultra-massive MIMO (UM-MIMO) systems is 

critical for the evolution of 5G and future networks. This includes developing new 

technologies such as plasmonic very small array antennas and creating optimal 

channel evaluation techniques. 

                      

 

Figure 1.2: Basic model of massive MIMO [16] 

Massive MIMO network architecture has evolved to accommodate large-

scale antenna arrays at base stations, allowing for the exploitation of spatial 

multiplexing, spatial diversity, and advanced beamforming techniques, as shown in 

figure 1.2 for different users [16-17]. These properties enable CF-massive MIMO 

systems to achieve robust and reliable communication performance, even in 

challenging wireless environments. Overall, the integration of this algorithm with 

CF-massive MIMO systems represents a promising approach to address key 

challenges in wireless communication, offering improved performance, reduced 

complexity, and enhanced reliability for next-generation networks. This is essential 

for maintaining communication quality, especially in scenarios with challenging 

channel conditions or high levels of interference [18-20]. 

It is also an essential area of research. Overall, continued research and 

innovation in user scheduling algorithms are essential to address the complex trade-

offs between throughput, fairness, and system performance in massive MIMO 

systems.  
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By developing more efficient and fair scheduling algorithms, we can unlock 

the full potential of this technology and enhance the overall user experience in future 

wireless communication networks.  

To address these challenges and improve overall system performance, 

further research is indeed necessary to develop more efficient and fair scheduling 

algorithm designs [20]. Concentrating on these areas of research paves the way for 

the creation of innovative scheduling algorithms that not only enhance the data 

throughput but also ensure equitable access for all users within these systems. This 

approach will be instrumental in achieving the high-performance standards expected 

from future wireless infrastructures. Accurate channel state information is essential 

in these systems for effective beamforming, user signal detection, and resource 

management. The challenge intensifies as the user equipment must discern signals 

from a multitude of antennas at the BS, significantly increasing the burden of pilot 

signaling [21]. 

An efficient channel estimation strategy that balances accuracy with pilot 

overhead, particularly in Frequency Division Duplexing (FDD) systems, presents a 

promising research opportunity. Integrating massive MIMO with quantum 

communication technologies, particularly at frequencies above 300 GHz, represents 

an innovative research frontier. This combination could potentially unlock new 

paradigms in secure and ultra-fast wireless communications, exploring the quantum 

properties of electromagnetic waves at extremely high frequencies. 

Furthermore, efforts to devise low-complexity, high-efficiency precoding 

and signal detection techniques, alongside precise beamforming and steering, are 

essential for leveraging THz communications at their full potential. Employing ML 

and DL for channel inference in massive MIMO could revolutionize how networks 

predict and adapt to channel conditions [22]. These technologies could improve the 

accuracy of predicting statistical channel characteristics, enhancing beam forming, 

and signal detection processes through intelligent algorithms. 

Exploring key technologies that could underpin 6th generation networks, 

such as terahertz communication, visible light communication, and holographic 

radio, is another exciting field of this system. These technologies could dramatically 

increase the bandwidth and efficiency of future wireless networks, offering novel 
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communication mediums and capabilities. The current generation of smartphones 

lacks support for massive MIMO technologies, posing a significant challenge for 

device manufacturers.  

There is a critical need to develop more affordable mobile devices capable 

of supporting massive MIMO, alongside designs for systems that are backward 

compatible with existing 4G networks [22]. The practical deployment of massive 

MIMO involves users equipped with numerous antennas, necessitating rigorous 

testing of transceiver designs. 

1.5 Massive MIMO comparison with traditional MIMO performance 

  If the capacity of the antennas is more in a system, the spectral efficiency 

experiences a continuous rise, accompanied by a corresponding increase in EE up 

to a convincing threshold. However, beyond this threshold, the energy efficiency 

begins to decline, creating a trade-off relationship between the two parameters. This 

inherent contradiction makes it challenging to achieve simultaneous optimization. 

Consequently, for these systems, exploring the joint optimization of SE and EE 

remains an important area of investigation [22]. 

             

Figure 1.3: Massive MIMO comparison with traditional MIMO 

performance [22] 

Given the constraints of restricted band possessions and the growing need 

for vast capacity, efficiency has been extensively studied as a conventional 

performance metric in the field of mobile communication [22]. 

https://in.mathworks.com/content/mathworks/in/en/discovery/massive-mimo/_jcr_content/mainParsys/image_copy.adapt.full.medium.jpg/1639027426750.jpg
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1.5.1 MIMO system 

It is a fundamental transmission technology pivotal in advancing wireless 

systems, aiming to bolster information transport rates and elevate overall system 

performance. Figure 1.4 shows the MIMO system.  

This ingenious setup capitalizes on the spatial diversity inherent in radio 

channels and the multipath propagation phenomenon, effectively mitigating signal 

fading effects and bolstering system reliability [23]. 

 

Figure 1.4: MIMO system [24] 

Leveraging the spatial dimensions, MIMO systems yield substantial 

enhancements in data throughput, amplification of spectral efficiency, and 

reinforcement of signal robustness. MIMO technology aims to enhance system 

throughput and link reliability, and it has been widely adopted in recent 

communication standards.  

While implementing OFDM on MIMO channels is relatively 

straightforward, extending FBMC to MIMO channels remains a topic of advanced 

research. In a MIMO system, there are M𝑡 transmitter antennas responsible for data 

transmission and M𝑟 receiver antennas for data reception. The channel coefficients, 

denoted as 𝐻, represent the characteristics of the communication channel and are of 

size M𝑟 × M𝑡 elements. The capacity analysis of MIMO systems has been 

conducted considering various combinations of transmitter-receiver antenna 

configurations [24]. Harnessing the power of more antennas, MIMO systems 

revolutionize wireless communication by enabling the instantaneous 

communication of various data streams across the same rate band. This innovative 
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approach dramatically enhances the system's throughput, allowing for the 

concurrent delivery of more data compared to traditional single-antenna systems. 

By leveraging spatial multiplexing techniques, MIMO systems exploit the spatial 

variety of the radio channel, effectively increasing the capacity and efficiency of 

wireless transmissions.   

As a result, this technology has become a cornerstone of modern wireless 

standards, facilitating higher data rates and improved network performance across 

a variety of applications and environments [25], [27].  

  MIMO technology has become integral to modern communication 

standards and is utilized in various applications, including Wi-Fi, LTE, and 5G 

networks. It offers significant advantages such as enlarged information charges, 

better coverage, and enhanced spectral efficiency compared to traditional single-

antenna systems. The implementation of MIMO requires sophisticated signal 

processing techniques to decode and separate the transmitted data streams at the 

receiver accurately. Overall, MIMO technology plays a crucial role in gathering the 

growing demand for quick and reliable wireless communication services [26-27]. If 

the capacity of the antennas is more in a system, the spectral efficiency experiences 

a continuous rise,  accompanied by a corresponding increase in EE up to a convincing 

threshold [𝐸𝐸 =  𝑆𝐸 ⁄ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛] with this mathematical relation and  

𝑆𝐸 = 𝐾. log2 (1 +
𝑀∗(𝑆𝑁𝑅)

𝐾
)   

         Where M = number of base station antennas, K = number of users 

         1.5.2 Massive MIMO system 

Massive MIMO represents a highly developed iteration of wireless 

technology that extends the capabilities of MIMO by integrating a multitude of 

antennas at both the Tx and Rx ends. By deploying hundreds or even thousands of 

antennas at BSs, Massive MIMO facilitates simultaneous transmission to multiple 

users, thereby amplifying SE. Vital for the progression of 5G networks, Massive 

MIMO leverages spatial techniques to bolster throughput and network capacity [26]. 

Massive MIMO and millimeter-wave (mmWave) communication stand as pivotal 

technologies in achieving the design objectives of 5G networks. Remarkably, these 

two technologies complement each other synergistically.  
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Their integration gives rise to mmWave massive MIMO, a paradigm that 

markedly enhances spectral and energy efficiency while achieving substantial gains 

in multiplexing and mobile network capacity. The foundational principles of 

massive MIMO technology are depicted in the accompanying figure 1.5. 

However, this thesis takes a comprehensive approach by exploring these 

three key 5G techniques collectively, with a particular focal point on their precoding 

and beamforming strategies. Yet, the difficulty of these techniques escalates 

significantly when deploying a huge amount of antennas and exploiting higher RFs. 

Consequently, ongoing investigations aim to develop precoding and beamforming 

strategies that strike a balance between optimal performance and considerations 

such as cost, power consumption, and complexity [27]. 

 

Figure 1.5: A basic massive MIMO system [27] 

This thesis outlines potential future directions and highlights forthcoming 

challenges in the realm of mm wave massive MIMO precoding and beamforming, 

paving the way for continued advancements in this exciting field of research. To 

tackle these challenges head-on, this work delves into a range of linear precoding 

techniques tailored for these systems. The exploration encompasses well-

established methodologies such as ZF, MRC, RZF, truncated polynomial expansion, 

and PZF [27]. Furthermore, it delves into non-linear precoding schemes like DPC, 

THP, and vector perturbation.  Analytical analyses and simulation results presented 

in the thesis demonstrate that the partially connected hybrid analog/digital 

beamforming architecture emerges as a frontrunner in terms of overall performance 

for mmWave massive MIMO communications. 
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Moreover, a comprehensive analysis of beamforming techniques is 

provided, spanning analog, digital, and hybrid schemes. Special emphasis is placed 

on the potential of hybrid beamforming, considering both fully connected and sub-

connected architecture approaches, in harnessing the capabilities of mmWave 

massive MIMO systems. Evaluation metrics encompass a broad spectrum of 

performance indicators, including BER, SNR, complexity, SE, and EE.  

Table 1.2: Differences between traditional MIMO and Massive MIMO [27] 

Technical 

Content 

Traditional MIMO Massive MIMO 

Antenna numbers ≤ Eight >100 

Channel medium Lower order Higher order 

Channel Facility Weak signal compared to noise 

leads to errors 

Clear signal leads to 

reliable 

communication. 

Mixture Gain Less spatial resolution and  

multiplexing ability. 

 

Higher chance of 

selecting users with 

strong instantaneous 

channels) 

Symbol Error Rate More Less 

 

Pilot 

contamination 

Not used Used 

 

Deployment 

 

 

Used in 3G/4G wireless systems Key technology in 5G 

and future 6G networks 

Spatial Multiplexing   

 

Limited parallel data streams 
 
Many simultaneous 

users/data streams 

 

Energy Efficiency   
 

Limited High (via focused 

beamforming and 

power scaling) 

Spectral Efficiency   
 

Moderate Extremely high due to 

spatial reuse. 
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            Table 1.2 shows that massive MIMO builds upon the foundations of 

MIMO, offering significant advantages in terms of capacity, coverage, and 

reliability [28]. This can be achieved through the utilization of a device known as 

an energy harvester. For the development of QoS(Quality of Service) provisioning 

for massive MIMO-based 5G networks, it is to increase energy. The study and 

simulation results have shed important light on how well these methods work to 

increase transmission rates, boost signal quality, and control interference. The 

comparative examination of MIMO with beamforming and classic MIMO and 

single-antenna systems demonstrated the supremacy of MIMO with precoding in 

requisites of capacity, signal quality, and interference management, according to 

the study's conclusions. 

                                     

Figure 1.6: Massive MIMO system BS to all users [28]. 

The massive MIMO system is designed to achieve high data throughput and 

low latency as shown in the figure 1.6. By utilizing a large array of antennas, 

Scalability   

 

Not easily scalable Highly scalable for 

dense user 

environments. 

Interference 

Management 
Limited capabilities  

 

Improved interference 

suppression (via 

precoding, 

beamforming) 

Spatial Multiplexing   

 

Limited parallel data streams 
 
Many simultaneous 

users/data streams 

 

Energy Efficiency   
 

Limited High (via focused 

beamforming and 

power scaling) 
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massive MIMO facilitates spatial multiplexing, enabling the simultaneous 

transmission of multiple data streams. This significantly enhances system capacity, 

achieving data rates of up to 20 Gbps. Furthermore, the integration of advanced 

beamforming and channel estimation techniques—potentially incorporating 

algorithms such as Least Mean Squares (LMS)—ensures precise signal detection 

and minimizes retransmissions. These features collectively contribute to reduced 

latency and improved spectral efficiency, positioning massive MIMO as a critical 

technology for fulfilling the performance requirements of 5G networks. 

 These results highlighted the potential of massive MIMO, precoding, and 

beamforming to satisfy the growing need for fast and dependable communication 

services in 5G and other wireless networks in the future. Figure 1.6 shows the base 

station with a greater number of users. The utilization of large-scale MIMO holds 

the possibility to extensively enhance the presentation of wireless power 

transmission systems. The fundamental objective of wireless energy transmission is 

to fulfill the energy requirements of the receiver, which aligns with intuitive 

reasoning. This technology opens up possibilities such as wirelessly charging 

medical implants and facilitating the transmission of checkup data to an out-of-the-

way beneficiary by harnessing the acquired energy. With the burgeoning growth in 

data traffic, the forefront of next-generation systems is anticipated to be mmWave 

communication [28]. 

In these systems, the proliferation of BS antennas enables beamforming, 

directing communicated signals towards specific points in space. This precision 

allows the BS to efficiently distinguish linking entity users, thereby attracting spatial 

declaration. Massive MIMO configurations typically feature a base station equipped 

with a multitude of antennas, facilitating concurrent service to numerous active 

users within the same time-frequency block. This technology is poised to be 

instrumental in the development of new networks that are both spectral and energy-

efficient. By concentrating transmitted signal energy into localized areas, massive 

MIMO promises significant enhancements in system performance.     

1.6 Key Enabling Technologies for 5G 

5G mobile communication systems are projected to support improved ultra- 

broadband, ultra-reliable, and low-latency communication, reflecting the 



 

 

17 
 

diverse requirements of modern connectivity.  

Meeting these demands will necessitate a significant paradigm shift in 

network infrastructure to accommodate larger data rates, lower network latencies, 

improved EE, and dependable omnipresent connectivity. To bring 5G into practical 

fruition, several key technological breakthroughs are essential [29]. Figure 1.7 

illustrates the essential techniques required to realize the 5G specifications in 

practice. 

 

Figure 1.7: Key parameters for IMT2020 [29] 

The (IMT-Advanced) International Mobile Telecommunications-Advanced 

facility, endorsed by the (ITU) International Telecommunication Union, signifies 

an important bound forward in transportable statement technology, surpassing the 

capabilities of its predecessor, IMT-2000 (3G). Although labeled as a 4G 

technology by the ITU, it's important to note the absence of a universally accepted 

definition for "4G." LTE, used in the 3rd Generation Partnership Project (3GPP), 

serves as a fully 4G-capable movable broadband stage [29].  

Utilizing OFDM as its cornerstone, LTE ropes variable transmission 

bandwidths of up to 20 MHz and incorporates highly developed multi-aerial 

communication techniques. The evolution of these systems underscores the 
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importance of global collaboration among mobile communication companies and 

governments.  

Various entities, including the Electronics and Telecommunication Research 

Institute, Samsung, Nokia Siemens Networks (NSN), and others, have been actively 

engaged in the growth of 4th generation systems and beyond [29]. The pursuit of 

"Giga Korea" and advancements in mm-wave wireless communication exemplify 

the ongoing efforts to establish hyper-connected IT infrastructure. 

   

  

Figure 1.8: 5G key enabling technologies [30] 

Central to the more data charge in 4G systems is MIMO technology, 

facilitating multi-stream communication, enhancing SE, and improving link quality. 

Adaptive beamforming using antenna arrays enables MIMO to adapt emission 

patterns for signal gain and noisiness improvement [30].  

However, the exponential growth in cellular phone traffic demands, with a 

projected thousand-fold increase by 2020, necessitates continuous research into 

enhancing capacity and exploring new wireless spectrum. 
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LTE Advanced embraces heterogeneous networks comprising macro, 

micro, and picocells alongside Wi-Fi APs. Self-organizing capabilities and 

repeaters/relays facilitate cost-effective deployment. Anticipated disparities 

between 4G and the upcoming fifth-generation (5G) technology include leveraging 

untapped millimeter-wave frequency bands for greater spectrum allocations, 

deploying directional beamforming antennas, prolonging battery life, minimizing 

outage probability, achieving superior bit charges, reducing infrastructure costs, and 

enhancing aggregate capacity. 

Future networks are expected to support significantly higher traffic volumes 

with peak rates exceeding 10 Gbps and latency below 1 ms, necessitating diverse 

radio access technologies and continuous innovations to meet growing demands.  

Furthermore, combining MIMO with cutting-edge beamforming techniques 

improves system capacity and coverage but necessitates the use of complex 

algorithms and optimization approaches [30]. Massive MIMO systems can serve 

several customers at the same time-frequency resource to the base station's many 

antennas. So, the main goal is to provide sufficient baseline knowledge on multi-

carrier transmission techniques that might be applied in a massive MIMO context 

and in MIMO and other next-generation wireless systems. In wireless systems, there 

is always a need to improve performance and QoS. 

Simultaneously, in line with the imperative of advancing green 

communication practices, the sole pursuit of spectrum efficiency in communication 

systems has given way to a more balanced consideration of energy efficiency [30]. 

The emergence of energy efficiency as an optimization metric signifies a focus on 

decreasing the overall energy consumption of the system.  

1.7 The Main Advantages of the Massive MIMO Technique: 

This technology offers a multitude of advantages in wireless communication 

systems. Firstly, it significantly enhances spectral efficiency by exploiting the 

spatial domain through the utilization of a huge number of antennas at the BS [30]. 

This allows for concurrent transmission to multiple users, effectively increasing the 

system's throughput. Furthermore, it enables efficient utilization of available 

spectrum resources, leading to improved network capacity and coverage. Moreover, 

massive MIMO systems exhibit robustness against various propagation conditions, 
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making them suitable for deployment in diverse environments. Lastly, the 

technology holds promise for enhancing EE in wireless networks by optimizing the 

utilization of resources and reducing overall power consumption. 

• Increased Spectral Efficiency: This technology enhances spectral 

efficiency by leveraging a huge array of antennas at the BS, allowing for 

instantaneous transmission to numerous users and maximizing the utilization of 

available spectrum. 

• Improved Throughput: By exploiting spatial multiplexing, these systems 

can achieve higher data rates and throughput compared to traditional MIMO 

systems, thereby meeting the growing demand for quick information for armed 

forces. 

• Robustness Propagation Conditions: Massive MIMO systems exhibit 

robustness against various propagation conditions, including multipath fading and 

shadowing, making them suitable for deployment in diverse environments with 

challenging RF conditions. 

• Increased Energy Efficiency: Through advanced signal processing 

techniques and optimized resource allocation, massive MIMO technology 

contributes to improved energy efficiency in wireless networks, reducing overall 

power consumption and operational costs. 

• Improved Coverage: Beamforming can extend the coverage of the 

network by directing the signal towards users located at the cell edge. 

• Reduced Energy Consumption: By reducing interference and improving 

spectral efficiency, precoding and beamforming can contribute to lower energy 

consumption. 

• Enhanced User Experience: Improved signal quality and reduced 

interference lead to a better user experience in terms of voice and data services. 

1.8 Research Problem: 

The rapid evolution of wireless communication has led to the deployment of 

fifth-generation (5G) networks, which aim to meet the growing demands for high 

data rates, ultra-low latency, massive connectivity, and enhanced reliability. 

Massive Multiple-Input Multiple-Output (Massive MIMO) technology plays a 

crucial role in realizing these goals by significantly increasing spectral and energy 
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efficiency. However, despite its potential, ensuring consistent and reliable Quality 

of Service (QoS) provisioning in Massive MIMO-based 5G networks remains a 

significant challenge. The complexity of channel estimation, dynamic user mobility, 

interference management, and resource allocation in highly dense and 

heterogeneous environments hinders optimal QoS delivery.  

Therefore, there is a critical need for robust frameworks and techniques that 

can address these challenges and ensure efficient QoS provisioning in Massive 

MIMO-enabled 5G networks.  

Massive MIMO systems can serve several customers at the same time-

frequency resource to the base station’s many antennas. So, the main goal is to 

provide sufficient baseline knowledge on multi-carrier transmission techniques that 

might be applied in a massive MIMO context and in MIMO and other next-

generation wireless systems.  

In wireless systems, there is always a need to improve performance and QoS. 

When evaluating the performance of MIMO and beamforming systems, simulation 

is a crucial tool to have at your disposal. Because of its flexibility and user-

friendliness, the MATLAB simulation environment is utilized by a large number of 

people.  

This methodological framework serves as a blueprint for researchers to 

systematically investigate the intricacies of massive MIMO, ensuring methodical 

execution and rigorous examination of results. Through this approach, researchers 

can gain deeper insights into the capabilities, limitations, and potential applications 

of massive MIMO systems.  

The research methodology for massive MIMO outlines the systematic 

approach employed to investigate and analyze various aspects of massive MIMO 

technology. This methodology serves as a roadmap for researchers to navigate 

through the complexities of massive MIMO studies, ensuring methodical execution 

and robust analysis of findings. 

When evaluating the performance of MIMO and beamforming systems, 

simulation is a crucial tool to have at your disposal. In the research that has been 

done on this topic, several different simulation approaches have been suggested as 
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possible ways to investigate the functioning of the system and evaluate its 

capabilities [30].  

1.9 Parameter Initialization:  

This technology study begins by configuring a number of parameters, including the 

number of base station antennas (n Antennas), the total number of system users (n 

Users), and an array of angular degrees (angular degree) that represents the angles 

at which the users are positioned [30]. Additionally, it initializes a transmission rate 

matrix to store user transmission rates at various angles. Zeros are used to initialize 

the matrix. The thesis then moves into a nested loop where transmission rates are 

simulated for various users and angle degrees.  

It uses the function to simulate the transmission rate to determine the 

transmission rate based on the specified angular degree. 

➢ SNR, BER, Transmission Rate, Throughput, PAPR, Antenna Efficiency, EE, 

PAPR, Sum rate, SE, Residual Energy, SER, CCDF, System Capacity for QoS 

Calculation:  

The study computes the BER, EE, SNR, and QoS based on the calculated 

transmission rates after simulating transmission rates. 

• SNR: It quantifies the relationship between the signal powers to the noise 

power within the channel.  

𝐒𝐍𝐑(𝐢𝐧 𝐝𝐁) = 𝟏𝟎 ∗ 𝐥𝐨𝐠𝟏𝟎 (
𝐏_𝐬𝐢𝐠𝐧𝐚𝐥

𝐏_𝐧𝐨𝐢𝐬𝐞
)                                                     (1.1)                                    

Where:  P_signal is the power of the transmitted signal [30]. 

              P_noise is the power of the noise in the channel. 

• BER: It signifies the amount of incorrectly received bits relative to 

 the        full amount of transmitted bits sent. 

𝐵𝐸𝑅 =  
Number of bits received in error 

Total number of communicated bits
                                                   (1.2) 

• Transmission Rate: The data transfer speed refers to how quickly        

information is conveyed through the channel and is typically spoken in bits 

per second (bps). 

Transmission Rate =  Modulation scheme ∗ Symbol rate                  (1.3) 
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• Throughput: Throughput is the actual data rate achieved by a  

communication system, considering overhead and possible errors. 

Throughput = Transmission Rate ×  (1 −  BER)                              (1.4) 

• Signal Power (P_signal): The power of the input signal is related 

 to the transmit power and the antenna gain. 

                        Psignal = Transmit Power ×  Antenna Gain                    (1.5)                                

• PAPR: It is a measure of the peak power compared to the average power 

 in a transmitted signal. 

             𝑃𝐴𝑃𝑅 =
(𝐏𝐞𝐚𝐤 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐒𝐢𝐠𝐧𝐚𝐥)2

(𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐏𝐨𝐰𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐒𝐢𝐠𝐧𝐚𝐥)2                                              (1.6) 

• The antenna efficiency: 

                         Antenna Efficiency = (
RF Output Power 

DC Input Power
) ∗ 100%            (1.7)                                  

• Spectral Efficiency (SE): 

                      𝑆𝐸 = 𝐾. 𝑙𝑜𝑔2(1 +
𝑀(𝑆𝑁𝑅)

𝐾
)       (1.8)                                

      Where K: number of users, M : number of antennas at the base station.  

• Energy Efficiency (EE):  

Energy efficiency in a massive MIMO system measures how effectively    

the system utilizes energy to transmit and receive data while maintaining a 

specific level of performance.  

𝐸𝐸 =  𝑆𝐸 ⁄ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛                                              (1.9) 

• Achievable sum rate (Rsum): For a massive MIMO system with K users 

and perfect CSI, the achievable sum rate can be given by: 

𝑅𝑠𝑢𝑚 =  ∑ (1 + log2(1 + 𝑆𝑁𝑅𝑘)𝐾
𝑘=1                                               (1.10)                                                                       

• Residual Energy: Residual energy (RE) in this system refers to  

• the unused energy remaining    after a   specific process or transmission. 

𝑅𝐸 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦                                          (1.11) 
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• Symbol Error Rate (SER):It is a measure of the likelihood that a 

transmitted symbol is incorrectly detected at the receiver. Here, P is the 

number of symbols modulation scheme. 

𝑆𝐸𝑅 = 𝐵𝐸𝑅 ∗ (log2 𝑃)                                                                         (1.12) 

• Complementary Cumulative Distribution Function (CCDF): 

It is a statistical tool used to characterize the probability that a random 

variable exceeds a specific threshold. Specifically, in wireless 

communications, the CCDF is commonly applied to metrics such as the 

SNR, PAPR, or achievable sum rate. 

  𝐶𝐶𝐷𝐹(𝑥) =  𝑃𝑟(X > 𝑥) = 1 − FX(x)                                                 (1.13)                                                   

Where: Pr (X>x) is the probability that X exceeds the value x, 

FX(x), the cumulative distribution function (CDF) of X.  

            𝐶𝐶𝐷𝐹 = (𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅𝑂)                                                             (1.14) 

• System Capacity (SC) : 

Massive MIMO enhances system capacity significantly by allowing 

simultaneous transmission to multiple users over the same frequency band 

through spatial multiplexing, thereby efficiently utilizing available spectrum 

and improving spectral efficiency. 

𝑆𝐶 = log2 (𝑑𝑒𝑡 (1 +
𝑆𝑁𝑅

𝐾
))                                                                 (1.15)                                                               

         Maximizing the capacity of a system hinges on the adept utilization     

of massive MIMO precoding techniques. 

These methodologies entail sophisticated signal processing strategies 

implemented at the transmitter, enabling efficient management of the complexities 

inherent in large-scale MIMO systems. 

  Among the array of precoding methods commonly employed are zero 

forcing (ZF), which nullifies interference from other users' signals; matched 

filtering, which optimally combines received signals; MRC, aimed at maximizing 
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the signal power; and MMSE, which minimizes the error between transmitted and 

received signals [30].  

Additionally, techniques such as matched filter precoding and PAPR 

precoding are deployed to address specific challenges encountered in the system, 

ensuring robust and efficient signal transmission. 

 Moreover, various nonlinear methods are tailored to further enhance system 

performance by effectively mitigating nonlinear distortions and optimizing spectral 

efficiency [30]. Through the strategic implementation of these pre-coding 

techniques, massive MIMO systems can unlock their full potential, delivering 

enhanced capacity and improved overall performance in wireless communication 

networks. Zero-forcing, also referred to as no interference, is a spatial pointer giving 

out approach frequently employed in MIMO wireless communication systems to 

mitigate multiuser interference [30]. 

1.10 Research Objectives 

1.  Study and analyze various massive MIMO techniques for 5G networks.  

2.  To propose an energy-efficient algorithm to maximize energy harvested                

in massive MIMO systems (EHMMS). 

3. To develop a novel PAPR reduction technique for the proposed system. 

4. Performance analysis of the proposed technique compared to existing 

methods using potential parameters like throughput, energy efficiency, and residual 

energy. 

The first objective focuses on an in-depth exploration of diverse massive 

MIMO techniques that form the backbone of 5G wireless communication systems. 

It leverages a large number of antennas at the base station to serve multiple users 

simultaneously, significantly enhancing spectral and energy efficiency.  

This stage of the study involves a comprehensive review of the current state-of-the-

art technologies, including advanced precoding methods such as zero-forcing (ZF), 

maximum ratio transmission (MRT), and minimum mean square error (MMSE). It 

also covers aspects like channel estimation strategies, pilot contamination 

mitigation, beamforming techniques, and hybrid architectures using the ZF-SSLP 

method. By analyzing the performance trade-offs, complexities, and deployment 
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challenges of each technique, this step lays a strong theoretical foundation for the 

development of optimized solutions tailored for 5G environments. 

The second objective is to develop an innovative algorithm that enhances 

energy harvesting in massive MIMO systems, thereby improving the overall energy 

efficiency of 5G networks. The proposed energy harvesting in massive MIMO 

systems algorithm will be designed to optimally allocate resources such as power 

and, antennas while also supporting SWIPT. The algorithm aims to intelligently 

balance the trade-off between data transmission and energy harvesting by 

leveraging channel state information and user distribution. Advanced optimization 

techniques, including convex optimization and machine learning, may be employed 

to dynamically adapt to varying network conditions. The ultimate goal is to create 

a scalable and energy-efficient solution that aligns with the growing demand for 

green communication technologies. 

High PAPR remains a significant challenge in massive MIMO systems, 

leading to power inefficiencies and signal distortion. The third objective addresses 

this issue by introducing a novel PAPR reduction technique specifically tailored for 

the proposed SCS-BiLSTMAE framework. The technique will aim to minimize 

PAPR without compromising data integrity or increasing system complexity. 

Potential approaches may include signal distortion methods like clipping and 

filtering, coding techniques such as SLM, or intelligent algorithms utilizing artificial 

intelligence to predict and mitigate high peaks in the signal. This innovative solution 

is expected to improve power amplifier efficiency and extend the operational life of 

communication hardware. 

The final objective involves a thorough performance evaluation of the 

proposed system in comparison with existing state-of-the-art methods. The 

assessment will be conducted using key performance indicators such as throughput, 

energy efficiency, and residual energy. Additional metrics like BER, PAPR levels, 

and spectral efficiency may also be considered to provide a comprehensive 

understanding of the system’s effectiveness.  

Simulations will be carried out using platforms such as MATLAB to validate 

the proposed algorithm under realistic 5G scenarios. This analysis will not only 

demonstrate the practical viability of the proposed solutions but also highlight their 
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advantages over conventional approaches using the SCS-BiLSTMAE method. 

1.11 Key contributions of the thesis     

1.11.1 Analyzing massive MIMO precoding and beamforming techniques 

▪ Hardware Complexity: Implementing complex precoding algorithms and 

beamforming techniques can increase the hardware complexity and cost of the base 

station. 

▪ Pilot Contamination: In dense networks, pilot signals used for channel 

estimation can interfere with each other, leading to performance degradation.  

▪ Channel Estimation: Accurate channel estimation is crucial for the 

effectiveness of precoding and beamforming, especially in rapidly changing 

environments. To support accurate data detection and beamforming, we have implemented 

the BiLSTM channel estimation algorithm. This method is selected due to its 

suitability for low complexity, real-time adaptation, and accuracy, and is applied in 

the simulation/modeling of the 5G massive MIMO system to ensure accurate CSI 

acquisition and reliable performance evaluation. The MMSE estimator is a 

sophisticated statistical technique that aims to provide the most accurate possible 

channel estimate. Its primary goal is to minimize the mean square error (MSE) 

between the true, unknown channel coefficients and their calculated estimates. 

            1.11.2 Key Techniques for Maximizing Energy Harvesting in Massive MIMO 

Massive MIMO enables joint transmission of energy and data, allowing 

receivers to decode information and harvest energy simultaneously by the SWIPT 

method with power splitting and antenna switching. These technologies have 

emerged as a cornerstone in modern wireless communication, promising 

unprecedented energy efficiency and spectral gains. Energy harvesting in massive 

MIMO refers to the process of collecting ambient energy from transmitted signals 

and converting it into usable power for low-energy devices.  

A key technique in maximizing energy harvesting in massive MIMO 

systems is optimal beamforming. It enables the precise direction of radio waves to 

maximize the power transfer to energy-harvesting nodes. By tailoring beam patterns 

to align with the positions of target devices, the harvested energy efficiency can be 

substantially improved. Another strategy involves power-splitting and time-
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switching protocols. These methods allow devices to dynamically allocate received 

signal power between information decoding and energy harvesting. Adaptive 

algorithms ensure that the split ratio or switching duration is optimized in real-time, 

considering the channel conditions and energy requirements [30].  

The SWIPT method dynamically switches between energy harvesting and 

data transmission phases to optimize the overall system performance. Algorithms 

can be developed to determine the optimal time allocation for each user based on 

their energy needs and channel conditions. It divides the received signal into two 

streams: one for energy harvesting and the other for information decoding. 

Optimizing the power splitting ratio can maximize energy harvesting while ensuring 

adequate signal quality for data reception. It utilizes efficient energy storage 

mechanisms to store harvested energy for later use, allowing for continuous 

operation even during periods of low energy availability.  

Employing machine learning algorithms to predict and adapt to changing 

energy harvesting conditions, optimize power allocation, and improve overall 

system performance. 

1.11.3 Key Techniques in Improvement of PAPR Reduction in Massive 

MIMO Systems  

One prominent method for PAPR reduction is the use of precoding 

techniques. Precoding allows signal optimization before transmission, ensuring 

that the signal's peaks are minimized while maintaining the desired quality of 

service. Selected Level Mapping (SLM), Partial Transmit Sequence (PTS), 

Particle Swarm Optimization (PSO), and SCS-BiLSTMAE are probabilistic 

approaches widely adopted for PAPR reduction.  In these methods, multiple signal 

sequences are generated, and the one with the lowest PAPR is selected for 

transmission.  

This approach significantly improves the PAPR profile without degrading 

the signal quality. Deep learning (DL) has recently been integrated into PAPR 

reduction strategies to optimize the performance of traditional methods. ML 

models, trained on system-specific data, can dynamically adjust parameters to 

achieve better PAPR reduction in real-time scenarios. Lastly, hybrid techniques 
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combining multiple PAPR reduction methods have emerged as a comprehensive 

solution.  

For instance, combining SLM with precoding or integrating companding 

with PTS can yield superior results. These hybrid methods leverage the strengths of 

individual techniques while compensating for their weaknesses. 

1.11.4 Key Techniques in Performance Analysis of Parameters  

In modern wireless communication systems, the evaluation of performance 

parameters is essential to ensure reliability, efficiency, and sustainability. Among 

these parameters, throughput, energy efficiency, and residual energy play pivotal 

roles in determining the overall system effectiveness. A comprehensive analysis of 

these metrics is crucial for designing next-generation communication networks. 

➢  Throughput represents the amount of data successfully transmitted over a network 

within a given time frame. It is a critical indicator of system capacity and performance. 

In systems like massive MIMO and IoT networks, achieving high throughput requires 

optimizing resource allocation, reducing interference, and enhancing spectral 

efficiency. Factors such as channel conditions, modulation schemes, and traffic 

patterns significantly influence throughput. Adaptive modulation and coding 

techniques, as well as advanced scheduling algorithms, have proven effective in 

maximizing throughput under varying network conditions. 

➢ Energy Efficiency metric is particularly important in energy-constrained systems, such 

as sensor networks and mobile devices. Improving energy efficiency involves 

minimizing power consumption while maintaining acceptable quality of service. 

Techniques such as energy-aware routing, power control and beamforming are 

commonly employed to enhance EE. Additionally, the integration of renewable energy 

sources and hybrid energy-harvesting systems further boosts energy efficiency in 

sustainable network designs. 

➢ Residual Energy is a crucial parameter for ensuring the longevity of energy-

constrained systems, particularly in wireless sensor networks and battery-powered 

devices. Residual energy is influenced by factors such as transmission power, 

operational cycles, and energy-harvesting capabilities.  
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 1.12 Proposed methodology:  

Proposed methodology block diagram is presented in figure.1.9 

                                            

Figure 1.9: Flow Chart of Proposed methodology 

Stage I: Analyze the conventional techniques and understand the gaps. 

Stage II: Design of proposed technique for energy harvesting  

              using optimization. 

Stage III: Implementing the proposed techniques. 

Stage IV: Adding PAPR techniques for the proposed technique. 

Stage V: Using the proposed optimization techniques in one or two  

                 intrusive applications. 

Tools: MATLAB R2024b simulation tool can be used as platform for  

      compilation and simulation.  
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Modeling the MIMO channel, creating random channel realizations, 

simulating beamforming methods, and computing presentation metrics such as 

transmission rate and SINR are all possible with the help of MATLAB R2024b, 

which offers a comprehensive collection of functions and tools for these purposes. 

Modeling the MIMO channel, creating random channel realizations, simulating 

beamforming methods, and computing performance metrics such as data rate and 

SNR are all possible with the help of MATLAB, which offers a comprehensive 

collection of functions and tools for these purposes. These proposed methodologies 

are then evaluated through simulations or practical implementations to assess their 

effectiveness in enhancing QoS parameters, as shown in figure 1.9.    

Based on the findings, novel methodologies tailored to the specific 

requirements of 5G networks are proposed, focusing on aspects such as supply 

distribution, noisiness management, and beamforming strategies. Finally, iterative 

refinement and optimization of the proposed methodologies are performed based on 

feedback and performance evaluations, ensuring continuous improvement and 

adaptation to evolving network conditions and user demands. Through this 

approach, the QoS capabilities of massive MIMO systems in 5G networks can be 

maximized, ultimately leading to better system presentation and consumer 

contentment. 

1.13 Thesis organization 

  The thesis is presented in the following manner. The introduction will be 

presented in chapter one. The literature review will be presented in chapter two. 

Algorithms for the proposed methods will be discussed in chapters three through 

six. A conclusion and future scope will be offered in chapter seven. 

In the second chapter, the literature review and review table will be 

discussed. This chapter has presented a comprehensive review of relevant literature 

and identified key themes and gaps that inform the current research. The inclusion 

of a review table provides a structured and summarized representation of the 

literature consulted. The insights gained from this chapter contribute directly to the 

development of the research framework and the justification for undertaking the 

present study. 
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In the third chapter, precoding and beamforming are fundamental techniques 

for realizing the full potential of these systems. Linear precoding methods like ZF 

and hybrid ZF with SLLP strike a balance between performance and complexity, 

while hybrid beamforming offers a practical compromise for high-frequency 

deployments. Overcoming challenges such as pilot contamination and hardware 

limitations will be pivotal in advancing these technologies. By carefully designing 

and implementing these techniques, it is possible to achieve significant 

improvements in system performance, energy efficiency, and user experience.  

In the fourth chapter, advanced channel state information (CSI) acquisition 

is crucial for energy harvesting. Massive MIMO systems rely on accurate CSI to 

predict the optimal transmission parameters. Techniques such as deep learning-

based CSI prediction have been explored to enhance energy transfer accuracy, 

reducing the impact of channel fading and noise. Additionally, the integration of 

hybrid energy-harvesting systems combining radio frequency (RF) energy 

harvesting with solar or vibration energy harvesting offers a robust solution. These 

systems ensure reliable operation even in environments with fluctuating RF signal 

strengths. Maximizing energy harvesting in massive MIMO systems is a 

multidisciplinary challenge requiring innovations in hardware design, algorithm 

development, and system optimization. Future advancements in artificial 

intelligence, green communication technologies, and energy-efficient circuit 

designs are expected to further elevate the potential of this transformative approach. 

In the fifth chapter, improving PAPR reduction in massive MIMO systems 

is pivotal for the efficient operation of next-generation wireless networks. As 

research continues, advancements in hardware capabilities, optimization 

algorithms, and intelligent systems are expected to revolutionize PAPR reduction 

techniques, ensuring sustainable and high-performance communication systems. By 

employing a combination of digital and analog techniques, along with machine 

learning approaches, it is possible to mitigate the impact of high PAPR and improve 

the overall system performance. Here, a BiLSTM system is employed to capture 

high-range chronological dependencies inherent in the signal. Long-range 

dependencies denote relationships between distant elements within the signal 

sequence, which may span over considerable time intervals.  
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By leveraging the BiLSTM network, the system effectively captures and 

learns these intricate temporal dependencies, thereby refining the PAPR reduction 

achieved by the SCS-AE compression. 

Sixth chapter: The interdependence between throughput, EE, and RE 

requires careful optimization to achieve a balanced system performance. For 

example, maximizing throughput often involves higher power consumption, 

potentially reducing energy efficiency and depleting residual energy. Conversely, 

focusing solely on energy efficiency may compromise throughput. Advanced 

optimization techniques, such as multi-objective algorithms and machine learning-

based approaches, are increasingly employed to balance this trade-offs and achieve 

an optimal performance profile. Throughput, EE, and RE are critical performance 

metrics in wireless communication systems. By carefully analyzing and optimizing 

these parameters, it is possible to design systems that are efficient, reliable, and 

sustainable. 

In the seventh chapter, the conclusion and the future scope of the future 

generation system can be explained. Adaptive constellation mapping and 

demapping serve as additional contributors to system enhancement by dynamically 

adjusting the signal constellation in response to changing channel conditions. This 

adaptive approach ensures optimal signal transmission and reception, maximizing 

spectral efficiency and minimizing, as was explained in the last chapter. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Many researchers have done work related to 5G and Massive MIMO 

consideration of various technological implementations in it to improve the system; 

the below gives an overview of research gaps found in the literature survey.  

Pioneering green networking techniques, energy efficiency maximization 

schemes, intervention exposure and improvement strategies, and connectivity 

administration approaches have emerged to establish efficient wireless systems 

capable of meeting the escalating demand for traffic while ensuring the continuous 

evolution of wireless technologies.  

Zhang et al. (2019) paper introduces a comprehensive framework for 

optimizing resource allocation in 5G mobile wireless networks leveraging mmWave 

multi-input multi-output (m-MIMO) technology, catering to both asymptotic and 

non-asymptotic scenarios. By integrating statistical quality-of-service (QoS) 

considerations, the proposed methods offer versatile strategies tailored to the 

distinctive characteristics of mmWave communication. Our model delineates the 

intricate interplay between network parameters and QoS metrics to maximize actual 

capacity, ensuring efficient utilization of resources while meeting stringent 

performance requirements. Through meticulous analysis and innovative 

approaches, our suggested schemes aim to propel mmWave m-MIMO-based 5G 

networks towards their full potential [31]. 

Kayyali et al. (2020) paper introduces, before delving into resource 

management and quality-of-service (QoS) provisioning, this study meticulously 

examines the features and specifications inherent in 5G networks. By 

comprehensively understanding the intricacies of 5G technology, the research aims 

to lay a solid foundation for optimizing resource utilization. Subsequently, a survey 

is conducted, focusing on various aspects of resource management and QoS 

provisioning within the realm of 5G networks [32]. 

In 2021, Lavdas et al. have suggested an adaptive hybrid beamforming 

method for 5G millimeter wave MIMO wireless cellular networks. Here, assess the 
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performance of the adaptive hybrid A-D beamforming technique in 5G mmWave 

wireless cellular networks with massive MIMO. Here, generated beams were 

created dynamically in response to traffic demands by means of analog on-off 

activation of burning essentials for each perpendicular aerial collection. This 

eliminates the need for a costly, mechanically complex steering antenna system, 

thereby serving active users who request high data rate services. Every vertical array 

has a dedicated RF chain, making it a radiating element in circular array design. 

When analyzed with static grid of beams scenario, the suggested adaptive process 

is able to drastically lower the number of active radiating antenna elements. In same 

setting, it was possible to drastically lower both the overall downlink transmission 

power and the blocking probability by maintaining a fixed number of radiating 

elements. It attains a low bit error rate, and it provides  a high normalized mean 

square error [33]. 

In 2021, Ahmed et al. have presented ML depending on the  selection of 

beams with lower complexity hybrid beamforming design for 5G massive MIMO 

systems. Here, provide a low-difficulty hybrid beamforming and energy-effectual 

joint ML-dependent beam-user selection for a multiuser massive MIMO downlink 

system. The 5G technology that was being employed in vehicle-to-everything 

communications and other IoT applications was greatly facilitated by massive 

MIMO systems; the radio frequency (RF) chain's high power consumption was a 

result of the base station's numerous antennas. Here, present ML depend beam-user 

selection strategy that facilitates creation of an orthogonal hybrid beamforming 

design with low complexity. Using Householder (HH) reflectors, an orthogonal 

analogue beamforming (ABF) matrix was produced. For beam-user selection, it 

employs a feedforward neural network (FFNN) approach. It provides low 

computation complexity, and it attains low blocking probability [34].  

Zhang et al. (2021) pioneer the establishment of these networks within the 

context of 6G wireless technology, augmented by instantaneous wireless 

information and power transfer capabilities. Through meticulous planning and 

analysis, we aim to strike an optimal balance that maximizes the benefits of both 

energy harvesting and data transmission, ensuring efficient resource utilization 

while meeting stringent QoS constraints. To validate the efficacy of our proposed 
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techniques, extensive simulations are conducted, providing empirical evidence of 

the performance gains achieved by the developed systems [35]. 

Liu et al. (2021) introduced a novel approach to address low-complexity 

detection by leveraging Neumann series expansion for approximate matrix 

inversion. By truncating the series to limit elements, they achieved a significant 

reduction in complexity. However, this method's performance suffers from 

increased complexity with a higher number of elements and lowers BER due to 

truncation [36]. 

Lavdas et al. (2022) A novel approach for machine learning (ML) 

beamforming involves leveraging a k-nearest neighbors (k-NN) approximation 

method, presenting an alternative paradigm to traditional techniques. This approach 

entails training the system to generate optimal beamforming configurations based 

on the spatial distribution of throughput demand, effectively adapting to varying 

network conditions. Rigorous evaluation of this method is conducted using a 

specially designed system-level simulator capable of executing parallel Monte Carlo 

simulations, ensuring comprehensive assessment across diverse scenarios. The 

results obtained from this evaluation reveal that the potential SE and EE values 

achieved through the k-NN approximation method are comparable to those attained 

by existing state-of-the-art methodologies. Notably, this is accomplished while 

minimizing hardware and algorithmic complexity, as user-specific beamforming 

computations are obviated.  This underscores the efficacy of the proposed approach 

in optimizing beamforming performance while streamlining implementation, thus 

contributing to advancements in ML-based beamforming techniques [37]. 

In 2022,Gholami‐Dadkan, et al. have presented reducing jamming effects in 

multicellular massive MIMO systems. Here, assess the multi-cell scenario's Ma-

MIMO systems' sum spectral efficiency (SE) with respect to jamming effects. 

Initially, a closed-form expression for the sum SE in the presence of a jammer was 

found utilizing dual detectors, maximum ratio combining, and zero-forcing. Next, 

system performance was determined in relation to overcrowding energy, number of 

BS aerials, SNR, and lengths of coherence blocks.  

Finally, the challenge of enhancing fairness trade-off among middle awful 

users and cell edge rightful users was showed by employ log barrier functions in 
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order to optimize SINR of cell edge users. Numerical studies demonstrated that sum 

SE better with suggested approaches, also by increasing number of antennas at BS 

while taking into account similar nosiness strength and energy of legal users. It 

provides low normalized mean square error and it attains low energy efficiency [38]. 

In 2023,Nguyen et al. have presented a DL framework about the selection 

of beams with power in these systems. The beam-steering technique was applied to 

assess the user's signal intensity coming from the BS. In the case when the channel 

was unknown, suggest a unique learning framework to identify the optimal beam 

for a given user, transmit power to minimize total cost, which includes both transmit 

power and dissatisfaction rate. It also solves problem of missing data and uses 

LSTM on temporal processed inputs to choose the appropriate beam. In addition, 

create a learning agent that considers the necessary transmission rate while 

predicting the appropriate transmit power from transmitted SSBs [39].  

In a similar vein, Fang et al. proposed a low-complexity detection method 

based on MMSE parallel interference cancellation, also utilizing Neumann series to 

avoid complex matrix inversions. Despite its simplicity, this approach tends to 

exhibit a high BER in 2023 [40].  

Contrarily, Gao et al. proposed an alternative solution where matrix 

inversion is circumvented, and detection vectors are directly formed by solving 

linear equations. Employing the Successive Over Relaxation (SOR) algorithm, they 

achieved complexity reduction, albeit at the cost of increased iteration requirements 

for improved BER performance. Each method presents trade-offs between 

complexity and performance, highlighting the ongoing challenge of achieving an 

optimal balance in low-complexity signal detection techniques [41]. 

Other studies, such as that by Alonzo et al. investigated the energy efficiency 

of cell-free mmWave technology, providing valuable insights into environmentally 

sustainable wireless network design [42].   

 Gao et al. conducted a thorough investigation into the energy efficiency of 

SWIPT-aided NOMA networks, shedding light on the potential of such networks.  

They explored the integration of CF massive MIMO and SWIPT technologies to 

enhance the EE of wireless communication networks [43].  



 

 

38 
 

In 2023, Bartsiokas et.al, presented networks built on the 5G/B5G that use a 

number of advanced physical layer methods, like relaying-aided transmission, with 

the goal of enhancing network performance and expanding multi-cellular 

orientations' coverage region. Nevertheless, the implementation of using such 

strategies increases the computing complexity of radio resource management 

(RRM) activities in cellular environments with higher levels of interference and 

multivariate channel representations. Given that ML or DL methods can lessen 

computational load linked with RRM, they were suggested as an effective means of 

supporting E2E user applications in extremely complex contexts. Here, examines 

the combined issue of relay node placement with selection in 5G/B5G networks, 

taking into account subcarrier allotment and power management restrictions.  Both 

sub-problems were solved by combining and analyzing different DL-based 

approaches. It provides high energy efficiency, and it attains low blocking 

probability [44]. 

In 2023, Taghavi, et al. has suggested joint active-passive beamforming with 

user association in IRS-aided mmWave cellular networks. Here, it provides a novel 

strategy for user-aiding mmWave cellular networks assisted by multiple IRSs that 

considers cell interference. By simultaneously enhancing active beamforming at 

BSs, passive beamforming at IRSs, user-BS association while taking the effect of 

IRSs into account, establish network spectrum efficiency maximization issue. 

Active beamforming at BSs, and passive beamforming at IRSs, and are optimized 

using a fractional programming technique, and the optimal solution for the UA 

optimization was achieved by combining the  penalization technique by successive 

convex programming. By enhancing mmWave propagation routes in non-line of 

sight conditions and extending coverage region to blind spots, intelligent reflecting 

surfaces (IRSs) hold great promise for the development of next-generation WNs. It 

provides low latency, and it attains  ahigh bit error rate [45]. 

Meanwhile, Hamdi, Qaraqe, and colleagues proposed power collaboration 

and management strategies specifically designed for CF-massive MIMO systems, 

further advancing the field. These efforts collectively contribute to the development 

of energy-efficient networks, laying the groundwork for future wireless systems in 

2024 [46]. 
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P. Lohan et al. proposed that achieving the goals of next-generation wireless 

networks—such as global connectivity, energy-efficient and sustainable 

communication, massive device integration, ultra-reliable performance, and 

minimal latency—requires the development of a variety of complementary enabling 

technologies. These include UAV-assisted networks, vehicular communications, 

heterogeneous cellular networks (HCNs), the Internet of Things (IoT), device-to-

device (D2D) communication, millimeter wave MIMO (mmWave-MIMO), non-

orthogonal multiple access (NOMA), and terahertz (THz) communication. Each of 

these technologies has unique characteristics that must be carefully addressed for 

effective deployment. Among the primary challenges, interference management 

emerges as a critical factor in optimizing the utilization of limited bandwidth and 

power resources, ultimately enhancing overall network performance and the user’s 

quality of experience (QoE). To tackle this issue, the integration of artificial 

intelligence (AI) and machine learning (ML) into 5G and beyond (5GB) networks 

is becoming increasingly important, offering promising solutions for interference 

management in dynamic and complex network environments in 2024 [47]. 

M. N. Hossain et al. presented a comprehensive framework for the design 

and implementation of a transceiver in a reconfigurable intelligent surface (RIS)-

assisted, UAV-enabled, secure multi-user full-duplex spatial spreading (FDSS)-

based DCT-spread massive MIMO-OFDM system. The primary focus is on 

enhancing physical layer security (PLS), with an evaluation of the performance of 

CD-ZF and LR-MMSE signal detectors to improve the bit error rate (BER). The 

study also explores the application of both lower- and higher-order digital 

modulation schemes, specifically 4-QAM and 16-QAM. The proposed system 

exhibits negligible out-of-band (OOB) spectral power leakage, significant PAPR 

reduction, and enhanced SE in 2025 [48]. 

 

2.2 Literature Review Table: 

Massive MIMO, which is being investigated as a critical technique to 

improve SE in future generation cellular systems, is described in Table 2.1 

compared with existing methods. 

Table 2.1: Literature Survey 



 

 

40 
 

AUTHORS AND 

YEARS 

METHODOLOGY FINDINGS 

Zhang et al., (2019) Develop the 5G mobile wireless 

networks model based on 

millimeter wave m-MIMO in 

particular to maximize the actual 

capacity for our suggested 

schemes in both asymptotic & 

non-asymptotic regions. 

When it comes to 

ensuring a bounded QoS 

for heterogeneous 

statistical delay/error 

rate, the proposed 

schemes perform better 

than the other current 

systems. An 

improvement of up to 

28% in energy 

efficiency has been 

observed compared to 

conventional systems 

under stringent QoS 

requirements. 

Kayyali (2020) This study went over the features 

and specifications of 5G networks 

before conducting a survey on 

resource management and QoS 

provisioning to better manage 

resource consumption in 5G 

networks. 

The management of 

network resources 

should be the top priority 

in order to prevent 

network congestion and 

performance 

deterioration during 

peak hours and traffic 

spikes and to enable 

more users to access 

network services when 

demand is high. On the 

other hand, a significant 

challenge in 5G 

networks is meeting the 

QoS requirements for a 

wide variety of 

emerging services. An 

overall improvement of 

approximately 57% has 

been achieved in 

average user throughput. 

Zhang et al., (2021) This study established CF (cell-

free) m-MIMO 6G wireless 

networks with SWIPT-enabled 

FBC (finite block length coding)- 

based statistical delay and error 

The trade-offs between 

gathered energy and 

𝜖effective capacity 

should be optimized for 

the suggested statistical 

QoS provisioning. The 
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rate-constrained QoS 

provisioning techniques[27]. 

simulation findings 

serve as a final 

validation and 

assessment of the 

developed systems. 

Under FBC and 

statistical QoS 

constraints, the proposed 

system achieves an 

effective capacity of 

4.05 bps/Hz and harvests 

3.9 µJ of energy at the 

optimal power splitting 

ratio. 

Bolla & Singh, 

(2022) 

The implementation of secure 

long-distance wireless energy 

transmission necessitates the 

utilization of energy beam-

generating methodologies within 

these systems. The letter 

maximizes information 

transmission's energy efficiency 

(bits per joule) while considering 

QoS, a latency limitation. This 

includes maximizing transfer 

length and transmitting power. 

This example uses block 

diagonalization (BD) at the 

source to minimize relay-

destination channel interference 

and maximize relay energy. As a 

final phase, this analysis 

simulates conventional circuit 

power needs. This work is 

supplemented by basic online 

guidelines for all possible 

situations. 

When considering the 

circuit's maximum 

power consumption, 

numerical findings 

demonstrate that the 

intention of a nearest 

online approach can 

perform the same 

function as its offline 

version. Energy 

harvesting efficiency 

can be enhanced by 

reducing the network 

size and the number of 

RF chains. The duration 

required to harvest 

energy from different 

users varies. Studies 

show that when the 

number of radio users 

exceeds 30, 

configurations with 

fewer RF chains (L = 1) 

outperform those with a 

higher number of RF 

chains (L = 16). 

Moreover, the 

significance of 

scheduling for energy 

harvesting increases 

with the number of 

users. 
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Lavdas et al., 

(2022) 

An alternative approach for 

machine learning (ML) 

beamforming is the utilization of 

a k-nearest neighbors (k-NN) 

approximation method. This 

approach involves training the 

system to generate suitable 

beamforming configurations by 

considering the spatial allocation 

of throughput demand. The 

performance of this method is 

rigorously calculated using a 

specially designed system-level 

simulator capable of running 

parallel Monte Carlo simulation 

results. 

The obtained results 

show that the potential 

SE and EE values 

exhibit a level of 

comparability to those 

achieved by other state-

of-the-art 

methodologie"s. This is 

accomplished while 

minimizing both 

hardware and 

algorithmic complexity 

by eliminating the need 

for user-specific 

beamforming 

computations. 

Specifically, the 

standard deviation of the 

effective capacity is 

2.5/3.2 bps/Hz for 

Traffic Scenario 1 and 

4.6/5.4 bps/Hz for 

Traffic Scenario 2 when 

considering 5 and 15 

PRBs per mobile station 

(MS), respectively. 

Y. Yan et.al., 

(2023) 

It faces challenges such as high 

complexity and scalability issues, 

particularly in dense network 

environments. However, it 

benefits from structured policy 

updates, which contribute to 

faster convergence and reduced 

variance in Q-value 

approximation. 

 

It proposes a novel 

model-assisted 

decentralized multi-

agent reinforcement 

learning (MADRL) 

framework for the joint 

optimization of hybrid 

beamforming in massive 

MIMO mmWave 

systems. Extensive 

simulations have been 

conducted, and the 

numerical results 

demonstrate that Model-

Assisted Decentralized 

Multi-Agent 

Reinforcement Learning 

(MAD-MARL) 

significantly accelerates 

the learning process and 

substantially enhances 
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overall performance 

compared to existing 

approaches. 

M.M.Kesargheh,. 

et.al.,(2024) 

The power-splitting SWIPT (PS-

SWIPT) method impacts the 

optimization problem’s primary 

constraints based on energy and 

power limits. 

This paper is Collocated 

massive MIMO SWIPT 

for wireless 

communication 

networks. Numerical 

results show that the 

proposed scheme 

reduces federated 

learning training time by 

up to 70.01% and 

21.29% compared to 

CF-TDMA mMIMO 

and S2FL schemes, 

respectively, while 

maintaining comparable 

accuracy. 

S. Dey ,. et.al., 

(2024) 

The user equipment (UE) 

supports simultaneous wireless 

information and power transfer 

(SWIPT) and is capable of ultra-

reliable low-latency 

communication (URLLC). To 

address challenges caused by 

hardware impairments, we 

propose novel distortion-aware 

minimum mean square error 

(MMSE) and regularized zero-

forcing (RZF) precoders that 

effectively mitigate the negative 

effects of low-cost RF chains and 

coarse quantization from 

ADCs/DACs. 

This paper numerically 

demonstrates that: (i) the 

energy harvested by user 

equipment (UE) 

increases with higher 

spatial correlation; (ii) 

the proposed distortion-

aware precoders 

effectively mitigate the 

spectral efficiency (SE) 

loss caused by URLLC 

implementation; and (iii) 

the proposed 

optimization framework 

achieves near-optimal 

performance with 

significantly lower 

computational 

complexity compared to 

exhaustive grid-based 

search methods. During 

the WPT phase, the UEs 

experience high received 

signal strength, enabling 

them to harvest 

sufficient energy for 

data transmission even 
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within a short charging 

duration. This results in 

an extended data 

transmission interval 

and allows the UEs to 

achieve high spectral 

efficiency. 

M. H. Adeli et.al., 

(2025) 

"This article investigates the 

energy-efficient design of 

downlink transmission in a 

simultaneous wireless 

information and power transfer 

(SWIPT) massive MIMO 

(mMIMO) system, incorporating 

a nonlinear energy harvesting 

(EH) model. The objective is to 

jointly determine suboptimal 

values for the allocated power 

coefficients and power splitting 

(PS) ratios by formulating and 

solving an optimization 

problem.” 

"To achieve this, we first 

derive statistical 

expressions for the 

signal-to-interference-

plus-noise ratio (SINR) 

and harvested power, 

assuming that base 

stations (BSs) utilize 

statistical 3D 

beamforming. These 

expressions are then 

used to formulate an 

optimization problem 

aimed at maximizing 

energy efficiency (EE), 

subject to user quality-

of-service (QoS) 

requirements, including 

data rate and harvested 

power constraints, as 

well as a total transmit 

power limit. Simulation 

results validate the 

effectiveness of the 

proposed design, 

demonstrating a 2- to 5-

fold improvement in EE 

compared to 

conventional methods 

employing equal power 

allocation and fixed 

power-splitting (PS) 

ratio algorithms. 

Moreover, the growth 

rate of EE is 

significantly higher 

when varying design 

parameters such as the 

number of antennas and 

the Rician factor, in 
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contrast to the 

aforementioned baseline 

algorithms. 

2.3 Problem Statement  

This includes evaluating the complexity, performance, and scalability of 

systems to ensure they can efficiently handle increased antenna counts on both ends 

of the communication link. 

• Machine learning-based approaches: Utilize machine learning 

techniques, such as reinforcement learning or deep learning, to learn optimal 

scheduling policies from historical data and adaptively adjust scheduling decisions 

based on changing network conditions. Machine learning-based approaches can 

improve the efficiency and fairness of scheduling algorithms by leveraging 

advanced data analytics and predictive modeling techniques [47]. 

• Qos aware scheduling: Explore QoS-aware scheduling algorithms that 

prioritize users based on their definite quality of service requirements. By 

considering factors such as data rate, latency, and with reliability, QoS-aware 

scheduling algorithms can ensure that each user receives a satisfactory level of 

service while maximizing overall system throughput. The objectives have been 

reviewed based on research problem [48]. 

• Multi-objective optimization: Explore these techniques to concurrently 

optimize multiple conflicting objectives, such as throughput maximization and 

fairness enhancement. Multi-objective optimization approaches can provide a 

systematic framework for balancing competing objectives and finding Pareto-

optimal solutions that trade-off between different performance metrics [49-50]. 

 

 

 

 

 



 

 

46 
 

Chapter 3 

MASSIVE MIMO PRECODING, BEAMFORMING 

TECHNIQUES 

 3.1.1 Introduction 

The utilization of hybrid ZF with SLLP precoding techniques is 

indispensable in maximizing the system's ability, particularly in reducing 

interference and improving signal quality. These techniques play a fundamental role 

in managing the complexity of large MIMO systems by optimizing the transmission 

of data from terminals to base stations [51]. Understanding the intricacies of massive 

MIMO communication systems is paramount in addressing fundamental technical 

concerns and laying the groundwork for the future generation systems.  

Commonly utilized precoding methods include Zero-Forcing (ZF),  matched 

filtering (MF), MRC (Maximum Ratio Combining), MRT (Maximum Ratio 

Transmitter), ML (Maximum Likelihood), LMMSE (Linear Minimum Mean 

Square) , Bi-LSTMAE, peak-to-average power precoding, and various nonlinear 

techniques tailored to specific challenges[51-52]. To address the underlying 

technical intricacies, it's imperative to comprehend the operations of massive MIMO 

communication systems, laying the groundwork for the evolution of next-generation 

systems. This understanding also underpins the development and deployment of 

diverse applications and services within smart sensing systems.  

This technique extensively compares linear precoders, considering their 

performance and complexity profiles. Nonlinear precoding methods are also 

examined; despite their higher computational demands, they can achieve 

satisfactory performance levels. Furthermore, the research explores the potential 

integration of machine learning techniques into precoding methods [53]. Moreover, 

the utilization of massive MIMO technology aids in comprehending and advancing 

various applications and services within smart sensing systems. Below are outlined 

some of the principal objectives of this technology within 5G networks. In figure 

3.1, M antennas are used at the base station, and each of the N users is typically 

equipped with a single antenna. 
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While linear precoders may experience presentation dilapidation in certain 

scenarios, their relative simplicity remains pivotal in transmitter design, thus 

contributing significantly to system efficiency. This thesis extensively compares 

linear precoders, elucidating their performance-complexity profiles [54]. 

 

Figure 3.1: Massive MIMO BS to all users by using precoding techniques 

It's worth noting that cell collaboration may not always be advantageous across all 

deployment scenarios, with the effectiveness of such approaches heavily dependent 

on organizational distinctiveness, such as in figure 3.1 and the positioning of M 

transmit antennas and N users.  

3.2 Massive MIMO Beamforming Techniques 

The utilization of mmWave spectrum allows for the integration of large 

multi-antenna arrays into compact base stations (BS) and consumer electronics 

devices, enabling thousands of antenna components on user equipment (UE). This 

property facilitates the creation of highly directional beams with maximum gain, 

particularly beneficial for multi-user applications leveraging extensive MIMO 

technology [55]. In large MIMO networks, digital beamforming emerges as the 

most advanced method to maximize spectral efficiency.  

A single-carrier system that doesn't have the same PAPR capabilities, 

however, would be of enormous benefit. When using multiple taps and high-level 

modulation for higher data rates, a system with more antennas may be demonstrated 

to be less complicated, but full-fledged time domain equalization is required for a 

frequency-selective channel. Research is needed to compare this system to the 

standard MIMO system under less-than-ideal conditions.  
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Beamforming is a critical technique in these MIMO systems for directing 

signal energy toward desired users while reducing interference. In massive MIMO, 

three main types of beamforming techniques are employed: analog, digital, and 

hybrid beamforming [56]. 

➢ Analog Beamforming:  

             It relies on the manipulation of signals in the analog domain. A single RF 

chain is used to process all antenna signals, which makes it energy-efficient and less 

complex. It can adjust the phase of the signal at each antenna to form a directional 

beam. Since only one RF chain is needed, the hardware is simpler and consumes 

less power compared to digital beamforming [57]. It has the advantage of reduced 

power consumption and hardware cost. It has a disadvantage of  limited flexibility, 

as it cannot support multiple data streams simultaneously. It is not having an 

opportunity for suboptimal performance in scenarios with dynamic multi-user 

environments. 

➢ Digital Beamforming 

It operates in the digital domain, providing high flexibility and performance 

by processing signals independently for each antenna using separate RF chains and 

baseband units. Each antenna element has its own RF chain and baseband 

processing unit. Amplitude and phase can be adjusted at each antenna element to 

achieve precise beam patterns. It allows simultaneous transmission to multiple users 

by creating independent beams for each. It has high performance and flexibility in 

beam forming. It has the advantage of being ideal for scenarios requiring multi-user 

support or dynamic beamforming. It has the disadvantage of high power 

consumption and hardware cost due to the need for multiple RF chains with complex 

signal processing requirements [58]. 

➢ Hybrid Beamforming 

Hybrid beamforming combines the strengths of analog and digital 

beamforming to balance performance and hardware complexity. It divides the 

beamforming process between analog and digital domains. It uses fewer RF chains 

than digital beamforming while still achieving multi-user support. It reduces 

hardware complexity without compromising much on performance.  It is suitable 

for cost-effective and power-efficient compared to fully digital beamforming and 
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for mmWave communications where antenna arrays are large and RF chain costs 

are significant. It supports multi-user scenarios more effectively than pure analog 

beamforming. It has the disadvantage of increased complexity compared to analog 

beamforming. It is more prominent in performance that may not match fully digital 

beamforming in highly dynamic environments [59]. 

➢ Adaptive Beamforming: In 5G Massive MIMO systems, it is a 

dynamic technique that continuously adjusts the direction and shape of the 

transmitted beams based on real-time channel conditions and user locations. Unlike 

fixed or static beamforming methods, adaptive beamforming uses CSI to optimize 

signal transmission, thereby enhancing signal quality and reducing interference. 

This approach allows the system to focus energy more precisely toward intended 

users while minimizing leakage toward others. As a result, adaptive beamforming 

significantly improves key QoS metrics, such as throughput, reliability, and spectral 

efficiency. 

Table 3.1: Comparison of beamforming techniques 

Beam forming 

Technique 
Description 

 

QoS Benefits 

 

Analog 

 beamforming 

Employs phase 

shifters to steer the  

beam using a single 

 RF chain. 

 

Low complexity and  

power-efficient for mmWave. 

 

Digital  

beamforming 

Uses a separate RF chain  

per antenna;  

allows full flexibility 

 in beam control. 

 

High spectral efficiency,  

interference reduction. 

 

Hybrid beamforming 

Combines analog and  

digital beamforming 

 to balance complexity 

 and performance. 

 

Scalable for mmWave,  

balances cost, power, and 

 throughput. 
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In conclusion, the choice of beamforming technique depends on the 

application scenario. Analog beamforming is suitable for low-cost systems, digital 

beamforming is ideal for high-performance applications, and adaptive beamforming 

dynamically adjusts beam patterns, making it well-suited for massive MIMO 

systems operating at mmWave frequencies [60]. 

3.3 Types of linear precoding techniques 

In these systems, several precoding techniques are employed to optimize 

signal transmission and reception. 

3.3.1 ZF Precoding: It is a widely used precoding method that aims to eliminate 

noisiness between customers by setting the prevailing conditions such that the 

interference seen at each user is nullified. This technique effectively suppresses 

interference but may lead to noise amplification, particularly in scenarios with high 

SNR imbalances [60-61]. For large SNRs, the sum rate will be increased in this 

technique. It is a commonly utilized precoding method that aims to nullify nosiness 

among users by selecting the precoding matrix to cancel out interference at each 

user's receiver. ZF precoding aims to completely eliminate interference between 

users. It achieves this by designing the transmitted signals in such a way that the 

interference from other users is nullified at the intended receiver. Mathematically, 

ZF precoding vectors are chosen to be orthogonal to the interference channels [61]. 

➢ Benefits of ZF precoding in Massive MIMO 

• Eliminates Interference Suppression: Effectively eliminates interference 

between users, improving system capacity and user experience.    

• Relatively Simple Implementation: Compared to some other precoding 

techniques, ZF can be relatively straightforward to implement. 

• Improved Throughput: By reducing interference, ZF enables 

simultaneous transmission to multiple users, maximizing system throughput. 

 

 

Adaptive  

beamforming 

 

 

Dynamically adjusts 

 beam patterns based  

on real-time channel  

conditions. 

 

Responsive to 

mobility, channel 

conditions and 

changing 

environments. 
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• Simplicity: The linear nature of ZF makes it computationally very simple. 

In conclusion, ZF is a powerful tool in massive MIMO systems, offering 

significant benefits in interference management and throughput enhancement. 

Ongoing research into hybrid methods and computational optimizations continues 

to extend its applicability to next-generation communication networks. 

3.3.2 MRT Precoding: It is another precoding technique that focuses on 

maximizing the received signal power at each user. It achieves this by setting the 

precoding matrix to be the Hermitian transpose of the channel matrix, scaled by the 

inverse of its Frobenius norm. MRT is known for its simplicity and robustness 

against noise amplification compared to ZF [62]. MRT aims to maximize the 

received signal power at the user equipment. Mathematically, the MRT precoding 

vector is proportional to the conjugate of the channel vector. The data symbols for 

each user are multiplied by their corresponding MRT precoding vectors and then 

transmitted through the antenna array. MRT is a computationally simple technique 

and is relatively easy to implement. By matching the transmitted signal to the 

channel, MRT maximizes the received signal power at the user equipment.  

➢ Benefits of MRT precoding in Massive MIMO   

• Good performance in high SNR regimes: MRT performs well in high 

signal-to-noise ratio (SNR) conditions, where maximizing received power is crucial. 

➢ Limitations of MRT 

• Susceptibility to interference: MRT does not explicitly address 

interference from other users, which can limit its performance in 

multi-user scenarios. 

• Limited performance in low SNR regimes: In low SNR conditions, 

maximizing received power may not be the most effective strategy, 

and techniques like MMSE precoding may offer better performance. 

MRT is a fundamental precoding technique in massive MIMO systems. 

While it may not always be the optimal choice in all scenarios, its simplicity and 

effectiveness in maximizing received signal power make it a valuable tool in many 

applications. 
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3.3.3 MMSE Precoding: It decreases the mean square error between the 

communicated signal and the desired received signal, considering both interference 

and noise. Unlike ZF, MMSE takes into account the noise variance and channel 

conditions, making it more suitable for scenarios with imperfect channel state 

information. However, MMSE precoding involves more computational complexity 

than ZF and MRT [63].  

MMSE is a powerful tool for signal and channel estimation and interference 

management in massive MIMO systems. Its ability to optimize performance by 

minimizing errors makes it an integral part of modern wireless communication. 

Despite its computational challenges, ongoing research into optimization techniques 

and hybrid approaches continues to enhance the practical applicability of MMSE in 

hyper MIMO systems. 

3.3.4 ML Precoding: It is a powerful technique for enhancing the performance of 

massive MIMO systems but for low SNR values. By addressing the limitations and 

exploring innovative solutions, we can unlock the full potential of Massive MIMO 

and achieve significant improvements in wireless network capacity and reliability. 

Mathematically, this can be formulated as follows: Maximize P(y|x,H), where y is 

the received signal vector, x is the transmitted signal vector, and H is the channel 

matrix. Directly evaluates the likelihood function for all possible transmit symbol 

combinations. It is computationally intensive, especially for large modulation orders 

and high-dimensional signal spaces [64]. 

Table 3.2: Comparison of ML, MMSE and ZF 

Precoding Performance Complexity SNR Behavior 

ML  Highest Accuracy (Lowest BER) Highest 

Best performance 

across all SNRs 

MMSE  Good balance of accuracy  Medium 

Outperforms ZF at 

low SNR, 

approaches ML at 

high SNR 

ZF  Good balance of accuracy Lowest 

Performs well at 

high SNR, 

struggles at low 

SNR 
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3.3.5 MRC Precoding: This method aimed at improving the received signal 

strength by optimally combining the signals taken from various aerials at the 

receiver. By weighting and summing the received signals, MRC enhances the 

overall received signal quality [64]. 

3.3.6 MF Precoding:   

 It involved modifying the transmitted signal to conform to the properties of 

the channel. By convolving the transmitted signal with the complex conjugate of the 

channel impulse response, the SNR at the receiver is maximized, enhancing signal 

detection and reducing the impact of noise [65]. 

3.3.7 PAPR Precoding: It is designed to minimize the amplitude variations of the 

transmitted signal, thereby reducing the likelihood of signal clipping and distortion 

in the nonlinear components of the transmitter [66]. PAPR precoding reshapes the 

signal envelope to maintain a more uniform power distribution, ensuring efficient 

power amplifier operation and minimizing signal degradation. 

3.3.8 Continuous Envelope Precoding: It is a technique that ensures the 

transmitted signal maintains a continuous amplitude envelope, facilitating efficient 

power amplification and reducing signal distortion. It minimizes signal clipping and 

distortion, improving overall transmission quality [67]. 

3.3.9 Quantized Precoding: It involves quantizing the precoding coefficients or 

CSI feedback to reduce the amount of information exchanged between the 

transmitter and receiver [67]. By quantizing the precoding parameters, quantized 

precoding reduces the overhead associated with channel feedback and simplifies the 

implementation of precoding algorithms. Despite the quantization-induced loss of 

precision, quantized precoding remains effective in enhancing spectral efficiency 

and reducing signaling overhead in massive MIMO systems. 

3.3.10 AMP Precoding: Approximate Message Passing is a sophisticated method 

that leverages iterative algorithms to estimate the transmitted signals based on 

received measurements and prior information. AMP precoding iteratively refines its 

estimates, incorporating feedback from the receiver to enhance the accuracy of 

signal transmission. This iterative process enables AMP precoding to achieve near-

optimal performance while efficiently handling the computational complexity 

associated with massive MIMO systems. 
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These precoding techniques play crucial roles in optimizing the presentation 

of massive MIMO systems, balancing trade-offs between interference suppression, 

noise amplification, and computational complexity to ensure efficient and reliable 

signal transmission [68]. 

3.4 Types of Non-Linear precoding Technology 

·Dirty Paper Coding (DPC) mitigates interference by precoding the 

transmitted signal to cancel out the interference effects at the receiver. It achieves 

near-optimal performance by exploiting knowledge of both the transmitted symbols 

and the interference structure. 

·Tomlinson-Harashima Precoding (THP) is a nonlinear precoding 

technique that pre-compensates for the distortion introduced by the transmission 

channel. By iteratively refining the transmitted symbols based on feedback from the 

receiver, THP minimizes the impact of channel distortion on signal quality. 

·Vector Perturbation Precoding (VPP) introduces controlled 

perturbations to the precoded transmit signal to improve performance in nonlinear 

channels. By intelligently perturbing the transmitted symbols, VPP can enhance 

spectral efficiency and mitigate the effects of nonlinear distortion. 

·Geometric precoding optimizes signal transmission by exploiting the 

geometric properties of the channel. It designs precoding matrices to take advantage 

of SNR while considering the spatial characteristics of the channel. 

·Nonlinear generalized precoding: encompasses a broader class of 

precoding techniques that exploit advanced signal processing methods to optimize 

system performance. NGP techniques encompass a range of nonlinear 

transformations applied to the transmitted signals to achieve interference 

suppression and improve spectral efficiency [69]. 

 These nonlinear precoding techniques typically come with higher 

computational complexity compared to linear precoding methods like ZF or MF. 

The most effective proposed technique used in this massive MIMO system is the 

hybrid zero forcing (ZF) with symbol-level linear precoding (SLLP) method. 
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3.5 Proposed System Model: 

The increasing demand for high-capacity, energy-efficient wireless 

communication has driven the adoption of Massive Multiple Input Multiple Output 

technology. Among all linear precoding techniques, zero-forcing (ZF) precoding 

combined with advanced methods such as hybrid ZF and SLLP offers enhanced 

performance. Despite its significant potential to enhance data communication 

efficiency in modern networks, massive MIMO faces challenges due to the 

complexity of managing numerous antennas, which adversely impacts signal 

quality, PAPR, and energy efficiency [70]. To overcome these obstacles, this 

research work proposes a joint optimization-based framework for these systems.  

 

             Figure 3.2: System Model for joint optimization [71] 

In the first phase, the framework employs a hybrid spider wasp Fick’s law 

algorithm to maximize system capacity through optimal power distribution while 

maintaining quality of service. 

 In the second phase, the SCS-BiLSTMAE network is integrated with zero-

forcing and symbol-level linear precoding techniques, as shown in figure 3.2.  
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This approach effectively reduces the PAPR and BER by utilizing adaptive 

mapping strategies. Additionally, the model's performance is fine-tuned through 

precise hyper parameter optimization using the EIBO algorithm. The proposed joint 

optimization-based technique provides a robust solution for enhancing massive 

MIMO systems, establishing it as a crucial enabler for future high-performance 

wireless communication networks. 

3.6    Joint Optimization using SLLP: 

SLLP represents a paradigm shift in signal manipulation within 

communication systems. Unlike conventional approaches that operate at the antenna 

level, SLLP delves into the granularity of individual symbols, affording 

unprecedented control over both amplitude and phase. This optimization extends 

beyond mere PAPR reduction, as it also contributes to bolstering system 

performance in scenarios where stringent PAPR constraints are paramount.  

Symbol-Level Linear Precoding (SLLP) inherits and expands upon these 

advantages, transcending the limitations of block-level precoding. SLLP's 

superiority is evident in its ability to achieve superior BER performance while 

necessitating poorer transmit power to meet particular BER targets. Furthermore, 

SLLP strategically harnesses intervention dynamics, exploiting constructive 

interference to bolster signal strength. This strategic approach not only enhances 

spectral efficiency but also contributes to a poorer PAPR [71]. 

 In essence, the adoption of symbol-level precoding represents a pivotal step 

towards optimizing communication system performance across multiple 

dimensions, heralding a new era of efficiency and reliability. 

           𝑃𝑝𝑟𝑒𝑐𝑜𝑑𝑒𝑑=M.𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙                                                                                      (3.1) 

Here precodedP  is the precoded sign vector, M is the precoding template, and 

originalP  is the unique representation vector. The crafting of the precoding template 

is a meticulous process aimed at strategically manipulating symbols to optimize 

specific performance metrics within the communication system. This formula 

suggests that the power generated is obtained by multiplying the required power by 

a constant factor M. Here M is called as scaling factor. The precise structure and 

composition of this matrix are inherently tied to the overarching goals of the system, 
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which could range from minimizing interference to reducing PAPR. Whether it 

involves exploiting interference dynamics, enhancing SNR, or mitigating PAPR, the 

precoding matrix serves as a versatile tool for achieving optimal performance across 

various operational scenarios. 

3.7 Hybrid ZF SLLP Algorithm: 

ZF precoding effectively removes multi-user interference, while SLLP 

specializes in refining signal shaping. The synergistic combination of both 

techniques not only optimizes signal quality but also enhances precoding 

concurrently, ensuring superior presentation and SE in wireless announcement 

systems. Equation (3.2) signifies the amalgam procedure for precoding, 

representing the amalgamation of ZF precoding and SLLP to achieve maximal 

effectiveness in managing interference and shaping signals for improved system 

performance. 

          𝐹 = 𝑍𝐹*P*i                                                                                                        (3.2) 

Here, F is the preceded pointer vector (M x 1), P is the symbol-level 

preceding template (N x N), and is i the participation sign vector (N x 1).Here, M 

is the number of antennas, and N is the number of users.  

ZF is a scalar quantity. The subscript 'F' might indicate a specific property or 

point. Zero Forcing Spatial Modulation with SSLP enriches wireless systems by 

effectively decreasing noisiness, thereby enhancing Signal-to-Noise Ratio (SNR) 

for improved indicator superiority and advanced information charges. By 

concomitantly serving multiple users, this approach boosts SE, maximizing the 

utilization of available bandwidth resources. Furthermore, efficient precoding 

techniques contribute to reduced energy utilization, conserving power and 

increasing the piece of equipment’s series life, thus promoting sustainability in 

wireless networks. The adaptability of SSLP ensures robust performance even in 

dynamic conditions, making it a versatile solution well-suited for the evolving 

landscape of wireless communication technologies. 

Massive MIMO downlink system defined as 

              𝑦 = 𝐻𝑊𝑥 + 𝑛                                                                                                    (3.3)                                                                        

• y is the received signal at K  users  
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• H is the  channel matrix (Rayleigh fading) = K×Nt 

• Wx is the  precoding matrix 

• n  is the AWGN noise 

• Nt: Number of transmit antennas (at BS) 

• K: Number of users (receivers) 

• Perfect CSI 

➢ BER for Zero-Forcing (ZF) precoding 

In a massive MIMO system with Nt≫K, the ZF precoding effectively 

cancels inter-user interference. The approximate BER expression for QPSK with ZF 

is 

 𝐵𝐸𝑅 =  𝑄 ( √
(𝑆𝑁𝑅 × (𝑁𝑡− 𝐾))

𝐾
)                                                                            (3.4)             

𝑄(𝑥) =  (
1

√2𝜋
) ∫ 𝑒−

𝑡2

2
2∞

𝑥
𝑑𝑡                                                                                  (3.5)                              

         Valid when Nt>K and high SNR 

➢ BER for SLLP : 

SLLP (Symbol Level Linear Precoding) typically uses subset matched 

filtering or a simplified precoder on a reduced number of antennas NSLLP=Nt/2 so it 

performs worse than ZF that is BERSLLP>BER ZF. 

➢ BER for Hybrid ZF–SLLP: 

The hybrid precoding combines ZF and SLLP linearly: 

𝑊𝐻𝑦𝑏𝑟𝑖𝑑 =  𝛼 𝑊𝑍𝐹 +  (1 –  𝛼)𝑊𝑆𝐿𝐿𝑃                                                             (3.6) 

The resulting SNR and BER are more difficult to derive exactly but can be 

approximated by modeling the effective SNR as a weighted combination of the ZF 

and SLLP performance. 

Where: 

α ∈[0,1]  is the interpolation weight (closer to ZF when α→1 to SLLP   

 when     α→0 
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Sum rate of ZF: 

𝑅𝑍𝐹 = 𝐾 log2 (1 +
𝑆𝑁𝑅(𝑁𝑡−𝐾)

𝐾
)                                                               (3.7) 

 Sum rate of  Hybrid ZF: 

               𝑅𝐻𝑦𝑏𝑟𝑖𝑑 𝑍𝐹 = 𝐾 log2 (1 +
𝑆𝑁𝑅(𝑁𝑅𝐹−𝐾)

𝐾
)                                   (3.8) 

 

Sum rate of  Symbol-Level Linear Precoding (SLLP) 

SLLP designs the transmit vector x=WSLLP   * S                                     (3.9) 

S is the data symbol vector (known at transmitter) 

Approximate sum-rate for SLLP can be modeled as: 

            𝑅{𝑆𝐿𝐿𝑃} == ∑ 𝑙𝑜𝑔2
𝐾
𝑘=1 (1 +  𝑆𝑁𝑅𝑘

𝑆𝐿𝐿𝑃)                                   (3.10)                                                       

where SNR typically improves over ZF due to symbol-aware design.                

SLLP SNR is approximated or numerically computed. 

Sum rate   of   hybrid ZF-SLLP : 

Sum-rate of Hybrid ZF SLLP precoding computed similarly: 

𝑅ℎ𝑦𝑏𝑟𝑖𝑑 =∑ log₂(1 + 𝑆𝑁𝑅ℎ𝑦𝑏𝑟𝑖𝑑 )𝐾
𝑘=1                                                   (3.11) 

3.8 Results and Discussions: 

➢ Figure 3.3 shows the BER of a massive MIMO system in terms of SNR in 

theory and simulation. For large SNR values, BER will be decreased. In theory, if 

SNR increases, BER will linearly decrease, while in simulation, BER will decrease 

nonlinearly as SNR increases. At SNR=10 dB BER=10-5 in theory, but in simulation 

it is 10-3. But as long as SNR increases BER is decreasing in simulation. 
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Figure 3.3: BER for Massive MIMO System with SNR (dB). 

➢ Figure 3.4 shows sum rate for massive MIMO with SNR (dBm). 

The specific characteristics of the massive MIMO system (number of antennas 64-

256 and 4-12 users in a cell, etc.) can influence the relative performance of the 

algorithms.   

Computational complexity is another important factor to consider when choosing 

an algorithm.  

 

Figure 3.4: SNR versus sum rate for massive MIMO system with number 

of antennas 

➢ Figure 3.5 plots the sum rate (bits/Hz) against the SNR in dBm for four 

different configurations: 

• M=N=3: This likely represents a system with 3 transmit antennas and 

 receive antennas. 

• M=N=4: This configuration has 4 transmit antennas and 4 receive 
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antennas. 

• M=N=8: This configuration has 8 transmit antennas and 8 receive 

antennas. 

• M=N=256 (Proposed): This configuration has 256 transmit antennas and 

256 receive antennas, and it is labeled as "Proposed," suggesting it's a novel or 

optimized design. 

Increasing Sum Rate with SNR: For all three configurations, the sum rate 

increases as the SNR increases. The configuration with the highest number of 

antennas (M=N=256 proposed) consistently achieves the highest sum rate across all 

SNR values. This demonstrates the benefit of having more antennas, as it allows for 

better spatial multiplexing and beamforming, leading to higher data rates. The 

M=N=4 configuration performs better than the M=N=3, further supporting the 

positive impact of increasing antenna numbers. The proposed configuration with 

M=N=256 might represent a new or optimized antenna array design or beamforming 

technique. In figure 3.5, the number of users and the  sum rate can be shown.  

➢ Figure 3.5 illustrates the relationship between the achievable sum rate 

and the number of users for three different precoding techniques: MRT, 

MMSE, and ZF 

Table 3.3: Number of users with sum rate of ZF, MMSE and MRT 

Number of Users 

ZF sum rate 

(Bits/Hz) 

MMSE sum 

rate 

(Bits/Hz) 

MRT sum rate 

(Bits/Hz) 

10 100 50 70 

20 150 80 120 

30 200 120 180 

40 270 180 250 

50 300 250 320 

60 280 350 330 

70 250 330 350 

80 270 350 350 
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90 300 370 360 

100 330 400 380 

110 360 420 400 

120 400 450 420 

 

This is likely due to the multiplexing gain that can be achieved by serving 

multiple users simultaneously. ZF shows a relatively good performance, especially 

at lower user numbers. However, its sum rate growth tapers off and even starts to 

decrease at higher user numbers. This technique aims to completely eliminate 

interference between users by forcing the signals from other users to be zero at the 

desired receiver. However, it may not be as robust as MMSE in the presence of 

noise. 

 

 

Figure 3.5: Achievable sum rate for linear precoding 

MMSE consistently achieves the average sum rate across the range of user 

numbers. This indicates that MMSE precoding is the most effective in maximizing 

the overall data rate in this scenario. Its superior performance suggests that it 

effectively mitigates interference between users and maximizes the signal quality 

for each user. 
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MRT has the lowest sum rate among the three techniques. Its performance 

increases at a slower rate compared to MMSE and ZF, and it saturates at a lower 

Sum rate value. This technique simply maximizes the received signal power at each 

user. While simple to implement, it may not be as effective as MMSE or ZF in 

managing interference and maximizing overall system performance. The graph 

suggests that MMSE precoding is the most suitable choice for maximizing the 

overall data rate in this multi-user communication scenario, as shown in figure 3.5.  

➢ Hybrid ZF, also known as hybrid precoding based on ZF, is utilized 

in millimeter-wave massive MIMO systems, where deploying a full set of RF chains 

for all antennas is impractical due to power and cost limitations. To overcome this 

constraint, a two-stage precoding structure is adopted by using analog precoding 

implemented in the RF domain and digital ZF precoding applied in the baseband 

and is limited by the number of available RF chains. In this configuration, the 

system’s performance follows a trend similar to that of traditional ZF; however, the 

performance expression is adjusted to account for the effective channel after analog 

precoding. This leads to a modified SNR, which significantly influences the overall 

system performance. According to all this precoding, hybrid ZF combined with 

SLLP will give the best result. The table 3.5 below presents the BER expressions in 

relation to SNR, accompanied by figure 3 

Table 3.4: The BER expressions are presented as a function of SNR for different 

methods. 

Precoding 

Method 

BER Expression in terms of SNR 

 

ZF 

 𝑄 ( √
(𝑆𝑁𝑅 × (𝑁𝑡 −  𝐾))

𝐾
) 

Hybrid ZF 

𝑄 (√
(𝑆𝑁𝑅 × (𝑁𝑅𝐹 − 𝐾)) 

𝐾
) 

SLLP 

 𝑄 ( √
(𝑆𝑁𝑅 × 𝑁𝑆𝐿𝐿𝑃)

𝐾
 ) 
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➢ BER versus SNR for ZF, Hybrid ZF, Hybrid ZF with SLLP 

Hybrid ZF SLLP shows in figure 3.6 as a relatively good performance, 

especially at higher values of SNR. However, its sum rate growth tapers off and 

even starts to decrease at the lowest values of SNR shown in table 3.5.  

Table 3.5: BER verses SNR for Z, SLLP, and Hybrid ZF SLLP precoding 

methods 

SNR in dB BER for ZF BER for  SLLP BER for Hybrid 

ZF SLLP 

0 1.39 1.39 1.39 

5 5 1.28 1.28 

10 10 1.09 1.09 

15 15 0.85 0.82 

20 20 0.48 0.35 

25 25 0.05 0.04 

30 30 0.00 0.00 

35 35 0.00 0.00 

40 40 0.00 0.00 

45 45 0.00 0.00 

50 50 0.00 0.00 

55 55 0.00 0.00 

60 60 0.00 0.00 

As long as SNR increases, BER will decrease to approximately zero as 

shown in figure 3.6 with table 3.6. 

Hybrid ZF 

SLLP  𝑄 ( √
(𝑆𝑁𝑅 ×  [𝛼 × (𝑁𝑡 −  𝐾) +  (1 −  𝛼) × 𝑁𝑆𝐿𝐿𝑃])

𝐾
 ) 
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      Figure 3.6: BER verses SNR for ZF, Hybrid ZF, Hybrid ZF with SLLP 

precoding methods. 

➢ Sum rate versus SNR for ZF, Hybrid ZF, Hybrid ZF with SLLP 

In the BER versus SNR analysis, an inverse relationship is consistently 

observed: as SNR increases, the BER for all evaluated methods decreases. 

Table 3.6: Sum rate expressions as a function of SNR for various methods. 

Precoding Method Sum rate Expression in terms of SNR 

ZF  

𝐾 log2 (1 +
𝑆𝑁𝑅(𝑁𝑡 − 𝐾)

𝐾
) 

 

Hybrid ZF                𝐾 log2 (1 +
𝑆𝑁𝑅(𝑁𝑅𝐹−𝐾)

𝐾
) 

 

SLLP 

∑ 𝑙𝑜𝑔2

𝐾

𝑘=1

(1 +  𝑆𝑁𝑅𝑘
𝑆𝐿𝐿𝑃) 

Hybrid ZF SLLP    ∑ log₂(1 + 𝑆𝑁𝑅ℎ𝑦𝑏𝑟𝑖𝑑 )𝐾
𝑘=1                                                        

At SNR=20 dB   sum rate for hybrid   ZF-SLLP 21bps/Hz with number of 

users are 4.  In This behavior is anticipated, as a stronger signal relative to noise 

inherently facilitates more accurate bit decoding by the receiver. 
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           Table 3.7: Users with sum rate for ZF, SLLP, Hybrid ZF SLLP precoding methods. 

Number 

of Users 

(K) 

sum rate 

for 

ZF(bps/Hz) 

sum rate for 

Hybrid 

ZF(bps/Hz) 

sum rate for Hybrid 

ZF with 

SLLP(bps/Hz) 

4 20 19 21 

8 30 28 32 

12 39 36 43 

16 47 43 52 

20 53 49 58 

24 58 54 64 

28 62 58 69 

32 66 61 73 

36 70 64 77 

40 74 67 81 

44 78 69 85 

48 79 70 88 

Notably, beyond approximately 30 dB SNR, the BER for all depicted 

methods approaches zero, indicating that at these very high SNR levels, the systems 

operate with negligible errors, rendering further increases in SNR largely 

inconsequential for BER improvement. 

 

Figure 3.7: Number of users with sum rate for ZF, hybrid Z, hybrid ZF   with 

SLLP precoding methods. 
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Within this context, Hybrid ZF with SLLP consistently demonstrates 

superior performance, exhibiting the lowest BER at higher SNR values. This 

underscores the significant advantage of SLLP in enhancing error rate performance. 

In figure 3.7, the sum rate compared with SNR for ZF, hybrid ZF, and hybrid 

ZF-SLLP is shown in table 3.8. At SNR=20 dB sum rate for hybrid ZF-SLLP has 

52bps/Hz with number of users at 16, as shown in figure 3.7. As shown in figure 

3.7 and Table 3.7, the sum rate increases gradually as the number of users increases. 

When compared with hybrid ZF, with SLLP has a higher sum rate compared to other 

methods. 

➢ Sum rate verses SNR at K=16 for ZF, Hybrid ZF, Hybrid ZF with 

SLLP 

     Conversely, in the sum rate analyses, different dynamics are observed. 

When examining the sum rate's dependence on the number of users, a notable trend 

emerges: the performance disparity between Hybrid ZF with SLLP and the other 

two methodologies (ZF and Hybrid ZF) widens as the user count increases, as shown 

in table 3.8 with the figure 3.8. 

Table 3.8: SNR with sum rate for ZF and Hybrid ZF SLLP precoding  methods. 

SNR (dB) Sum rate for 

ZF (bps/Hz) 

Sum rate for 

Hybrid ZF 

(bps/Hz) 

Sum rate for 

Hybrid ZF with 

SLLP (bps/Hz) 

0 0 0 0 

5 10 9 9.5 

10 22 20 21 

15 36 34 35 

20 52 49 50 

25 70 66 67 

30 90 85 87 

35 112 106 109 

40 135 129 132 

45 160 153 157 

50 185 178 182 
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55 210 202 207 

60 235 227 232 

This observation highlights the compelling scalability benefits that SLLP 

offers within multi-user communication environments, enabling greater throughput 

as the user base expands. However, when the focus shifts to the sum rate's 

relationship with SNR at a fixed, moderate number of users (K=16), the advantages 

of SLLP in terms of sum rate become less pronounced, as shown in figure 3.8.  

 

Figure 3.8: Sum rate and SNR for ZF, SLLP, Hybrid ZF SLLP precoding 

methods. 

In this specific scenario, the sum rate performance of all three methods tends 

to converge across a broad range of SNRs. This convergence suggests that for this 

particular user count, the trade-off between complexity and performance inherent in 

hybrid architectures can be justified, as they achieve sum rates comparable to a fully 

digital ZF approach without a significant loss in efficiency. 

➢ Sum rate versus number of antennas for ZF, hybrid ZF, hybrid ZF 

with SLLP 

The figure 3.9 titled "Sum Rate vs. Number of BS Antennas at SNR=20 dB" 

illustrates the performance of three techniques—ZF (Zero Forcing), hybrid ZF, and 

hybrid ZF with SLLP-as the number of base station antennas increases. Among 

these, Hybrid ZF with SLLP consistently outperforms both ZF and Hybrid ZF across 

all antenna configurations.  

Table 3.9: Antennas with sum rate for ZF, SLLP, Hybrid ZF SLLP 

precoding methods in massive MIMO at Nt=256 
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Number of BS 

Antennas (Nt) 

Sum rate for 

ZF 

Sum rate for 

Hybrid ZF 

Sum rate for 

Hybrid ZF 

with SLLP 

32 108 104 112 

64 132 128 137 

96 145 139 150 

128 152 147 157 

160 158 152 163 

192 163 157 168 

224 167 161 172 

256 171 164 175 

This improvement is likely due to the use of long-term statistical learning in 

the precoder, which enables better adaptation to varying channel conditions. 

 

Figure 3.9: Number of BS stations with sum rate for ZF, hybrid ZF, hybrid 

ZF with SLLP 

As in figure 3.9, increasing the number of BS antennas significantly 

enhances the sum rate, and integrating statistical learning into hybrid precoding 

methods offers the most effective performance in massive MIMO systems, as shown 

in table 3.9. 

3.9 Conclusion: 

Finally, hybrid zero forcing with symbol-level linear precoding is very 

useful in massive MIMO. Objective 1 has been studied with the help of more 

precoding techniques and analyzed in massive MIMO with parameters like SNR, 
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BER, achievable sum, and data rate for the hybrid ZF-SLLP precoding technique. 

These observations are based on the specific graph provided.  

The actual energy efficiency values and trends may vary depending on 

factors such as the specific implementation, system parameters, and operating 

conditions. Research efforts should focus on developing innovative precoding 

techniques that can achieve high performance while minimizing energy 

consumption, especially as the number of antennas continues to increase in future 

wireless communication systems. 

 It is concluded that ZF-SLLP precoding is the best precoding technique in 

massive MIMO. Hybrid ZF with SLLP is modeled with a 20% SNR gain over 

conventional hybrid ZF for illustration. Here, the sum rate has been calculated with 

the number of antennas at the BS being 256 at SNR = 20 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

71 
 

CHAPTER 4 

ENERGY HARVESTING TECHNIQUES IN MASSIVE MIMO 

        4.1 Introduction 

Recent advancements in extremely well-organized radio frequency energy 

harvesting hardware offer several advantages: precise energy transfer control, a 

wide charging spectrum, and compact designs. Wireless power transfer technology 

enables battery recharging in diverse environments such as battlefields, underwater, 

and within body area networks, thereby extending the lifespan of wireless networks 

in such challenging locations [72]. Electromagnetic propagation serves as the 

predominant method for transmitting electricity wirelessly, but it incurs propagation 

losses akin to those in wireless data transmission, encompassing route loss, 

shadowing, and rapid fading. Hence, enhancing the efficiency of wireless power 

transfer remains a critical and challenging endeavor. To address this challenge, 

multi-antenna wireless power transmission techniques have emerged, leveraging 

energy beams to facilitate power transfer, as shown in figure 4.1. 

 

Figure 4.1: Downlink Hybrid Information and Energy Transfer With 

Massive MIMO [72] 
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 In MIMO broadcast systems, optimal transmit beam design for power 

transmission has been identified. Additionally, innovative approaches, such as those 

proposed in S.Bolla et al., shape energy beams based on CSI, even when the 

information at the power source is less accurate. Conventional multi-antenna 

systems may struggle to meet practical energy efficiency requirements over longer 

transmission distances appropriate to the limited number of aerials in proximity to 

the energy source [72]. 

In figure 4.2, large-scale MIMO holds the prospect of drastically improving 

the presentation of wireless power transmission. The ultimate aim of wireless 

energy transmission is to fulfill the energy requirements of the receiver, a concept 

that intuitively resonates [72]. For instance, medical implants can be wirelessly 

charged and utilize the acquired energy to broadcast remedial data to an isolated 

recipient. However, most previous endeavors in wireless power transmission have 

overlooked the planned submission of the harvested force. 

         

Figure 4.2: Energy Transfer from Transmitter to Receiver [73] 

In this figure 4.2, we delve into massive MIMO systems employing energy 

beamforming for simultaneous information transmission and energy harvesting, a 

concept known as wireless-powered communiqué. To ensure simultaneous 

harvesting and transmission, time slots need to be partitioned for harvesting and 

transmitting. Optimizing the performance entails identifying the optimal time 

switching point to allocate time resources effectively. Moreover, the energy 

transfer mechanism at the power source significantly influences system 

performance. This communication addresses three key objectives: tackling the 

challenge of transmitting data and electricity wirelessly over large distances, 

improving energy efficiency, and ensuring a high QoS for all customers.  
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Recent advancements in energy harvesting using RF electromagnetic 

waves have made simultaneous wireless data and power transport feasible, leading 

to the emergence of SWIPT. Wireless message systems must be adapted to 

efficiently transmit both data and electricity, departing from traditional SISO 

systems [73]. Previous studies have examined the energy and reliable information 

transmission speeds, paving the way for further advancements in access and multi-

hop channel communication.  

         4.2 SWIPT Technology 

SWIPT downlink systems leveraging multiuser MIMO architecture have 

been extensively scrutinized. Additionally, investigations into SWIPT in MIMO 

multicasting systems have been conducted. However, the matter-of-fact proposal of 

source precoders and receivers for SWIPT systems utilizing MIMO spatial 

multiplexing remains largely unexplored. While techniques like dirty paper coding 

(DPC) have shown promise in approaching capacity in MIMO BCs, their 

computational intensity poses practical challenges [74]. Alternatively, simpler yet 

suboptimal strategies like ZF and BD may be employed, albeit with inefficiencies. 

Harvesting radio frequency (RF) energy from the environment to power 

electronic devices has gradually become a mature technology. With the continuous 

research and development of radio frequency energy harvesting (RFEH) systems, 

they are expected to replace the battery and be applied in wireless sensor 

networks, wearable devices, internet of things and environmental monitoring, etc. 

[74]. 

           4.2.1 Power and antenna switching architectures in SWIPT 

This diagram processes the information signals for each user, combining 

them and shaping them appropriately for simultaneous transmission with the energy 

signal. The signal processing unit determines the optimal power allocation between 

the information and energy components of the transmitted signal. It employs 

beamforming techniques to direct the transmitted signals towards specific users, 

maximizing SNR for information reception and enhancing energy harvesting 

efficiency. The UE's RF front-end receives the combined information and energy 

signal transmitted from the base station.  

https://www.sciencedirect.com/topics/physics-and-astronomy/energy-harvesting
https://www.sciencedirect.com/topics/engineering/battery-electrochemical-energy-engineering
https://www.sciencedirect.com/topics/physics-and-astronomy/wireless-sensor-network
https://www.sciencedirect.com/topics/physics-and-astronomy/wireless-sensor-network
https://www.sciencedirect.com/topics/engineering/wearable-sensor
https://www.sciencedirect.com/topics/physics-and-astronomy/internet-of-things
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This portion is routed to the energy harvesting circuit to convert RF energy 

into usable DC power. This unit processes the decoded information received from 

the information stream. 

 

Figure 4.3: SWIPT—power switching architecture [79] 

 

Figure 4.4: SWIPT—antenna switching architecture [79] 

           4.2.2 Key Considerations for SWIPT in Massive MIMO 

• Power Allocation: Determining the optimal power allocation between 

information and energy signals is a critical challenge. It requires careful 

consideration of various factors, including user demands, channel conditions, and 

energy harvesting capabilities. 

• Hardware Design: Designing efficient power-splitting circuits and energy 

harvesting components with high rectification efficiency is crucial for practical 

implementation. 

• Interference Management: Managing interference between users, 

especially in dense deployments, is essential to ensure reliable information 

transmission and efficient energy harvesting. 

• Channel Estimation: Accurate channel estimation is critical for effective 

precoding and beamforming, particularly in dynamic environments where channel 

conditions can change rapidly. 
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          4.2.3 Benefits of SWIPT in Massive MIMO: 

• Enhanced Energy Efficiency: By enabling energy harvesting, SWIPT can 

significantly improve the energy efficiency of wireless devices, reducing reliance 

on batteries and extending their operational lifetime. 

• Green Communications: SWIPT promotes sustainable wireless 

communication by reducing energy consumption and minimizing environmental 

impact. 

• Improved Coverage: SWIPT can extend the coverage of wireless 

networks by enabling devices to operate in areas with limited or no access to power 

outlets. 

4.3 System Model 

Consider a massive MIMO downlink system where a BS with Nt  transmit 

antennas serves K single-antenna users. 

• Channel Matrix: The channel from the BS to the K users is represented 

by the K×Nt matrix H.  

• Transmitted Signal: The BS transmits a superimposed signal for all K 

users. If s=[s1,s2,…,sK]  T is the K×1 vector of information-bearing symbols (data 

streams) for the K users, and W is the Nt×K precoding matrix, the transmitted signal 

vector is:  

x=Ws                                                                                                                   (4.1) 

• The total transmit power constraint at the base station is: 

• 𝐸[‖𝑥‖2] = 𝐸[‖𝑊𝑠‖2] = 𝑇𝑟(𝑊𝑊𝐻) ≤ Ptotal                                        (4.2)                                             

Where   Ptotal  is the maximum allowed total transmit power.  

• Precoding (Zero-Forcing - ZF) 

The Zero-Forcing (ZF) precoding matrix WZF  aims to eliminate inter-user 

interference.  

It is calculated as: 

           𝑊𝑍𝐹 = 𝐻𝐻(𝐻𝐻𝐻) −1                                                                                          (4.3) 
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        To satisfy the total transmit power constraint Ptotal, the precoding matrix is 

normalized.  

        If we assume equal power allocation to each of the K data streams, the 

normalized ZF precoding matrix is:  

          𝑊 =  𝑊𝑍𝐹√
𝑃𝑡𝑜𝑡𝑎𝑙

𝑇𝑟𝑊𝑍𝐹
𝐻 𝑊𝑍𝐹

                                                                                          (4.4) 

          if distributing power Ps to each stream where  

          𝑃𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑃𝑠                                                                                                        (4.5)                                               

W is scaled to meet Ptotal.  

 Received Signal and Power Splitting (PS) 

At user k, the received signal before power splitting is:  

          𝑦𝑘 = 𝑥ℎ𝑘         +    𝑛𝑘                                                                                             (4.6) 

          Where  hk is the k-th row of H (channel vector for user k), and nk is the  

          Additive White Gaussian Noise (AWGN) at user k's receiver. 

In the Power Splitting (PS) architecture, each user k splits the received RF 

signal into two parts with a power splitting ratio αk∈[0,1]. 

• Power for Energy Harvesting (EH): A fraction αk  of the total received 

power is used for EH. The total received RF power at user k is   

𝑃𝑅,𝑘  =   𝐸|𝑦𝑘|2 =E[||𝑊𝑠ℎ𝑘 + 𝑛𝑘|| ]2                                                                 (4.7) 

𝑃𝑅,𝑘 = ‖𝑊ℎ𝑘‖2                                                                                                   (4.8) 

When 𝑛𝑘=0 

 

The power used for energy harvesting is:  

  𝑃𝐸𝐻,𝑘=  α𝑘𝑃𝑅,𝑘                                                                                                   (4.9) 

           𝑃𝐸𝐻,𝑘=  α𝑘‖𝑊ℎ𝑘‖2                                                                                           (4.10) 

Power for Information Decoding (ID): The remaining fraction (1−αk) of 

the received power is used for ID.  
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The signal for ID at user k is:  

𝑦𝐼𝐷,𝑘 = 1 − αk(Wshk + nk)                                                                              (4.11) 

The noise associated with the ID path (after splitting) is often modeled as 

scaled original noise, plus some conversion noise.  

          Achievable Rate (Information Decoding) 

          For user k, assuming ZF precoding perfectly nullifies interference  

The received signal power for information decoding is from the desired 

stream: 

𝑃𝐼𝐷,𝑘= (1-α𝑘) |ℎ𝑘𝑊:,𝑘|
2
                                                                                      (4.12) 

 where W:,k is the k-th column of the precoding matrix W. 

 The Signal-to-Noise Ratio for user k (assuming ZF effectively makes 

Interference zero)  

            𝑆𝑁𝑅𝑘 =
𝑃𝐼𝐷,𝑘

𝜎𝑛
2                                                                                                      (4.13) 

The achievable data rate for user k (bits per second) is given by Shannon's 

formula:  

          𝑅𝑘 = 𝐵 log2(1 + 𝑆𝑁𝑅𝑘)                                                                                   (4.14)                 

The total achievable data rate is   

          𝑅𝑠𝑢𝑚 =  ∑ 𝑅𝑘
𝐾
𝑘=1                                                                                                (4.15) 

Harvested Energy: 

The total energy harvested by user k over a time duration T is: 

𝐸𝐸𝐻,𝑘=𝑇𝑃𝐸𝐻,𝑘 𝜂𝐸𝐻                                                                                              (4.16) 

           Where 𝜂𝐸𝐻 is the energy conversion efficiency of the rectifier (0<𝜂𝐸𝐻

≤1). 

  In the MATLAB code, T=1 second was assumed for simplicity in units. 

The total harvested energy across all users (per time slot T) is:  

𝐸𝑡𝑜𝑡𝑎𝑙,𝐸𝐻 =  ∑ 𝐸𝐸𝐻,𝑘
𝐾
𝑘=1                                                                                      (4.17) 
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These are the fundamental equations that form the basis for simulating and 

analyzing SWIPT in massive MIMO systems, especially with the power splitting 

architecture and hybrid ZF precoding.  

Notably, the proposed method demonstrates faster convergence rates and 

greater success compared to existing methods, as supported by reproduction 

consequences. Additionally, the study proposes a hybrid network model integrating 

components such as massive MIMO, Device-to-Device (D2D) communication, and 

wireless energy harvesting, offering novel avenues for network optimization and 

performance enhancement. Dynamic control distribution for downlink multi-user 

MIMO-NOMA is also suggested, highlighting the importance of tailored power 

allocation for intra-cluster and inter-cluster communication scenarios based on 

cluster population density. 

It is a revolutionary technology that allows wireless devices to 

simultaneously receive both information and energy from the same radio frequency 

(RF) signal. With its large number of antennas at the base station, it provides a 

unique platform for implementing SWIPT effectively.  

         4.4 Performance analysis using HSWFL: 

Initially, base station accomplishment of instantaneous wireless in- sequence 

and power transfer is employed to concurrently transmit information and energy. 

Addressing the optimization challenges in 5G mmWave systems with numerous 

MIMO antennas, EE optimization emerges as a crucial concern by figure 4.2. 

Despite the non-concave nature of the objective function, various strategies are 

explored to tackle this issue [75]. The reproduction consequences demonstrate that 

the future scheme exhibits a significantly quicker convergence speed and greater 

success compared to existing methods, as shown below.  

➢ Received Power at User k 

      Pk =  
Ptotal⋅|hkwk|2

{∑ |hkwj|2
{j ≠k} + σ2}

                                                                                                          (4.18) 

Where: 

• hk is the channel vector for user k 

• wk_ is the precoding vector for user k 
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• Ptotal is total transmit power 

• σ2 is noise power 

Energy Harvested by User k: 

 

     𝐸𝑘 = η ∗ Pk*T                                                                                                                 (4.19) 

Where: 

• η  is the energy harvesting efficiency 

• T is the duration of the transmission (can be normalized to 1 for simplicity) 

• For simplified simulation or optimization (like in HSWFL), a common 

approximation is: 

𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 = η ∑ log2(1 + 𝑃𝑘/𝜎 2) K
k=1                                                                        (4.20) 

      4.5 Results & Discussion: 

➢ The concept of energy harvesting in massive MIMO generally refers to the ability 

of the system (either the base station or, more commonly, the user equipment -UE) to 

capture ambient radio frequency (RF) energy transmitted by the BS (or other sources) 

and convert it into usable transmit power. Table 4.1 shows the harvested energy with 

the achievable user rate for different users.  

Table 4.1: Energy harvesting for 4 users with achievable rate 

Harvested 

Energy 

(mJ) User 1 Rate User 2 Rate User 3 Rate 

User 4 

Rate 

Common 

Rate 

(max-

min) 

0.06 1.7 1.6 1.5 1.4 1 

0.08 1.6 1.5 1.4 1.3 0.9 

0.1 1.5 1.4 1.3 1.2 0.8 

0.12 1.4 1.3 1.2 1.1 0.7 

0.14 1.3 1.2 1.1 1 0.6 

0.16 1.2 1.1 1 0.9 0.5 

0.18 1.1 1 0.9 0.8 0.4 
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0.2 1 0.9 0.8 0.7 0.3 

0.22 0.9 0.8 0.7 0.6 0.2 

 

Equal power allocation was used so different users will have the energy 

harvesting in terms of mJ [76]. This connection highlights how MIMO systems have 

the potential to balance energy saving with user rate, making them essential for next-

generation wireless communications when data rate and efficiency are crucial 

requirements [77]. 

 

Figure 4.5: Energy harvesting for different users 

A noticeable pattern can be seen in the plot below that demonstrates the 

correlation between residual energy and transmission rate in a MIMO. The graphic 

illustrates an inverse connection, demonstrating that residual energy diminishes as 

transmission rates rise. This issue demonstrates the MIMO systems' intrinsic trade- 

off, where higher transmission rates necessitate higher energy usage. 

➢ To maximize performance, system designers must strike this 

delicate balance. The need for strategic power management in getting the best 

performance and efficiency in MIMO communication systems is generally 

highlighted by this connection, as shown in Figure 4.6 for different users. The 

downward trend of the plot indicates that increasing the amount of power used for 
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data transmission decreases the amount of energy left behind, affecting the system's 

residual energy levels.  

 

Figure 4.6: Energy efficiency verses quantization bits for massive MIMO  

system 

Parameters: 

• b: The number of quantization bits. 

• ɳ: Parameter values (0, 0.5, 0.8) for different scenarios. 

Energy Efficiency Equations: 

• EE_perfect: For perfect CSI. 

• EE_imperfect: For imperfect CSI. 

• These equations can be modified to match your specific model. 

Impact of Quantization Bits: 

Perfect CSI: As the number of quantization bits increases, the energy 

efficiency improves. This is because more accurate CSI allows for better 

beamforming and power allocation, leading to higher data rates and lower 

power consumption. 

Imperfect CSI: The trend is similar to perfect CSI, but the energy efficiency 

is lower due to quantization errors. However, increasing the number of 

quantization bits can mitigate this effect to some extent. 
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Effect of CSI Quality: 

Perfect CSI: With perfect CSI, the system can achieve higher energy 

efficiency, as there is no loss of information due to quantization. 

Imperfect CSI: As the CSI quality deteriorates (represented by increasing 

values of η), the energy efficiency decreases. This is because quantization errors 

introduce uncertainty in the channel estimation, leading to suboptimal 

beamforming and power allocation. Furthermore, the establishment of specialized 

power stations by D2D transmitters could enable the users to accrue sufficient 

energy for prospect transmissions, enhancing QoS. In such scenarios, power 

allocation varies based on the population density within each cluster, ensuring 

efficient resource utilization and optimal performance. 

➢ Maximizing Energy Harvesting: 

To maximize energy harvesting in these systems, various factors like the 

number of antennas, energy harvesting efficiency, and power allocation must be 

optimized. Here's an executable MATLAB script to analyze how energy harvesting 

can be maximized while considering throughput in a massive MIMO system. 

Maximizing throughput in energy-harvesting-enabled massive MIMO systems 

requires careful consideration of energy harvesting techniques, power allocation 

strategies, and interference management. By employing advanced optimization 

algorithms and leveraging the benefits of massive MIMO, it is possible to achieve 

significant improvements in system performance and energy efficiency [78]. 

• Energy Harvesting from Massive MIMO System (EHMMS): Utilizing 

ambient RF signals from base stations, other devices, or dedicated energy sources. 

• Hybrid Approaches: Combining EHMMS with other ambient energy 

sources. 

• Energy Conversion Efficiency: Limitations in converting harvested 

energy into usable electrical power. 

• Energy Storage Constraints: Limited capacity of energy storage devices. 

• Energy Harvesting Model: Add advanced models like non-linear 

harvesting or time-varying power. 
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• Efficiency Range: Adjust η values for finer analysis. 

 

 

Figure 4.7: Harvested energy with achievable sum rate in massive MIMO 

Figure 4.7 illustrates the relationship between harvested energy (in 

millijoules) and the achievable sum rate (in bits/s/Hz) for different values of N, 

which is the number of antennas, which typically represents the number of antennas 

or users, depending on the context.  

The x-axis represents the harvested energy in millijoules (mJ), which is a 

measure of the energy collected by the system, possibly through wireless energy 

harvesting. The y-axis shows the achievable sum rate, measured in bits per second 

per Hertz (bits/s/Hz), which reflects the total data throughput of the system. 

Simulation and analysis for N=256: These curves lie at the top, indicating 

the highest performance among all cases. 

Simulation and analysis for N=64: These fall below N=64, showing reduced 

performance as the number of antennas/users decreases. 

Simulation and analysis for N=8: These have the lowest achievable sum 

rates, as expected for the smallest configuration. 

For all values of N, the sum rate increases with harvested energy up to a 

certain point, after which it begins to decrease. This behavior indicates an optimal 

harvested energy point beyond which additional energy leads to diminishing returns 

or interference-related performance degradation. The close match between 



 

 

84 
 

simulation and analysis curves validates the analytical model used in the study. 

Slight deviations may exist but overall demonstrate high accuracy. 

Figure 4.7 demonstrates that the achievable sum rate improves with more 

antennas (larger N) and that there is a trade-off between harvested energy and 

system throughput. It confirms the presence of an optimal energy harvesting point 

and shows consistency between analytical predictions and simulated results, 

supporting the robustness of the proposed theoretical model. 

➢ Shannon Capacity: A plot is generated to show the relationship 

between energy (x-axis) and throughput (y-axis) as in figure 4.8 

 

 

Figure 4.8: Analysis of throughput with energy harvesting 

The throughput is calculated using the Shannon capacity formula. The total 

throughput is aggregated over K users. Energy levels are defined as a range 

from 1 to 10 joules. Energy per user is scaled by η=0.7, representing a 70% 

energy efficiency harvesting, as shown in figure 4.8. 

➢ The below table 4.2 shows the transmit power versus energy efficiency 

for the figure below 4.9. 

Table 4.2: Transmit power versus Energy efficiency 

Transmit Power (dB) Energy Efficiency (%) 

20 70 
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The graph indicates a clear inverse relationship between transmit power and 

energy efficiency. Increasing transmit power may lead to improved performance in 

terms of data rate or coverage, but it comes at the cost of reduced energy efficiency. 

Optimizing transmit power levels is crucial to achieving performance. 

• Increased Power Consumption: Higher transmit power levels require 

more energy to drive the power amplifiers, leading to increased power consumption 

and lower overall energy efficiency. 

• Inefficient Power Conversion: At higher power levels, the power 

amplifiers may operate less efficiently, resulting in more energy being wasted as 

heat instead of being used for signal transmission [79]. 

 

 Figure 4.9: Transmit power and energy efficiency. 

30 68 

40 66 

50 64 

60 62 

70 60 

80 58 

90 56 

100 54 
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• Interference Effects: Higher transmit power can increase interference 

levels in the system, leading to reduced signal quality and lower energy efficiency. 

• Further Analysis: To gain a deeper understanding, it would be helpful to 

know the specific system parameters and assumptions used to generate this graph, 

as in figure 4.9. 

Investigating the relationship between transmit power, energy efficiency, 

and other performance metrics such as data rate or coverage would provide valuable 

insights for system optimization for Table 4.2 of Figure 4.8. 

➢ The near user consistently experiences a lower outage probability 

compared to the far user at all transmit power levels. This is because the near user is 

closer to the transmitter, resulting in stronger received signals and a lower likelihood 

of signal degradation, as shown in table 4.3. 

Table 4.3: Outage probability of near and far user with transmit power 

Transmit Power (dBm) 

Near User Outage 

Probability 

Far User Outage 

Probability 

   0 1 1 

   5 10^-2 10^-1 

10 10^-3 10^-2 

15 10^-4 10^-3 

20 10^-5 10^-4 

 

The outage probability curve for the near user is steeper than that of the far 

user. This indicates that the near user benefits more from increases in transmit power 

in terms of reducing outage probability.  

Figure 4.10 illustrates the relationship between transmit power (in dBm) and 

outage probability for two users: a near user and a far user in table 4.3.  
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Figure 4.10: Outage probability versus transmit power 

As the transmit power increases, the outage probability decreases for both 

users. This is expected, as higher transmit power generally leads to stronger received 

signals, reducing the likelihood of signal degradation below a certain threshold 

(outage), as in figure 4.10. 

➢ Near User vs. Far User: 

The near user's achievable data rate remains relatively constant across a wide 

range of transmit power levels. This suggests that the near user is already operating 

at a high SNR, and further increases in power do not significantly improve the data 

rate. The far user experiences a more pronounced increase in data rate with 

increasing transmit power. This indicates that the far user is operating at a lower 

SNR and benefits more significantly from the increased power, as in table 4.4. 

Table 4.4: Transmit power versus data rate using SWIPT for near and far users 

Transmit Power 

(dBm) 

Near User Data Rate 

(bps/Hz) 

Far User Data Rate 

(bps/Hz) 

0 1 0.5 

5 1 0.8 

10 1 1.2 

15 1 1.6 

20 1 2 
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The graph illustrates the relationship between transmit power (in dBm) and 

achievable data rate (in bps/Hz) for two users: a near user and a far user, as in Table 

4.4 for figure 4.11. 

 

Figure 4.11: Transmit power versus data rate using SWIPT 

For both users, the achievable data rate increases as the transmit power 

increases. This is expected because higher transmit power generally leads to 

stronger received signals, allowing for higher data rates, as in figure 4.11. 

➢ Table 4.5 presents an analysis of energy efficiency with RF chains. The 

figure is a performance comparison plot of different algorithms for a 

communication system, specifically showing how EE varies with the 

number of RF chains. Higher values mean better utilization of the 

frequency spectrum.  

Table 4.5: Energy Efficiency vs. RF Chains (CNN Method) 

RF Chains Energy Efficiency (×10⁸ bits/Joule) 

5 7.5 

6 6.5 

7 5.8 

8 5.3 

9 4.9 
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10 4.5 

11 4.1 

12 3.8 

13 3.5 

14 3.3 

15 3.1 

As the number of RF chains increases, energy efficiency decreases steadily. 

This decline suggests a trade-off: more RF chains improve signal processing 

capability but increase power consumption, reducing EE. The CNN-based approach 

likely optimizes resource allocation and antenna selection. However, its benefit 

diminishes with more RF chains due to escalating power costs. The highest EE (7.5 

× 10⁸ bits/Joule) occurs at 5 RF chains. Beyond this point, each additional RF chain 

contributes less to data rate improvement while adding more power burden. 

 

 

Figure 4.12: Energy efficiency analysis of CNN method 

This figure 4.12 is a strong visual validation that the CNN-based algorithm 

performs competitively, especially when the number of RF chains is moderate to 

high. This plot emphasizes the importance of optimizing the number of RF chains 

to maximize energy efficiency in CNN-enabled massive MIMO systems. A balance 

must be struck between performance gains and energy costs, especially in energy-

constrained environments like 5G base stations. 
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➢ The figure 4.13 represents the convergence behavior of a hybrid 

optimization algorithm over iterations. Specifically, it shows the 

harvested energy (in Watts) as a function of the number of iterations 

used in the algorithm. 

Table 4.6: Convergence of Hybrid Spider Wasp Fick's Law Algorithm – 

Energy Harvested versus Iterations 

Iteration Harvested Energy (W) 

1 4.71 

5 4.78 

10 4.81 

15 4.815 

20 4.818 

30 4.819 

40 4.8195 

50 4.8196 

60 4.8197 

70 4.8198 

The Hybrid Spider Wasp Fick’s Law algorithm is a nature-inspired 

optimization method that likely combines swarm intelligence (spider/wasp 

behavior) with Fick’s law (diffusion-based search). Refers to the total energy 

gathered, possibly in a wireless energy harvesting setup. The algorithm achieves 

most of its performance within the first 10–15 iterations. After that, improvements 

are minimal, indicating fast convergence. Beyond iteration 20, the curve flattens, 

confirming that the algorithm consistently converges toward an optimal or near-

optimal energy value (~4.82 W). 

 The early rise followed by a plateau implies that the algorithm finds a good 

solution quickly without unnecessary iteration, saving computation time and 

resources, as in figure 4.13. 
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Figure 4.13: Harvested energy using Hybrid Spider Wasp Fick’s Algorithm 

The Hybrid Spider Wasp Fick’s Law algorithm demonstrates excellent 

convergence behavior, reaching nearly optimal harvested energy in fewer than 20 

iterations. This makes it well-suited for real-time or low-latency applications in 

energy-harvesting wireless systems. The final converged value is approximately 

4.82 watts, highlighting the algorithm’s effectiveness as shown in figure 4.13. 

➢ Based on the figure shown below, 4.14 with a table 4.7 illustrates how 

the total harvested energy in (Joules/slot) changes with transmit SNR (in 

dB) for different values of the parameter α, ranging from 0.1 to 0.9. 

Table 4.7: Transmit SNR versus total energy harvested in terms of Joules/slot 

Transmit 

SNR (dB) 

Total 

energy 

harvested 

(Joules/slot

) when α = 

0.1 

Total 

energy 

harvested 

(Joules/slot

) when α = 

0.3 

Total 

energy 

harvested 

(Joules/slo

t) when α 

= 0.5 

Total energy 

harvested 

(Joules/slot) 

when α = 0.7 

Total 

energy 

harvested 

(Joules/sl

ot) when 

α = 0.9 

-10 0 0 0 0 0 

-5 0 0 0 0 0 

0 0 0 0 0 0 

5 0 0 0 0 0 

10 0.1*1011 0.13*1011 0.17*1011 0.22*1011 0.28*1011 

15 0.3*1011 0.5*1011 0.7*1011 1*1011 1.3*1011 

20 0.6*1011 1.2*1011 2*1011 2.9*1011 3.9*1011 

25 1.1*1011 2.5*1011 4.5*1011 7.5*1011 11*1011 
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30 1.8*1011 4.5*1011 8*1011 13*1011 17*1011 

 

Total harvested energy represents the amount of energy harvested from radio 

signals, expressed in Joules per slot. Transmit SNR indicates the strength of the 

transmitted signal. A higher SNR usually means stronger signals available for 

harvesting. The parameter α likely governs the trade-off between energy harvesting 

and data transmission (e.g., time or power split). 

The harvested energy remains nearly zero for SNR below 10 dB across all α 

values. This shows that low SNRs are insufficient for meaningful energy harvesting. 

After 15 dB, harvested energy increases rapidly, indicating a threshold effect. 

Higher values of α yield significantly more harvested energy. This suggests 

α controls the portion of power or time dedicated to harvesting energy; the higher 

α, the greater the energy harvested, as shown in table 4.7. 

 

 

Figure 4.14: Total energy harvested vs. SNR. 

            This graph highlights a critical trade-off in energy-harvesting 

wireless systems. While lower α values are better for data transmission (as 

shown in the first graph), higher α values favor energy harvesting. System 

designers must carefully tune α depending on whether the priority is data 

throughput or energy sustainability, as shown in figure 4.14. 
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➢ Achievable sum rate refers to the total data rate that can be 

supported by the system under given channel conditions. Transmit 

SNR represents the strength of the transmitted signal relative to 

background noise. Increasing SNR generally improves 

performance, as shown in Table 4.8. 

     

          Table 4.8: Transmit SNR versus total achievable sum rate in terms of bps 

 

Trans

mit 

SNR 

(dB) 

Total 

achievable 

sum rate  

(bps) when 

α = 0.1 

Total 

achievable 

sum rate  

(bps) when α 

= 0.3 

Total 

achievable 

sum rate  

(bps) when 

α = 0.5 

Total 

achieva

ble sum 

rate  

(bps) 

when α 

= 0.7 

Total 

achieva

ble sum 

rate  

(bps) 

when α 

= 0.9 

-10 0.12 0.1 0.08 0.06 0.04 

-5 0.25 0.21 0.18 0.14 0.1 

0 0.48 0.42 0.36 0.29 0.22 

5 0.75 0.66 0.57 0.47 0.36 

10 1 0.89 0.77 0.65 0.51 

15 1.3 1.17 1.02 0.86 0.7 

20 1.6 1.44 1.27 1.08 0.89 

25 1.9 1.72 1.51 1.29 1.06 

28 2.1 1.9 1.68 1.44 1.2 

 

The α parameter appears to influence system design—possibly related to 

energy harvesting, power allocation, or user fairness control. Lower α (e.g., 0.1) 

yields higher sum rates, suggesting more aggressive resource use or better 

throughput performance. Higher α (e.g., 0.9) results in lower sum rates, likely due 

to more conservative resource allocation (e.g., more energy harvesting or 

prioritizing fairness over speed). Achievable sum rate increases almost linearly with 

transmit SNR in dB,  as shown in figure 4.15. 
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Figure 4.15: Achievable Sum rate vs. transmit SNR 

Lower values of α provide better throughput across all SNRs. At higher 

SNR, the gap in sum rate performance between different α values widens, indicating 

α has more impact in high-SNR regimes, as shown in table 4.5 with figure 4.15. 

➢ The figure shown in 4.16 illustrates various curves corresponding to 

different values of the power splitting ratio (α) in a SWIPT 

(Simultaneous Wireless Information and Power Transfer) system using 

a Massive MIMO configuration. It depicts the relationship between 

Achievable sum rate (bps) and Total Harvested Energy (Joules/slot) for 

five distinct α values: 0.1, 0.3, 0.5, 0.7, and 0.9. 

 

Figure 4.16: Total energy harvested vs. achievable sum rate 
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Lower values of α prioritize information transmission, resulting in higher 

achievable sum rates, whereas higher α values emphasize energy harvesting, leading 

to reduced sum rates, as shown in figure 4.16. 

➢ Comparative Analysis: 

The comparison of these three SWIPT techniques provides valuable insights into 

the trade-offs between simplicity, hardware cost, interference handling, and energy 

harvesting performance in massive MIMO systems. While Power Splitting-SWIPT is 

simpler and widely applicable, Antenna Switching-SWIPT may be more practical in 

hardware-constrained scenarios. On the other hand, ZF-PS-SWIPT delivers superior 

performance in terms of interference mitigation and energy transfer efficiency, making 

it ideal for dense multi-user environments where computational complexity is 

acceptable. 

• In the Power Splitting-SWIPT method, the received signal at the user is divided into 

two parts using a power splitter:    1. A fraction of the received power (defined by the 

power splitting ratio, 

𝛼) is used for energy harvesting. 2. The remaining portion is used for information 

decoding. 

• Antenna Switching is an alternative method where the base station allocates a subset 

of its antennas exclusively for energy transfer, while the remaining antennas are used 

for data transmission. This division is based on a switching ratio (e.g., 30% of antennas 

for energy, 70% for data). Each user's channel is partially served by the antennas 

dedicated to energy transmission, and the harvested energy is calculated accordingly. 

• Zero-Forcing beamforming with Power-Splitting SWIPT (ZF-PS-SWIPT) is a hybrid 

technique; we use ZF beamforming at the base station in combination with the Power 

Splitting mechanism at the user end. ZF beamforming is designed to eliminate inter-

user interference by inverting the channel matrix. Each user's signal is beamformed 

such that it does not interfere with other users. Power splitting is then applied at each 

user to divide the received signal between energy harvesting and information decoding. 
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.  

Figure 4.17: Comparative analysis of SWIPT in massive MIMO 

The aim is to measure and compare the average harvested energy at each UE across 

the three techniques under identical system settings. 

 4.6 Conclusion: 

•  SWIPT technology, when integrated with massive MIMO, has the 

potential to revolutionize wireless communication by enabling self-sustaining 

devices, enhancing energy efficiency, and promoting green communication 

practices. While challenges remain, ongoing research and development efforts are 

paving the way for the widespread adoption of SWIPT in future wireless networks. 

• · The plot shows that low RF chain counts are more energy efficient. High 

RF chain counts might be needed for performance but are less energy efficient. This 

is especially useful for green communications and 5G/6G system design, where 

energy consumption is as important as throughput. 

• · Figure 4.6 highlights the importance of accurate CSI and efficient 

quantization techniques in achieving high energy efficiency in massive MIMO 

systems.  

• In conclusion, transmit SNR at 30 dB, α = 0.9 leads to approximately 

17×10¹¹ Joules/slot, while α = 0.1 results in just 1.8×10¹¹ Joules/slot, as shown in 

figure 4.14. The average harvested energy is calculated for each user across many 

iterations to account for the randomness of wireless channels by  using comparative 

methods in SWIPT, as shown in figure 4.17 
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Chapter 5 

REDUCTION OF PAPR IN MASSIVE MIMO WIRELESS 

COMMUNICATION SYSTEM 

        5.1 Introduction 

PAPR reduction in massive MIMO systems is an important aspect to 

consider, as it can greatly influence system performance, especially in wireless 

communication [80]. Massive MIMO systems employ a bulky quantity of antennas 

at the BS to serve many users concurrently, which increases the capacity and 

efficiency of the network. However, one of the challenges with these systems, 

especially when using multicarrier modulation techniques like OFDM, is high 

PAPR [80]. High PAPR indicates that the signal has peaks that are much higher than 

its average level, which can lead to inefficiencies: 

• High PAPR can push the power amplifiers into the non-linear operating 

region, leading to distortion and spectral spreading. 

• Inefficient power usage can drain battery life more quickly in mobile 

devices. 

• Requires more robust and costly RF components to handle high peak 

voltages without distortion. 

Reducing PAPR in massive MIMO systems is crucial for enhancing overall 

performance and efficiency, especially in scenarios utilizing OFDM. The selection 

of a suitable PAPR reduction method depends on various factors, including system 

design, required performance level, and acceptable complexity. Advances in signal 

processing and computational capabilities continue to drive improvements in PAPR 

reduction techniques, making massive MIMO systems more efficient and reliable 

[81]. The choice of PAPR reduction technique can depend on specific system 

requirements, including hardware capabilities, power efficiency needs, and 

operational bandwidth.  

More sophisticated methods like SLM and PTS tend to offer better PAPR 

reduction but at the cost of increased computational requirements [81].  

Several strategies have been developed to mitigate PAPR in these systems, 

as shown below. 
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• Clipping and Filtering: This straightforward technique involves clipping 

the signal peaks to a predefined threshold and then using filters to mitigate the 

spectral splatter caused by clipping. However, this method can introduce in-band 

deformation and out-of-band emission. 

• Selective Level Mapping (SLM): This method involves generating 

several versions of the transmitted signal using different segment sequences and 

selecting the one with the smallest PAPR. Selective Level Mapping can effectively 

reduce PAPR without distorting the signal but increases the computational 

complexity [82]. 

• Partial Transmit Sequences (PTS): Similar to SLM, PTS divides the 

signal into sub-blocks, which are then independently phase-rotated to minimize 

PAPR. This method also adds complexity and requires side information to be sent 

to the receiver [83]. 

• Tone Reservation (TR): TR uses a small number of subcarriers reserved 

specifically for canceling the peaks in the signal. These subcarriers do not transmit 

data but are used to sculpt the overall signal to reduce peaks. 

• Active Constellation Extension (ACE): This technique extends the 

constellation points beyond their original boundaries in specific directions 

determined to reduce PAPR. It requires careful design to avoid impacting the error 

performance of the system [83-84]. 

• Spatial Shifting: In the context of Massive MIMO, leveraging the spatial 

domain by adjusting the transmission strategy across the array of antennas can also 

help in managing PAPR. 

5.2 Proposed System 

In the field of wireless transportation, massive MIMO systems are pivotal in 

achieving high data rates and enhanced spectral efficiency. However, one persistent 

challenge in these systems is the high PAPR, which can radically degrade the 

competence of power amplifiers. To address this issue, we propose an innovative 

AI-driven approach that aims to minimize PAPR effectively [85]. 

Our system leverages deep learning algorithms to predict and mitigate high 

PAPR values in real-time. By training a neural network on a dataset comprising 

various signal scenarios and corresponding PAPR values, the model learns to 

identify patterns that lead to high PAPR. Once trained, this model can dynamically 
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adjust the signal’s phase and amplitude, optimizing the transmitted signal for lower 

PAPR without compromising data integrity [85]. 

It specifically uses a Convolutional Neural Network (CNN) due to its facility 

to route information in a format similar to the original structure of the signals. This 

choice enables the preservation of crucial spatial relationships within the data [86]. 

Furthermore, to enhance the learning efficiency and performance of our AI model, 

we incorporate transfer learning techniques. This allows our system to apply 

knowledge gained from previous datasets or signal types, accelerating the 

adaptation process to new Massive MIMO configurations or environmental 

conditions [86]. 

          5.3   Performance Stages in PAPR Reduction Schemes 

 

Figure 5.1: Performance stages in PAPR reduction schemes [88] 

         Figure 5.1 signifies the stages to reduce PAPR. 

➢ At Transmitter Side 

1. Data Source: The process begins with the data source that is to be 

transmitted. 

2. Error Corrective Encoding: The data is then encoded using an error-

correcting code (e.g., Reed-Solomon, convolutional codes) to protect it against 

errors that may occur during transmission. 

3.   S/P (Serial to Parallel) Conversion: The encoded data stream is 

converted from a serial format to a parallel format, where it is divided into multiple 

parallel streams 
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4. Sub-Carrier Mapping: Each parallel data stream is mapped onto a 

different sub-carrier within the OFDM symbol.   

5.  Pilot Insertion: Pilot symbols are inserted into the OFDM symbol for 

channel estimation purposes at the receiver.    

6. IFFT (Inverse Fast Fourier Transform): The parallel data streams 

are combined using the IFFT to generate a time-domain signal.    

7. CP Addition: A cyclic prefix, which is a copy of the end of the symbol, 

is added to the beginning of the symbol. The CP helps to mitigate the effects of ISI 

caused by multipath propagation.    

8. Digital-to-Analog Converter (DAC): The digital signal is converted 

into an analog signal using a DAC. 

9. RF Processing: The analog signal is then processed (e.g., up converted 

to the carrier frequency)  

10. AWGN Channel: The transmitted signal propagates through the 

wireless channel, which is modeled as an AWGN channel, introducing noise to the 

signal. 

➢ At  Receiver Side 

11. Analog-to-Digital Converter (ADC): The received signal is 

converted back into a digital signal using an ADC. 

12. CP Removal: The cyclic prefix is removed from the received 

signal. 

13. Fast Fourier Transform: The FFT is applied to the received signal 

to convert it back into the frequency domain, separating the data from different sub-

carriers. 

14. Channel Estimation: The channel characteristics are estimated 

using the pilot symbols. 

15. Sub-Carrier Demapping: The data from each sub-carrier is 

demapped. 
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16. De-coding: The received data is decoded using the error-correcting 

code to recover the original information. 

17. Parallel to Serial Conversion: The parallel data streams are 

converted back into a serial data stream. 

18. Data Sink: The recovered data is delivered to the intended 

destination. 

 5.4 SLM Technique: 

Massive MIMO technology, which leverages numerous transmitting and 

receiving antennas, greatly enhances network capacity and efficiency. Nevertheless, 

these systems often encounter a high PAPR, which complicates the authority 

amplifier operation, reducing its efficiency. To mitigate this issue, we introduce an 

innovative approach using SLM-integrated techniques. In our system, SLM is 

employed to create several alternative versions of the original signal, each with 

independently phase-shifted subcarriers. This method inherently diversifies the 

phase spectra of the transmitted signals, which helps in reducing instances of high 

PAPR values. The study is conducted by simulating various scenarios involving different 

coherence bandwidths, 5G numerologies and, the number of subcarriers within each 

channel matrix and by applying multiple levels of clipping to limit the PAPR [87]. 

 

Figure 5.2: Selective Level Mapping block diagram [87] 

To further enhance the effectiveness of SLM, we utilize a deep learning 

model to select the optimal signal version for transmission. This selection is based 

on criteria that prioritize not only low PAPR but also minimal impact on signal 
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integrity and system throughput. Integration of AI with SLM in massive MIMO 

systems allows for a dynamic and intelligent selection process, unlike conventional 

SLM applications that may rely on random or less informed selection methods. This 

targeted approach significantly enhances the probability of achieving lower PAPR 

in real-time operations. 

For real-world application, our system is designed to be compatible with 

existing Massive MIMO architectures, requiring minimal changes to the 

infrastructure. The AI component operates efficiently in a parallel processing 

environment, ensuring that the PAPR reduction process does not introduce latency 

into the signal transmission. Data is given as X, which is to the different users having 

different powers P1,P2  …...Pj are sent to Inverse FFT. 

Then the data will be transmitted to X1, X2,…,Xu to select the sequence data 

with the minimum PAPR value [88]. 

          5.5 PTS Technique: 

 

Figure 5.3 Partial Transmit Sequences (PTS) steps [88] 

An original overview of using PTS for PAPR reduction in this scheme can 

be used by following PTS technique steps as shown in figure 5.3 [88]. 

 Data Source: This is the origin of the information to be transmitted. 
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 Serial to Parallel Mapping : The incoming data stream is divided into 

multiple parallel streams. Each parallel data stream is mapped to a constellation to 

generate a set of complex symbols. A(1), A(2),…….A(V)  vectors are sent to IFFT. 

 Inverse Fast Fourier Transform:. Sub-sequences (X(1), X(2), ..., X(V)): 

The IFFT output generates multiple sub-sequences (V sub-sequences in this case). 

 Phase Rotations (b(1), b(2), ..., b(V)): Each sub-sequence is multiplied by 

a complex phase factor (b(v)). These phase factors are crucial for PAPR reduction. 

 Addition: All the phase-rotated sub-sequences are summed together to 

form the final transmitted signal (X). 

 Optimization: The key to PTS lies in the optimization process. The goal 

is to determine the optimal set of phase factors (b(1), b(2), ..., b(V)) that minimizes the 

PAPR of the transmitted signal (X). This optimization is typically performed using 

numerical algorithms [89]. 

Massive MIMO systems often grapple with high PAPR, which can limit the 

effectiveness of power amplifiers. PTS offers a technique to combat this issue by 

manipulating the transmitted signals in a controlled manner. The PTS technique 

involves dividing a signal into multiple sub-blocks, each of which can be modified 

independently before recombination. This segmentation is critical because it allows 

for selective phase alterations to minimize PAPR. In each sub-block, various phase 

factors are applied, and the combination that results in the lowest PAPR is chosen 

for communication. This selection process is essential for ensuring that the overall 

signal experiences the least possible peak power enhancement. To streamline the 

phase selection process, optimization algorithms can be deployed. These might 

include heuristic or genetic algorithms designed to quickly and effectively find the 

optimal phase combinations among the potential choices.  

Artificial intelligence can further refine the PTS method by predicting 

optimal phase adjustments using historical data and machine learning techniques 

[89-90].  

Once the simulation validates the effectiveness of the PTS method, it is 

integrated into the massive MIMO infrastructure. This involves embedding the 

algorithm within the system’s signal processing unit to ensure real-time PAPR 
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reduction. During live operations, the system continuously collects performance 

data and adjusts the PTS parameters in real time. This adaptation is crucial for 

maintaining low PAPR levels despite dynamic network conditions and traffic 

patterns [91]. This ongoing learning process helps in maintaining system 

performance and extending the lifespan of hardware components by minimizing 

stress.  

          5.6 PSO Technique: 

This technique can be applied to reduce PAPR in large-scale MIMO 

systems. It is an evolutionary calculation procedure motivated by societal activity 

patterns seen in nature, such as bird flocking and go-fishing training. This method 

is adapted to minimize PAPR in massive MIMO systems by optimizing the signal's 

phase and amplitude characteristics [92]. 

           Massive MIMO systems transmit data through numerous antennas, 

often leading to a high PAPR, which impacts the efficiency of power amplifiers 

negatively. PSO is employed to find a set of signal parameters that result in the 

lowest possible PAPR. These systems transmit data through numerous antennas, 

often leading to a high PAPR, which impacts the efficiency of power amplifiers 

negatively. PSO is employed to find a set of signal parameters that result in the 

lowest possible PAPR. In PSO, a 'swarm' of particles is initialized with random 

positions and velocities [93]. Each particle represents a potential solution to the 

PAPR problem, with each position corresponding to a specific set of signal 

parameters. 

        The objective function in PSO for PAPR reduction is defined to 

evaluate how well a given particle's position (i.e., a particular signal configuration) 

minimizes the PAPR. The lower the PAPR, the better the score assigned by the 

objective function.  

Implementation can be used to further refine the PSO parameters, improving 

both the efficiency and effectiveness of the PAPR reduction strategy over time [94]. 

The following steps can be used for reducing PAPR using the PSO method. 
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Figure 5.4: Flowchart for PSO to decrease PAPR [94] 

• At each step, the new positions of the particles are evaluated 

using the objective function. Particles then update their velocities and positions to 

explore new potential solutions that may lead to a lower PAPR. 

• The algorithm monitors convergence towards a solution where 

further iterations do not significantly decrease PAPR. Once a near-optimal set of 

parameters is found, the optimization process can be halted. 

• The optimal signal parameters identified by PSO are then used 

to configure the Massive MIMO system, aligning phase and amplitude settings to 

ensure reduced PAPR during transmission. 

• To maintain performance in dynamic transmission 

environments, PSO can be run periodically or in real-time to settle in to changes in 

network conditions and continuously optimize PAPR. 
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5.7 LSTM Implementation of proposed system: 

 

Figure 5.5: LSTM based analysis 

Analysis using LSTM networks involves leveraging these specialized 

recurrent neural networks to process sequential data, as shown in figure 5.5.  

LSTMs are considered to efficiently confine long-term dependencies within 

sequences, making them particularly useful for tasks such as time series prediction 

and speech recognition [95]. In an LSTM-based analysis, sequential data is fed into 

the network, which processes it step by step, maintaining an internal state that allows 

it to remember past information for an extended period [96]. This ability to retain 

memory over long sequences enables LSTMs to learn intricate patterns and 

relationships within the data. 

In LSTM-based analysis, data is fed into the network sequentially, allowing 

it to process each element while retaining an internal memory state.  



 

 

107 
 

This memory mechanism enables LSTMs to learn and understand intricate 

patterns and relationships within the data over extended sequences.  

The applications of LSTM-based analysis span across various fields. For 

instance, in time series prediction, LSTMs can forecast future values based on past 

observations, which finds applications in areas similar to stockpile marketplace 

calculation, climate prediction, and stipulate prediction [97]. 

Similarly, in speech recognition, LSTMs are utilized to process audio signals 

and convert them into text. By modeling the temporal dependencies inherent in 

speech data, LSTMs contribute to improving the accuracy and robustness of speech 

recognition systems. Additionally, LSTMs find application in anomaly detection 

tasks, where they learn the normal patterns within sequential data and identify 

deviations from these patterns [97]. 

 

Figure 5.6: Stages in proposed system [97] 

Performance Evaluation

Hybrid DL analysis

CNN based analysis RNN based analysis BiLSTM based analysis

Data preprocessing

Data collection
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This capability is valuable in various domains, including detecting 

anomalies in network traffic, manufacturing processes, and financial transactions. 

Overall, leveraging LSTM-based analysis provides a powerful framework for 

modeling and analyzing sequential data, enabling the development of sophisticated 

solutions across diverse domains.  

Evaluation of a Massive MIMO-Based 5G Communication Framework 

Using an Integrated Deep Learning Approach Incorporating CNN, RNN, and 

BiLSTM Layers [97].  

The outlines of these stages are as shown in figure 5.6. 

(i) Data Collection: Initially, data relevant to this 5G system is gathered. 

This data may include CSI, user feedback, network performance 

metrics, and environmental variables. Following collection, the data is 

preprocessed to ensure uniformity, normalization, and removal of noise 

or irrelevant features. 

(ii) Data Preprocessing: Once the data is collected, it needs to be pre 

processed to prepare it for Data cleaning analysis.  

(iii) Hybrid DL analysis: Hybrid deep learning (DL) analysis represents a 

cutting-edge approach that combines multiple DL techniques, such as 

CNNs, RNNs, and LSTM networks, to address the complexities of 

modern data analysis tasks. In the realm of telecommunications, 

particularly in the context of large-scale, 5th generation networks, an 

amalgam. DL approach offers unprecedented capabilities for extracting 

insights from diverse data sources and optimizing network 

performance. By integrating CNNs for spatial feature extraction, RNNs 

for capturing temporal dependencies, and LSTM networks for handling 

long-term dependencies, analysts can effectively analyze complex 

spatial-temporal data generated by massive MIMO systems [98]. This 

enables tasks such as channel prediction, user behavior analysis, and 

resource allocation optimization to be performed with enhanced 

accuracy and efficiency. Through the synergy of different DL 

techniques, hybrid DL analysis empowers telecommunications 

researchers and practitioners to unlock new possibilities in 

understanding and optimizing the performance of 5G networks, 
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ultimately paving the way for the advancement of communication 

technologies. 

(iv) CNN   based analysis: Analyzing massive MIMO 5G networks 

through a CNN-based approach involves key steps tailored to the 

intricacies of this advanced communication system. Initially, relevant 

data encompassing channel state information and user mobility patterns 

is collected and preprocessed to ensure consistency. The CNN model 

is then utilized to extract spatial features from channel matrices, 

effectively capturing spatial correlations among antennas. These 

features aid in optimizing beamforming strategies and mitigating 

interference, thereby enhancing spectral efficiency. Rigorous 

evaluation and validation of the trained CNN model are conducted to 

ensure accuracy and generalization capabilities, particularly in 

predicting channel states under diverse conditions. Upon successful 

validation, the CNN-based analysis framework is deployed for 

continuous tracking and enhancement of the massive MIMO 5G 

network, continuously adapting to dynamic changes and improving 

overall network efficiency [99]. 

(v) RNN based Analysis: Analyzing a massive MIMO system within the 

context of 5G using an RNN-based approach involves a series of 

critical steps customized to the complexities of this cutting-edge 

communication technology. Initially, pertinent data related to the 

massive MIMO system, including channel state information, user 

mobility patterns, and network performance metrics, is collected and 

prepared for analysis. The RNN model is then employed to capture 

temporal dependencies within the data, particularly focusing on 

sequential information such as user movements and channel variations 

over time. By leveraging the inherent ability of RNNs to retain memory 

of past inputs, the model effectively learns and predicts future states of 

the massive MIMO system, facilitating tasks such as optimizing 

resource allocation, predicting user behavior, and mitigating 

interference [100]. Following training, the RNN model undergoes 

rigorous evaluation to ensure its accuracy and robustness in handling 

diverse scenarios and datasets. Once validated, the RNN-based analysis 
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framework is deployed in real-world environments for continuous 

monitoring and optimization of the massive MIMO system, enabling 

adaptive and efficient operation in dynamic 5G networks. 

(vi) BiLSTM based analysis: Networks represent a specific type of 

system; LSTM networks hold significant promise for analyzing time-

series data due to their ability to successfully confine and expect multi-

part patterns in excess of unlimited periods. Leveraging LSTM 

architecture entails constructing, training, and evaluating models 

tailored to the unique characteristics of this 5G set-up data. This 

involves understanding the intricate spatial and temporal dynamics 

inherent in such networks and devising LSTM-based approaches that 

can efficiently process and interpret this information for tasks like 

channel prediction, resource allocation optimization, and interference 

mitigation. Through the utilization of LSTM linkages, analysts can gain 

deeper insights into the behavior and performance of 5G networks, 

ultimately contributing to the advancement of further adaptive, 

proficient, and trustworthy communication systems [101]. 

(vii) By following these steps, a CNN-based analysis approach facilitates 

comprehensive insights into the spatial characteristics and performance 

optimization of massive MIMO 5G networks, ultimately contributing 

to their enhanced functionality and scalability in modern 

telecommunications systems. 

          5.8  PAPR Reduction by using SCS-BiLSTMAE : 

PAPR levels potentially inducing nonlinear deformation in authority 

amplifiers, thereby compromising in general system presentation. Hence, 

decreasing PAPR is essential to improve the model’s effectiveness.  

Now define the rearranged signal as 


p  and the squeezed-together symbol 

after the SCS-AE stage as 
Lq . Equation (4.1) signifies the PAPR computation 

procedure. 

𝑃𝐴𝑃𝑅(𝑝̂) = 10 ∗ log10 (
𝑚𝑎𝑥(|𝑝̂|2)

𝐸(|𝑝̂|2)
)                                                                    (5.1) 
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In the subsequent SCS-AE compression step, the input signal is compressed 

using Sparse Coding-based Autoencoder (SCS-AE) to generate a sparse 

representation. This compression process aims to create a representation wherein 

fewer high-amplitude peaks are present in the signal, thereby contributing to a 

reduction in PAPR. Meager characterizations are distinguished by having a 

significant near-zero value, which effectively mitigates peak power. The sparse 

characterization of the sent image is innovated by Equation (4.2), encapsulating the 

mathematical transformation that generates the compressed representation while 

minimizing information loss and preserving signal quality.  

          𝑞𝐿=SCS-AE(𝑝)                                                                                                                  (5.2) 

BiLSTM represents a type of RNN planning utilized in this stage. This stage 

plays a crucial role in enhancing the overall performance of the system by enabling 

it to better understand and process complex temporal patterns in the signal sequence.        

          (ℎ𝑡, 𝑐𝑡) =  𝐵𝑖𝐿𝑆𝑇𝑀(𝑝𝑡, ℎ𝑡−1 , 𝑐𝑡−1)                                                                    (5.3)                                                                                                   

where, c signifying hidden state, 
tc  shows cell state  signifies the BiLSTM 

operations. Equation below delineates the solution for a BiLSTM unit at the 

designated time step. This equation encapsulates the intricate computations and 

transformations performed within the BiLSTM unit to process sequential data 

efficiently while capturing long-range dependencies. By incorporating both forward 

and backward information flows, BiLSTM units excel in modeling complex 

temporal patterns and relationships in diverse datasets. Equation (5.3) serves as a 

fundamental building block in the architecture of recurrent neural networks, 

enabling robust learning and prediction tasks across a variety of domains like AI, 

NLP, and ML. 

Following firmness and communicating through this stage, the system 

proceeds to reconstruct the signal. This rebuilding process is meticulously designed 

to preserve the original information while achieving a lower PAPR. Preserving 

information holds paramount importance in transmission systems, ensuring that the 

decoded signal remains realistic to the innovative result after decreasing PAPR. By 

maintaining the integrity of the signal throughout the compression and 

reconstruction stages, the system guarantees the reliability and accuracy of the 
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transmitted data, ultimately enhancing the overall performance and efficiency of the 

communication network. 

The output stage of the process is responsible for reconstructing the signal 

using the information obtained from the BiLSTM stage. This reconstruction process 

aims to generate an accurate representation of the original signal based on the 

insights and features extracted by the BiLSTM stage. The formula for the 

reconstructed image 


p  is derived from equation (5.4), which incorporates the 

learned representations and parameters to recreate the signal with minimal loss of 

information. This reconstruction step is crucial in ensuring the fidelity and quality 

of the output signal, enabling downstream analysis and applications to effectively 

utilize the processed data. 

         𝑝̂ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(ℎ𝑡 , 𝑐𝑡)                                                                                           (5.4) 

Subsequently, the PAPR reduction step involves calculating the reduction in 

PAPR achieved by the entire process. Equation (5.5) is formulated to represent the 

mathematical expression for calculating PAPR reduction, providing a quantitative 

measure of the effectiveness of the signal processing techniques employed. 

          𝑃𝐴𝑃𝑅 𝑅𝐸𝐷𝑈𝐶𝑇𝐼𝑂𝑁 = 𝑃𝐴𝑃𝑅 (𝑝̂))-PAPR(𝑝)                                                  
 
(5.5)

                                                     
 

Where , the 






 

pPAPR is PAPR of the reformed signal (the output signal after 

PAPR reduction), ( )pPAPR is the Peak to Average Power Ratio of the original input 

signal. 

          CCDF=𝑃𝑟[𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅𝑂]                                                                              (5.6) 

         5.9 Results and Discussion 

➢ PAPR verses CCDF analysis for different techniques 

Massive MIMO demonstrates the most effective PAPR reduction among the 

three modulation techniques considered in this graph. NOMA appears to have the 

highest PAPR, which could potentially lead to increased distortion in the power 

amplifier, as shown in Table 5.1.  

Table 5.1: PAPR Vs CCDF for massive MIMO, FBMC, NOMA 
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Modulation 

Technique PAPR Reduction Effectiveness 

Massive MIMO Highest PAPR reduction 

FBMC Moderate PAPR reduction 

NOMA Lowest PAPR  

The CCDF curves provide valuable insights into the PAPR distribution of 

each modulation technique and can be used to assess their suitability for different 

applications, as shown in Figure 5.7 with Table 5.1. 

 

Figure 5.7: PAPR vs. CCDF analysis for massive MIMO, NOMA and 

FBMC 

To gain a deeper understanding, it would be beneficial to investigate the 

specific characteristics of each modulation technique and how they contribute to the 

observed PAPR behavior. 

➢ Comparison of PAPR methods 

PAPR can lead to nonlinear distortions in the power amplifier, resulting in 

degraded signal quality and reduced transmission efficiency for different methods 

shown below in figure 5.8. 

• PTS (Partial Transmit Sequence): This technique divides the symbol 

into multiple segments, which are then added together with different phase shifts to 

reduce the peak power. 
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• PSO-PTS (Particle Swarm Optimization-based PTS): This technique 

uses a meta-heuristic optimization algorithm to optimize the phase shifts in the PTS 

method, leading to improved PAPR reduction. 

• Scaled PSO-PTS:  

This is a variation of PSO-PTS where the amplitude of the segments is also 

optimized, and then PAPR will be reduced. As PAPR decreases, received power 

will be increased. As PAPR increases, received power will be decreased. From the 

graph, we can see that scaled PSO-PTS generally outperforms PSO-PTS and PTS 

in terms of PAPR reduction. This is because it has more degrees of freedom to 

optimize the signal. While these techniques can effectively reduce PAPR, they often 

come with increased computational complexity and potential overhead in terms of 

additional signaling. The graph demonstrates the effectiveness of different PAPR 

reduction techniques in mitigating the high PAPR problem in these systems. 

 

 

Figure 5.8: Comparison of PTS and PSO Methods 

➢ A CCDF graph is a graphical representation of the probability that 

a random variable exceeds a certain threshold. Figure 5.9 compares the PAPR 

performance of the different techniques as shown in figure 5.9. 

Without PAPR Reduction: This is the baseline, showing the original PAPR 

distribution of the signal. 

With Partial Transmit Sequence (PTS): This technique reduces PAPR by 

dividing the signal into multiple segments and combining them with different phase 

shifts. 
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With Tone Reservation (TR): TR reserves some subcarriers for additional 

signal power, reducing the peak power. 

As we move to the right on the x-axis (higher PAPR thresholds), the CCDF 

values decrease for all techniques. The techniques with PAPR reduction (PTS, TR) 

consistently outperform the "without PAPR reduction" case.  

 

Figure 5.9: Comparison of PAPR reduction schemes 

Among the reduction techniques, PTS seems to be the most effective, 

followed by TR. While PAPR reduction techniques can improve the signal quality, 

they may introduce additional complexity and overhead, as shown in figure 5.9. 

➢ The figure 5.10 shows the CCDF of the PAPR for different PAPR reduction 

techniques in a Massive MIMO-OFDM system.  

Table 5.2: CCDF versus PAPR for three different methods 

Technique 
Approximate PAPR 

(dB) at CCDF=10−3 

Original ~9.5 dB 

SLM ~7.5 dB 

PTS ~6.2 dB 
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Tone Reservation ~5.5 dB 

The Original method has a high PAPR (~9.5 dB), which can stress power 

amplifiers. SLM reduces PAPR by around 2 dB, making it suitable for many 

practical systems. PTS offers better performance (~3.3 dB reduction), balancing 

complexity and gain. Tone Reservation is the most effective among the three, 

cutting PAPR by up to 4 dB, but at the cost of some spectral efficiency. 

 

Figure 5.10: PAPR reduction in massive MIMO with SLM, PTS and TR 

different methods 

The goal is to compare the effectiveness of SLM, PTS, and tone reservation 

methods against the original unprocessed OFDM signal as shown in figure 5.10 with table 

5.2. 

➢ Among these techniques, the proposed method consistently requires 

the least transmission power across all SNR thresholds. T his 

indicates that the proposed method is more efficient in terms of power 

usage. It makes it the best choice for applications where power 

consumption is a critical factor, such as wireless communication 

systems. The graph shown in figure 5.11 illustrates the CCDF of PAPR 

for three different scenarios. 

• Original Performance: This likely represents the PAPR distribution of 

the original transmitted signal without any PAPR reduction techniques 

applied. 

• Performance in ZF: This curve shows the PAPR distribution after 
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applying ZF precoding. 

• Performance in MMSE: This curve shows the PAPR distribution after 

applying Minimum Mean Square Error (MMSE) precoding. 

 

 

Figure 5.11: CCDF of PAPR in different precoding techniques 

Both ZF and MMSE precoding techniques effectively reduce the PAPR 

compared to the original signal. This is evident from the shift of the curves to the 

left, indicating a lower probability of higher PAPR values. The MMSE precoding 

technique generally results in a lower PAPR compared to ZF. This is indicated by 

the MMSE curve being shifted further to the left compared to the ZF curve. This 

suggests that MMSE is more effective in reducing PAPR. The reduction in PAPR 

achieved by these techniques is likely to improve the performance of the power 

amplifier and reduce distortion in the transmitted signal. 

➢ The shape of the curve suggests that the PAPR distribution is skewed 

towards lower values. ZF precoded Signal represents the PAPR 

distribution of a signal precoded using the ZF technique, as shown in 

table 5.3. 

Table 5.3: PAPR reduction effectiveness 

Scenario PAPR Reduction Effectiveness 

PAPR-Aware-Secure-massive MIMO Highest PAPR reduction 
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ZF Precoded Signal plus Random AN Intermediate PAPR reduction 

ZF Precoded Signal Moderate PAPR reduction 

Graph 5.12 illustrates the CCDF of Peak-to-Average Power Ratio (PAPR) 

for three different scenarios. PAPR-Aware-Secure-massive MIMO likely represents 

the PAPR distribution of a signal precoded using a technique that aims to both 

reduce PAPR and enhance security in a massive MIMO system for figure 5.12. 

 

Figure 5.12: CCDF of PAPR for different schemes 

At, the proposed method likely represents the PAPR distribution of a ZF-

precoded signal with the addition of some form of artificial noise (AN) to further 

enhance security or reduce PAPR, as shown in the table. This technique 

demonstrates the most effective PAPR reduction among the three scenarios. Adding 

random artificial noise to the ZF precoded signal can slightly increase the PAPR.  

The CCDF curves provide valuable insights into the PAPR distribution and 

can be used to assess the impact of different precoding and security techniques on 

system performance. To gain a deeper understanding, it would be beneficial to 

investigate the specific techniques employed in the "PAPR-Aware-Secure-

mMIMO" approach. 

➢ Table 5.4 illustrates the complementary CCDF of PAPR for four 

different scenarios: SLM shows the PAPR distribution after applying the Selective 

Mapping (SLM) technique. The interleaved curve likely represents the PAPR 

distribution after applying an interleaving technique. The PTS curve likely 

represents the PAPR distribution as in figure 5.13. 
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Table 5.4: PAPR reduction in SLM, PTS, interleaved methods with original 

Technique PAPR Reduction Effectiveness 

Original Baseline 

SLM Moderate PAPR reduction 

Interleaved Highest PAPR reduction 

PTS Least PAPR reduction  

This is evident from the shift of the curves to the left, indicating a lower 

probability of higher PAPR values. Among the techniques, the interleaved method 

appears to have the most pronounced effect on PAPR reduction. 

 

Figure 5.13: Comparisons of CCDF and PAPR for SLM, PTS, and 

interleaved methods. 

This simulation incorporates a hybrid ZF precoding scheme, commonly used 

in massive MIMO systems, to evaluate its impact on PAPR. It calculates the PAPR 

for each transmit antenna individually as well as for the aggregated signal across all 

antennas, which is critical for assessing the demands on power amplifiers and 

ensuring linear system performance. By comparing the CCDF curves under 

different scenarios, such as without precoding, with hybrid ZF precoding for 

individual antenna signals, and for the combined output, the analysis provides a 

clear understanding of how precoding strategies influence PAPR behavior in 

massive MIMO transmissions, as shown in figure 5.13 of table 5.4. Its CCDF curve 

lies farthest to the left, indicating the lowest probability of high PAPR values.  
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➢ In a massive MIMO system with M=256 antennas with K=8 users, 

spatial diversity can be leveraged, potentially enabling PAPR reduction 

through advanced signal processing or precoding techniques.  

 

Table 5.5: PAPR versus CCDF in massive MIMO 

CCDF (Probability) 
Individual Antenna 

PAPR (dB) 

Aggregated Signal PAPR 

(dB) 

100 (100%) 

 

~5.5 

 

~5.5 

 

10−1 (10%) 

 

~7.5 

 

~7.5 

 

10−2 (1%) 

 

~9.5 

 

~9.4 

 

10−3 (0.1%) 

 

~11 

 

~10.8 

 

The close alignment of both curves implies that signal aggregation 

introduces minimal PAPR degradation.  

 

Figure 5.14: Comparisons of CCDF versus PAPR in massive MIMO 

This is encouraging for practical implementations, where baseband signal 

combination is common, as in table 5.5 with figure 5.14. 

Both curves exhibit similar behavior, indicating that signal aggregation 

across antennas (represented by the red line) does not significantly increase the 

PAPR compared to the individual antenna signals (represented by the blue line). 

The curves begin at higher probabilities and decline sharply beyond approximately 

9 dB, suggesting that high PAPR occurrences are relatively rare. 
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Given the limitations associated with techniques like SLM, PSO, and PTS, 

the SCS-BiLSTMAE method emerges as a more effective solution. This model is 

designed to process signal sequences and is trained using a regression-based 

approach, specifically, the mean squared error loss function, to accurately capture 

the relationship between signal features and their corresponding PAPR values.  

➢ In a massive MIMO system, each antenna transmits a modulated signal. 

The time-domain signal generated by applying IFFT to the modulated 

data often suffers from a high PAPR. This high PAPR leads to nonlinear 

distortion when signals pass through power amplifiers, resulting in 

spectral spreading and performance degradation, as in figure 5.15. 

 

Figure 5.15: BiLSTM PAPR reduction in massive MIMO 

To address this, a BiLSTM neural network is trained to predict the PAPR 

from the real and imaginary parts of the time-domain signals. The BiLSTM model 

learns temporal dependencies across the time-domain samples for each symbol. By 

mapping input sequences to scalar PAPR values, the model can assist in real-time 

PAPR prediction or even be extended for reduction strategies. During training, the 

average PAPR per symbol (across all antennas) is computed and used as the target 

output.  
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         5.10 Conclusion: 

• The CCDF plot provides a clear visual representation of the effectiveness 

of different PAPR reduction techniques. By analyzing the CCDF curves, we can 

assess the performance of each technique and make informed decisions about their 

suitability for specific applications. 

• Higher CCDF values at lower PAPR levels indicate better PAPR reduction 

performance. 

• PAPR-Aware-Secure-mMIMO likely represents the PAPR distribution of 

a signal precoded using a technique that aims to both reduce PAPR and enhance 

security in a massive MIMO system. 

• Thus, the reduction of PAPR leads to the increase in the system efficiency 

with accurate performance in transmitting and receiving data at the base station. 

• Overall, the plot 5.14 illustrates that the PAPR distribution in a massive 

MIMO 5G system (with 256 antennas and 8 users) remains well-regulated, even 

after signal aggregation. This is crucial for maintaining power amplifier efficiency 

and minimizing signal distortion in 5G communication systems. 

• The BiLSTM processes these sequences and is trained using a regression 

loss (mean squared error) to learn the correlation between the signal characteristics 

and PAPR values. 
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Chapter 6 

PERFORMANCE ANALYSIS OF THE PROPOSED 

TECHNIQUE TO EXISTING METHODS USING POTENTIAL 

PARAMETERS LIKE THROUGHPUT, ENERGY EFFICIENCY 

AND RESIDUAL ENERGY. 

        6.1 Introduction 

Employing an Alternating Graph regularized Neural Network (AGNN) in 

conjunction with joint optimization strategies presents a compelling approach for 

addressing the complexities inherent in these systems [110]. In the circumstance of 

5th generation communication networks, where maximizing spectral efficiency and 

minimizing interference are paramount, this hybrid methodology offers promising 

avenues for enhancing performance. The AGNN framework integrates the strengths 

of regularized neural networks, which excel in learning complex patterns and 

relationships within data, with the principles of joint optimization, which consider 

multiple system parameters simultaneously to achieve optimal solutions [111-112]. 

Through joint optimization, factors such as power allocation, beamforming, 

and user scheduling can be optimized concurrently, leading to improved energy 

efficiency, increased network capacity, and enhanced user experience. Integrating 

alternating regularized neural networks (AGNNs) with joint optimization 

techniques presents a novel approach for enhancing the performance of these 

systems. AGNNs offer a unique framework for learning complex relationships 

within the massive MIMO environment by alternating graphs between different 

regularization strategies like sparsity and preventing overfitting. By incorporating 

joint optimization principles, which consider multiple factors like QoS, system 

capacity, and energy efficiency simultaneously [113]. 

Through iterative optimization iterations, the AGNNs adaptively adjust their 

parameters to maximize system efficiency while meeting QoS requirements for 

multiple users. This innovative methodology facilitates the design of robust and 

efficient massive MIMO systems capable of handling diverse communication 

scenarios with improved spectral efficiency, reduced interference, and enhanced 

energy efficiency. By leveraging the complementary strengths of AGNNs and joint 
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optimization, researchers can propel the development of further-invention wireless 

communiqué systems that meet the evolving demands of 5G and beyond [114]. 

          6.2 Block Diagram: 

In recent years, the conception of UDN has emerged as a gifting strategy for 

improving both EE and SE within confined geographical areas. On the other hand, 

deploying a huge number of APs presents challenges, primarily concerning the 

acquisition of accurate CSI, which leads to heightened signaling overhead and 

vulnerability to pilot contamination effects. To mitigate these challenges, we 

propose an innovative solution known as the AGNN for proposed adaptive 

beamforming in 5G millimeter wave massive MIMO multi cellular networks 

(AGNN-ABM-MIMO-MCN). 

5G MM-Wave 

Massive MIMO 

Orientation

Antenna 

Design

Alternating 

Graph-

regularized 

Neural Network 

Tyrannosaurus 

Optimization Algorithm 

 

Figure 6.1: Proposed Block diagram of alternating graph regularized       

neural network [AGNN] 

In this framework, each active base station leverages extensive multiple-

input, multiple-output (MIMO) setups, enabling adaptive beamforming through the 

generation of higher directional beams as per demand to accommodate diverse 

traffic scenarios. 

The beamforming strategy relies on AGNN, trained to determine optimal 

beamforming configurations. However, the AGNN classifier inherently lacks 
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optimization techniques for identifying optimal parameters for beamforming 

configuration. To remedy this, the technique introduced the TOA to maximize the 

AGNN, ensuring precise generation of beamforming configurations. The proposed 

method is evaluated across various metrics, including EE, SE, blocking probability, 

NMSE, latency, and BER. As illustrated in figure 5.1, the proposed method 

encompasses four main procedures: 5G millimeter wave massive MIMO 

orientation, antenna design, beamforming configuration, and optimization. Each 

stage is elaborated upon in detail below [114]. 

5G millimeter wave massive MIMO orientation: This initial stage 

involves determining the orientation of the 5G MM-Wave massive MIMO system. 

It encompasses the selection of suitable locations for base stations and the 

arrangement of antenna arrays to maximize coverage and capacity within the 

network. 

Antenna Design: The antenna design phase focuses on configuring the 

antenna arrays for optimal presentation in the 5G massive MIMO system. This 

includes selecting the number and arrangement of antennas, as well as optimizing 

antenna parameters such as beam width and directivity to enhance signal 

transmission and reception capabilities. 

Beamforming Configuration: In this stage, beamforming configurations 

are determined to adaptively steer antenna beams towards desired users or areas of 

interest within the network. This involves generating directional beams to maximize 

signal strength and minimize interference, thereby optimizing the overall network 

performance. 

Optimization: The final stage involves optimization techniques to refine the 

beam-forming configurations and further enhance system efficiency. This may 

include adjusting beamforming parameters based on feedback from the network 

environment, optimizing power allocation, and minimizing signal distortion and 

interference using TOA to improve the spectral efficiency, signal quality, and 

overall network performance [115]. 

 

         6.3 Millimeter Wave Massive MIMO Orientation for 5G: 
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5G elevates the energy demands, leading to heightened energy consumption 

by users. This can be achieved through the utilization of a device known as an 

energy harvester. For the development of QoS provisioning for massive MIMO-

based 5G networks is to increase energy. The study and simulation results have shed 

important light on how well these methods work to increase transmission rates, 

boost signal quality, and control interference. The comparative examination of 

MIMO with beamforming and classic MIMO and single-antenna systems 

demonstrated the supremacy of MIMO with precoding in conditions of capacity, 

signal quality, and interference management, according to the study's conclusions. 

These results highlighted the potential of massive MIMO, precoding, and 

beamforming to satisfy the growing need for fast and dependable communication 

services in 5G and other wireless networks in the future [115]. 

In this phase, the downlink of the multi-cellular 5G massive MIMO direction 

is investigated, focusing on communication with multiple base stations. The entire 

bandwidth D is allocated for transmission. Mobile stations (MSs) sequentially join 

the network based on predetermined geographic dispersion. Each MS requests a 

specific data rate from its serving base station (BS), which is achieved through the 

allocation of appropriate PRBs and into nation instructions for every PRB. The 

communicated signal is mathematically represented as equation (6.1). 

           𝑍𝑘(𝑟) = ∑ √𝐷𝑘,𝑏𝑟𝑘,𝑏𝑍𝑘,𝑏𝑒𝑖2𝜋𝑡ℎ𝑏                                                       𝑏∈𝑈𝑘
                   (6.1)           

The transmitted signal is represented by an equation, ensuring efficient 

utilization of resources and effective communication between BSs and MSs in the 

multi-cellular 5G massive MIMO orientation. Consequently, when averaged over 

frame duration, the SNR for each PRB can be appropriately calculated. 

This calculation is vital for assessing the superiority of the expected 

indicator and determining the effectiveness of the transmission scheme. The 

formulation of the SNR for each PRB is typically expressed in equation (6.2). 

These physical resource blocks (PRBs) represent the specific time-

frequency resources allocated by the base station to a UE for data transmission, 

determining the bandwidth and transmission opportunities available within the 

system. 



 

 

127 
 

The notation Uk denotes the physical resource blocks (PRBs) assigned to the kth 

user or mobile station. kU
as the set of physical resource blocks (PRBs) assigned to 

a specific Mobile Station (MS). 1rN  denotes the transmission vector, which 

encompasses the symbols to be transmitted by the MS. bkD , signifies the owed 

authority to the  
thb PRB of the  

thk  MS. 
bkZ ,

 indicates the transmission symbol 

selected from a predefined constellation, conveying the information to be 

transmitted, bh
 represents the symbol period, dictating the duration of each symbol 

as in equation (6.2). bkr ,  represents a routing variable or flow variable, indicating 

the proportion of flow or decision variable for using path bth from source k.  

          𝑆𝑁𝑅𝑟,𝑓 =
𝑄𝑟,𝑓

𝐾𝐿𝑟,sec (𝑟)
|𝑡𝑟,𝑓𝑆𝑟,sec(𝑟),𝑓𝑘𝑟,𝑓|

2
                                                              (6.2) 

frrS ),sec(,
indicates the channel matrix of thr MS concerning its allocation 

segment, 
frQ ,
indicates expected signal, 

frt ,
signifies maximal ratio combining 

multiplying vector [100]. This can be done by calculating downlink transmission 

powers per PRB in equation (6.3).  

Where tr,f could be a transmission coefficient, transfer function, or time 

duration associated with the r-th signal and f-th frequency. L r,sec(r)  in this  L could 

be related to a modulation scheme's parameters, and sec(i) might indicate a specific 

secant type being applied to the i-th signal. 

Equation (6.3) facilitates the calculation of downlink transmission powers 

allocated per PRB. This computation is essential for optimizing resource allocation 

strategies, ensuring efficient spectrum within the network. By dynamically adjusting 

the transmission powers per PRB based on channel conditions and system 

constraints, the network can mitigate interference, enhance signal quality, and 

improve overall system performance, thereby delivering a reliable and high-quality 

communication experience to users. 

          𝑄𝑓 =  𝐵 𝑓
−1 ∗ 𝐶𝑓                                                                                                               (6.3) 

Here, 
fQ represents the 1fM downlink communication vector of the 

fM

that assigned with thf PRB. The matrix is given in equation (6.4) 



 

 

128 
 

         𝐺𝑓(𝑡, 1) = 𝑆𝑁𝑅𝑡,𝑓𝑘𝑡,𝑓
𝐻 𝐿𝑜                                                                                      (6.4)      

Here, 
ftSNR ,
states the lowest amount SINR entrance for the maintenance of 

the measured communication rate above the ths PRB of the tht mobile station, oL

represents the downlink transmission, H represents the linear system. Then the 

advanced boundary of the Shannon method is determined in equation (6.5) 

         𝑘𝑡,𝑓 =   
𝑄

𝑀𝑃𝑅𝐵
log2(1 + 𝑆𝑁𝑅𝑟,𝑓)                                                                                       (6.5) 

Where, 
ftk ,
indicates the most advantageous communication, PRBM states the 

PRBs per BS, equal super natural allocation, Q denotes polarized emission, 
ftSNR ,

states the lowest amount SNR threshold for help of measured conduction time over

ths PRB of tht MS. The primary objective is to maximize both EE and SE, with 

additional consideration given to optimizing other metrics such as the Jain's fairness 

index, the number of glowing fundamentals comprising explicit base stations (BSs), 

and the minimization of jamming possibility. Influence thresholds associated with 

these metrics provide greater constraints for all premeditated authority levels. On 

the other hand, in practical wireless scenarios, the approach of MSs measuring the 

systematic trait of all snooping MSs' acknowledged waveforms poses challenges. 

To address this, machine learning techniques offer valuable assistance in most 

advantageous communication power distribution, particularly in the context of 5G 

UDN [116].  

Every BS is equipped with three massive MIMO configurations, 

strategically spaced apart by degrees to guarantee comprehensive spatial exposure. 

Additionally, to evaluate the efficacy of the recommended adaptive beamforming 

procedure in real-world MU orientations, two layers of cells neighboring the central 

part cell are taken into account, enhancing the practical applicability and robustness 

of the proposed approach. Therefore, the set 
lbBC ,
shall signify a set of 

communicating antennas for thl configuration of thb BS throughout the remainder of 

this work [117]. 

 6.4 Adaptive beamforming using AGNN: 

In this phase, we delve into the discussion of AGNN, which serves the 

purpose of generating the appropriate beamforming configuration. AGNN operates 
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by addressing a semi-supervised classification problem using a deposit of 

moderately labeled samples, along with their matching position accuracy 

surrounding substance. This process entails harnessing outcomes derived from 

multiple hops of locality relations to determine the model's last prediction. 

Furthermore, AGNN employs a fragile classifier to generate graph representations 

with dimensions akin to those of the input data, thereby aiding in effective 

beamforming configuration determination within multi-cellular 5G massive MIMO 

networks. As described in Equation (5.6), this calculation integrates the graph 

representations generated by the weak classifier, enabling the model to leverage 

spatial and temporal information to make informed decisions regarding 

beamforming configurations. This approach enhances the network's adaptability 

and performance, contributing to improved communication efficiency and 

reliability in 5G environments. Softmax is applied to normalize the outputs into a 

probability distribution. 

          𝑎(𝑀(𝑓)) = Softmax(σ(𝑀(𝑓)𝑃𝑎 + 𝑐))                               (6.6)  

Where, aP  denotes the probability distribution dimension or projection 

matrix, c indicates the ray forming, a signifies the overexcited constraint, )( fM

states the spherical divergence, c signifies the aerial and σ represents the activation 

function. The consequent sets representing the physical resource blocks accessible 

for communication for each BS are determined. Each base station produces and 

categorizes their canal growth vector medium. The PRBs billed to mobile stations 

(MSs) are stored in the transmission vector matrix, which also regulates the power 

allocation for each MS [118]. The system of MIMO is represented by an equation, 

encapsulating the allocation and regulation processes involved in optimizing data 

transmission within the multi-cellular 5G massive MIMO network in equation (6.7). 

         

 

D=∑ (𝛼(𝑓)𝑟
𝑓=1 𝑏(𝑀(𝑓)) + 𝛽(𝑓)𝑏(𝑋(𝑓)))                                                              (6.7) 

Here, )( f denotes burden of classifier with reverence to )( fM , )( f

signifies heaviness of classifier with reverence to )( fZ , c defines aerial, and D  

signifies the marked nodes. In scenarios where there is no energy intermission at the 

base station or mobile station point, a fresh MS is introduced to the network, 

prompting the update of all associated sets. Subsequently, the classifier weights are 
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computed, as outlined in Equation (6.8). This process ensures that the network 

remains dynamic and adaptable to changes, such as the addition of new MSs, while 

maintaining the integrity and accuracy of the classification system. The computation 

of classifier weights is a crucial step in optimizing the performance of the network 

and ensuring efficient and effective communication between BSs and MSs. 

          𝛼(𝑓) =  
1

2
log

1−𝑒𝑀
𝑓

𝑒𝑀
𝑓 + log(𝑇 − 1)                                                                         (6.8) 

Where, T defines the number of classes, )( f denotes weight of classifier, 

M shows the circular polarization [96]. By the side of this juncture, it's crucial to 

highlight that the prospective base stations (BSs) store every set in mounting order. 

The intention here is to ascertain the lowest number of resource elements required 

to ensure agreeable QoS for every mobile station. Every appropriate constraint is 

reorganizing to its preliminary setting, and a prospective mobile station is 

disinterested in the association if none of the base stations are capable of 

accomplishing this objective. Subsequently, the regularization of all classifier 

weights is defined in (6.9), ensuring consistency and accuracy in the classification 

process within the multi-cellular 5G massive MIMO network. 

          ɳ𝑖 = 𝑒𝑥𝑝 (log (
𝑘𝑖,𝑡

max (∑ 𝜖,𝑘𝑖,𝑗,
𝑇
𝑖=1,𝑗≠𝑡

))

 

                                                                    (6.9) 

Here, 
tik ,
shows the possibility of thi sample belonging to tht class,  indicates tiny 

value avoiding divide by zero error. Here, i  
signifies efficiency of thi sample 

accepting to tht  in the base station. 

This clarifies that selecting the right beamforming codebook can be an 

algebraically challenging procedure since dissimilar statistic values might be 

conducted on the direction and throughput command of mobile stations.  

The choice of beamforming codebook is crucial in optimizing the 

performance of wireless communication systems, as it directly impacts signal 

transmission, reception, and overall network efficiency [116]. This encoding 

strategy aims to eliminate redundancy by avoiding duplicate spatial distributions 

among the entries. The decisive factor in this selection process is the minimization 

of overall downlink transmission power. To achieve this, a beamforming 

configuration derived from the AGNN technique is commonly employed. This 
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configuration, encapsulated by equation (6.10), embodies the optimal beamforming 

strategy identified through the neural network's classification process.  

          𝑆 = − ∑ ∑ 𝑍𝑖,𝑗 ln 𝐿𝑖,𝑗
𝑎
𝑗=1𝑖𝜖Ώ                                                                                (6.10) 

Here, S indicates the failure occupation,  states the nodes in the instruction 

set, a signifies the subjective node, 
jiZ ,
denotes the high-order area embeddings, and 

jiL ,
indicates the directly combined node [117]. These variables play essential roles 

in various machine learning and network analysis tasks, contributing to the 

understanding and optimization of complex systems. The relationship between the 

seemed throughput within the pointed liberty of a base station and the resultant 

beamforming configuration is pivotal in optimizing wireless communication 

systems. In recent studies, the AGNN approximation has emerged as particularly 

effective in uncovering insights in this domain. AGNN's prowess lies in its ability 

to accurately capture the intricate connections between throughput demand 

distributions and the optimal selection of BSs, thereby facilitating exhaustive 

searches for the most suitable BC once the training phase concludes. Through 

AGNN, the identification of the optimal BS for a given throughput demands 

distribution becomes feasible, thanks to its reliance on advanced AI-driven 

optimization techniques.  

In a recent investigation, the integration of the TOA further elevates 

AGNN's capabilities [107-117]. This synergistic approach, coupling AGNN with 

TOA, showcases a promising avenue for achieving practical and efficient 

optimization in wireless communication systems, ultimately advancing the frontier 

of 5G network optimization. 

 

          6.5 Step-by-Step Procedure for TOA 

The TOA, which serves as a cornerstone for generating the beamforming 

configuration. Inspired by the predatory behavior of the Tyrannosaurus receiver, 

this approach mirrors the predator-prey poaching dynamics observed in apex 

predators. The TOA collaborates to optimize the beamforming process. The TOA's 

stepwise procedure is divided into distinct phases, as illustrated in figure 6.2 

accompanying flowchart. By leveraging this innovative methodology, the TOA 
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algorithm significantly enhances the efficiency and efficacy of beamforming 

configuration within the multi-cellular 5G massive MIMO network. 

Step 1: Initialization 

(TOA) initializes a set of prey individuals within the search space through a 

population-based approach, where these individuals are randomly generated. This 

initialization process is precisely defined by equation (6.11) to ensure a systematic 

and unbiased start to the algorithm's execution. 

 𝑍𝑖 = 𝑟𝑎𝑛𝑑(𝑚𝑣, 𝑑𝑖𝑚) ∗ (𝑢𝑑 − 𝑘𝑑) + 𝑘𝑑                                                        (6.11)        

In the equation, iZ , signifies  the location of the ith prey the total number of 

dimensions, m represents the dimension; mv indicates the upper limit in the 

population;ud indicates upper limits; and  kd  represents the lower limit in the 

search space. 

                    Step 2: Random Generation 

Following the initialization phase, the TOA method facilitates the random 

generation of beamforming configurations to optimize communication system 

performance. 

                     Step 3: Robustness Function 

The results stem from operated judgments and accidental responses. The 

personal property of heaviness constraint optimization is incorporated into the 

fitness function assessment. By integrating weight parameter optimization into the 

fitness function, the evaluation accounts for the impact of varying weights on the 

overall performance metrics. This approach ensures a comprehensive assessment 

that considers not only the initial conditions but also the optimization process, 

providing insights into the effectiveness of weight parameter adjustments in 

improving system performance. It is calculated using equation (6.12)
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑂𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔[𝛼(𝑓). ɳ𝑖]                                                       (6.12)
      

Here, )( f represents the weight of classifier, i  
represents the importance 

of the thi sample. In this formulation, )( f  denotes the weight assigned to the 

classifier, while i  indicates the significance attributed to each sample. 



 

 

133 
 

Step 4: Exploration Phase 

Initially, the value emerges over a period of time. When this algorithm 

detects its nearest prey, it initiates a hunt. Sometimes, the prey might defend itself 

against predators or try to escape. Juveniles participate in the chase and capture of 

prey, a dynamic described in equation (6.13). 

          

𝑍𝑛𝑒𝑤 =  {
𝑧𝑛𝑒𝑤            𝑖𝑓 𝑟𝑎𝑛𝑑(1) < 𝐹𝑡

𝑅𝑎𝑛𝑑𝑜𝑚     𝑒𝑙𝑠𝑒                                
                                                    (6.13) 

In this context, 𝑍𝑛𝑒𝑤 symbolizes the successful capture of prey, Ft denotes the 

control challenges encountered, and rand represents the random exploration factor. 

Equation (6.14) outlines the process of updating the location based on these   

variables.
       

 

          
𝑧𝑛𝑒𝑤 = 𝑧 + 𝑟𝑎𝑛𝑑(1) ∗ 𝑢𝑣 ∗ (𝑟𝑝𝑜𝑠 ∗ 𝑟𝑠 − 𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑘𝑙)                                  (6.14) 

In this scenario, uv signifies the achievement speed of searching, 

constrained within the range of [0.1,1], kl  denotes the lowest amount position, rs

denotes the scattered prey, and rpos signifies the searching position. 

Step 5: Development Phase 

The development phase marks the culmination, aiming to pinpoint the 

optimal choices within promising regions. Equation (5.15) delineates the TOA's 

strategy during this exploitation phase.

  

         𝑍𝑖
𝑡+1 = {

𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑓     𝑓(𝑍) < 𝑓(𝑍𝑛𝑒𝑤)
𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (6.15)             

In this, )(Zf  denotes the strength function evaluated for the initial location, while            

fupdated )( newZf denotes the strength occupation computed for the reorganized position. 

Step 6: Execution Phase  

The heaviness constraint of the producer within the AGNN is optimized through the 

TOA, iterating through step 3 until it satisfies the specified halting criteria 

1+= ii ZZ
.
Consequently, this algorithm efficiently generates beamforming 

configurations with heightened accuracy and reduced computational time. 
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            Figure 6.2: Flowch
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          6.6 Performance Enhancement using EIBO Algorithm: 

Furthermore, in order to boost the implementation of the SSAE model, a 

constraint optimization procedure is conducted using the EIBO algorithm. This 

approach aims to fine-tune the parameters of the SSAE model systematically, 

leveraging the capabilities of the EIBO algorithm to explore and adjust external 

configuration settings iteratively. By optimizing parameters through the EIBO 

algorithm, the execution efficiency of the SSAE model is enhanced, ultimately 

leading to improved performance and efficacy in various tasks and applications. 

Equation (6.16) formulates the EIBO formula for performance enhancement. 

        𝑃𝑐(𝑡 + 1) = 𝑎1(𝑃𝐶(𝑡) − 𝑃𝑐(𝑡)) + 𝑎2(𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑃𝑐(𝑡)) + 𝑎3(𝑃𝐵(𝑡) − 𝑃𝑐(𝑡)) (6.16) 

To enhance the SSAE model's performance, a parameter optimization 

process was implemented using the EIBO algorithm. This algorithm is particularly 

effective in fine-tuning hyperparameters, which are external configuration settings 

that significantly impact the model's behavior. By iteratively exploring and 

adjusting these hyperparameters, EIBO helps optimize the SSAE system's overall 

effectiveness [109]. By employing the EIBO algorithm for strategic optimization, 

we aimed to improve key execution metrics like correctness and productivity. 

EIBO's ability to handle complex tasks effectively allowed us to fine-tune the SSAE 

model to meet specific requirements. This optimization resulted in a significantly 

enhanced model performance, as outlined in Equation (6.16).                              

Where ( )tPc
 is the current solution (individual) in the population at iteration 

t , ( )tPC
 is the influential individual selected based on its fitness or other criteria, 

( )tPbest
 is the best individual in the population at iteration t , ( )tPB

 is the buddy 

individual selected based on interactions or other criteria, a1, a2 and 3a are 

randomization factors. 

Figure 6.3 illustrates the EIBO algorithm flowchart. The process begins with 

the initialization of massive MIMO parameters, including the number of antennas 

and SNR. A random population of precoding matrices is then generated for user 

signal beamforming. 
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Figure 6.3: Flowchart for EIBO [119] 

In the main loop, the fitness of each matrix is evaluated, and the top 

performers are selected as influencers for the next generation. This iterative process 

continues until convergence, resulting in an optimized precoding matrix that 

significantly improves massive MIMO performance.           

         6.7 Performance Metrics 

The assessment includes an evaluation of key performance metrics, such as 

BER, throughput, energy efficiency, system capacity, and residual energy as 

explained in section 1.9. 

The analysis is performed under Rayleigh fading channels, with varying 

SNR ranging from 10 dB to 50 dB. These conditions reflect typical scenarios in 

massive MIMO systems, where the signal experiences multipath fading, which is 

common in wireless communication environments. 
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6.8 Results and Discussions: 

The new outcomes of the future technique are deliberated, with the technique 

simulated using Python and assessed across various performance metrics. The results 

obtained from the AGNN-ABM-MIMO-MCN technique are compared against existing 

methodologies such as MLAB-MMWM-MIMO [111], DL-ERN-MCN [112], and DLF-

BSPC-MIMO [113]. The number of users served per cell in a massive MIMO system 

depends on the system’s spatial multiplexing capabilities. Typically, each cell can 

support between 10 and 40 users simultaneously. In a multi-cell scenario, a standard 

assumption is that each cell is surrounded by six neighboring cells, forming a hexagonal 

layout. As a result, simulation models often consider a total of seven cells in that one 

central cell and seven adjacent cells, as shown in table 6.1. For more comprehensive 

performance evaluations, larger configurations such as 19-cell clusters are used. Inter-

cell interference becomes a significant factor in such environments, particularly when a 

frequency reuse factor of 1 is employed. Its ability to concurrently serve multiple users 

within a single cell is a key advantage, often supporting tens of simultaneous users in 

sub-6 GHz deployments, with common figures ranging from 8 to 32 users. In the context 

of massive MIMO, “channel gains" precisely describe how the power of a transmitted 

signal is altered (either amplified or attenuated) as it propagates through the wireless 

medium from the transmitter to the receiver. 

Table 6.1: Replication Parameter 

Parameter Value 

Tiers of cells around  the middle cell 7 

Cell radius 500m 

Total bandwidth 100MHz 

Subcarrier spacing 60KHz 

Carrier frequency 28GHz 

Antenna essentials per MS 2 

Beam forming configuration 
)( BCM

 
51 

Necessary 
)(/ dBNE ob for QPSK 

modulation 

9.6 

Traffic scenario 50% of mobile stations by QPSK 

modulation per Block 
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   Figures below illustrate the replication results of the AGNN-ABM-

MIMO-MCN method, with the performance of the projected AGNN-ABM-MIMO-

MCN method assessed in comparison to existing methods such as MLAB-MMWM-

MIMO, DL-ERN-MCN, and DLF-BSPC-MIMO [110]-[119]. 

➢ Spectral Efficiency  

The spectral efficiency of a cellular network, denoting the maximum data 

communicated to a particular figure of users for each moment whilst preserving a 

satisfactory level of service, is expressed mathematically by equation (6.20) in 

section 1.8.  

 

Figure 6.4: Spectral Efficiency Analysis 

The figure shows these results highlight the effectiveness of the AGNN-

ABM-MIMO-MCN approach in enhancing spectral efficiency within the multi-

cellular 5G massive MIMO network, paving the way for improved data throughput 

and network performance. These findings highlight the superior performance of the 

AGNN-ABM-MIMO-MCN approach in optimizing spectral efficiency within the 

multi-cellular 5G massive MIMO network, underscoring its effectiveness in 

maximizing data throughput and network capacity. 

➢ Energy Efficiency Analysis 
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The concept of achieving the same task with reduced energy consumption, 

thereby lowering energy costs and minimizing pollutants, is encapsulated by the 

equation  in section 1.8. 

                                                                     

                                                                

 

Figure 6.5: Energy Efficiency Analysis 

• These results shown above underscore the efficacy of the AGNN-ABM-

MIMO-MCN approach in enhancing energy efficiency within the multi-cellular 5G 

massive MIMO network, contributing to more sustainable and environmentally 

friendly communication systems. 

➢ BER analysis 

This evaluation reflects the system's ability to transmit data with minimal 

errors, despite potential challenges like interference and channel fading, with the 

equation defined in section 1.8. 

These findings in the above figure underscore the superior performance of the 

AGNN-ABM-MIMO-MCN approach in reducing bit errors and enhancing the 

overall reliability of data transmission within the multi-cellular 5G massive MIMO 

network, as shown in figures 6.6 and 6.7.  
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Figure 6.6: BER analysis with frequency 

➢ Figure 6.7 indicates the BER analysis. The proposed approach achieves 

a lower BER than the existing methods with SNR Bi-LSTMAE has BER 

is decreasing with high SNR values. 

 

Figure 6.7: Bit Rate Error analysis with respect to SNR 

➢ Throughput analysis was compared to established methods, including 

Hybrid EH, DL-QL, and ICIBS, as shown in Table 6.2 for Figure 6.8. 

The result shows that the proposed approach extensively outperforms 

these existing methods in terms of throughput. 

Table 6.2: Throughput analysis for different methods 

No. of 

Antennas 

Hybrid EH 

(bps/Hz) 

DL-QL 

(bps/Hz) 

ICIBS 

(bps/Hz) 

SCS-BiLSTM-AE 

(bps/Hz) 
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0 0 0 0 0 

50 15 20 10 25 

 100  25  35 20  40 

 150  30 45 25 50 

200 35 50 30 60 

250 38 55 35 65 

300 40 58 40 70 

350 42 60 45 75 

400 44 62 48 80 

450 45 64 49 86 

500 46 65 50 90 

As shown in figure 6.8 below, throughput will be maximized when the 

number of antennas is increased for different methods. The proposed method is best 

for maximizing throughput in these networks. The number of antennas used in the 

simulations ranges from 100 to 500 antennas, which is consistent with standard 

MIMO configurations and ensures a fair comparison with the existing methods. 

Figure 6.8: Throughput analysis for number of antennas 

➢ Residual Energy 

Residual energy (RE) in this system refers to the unused energy remaining 

after a specific process or transmission. The figure below illustrates an analysis of 

residual energy. Table 6.4 shows the residual energy for different methods.  
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           Table 6.3: Residual energy for different methods 

Method Residual Energy (%) 

MDOA [122] 35 

LCA [124] 40 

FGWO [125] 42 

SCS-BILSTMAE 

(Proposed) 60 

 Residual energy analysis for various methods was described in 

figure 6.9, which shown in table 6.3. The proposed method used for more residual 

energy percentage. 

 

Figure 6.9: Residual Energy analysis for various methods 

➢ Higher throughput often involves advanced modulation and coding 

techniques that are more energy-efficient. Efficient power allocation 

strategies can ensure that energy is used judiciously for data 

transmission [120]. 

Table 6.4: SNR versus SER for different neural network methods 

SNR (dB) SER for 

Conventional 

Hybrid Precoding 

SER for CNN-

Based Hybrid 

Precoding 

SER for 

Proposed 

BiLSTM 

Autoencoder 

Hybrid 

Precoding 



 

 

143 
 

0 1.0×10⁻¹ 1.0×10⁻¹ 1.0×10⁻¹ 

5 1.0×10⁻¹ 3.5×10⁻² 1.5×10⁻² 

10 1.0×10⁻¹ 1.0×10⁻² 2.0×10⁻³ 

15 1.0×10⁻¹ 3.5×10⁻³ 2.5×10⁻⁴ 

20 1.0×10⁻¹ 1.2×10⁻³ 2.5×10⁻⁵ 

25 1.0×10⁻¹ 1.0×10⁻³ 1.0×10⁻⁶ 

30 1.0×10⁻¹ 1.0×10⁻³ 6.0×10⁻⁷ 

35 1.0×10⁻¹ 1.0×10⁻³ 3.5×10⁻⁷ 

40 1.0×10⁻¹ 1.0×10⁻³ 1.5×10⁻⁷ 

0 1.0×10⁻¹ 1.0×10⁻¹ 1.0×10⁻¹ 

5 1.0×10⁻¹ 3.5×10⁻² 1.5×10⁻² 

The figure clearly highlights the superiority of the LSTM-based hybrid 

precoding method, particularly in high SNR regimes. While conventional methods 

remain static and CNN-based models offer moderate improvements, the LSTM 

autoencoder approach adapts better to changing channel conditions and significantly 

enhances error performance. This result underscores the potential of deep learning, 

especially recurrent neural network architectures like LSTM, in optimizing hybrid 

precoding strategies for next-generation wireless systems such as 5G and beyond, 

as shown in table 6.4. 

 

 

Figure 6.10: SER vs. SNR for hybrid precoding 
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The presented figure 6.10 with the table 6.4 is a semi logarithmic plot that 

illustrates the variation of SER with respect to SNR in dB for three different hybrid 

precoding schemes used in wireless communication systems. 

➢ The X-axis represents the SNR in decibels (dB), indicating the quality 

of the transmitted signal. A higher SNR typically corresponds to better 

communication reliability. The Y-axis shows the SER on a logarithmic 

scale. A lower SER indicates more accurate symbol detection at the 

receiver. 

1. Conventional hybrid precoding: This method displays a consistently high SER, 

regardless of SNR. It implies poor adaptability to improved signal conditions and 

suggests that the method lacks robustness in varying channel scenarios. 

2. CNN-Based hybrid precoding: This technique shows noticeable performance 

improvement as SNR increases, especially between 5 and 15 dB. This method uses 

convolutional neural networks to extract spatial features from the channel but lacks 

temporal modeling capabilities. 

3. Proposed Bi-LSTM autoencoder hybrid precoding: This approach 

demonstrates the best performance among the three, with the SER continuously 

decreasing as SNR increases. It achieves SER values as low at high SNR levels. 

The use of BiLSTM networks allows the model to capture temporal dependencies 

and sequential patterns in the channel data, making it highly effective for dynamic 

environments. 

Table 6.5: Residual Energy versus Throughput 

Residual Energy (mJ) Throughput (Mbps) 

0 500 

50 450 

100 400 

150 350 

200 300 

250 250 
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Figure 6.11 illustrates the correlation between residual energy and 

throughput. This indicates that as the throughput increases, the residual energy 

decreases.  Higher throughput signifies a more efficient use of energy for data 

transmission, resulting in less energy remaining unused [121].  

The downward-sloping line suggests that the system becomes increasingly 

energy-efficient as throughput rises. The X-axis (RE) is measured in Joules (mJ), a 

unit of energy. Essentially, the plot shows that enhancing throughput in a 

communication system can lead to a decrease in residual energy, thereby improving 

the system's energy efficiency, as shown in Table 6.5. 

 

Figure 6.11: Residual energy versus Throughput 

         EEangular=(power consumption(Watts) ∗ beamwidth(degrees))             (6.20) 

  The specific application and context of this graph will determine the 

implications of this relationship. By grasping this relationship, engineers can design 

systems that achieve greater throughput while reducing energy consumption [122]. 

300 225 
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➢ Figure 6.12 presents an analysis of energy efficiency. Compared to 

established methods like MDOA, LCA, and FGWO, the proposed 

approach demonstrates superior EE performance [122], [124-125]. 

 

 

Figure 6.12: Energy Efficiency analysis for various Methods 

➢ At 90 degrees, maximum energy efficiency will be achieved. For 

instance, in antenna design or signal processing, this information could 

be utilized to optimize system parameters for maximum energy 

efficiency, as illustrated in table 6.6 for figure 6.13 [123]. 

Table 6.6: Angular Degree versus Energy Efficiency 

Angular Degree Energy Efficiency (bits/Joule) 

0 0 

20 0.2 

40 0.4 

60 0.6 

80 0.8 

100 1 

120 0.8 

140 0.6 

160 0.4 
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180 0 

    The figure below 6.13 illustrates the relationship between energy 

efficiency (measured in bits/Joule) and angular degree. The graph suggests that there 

is an optimal angular degree at which the energy efficiency is maximized [126-128].  

 

Figure 6.13: Energy efficiency versus angular degree 

At both lower and higher angular degrees, energy efficiency is significantly    

reduced. The parabolic trend may be due to factors such as signal propagation 

characteristics, antenna design, or interference effects [129].  

➢ Further analysis and knowledge of the specific system under 

consideration would be needed to pinpoint the exact causes of this 

relationship. Quality of service is affected by data speed, latency, and 

errors. Increased transmission rates reduce delay and error rates by 

delivering data more quickly. The figure below illustrates the 

transmission rate versus QoS for different users, as presented in Table 

6.7. 

Table 6.7: Transmission rate verses QoS 

User Transmission Rate     QoS 
 

1 0  0 

1 1 0.1 
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1 2 0.2 

1 3 0.3 

1 4 0.4 

1 5 0.5 

1 6 0.6 

1 7 0.7 

2 0  0 

2 1 0.15 

2 2 0.3 

2 3 0.45 

2 4 0.6 

2 5 0.75 

2 6 0.9 

2 7 1 

3 0 0 

3 1 0.1 

3 2 0.2 

3 3 0.3 

3 4 0.4 

3 5 0.5 

3 6 0.6 

3 7 0.7 

4 0 0 

4 1 0.1 

4 2 0.2 

4 3 0.3 
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The plot of QoS versus Transmission Rate, as illustrated in figure 6.14, 

reveals a trend among users based on the table. Increased data transfer speeds 

enhance QoS, indicating a connection between elevated data transfer speeds and 

system performance. Higher transmission rates optimize QoS metrics, as 

demonstrated by this graph. The graph illustrates a positive correlation between 

transmission rate and QoS, as faster transmission rates facilitate quicker data 

transfer and reduce latency [130]. 

 

Figure 6.14: Graph between QoS versus Transmission Rate 

➢ System capacity (SC): It can be calculated using Shannon’s capacity 

formula extended to massive MIMO scenarios as shown in figure 6.15 

using the equation in the given below. Here, B is the bandwidth and H 

is the matrix. 

                         𝑆𝐶𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐵. log2(𝑑𝑒𝑡(1 +
𝑆𝑁𝑅

𝐾
 (𝐻𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐻𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

𝐻 ) ) )  (6.17) 

4 4 0.4 

4 5 0.5 

4 6 0.6 

4 7 0.7 
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                𝑆𝐶𝑆𝐶𝑆−𝐵𝑖𝐿𝑆𝑇𝑀𝐴𝐸 = 𝐵. log2 (𝑑𝑒𝑡 (1 +
𝑆𝑁𝑅

𝐾
 (𝐻𝑆𝐶𝑆−𝐵𝑖𝐿𝑆𝑇𝑀𝐴𝐸  𝐻𝐵𝑖𝐿𝑆𝑇𝑀𝐴𝐸

𝐻 )))  (6.18)              

➢  

Figure 6.15: System capacity in massive MIMO with SCS-BiLSATMAE 

Suppose the traditional system has a total capacity of 10 Mbps/Hz. 

Our proposed model improves it by 12.84Mbps/Hz at SNR=10dB compared with 

traditional MIMO which has 10 Mbps/Hz at SNR=10 dB. 

If a traditional method achieves, say, 10 Mbp/Hz of capacity, the new 

method BiLSTMAE would achieve 10∗(1+0.2814)=12.814 Mbps/Hz. The results 

indicate that the SCS-BiLSTMAE achieves superior performance compared to 

traditional methods, achieving approximately a 28.14% increase in system capacity.  

➢ Performance of SCS-BiLSATMAE in massive MIMO: 

 

Figure 6.16: Performance of SCS-BiLSATMAE in massive MIMO 

The proposed model delivers a throughput, an energy efficiency, and 

residual energy calculated when SNR=10dB as shown in figure 6.16. 
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6.9 Conclusion:  

It is concluded that  

• The proposed model achieves a throughput of 86 bps/Hz with 450 

antennas, an energy efficiency of 65% at a transmit power of 10 dB, and a residual 

energy of 60% at an SNR of 10 dB. Additionally, the system capacity increases as 

illustrated in figures 6.12, 6.15, and 6.16. 

• The proposed SC-BiLSTM model delivers BER is nearly 10-5 at 

SNR=10dB as shown in figure 6.7. 

• · These metrics highlight the robustness and effectiveness of the proposed 

framework in addressing diverse challenges in these systems. 

• · In MATLAB, the AGNN-ABM-MIMO-MCN technique has been 

effectively applied. A comparative performance analysis shows that the suggested 

approach improves significantly. In order to accommodate different 5G network 

topologies, future efforts might incorporate deep reinforcement learning into the 

machine learning framework and dynamically position relay nodes to improve 

spatial coverage. 

• AGNN enhances adaptive beamforming in 5G massive MIMO networks 

by integrating neural network techniques with graph regularization. This 

combination optimizes spectral efficiency and ensures network stability. 

• · In order to maximize the effectiveness and performance of 5G networks, 

it is imperative that the sophisticated procedures used to optimize beamforming in 

intricate multi-cellular settings be represented visually, as this suggested solution 

does. 

• ·The results indicate that the introduced model achieves superior 

performance compared to existing methods. 

 

 

 

 



 

 

152 
 

Chapter 7 

CONCLUSION & FUTURE SCOPE 

        7.1 Conclusion: 

Quality of service is affected by data speed, latency, and errors. Increased 

transmission rates reduce delay and error rates by delivering data faster for different 

users. The research and simulation results offer important new perspectives on how 

massive MIMO and beamforming function in wireless communication systems. The 

results show how beamforming approaches can increase transmission rates, increase 

SNR, and improve system performance as a whole. The primary conclusion drawn 

from the integration of massive MIMO 5G and neural networks underscores their 

synergistic potential in revolutionizing wireless communication systems. The 

successful amalgamation of these technologies offers opportunities for clever 

reserve allocation, new beamforming, and dynamic noisiness mitigation in 5G 

networks. Furthermore, the utilization of neural networks enables the development 

of sophisticated algorithms for autonomous network optimization and management, 

paving the way for self-configuring and self-optimizing communication systems.  

1. Ultimately, the convergence of massive MIMO 5G and neural 

networks holds     promise for shaping the future of wireless communication, 

ushering in an era of highly efficient, reliable, and intelligent network connectivity. 

The research and simulation results offer important new perspectives on how MIMO 

and beamforming function in wireless communication systems. The results show 

how beamforming approaches can increase transmission rates, increase SNR, and 

improve system performance as a whole.  

2. The comprehension of the system's behavior under various 

circumstances is further strengthened by the analysis of other metrics. In 

communication systems, PAPR is an important metric, particularly when it comes 

to signal amplification and power efficiency. It computes the difference between a 

signal's average power level and peak power level.  

It may see how much the signal's power changes from its average power by graphing 

PAPR against signal values. Significant power peaks are indicated by a high PAPR, 

which can be problematic in real-world communication systems since they might 
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call for greater power amplification and cause distortion. PAPR should be low for 

effective signal transmission. 

3. The proposed method’s effectiveness in large-scale systems with a 

high number of antennas and users has not been fully tested. The scalability of the 

approach may face limitations as the system size increases, which could impact 

performance in practical deployments. Extensive testing of the proposed method in 

hyper massive MIMO systems with varying numbers of antennas and users should 

be conducted. This would help assess the scalability of the approach and identify 

potential bottlenecks in large-scale deployments. 

4. The efficiency of the proposed SCS-BiLSTMAE network and the 

overall PAPR reduction technique heavily depend on accurate channel estimation. 

Any inaccuracies in channel estimation could degrade the system's performance and 

reduce the effectiveness of the proposed method. To address these limitations and 

further enhance the research, the following improvements are suggested. To 

mitigate the dependency on accurate channel estimation, the research could explore 

the integration of more robust channel estimation techniques. This would ensure the 

proposed method remains effective even in environments with imperfect channel 

knowledge. 

          7.2 Future scope 

CSS has appeared as a pivotal technique in cognitive radio networks (CRN), 

significantly contributing to the efficiency of 5G systems. Spectrum sensing, a 

fundamental technology within CRNs, aims to recognize unused spectrum bands, 

and CSS stands out due to its rapid and effective performance. In the context of the 

continuous evolution of IoT networks, where 5G wireless communication plays a 

central role, CSS holds immense promise.  

The optimal solution sought for CRNs in IoT-centric 5G environments must 

ensure optimal bandwidth utilization, efficient CSS, minimal latency, improvement 

in SNR, and reduction in PAPR. Our deployment strategy aims to enhance QoS 

metrics such as throughput, residual energy, and EE. Extensive investigational 

consequences underscore the efficacy of our anticipated line, demonstrating its 

superiority when compared to existing approaches. 
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However, as 5G/6G networks move towards full-scale deployment, there 

arise pressing needs for efficient algorithms capable of delivering rapid and precise 

corrections in extremely assorted environments where numerous novel techniques 

are at play. A significant challenge emerges in canal assessment within multi-link 

techniques. As emphasized in the preliminary segment, highly developed armed 

forces such as URLLC and massive MTC demand robust canal assessment 

techniques capable of accurately characterizing wireless channels in scenarios with 

multiple simultaneous links. Addressing these considerations and limitations will be 

crucial in advancing the efficacy and applicability of ML algorithms in these 

configurations, thus enabling the realization of the full potential of 5G and future 

generations of wireless networks.  

The escalating worldwide inhabitant enlargement and rising demand for 

enhanced data rates and bandwidth underscore the imperative to reduce power 

consumption and evolve improved transmission communication models. This 

article provides firsthand insights into energy efficiency, encompassing the 

deployment of renewable energy resources, varied networks, well-organized 

communication methods, and promising visual wireless transmission methods. The 

best approach to EE stands ready for deployment in wireless communication 

networks, leveraging smart innovations to automate and synchronize all energy-

consuming components. 

This involves integrating an energy efficiency framework that spans from 

base station energizing to the broadcast and treatment of tremendously short 

authority signals. Various power and spectrally well-organized communication 

methods will be calculated alongside modeling optical atto cell network 

configurations to cover hotspots, in that way minimizing visual communication 

commands. Whereas the opportunity holds promise, it's crucial to note that energy-

efficient schemes require optimized hardware and software resources, along with 

high-speed meeting platforms. Presently, AI is gaining traction in deploying 

learning-based models for EE and spectral increases in wireless conduction systems. 

The future scope in the intersection of massive MIMO 5G and a neural 

network is ripe with potential for transformative advancements in wireless 

communication technology. One key area of future exploration lies in the 

development of advanced neural network architectures tailored specifically for 
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massive MIMO applications. These architectures can leverage the unique 

characteristics of these systems, such as large antenna arrays and complex channel 

environments, to extract meaningful insights and facilitate intelligent decision-

making processes. Furthermore, the integration of neural networks with emerging 

technologies like edge computing and artificial intelligence-driven optimization 

algorithms holds promise for enabling autonomous, self-optimizing massive MIMO 

networks capable of adapting dynamically to altering network circumstances and 

user requirements. Overall, the future synergy between massive MIMO 5G and 

neural networks presents exciting opportunities for revolutionizing wireless 

communication networks and unlocking new capabilities for delivering high-speed, 

reliable, and efficient connectivity to users worldwide. 

The research and simulation results offer important new perspectives on how 

MIMO and beamforming function in wireless communication systems. The results 

show how beamforming approaches can increase transmission rates, increase SNR, 

and improve system performance as a whole. The comprehension of the system's 

behavior under various circumstances is further strengthened by the analysis of 

other metrics. 

1. The application will be extended for 6G communications in the future. 

2. Advanced optimization techniques can be implemented to further improve QoS in 

future generation systems. 

3. Apart from expected extensions to the proposed models of this thesis, adaptive 

techniques beyond 5G may also be investigated for QoS provisioning. 

4. Future examination directions may involve the design of machine learning 

algorithms capable of leveraging the deployment of sophisticated services and 

applications in the framework of 6G networks, supported by m-MIMO 

configurations. 
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