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ABSTRACT 

(Keywords: Skin Lesion Segmentation, Deep Learning(DL), Multi-Layer Residual Convolutional 

Neural Network, ISIC-2019 Dataset, Convolutional Neural Network(CNN), Deep Convolutional 

Inverse Graphics Network(DCIGN)) 

Skin cancer is a growing global health issue associated with rising incidence rates and 

significant mortality risks. Early and precise detection of skin lesions is pivotal for 

timely intervention and improved patient outcomes. Over the past few years, Deep 

Learning (DL) has surfaced as a revolutionary innovation within the realm of medical 

imaging, particularly for advancing the precision of skin cancer detection and 

categorization systems. This thesis embarks on an in-depth exploration of a 

groundbreaking approach, showcasing the development and implementation of a 

state-of-the-art skin cancer recognition and categorization system, emphasizing the 

pivotal role of DL in achieving unprecedented accuracy. The proposed system 

harnesses advanced DL algorithms, particularly CNNs, to examine dermoscopic 

images, enabling automated identification and classification of skin lesions. Its 

innovation lies in its ability to significantly boost accuracy and reliability, thus 

diminishing the risk of misdiagnosis and unnecessary medical procedures. 

The system's performance is rigorously assessed through techniques such as cross-

validation, confusion matrix evaluation and other performance metrics. The results 

unequivocally illustrate the supremacy of the proposed DL-based skin cancer 

detection and classification system when compared to conventional methods. Notably, 

the system's accuracy, sensitivity, and specificity surpass established benchmarks. 

Furthermore, the practical implications of this innovation are vast. It serves as a 

critical tool for dermatologists, general practitioners, and patients, enabling early skin 

cancer detection and facilitating timely medical interventions. Its incorporation into 

mobile applications and telemedicine platforms extends its utility, enabling 

individuals to conduct self-examinations and receive prompt feedback. 

In conclusion, this thesis underscores the transformative potential of DL in advancing 

skin cancer detection and classification. The integration of extensive datasets, data 

augmentation, feature extraction, and classification approaches represents a 

significant leap in accuracy and dependability. The system signifies a critical stride 

toward enhanced skin cancer diagnosis, emphasizing the paramount importance of 



 

early detection and its capacity to save lives while reducing the economic burden on 

healthcare systems. As technology continues to advance, maintaining a pioneering 

role in the fight against skin cancer remains paramount. This thesis holds the promise 

of significantly contributing to that mission. 

Consequently, this thesis endeavors to present and scrutinize three DL-driven models 

designed for the detection and classification of skin lesions. These models have been 

meticulously simulated and analyzed, employing the extensive ISIC-2019 dataset, 

which boasts 25,331 dermoscopy images across eight distinct categories of skin 

diseases. 

Segmenting skin lesions presents a formidable challenge owing to indistinct 

boundaries, uneven color distribution, and irregular shapes. Existing DL models have 

limitations in achieving optimal segmentation performance and reducing artifacts and 

noises. The first DL model addresses these issues by introducing the Hybrid Gaussian 

Guided Image Filter (HGGIF) for noise removal and Multilayer Ressidual Network 

(MLRNet) for segmentation. The suggested approach comprises two primary phases: 

preprocessing using the HGGIF filter and segmentation using MLRNet. The HGGIF 

filter effectively removes noises and artifacts, improving color illuminations and 

making the disease-affected regions of the skin lesion more visible. MLRNet, a 

residual analysis-based segmentation technique, accurately segments the skin lesion. 

Later the effectiveness of the suggested MLRNet method is compared with 

conventional segmentation approaches using the ISIC-2019 and PH2 datasets. 

MLRNet outperforms on other methods in terms of performance metrics of accuracy, 

sensitivity, F-score, precision, recall and specificity achieving superior segmentation 

performance. The proposed first DL based model effectively addresses the challenges 

of indistinct boundaries, uneven color distribution, and irregular shapes in skin 

lesions. The demonstration of experimental results of MLRNet surpasses conventional 

segmentation approaches interms of performance metrics. 

Skin lesions pose a challenge in diagnosis due to their diversity in size, position, form, 

and color. Existing image processing-based feature extractors are limited in their 

ability to extract detailed features from large datasets. The proposed second DL model 

based on DTLNet, have shown promise in extracting spectral, texture, color and 

spatial features from segmented images, enabling accurate classification of skin 



 

lesions. The DTLNet framework composed of several steps, including preprocessing, 

segmentation, feature extraction and classification. Preprocessing involves enhancing 

the images and removing noise using the Hybrid Gaussian Weiner Filter (HGWF) 

algorithm. The segmentation process is executed utilizing the AlexNet algorithm, 

while feature extraction is carried out using a DL convolutional neural network 

(DLCNN). The features extracted then classified using a SoftMax classifier for multi-

class classification task. The efficacy of the DTLNet is evaluated using both 

subjective and objective analysis. Regarding the segmentation performance, the 

suggested AlexNet based  model outperforms existing methods. In this, the novel 

design of the DTLNet, which combines preprocessing, segmentation, feature 

extraction and classification, contributes to its outstanding performance. The proposed 

DTLNet demonstrates promising results in the detection of skin lesions. By 

leveraging DTL techniques, the network achieves accurate segmentation & 

classification of skin lesions into eight disease categories. The DTLNet Outperforms 

existing techniques in regards to both segmentation and classification performance, 

making it an important CAD system for dermatologists in the diagnosis of skin 

diseases. 

The third proposed DL based model is the development of a novel approach for AI-

driven skin cancer diagnosis. The aim is to optimize diagnostic accuracy, particularly 

in early-stage detection, and overcome the challenges associated with imbalanced 

datasets. The suggested method is geared towards augmenting the potential of AI-

powered diagnostic systems, aiming to elevate early detection rates and thereby 

positively impacting the survival rates of skin cancer patients. The proposed approach 

involves the use of various models and techniques. The deep convolutional inverse 

graphics network (DGCIN) model utilizes pixel relativity extraction to identify the 

cancer-affected area, while the hybrid deep kohonen network (HDKN) model 

identifies the probabilistic Kohonen characteristics of the segmented image to 

determine the link between different types of skin cancer. The swarm-based pelican 

optimization algorithm (SPOA) model is developed for feature selection, and the deep 

echo network machine (DENM) model is used In the context of multi-class skin 

cancer categorization. Finally the Hybrid Optimized DL Approach for Skin Cancer 

Classification Using Pelican-Optimized Deep Kohonen Features and Echo State 



 

Networks (HOS-Net) surpassed state-of-the-art methods in simulated scenarios for the 

detection, segmentation, and classification of skin lesions. In this context, the 

effectiveness of the suggested method was assessed by employing performance 

metrics on an independent test dataset. The segmentation and classification 

performance of the HOS-Net, the model was juxtaposed with other models utilizing 

the identical ISIC-2019 dataset. It addresses the limitations of conventional methods 

in AI-driven skin cancer diagnosis. By optimizing diagnostic accuracy and 

overcoming challenges associated with imbalanced datasets, the approach aims to 

improve early diagnosis rates and contribute to the improvement of skin cancer 

patient’s survival rates. The HOS-Net model surpassed state-of-the-art methods in 

simulations for detection, segmentation of effected region, and classifying caner 

images. Further, the research and investigations are needed to explore the potential of 

this approach and its future scope. 
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CHAPTER 1 

INTRODUCTION 

In this chapter we will see the introduction to skin cancer and structure of skin 

followed by different types of skin cancers, traditional methods used for detection, 

need of CAD and organization of thesis 

1.1 INTRODUCTION 

The human skin acts as a protective barrier that separates the body from the external 

environment. Comprising water, proteins, fats, and minerals, it is a significant 

component of the person body. Nerves in the skin enable the perception of sensations 

such as heat and cold. The integumentary system establishes a shield between the 

body and the surroundings, effectively isolating the body from external factors. The 

primary functions of the integumentary system encompass safeguarding, sensory 

perception, temperature regulation, vitamin D synthesis, and waste excretion. The 

skin serves as a defense against abrasion and UV radiation, as well as a barrier that 

prevents the entry of bacteria and limits water loss to prevent dehydration. 

The sensory function of the skin allows us to perceive pain, touch, heat, pressure, and 

cold. Body temperature is regulated through the activity of sweat glands and the 

control of blood flow within the skin. Exposure to UV radiation prompts the skin to 

produce a molecule that can be converted into vitamin D. Both the farthest layer of 

the person skin (epidermis) and gland secretions contribute to the elimination of small 

amounts of waste. Skin conditions and disorders encompass various issues, including 

allergies like contact dermatitis, the formation of blisters, and infections such as 

cellulitis. Skin disorders also encompass conditions like acne, psoriasis, eczema, and 

vitiligo, while injuries, burns, and scars fall within the category of skin-related 

conditions. 

As individuals age, they may experience a reduction in the levels of collagen and 

elastin in their skin. This depletion leads to a thinning of the dermis layer, potentially 

causing sagging skin and the development of wrinkles. To preserve the health of the 

skin, it is advisable to use sunscreen with a minimum SPF of 30. Regular skin 

examinations are important for an early detection of skin diseases. It's worth noting 

that nicotine and the chemicals found in cigarettes accelerate the aging process of the 
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skin. Skin infections can be instigated by a diverse array of bacteria, encompassing a 

spectrum of severity from mild to severe. Medical professionals, including doctors 

and specialists, harness various technological advancements in the realm of medicine 

to swiftly identify and treat skin ailments. Advanced CAD systems have become 

essential tools in the identification and diagnosis of skin disorders. This chapter 

presents a comprehensive exploration of dermoscopy skin images and introduces a 

platform for comprehensive detection of skin lesions through the utilization of 

dermoscopy images. This platform facilitates the CAD system, enabling healthcare 

providers to conduct rapid assessments of lesions. 

1.2 SKIN COMPOSITION 

The prime organ of human body is skin, plays a crucial role in shielding us from 

various diseases [10]. Skin tumors are well-known for their abnormal growth and 

structural deficiencies. Lesions can manifest in a variety of forms, including swelling, 

cysts, rashes, discolorations, pus-filled sacs, and blisters. Depending on their extent, 

these lesions may or may not pose harm or risk to one's health. In the realm of 

medical diagnostics, ongoing research aims to alleviate the challenges faced by 

dermatologists when it comes to the screening and diagnosis of lesions, particularly in 

the context of melanoma, utilizing digital images for diagnosis. The structure of ski 

we can see in the Figurel.1  

 

 

 

Figure l.l Skin Structure 

Skin diseases typically originate in the epidermis, the outermost layer of the skin. 

Within this layer, there are three primary cell types: squamous cells, basal cells, and 

melanocytes. Squamous cells, also known as flat cells, form the surface of the 
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epidermis. The basal cell layer, located at the epidermis's bottommost part, consists of 

basal cells. Melanocytes are responsible for producing the brown pigment called 

melanin. These cells can develop into melanoma, a condition that gives the skin a tan 

or brown appearance. Additionally, melanin pigment is an important role in 

safeguarding the skin's deeper layers from harmful elements. 

Epidermis 

The epidermis, which is the skin's farthest layer, acts as barrier of protection against 

various external factors, including those stemming from natural disasters. Among its 

important functions, the epidermis guards against infection by preventing bacteria and 

germs from entering the body and bloodstream . Additionally, it shields the skin from 

the sun, rain, and other environmental elements. The epidermis is continuously 

generating new skin cells. The pigment responsible for skin coloration is called 

melanin, and its levels in the body determine skin texture and color. Individuals with 

higher melanin production tend to have darker skin and are more prone to sunburn. 

Dermis 

Dermis is a skin layer situated between the epidermis and the subcutaneous tissue. It 

is composed of dense irregular connective tissue, which serves to protect the body 

from pressure and stress. Within dermis, collagen is a fundamental protein that 

provides the skin with strength and resilience. Elastin contributes to skin flexibility 

and aids in restoring strained skin. Nerves within the dermis serve as sensors, alerting 

the body to sensations such as excessive heat, discomfort, or gentle touches, while 

also playing a role in pain perception. This layer also produces oils, and it houses 

sweat glands responsible for sweat production. 

Hypodermis 

Within vertebrates, the hypodermis constitutes the lowest layer of the integumentary 

system, containing fibroblasts, adipose cells, and macrophages as its principal cell 

types. These components are located beneath the epidermis and within the dermis, and 

they primarily serve as a reservoir for storing fat. The hypodermis is the fatty layer 

responsible for regulating body temperature by preventing excessive cooling or 

overheating. In cases of accidents, the fat within the hypodermis provides protection 

for muscles and bones. 
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1.3 SKIN CANCER OVERVIEW 

Skin cancer is a pervasive and escalating global health concern that impacts millions of 

individuals every year. As per thr World Health Organization (WHO), skin cancer is 

diagnosed in over two million people globally each year, establishing it as one of the most 

widespread cancer types worldwide. This alarming prevalence underscores the urgent 

need for effective diagnostic and preventive measures. 

Skin cancer encompasses various types, with the most common forms being basal cell 

melanoma, SCC and BCC. BCC, constituting the majority of skin cancer cases, usually 

initiates in the basal cells of the epidermis. It is generally localized and has a lower 

propensity to metastasize. Squamous cell carcinoma, which arises in the squamous cells 

of the skin, can be more invasive than BCC. While it has a lower risk of metastasis than 

melanoma, early recognition and treatment are critical for optimal outcomes. Melanoma, 

which is the most. lethal type of skin cancer, emerges from melanocytes, the cells 

accountable for melanin production. Melanoma exhibits a heightened risk of metastasis, 

emphasizing the utmost significance of timely diagnosis and intervention, as stated by the 

American Cancer Society. The primary risk factors for skin cancer is UV radiation 

exposure. Extended exposure to UV radiation, whether originating from natural sources 

such as the sun or artificial sources like tanning beds, markedly amplifies the 

susceptibility to skin cancer [106]. Alterations in the environment, including ozone layer 

depletion, can exacerbate UV radiation exposure and contribute to the escalating 

occurrence of skin cancer [88]. Skin type plays a crucial role, with individuals possessing 

fair skin, light hair, and light eyes being more susceptible to skin cancer due to lower 

levels of melanin, which provides some protection against UV radiation [88]. A family 

history of skin cancer is allied with an enlarged individual risk, and weakened immune 

systems of individuals, such as organ transplanted human beings, face elevated 

susceptibility [99]. The significance of identifying skin cancer early is complex and 

varied. Studies have consistently demonstrated that early diagnosis leads to higher 

survival rates [22]. Furthermore, early diagnosis often allows for less invasive and less 

complex treatments, reducing patient discomfort and healthcare costs [12]. Perhaps most 

critically, early detection can prevent the spread of malicious cells across the body parts, 

significantly impacting patient outcomes [15]. 

Skin diseases encompass all issues that irritate, obstruct, or negatively impact the 

skin. These problems can either be inherited or acquired. Common signs of different 
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skin conditions include itchiness, acne, and rashes. Fortunately, many skin issues can 

be managed through medications, proper skincare routines, and lifestyle adjustments. 

Some notable skin diseases include Melanoma (MEL), Melanocytic Nevus (NV). 

Basal Cell Carcinoma (BCC), Actinic Keratosis (AKIEC), Benign Keratosis (BKL), 

Dermatofibromas (DF),  Vascular Lesions (VASC), Squamous Cell Carcinoma (SCC) 

1.3.1 Melanoma 

It is one kind of cancer that originates from cells responsible for producing melanin, 

responsible for skin coloration. This type of cancer is the most deadly among skin 

cancers and can also develop in the eyes, nose, or throat. While the particular root of 

all melanomas remains unclear, being uncovered to sun UV radiation substantially 

elevates the threat of developing this cancer. Reducing skin exposure to UV light, as 

depicted in Figure 1.2, can help lower the risk of melanoma 

 

Fig. 1.2: Different Images of Melanoma 

1.3.2 Melanocytic Nevus 

Melanocytic nevi are non-cancerous growths composed of melanocytes, which are 

cells responsible for producing pigment. These melanocytes typically extend into the 

epidermis, as depicted in Figure 1.3. The majority of acquired melanocytic nevi are 

regarded as benign tumors. While this  condition can be found in various mammals, it 

is most commonly observed in humans, dogs, and horses. 

 

 

 

 

Fig. 1.3: Different Images of Melanocytic Nevus 

1.3.3 Basal Cell Carcinoma 

This kind of cancer originate in a particular layer called basal cover of skin and leads 

to the production of new skin cells following the demise of the old ones. It typically 
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presents as a skin-colored, translucent, shiny bump, as depicted in Figure 1.4. In 

individuals with brown or black skin, this bump may appear dark or glossy black.  

 

 

 

 

 

Fig. 1.4: Different Images of Basal Cell Carcinoma 

In such cases, tiny blood vessels may be visible, although they can be difficult to 

discern. There is a possibility that the bump may bleed and form a scab. At times, it 

can resemble a lesion with dark spots or exhibit a brown, black, or blue hue, or it may 

manifest as a scaly patch with a flat, scaly elevated border. 

1.3.4 Actinic Keratoses 

An actinic keratosis, often referred to as Bowen's disease or solar keratosis, is a rough, 

scaly patch of skin that typically develops after exposure to sunlight. These patches 

are commonly found on the forearms, lips, neck, cheeks, ears, scalp, and backs of the  

 

 

 

 

Fig. 1.5: Different Images of Actinic Keratoses 

hands. They can appear as scratchy, dry, or scaly areas on the skin, usually with a 

diameter of less than 1 inch (2.5 cm). In some cases, they may have a rough, warty 

texture and can exhibit various colors like pink, red, or brown, as illustrated in Figure 

1.5. Additionally, actinic keratosis can lead to itching, burning, bleeding, or the 

formation of crusts on the skin. 

1.3.5 Benign Keratosis 

BKL is a common benign skin growth that often occurs as people age. These growths 

can be brown, black, or light tan in color. It is essential to emphasize that seborrheic 

keratosis is not contagious and does not pose any health risks. They do not necessarily 

require treatment but can be removed if they become bothersome due to their 

interaction with clothing or if someone wishes to remove them for cosmetic reasons. 
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Seborrheic keratosis typically presents as a waxy or rough bump on the face, chest, 

shoulders, or back, often exhibiting a round or oval shape, as depicted in Figure 1.6.  

 

 

 

 

 

Fig. 1.6: Different Images of Benign Keratosis 

These growths can vary in size, ranging from very small to over 1 inch (2.5 cm) in 

diameter. They can appear as a single growth or in multiple numbers, ranging from a 

few to many. In individuals with black or brown skin, it's common to see small 

clustered growths around the eyes, referred to as flesh moles  

1.3.6 Dermatofibromas 

Dermatofibromas are a prevalent skin condition with an unknown cause, 

predominantly observed in women. They typically appear on the extremities and are 

often without symptoms, although they can occasionally lead to sensations of burning 

and discomfort, as illustrated in Figure 1.7.  

 

 

 

 

Fig. 1.7: Different Images of Dermatofibromas 

Dermatofibromas are the most common type of bothersome skin condition. They 

exhibit distinct histological characteristics. Treatment for malignancy is usually 

unnecessary unless there is significant uncertainty about the diagnosis or the 

symptoms become exceedingly troublesome. 

1.3.7 Vascular Lesions 

 Vascular lesions encompass a wide range of skin conditions, including those that are 

acquired later in life and which are present by birth & develop shortly thereafter, 

vascular birthmarks, as illustrated in Figure 1.8. These lesions can either be Vascular 

lesions encompass a broad range of skin conditions, together with that are acquired 
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later in life and which are present by birth & develop shortly thereafter, known as 

vascular birthmarks, as illustrated in Figure 1.8. These lesions can either be 

 

 

 

 

Fig. 1.8: Different Images of Vascular Lesions 

benign or malignant. Laser therapy is often the preferred treatment option for 

addressing this category of skin disorders. 

1.3.8 Squamous Cell Carcinoma 

It is also one kind of cancer that originates from the squamous cells found in the 

outermost skin layer called epidermis. It is most familiar types of skin cancer, often 

arising due to cumulative sun exposure over the years as show in Figure 1.9. SCC 

tends to develop in areas frequently exposed to the sun, such as the face, ears, etc., 

 

 

 

 

 

Fig. 1.9: Different Images of Squamous Cell Carcinoma  

1.4 SKIN CANCER PROBLEMS AND NECESSITY OF EARLY DETECTION 

Skin cancer is an important public health concern with several implications for both 

individuals and healthcare systems. This chapter delves into the various aspects of skin 

cancer, including its prevalence, causes, risk factors, mortality rates, and the crucial 

importance of early detection in addressing this global issue. Skin cancer ranks among the 

most frequently diagnosed cancers worldwide, covering various forms such as BCC, 

MEL, and SCC. Its incidence varies regionally, with areas of high sun exposure reporting 

higher rates. According to the World Cancer Research Fund, the worldwide occurrence of 

skin cancer is on the rise, and projections indicate an alarming surge in melanoma cases 

by [41]. Overexposure to UV rays, from both the sun stands as the primary cause of skin 

cancer. UV radiation damages DNA, leading to genetic mutations that can initiate cancer 

development. Genetic predisposition and environmental factors also influence 
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susceptibility. Key risk factors encompass fair skin, history of sunburn, tanning bed 

usage, and a family history of the disease [129]. 

Advanced skin cancer, especially melanoma, significantly impacts mortality rates. While 

melanoma is less common than other skin cancers, it contributes substantially to skin 

cancer-related deaths. In 2022, approximately 7,400 deaths in the US were attributed to 

melanoma. The consequences of skin cancer extend beyond mortality, encompassing 

physical, emotional, and financial burdens on individuals and their families. Moreover, 

the disease places a considerable burden on healthcare systems due to the costs associated 

with diagnosis, treatment, and ongoing care [15]. Early detection is paramount in 

improving the prognosis and saving lives in the case of skin cancer. When diagnosed at 

an earlier stage, skin cancer is highly treatable, often requiring minimally invasive 

interventions. Prompt and precise skin lesion segmentation is crucial for early detection. 

It not only enhances treatment outcomes but also reduces the need for more aggressive 

and costly therapeutic measures. Therefore, public awareness campaigns and regular skin 

screenings by healthcare professionals are crucial for promoting early detection and 

prevention [36]. The field of medicine has undergone a significant transformation with 

the application of image analysis techniques. These technologies, driven by rapid 

technological advancements, have become indispensable tools for modern healthcare. 

They extract valuable information from a variety of medical images, for instance CT 

scans, MRIs, X-rays, and dermatological images, facilitating precise diagnosis, treatment 

monitoring, and research across multiple medical domains, including radiology, 

pathology, and dermatology [82]. 

Image analysis plays a dynamic role in this transformation, providing non-invasive, 

efficient, and highly informative solutions in medicine. It is particularly relevant in the 

context of dermatology, where it aids in the precise segmentation of skin lesions, 

contributing significantly to the early detection of skin cancer. Experts in dermatology, 

such as [39] have focused on feature recognition and diagnosis accuracy using reflectance 

confocal microscopy (RCM). Advanced imaging modalities like dermoscopy and RCM 

have revolutionized dermatology by providing deeper insights into skin structures and 

lesion characteristics, enhancing diagnostic accuracy and patient care [94]. However, the 

field of medical image analysis is not without its challenges. The vast amount of data 

generated by medical imaging requires sophisticated algorithms for efficient processing 

and analysis. Image quality, noise, and artifacts can also affect the accuracy of automated 
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analysis, making specialized algorithms and approaches crucial, especially in 

dermatology, where image quality can be highly variable due to factors like lighting, skin 

tones, and image artifacts [114]. The applications of image analysis in dermatology have 

gained prominence, particularly in skin lesion analysis. Researchers like [114] have 

developed automated systems to identify and categorize skin ailments, including 

psoriasis. Their work demonstrates the potential of image analysis in accurately 

identifying skin conditions, aiding in early diagnosis and treatment. Additionally, CAD 

systems created to aid skin doctors in the before time detection of skin cancer. These 

systems employ image analysis techniques to partition skin lesions, evaluate their 

features, and offer diagnostic assistance, as demonstrated by the research of [39]. 

First and foremost, raising awareness about skin diseases is of utmost importance. A 

clinical diagnosis should be conducted, and strategies can be developed to minimize 

delays and obstacles, ensuring that patients receive timely treatment. It is crucial to 

prevent skin conditions from progressing to skin cancer. To achieve this, two 

complementary preventive measures for skin diseases are applying sunscreen before 

sun exposure and avoiding outdoor activities during high-temperature periods. 

Additionally, wearing protective clothing can help shield the skin from direct 

sunlight. Dermatologists often assess various aspects of the skin, including its texture, 

shape, and color, to find weather the lesion of skin is benign or malignant. Over recent 

years, incidence of skin melanoma has been rapidly increasing. Although melanoma 

is a unsafe form of skin cancer, it will be successfully treated when detected at an 

early stage [50]. Given the rising incidence of melanoma, research in this field has 

gained momentum. Diagnosis involve a physical inspection of skin and may include a 

skin biopsy. Certainly, epiluminescence microscopy, also known as dermoscopy, is a 

valuable procedure in diagnosing skin conditions. This procedure employs various 

equipment to assess the pigment and blood vessel patterns of a mole without 

removing it. It provides crucial insights for medical professionals to make accurate 

assessments. Several common skin tests are conducted for diagnostic purposes. Patch 

tests are employed to diagnose skin allergies. In this procedure, potential allergens are 

applied to the skin, and any reactions are observed. Skin biopsies are instrumental in 

diagnosing skin cancer and other benign skin conditions. During a skin biopsy, a 

portion of the skin is removed (after local anesthesia) and sent to a laboratory for 
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analysis. Different tools such as a scalpel, razor blade, or a cylindrical punch biopsy 

tool can be used to extract the skin, and stitches may be employed to close the wound 

afterward. These diagnostic techniques are crucial for accurate and timely 

identification of various skin ailments. 

Cultures are diagnostic tests employed to identify the specific microorganism 

responsible for an infection, whether it's a bacterium, fungus, or virus. These cultures 

can be collected from several of sources, including the skin (including surface 

scrapings, biopsies, and the contents of pus, pimples, and blisters), hair, or nails. 

In addition to cultures, the ABCDE rule is utilized for detecting skin diseases. The 

acronym ABCDE stands for Asymmetry, Border, Color, Diameter, and Evolution. 

This rule helps in assessing potential skin abnormalities. Melanomas, for instance, 

often exhibit asymmetrical shapes, unlike non-cancerous moles that are typically 

symmetrical. The borders of melanomas tend to be irregular in shape, and they can 

have multiple colors. Melanoma growths are often larger than 6mm in diameter, and 

they can change in characteristics such as size, shape, and color over time. This rule 

serves as a useful guideline for identifying suspicious skin conditions that may require 

further evaluation. 

1.5. SKIN IMAGING TECHNIQUES 

Indeed, imaging techniques in dermatology are invaluable for identifying and 

diagnosing various skin diseases. The term "medical imaging" has significantly 

streamlined this process over the past century. These techniques enable the generation 

of images from different areas of the skin, aiding in diagnosis, monitoring, and 

treatment planning. As technology advances, an array of imaging technologies is 

continually developed and utilized, enhancing our understanding and diagnosis of 

skin conditions. Various strategies in this field are continuously evolving To offer 

medical professionals with more precise and comprehensive information 

Tele-dermoscopy 

Tele-dermoscopy is gaining popularity due to its capacity to offer patients consistent, 

convenient, and accessible care. This is particularly crucial in regions like Canada, 

where a shortage of dermatologists has led to extended wait times for skin 

assessments. Tele-dermoscopy programs enable clinical specialists to provide 

accessible care, enhance patient engagement, reduce unnecessary in-person visits, 
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shorten patient wait times, and promptly generate comprehensive reports [60]. Figure 

1.10 (a) displays an image obtained through tele-dermoscopy. 

   

(a) (b) (c) 

  

 

 

(d) (e) (f) 

Fig. 1.10: Skin Imaging Techniques (a) Tele-dermoscopy, (b) Total Body 

Photography, (c) Ultrasonography, (d) Dermoscopy, (e) Confocal Microscopy, 

(f) Optical Coherence Tomography 

Total Body Photography 

Full body screening, also referred to as absolute body photography or body imaging, 

enables dermatologists to conduct regular monitoring of high-risk patients by 

capturing images of their skin on a recurring basis. This involves the acquisition of a 

series of high-quality photographs of various areas of the patient's body for the 

purpose of tracking and monitoring skin lesions. This advancement holds great 

promise in aiding physicians in the early detection of skin malignancies, as it allows 

for the rapid and accurate assessment of existing skin spots on patients. An example 

of total body photography is illustrated in Figure 1.10(b). 

Ultrasonography 

This diagnostic tool, which has been previously used, serves as a valuable resource 

for evaluating skin thickness in various medical fields. Its key advantages include 

non-invasiveness, safety, and cost-effectiveness, making it a favored choice. The 

image resolution improves as the ultrasonic frequency increases. The process involves 

the detection of reflected sound waves as they pass through tissues with varying 
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acoustic properties. Figure 1.10(c) displays an ultrasonography image as an example 

of its application. 

Dermoscopy 

Digital dermoscopy is a non-invasive technique employed for evaluation of 

pigmented skin lesions. This method employs a handheld device known as a 

dermatoscope, functioning as a visual aid. This tool can be utilized by professionals or 

non-experts to inspect and diagnose skin lesions and diseases, including melanoma. 

Additionally, it is useful for examining the scalp, hair, and nails.  

 

 

 

 

 

 

 

Fig. 1.11: Skin Scope 

Figure 1.10(d) displays an example of a dermoscopy image, showcasing its 

application in dermatological diagnosis. Dermatoscopes utilize light and 

magnification to improve the visibility of a effected skin, as illustrated in Figure 1.11. 

By employing dermatoscopes, clinicians can observe intricate details in the outer 

layer of the skin that might be indiscernible to the naked eye. This advanced 

technology represents the most contemporary method for evaluating pigmented skin 

lesions, significantly increasing physicians' confidence in clinical diagnoses. These 

devices are specifically designed to visualize structures beneath the skin's surface and 

epidermis, which are not easily observable to the naked eye. Moreover, the images 

can be digitally recorded and stored for sequential analysis and further examination of 

the lesions in digital mode. This digital capability enables in-depth scrutiny and 

facilitates accurate assessments for dermatological conditions. Dermoscopic image 

analysis has proven to be a highly useful tool, achieving an enhanced diagnostic 

accuracy of 5-30% by eliminating the need for biopsies in both precancerous and 

malignant tumors. In recent dermoscopy, non-polarized light sources are exclusively 

used to illuminate the skin. This approach requires the use of a liquid interface to 
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optimize the interaction between the lens and the skin, reducing the amount of light 

that is reflected, refracted, and diffracted from the skin's surface. Consequently, this 

technique enables observers to visualize structures located beneath the stratum 

corneum, the outermost layer of the skin. 

In contrast, polarized light dermoscopy can visualize deeper skin features without the 

use of a liquid interface. Dual-mode dermoscopy combines both technologies, 

allowing for the imaging of superficial structures and blood vessels in the skin, as 

well as a comprehensive examination of the various components within the skin.  

Confocal Microscopy 

Confocal Scanning Laser Microscopy (CSLM) is a valuable technique for evaluating 

skin lesions, providing high-resolution tissue images that are comparable to 

histopathological images. In CSLM, a low-power laser beam is precisely directed 

onto a specific point of the skin through a lens. The light redirected from that focal 

point is detected using a confocal pinhole filter, and the resulting image can be seen in 

Figure 1.10(e). Subsequently, the collected light is converted into an electrical signal 

and displayed on a computer for analysis. 

CSLM allows for the examination of lesions at an integral level, enabling the 

detection of irregularities and details that may not be apparent through other imaging 

methods. This technique enhances our ability to assess and understand skin lesions, 

aiding in their accurate diagnosis and evaluation. 

Optical Coherence Tomography 

OCT is a macro-optical technology that generates images using light tissue 

communication, as demonstrated in Figure 1.10(f). This non-invasive technique 

creates high-resolution real-time skin images by conducting a cross-sectional 

observation to a depth of up to 2 mm beneath the skin's surface. Due to the light 

scattering effect caused by pigment, OCT dermatology is particularly effective for 

monitoring Non-Melanocytic Skin Malignancies (NMSC). However, when dealing 

with pigmented lesions, additional information is often required for accurate analysis. 

In the case of NMSC, OCT images focus on the architectural abnormalities within the 

epidermis, providing unique insights that aid in the diagnosis and evaluation of skin 

conditions. This technology offers a valuable tool for dermatologists in the assessment 

and monitoring of various skin malignancies and abnormalities. 



1.6. CAD SYSTEM FOR SKIN DISEASE DIAGNOSIS

Skin diseases come in various forms and can result from factors 

exposure, viral infections, immunological suppression, and genetic abnormalities. 

Melanoma, a type of skin cancer, is typically treated with surgery, often being the 

primary recommended treatment at this stage. Over time, several alternati

approaches for treating skin diseases have been suggested. These methods include 

biopsy (to diagnose and evaluate skin conditions), broad excision (to remove 

abnormal tissue), and chemotherapy (using drugs to kill or slow down the growth of 

cancer cells). Traditionally, unaided clinical examinations have been the primary 

method for diagnosing skin diseases. Nonetheless, there is an increasing inclination 

towards visual examination conducted by specialists for the early detection of 

diseases. Nevertheless, this approach faces challenges due to disparities in 

assessments among different experts. While dermoscopy has enhanced the diagnostic 

proficiency of seasoned physicians, acquiring this skill remains daunting, and even 

with training, the analysis still r

Given these challenges, there is a rising demand for the computerized, automated 

analysis of images of skin lesions. This approach offers capable avenues for skin 

disease detection through Computer

objectives and accurate assessment of skin conditions. The block diagram of CAD 

system is shown in Fig 1.12.

CAD technologies have a 

leading to the survival of hundreds and thou

very important step in this process. It involves enhancing the image's intensity (lesion) 
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SYSTEM FOR SKIN DISEASE DIAGNOSIS 

Skin diseases come in various forms and can result from factors such as sunlight 

exposure, viral infections, immunological suppression, and genetic abnormalities. 

Melanoma, a type of skin cancer, is typically treated with surgery, often being the 

primary recommended treatment at this stage. Over time, several alternati

approaches for treating skin diseases have been suggested. These methods include 

biopsy (to diagnose and evaluate skin conditions), broad excision (to remove 

abnormal tissue), and chemotherapy (using drugs to kill or slow down the growth of 

). Traditionally, unaided clinical examinations have been the primary 

method for diagnosing skin diseases. Nonetheless, there is an increasing inclination 

towards visual examination conducted by specialists for the early detection of 

, this approach faces challenges due to disparities in 

assessments among different experts. While dermoscopy has enhanced the diagnostic 

proficiency of seasoned physicians, acquiring this skill remains daunting, and even 

with training, the analysis still remains subjective. 

Given these challenges, there is a rising demand for the computerized, automated 

analysis of images of skin lesions. This approach offers capable avenues for skin 

disease detection through Computer-Aided Diagnosis (CAD), providing a more

objectives and accurate assessment of skin conditions. The block diagram of CAD 

system is shown in Fig 1.12. 

Fig. 1.12: CAD System 

CAD technologies have a critical role in recognizing and diagnosing melanoma, 

leading to the survival of hundreds and thousands of patients. Image pre-

very important step in this process. It involves enhancing the image's intensity (lesion) 
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Melanoma, a type of skin cancer, is typically treated with surgery, often being the 

primary recommended treatment at this stage. Over time, several alternative 

approaches for treating skin diseases have been suggested. These methods include 

biopsy (to diagnose and evaluate skin conditions), broad excision (to remove 

abnormal tissue), and chemotherapy (using drugs to kill or slow down the growth of 

). Traditionally, unaided clinical examinations have been the primary 

method for diagnosing skin diseases. Nonetheless, there is an increasing inclination 

towards visual examination conducted by specialists for the early detection of 

, this approach faces challenges due to disparities in 

assessments among different experts. While dermoscopy has enhanced the diagnostic 

proficiency of seasoned physicians, acquiring this skill remains daunting, and even 

Given these challenges, there is a rising demand for the computerized, automated 

analysis of images of skin lesions. This approach offers capable avenues for skin 

Aided Diagnosis (CAD), providing a more 
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technique is used to separate the lesion (abnormal skin area) from the surrounding 

healthy tissue. This segmentation step is crucial in determining whether the identified 

nodule is malignant or benign. Once the lesion

techniques are employed. These techniques encompass various approaches to 

categorize skin diseases depicted in dermoscopy images. By utilizing sophisticated 

classification methods, medical professionals can accurately id

different skin conditions relying on the visual data extracted from the images. These 

advancements in image analysis and classification significantly contribute to 

enhancing the precision and effectiveness of diagnosing skin disorders
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Within an ANN, a portion of neurons functions as inputs, gathering diverse data from 

the surrounding environment. Further neurons in the hidden layer become active 

through weighted connections. These interconnections constitute the hidden layer, as 
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while simultaneously minimizing undesired distortions and reducing noise. These 

processed images are then used for the segmentation of the nodule region, allowing 

for a more accurate and effective analysis of skin lesions and aiding in early detection 

Image segmentation refers to a process of dividing image regions and 

isolating objects from the background. In the context of dermoscopy images, this 

technique is used to separate the lesion (abnormal skin area) from the surrounding 

healthy tissue. This segmentation step is crucial in determining whether the identified 

nodule is malignant or benign. Once the lesion is segmented, image classification 

techniques are employed. These techniques encompass various approaches to 

categorize skin diseases depicted in dermoscopy images. By utilizing sophisticated 

classification methods, medical professionals can accurately identify and diagnose 

different skin conditions relying on the visual data extracted from the images. These 

advancements in image analysis and classification significantly contribute to 

enhancing the precision and effectiveness of diagnosing skin disorders 

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 

numerous interconnected elements known as neurons. These neurons are 

 of layers, and each neuron generates real-value activations in 

a sequential manner. This network architecture draws inspiration from the 

ent of biological neurons in a brain of human and is applied across a range 

applications. It is employed to model intricate relationships and 

execute tasks like pattern recognition and classification 

Fig. 1.13: Deep Neural Network 

Within an ANN, a portion of neurons functions as inputs, gathering diverse data from 

the surrounding environment. Further neurons in the hidden layer become active 

through weighted connections. These interconnections constitute the hidden layer, as 

while simultaneously minimizing undesired distortions and reducing noise. These 
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Image segmentation refers to a process of dividing image regions and 

the context of dermoscopy images, this 

technique is used to separate the lesion (abnormal skin area) from the surrounding 

healthy tissue. This segmentation step is crucial in determining whether the identified 

is segmented, image classification 
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Within an ANN, a portion of neurons functions as inputs, gathering diverse data from 

the surrounding environment. Further neurons in the hidden layer become active 

through weighted connections. These interconnections constitute the hidden layer, as 
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demonstrated in Figure 1.13. The output neuron, positioned at the network's output, 

offers insights into how effectively the network has acquired knowledge from the 

training data it received. The operation of a neuron comprises the calculation of the 

weighted sum of all inputs and their associated connection weights. Subsequently, this 

summation is processed through an activation function to generate the neuron's 

output. The activation function introduces non-linearity to the neuron's response, 

enabling neural networks to capture intricate data relationships and glean insights 

from patterns. In an artificial neural network, weights assigned to neurons are 

determined during the learning process. The idea is to optimize the network's ability 

to solve the assigned task efficiently, often with the assistance of a technique called 

backpropagation. In a typical artificial neural network, all neurons are fully 

connected, meaning that each neuron in one layer is linked to every neuron in the next 

hidden layer. Deeper neural networks, with many layers, offer advantages because 

they can represent more complex functions with fewer neurons in each hidden layer 

and appropriate weights assigned to them. This depth allows neural networks to 

capture complex patterns and associations in data. Additionally, various neural 

network architectures are developed to excel in specific tasks, making them highly 

adaptable and suitable for a broad range of applications. CNNs are widely used DL 

architectures specifically designed for tasks related to recognition and classification. 

They are particularly effective for image and spatial data analysis because of their 

unique ability to learn automatically and extract hierarchical features from data. 

CNNs have a significant impact on computer vision, image analysis, and various other 

fields where pattern recognition and classification are essential. They have proven to 

be highly successful in tasks such as image classification., object detection., and 

image seg.mentation, among others. In the proposed research, a CNN has been 

developed for the detection and classification of skin diseases. The CNN architecture 

has several types of layers, which includes convolutional layers, an activation 

function layer (typically ReLU), batch normalization layers, max-pooling layers, and 

a fully connected layer, as depicted in Figure 1.14. 

Here's a breakdown of how these layers work: 

1. Convolutional Layers                  3. Batch Normalization Layer  

2. Max Pooling Layer                         4. Activation Function Layer (ReLU Layer) 



 

Fig. 1.14: Convolutional Neural Network

These layers work together in the CNN to automatically acquire and discern pertinent 

attributes from the input data, rendering it exceptionally proficient in the 

categorization of skin ailments. The 

eventually leading to the fully connected layer for the final classification.

1.7.1 Convolution Layer

Convolution layer is the first layer in CNN and this layer consists of filters that are 

learnable as shown in fig. 1.15
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Fig. 1.14: Convolutional Neural Network 

These layers work together in the CNN to automatically acquire and discern pertinent 

attributes from the input data, rendering it exceptionally proficient in the 

categorization of skin ailments. The process continues with additional layers, 

eventually leading to the fully connected layer for the final classification.

1.7.1 Convolution Layer 

Convolution layer is the first layer in CNN and this layer consists of filters that are 

fig. 1.15 

Fig. 1.15: Convolution Layer 

 

These layers work together in the CNN to automatically acquire and discern pertinent 

attributes from the input data, rendering it exceptionally proficient in the 

process continues with additional layers, 

eventually leading to the fully connected layer for the final classification. 

Convolution layer is the first layer in CNN and this layer consists of filters that are 
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The calculation of output parameters in the convolution layer is done by Eq. (1.1). 

Here ‘m’ is width, ‘n’  h.eight of filter and ‘K’ denotes no. of filters. 

                 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = ൫(𝑚 ∗ 𝑛 ∗ 𝑎) + 1൯ ∗ 𝐾                   (1.1) 

The value of 'a' is determined by the input image dimension: if the image is 2D, then 

'a' equals 2, and in the case of a 3D image, 'a' is set to 3. 

1.7.2 ReLu 

It  replaces all values with negative sign from the filtered input image by zeros and it 

keepts the values with positive sign as it is. Equation (1.2) demonstrates that any 

values that are either negative or zero are substituted with zeros. The response f(x) of 

ReLU  is shown in fig. 1.16. 

                                                 𝑓(𝑥) =  ൜
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

                                              (1.2) 

𝑓(𝑥)                                                                   

 

 

 

                                           Fig. 1.16: ReLU Layer Output 

1.7.3 Batch Normalization 

This layer is employed to normalize the sizes of varying images and is incorporated to 

fine-tune the weights for the output layers. To get the output we have to use an 

equation which computes the output parameter provided in Equation (1.3). 

                                          𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑧 ∗ 4                                          (1.3) 

Here, 'z' is the dimension of previous layer response. For instance, if the input image 

for the batch normalization layer has dimensions of 3 * 3 * 64, then 'z' would equal 

64.                   

1.7.4 Pooling Layer 

In this layer, the image stack is shrinked into a smaller size. In the max 

pooling method, the highest value is picked and rest values are discarded as 

 



 

 

 

 

shown in fig. 1.15. Whereas, in average pooling method, the mean

is calculated. After pooling, image is provided for flattening in the 

1.7.5 Dropout Layer 

The dropout layer assumes a pivotal role in mitigating the problem of overfitting in 

neural networks, preventing the network from becoming overly specialized for the 

training and testing datasets, as depicted in Figure 1.16

deactivating a randomly selected subset of neurons within a layer by setting their 

values to zero. 

 

 

 

1.7.6 Fully. Connected Layer

A Fully Connected .layer allows for the scrutiny of nonlinear patterns portrayed by 

the output from the convolutional layer, as illustrated in the figure 1.19 below.
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Fig. 1.17: 2x2 Max Pool Layer 

shown in fig. 1.15. Whereas, in average pooling method, the mean. 

is calculated. After pooling, image is provided for flattening in the next layer.

The dropout layer assumes a pivotal role in mitigating the problem of overfitting in 

neural networks, preventing the network from becoming overly specialized for the 

training and testing datasets, as depicted in Figure 1.16. Its principal function entails 

deactivating a randomly selected subset of neurons within a layer by setting their 

 

Fig. 1.18: Dropout Layer 

Fig. 1.18: Dropout  Layer 

Connected Layer 

layer allows for the scrutiny of nonlinear patterns portrayed by 

the output from the convolutional layer, as illustrated in the figure 1.19 below.

  

Fig. 1.19: Fully Connected Layer 
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layer allows for the scrutiny of nonlinear patterns portrayed by 

the output from the convolutional layer, as illustrated in the figure 1.19 below. 
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1.7.7 Activation Functions 

A basic neural network comprises a single neuron, serving as the fundamental 

computational unit of the neural network. In a neural network, each layer consists of 

numerous neurons that operate in parallel, with each neuron representing a function in 

vector-to-scalar form. Typically, these units are designated to accept an input vector 

'x' and perform a transformation, as illustrated in Equation (1.4) 

                                                              𝑧 = 𝑊் 𝑥 + 𝑏                                             (1.4) 

In this context, the 'W' matrix represents the mapping from input vector 'x' to output 

vector 'z' along with the bias 'b,' which is applied during the transformation process. 

Subsequently, the output 'z' undergoes a nonlinear transformation denoted as 'g(z)' 

applied element-wise, which is commonly referred as the activation function.. The 

sigmoid fn., is utilized to represent the probability distribution function for binary 

variables. The Softmax activation fn., is an extension of the logistic fn., for multiple 

dimensions 

1.8. DL TECHNIQUE 

DL, a subset of AI, has rapidly arisen as a transformative force in area of medicine. This 

literature review explores the applications of DL in medical diagnostics, patient care, and 

research, highlighting its impact on healthcare outcomes. DL, a subset of ML, involves 

the use of ANNs to examine and interpret data. It has gained prominence in medicine 

because of their efficiency to process enormous amounts of complex medical data, 

ranging from medical images to electronic health records. DL models, particularly CNNs 

and RNNs, have demonstrated remarkable capabilities in pattern. recognition, 

classification, and. prediction tasks [76]. One of the most prominent applications of DL in 

medicine is in medical imaging. CNNs have proven highly effective in tasks such as 

image segmentation, lesion detection and disease classification.  For instance, researchers 

have developed DL models for diagnosing conditions like diabetic retinopathy, skin 

cancer, and lung diseases based on medical images. The work of [48] showcases the 

potential of DL in automating the interpretation of retinal images for diabetic retinopathy 

diagnosis, with a performance on par with human experts. DL models have also shown 

promise in predictive analytics for patient outcomes. Recurrent neural networks, with 

their capability of analyzing sequential data, are being employed to forecast patient 

deterioration and disease progression. Studies by [102] demonstrate the use of DL for 
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predicting in-hospital mortality and patient readmissions, aiding healthcare providers in 

timely interventions and resource allocation. 

In addition to image analysis, DL plays a noteworthy role in natural language processing 

(NLP) applications in healthcare. NLP models are capable of extracting valuable. 

information from clinical notes, electronic health records, and medical literature. This is 

exemplified in the work of [81], which demonstrates how DL models can capture and 

interpret clinical narratives, potentially facilitating improved patient care and research by 

tapping into the wealth of unstructured clinical data. 

Image Processing and DL 

This section delivers an in-depth examination of the pivotal role of image processing and 

DL in the context of skin cancer diagnosis and classification. 

Image Processing in Medical Imaging 

Image processing is a fundamental component of medical imaging, and its significance in 

dermatology and skin cancer diagnosis cannot be overstated. It encompasses a range of 

techniques aimed at improving the quality, clarity, and interpretability of medical images, 

including those of skin lesions. Preparing medical images, like those of skin lesions is 

necessary to mitigate the impact of factors like noise, artifacts, and inconsistent lighting 

conditions [128]. Pre-processing steps often include noise reduction to enhance the 

quality of input data. Noise in medical images can obscure crucial details and affect the 

accuracy of diagnostic algorithms [35]. Furthermore, artifacts, such as those caused by 

camera imperfections, can distort the appearance of skin lesions, making their analysis 

challenging. Pre-processing techniques, including filtering and contrast adjustment, are 

critical to addressing these issues [39]. 

DL in Medical Imaging 

DL, particularly CNNs, has revolutionized the area of health imaging, including the 

diagnosis of skin cancer. DL methods can automatically learn intricate patterns and 

features from images, making them highly suited to the complex and diverse nature of 

skin lesions. One of the most notable achievements of DL in dermatology is its capacity 

to discriminate malignant & benign skin lesions with remarkable accuracy. Studies have 

demonstrated that DL models can outperform human dermatologists in this regard [36]. 

DL models often follow a two-step process. First, the algorithm undergoes training using 

a vast collection of labeled skin lesion photos. During training, the model learns to 

identify distinguishing features that separate benign from malignant lesions. 
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Subsequently, the model is examined on new, unknown data to evaluate its performance. 

This testing phase is crucial for ensuring the model's generalizability to a variety of cases 

[55]. Moreover, DL models can contribute to the localization of disease-affected regions 

within skin lesion images. Localization is essential for accurate diagnosis, as it pinpoints 

the area of concern within the image, allowing for focused analysis [84]. 

Recent advancements have also witnessed the application of transfer. learning, a DL 

technique; where a model trained on one task is repurposed for another, to develop the 

efficiency of skin cancer categorization models. Transfer learning can considerably 

reduce the need for extensive labeled data for training and fine-tuning [126]. 

1.9 PERFORMANCE METRICS USED IN THE RESEARCH 

To evaluate the effectiveness of the proposed deep learning models for skin cancer 

detection and classification, several standard performance metrics were employed. 

These metrics provide a comprehensive understanding of how well the models 

performed in distinguishing between different classes of skin lesions. The following 

are the key metrics used in this research: 

1. Accuracy 

Accuracy is the most commonly used metric and represents the proportion of 

correctly classified instances (both positive and negative) among the total number of 

predictions. It is calculated as: 

Accuracy = (TP + TN) / (TP + TN + FP + FN)  

Where: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False 

Negatives. 

2. Precision 

Precision measures the proportion of true positive predictions among all instances 

predicted as positive. It is crucial in medical diagnosis to minimize false positives. 

                                Precision = TP / (TP + FP) 

3. Recall 

Recall indicates the ability of the model to correctly identify all actual positive cases. 

This refers to the correct identification of malignant lesions. 

Recall = TP / (TP + FN) 

4. F1-Score 

The F1-score is the harmonic mean of precision and recall. It provides a balance 
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between the two and is useful when dealing with imbalanced datasets. 

                   F1-score = 2 * (Precision * Recall) / (Precision + Recall) 

5. Specificity 

Specificity measures the ability of a model to correctly identify negative cases. In 

other words, it quantifies how well the model avoids false alarms by correctly 

identifying healthy (non-cancer) cases. 

Specificity = TN / (TN + FP) 

The use of these performance metrics ensured a rigorous and multi-dimensional 

evaluation of the proposed CNN, MLRNet, and DTLNet models.  

1.10 MOTIVATION OF THE RESEARCH 

The incidence of skin cancer is continuously increasing due to factors like increased 

exposure to ultraviolet (UV) radiation and changes in climatic circumstances, making 

it a significant global health concern. Improving patient outcomes and survival rates 

requires early detection and precise classification of skin cancer, especially malignant 

melanoma. The current diagnostic procedure, however, mostly depends on the 

knowledge of dermatologists, who evaluate skin lesions by visual inspection and then 

histological analysis. This conventional diagnostic approach is useful in many 

situations, but it has a number of built-in drawbacks that highlight the necessity for 

automated solutions. Subjectivity is one of the main problems with manual diagnosis. 

Due to variations in training, experience, and judgment, different dermatologists may 

interpret the same lesion differently. Inconsistent diagnoses and possibly ineffective 

or delayed therapy may result from this. Furthermore, visually examining and 

evaluating skin lesions takes a lot of time and effort, particularly in clinical settings 

with a large patient volume or restricted access to specialists. The shortage of 

qualified dermatologists in areas with limited resources makes it more difficult to 

diagnose skin malignancies promptly and accurately, which raises the risk of missed 

or incorrectly diagnosed cases. The possibility of misdiagnosis is another serious 

issue, especially when lesions have unusual characteristics or resemble benign 

illnesses. It can be challenging for even skilled medical professionals to distinguish 

between benign and malignant lesions based only on visual cues. Delays in receiving 

biopsy findings in certain situations may have a negative impact on the course of 

treatment. These drawbacks underscore the pressing need for scalable, accurate, and 
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automated diagnostic tools that can assist physicians and improve the diagnosis 

process. New avenues for medical image analysis have been made possible by 

developments in deep learning (DL), a branch of artificial intelligence (AI). Deep 

learning models are very good at identifying intricate patterns and structures because 

they can automatically learn hierarchical features from vast amounts of picture data. 

This is especially true with convolutional neural networks (CNNs). Deep learning 

models may directly extract and enhance pertinent features from raw images, 

increasing accuracy and generalization in contrast to typical machine learning 

techniques that rely on manually created features. Moreover, real-time picture 

processing and analysis capabilities of deep learning-based systems provide the 

possibility of quick and reliable evaluations despite resource or location constraints. 

These models can perform on par with highly skilled dermatologists when trained on 

a variety of well-annotated datasets. As a result, they are a crucial instrument for 

lowering diagnostic variability, accelerating the decision-making process, and 

expanding access to high-quality care, especially in underprivileged or isolated 

locations. The need to create a deep learning-based framework for skin cancer 

detection and classification that is precise, dependable, and flexible enough to be used 

in actual clinical settings is what drives our research in light of these potential and 

challenges. The objective is to use deep learning's advantages to support and improve 

dermatological practice by bridging the gap between the demand for diagnostics and 

the supply of healthcare. 

1.11 MAJOR CONTRIBUTIONS OF THE RESEARCH WORK 

This research presents a comprehensive and innovative framework for the early 

detection and accurate classification of skin cancer using advanced deep learning 

techniques. The significant contributions of the study are as follows: 

1. Development of an End-to-End Deep Learning Pipeline 

A complete deep learning-based system was designed and implemented for skin 

lesion analysis, encompassing image preprocessing, segmentation, feature 

extraction, and classification. This pipeline enables the automation of skin cancer 

diagnosis with improved precision and reduced human dependency. 

2. Implementation of a CNN-Based Diagnostic Model 

A customized Convolutional Neural Network (CNN) architecture was developed 
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specifically for the classification of dermoscopic skin lesions. This model was 

optimized with key architectural enhancements such as batch normalization, ReLU 

activation, dropout layers, and max pooling to improve generalization and mitigate 

overfitting. 

3. Utilization of the ISIC Dataset for Multiclass Classification 

The model was trained and evaluated using the publicly available ISIC dataset, 

focusing on the classification of multiple types of skin lesions, including 

melanoma, basal cell carcinoma, squamous cell carcinoma, and other common skin 

conditions. The study effectively addresses the multiclass nature of the dataset, 

which is a known challenge in dermatological image analysis. 

4. Introduction of Effective Preprocessing and Segmentation Techniques 

Advanced preprocessing techniques were used to enhance lesion features while 

reducing noise and artifacts in dermoscopic images. The study also applied 

segmentation approaches that improved the delineation of lesion boundaries, 

aiding more accurate feature extraction and classification. 

5. Integration of Hybrid Filtering Methods 

A Hybrid Gaussian Guided Image Filter (HGGIF) was employed for noise removal 

and image enhancement, enabling clearer visualization of skin lesions and 

supporting the CNN model in learning discriminative features more effectively. 

6. Proposal of a Multi-Layer Residual Convolutional Network (MLRNet) 

A novel MLRNet model was designed to achieve improved segmentation 

performance for early-stage melanoma. This deep architecture incorporates 

residual learning and advanced image filtering techniques, demonstrating 

competitive accuracy compared to traditional segmentation models. 

7. Use of Deep Transfer Learning Network (DTLNet) 

The research integrated transfer learning by utilizing pre-trained models such as 

ResNet and DenseNet to enhance classification accuracy with limited training data. 

This approach reduced training time and improved the model's ability to generalize 

across different lesion types. 

8. Performance Validation Using Robust Metrics 

The proposed models were evaluated using standard performance metrics such as 

accuracy, precision, recall, F1-score, and AUC. The experimental results 
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demonstrated the superiority of the developed methods over existing techniques in 

terms of both accuracy and computational efficiency. 

9. Contribution to Clinical Decision Support 

By providing an automated, accurate, and reliable skin lesion classification system, 

this research contributes to clinical decision-making, particularly in regions lacking 

access to expert dermatological care. The work has the potential to reduce 

diagnostic delays and improve patient outcomes through early intervention. 

1.12 ORGANIZATION OF THE THESIS 

The objective of this work is to employ effective detection and classification methods 

to identify skin cancer diseases in combination with DL techniques. The following is 

a list of the chapters that have been developed for this research. 

Chapter 1 provided a comprehensive introduction covering topics such as the 

anatomy of the skin, the various layers of the skin, types of skin diseases, computer-

aided diagnosis systems, the motivation behind the research, and the thesis 

organization. 

In Chapter 2, we presented an extensive exploration of the current body of research  

in the field of skin cancer .detection & classification. This chapter provides an 

overview of the wealth of knowledge accumulated in this domain, highlighting the 

advancements, methodologies, and key findings of previous studies. Furthermore, we 

will identify critical gaps in the literature, underscoring the necessity for further 

research and objectives of our research work. By delving into the state of the art, we 

lay the foundation for the significance of our research in advancing the field of 

dermatology. 

In Chapter 3, we delve into the actual work done in our research, providing an in-

depth understanding of the objectives and the methodology employed. The primary 

focus here is on our DL model, specifically the CNN used for skin cancer detection. 

We elucidate intricacies of this approach, explaining how the model was designed, 

trained, and validated. This chapter works as a guide for readers to understand the 

technical underpinnings of our research. 

In Chapter 4, we presented and analysed the research findings. We discussed the 

datasets used, the pre-processing techniques applied, and delve into the performance 

of the DL. models in the diagnosis of skin cancer. This segment offers a detailed 
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inspection of the outcomes, showcasing the performance metrics of model's and 

potential clinical implications. It is here that we translate data into insights, 

demonstrating how DL can revolutionize the field of skin cancer detection. 

Chapter 5, serves as a culmination of our research journey. We summarize results 

and their implications for healthcare, emphasizing the significance of our findings in 

the context of skin cancer diagnosis. Moreover, we offer valuable recommendations 

for future research, outlining the paths that researchers can explore to further advance 

this critical field. This chapter underscores the transformative. potential of DL in 

dermatology and the bright prospects it holds for improving patient outcomes and 

healthcare efficiency. 

1.13 SUMMARY 

This chapter provides a comprehensive introduction, covering the anatomy of the 

skin, various types of skin diseases, methods for diagnosing skin diseases, skin 

imaging techniques, and CAD systems for skin disease diagnosis. Additionally, it 

briefly introduces CNNs, which play a essential role in design of the skin disease 

diagnosis model presented in this research. To establish the foundational 

understanding of the research, the chapter outlines the research's objectives and the 

structure of the subsequent chapters in the thesis. In the upcoming chapters, the work 

of previous researchers in the field of detecting skin diseases in dermoscopy images 

will be discussed. 
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CHAPTER  2 

REVIEW OF LITERATURE 

In the previous chapter we have discussed about various types of skin diseases, 

methods for diagnosing skin diseases, skin imaging techniques, and CAD systems for 

skin disease diagnosis and also CNNs. In this chapter we presented a comprehensive 

insight into the extensive reservoir of expertise amassed within this particular domain. 

It accentuates the progress, methodologies, and pivotal discoveries from prior 

research endeavors. Moreover, we will pinpoint significant voids in the existing body 

of literature, thereby emphasizing the compelling requirement for further 

investigations. By thoroughly exploring the most cutting-edge knowledge, we 

establish the bedrock for the importance of our research in propelling the area of 

dermatology forward. 

2.1. SKIN LESION SEGMENTATION 

Skin lesion segmentation is a vital aspect of dermatology and computer based 

diagnosis, particularly for the early detection of skin cancer. This review explores the 

methods and techniques involved, focusing on the transformative role of DL, as 

demonstrated by [36]. Accurate skin lesion segmentation is essential for early 

diagnosis and appropriate treatment. Traditionally, this process relied on manual 

delineation by medical experts, a time-consuming and subjective approach. However, 

the subjectivity and variability associated with manual segmentation methods led to 

the exploration of computer-aided techniques, such as thresholding, edge detection, 

and region-based algorithms. These automated methods aimed to streamline the 

process and reduce inter-observer variability, though they faced challenges due to 

variations in lesion appearance, lighting conditions, and lesion complexity. The 

emergence of DL, particularly CNNs, has revolutionized skin lesion segmentation. 

CNNs have demonstrated their effectiveness in learning and representing complex 

patterns, making them well-suited for the diverse appearances of skin lesions. 

Researchers have developed DL models that accurately segment skin lesions in 

medical images, offering both speed and reliability, as showcased in the work of [51]. 

Large datasets; such as the International Skin Imaging. Collaboration (ISIC) dataset 

and the HAMl0000 dataset, have significantly advanced skin lesion segmentation. 
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These datasets, containing thousands of labeled images, have been instrumental in 

training and evaluating segmentation models. Benchmarking challenges, like the ISIC 

Skin Lesion Analysis Competition, have driven innovation and the creation of cutting-

edge segmentation algorithms, exemplified by the research of [126]. 

Accurate skin lesion segmentation is instrumental in the early detection of skin 

cancer. Precise delineation of lesions allows for the analysis of their characteristics 

and features, aiding dermatologists in diagnosing skin conditions. CAD Systems, 

integrated with accurate segmentation algorithms, assist in distinguishing between 

malignant and benign lesions. This can possibly decrease the count of unneeded 

biopsies and improve patient outcomes, as demonstrated in [36] study in 2017. 

Comprehensive survey on segmentation methods 

This comprehensive survey on segmentation methods examines the profound impact 

of DL approaches across various applications, with a particular focus on Skin Lesion 

Diagnosis and Classification (SLDC) models [57]. In an in-depth analysis involving 

19 research studies dedicated to skin lesion categorization, the authors adopted a 

CNN-based classifier and conducted a comparative evaluation of its performance 

against that of clinical practitioners [53]. Another study reviewed an automated skin 

cancer finding, emphasizing the role of image analysis and ML for skin cancer 

identification and avoidance [104]. A compelling investigation integrated patient 

health parameters into SLDC using CNN [61]. Additionally, a separate study explored 

skin lesion categorization through DLCNN architectures [111]. 

Comparative studies leveraging various CNN models for melanoma detection were 

meticulously conducted, effectively highlighting the advantages of DL in the domain 

of skin cancer diagnosis [66]. The pioneering task of deep convolutional neural 

networks in image classification, including the analysis of skin lesions, was 

established, notably contributing to the field [72]. Furthermore, research in skin lesion 

analysis with a specific focus on melanoma detection using DL networks was at the 

core of the exploration [78]. Notably, DL was also applied to skin cancer diagnosis 

through hierarchical architectures, offering valuable insights and potential solutions 

[17]. 

Various DL models, including fully convolutional-deconvolutional networks, were 

systematically applied for the skin lesion segmentation, as demonstrated in the work 
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of [135]. Furthermore, the automatic analysis of skin lesions using large-scale 

dermoscopy. images and deep. residual networks significantly advanced the state of 

the art [19]. Ensembles of DL methods proved to be pivotal in the context of 

segmentation of lesions in skin followed by analysis, and classification, exemplified 

by remarkable performance at the ISIC Challenge 2018. 

Noteworthy is the introduction of a novel DL architecture for segmentation named the 

Pyramid Scene Parsing Network (PSPNet) [139]. However, it is essential to mention 

that the segmentation accuracy was primarily assessed over a limited number of 

training epochs. Building upon this foundation, an extension was developed that 

incorporated advanced transfer learning for segmentation, featuring ResNet50, 

MobileNet, and DenseNet-121 [54]. Despite its potential, this approach encountered 

challenges related to model synchronization and optimization. Furthermore, U-Net 

was thoughtfully implemented for skin lesion segmentation, integrating the Tversky 

index for loss optimization [1]. However, it's worth noting that the difficulty of this 

approach grew as the number of layers expanded, which introduced certain 

limitations. 

Lastly, the multi-layer residual convolutional neural network (MLRNet) emerged as a 

formidable approach for skin lesion segmentation, incorporating modified Gaussian 

and also guided image filters for noise removal [31]. Notably, MLRNet surpassed 

other methods in terms of performance and results. 

These seminal contributions exemplify a diverse array of approaches to skin lesion 

segmentation, highlighting the dynamic evolution and innovation within the domain 

of DL for analysis of medical images. 

Advancements in DT Learning for Skin Lesion Classification 

In the area of DL-based transfer learning for classification tasks, several noteworthy 

studies have made significant advancements in achieving exceptional accuracy while 

simultaneously reducing the reliance on extensive datasets. 

One remarkable example comes from the research conducted by researcher [43], 

which focused on the detection of MEL skin cancer. By harnessing ML techniques 

and image biomarker cues, their approach achieved an remarkable accuracy rate of 

77%. This achievement underscores the potential of transfer learning in 

dermatological applications, especially in the context of skin lesion classification. 
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Another significant contribution to the field was made by scholars [105]. In their 

study, they employed pixel based fusion and multilayer feature lessening during the 

tests conducted on the ISIC-2017 and ISBI-2016 datasets. Their meticulous approach 

resulted in an outstanding accuracy of 94.9% for the classification of MEL. This work 

highlights the critical role of feature engineering and data reduction techniques in 

improving classification accuracy, lessening false positives, and enhancing the overall 

performance of DL model’s. In an innovative approach to skin lesion classification, 

researchers [98] demonstrated the potential of feature extraction from skin lesions. 

Their methodology aimed to categorize different types of MEL while mitigating false 

positives. Notably, they experimented with various classifiers and found that the 

random. forest classifier exhibited the highest levels of accuracy and precision. This 

approach highlights the effectiveness of combining feature engineering with robust 

classifier selection in the context of dermatological applications. 

Similarly, scholars [100] harnessed transfer learning by employing models based on 

AlexNet for skin lesion classification. Their approach yielded an remarkable accuracy 

rate of 85.8%. This result underscores the power of transfer learning with established 

neural network architectures to enhance classification tasks. In another significant 

study by [140], deep CNNs were trained using the ISIC-2016 dataset, ultimately 

achieving an F-score of 94%. This research emphasized the importance of considering 

data distribution-based inter-class differences when applying DL techniques to skin 

lesion classification. 

Several other studies, exemplified by the work of [3], have leveraged the potential of 

transfer learning for classification tasks using datasets such as HAM1000. These 

studies often involved the utilization of models like AlexNet and VGG-16 to extract 

features, with support vector machines employed for the subsequent classification 

process. Collectively, these investigations serve as a testament to the versatility and 

potential of transfer learning, showcasing its effectiveness across diverse datasets, 

including ISIC and HAM10000, and its ability to progress the accuracy and 

effectiveness of skin lesion classification. 

Advancing Skin Lesion Diagnosis with Ensemble 1earning and Deep Models 

Recent research work in the area of dermoscopic lesion analysis has been particularly 

focused on leveraging ensemble learning-based techniques to achieve higher 
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accuracy. Ensembling, which involves combining multiple models, has demonstrated 

its effectiveness in improving the overall accuracy of various applications. In the 

context of SLDC, researchers have employed ensembles of DNN models, such as 

GoogleNet, VGGNet, and AlexNet. DL techniques have played a pivotal role in this 

domain, with various approaches like ANN, backpropagated-ANN, DenseNet 201, 

CNN-DG, DLCNN, and Hybrid CNN (HCNN) being extensively used. For instance, 

Nozdryn-Plotnicki and colleagues achieved remarkable success in the ISIC2018 sub 

challenge by implementing Ensembling CNN (ECNN) for SLDC. Additionally, 

transfer learning techniques using architectures like DenseNet, ResNet, and SENet 

were integrated, accompanied by loss optimization mechanisms. The complication of 

this work is notably heightened due to synchronization challenges that can arise when 

combining various models. Nevertheless, this approach has certain limitations, 

particularly in its ability to identify only a limited number of skin circumstances. 

Increasing the no. of layers in the models intensifies computing complexity, leading to 

higher loss and extended training times. 

This comprehensive overview underscores the importance of ensemble learning-based 

techniques in dermoscopic lesion analysis. It highlights the role of DL methodologies, 

as well as the specific models and approaches employed to improve performance 

metrics of skin lesion diagnosis and classification. 

2.2. HYBRID GAUSSIAN GUIDED FILTER 

The Hybrid Gaussian Guided Filter (HGGIF) is a novel image filtering technique that 

combines Gaussian filtering and guided filtering, for image enhancement and noise 

lessening. This literature review explores the significance of HGGIF, its underlying 

principles, and its applications in image processing. 

HGGIF is an image enhancement technique that leverages both Gaussian filtering and 

guided filtering [57]. The purpose of this design is to address challenges related to 

noise reduction and image enhancement across various applications, including tasks 

like image denoising, contrast enhancement, and preserving edge details.. The 

principles of HGGIF involve combining the smoothing properties of Gaussian filters 

with the guidance of the guided filter. The Gaussian filter serves as a preliminary step 

to reduce noise, while the guided filter refines the output by preserving the image's 

structural information, resulting in enhanced images with improved clarity and 
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reduced noise artifacts. HGGIF finds applications in diverse domains, from medical 

image processing to computer vision. In medical imaging, HGGIF can be employed 

for enhancing the quality of MRI or CT scans, improving the visualization of 

anatomical structures while reducing noise [70]. In computer vision, HGGIF can 

enhance the clarity of images for object detection and recognition tasks. One of the 

notable advantages of HGGIF is its ability to outperform traditional filtering methods 

in terms of noise reduction and image enhancement [132]. Comparative studies have 

shown that HGGIF yields better results, particularly in scenarios where preserving 

fine details and structures is crucial. 

Despite its effectiveness, HGGIF is not without its challenges. The choice of 

appropriate parameters, such as the window size and regularization parameter, can 

impact the filter's performance. Ongoing research aims to develop automated methods 

for parameter selection and to adapt HGGIF to specific applications, ensuring optimal 

results. 

2.3. MULTI-LAYER RESIDUAL CONVOLUTIONAL NEURAL NETWORKS 

Segmenting skin lesions plays a crucial role in the early identification and discovery 

of skin cancer. Achieving precise delineation of skin lesion borders is a complicated 

task, prompting the investigation of different segmentation approaches. Initially, 

thresholding techniques, encompassing methods like Otsu, fundamental, global, 

adaptive and multi-level thresholding[101], were commonly utilized. Nonetheless, 

these approaches frequently encountered challenges in accurately defining the 

boundaries of skin lesions.  

A significant breakthrough in the field came with the introduction of a morphological 

approach by Zortea and colleagues in 2017. While effective, this approach came with 

a downside: it required extensive initialization time and exhibited high computational 

complexity. Subsequently, researchers delved into clustering-based techniques. For 

instance, contributors in [131] employed the k-means clustering algorithm for skin 

lesion identification, but challenges arose due to the improper selection of k-

neighbors, leading to suboptimal lesion localization. Similarly, scholars [97] utilized 

Fuzzy C Means (FCM) clustering, but sensitivity to noise and initialization difficulties 

resulted in imperfect segmentation. A promising alternative was found in DL-based 

segmentation approaches. In the study by [135], deep convolutional-deconvolutional 
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NN (CDNN) was used to achieve impressive results in skin lesion segmentation. Yet, 

this approach had a shortcoming—it did not consider training loss, thus limiting the 

network's performance and potentially eliminating crucial skin lesion features.  

Researchers [78] introduced FCRN for skin lesion segmentation, securing a high rank 

in the ISIC2017 challenge. This method primarily focused on getting low level 

features for the task of segmentation. In another study by [19], Deep Residual 

Networks (ResNet) were utilized, resulting in a third-place rank in the same 

challenge. However, a limitation of this procedure is the absence of training loss 

calculation and optimization. 

The research landscape primarily centered around the ISIC 2017 challenge initially, 

but there was a notable shift towards the ISIC-2018 challenge. In these studies, 

various DL architectures and models, including PSPNet, MobileNet, DenseNet-121, 

ResNet50, and U-Net, were explored. Conventional segmentation methods faced a 

series of challenges, including inaccurate segmentation of lesion, lower accuracy; 

higher computational complexity, and limited applicability to specific skin lesion 

classes. Moreover, these methods lacked effective pre-processing approaches, 

resulting in the ineffective removal of noise and lesion artifacts, thus diminishing 

segmentation performance. 

2.4. DEEP TRANSFER LEARNING NETWORK 

In recent years, the field of dermatology has witnessed a transformative shift driven 

by advancements in DL, particularly CNNs, which have been applied to skin lesion 

analysis with remarkable success [36]. These neural networks have proven effective 

in both to identify and categorize skin ailments, offering the potential for early 

diagnosis and treatment [51]. This literature review explores the application of 

DTLNet, a DTL based hybrid model, in this context. 

Transfer learning is a key component of DTLNet, which capitalizes on pre-trained 

models to enhance its performance. By utilizing models trained on extensive datasets 

like ImageNet, DTLNet can be fine tuned for analysis of skin lesion, reducing the 

amount of data required for training and improving its ability to generalize [84]. This 

approach addresses a significant challenge in the field, where obtaining large and 

high-quality dermatological datasets can be a cumbersome process [126]. Hybrid 

models, as exemplified by DTLNet, present a promising path forward for skin lesion 
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analysis. These models combine various neural network architectures and techniques, 

aiming to leverage; the strengths of several DL approaches. In the case of DTLNet, 

this fusion involves transfer learning in combination with other techniques, such 

attention mechanisms [121]. The synergy achieved through hybridization contributes 

to enhanced performance and adaptability. Advanced models, including Inception, 

DenseNet, and ResNet, have laid the foundation for transfer learning in DTLNet [28]. 

These models have been instrumental in boosting the accuracy of skin lesion 

classification. However, they also present unique challenges, such as model 

interpretability and the potential for biases in training data. The literature should 

investigate how DTLNet addresses these challenges and whether it introduces new 

limitations in the context of skin lesion analysis [38]. Effective data augmentation and 

preprocessing are vital to the success of skin lesion analysis. DTLNet likely 

incorporates strategies to enhance its performance by generating diverse training 

examples. These techniques, when coupled with transfer learning, result in a more 

robust model capable of accurate diagnosis and classification [50]. 

Furthermore, the clinical implications of DTLNet in real-world scenarios are of 

paramount importance. It is crucial to assess how the performance of model compares 

to the dermatologists' proficiency in making precise and suitable diagnoses. DTLNet's 

potential to guide healthcare professionals in the field is a key consideration, and the 

literature should explore this dimension to gauge its practical utility [36]. 

Howver, DTLNet, as a deep transfer learning-based hybrid model, represents a 

significant development in dermatology. Its synthesis of DL, transfer learning, and 

hybridization offers the potential to advance the diagnosis and treatment of skin 

diseases. However, further research and clinical validation are necessary to fully 

understand its capabilities and limitations [121]. 

Skin Lesion Diagnosis and Classification (SLDC) segmentation methods 

This section delves into the extensive array of methodologies developed by 

researchers within the area of segmentation of skin lesion and classification. In doing 

so, it not only highlights these innovative approaches but also comprehensively 

addresses the challenges and limitations that every method encounters. These 

methodologies cover a spectrum of techniques, ranging from conventional image 

processing methods to cutting-edge DL algorithms, reflecting the dynamic landscape 
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of research in this domain. The overarching objective of this survey is to meticulously 

examine and assess the current body of research dedicated to segmentation of skin 

lesion and classification methodologies. This exploration includes a detailed analysis 

of various techniques, meticulously scrutinizing their respective strengths., 

limitations., and their performance in the realm of handling different skin lesion 

images. By undertaking this review, researchers aim to unearth frequent trends, 

pioneering advancements, and critical gaps within the existing landscape of skin 

lesion diagnosis methodologies. The insights garnered from this extensive survey 

extend beyond mere documentation. They serve to identify fertile ground for future 

research and development. By addressing the limitations and shortcomings of existing 

methods, this survey contributes to the blueprint for the creation of more robust, 

reliable, and efficient CAD systems for the diagnosis of skin 1esions. In essence, this 

survey is  cornerstone in the continual evolution of diagnostic tools and holds the 

promise of advancing patient care in dermatology. 

Skin Lesion Diagnosis and Classification (SLDC) segmentation methods are a critical 

area of research in dermatology, with far-reaching implications for the exact 

recognition and categorization of skin lesions. Within the domain of dermatology, 

early diag.nosis and classification of skin lesions are vital for the timely treatment of 

diseases, particularly skin cancers like melanoma. Researchers have developed 

various methods to address this challenge, incorporating a diverse range of 

techniques, from conventional image processing methods to cutting-edge DL 

algorithms. Recent advancements in DL have significantly influenced the landscape 

of SLDC segmentation methods. In particular, CNNs have demonstrated substantial 

promise in enhancing the accurateness segmentation of skin lesion and classification. 

For example, scholar [43] leveraged ML techniques and image biomarker cues to 

attain an remarkable accuracy of 77% in identifying MEL skin cancer. Additionally, 

researcher [105] employed pixel based fusion and multilayer feature reduction on 

datasets such as ISIC-2017 and ISBI-2016, resulting in a remarkable 95% accuracy 

for MEL classification. These studies underscore the power of DL techniques in 

improving segmentation accuracy. However, SLDC segmentation methods encounter 

their fair share of challenges and limitations. Skin lesions vary greatly in terms of 

size, shape, color, and texture. Moreover, issues like poor lighting or image artifacts 
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can complicate the segmentation process. These challenges emphasize the ongoing 

need for research to develop more robust and versatile segmentation methods. 

Contributor [140] highlighted the importance of considering data distribution-based 

inter-class differences, further emphasizing the complex nature of segmentation in the 

field of dermatology. 

SLDC segmentation methods are not isolated techniques; rather, they often form 

integral components of CAD Systems. These CAD systems assist dermatologists and 

healthcare providers in rendering more precise and swift diagnoses. Consequently, the 

precision of lesion segmentation directly influences the efficacy of these systems in 

clinical practice. Moreover, the potential for further research and innovation in SLDC 

segmentation methods is vast. Researchers are continually exploring novel techniques 

and tools to enhance segmentation accuracy and address the multifaceted challenges 

posed by real-world clinical images.  

Advancements in DL-Based Skin Cancer Classification: A Comprehensive 

Review of Recent Studies 

In 2021, researchers [30] conducted research that introduced "MLRNet," a DL-based 

approach for automating the segmentation of early-stage melanoma within 

dermoscopic images. This study marks a significant stride in the domain segmentation 

of skin lesion, mainly focusing on the vital area of early melanoma detection. 

Krishan and his team leveraged CNNs, known for their prowess in image 

segmentation tasks. By utilizing DL, they sought to streamline the process of 

identifying and delineating early-stage melanoma within dermoscopic images. The 

transition from conventional, rule-based systems to data-driven DL methodologies is 

noteworthy in itself, as it represents a shift towards more advanced and automated 

approaches. Their findings underline the substantial potential of DL techniques in 

achieving precise and automated skin lesion segmentation, particularly for early 

melanoma detection. Such automation is instrumental in expediting the diagnostic 

process, enabling healthcare providers to make timely and precise interventions. 

However, it's worth noting that the study lacks a comparative analysis with other 

existing segmentation methods. While MLRNet exhibits its capabilities, the absence 

of such comparisons leaves room for further exploration and validation. Comparative 

evaluations against other methodologies play a crucial role in understanding 
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MLRNet's relative strengths and weaknesses, contributing to a more comprehensive 

assessment of its performance. In 2021, scholars [30] conducted research that 

introduced "MLRNet," a DL-based approach for automating the segmentation of 

early-stage melanoma within dermoscopic images. This study marks a significant 

stride in area  of skin lesion segmentation, mostly focusing on the vital area of early 

melanoma detection. 

Krishna and his team leveraged CNNs, known for their prowess in image 

segmentation tasks. By utilizing DL, they sought to streamline the process of 

identifying and delineating early-stage melanoma within dermoscopic images. The 

transition from conventional, rule-based systems to data-driven DL methodologies is 

noteworthy in itself, as it represents a shift towards more advanced and automated 

approaches. Their findings underscore the substantial potential of DL techniques in 

achieving accurate and automated skin lesion segmentation, particularly for early 

melanoma detection. Such automation is instrumental in expediting the diagnostic 

process, enabling healthcare providers to make timely and precise interventions. 

However, it's worth noting that the study lacks a comparative analysis with other 

existing segmentation methods. While MLRNet exhibits its capabilities, the absence 

of such comparisons leaves room for further exploration and validation. Comparative 

evaluations against other methodologies play a crucial role in understanding 

MLRNet's relative strengths and weaknesses, contributing to a more comprehensive 

assessment of its performance. 

In 2022, researchers [18] and their fellow researchers introduced an intriguing study 

and their primary aim was to create a sturdy system adept at distinguishing between 

benign & malignant skin lesions. To achieve this, the research harnessed the power of 

a hybrid DL approach, underpinned by various ML techniques. The study unveiled a 

promising fusion of ML methods that effectively addressed the challenging task of 

differentiating skin lesions based on their malignancy. By embracing a hybrid 

approach, the researchers harnessed the strengths of diverse methodologies, 

contributing to the overall effectiveness of their classification model. Their work 

highlighted the versatility of ML techniques when applied to the domain of 

dermatology. However, it is crucial to acknowledge one limitation that emerged from 

their study. The research presented a somewhat limited explanation of feature 
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selection and extraction processes incorporated into their model. While the model's 

effectiveness was evident, a more comprehensive elucidation of these feature 

selection and extraction methods would greatly enhance the interpretability of their 

model. This deeper understanding of the inner workings of their approach could offer 

insights into how the model makes its classifications, contributing to its transparency 

and trustworthiness in clinical applications. 

In 2022, researchers [13] and his colleagues made a significant contribution with their 

research. In their study was dedicated to tackling the intricate task of classifying 

various complex types of skin cancer. To achieve this, they developed an intelligent 

system based on a two-stream deep neural network, which incorporated the fusion of 

different data streams and harnessed the power of Multi-Objective Firefly 

Optimization (MFO) for optimization. Their work marked a remarkable endeavor to 

address the challenges posed by complex skin cancer types. By employing a two-

stream deep neural network, they effectively integrated multiple sources of 

information and leveraged optimization techniques to enhance the model's 

performance. This innovative approach was aimed at improving the classification 

accuracy of diverse skin cancer types, potentially offering a valuable contribution to 

the field of dermatology. Despite the evident strengths of their approach, one 

limitation of their study should be considered. The research did not provide a direct 

comparison with other fusion approaches for skin cancer classification. While their 

fusion and MFO optimization techniques showed promise, a comparative analysis 

with alternative fusion methods would have added further depth to their work. Such a 

comparison could have shed light on the specific advantages of their proposed fusion 

method and how it performs in relation to other existing techniques, ultimately 

contributing to a more comprehensive understanding of their intelligent system's 

capabilities. 

In 2022, a notable contribution to the area diagnosis of skin lesion and classification 

was made by Puneet Thapar and their research team. Their study, titled "A innovative 

combined DL method for skin lesion segmentation and categorization," centered on 

the critical task of separating the region of interest in dermoscopy images. To achieve 

this, they devised a novel hybrid DL approach, integrating advanced techniques for 

both segmentation and classification, which reflects the complex nature of the task. 
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Their work showcased the potential of DL in enhancing the accuracy of skin lesion 

segmentation. Moreover, they incorporated efficient loss optimization techniques, 

which can significantly contribute to the reliability and precision of the segmentation 

process. By focusing on the region of interest, they aimed to facilitate a more targeted 

analysis of dermoscopy images, a crucial aspect of dermatological practice. However, 

it's important to make a note that the study had a limitation. While they successfully 

utilized the Grasshopper Optimization Algorithm (GOA) for efficient loss 

optimization, the research did not provide a detailed explanation of the parameter 

settings for GOA. This omission represents a gap in the study, as a clear 

understanding of parameter tuning is vital for replicability and broader applicability of 

their approach. Addressing this limitation by offering insights into the parameter 

settings for GOA would not only enhance the transparency of their methodology but 

also enable other researchers to implement and build upon their work with more ease 

and accuracy. 

In 2022, A scholar [112] made research concentrated on the implementation and 

application of stacked ensemble models in the context of early melanoma detection. 

One of the notable aspects of this work was its commitment to creating an ensemble 

model that not only enhanced accuracy but also promoted transparency and 

explainability. To achieve this, the study incorporated transfer learning techniques and 

explainable CNNs. These innovations contributed to a more interpretable and 

understandable approach to melanoma detection, which is essential for building. trust 

and confidence in the medical field. Nonetheless, it's essential to acknowledge a 

limitation in this research. While the study successfully introduced an ensemble 

model for improved melanoma detection, it fell short in providing an in-depth 

analysis of the ensemble model's performance. To fully appreciate the advantages and 

potential of the ensemble approach, a more extensive evaluation is needed. Such an 

evaluation could elucidate the ensemble model's strengths, which are particularly 

valuable in medical contexts, where transparency and performance are paramount. By 

addressing this limitation, future work can provide a a deeper insight into the 

effectiveness of this explainable stacked ensemble model for melanoma skin cancer 

detection. 
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In 2022, researcher [106] and her team made a noteworthy contribution to the domain 

detection of skin cancer and segmentation with their study. This research was 

primarily focused on the critical task of distinguishing between skin lesions. One of 

the strengths of their work was the utilization of transfer learning-based feature 

extraction. By leveraging established features extracted from pre-trained models, their 

approach demonstrated promise in enhancing the accuracy and reliability of skin 

lesion classification, a pivotal task in dermatology and healthcare. However, it's 

crucial to acknowledge a limitation in this study. While the research successfully 

introduced a deep convo1utional approach for detection of skin cancer, it offered a 

partial discussion on feature optimization, specifically using the Grasshopper 

Optimization Algorithm (GOA). Feature optimization is a fundamental component of 

improving classification accuracy and model performance. Therefore, a more 

comprehensive exploration and insight into feature optimization using GOA could 

provide a valuable enhancement to their methodology. 

By addressing this limitation, future work can refine the feature extraction process 

and potentially uncover additional features that contribute to more accurate and 

reliable skin cancer detection. This further exploration could lead to advancements in 

the field of dermatology and ultimately benefit patients by improving the precision of 

skin lesion diagnosis. 

In 2022, an academic [2] and their colleagues introduced a research study and their 

work was dedicated to developing an innovative hierarchica1 framework for 

segmentation of skin lesion, which included a 3 step super pixel process of 

segmentation. One of the commendable aspects of their research was the introduction 

of a structured and hierarchical approach to skin lesion segmentation. This framework 

offered a promising method for effectively distinguishing between different regions of 

interest within dermoscopy images, which is a critical aspect of skin lesion analysis. 

However, it's essential to acknowledge a limitation in their study. While their 

hierarchical three-step super pixel segmentation process showcased effectiveness, the 

research did not include a comparative analysis with other existing segmentation 

approaches. Comparative analysis is valuable for assessing the relative advantages of 

a new methodology, and its absence in this study leaves room for a additional 

inclusive understanding of the framework's performance. Incorporating comparative 
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evaluations with other segmentation approaches could give precious insights of 

strengths and weaknesses of the proposed hierarchical framework. This comparison 

might highlight its unique contributions and help scholars and professionals in 

dermatology make informed decisions about the most suitable segmentation methods 

for their specific needs. 

In 2022, researcher [10] and their research team carried out a study titled "Melanoma 

Detection Using DL-Based Classifications." Their research focused to improve the 

accuracy and precision of melanoma lesion identification by focusing on precise 

lesion zone removal. They employed an innovative approach that incorporated 

ESRGAN, which stands for improved Super-Resolution GANs. One of the notable 

strengths of their work was the application of DL techniques, particularly ESRGAN, 

to enhance the resolution and clarity of dermoscopy images for precise lesion zone 

removal. This approach held the potential to provide detailed and precise analysis of 

skin lesions, which is crucial in dermatology practice. on the other hand, it is essential 

to admit a limitation within their study. The research did not encompass a 

comprehensive validation process on diverse skin lesion images. Dermoscopy images 

can vary significantly due to differences in skin types, ethnicities, and lesion 

characteristics. Therefore, a more extensive validation process involving a broader 

range of skin types and lesion variations is important to confirm the robustness and 

consistency of their model in real-world clinical scenarios. 

Broader validation would enable researchers and healthcare practitioners to have 

greater confidence in the effectiveness of their approach, as it would demonstrate its 

ability to perform consistently across diverse patient populations. Additionally, it 

could highlight the adaptability of their methodology to various clinical settings, 

ultimately improving its clinical utility in the finding and managing of skin lesions. 

In 2023, researchers [20] conducted a study titled "Segmentation of skin cancer using 

fuzzy U-network via DL." Their research was dedicated to the crucial task of 

accurately segmenting afflicted regions in skin cancer images, a fundamental aspect 

of skin lesion diagnosis and treatment planning. To achieve this, they employed the 

innovative Fuzzy U-net, a DL model, and harnessed the May Fly Optimizer as part of 

their methodology. 
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Their work represents a notable advancement in the domain analysis of skin cancer 

images. The application of DL models, like the Fuzzy U-net, offers a powerful and 

efficient approach to segmenting afflicted regions within skin cancer images. This has 

the capacity to markedly improve the precision of diagnosis and facilitate more 

effective treatments for patients. Despite these strengths, it's important to 

acknowledge a limitation within their study. The research did not provide an 

extensive comparison with other optimization methods commonly used in the area of 

healthcare. Comparative analysis plays a pivotal part in ascertaining the advantages 

and disadvantages of specific optimization techniques. By omitting a more detailed 

comparative evaluation, the study missed an opportunity to highlight the strengths and 

distinctiveness of their chosen May Fly Optimizer and provide valuable insights for 

the research community. Further comparative analysis involving a broader range of 

optimization techniques would shed light on whether the May Fly Optimizer is indeed 

superior to other approaches or under what specific circumstances it excels. This 

additional information could help researchers make informed choices when selecting 

optimization methods for their own projects and contribute to the ongoing 

enhancement of skin cancer segmentation techniques. 

In the study by researcher [93], the researchers aimed to create an advanced 

framework, SCDNet, for the multiclassification of skin cancer. This framework, 

which combined Vgg16 and CNN architectures, was designed to handle both 

segmentation and classification tasks for skin cancer lesions. 

The major goal of their investigation was to implement a complete solution for 

accurate labeling of various skin cancer types based on dermoscopy images. Vgg16, a 

well-known DL architecture, was integrated with CNNs to improve the model's 

ability to analyze these images effectively. Despite demonstrating significant 

potential, one limitation of the study is the need for more extensive validation on 

larger and more diverse datasets. This expansion in the validation process would 

ensure that the SCDNet framework can effectively handle the full spectrum of skin 

cancer cases encountered in real clinical practice. In summary, academic [93] research 

represents a notable advancement in the field of skin cancer diagnosis, offering a 

promising framework for multiclassification. The model's combination of Vgg16 and 
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CNNs holds potential for improving diagnostic accuracy, but broader validation on 

different datasets is essential to authenticate its consistency in clinical scenarios. 

In their study, conducted by scholar [74] , the researchers set out to address the 

critical issue of skin cancer detection. Their proposed solution, the U-RP-Net, 

leveraged the U-Net architecture in combination with Aquila Whale Optimization as 

an optimization strategy. The main objective of their work was to implement a model 

that could effectively detect skin cancer, contributing to earlier diagnosis and 

treatment of disease. The combination of the U-Net architecture with Aquila Whale 

Optimization represents an innovative approach to improving model's segmentation 

capabilities, thereby improving the overall detection accuracy. Despite the promise 

shown by their approach, one limitation of the study is the relatively limited 

comparison with other optimization techniques. To get a more complete thoughtful of 

the effectiveness of their chosen optimization approach, it is essential to conduct 

comparative analyses with other optimization methods commonly employed in the 

field. Such analyses would shed light on the advantages and potential areas for 

improvement in their proposed U-RP-Net. 

In summary, researcher [74] explained a innovative approach to detection of skin 

cancer through the U-RP-Net, combining the U-Net with Aquila Whale Optimization. 

While their approach holds promise, further comparative analysis with other 

optimization techniques is required to provide a more comprehensive assessment of 

its effectiveness in enhancing skin cancer detection accuracy. 

The studies discussed collectively make significant contributions to the field lesion 

diagnosis of skin, specifically within the context of DL methodologies. These 

research endeavors encompass a variety of approaches, each offering unique strengths 

and revealing certain limitations. While the individual studies have advanced our 

understanding of skin cancer diagnosis, there is a need for further research and 

comparative analyses to address some of the limitations highlighted in these studies. 

Such efforts are crucial for improving the correctness and reliability in diagnosis of 

skin cancer tools, ultimately helpful for patients and healthcare providers in the field 

of dermatology. 

 

 



46 
 

2.5 ADVANCEMENTS IN SKIN LESION DIAGNOSIS  

This section provides an encompassing view of the work related to skin lesion 

diagnosis, highlighting significant studies and contributions in the field. The historical 

perspective of this domain can be traced back to the late 20th century when image 

analysis and ML started making their way into dermatology. In the initial stages, the 

focus was on rule-based systems and feature extraction techniques aimed at 

distinguishing benign from malignant lesions. Although these early endeavors were 

groundbreaking, they lacked the robustness and generalizability that modern DL 

methods offer (Bosserhoff et al. 1997). 

A significant turning point in the field was the introduction of DL techniques in skin 

lesion diagnosis. Contributor [36] made a pioneering contribution by developing a DL 

model capable of classifying skin cancer with dermatologist-level accuracy. Their 

model, trained on a extensive dataset of skin lesion images, showcased the potential 

of DL to provide precise and reliable diagnoses. The study even indicated that DL had 

the potential to outperform human dermatologists in distinguishing between benign 

and malignant lesions. Building on researcher [36] work, subsequent research 

explored the utilization of transfer learning in dermatology. Scholar [126] introduced 

the HAMl0000 dataset, a vast group of dermatoscopic images, and harnessed transfer 

learning techniques to adapt DL models for skin lesion classification. This approach 

significantly reduced the necessity for extensive labeled data by reusing pre-trained 

models, making DL more accessible to smaller dermatology clinics and research 

teams. 

In addition to classification, accurately localizing disease-affected regions within skin 

lesion images is a pivotal aspect of diagnosis. Academic [84] introduced DL 

techniques for lesion segmentation and localization. Their work highlighted the 

potential of DL in pinpointing areas of concern within images, which can greatly aid 

dermatologists in focused analysis and diagnosis. The development of these 

localization methods has notably improved the overall diagnostic process. While DL 

has made remarkable progress in skin lesion diagnosis, certain challenges persist. 

These challenges encompass the requirement for huge and different datasets to 

enhance model generalizability and the need to address interpretability issues 

associated with DL models. Future research activities are anticipated to tackle these 
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challenges and explore innovative techniques to further enhance diagnostic accuracy 

and efficiency. 

To summarize, the integration of DL methods has brought about a transformative shift 

in the field of skin lesion diagnosis. Seminal studies by [36], [126], and [84] have laid 

the foundation for advanced diagnostic tools. The ongoing pursuit of extensive and 

diverse datasets, along with the refinement of DL algorithms, holds promise for 

achieving even more precise and well-organized skin lesion diagnosis in the future. 

Exploring DL in Skin Lesion Diagnosis 

In 2022, contributors [4], and their research team conducted a study and their primary 

focus was on ASRGS-OEN for melanoma detection. To achieve this, they employed 

an EfficientNet model and fine-tuned it with FPA (Feature Pyramid Attention) to 

enhance classification efficiency. This research demonstrated the promise of their 

model as an efficient tool for classification of skin cancer, addressing the common 

issue of imbalanced datasets in dermatological diagnostics. By using DL techniques 

and feature augmentation, they aimed to progress the accuracy and consistency of the 

classification process. However, the study revealed a specific limitation that requires 

consideration. The validation of their model, while showing positive results, was 

somewhat restricted in its scope. This limitation pertained to the extent of dataset 

diversity involved in the validation process. The research could benefit from more 

extensive validation across a broader range of datasets. A comprehensive validation 

process would not only reinforce the credibility of their findings but also provide 

insights into the generalizability of their classification system. The working of the 

model across diverse datasets is important in determining its real-world applicability 

and practicality. 

In summary, the work by contributors [4], and their research team introduced an 

innovative DL-based approach to skin cancer classification, with a specific focus on 

imbalanced datasets. Their utilization of ASRGS-OEN and FPA fine-tuning in 

conjunction with the EfficientNet model displayed potential for improving melanoma 

detection. Nevertheless, the study's limited validation on a variety of datasets suggests 

an opportunity for more extensive exploration, enabling a more wide-ranging 

understanding of the model adaptability to several clinical scenarios. 
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In 2022, researchers [83] and their research team delved into the field of skin cancer 

diagnosis with their study. The central aim of their research was to determine the most 

effective approach for staging skin cancer using hyperspectral microscopic imaging. 

In doing so, they brought Augmented Intelligence enabled Deep Neural Networking 

(AuDNN) into the spotlight, a technique that surpassed traditional CNNs for the 

analysis of dermoscopy images. Their research provided valuable insights into the 

performance of AuDNN, indicating its superiority over CNNs in this specific context. 

This approach had the potential to revolutionize the staging of skin cancer, bringing 

more accuracy and reliability to the diagnostic process. Nonetheless, one noteworthy 

limitation surfaced in their study. While they demonstrated the effectiveness of 

AuDNN in comparison to traditional CNNs, they did not explore or compare it with 

other advanced CNN architectures. The absence of comparative analysis with 

alternative advanced CNN models left a gap in understanding the distinctive 

advantages of AuDNN in comparison to other advanced techniques. In conclusion, 

researchers [83] and their research team made significant contributions in the area of 

skin cancer staging through the utilization of hyperspectral microscopic imaging and 

the introduction of AuDNN. Their study revealed the superior performance of 

AuDNN in comparison to conventional CNNs for dermoscopy image analysis. 

However, for a more comprehensive perspective on the strengths of their approach, a 

future direction may include conducting comparative analyses against other advanced 

CNN architectures, enabling the broader dermatological community to appreciate the 

distinct advantages of their innovative method. In 2022, scholars [103] and their 

research team delved into the field of skin cancer detection with their study. Their 

research introduced a novel approach known as Multi-Site Cross-Organ Calibration 

based DL (MuSClD) for recognition of melanoma. 

Their research introduced a promising procedure for improving the recognition of 

melanoma, a critical aspect of early cancer diagnosis. MuSClD leveraged the power 

of transfer learning to improve the accuracy and consistency of skin cancer detection. 

It represented an important step forward in utilizing DL methodologies for this 

purpose. 

However, one noteworthy limitation surfaced in their study. While they introduced 

the innovative concept of Multi-Site Cross-Organ Calibration, the study provided a 
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limited explanation of this specific process. The absence of detailed information about 

the cross-organ calibration process left gaps in understanding their methodology. To 

fully appreciate the advantages and inner workings of MuSClD, a more 

comprehensive explanation of the cross-organ calibration process would be 

invaluable. In conclusion, scholars [103], and their research team made a notable 

contribution to skin cancer detection with the introduction of MuSClD, a technique 

based on transfer learning. Their innovative approach showed significant promise in 

improving the detection of melanoma. To enhance the broader understanding of their 

methodology, future research endeavors may focus on providing further details and 

insights into the cross-organ calibration process, thereby enabling the dermatological 

community to fully grasp the potential of this novel technique. 

In 2022, researchers [68], and their team of researchers conducted a study. Their 

research aimed to enhance the classification of melanoma, a critical aspect of skin 

lesion diagnosis. Their study introduced an innovative approach in the form of a novel 

DCNN, which they applied to the HAM10000 database. Additionally, they utilized an 

Improved Super-Resolution GAN preprocessing technique to improve the resolution 

of dermoscopic images, further enhancing the quality of their input data. However, 

one notable limitation became apparent in their research. While they introduced novel 

methodologies and preprocessing techniques, their study lacked a detailed evaluation 

of the classification performance. A thorough evaluation is essential to gain insights 

into the model's effectiveness, its capability to correctly categorize melanoma, and its 

potential for practical application in clinical settings. In summary, researchers [68], 

and their research team made a notable advancement in the realm of melanoma 

categorization with their innovative ESRGAN preprocessing. The potential benefits of 

their approach are evident; however, to fully comprehend its strengths and 

weaknesses, further research efforts should concentrate on conducting an extensive 

evaluation of the classification performance. This comprehensive evaluation is pivotal 

for the eventual adoption of their model in real-world dermatological practice. 

In 2023, contributors [118] undertook a research project titled "Automated Skin 

1esion Diagnosis and Classification Using 1earning Algorithms." Their study focused 

on utilizing DL (DL) techniques for the purpose of melanoma detection in whole slide 

images. An integral component of their research involved the recognition and 
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classification of skin lesions using whole slide images (WSI). Their study represented 

a noteworthy endeavor in the field of dermatology, demonstrating the potential of DL 

methods to contribute to more efficient and accurate melanoma detection. By 

applying DL to whole slide images, they aimed to enhance the capabilities of 

automated skin lesion diagnosis. However, one limitation of their research emerged. 

While their work showcased the effectiveness of DL-based melanoma detection and 

classification using WSI, the study had a limitation in terms of limited benchmarking 

against other approaches that utilize whole slide images. A more comprehensive 

comparative analysis involving other WSI-based methodologies would provide 

valuable insights into the unique advantages of their chosen approach. In conclusion, 

contributors [118] research represents a valuable contribution to the domain of 

automated diagnosis of skin lesion and c1assification. Their innovative use of DL for 

detection of melanoma and subsequent c1assification using WSI has promising 

implications for dermatological practice. However, to gain a more holistic 

understanding of their approach, further research should focus on comparative 

analysis to elucidate the specific strengths and advantages of their chosen 

methodology within the context of whole slide image-based skin lesion diagnosis. 

In 2023, scholar [73] and their team conducted an innovative study and the research 

primarily centered around the development of an automatic method for melanoma 

detection, a critical aspect of skin cancer diagnosis. To achieve this, they harnessed 

the capabilities of a pre trained deep CNN model and introduced a hierarchy of 

c1assifiers. 

Their study represented a important stride in the area of skin lesion diagnosis, 

especially in automating the process of melanoma detection. The integration of DL 

techniques, such as a pre-trained CNN model, is a promising approach to achieving 

accurate and efficient classification of skin cancer. However, a limitation in their 

research emerged. While their work showcased the potential of AuDNN for skin 

cancer classification, it had a limitation in providing a detailed clarification of the tree 

of c1assifiers and its efficacy within the proposed framework. Further insights into the 

internal workings of this aspect of their methodology would enhance the transparency 

and interpretability of their model. 
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In conclusion, contributors [73] represent a helpful contribution to skin cancer 

classification and prediction. Their pioneering strategy involving the utilization of a 

pre trained deep CNN model and the creation of the AuDNN framework holds the 

promise of making a substantial mark in the domain of dermatology. Nevertheless, to 

further advance their research, a more comprehensive understanding of the tree of 

classifiers and its role within their framework is needed to ensure that it is an effective 

component in the automated melanoma detection process. 

In 2023, scholars [6] embarked on a significant research endeavor and their study is 

positioned at the forefront of the field, striving to attain accuracy of dermatologist-

level in the classification of skin cancer, particularly melanoma. To accomplish this 

challenging task, they introduced a DL system with residue connections, an 

innovative approach within the domain of dermatology. The use of residue 

connections in their DL model represents an advancement in the quest for accurate 

melanoma identification from dermoscopy images. Residue connections, also known 

as residual connections, have proven to be successful in enhancing the training and 

performance of DNNs. By implementing this architecture in their model, [6] to 

enhance the robustness and accuracy of melanoma classification. However, their 

research does have a limitation. The study primarily focused on a specific network 

architecture that incorporates residue connections, but it had a limitation in the limited 

exploration of different network architectures. Exploring alternative architectures and 

comparing their performance with the one used in their study could offer precious 

insights in to the comparative advantages and disadvantages of different DL models. 

Such a comparative analysis could lead to further improvements and a better 

understanding of which architecture is best suited for dermatologist-level skin cancer 

classification. 

In summary, scholars [6] research signifies a notable milestone in the field of 

dermatology by striving to attain dermatologist-level skin cancer classification. Their 

use of residue connections in a DL model showcases innovative thinking. 

Nevertheless, for further enhancement and a deeper understanding of model 

performance, future investigations should encompass an exploration of various 

network architectures and a comparative ana1ysis to determine the efficient approach 

for skin cancer classification. 
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In the year 2023, a group of researchers and their collaborators, as documented in 

reference [137], undertook pioneering investigations under the title "Multi-site cross-

organ calibrated DL (MuSClD):" Their research constitutes a notable advancement in 

the automated finding of non-melanoma cancer, placing specific emphasis on the 

identification of multi-stage melanoma through dermoscopy image analysis.  

One of the notable strengths of their research lies in the introduction of a practical 

preprocessing method for de-noising dermoscopy images. Dermoscopy images are 

often affected by noise, which can hinder the accuracy of automated diagnosis. [137] 

recognized the significance of image quality and employed an effective de-noising 

technique. This innovative preprocessing step is a valuable addition to the field, as it 

contributes to more reliable and precise automated diagnosis. Nonetheless, their study 

does have a limitation. While the research demonstrates the effectiveness of their 

approach, it was conducted with a relatively limited scope of validation. The study 

had a limitation in the insufficient comprehensive validation across various 

identification stages. Broadening the validation procedure to include a range of skin 

lesion identification stages would yield a more holistic insight into the strengths and 

limitations of their MuSClD methodology. Thorough validation is pivotal for 

assessing the model's adaptability and resilience across different medical scenarios 

and non me1anoma skin cancer identification stages. 

In conclusion, researchers [137] research in the field of automated Detection and 

Diagnosis of Non-Me1anoma Cancer presents a promising approach. Their method of 

preprocessing for removing noise in dermoscopy images is a significant contribution 

to improving the accuracy of diagnosis. However, future work should include more 

extensive justification on various steps of identification to enhance the understanding 

of their MuSClD approach and its applicability across a broader spectrum of clinical 

scenarios. 

In 2023, scholars [65] and their team conducted an extensive study and their research 

addressed the critical task of extracting the Area of Interest using the ORACM 

(Object-Relationship Aware Co-attention Model) and achieved highly favorable 

results by employing the NSGA II for mu1ti-objective optimization. A notable 

strength of their research lies in their innovative approach to addressing melanoma 

detection and localization within histopathological whole slide images. The ORACM 
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represents a cutting-edge model that allows for the precise extraction of the Area of 

Interest, enhancing the efficien.cy and effectiveness of melanoma diagnosis. 

Furthermore, the employment of NSGA II for multi-objective optimization indicates a 

commitment to achieving the best possible results when it comes to localization and 

detection tasks. 

However, their study does have a limitation, while they have demonstrated the 

efficacy of their method in.terms of achieving favorable results; the research lacks a 

detailed evaluation specifically focused on the effectiveness of the ORACM. A more 

thorough analysis of the performance, strengths, and weaknesses of this component of 

their approach is necessary to give a complete understanding of its impact on the 

overall melanoma detection and localization system. 

In summary, scholars [65], and their team have made a noteworthy part to the area of 

melanoma detection and localization in histopathological whole slide images. Their 

utilization of the ORACM and NSGA II for multi-objective optimization showcases 

the potential for more accurate and reliable diagnosis of melanoma. However, further 

work should include a detailed evaluation of the ORACM to assess its specific impact 

and effectiveness within the context of melanoma detection and localization. 

In 2023, researchers [65], and their team conducted an extensive study and, in their 

research, addressed the critical task of extracting the Area of Interest using the 

ORACM (Object-Relationship Aware Co-attention Model) and achieved highly 

favorable results by employing the NSGA II. A notable strength of their research lies 

in their innovative approach to addressing melanoma detection and localization within 

histopathological whole slide images. The ORACM represents a cutting-edge model 

that allows for the precise extraction of the Area of Interest, enhancing the efficacy 

and usefulness of melanoma diagnosis. Furthermore, the utilization of NSGA II for 

multi-objective optimization indicates a commitment to achieving the best possible 

results when it comes to localization and detection tasks. However, their study does 

have a limitation. While they have demonstrated the helpfulness of their method in 

terms of achieving favorable results, the research lacks a detailed evaluation 

specifically focused on the effectiveness of the ORACM. A more thorough analysis of 

the performance, strengths, and weaknesses of this component of their approach is 
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necessary to provide a comprehensive understanding of its impact on the overall 

melanoma detection and localization system. 

In summary, academic [65] and their team have made a noteworthy part in the area of 

melanoma detection and localization in histopathological whole slide images. Their 

utilization of the ORACM and NSGA II for multi-objective optimization showcases 

the potential for more accurate and reliable diagnosis of melanoma. However, further 

work should include a detailed evaluation of the ORACM to assess its specific impact 

and effectiveness within the context of melanoma detection and localization. 

In 2023, scholars [69] presented their study and in their research was focused on 

implementing a VisionTransformer (ViT) network classification model, which stands 

out as a distinct alternative to conventional CNNs for categorizing skin lesions into 

multiple classes. The study's innovative approach in adopting the ViT model is a 

notable aspect of their research. It demonstrates a commitment to exploring novel 

methods that can potentially enhance the accuracy and effectiveness of skin lesion 

classification. However, the research has a particular limitation that warrants 

attention. The research does not offer a comprehensive justification of how well the 

Stochastic Gradient Descent (SGD) optimization approach was employed in their 

work. A detailed elucidation of the application of SGD optimization is essential for 

transparency and reproducibility, enabling other researchers to replicate and build 

upon their methodology effectively. 

In conclusion, the work by scholars [69] in 2023 offers a promising approach to multi 

class c1assification of skin lesions through the utilization of the VisionTransformer 

(ViT) model. The research's exploration of unconventional models is commendable. 

To further enhance its impact, providing a comprehensive explanation of the SGD 

optimization approach is recommended to facilitate a clearer understanding and 

successful replication of their methodology by the scientific community. 

In 2023, academics [8] conducted a study and their research introduced a hybrid 

model that combined EfficientNets and metadata for fine-tuned Artificial Neural 

Network (ANN) classification using the Multiple-Input Single-Output (MISO) model. 

The study's innovative approach in utilizing wavelet transforms, deep residual neural 

networks, and the ReLU based Extreme 1earning machine is a notable contribution to 

the area of skin lesion c1assification. It showcases their dedication to enhancing the 
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correctness and efficacy of classification models for skin lesions. However, the 

research does have a particular limitation that deserves attention. The study does not 

provide a comprehensive validation of the effect of every input in the combined 

model. Understanding how each component contributes to the model's performance is 

crucial for further refining and optimizing the classification model. A more in-depth 

analysis of the individual impact of EfficientNets, metadata, and the MISO model 

could provide valuable insights for future research. 

In conclusion, researchers [8] work in 2023 introduces a promising combined model 

for skin lesion classification that combines various techniques and components. Their 

research paves the way for more advanced classification models. To enhance the 

study's impact, it is recommended to conduct a thorough validation of the individual 

contributions of each input in the hybrid model, enabling a clearer understanding of 

their respective roles in achieving accurate skin lesion classification. 

In 2022, scholars [30] presented their research aimed to leverage a deep transfer 

1earning model by combining modified AlexNet and DLCNN to enhance the 

detection and c1assification of skin lesions. While their work is a noteworthy 

involvement to the area of skin lesion diagnosis, it is important to note a particular 

limitation in their research. The study encountered challenges in capturing disease-

specific features, which subsequently resulted in low classification accuracy. 

Moreover, the classification accuracy appeared to be heavily dependent on the 

specific disease, suggesting that the model's performance may not be consistent across 

different skin conditions. This limitation highlights an essential area for future 

research and development. Improving the model's capability to seperate disease-

specific parameters and ensuring consistent accuracy across various skin conditions is 

crucial for its practical applicability in clinical settings. 

In summary, contributors [30] study in 2022 introduces a DL model for skin disease 

classification. While the model shows promise, addressing the challenge of capturing 

disease-specific features and enhancing classification accuracy, particularly for 

various skin conditions, is essential to realize its full potential as a diagnostic tool. 

Collectively, the review contributed considerably in the area of skin lesion diagnosis 

by leveraging diverse DL techniques and methodologies. They suggest important 

insights in to  artificial intelligence potential in improving diagnostic accuracy and 
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efficiency for skin cancer and melanoma. However, it is crucial to recognize that 

these studies also exhibit certain limitations that can guide future research and 

development. While these studies have demonstrated the effectiveness of their 

proposed methods, it's important to emphasize that research in the field of skin lesion 

diagnosis using DL is still evolving. The limitations mentioned in each study, such as 

the need for more extensive validation, better interpretability, and additional 

comparative analyses, highlight areas for further investigation. These limitations 

should be considered opportunities for future research to refine and enhance the 

proposed methodologies. By addressing these challenges, researchers can work 

towards developing more robust, accurate, and widely applicable diagnostic tools for 

dermatology. 

In conclusion, these studies collectively contribute to the ongoing transformation of 

skin lesion diagnosis by leveraging DL techniques. They serve as stepping stones for 

further research work and innovation in the field, ultimately advancing the accuracy, 

reliability, and accessibility of skin cancer diagnostic tools. 

2.6 RESEARCH GAPS 

In the realm of skin lesion diagnosis using DL, certain research gaps have come to 

light that can significantly influence the direction of future investigations. These gaps 

not only align with the study's primary objectives but also provide a roadmap for 

addressing critical challenges in the field. 

The first research gap revolves around the issue of  

 Limited validation and generalizability 

Previous studies have often fallen short in conducting comprehensive validation on 

diverse datasets. This research gap corresponds to the need for developing a robust 

pre-processing and segmentation approach capable of effectively handling a broader 

spectrum of skin lesion datasets. This initiative seeks to bolster the generalizability 

and adaptability of the proposed algorithm, ensuring its consistent performance across 

a wide array of clinical scenarios and disease stages. 

Another salient research gap involves the  

 Absence of comparative analyses 

The lack of these comparative assessments hampers the ability to thoroughly evaluate 

the performance of novel classifiers. To bridge this gap, the research should 
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emphasize conducting in-depth comparative analyses that align with the overarching 

objective of assessing the proposed classifier's performance. These comparative 

evaluations will shed light on the strengths and weaknesses of the DL-based classifier, 

ultimately offering invaluable insights into its effectiveness and competitiveness. 

Another critical research gap in this field is 

 Transparency and interpretability constitute 

Prior studies have often faltered in providing comprehensive explanations for 

essential components of their algorithms, impairing the overall understanding and 

replicability of these solutions. To address this gap, the research should place a 

heightened focus on delivering detailed and transparent explanations of the 

algorithm's inner workings, which should include a comprehensive overview of the 

optimization approaches employed. This enhanced transparency is paramount to 

facilitate the successful application of the solution within clinical settings. 

The other research gap is 

    Inconsistent accuracy across different skin conditions  

It is an evidenced by previous research, is a compelling challenge to surmount. To 

address this specific research gap, it is essential to design the algorithm with a clear 

emphasis on effectively capturing disease-specific features. This approach will not 

only ensure consistent accuracy in the classification of skin lesions but also enable the 

practical applicability of the classifier within real-world clinical scenarios. This gap 

underscores the significance of achieving a high degree of accuracy and reliability in 

skin lesion diagnosis. 

2.7 PROBLEM STATEMENT 

The problem at hand involves the diagnosis and classification of skin lesions, with a 

particular focus on the application of DL-based techniques. However, several research 

gaps have been identified in this domain that pose significant challenges to the 

development of accurate and reliable solutions. One key research gap is the limited 

validation and generalizability of existing studies. Previous research often lacks 

comprehensive validation on diverse datasets, limiting the adaptability of algorithms 

to a broad range of skin conditions and clinical scenarios. Addressing this gap 

requires the development of a robust pre-processing and segmentation technique that 

can be universally applied to enhance the generalizability of proposed algorithms. 
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Comparative analyses represent another critical research gap. The absence of such 

comparisons in prior research hinders the thorough evaluation of novel classifiers. 

Conducting in-depth comparative assessments is essential for understanding the 

strengths and weaknesses of DL-based classifiers and assessing their effectiveness 

and competitiveness. Transparency and interpretability in explaining algorithm 

components constitute a significant research gap. Many previous studies have been 

deficient in providing detailed explanations of their inner workings, including 

optimization approaches. This lack of transparency impedes the understanding and 

replicability of proposed solutions, posing challenges to their effective application in 

clinical settings. 

Lastly, the inconsistency in accuracy across different skin conditions is a pressing 

issue. This research gap emphasizes the need to design algorithms that can effectively 

capture disease-specific features. Ensuring consistent accuracy in skin lesion 

classification is crucial for practical applicability in real clinical scenarios. Thus, 

achieving a high degree of accuracy and reliability in skin lesion diagnosis remains a 

paramount challenge. 

2.8 RESEARCH OBJECTIVES 

This research encompasses three primary objectives that collectively aim to advance 

the area of skin lesion diagnosis through the application of DL. Each objective is 

rooted in the need to enhance accuracy, efficiency, and reliability in the diagnostic 

process, backed by literature evidence and supported by the motivation provided in 

the previous section: 

Objective 1: To Achieve Pre-processing and Segmentation of the Skin Lesion Data 

for Input to a DL-Based Classifier 

The first objective of this research work is to develop a robust pre-processing and 

segmentation pipeline for skin lesion data, preparing it for input to a DL-based 

classifier. Skin lesion images often exhibit variations in lighting, noise, and artifacts, 

which can affect the performance of subsequent classification algorithms. Moreover, 

accurate segmentation is a fundamental step in isolating the region of interest within 

an image, allowing for more focused analysis.  Numerous studies in the literature 

highlight the significance of pre-processing and segmentation in medical image 

analysis. For instance, a paper by Litjens et al. (2017) discusses the critical role of 
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pre-processing and segmentation in the context of prostate histology image analysis. 

The authors emphasize that proper pre-processing and segmentation techniques are 

essential for ensuring accurate classification results, and this principle can be applied 

to the domain of skin lesion diagnosis.  

Objective 2: To Propose an Algorithm for Skin Lesion Diagnosis and 

Classification Using DL 

The second objective involves the development of an innovative DL-based algorithm 

for skin 1esion diagnosis and c1assification. DL has demonstrated substantial 

potential in various medical imaging tasks, with CNNs being at the forefront of these 

advancements. The proposed algorithm will leverage the power of DL to 

automatically learn discriminative features from the segmented skin lesion data and 

make accurate diagnostic decisions. Numerous studies in the literature have 

showcased the application of DL in medical image analysis, further emphasizing its 

efficacy in diagnosing skin lesions. For instance, a study by [36] demonstrated the 

superiority of DL models in classifying skin lesions, specifically melanoma. Their 

research provides compelling evidence of the capabilities of DL in addressing the 

complexity of skin lesion diagnosis. 

Objective 3: To Evaluate the performance of the Proposed Classifier against the 

State-of-the-Art Solutions by Means of Quality Metric Parameters 

The third objective involves the comprehensive evaluation of the proposed DL-based 

classifier. This evaluation will be conducted using state-of-the-art solutions as 

benchmarks and will employ quality metric parameters to assess its performance 

rigorously. Quality metrics are generally used in the literature to gauge the 

effectiveness of medical image c1assification models.  

Numerous studies have utilized these quality metrics to estimate the performance of 

skin lesion c1assification models. For example, the International Skin Imaging 

Collaboration (ISIC) has organized challenges, such as ISIC-2019, where participants 

employ quality metrics to assess the efficacy of their skin lesion classification 

algorithms. These challenges have become standard benchmarks in the field and 

exemplify the importance of rigorous evaluation using quality metric parameters. 

In summary, the research objectives presented here are anchored in the need to 

address the complexities and challenges in skin lesion diagnosis through advanced DL 
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techniques. The use of quality metrics and benchmarks from the literature underscores 

the rigorous evaluation and validation process that the proposed algorithm will 

undergo, ensuring its reliability and effectiveness in clinical applications. 

2.9 RESEARCH SCOPE AND SIGNIFICANCE  

 DL Techniques for Skin Lesion Diagnosis: This research primarily focuses on the 

application of advanced DL techniques, specifically CNNs, for skin lesion diagnosis. 

The scope encompasses the development of algorithms that can automatically analyze 

skin lesion images and make accurate diagnostic decisions. These methods leverage 

the capacity of DL to recognize intricate patterns and features within images, making 

them highly suited to the complex and diverse nature of skin lesions. 

 Pre-processing and Segmentation: A critical aspect of this research is the pre-

processing and segmentation of skin lesion data. Pre-processing methods aim to 

improve the quality of input data by addressing issues such as noise, artifacts, and 

variations in lighting conditions. Accurate segmentation is essential for isolating the 

region of interest within an image, allowing for precise analysis. The research will 

explore and develop methods for efficient pre-processing and segmentation that can 

enhance the overall performance of the diagnostic system. 

 Algorithm Development: The study seeks to propose novel algorithms for skin 

lesion diagnosis and classification using DL. These algorithms will be tailored to 

address the specific challenges posed by skin lesion images, including the segregation 

of benign& malignant lesions. The development of these algorithms will involve 

extensive experimentation and optimization to ensure their effectiveness. 

 Performance Evaluation: The research emphasizes a rigorous performance 

evaluation of the proposed algorithms. This evaluation will employ a comprehensive 

set of quality metric parameters and the AUC-ROC. Benchmarking against existing 

state-of-the-art solutions and large-scale datasets, such as ISIC-2019 and PH2, will be 

conducted to assess the algorithm’s efficacy. 

 Clinical Implications: Beyond the technical aspects, the research will explore the 

clinical implications of the developed algorithms. This includes an investigation into 

how these tools can be integrated into the workflow of healthcare professionals, such 

as dermatologists. The study will assess the potential for improved diagnostic 

accuracy, reduced subjectivity, and enhanced efficiency in clinical practice. 
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Significance 

1. Enhanced Accuracy in Diagnosis: The profound importance of this research lies 

in its potential to substantially improve the accuracy of skin lesion diagnosis. The 

application of advanced DL techniques can enable early and accurate detection of 

skin cancer, leading to improved patient outcomes and, in some cases, life-saving 

interventions. The impact on individual patients and public health is substantial. 

2. Automation and Efficiency: The development of automated tools for diagnosis of 

skin cancer offers the promise of streamlining the diagnostic process. By providing 

healthcare professionals with powerful diagnostic aids, dermatologists and 

clinicians can make more efficient, data-driven decisions. This can reduce the time 

required for diagnosis and, in turn, improve the speed at which patients receive 

appropriate care. 

3. Reduced Subjectivity and Error: Transitioning from subjective visual 

examination to data-driven DL models minimizes the inherent subjectivity and 

potential for error in traditional diagnostic methods. This shift can contribute to 

more consistent and reliable diagnoses, reducing the uncertainty often associated 

with visual examinations. 

4. Transforming Dermatology: The potential to revolutionize the field of 

dermatology is one of the most notable aspects of this research's significance. It 

has the capacity to introduce a new paradigm in skin cancer diagnosis and 

classification. By merging cutting-edge technology with clinical practice, it can 

reshape the way skin cancer is diagnosed and managed. 

5. Global Health Implications: The global health impact of skin cancer is 

substantial, with increasing diagnosis rates, particularly in regions with high UV 

radiation exposure. The outcomes of this research can make a significant 

contribution to public health by enabling earlier interventions and ultimately 

saving lives. This is particularly relevant in regions where access to dermatologists 

may be limited. 

2.10 SUMMARY 

In this chapter we have seen an extensive literature survey on the existing methods for 

the various tasks pre-processing., segmentation., feature extraction and c1assification. 

Research gaps are identified alogn with the scope of the research and it’s significance. 
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Finally the research objectives are framed to bridge the gaps identified in the literature 

review. In the next chapter we will discuss about the detailed research methodology 

proposed to achieve the above mentioned objectives for skin lesion detection and 

classification with improved accuracy 
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CHAPTER-3 

SKIN LESION SEGMENTATION USING HYBRID GAUSSIAN 

GUIDED FILTER WITH CNN 

In the prior chapter we have gone through the extensive literature survey, gaps 

identified and objectives framed for improvement of accuracy in diagnosis. In this 

chapter we provided the information about one of the proposed model for skin lesion 

segmentation by using guassian and guided filter together with the help of multilayer 

residual network detail to implement the novel ideas and effective algorithms to 

segment the skin cancer images with improved accuracy 

3.1. INTRODUCTION 

Skin cancer has become a significant cause for concern in recent years, mainly due to 

the increasing emphasis on the significance of early recognition and effective 

treatment [14]. Within the realm of skin cancer, it can be categorized into 2 types: 

benign and ma1ignant. Among these, me1anoma stands out as the most life-

threatening form, especially when compared to non-melanoma skin cancers. The 

growing incidence of melanoma underlines the critical significance of early diagnosis 

for the survival of patients [14]. Dermatologists, drawing upon their specialized 

knowledge, have turned to computer-assisted techniques for the early identification of 

melanoma. However, achieving high accuracy in this endeavor has proven to be a 

formidable challenge, leading to complications in the classification process [47]. In 

the pursuit of improving early skin cancer detection, several researchers have 

explored the application of image preprocessing techniques, which allow for the 

identification of skin cancer at its initial stages, subsequently leading to more 

effective therapeutic interventions [96]. To extend the scope and effectiveness of 

diagnostic procedures, it is crucial to establish robust frameworks for categorizing 

different skin diseases [14]. Multiple studies have been conducted about skin cancer 

recognition and classification, and these efforts have been furthered by the initiation 

of challenges by the ISIC since 2016. These challenges serve to officially verify the 

performance of participating teams and provide standardized datasets [50]. In 

response to these challenges, various authors have displayed a strong interest in 

developing new DL and ML architectures aimed at enhancing the accuracy of 
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segmentation and classification processes (Goyal et al., 2020). Hospitals around the 

world have begun to implement these advanced methods, which have been inspired 

and refined by the ISIC challenges, to improve the chances of individual patient 

survival (Gutman et al., 2016). 

The efficacy of segmentation algorithms in the perspective of malignancy diagnosis is 

contingent on the specific segmentation method that’s employed and the unique facets 

of medical images (Jagadesh et al., 2020). These segmentation algorithms fall into 

two broad categories: region and edge based. For algorithms based on region to 

perform accurate segmentation, the regions of interest in the image need to have a 

significant degree of similarity or homogeneity in their visual characteristics, while 

edge-based methods depend on the presence of strong edges for precise results 

(Jagadesh et al., 2020). Developing accurate segmentation algorithms for medical 

images, as well as images with issues like intensity inhomogeneity or weak edges, can 

pose significant difficulties. These challenges arise due to variations in image 

characteristics and the need to adapt segmentation techniques to address these issues 

effectively. In skin cancer diagnosis, skin cancer segmentation is an important task 

because skin lesions frequently exhibit unclear boundaries, uneven colour 

distribution, and irregular shapes [14]. Skin lesion segmentation requires advanced 

NN architectures and techniques to handle the variability and complexity of skin 

lesions effectively. Traditional DL models, though available, have faced limitations in 

achieving the maximum level of segmentation performance and have often resulted in 

increased computational complexity. To address these limitations, this work 

introduces the HGGIF filter, which is designed to eliminate noise, artifacts, and 

enhance color illumination [14]. Additionally, this work employs MLRNet for skin 

lesion segmentation, incorporating residual analysis into the process. 

3.2. PROPOSED SKIN LESION SEGMENTATION  

The HGGIF filtering step and the subsequent MLRNet segmentation stage are the two 

separate phases of the skin lesion segmentation model proposed in this study. In the 

initial phase, test skin lesion images serve as the input for HGGIF filtering. This 

filtering step serves a dual purpose, effectively removing noise and various artifacts 

while concurrently improving the color illuminations within the images. Following 

this pre-processing, the resulting filtered image is then passed through the MLRNet 
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model, which is specifically designed for the segmentation of skin lesions. 

3.2.1. HGGIF Filtering 

Gaussian filtering is a widely used image processing technique for noise removal and 

smoothing. It plays a crucial role in medical image preprocessing, particularly in 

enhancing skin lesion images for further analysis and segmentation. The fundamental 

idea behind Gaussian filtering is to blur the image using a Gaussian function, which 

helps in reducing high-frequency noise while preserving important image features 

such as edges and textures. In the context of skin cancer detection, Gaussian filtering 

is essential for improving the quality of dermoscopic images. Skin lesion images often 

contain artifacts, hair, and varying illumination, which can obscure important lesion 

boundaries. Applying Gaussian filtering helps in smoothing out these imperfections, 

enhancing the visibility of lesion regions and preparing the image for accurate 

segmentation. 

Gaussian filtering uses a Gaussian kernel to convolve with the input image. The 

kernel is defined by the Gaussian function: 

G(x, y) = (1 / (2πσ²)) * exp(-(x² + y²) / (2σ²)) 

where  (x, y) are the coordinates of the pixel  

σ is the standard deviation of the Gaussian distribution.  

The filter assigns weights to the neighboring pixels such that the central pixel has the 

highest weight and the weights decrease with distance, following a bell-shaped curve. 

In this research, Gaussian filtering is applied within the Discrete Wavelet Transform 

(DWT) domain on the LL (low-low) band coefficients of skin lesion images. This step 

specifically targets low-frequency noise and enhances the spectral domain of the 

image. By doing so, the filter improves image smoothness while retaining important 

lesion structures. The filtered image is later reconstructed into the spatial domain 

using the Inverse DWT and further refined using Guided Image Filtering (GIF). 

The initial step in the proposed skin lesion seperation process is the HGGIF Filtering, 

which focuses on denoising skin lesion images within the Discrete Wavelet 

Transform (DWT) domain. This technique is visually depicted in Figure 3.1 and 

described. The DWT is an integral component in this phase, as it facilitates the 

decomposition of the input image into multiple bands using various directions, a 

method commonly found in image processing [26] [119]. As part of this 
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decomposition, directional coefficients are generated, a practice widely adopted to 

mitigate various forms of noise, including both spatial and spectral noise. This 

application of DWT in noise reduction is well-established in the literature [116] [23]. 

However, to further refine the denoising process, the Hybrid Gaussian Guided Image 

Filtering (HGGIF) is introduced. Its primary focus is to target the low-level noise 

reduction primarily found in the skin lesion image on the texture region. By 

systematically addressing these smaller noise sources, the outcome is not only 

rendered cleaner but also exhibits enhanced robustness and efficiency here by 

achieving superior outcomes compared to the best and most widely accepted methods 

or techniques currently available. [24] [87]. 

 

 

 

 

Figure 3.1 HGGIF in DWT domain 

Skin Lesion Image: The process starts with a skin lesion image, which may contain 

various forms of noise and imperfections. 

DWT: The first step is to apply the DWT to the skin lesion image. DWT decomposes 

the image into multiple bands or levels, capturing both high and low-frequency 

components in various directions. This transformation helps represent the image in a 

more structured and analysable form. 

Gaussian Filter: In the DWT domain, the image undergoes a Gaussian filtering step. 

The Gaussian filter is used to smooth and denoise the image. Gaussian filters are 

popular in image processing for their ability to reduce noise while preserving image 

features. The goal of this phase is to eliminate any undesired noise artifacts from the 

DWT-transformed image. 

Inverse DFT (Discrete Fourier Transform): After the Gaussian filtering, an Inverse 

Discrete Fourier Transform (IDFT) is applied on filtered image. This task is crucial as 

it transforms filtered image back to spatial domain, restoring it to its original form. 

The IDFT reconstructs the filtered image by reversing the DFT applied during the 

Gaussian filtering process. 
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GIF (Guided Image Filtering): Following the IDFT, the image is subjected to 

Guided Image Filtering (GIF). GIF is an image processing method that improves and 

polishes an image while preserving its edges and structure. It helps further denoise the 

image and can improve its overall appearance. 

Algorithm 

Guided Image Filtering (GIF) is an edge-preserving smoothing technique that 

enhances image quality by removing noise while retaining important structural 

features such as edges. Unlike standard filters that blur edges along with noise, GIF 

performs selective filtering guided by a reference image—often the input image itself. 

The core idea behind GIF is to compute a locally linear model between the guide 

image (I) and the filtering input image (P). The result is a filtered output Q that 

preserves the edges of I while smoothing the noise in P. 

For a pixel ‘i’, the filtering output qᵢ is modeled as: 

𝑞௜ = 𝑎௞𝐼௜ + 𝑏௞        ∀    i ∀𝐢 ∈ w୩ 

Where: 

 𝑞௜: Output at pixel i 

 𝐼௜: Guidance image pixel 

 𝑞௜ = 𝑎௞𝐼௜ + 𝑏௞: Linear coefficients in window w୩ 

 

Denoised Image: The outcome of these steps is a denoised image. This final image is 

cleaner and more robust than the initial skin lesion image, with various noise sources 

eliminated. The denoised image is now better suited for further analysis and 

segmentation, as it presents a clearer representation of the skin lesion. 

By applying these processes within the DWT domain, the method effectively targets 

and reduces noise in skin lesion images, ultimately improving the photos' quality and 

usefulness for upcoming diagnostic or segmentation tasks. The combination of 

Gaussian filtering, Inverse DFT, and GIF within the DWT framework helps to 

provide a comprehensive approach to denoising and enhancing skin lesion images. 

3.2.2 HGGIF Algorithm 

The Hybrid Gaussian Guided Image Filtering (HGGIF) procedure listed in Table 3.1 

offers a thorough explanation of the advanced image processing method used to 

improve image quality and reduce noise in various types of images, including medical 



68 
 

images like skin lesion photographs. HGGIF combines the strengths of Gaussian 

filtering and Guided Image Filtering (GIF) within the DWT domain, creating a 

powerful tool for image denoising and enhancement. By utilizing DWT for 

decomposition, Gaussian filtering for noise reduction, Inverse Discrete Fourier 

Transform (IDFT) for image reconstruction, and GIF for guided smoothing, HGGIF 

achieves notable improvements in image quality and clarity. This algorithm is 

particularly valuable in medical image analysis, where precise and noise-free images 

are crucial for accurate diagnosis and further processing. 

Input: Medical image of a skin lesion that requires analysis or processing. 

Output: Result of applying pre-processing steps or techniques to the input image. 

Table 3.1 HGGIF algorithm 

 
Step 1: Loading the skin lesion image that is affected by noise 

This initial step involves importing noisy skin lesion image, which may contain 

various forms of noise and imperfections. 

Step 2: Applying the DWT to divide the images with noise into various 

frequency components which are created using the filter banks such as LL, LH,

HL and HH.  

In this, we employ the DWT to decompose a noisy skin lesion image into multiple 

bands. The DWT breaks down an image or signal into different frequency 

components at multiple scales, known as wavelet coefficients. The DWT achieves 

this by using filter banks such as LL, LH, HL, and HH. Each of these bands 

captures different frequency components and details within the image. Importantly, 

Non-sub-sampled directional filter banks is a method that is used here by DWT for 

multi-dimensional decomposition of the test image. This results in a more 

structured representation of the image. 

Step 3: Gaussian filtering is used specifically on the LL (low-low) band 

coefficients. 

Now, Gaussian filtering is used specifically on the LL (low-low) band coefficients.

LL band coefficients, which contain low-frequency information and often constitute 

the smoother areas of the image. Here, we apply Gaussian filtering to these LL 

coefficients. Gaussian filtering helps enhance the spectral domain of the image. 
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This step serves to reduce noise in the lower frequency components while 

preserving essential image features. 

Step 4: Minimize the main Noises in Spectral Region. 

Following the Gaussian filtering, the resultant coefficients in the LL band now 

contain different region properties with the reduction of significant noise sources 

within the spectral region. This step is critical for improving the whole quality of 

the image and preparing it for further processing. 

Step 5: Using the IDWT to combine the coefficients back into a single spectral 

band 

To recover a single spectral band from the filtered coefficients, we apply the 

Inverse DWT (IDWT). The IDWT reconstructs the filtered outcome, effectively 

transforming it back to the original spatial domain. This step is pivotal in restoring 

the image to its familiar format while retaining the benefits of noise reduction 

obtained in the spectral domain. 

Step 6: The GIF (Guided Image Filtering) algorithm is applied to remove both 

high-level and low-level noise in the texture and spatial regions of the image 

High-level and low-level noise sources in the image texture and spatial areas are 

removed using GIF. This procedure improves the image's quality and makes a 

substantial contribution to denoising. GIF is a flexible method that successfully 

reduces image noise while preserving edges and fine details. 

The result of these sequential steps is the preprocessed outcome, which is notably 

cleaner, more noise-free, and suitable for further analysis, segmentation, or diagnostic 

tasks. The HGGIF algorithm, with its combination of DWT, Gaussian filtering, 

IDWT, and GIF, is a valuable tool for enhancing image quality, particularly in 

medical image analysis, where accuracy and clarity are paramount. 

3.3 PROPOSED MLRNet FOR SEGMENTATION OF SKIN LESION 

In the field of medical imaging, precise skin lesions segmentation plays a key role in 

the timely detection, and subsequent treatment of any skin diseases, most notably skin 

cancer. Over recent years, by applying DL techniques to medical image analysis 

resulted in notable advancements in the accuracy and efficiency of disease detection. 

Among these innovations, the Multi-Level Residual Network (MLRNet) has emerged 
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as a noteworthy solution, tailored specifically for the meticulous segmentation of skin 

lesions. At the core of MLRNet's functionality, it is a DCNN architecture enhanced by 

the principles of residual learning. By allowing the training of extremely deep neural 

networks while addressing the vanishing gradient issue, residual learning made 

popular by researcher [58] has completely changed the field of deep learning. As a 

result, the integration of residual learning into MLRNet has elevated its performance, 

making it a innovatory tool in the skin lesion segmentation domain [58]. MLRNet is 

not just an isolated innovation but a product of extensive research and development 

aimed at tackling the challenges inherent in skin lesion analysis. This network's 

capacity for highly accurate segmentation has drawn substantial attention from 

researchers, healthcare professionals, and technology developers alike, thanks to its 

capacity to improve the accuracy and dependability of diagnostic procedures. 

The significance of accurate skin lesion segmentation cannot be understated. By 

providing clear and precise delineations of skin lesions within medical images, 

MLRNet can expedite the identification and classification of skin diseases. This has 

the potential to significantly increase the effectiveness of dermatological diagnostics, 

which would lead to earlier interventions and improved patient outcomes. The method 

presented in this study employs MLRNet for the segmentation of skin lesion over 

conventional CNN and RNN methods traditionally are used for this task. MLRNet 

works well for processing 1-D time sequences, but it takes a particular method to 

adapt to the context of 2D skin lesion images. The 2D skin lesion photos are first 

scanned in the following directions: left to right, top to bottom, bottom to up, and 

right to left. This scanning procedure generates four distinct sequences. These 

sequences are then subjected to multi-layer processing to extract spatial dependencies 

and features. The outcome of every layer is summed, and the result is processed using 

a softmax classifier for the accurate segmentation of skin lesions. This technique 

makes good use of MLRNet's capabilities to increase skin lesion segmentation 

accuracy, especially when applied to 2D pictures. 

Architecture 

The proposed MLRNet is composed of a structured architecture that includes 18 

convolutional layers, 1 recurrent layer, 4 layers of max pooling, 4 concatenation 

layers, and a sigmoid activation function, as visualized in Figure 3.2. These 
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components are organized into a total of 9 blocks. When a test input image is fed into 

MLRNet, it undergoes a series of processing steps within the convolutional layers. 

These layers serve the crucial role of extracting deep features from the test images. 

This feat is achieved through the application of many filters with varied kernel sizes. 

Specifically, 3 × 3 sized kernels are employed in the convolutional layers, while 2 × 2 

kernels are utilized in the MaxPooling and dropout layers Furthermore, the network 

employs filters of varying dimensions, with 32, 64, 128, 256, and 512 filters being 

used in different layers. The structure of MLRNet can be further divided into two 

major components: up-sampling encoders and down-sampling decoders. Together, 

these elements enhance the network's ability to interpret and evaluate the input data, 

enabling efficient skin lesion segmentation. 

 

Figure 3.2 Proposed MLRNet for skin lesion segmentation 

In each phase of the encoding and decoding, a structured convolution block and a 

triple residual decoder block are employed thoughtfully. In order for the network to 

process and extract significant features from the incoming data, these blocks are 

essential. Each convolutional block within the structured convolution block consists 

of three fundamental components: a convolutional layer, a batch normalization layer, 

and a ReLU. This combination of components is key to the block's function in feature 

extraction and processing. As the network proceeds in the encoder path and performs 

down-sampling, it demonstrates a notable characteristic. With each down-sampling 
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step, the number of feature channels effectively doubles. This expansion in feature 

channels is instrumental in capturing and representing increasingly complex features. 

Additionally, there are strategic connections in place between the encoder and 

decoder that jumps between the respective layers of feature maps. These connections 

ensure seamless information flow between the two parts of the network. They are 

critical for maintaining context and preserving the rich information extracted in the 

encoder when transitioning to the decoding phase. 

The combination of structured convolution blocks, triple residual decoder blocks, and 

these well-planned connections empowers the network to effectively perform skin 

lesion segmentation with a focus on preserving crucial contextual information. The 

decoding process is enriched through the strategic use of skipping connections. These 

connections serve a dual purpose: they merge feature map information generated by 

an encoder module while simultaneously assimilating additional contextual and 

spatial information from the decoder block with low-resolution. This integration of 

information is a fundamental step in achieving comprehensive and accurate skin 

lesion segmentation. The core of this integration lies within the proposed triple 

residual decoder block, a powerful component of the network. This block, which 

builds upon a normalized standard 3 × 3 convolution operation, consists of a dual 

residual decoder structure. The dual residual decoder block incorporates spatial 

residual and channel residual elements, which are vital for processing the 

concatenated feature maps. 

To further enhance performance, these three key components are engineered to utilize 

contextual information and weights. They play a pivotal role in selecting relevant 

regions, capturing spatial correlations between features, and directing density of the 

channel to facilitate essential channel interactions. The network can conduct 

extremely precise and context-aware skin lesion segmentation because to the clever 

distribution and processing of data and characteristics. The network's capacity to 

autonomously learn and modify its focus on different sizes and forms of targetted 

structures inside medical images is largely due to the residual convolutional module. 

This adaptability is a key strength, as it enables the model to implicitly identify and 

emphasize features that are highly relevant for a specific task, all while effectively 

suppressing the information from regions that are less pertinent in the input image. An 



73 
 

important aspect of the residual convolutional module's functioning is its ability to 

discern geographical regions that is by examining contextual information and 

activation signals provided by gating mechanisms which are acquired at coarser 

scales. This process ensures that the network captures and processes information in a 

context-aware manner.  To achieve this, the input feature is scaled depending on 

residual coefficients computed from resampled grids, a procedure facilitated through 

trilinear interpolation. The residual factor derived from this scaling is instrumental in 

delineating the focal region of interest and identifying significant areas within the 

image. Finally, the input feature map is multiplied element-wise by a calculated 

residual factor to generate the output of the residual convolutional module. This 

process is essential to the network's flexibility and capacity to concentrate on the most 

important components of the input image, which enhances the network's efficacy in 

skin lesion segmentation. The gating mechanism serves as a critical decision-making 

component within the network. It is responsible for filtering and determining the 

usefulness of information acquired from the coarser scale. The primary objective is to 

eliminate noisy and irrelevant responses from skipped connections, ensuring that the 

network focuses on the most relevant and informative elements. 

Before the execution of connection operation, the residual convolutional module 

performs a crucial task. It integrates and filters the neural activations, specifically 

selecting and forwarding only the activations that are highly pertinent for the task at 

hand. This operation is essential for ensuring that the network processes information 

that is contextually meaningful. The output from the skipped connections generates 

the extraction and fusion of complementary information from every sub-residual 

convolutional coding and decoding circuit. This integrated output is essential for 

maintaining the coherence and context-awareness of the segmentation process. 

Importantly, the residual convolutional blocks are processed linearly without 

involving any spatial support, distinguishing them from non-local blocks. 

Additionally, the down-sampling technique is applied to the gated signal effectively 

that reduces the resolution of the input feature map. This not only contributes to 

reducing the network's parameter count but also conserves computational resources, 

making the network more efficient and cost-effective in the segmentation of skin 

lesion. The network's performance is enhanced through the combination of spatial 



74 
 

residual and channel residual. This dual approach is integral to the network's ability to 

learn non-linear interactions and establish links that are non-repulsion between 

channels, thus improving the segmentation performance. While spatial residual 

focuses on capturing spatial relationships between features, channel residual is adept 

at grasping complex non-linear interactions. Consequently, both elements enhance 

one another, resulting in a more thorough comprehension of the material. An initial 

convolutional operation is used in the network's structural architecture to improve the 

input characteristics' non-linear representation. In addition to increasing the network's 

ability to train non-linearly, this technique helps minimize the number of parameters, 

which maximizes computing efficiency. 

The incorporation of both spatial residual and channel residual occurs in parallel 

within the network. These two routes simultaneously focus on the regions of interest 

in both the spatial and channel dimensions, ensuring that the network captures and 

fuses pertinent information effectively. The fused output is then used as input for 

subsequent decoding operations, ultimately leading to improved segmentation results 

by considering both spatial and channel aspects of the data. Within the network 

architecture, up-sampling layers play a crucial role in learning middle-level visual 

patterns, while concurrently capturing spatial dependencies between these patterns. 

For the network to successfully comprehend and encode complex aspects in the 

incoming data, this dual functionality is necessary. The network's capacity to create a 

global representation of the image is facilitated by concatenate layers. These layers 

allow the network to comprehensively understand the overall image context and 

extract global representations. This is important in the skin lesion segmentation as it 

enables the network to capture a holistic understanding of the image. 

To further enhance spatial dependency encoding, the network employs down-

sampling convolutional layers. These layers refine the network's spatial understanding 

by processing the global representations, ultimately improving the quality of 

segmentation results. The final stage of the network's operation involves a SoftMax 

layer, which acts as a classifier. This classifier is instrumental in identifying and 

distinguishing between the affected skin lesion region and the normal tissue region. It 

does so by using a classification process, providing a clear delineation between the 

different regions of interest within the image. This classification output is a crucial 
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aspect of the network's skin lesion segmentation process. 

Image Segmentation: A Step-By-Step Procedure 

Step 1: Feature Extraction with Convolutional Layers 

The goal of this first stage is to extract the necessary and crucial features from the 

input image so that the network can comprehend and use the data in the image 

efficiently. This phase of picture processing, which includes skin lesion segmentation, 

is crucial. 

Neurons and Limited Input Region 

A key component of this feature extraction procedure is convolutional layers. They 

function by employing neurons to process every pixel in the image. Convolutional 

layers use neurons that are only connected to a small or restricted portion of the input 

image in different areas of the image, in contrast to conventional fully connected 

layers where each neuron is coupled to every input neuron. This limited connectivity 

significantly reduces the total number of parameters in the network. By limiting the 

connections of neurons to local regions, convolutional layers effectively capture local 

patterns and structures in the image. This locality preserves important spatial 

information, making convolutional networks particularly effective for tasks like image 

analysis, as they can learn to detect patterns in various parts of the image. 

Maps of Features (𝐹) and Filters (𝑊𝑘) 

The creation of feature maps is the core of the feature extraction procedure, which are 

denoted as F. These feature maps are produced by applying multiple filters and 

capture data at various levels of abstraction. 

Each filter, denoted by the symbol 𝑊𝑘, is in charge of identifying a certain kind of 

pattern or feature in the picture. Each filter is applied to the input data, and they can 

differ in size and shape. The features that the filter is intended to identify are extracted 

when the filter is applied since it convolves over the input. 

Convolution Operation 

The calculation of feature maps is achieved through a mathematical operation known 

as convolution. For each feature map 𝐹𝑘, the operation is expressed as: 

                                                   𝐹𝑘 = ∅(𝑊𝑘 ∗ 𝐹𝑘 + 𝑏𝑘)                                               (1) 

 In this equation: 

    - ‘𝐹𝑘’ represents the resulting feature map. 
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    - ‘∅’ denotes an activation function, typically ReLU, which 

       introduces non-linearity and ensures that the network can capture complex 

       patterns and relationships. 

    - ‘𝑊𝑘’ signifies the filter being applied. 

    - ‘𝑏𝑘’ represents a bias term associated with the filter, which allows for additional 

      fine-tuning of the method of feature extraction. 

However, Step 1 of the procedure focuses on extracting basic information from the 

input image utilizing the convolutional layers. These characteristics are crucial for 

later phases of analysis, such lesion segmentation, because they enable the network to 

comprehend the image's content and identify regional patterns and structures. The use 

of diverse filters and the convolution operation allow for the detection of various 

types of features, making CNNs highly effective for image-based tasks. 

Step 2: Introduction of ReLU Activation Function 

In this step, the ReLU activation function will be introduced after each convolutional 

layer within the network. The ReLU activation function is a pivotal element in 

modern NNs, particularly CNNs (CNNs), and it significantly contributes to improving 

the network's training and performance. 

ReLU Activation Function 

It is, denoted as ∅(𝑥), and corresponding equation is: 

                                      ∅(𝑥) = max(0, 𝑥)                                                        (1) 

This simple but effective activation function exhibits specific characteristics that 

make it highly advantageous in the context of DL and CNNs: 

Improved Computational Efficiency 

When compared to more conventional activation functions like the sigmoid and 

hyperbolic tangent (Tanh), ReLU offers better computational efficiency during 

training. This efficiency is primarily attributed to the simplicity of the ReLU function 

and its computational ease. 

Non-Linearity and Vanishing Gradient 

The ReLU imparts non-linearity to the network. To enable the network to recognize 

intricate patterns and correlations in the data, this non-linearity is necessary. It's worth 

noting that deep networks rely on non-linear activation functions to model intricate 

data representations. ReLU is particularly effective in addressing the vanishing 
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gradient problem. Gradients in deep networks can get incredibly tiny during 

backpropagation, which makes it difficult for the network to learn efficiently. It 

mitigates this issue by maintaining gradient values that are not diminished when the 

input is positive, allowing for efficient gradient flow during training. 

Zero-Centered Activation 

Another beneficial aspect of ReLU is that it is zero-centered. When the input (𝑥) is 

less than 0, the function evaluates to 0. This zero-centered property facilitates better 

optimization in some cases. In order to address issues like the vanishing gradient 

problem, increase computing efficiency during training, and incorporate non-linearity 

into the network, Step 2 essentially inserts the ReLU activation function after 

convolutional layers. This activation function is a cornerstone of modern DL and is 

widely adopted due to its simplicity and effectiveness. 

Step 3: Utilization of Dropout for overfitting Prevention 

This stage addresses the problem of overfitting, especially in deep neural networks, by 

using the "Dropout" strategy during training. When a network becomes overly 

preoccupied with capturing the nuances of the training data, it is said to be overfitting 

and becomes less flexible when faced with novel and unfamiliar input. Dropout is a 

regularization technique that adds a degree of randomization to training in order to 

reduce overfitting. 

What is Dropout? 

By "dropping out" (temporarily deleting) a certain percentage of neurons or units 

from the network at random during each training iteration, dropout is a regularization 

strategy that attempts to prevent overfitting. Dropout encourages the network to learn 

more resilient and broad properties by reducing its dependence on any one neuron. 

Dropout Probability (𝑃) 

A critical parameter in Dropout is the dropout probability (𝑃). This parameter 

determines the probability that each neuron will be dropped out during the training 

process. A common choice for 𝑃 is 0.5, which means that each neuron has 50% 

chance of being dropped out during each iteration of the training. 
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Application of Dropout 

Dropout is typically applied after certain layers in the NN. In this specific case, it is 

applied after the 14th and 15th convolutional layers. By doing so, Dropout helps in 

regularizing the network's deeper layers, where overfitting is often more pronounced. 

Advantages of Dropout 

Dropout's main benefit is its capacity to improve network generalization. Dropout 

encourages the network to acquire more robust and diversified representations by 

preventing it from depending too much on any particular collection of characteristics 

or units by randomly eliminating neurons. 

Dropout is effective in deep NNs, where overfitting can be of a significant concern. It 

helps in making deep networks more resilient to overfitting by reducing the risk of 

neurons learning noise or spurious patterns from the training data. 

However, Step 3 introduces Dropout to combat overfitting in deep layers of the 

network. Random deactivation of a portion of neurons, Dropout encourages the 

network to learn more generalized features and helps in producing a model that 

performs well on unseen data. Each neuron has a 50% chance of being dropped out 

during training if the dropout probability is set at 0.5. 

Step 4: SoftMax Classification and Segmentation 

In order to achieve accurate segmentation, a SoftMax classifier is used in this stage to 

classify the skin and lesion pixels. A multinomial logistic regression model, the 

SoftMax classifier plays a crucial role in analyzing the image's pixel multimodality. 

SoftMax Classifier 

The SoftMax classifier is a widely used technique in ML and DL for solving any kind 

of classification problems. In the context of this process, it is employed to classify 

pixels within the image into different categories, such as "lesion" and "skin." Each 

pixel is assigned to the class with the highest anticipated probability using the 

SoftMax classifier, which takes into account the probabilities of pixels belonging to 

various classes. Essentially, it offers a pixel-by-pixel classification of the image. 

1×1 Convolution and Sigmoid Activation 

Following the SoftMax classification, a 1 × 1 convolution is applied. A 1 × 1 

convolution is an operation with a kernel size of 1 × 1. This operation helps to process 

and refine the output of the SoftMax classifier. The application of sigmoid activation 
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functions follows. The sigmoid activation function is frequently used to generate 

binary outputs, or probabilities, that fall between 0 and 1. 

Generation of Segmentation Maps 

The combined effect of the 1 × 1 convolution and sigmoid activation functions results 

in the generation of skin lesion output segmentation maps. The image is represented at 

the pixel level by these maps, where each pixel is categorized as "lesion" or "skin." 

Importantly, the segmentation maps maintain the resolution of the original test image. 

This means that the fine details and characteristics of the image are preserved, 

allowing for accurate segmentation without any loss of information. Step 4 concludes 

by introducing the SoftMax classifier, which is used to classify the image into various 

categories pixel-by-pixel. Then, 1 × 1 convolution and sigmoid activation functions 

are applied. These processes result in segmentation maps that preserve the original 

resolution of the image and allow for accurate pixel-level segmentation without 

compromising the quality of the test image. 

3.4 Results 

ISIC2019 Dataset 

At the forefront, we have MLRNet, which demonstrates exceptional performance 

across multiple metrics. It attains an accuracy of 92.07%, signifying its remarkable 

correctness in classifying skin lesions. It can reduce false positives and false 

negatives, as evidenced by its precision score of 90.178% and recall rate of 98.19%. 

MLRNet strikes a pleasing balance between recall and precision with an astounding 

F-score of 98.19%. It exhibits high sensitivity at 98.18%, emphasizing its proficiency 

in correctly identifying true positives. Furthermore, MLRNet maintains a satisfactory 

specificity score of 81.81%, indicative of its capacity to accurately classify true 

negatives. 

MLRNet attains higher accuracy, precision, recall, F-score, and specificity, while 

maintaining a competitive sensitivity rate. This underscores its proficiency in 

correctly identifying and categorizing skin lesions with remarkable accuracy and 

reliability. 

PH2 Dataset 

MLRNet excels with an accuracy of 92.84%, signifying exceptional correctness in 

classifying skin lesions. Its precision is 90.18%, indicating a commendable ability to 
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minimize false positives. MLRNet achieves an exceptional recall rate of 99.53%, 

showcasing its proficiency in correctly identifying true positives. The F-score for 

MLRNet is at 94.53%, indicating a harmonious balance between precision and recall. 

It maintains a sensitivity rate of 99.55% and a specificity of 81.81%. 

In summary, MLRNet consistently demonstrates outstanding performance, achieving 

the highest accuracy, precision, recall, F-score, and sensitivity among the evaluated 

methods. Its remarkable performance highlights its exceptional capabilities in 

accurately diagnosing and classifying skin lesions in the context of the PH2 dataset. 

3.5  SUMMARY 

In this chapter, we covered a robust two-phase framework for segmenting skin 

lesions, focusing on improving diagnostic accuracy in skin cancer detection. The 

proposed system begins with a preprocessing step that employs the Hybrid Gaussian 

Guided Image Filter. This stage utilizes Discrete Wavelet Transform for frequency 

decomposition and applies Gaussian filtering followed by Guided Image Filtering to 

effectively suppress both low- and high-frequency noise while preserving essential 

image details. The denoised image is then passed to the MLRNet, which performs 

directional scanning and feature fusion, enabling precise delineation of lesion 

boundaries. Architectural elements such as ReLU activation, dropout layers, and a 

Softmax-based segmentation layer ensure high performance, generalization, and 

effective pixel-level classification. 

Experimental results show that the model delivers high accuracy (92.07%) and 

achieves a near-perfect recall (98.19%), confirming its reliability in identifying true 

positive lesion cases. The combination of HGGIF and MLRNet forms an efficient and 

accurate segmentation pipeline, making it a valuable tool for automated skin cancer 

diagnosis. 
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CHAPTER-4 

DEEP TRANSFER LEARNING-BASED HYBRID MODEL FOR 

SKIN LESION DETECTION AND CLASSIFICATION 

In the preceding chapter we have gone through the implementation of MLNet for skin 

lesion segmentation and also the results. In this chapter, in continuation to the 

previous chapter we have a detailed discussion about another proposed research 

method for the detection and classification of the skin cancer images using deep 

transfer learning. Along with this here the hybrid filtering approach is also used for 

the segmentation of skin cancer images to improve the accuracy 

4.1. INTRODUCTION 

The identification and categorization of skin lesions are essential elements of 

dermatological diagnosis and treatment. Given the rising prevalence of skin cancer, 

prompt identification and precise categorization of skin lesions are now essential for 

patient care and survival. Artificial intelligence and sophisticated image processing 

methods have transformed dermatology in recent years, providing creative ways to 

improve the precision and effectiveness of skin lesion analysis. An outline of the 

importance of skin lesion identification and classification is given in this introduction, 

which also emphasizes how new technology are revolutionizing dermatological 

procedures. Melanoma (MEL) and non-MEL skin cancers are two most prominent 

skin cancer types [28]. Melanoma, a highly aggressive form of skin cancer and it 

poses a significant threat to patients. However, a wide spectrum of skin cancers exists 

today which includes MEL, SCC, BCC, NV, BKL, AKIES, VASC, and DF [5]. 

Melanoma, also known as Merkel cell carcinoma, is particularly lethal and often 

serves as the precursor to other skin cancer types. The initial development of skin 

cancer typically begins with melanocytes, cells found in the skin's outermost layer, 

which can progress into malignant MEL, leading to the invasion and harm of 

surrounding healthy tissues [127].  Increased exposure to UV radiation from the sun 

and sunburns are the main causes of the rising incidence of MEL[134]. Acral 

lentiginous MEL, for example, presents as small, discolored areas of skin, typically 

appearing black or dark brown. It tends to affect men more on the back of hands, 

while women are more likely to notice it on their fingers and legs [32]. However, 
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distinguishing between Acral MEL and acral nevus can be challenging, often resulting 

in late-stage diagnoses and reduced patient survival rates. Detecting MEL at an early 

stage is crucial for successful treatment [96]. Early MEL identification can be 

achieved by a variety of techniques, such as biopsy, pathology reports, and medical 

imaging analysis. Dermoscopy, a non-invasive imaging technique that involves taking 

high-resolution, enlarged pictures of questionable skin lesions, is frequently used to 

detect MEL early on. The dermats then analyze these pictures to determine whether 

MEL is present[42]. For a proper diagnosis, dermatoscopic analysis necessitates a 

high level of competence and can be costly. Computer-aided diagnostic techniques are 

being investigated to help with the early diagnosis of MEL from skin lesions in order 

to overcome these issues [107]. 

Nonetheless, the task of distinguishing MEL from non-MEL skin cancer is 

complicated by various factors. First, there may be a high visual similarity between 

non-cancerous and cancerous cells. Second, the lack of contrast in images can make it 

challenging to differentiate between the skin lesion and normal skin areas. Third, 

MEL's visual distinctiveness can differ greatly from person to person, and the variety 

of MEL's size, location, shape, and color among skin lesions makes identification 

more difficult. Furthermore, a number of imperfections, including hair, ruler lines, 

veins, and color calibration charts, can cause blurriness and occlusions, making 

discrimination even more difficult [62]. In summary, the early detection of MEL is 

critical for improving the patient outcomes, given its aggressive nature. Various 

challenges, including visual similarities, lack of contrast, and intra-class diversity, 

make the accurate distinction between MEL and non-MEL skin cancers a complex 

task. CAD methods are being explored to address these challenges and enhance early 

detection. In recent years, a plethora of CAD methods have emerged, focusing on the 

vital task of skin cancer identification [77]. These methods have proven to be 

invaluable in assisting dermatologists in the diagnosis of MEL, a potentially life-

threatening form of skin cancer. The development of these skin cancer detection 

methods draws from a wide array of techniques and technologies. For example, 

simple image processing techniques have been used to identify cancers by extracting 

useful elements from skin photos [110]. ML algorithms, as exemplified by [115], 

have played a crucial part in the identification and categorization of skin lesions, 
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supporting the early detection of skin cancer. The use of DL models, which can 

automatically discover complex patterns and features from enormous datasets, is a 

major advancement in this field [27]. Scholars [115] demonstrated the remarkable 

performance of deep CNNs for large-scale image recognition. But it's crucial to 

remember that  the DL models, while highly effective, often come with the trade-off 

of increased computational complexity. To address the computational challenges 

associated with DL, transfer learning has gained prominence in skin cancer detection 

[123]. Transfer learning enhances pre-trained models for the particular objective of 

skin cancer identification by supporting them on sizable image datasets. This 

approach, as established by contributors [123] and his team in 2017, offers improved 

performance with relatively lower computational complexity. Additionally, in an 

effort to identify skin cancer more accurately, ensemble learning prototypes—like 

those the researcher outlined [63] have been investigated. These models combine the 

outputs of multiple base models to enhance prediction accuracy and robustness. In 

summary, the field of skin cancer identification has seen remarkable progress due to 

the adoption of various methods and technologies. DL stands out for its high 

performance, while transfer learning offers a balance between performance and 

computational complexity. Based on particular requirements and the computing 

resources at their disposal, dermatologists and researchers can choose the best course 

of action. The work of these researchers, as indicated by their respective publications, 

has contributed significantly to the advancement of skin cancer identification 

methodologies. 

The focus of this research is on harnessing the effective DL techniques and transfer 

the learning models to create a hybrid network referred to as DTLNet for SLDC. This 

approach aims to make significant contributions in this domain.  

The following is a summary of the main achievements: 

1. HGWF for Noise Removal and Skin Lesion Enhancement: In this research, a 

HGWF is employed to eliminate noise from images and simultaneously enhance the 

visibility of skin lesions. Pre-processing step is essential to ensure that the subsequent 

analysis is performed on clean and well-defined images. Noise reduction and lesion 

enhancement are crucial for accurate and reliable skin lesion segmentation. 

2. Transfer Learning with AlexaNet for Skin Lesion Segmentation: The research 
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leverages transfer learning using the AlexaNet architecture to perform skin lesion 

segmentation. Using a previously learned DL model and adapting it to the particular 

task at hand is known as transfer learning. The model is better able to recognize and 

distinguish skin lesions thanks to transfer learning, which enables it to take advantage 

of the knowledge gained during training on a big dataset. 

3. Development of a DLCNN for a Deep Feature Extraction: The DLCNN model is 

developed to extract intricate and meaningful features from the segmented skin 

lesions. DL models like DLCNNs excel at automatically learning and representing 

complex patterns and features within data. In this context, the DLCNN is used to 

capture the unique characteristics of skin lesions. 

4. Utilization of SoftMax Classifier for Multiclass Classification: The extracted 

features from the DLCNN are then subjected to a SoftMax classifier, enabling the 

model to classify skin lesions into multiple categories. This is particularly significant 

as skin lesions can encompass various types, which includes SCC, VASC, DF, BKL, 

AKIES, BCC, NV, and MEL. Using the learnt features, the SoftMax classifier places 

each lesion in the proper class. 

The outcome of this research is the proposed DTLNet model, a comprehensive 

framework which is capable of accurately classifying multiple classes of skin lesions. 

The classes encompass various types of skin conditions, each requiring distinct 

diagnostic considerations. Simulation results from the research demonstrate that the 

performance of DTLNet surpasses that of conventional approaches which signifies a 

significant advancement in area of skin lesion identification and categorization, 

promising more consistent and precise outcomes in diagnosing and managing skin 

disorders. 

4.2. PROPOSED DTLNET ALGORITHM  

The Proposed DTLNet algorithm is a comprehensive framework designed for the 

classifying the multiple classes of skin lesions. It combines deep feature extraction, 

transfer learning, picture pre-processing, and classification methods. Let's break down 

the training and testing processes of the DTLNet algorithm step by step: 

4.2.1 Process of Training 

Step 1: HGWF Pre-processing Operation 

The first step involves pre-processing the ISIC-2019 training dataset using the 
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HGWF. The purpose of this operation is to remove various types of artifacts and 

noises from the dataset. Artifacts can distort images and removing them ensures that 

the training data is as clean and artifact-free as possible. 

Step 2: AlexNet-Based Transfer Learning for Segmentation 

Once the dataset is pre-processed, the algorithm applies an AlexNet-based transfer 

learning model for skin lesion segmentation. Transfer learning is a technique that 

leverages a pre-trained DL model (in this case, the AlexNet) and also fine-tunes it for 

the specific task of segmenting skin lesions. This step results in well-segmented skin 

lesions, which are essential for subsequent analysis. 

Step 3: DLCNN for Feature Extraction 

Following successful segmentation, a number of highly correlated, disease-dependent 

characteristics are extracted using the DLCNN architecture. The segmented skin 

lesions are used to extract these features, which are then saved in a feature database. 

Complex patterns and features in data can be automatically learned and represented 

by DL models such as DLCNNs. 

4.2.2 Testing Process: 

Step 4: Extracting Test Skin Lesion Features 

When a test skin lesion needs to be classified, the same pre-processing and feature 

extraction steps as those used in the training process (Steps 1 to 3) are applied to the 

skin lesion- which is selected for the testing. This ensures that the test data is pre-

processed and that relevant features are extracted for further analysis. 

Step 5: Skin Lesion Classification Using SoftMax Classifier 

The algorithm carries out the SLDC in this stage by contrasting the test skin lesion's 

features with the training features that are kept in the feature database. A SoftMax 

classifier is used for this purpose. The SoftMax classifier assigns the test lesion to one 

of the classes of skin lesions. This is essentially the classification step. 

Step 6: Quantitative Evaluation 

A quantitative assessment is carried out following the classification of the test skin 

lesion. This stage entails figuring out a number of performance indicators to evaluate 

the classification's efficacy and correctness. Accuracy, precision, recall, F1 score, and 

ROC curves are examples of common performance measurements. These metrics will 

offer a numerical assessment of the DTLNet algorithm's classification performance 
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In summary, the Proposed DTLNet algorithm is a robust framework that combines 

image preprocessing, transfer learning, deep feature extraction, and classification to 

accurately classify multiple classes of skin lesions. 
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In summary, the Proposed DTLNet algorithm is a robust framework that combines 

image preprocessing, transfer learning, deep feature extraction, and classification to 

accurately classify multiple classes of skin lesions. It ensures that the alg

consistently and precisely classify test skin lesions and is utilized for both training and 

Important information about the algorithm's performance and applicability for 

skin lesion classification tasks is provided by the quantitative evaluation step.

.3 Proposed DTLNet Framework 

Skin lesions often exhibit a range of unwanted artifacts and imperfections, including 

pepper noise, Gaussian noise, random distortions, jitter, and 

other forms of image degradation. Additionally, these skin lesions may be afflicted 

with unwanted hair artifacts, further complicating the processes of segmentation and 

classification. As a response to the challenges, this article presents a novel approach 

known as the HGWF for the enhancement of skin lesions. 

Figure 4.1 Proposed DTLNet framework 

Fig 3.3 illustrates the block diagram of the skin lesion pre-processing using HGWF, 

while Table 3.2 provides a detailed algorithm for HGWF. This pre-processing step is 

crucial in improving the quality of skin lesion images, reducing the impact of 

artifacts, and ultimately facilitating more accurate segmentation and classification.

Table 4.1 Proposed HGWF algorithm 

Skin lesion image 

skin lesion which is Pre-processed. 

In summary, the Proposed DTLNet algorithm is a robust framework that combines 

image preprocessing, transfer learning, deep feature extraction, and classification to 

It ensures that the algorithm can 

consistently and precisely classify test skin lesions and is utilized for both training and 

Important information about the algorithm's performance and applicability for 
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Skin lesions often exhibit a range of unwanted artifacts and imperfections, including 

pepper noise, Gaussian noise, random distortions, jitter, and 

Additionally, these skin lesions may be afflicted 

with unwanted hair artifacts, further complicating the processes of segmentation and 

classification. As a response to the challenges, this article presents a novel approach 

 

processing using HGWF, 

processing step is 

ality of skin lesion images, reducing the impact of 

artifacts, and ultimately facilitating more accurate segmentation and classification. 
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Step 1:  Apply the gaussian filter to the skin lesion image in order to eliminate the 

various kinds of noise artifacts from the skin lesion. 

Step 2: In this step, apply the wiener filter, which enhances the colour levels of the 

skin lesion and also highlights the cancer region. 

Step 3: Update the kernel function for wiener filter based on the gaussian properties, 

repeat the operation until the noise levels are eliminated. 

Step 4: Generate the final enhanced and denoised skin lesion through the updated 

filter responses. 

The algorithm for the Proposed HGWF utilized to pre-process photos of skin lesions 

is shown in Table 4.1. By eliminating different kinds of noise artifacts and 

emphasizing malignant areas, this pre-processing procedure aims to improve the 

quality of the skin lesion photos. 

Here is a thorough breakdown of every algorithmic phase: 

Step 1: Apply Gaussian Filter 

Input: Skin lesion image 

Output: Skin lesion image after applying the Gaussian filter 

The algorithm applies a Gaussian filter on the input image in this step. In image 

processing, the Gaussian filter is a widely used approach to lessen the impact of 

various noise artifacts present in the image of a skin lesion. By doing this, the image 

quality is improved by smoothing it out and lowering noise. 

Step 2: Apply Wiener Filter 

- Input: Gaussian-filtered image of a skin lesion  

- Output: Wiener filter picture of a skin lesion.  

The approach applies a Wiener filter to the picture that has been Gaussian filtered in 

addition to the Gaussian filter. The Wiener filter is used to highlight areas of the skin 

lesion that are suggestive of malignancy and to intensify the color levels of the lesion. 

The goal of this phase is to make the malignant areas in the picture more visible. 

Step 3: Update the Wiener Filter Kernel Function 

- Input: Skin lesion image after Wiener filtering 

- Output: Updated Wiener filter response 

- In this step, the algorithm will update the kernel function of the Wiener filter based 

on the Gaussian properties of the image. The operation is repeated until the noise 
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levels in the image are effectively eliminated. This iterative process ensures that the 

filter's response is optimized for noise reduction and enhancement of the cancerous 

regions. 

Step 4: Generate the Final Enhanced and Denoised Skin Lesion 

- Input: Wiener filter response 

- Output: Pre-processed skin lesion image 

- Finally, the algorithm generates the final enhanced and denoised skin lesion image 

using the updated filter responses. This output represents the result of the entire 

HGWF pre-processing process, where noise artifacts have been reduced, and the 

critical features of the skin lesion, especially those indicative of cancer, have been 

highlighted. 

In summary, the HGWF algorithm is a multi-step process that combines Gaussian and 

Wiener filters to pre-process skin lesion images effectively. This process results in 

improved image quality, reduced noise artifacts, and enhanced visibility of cancerous 

regions, which is essential for more accurate subsequent analysis such as 

segmentation and classification in the perspective of skin cancer diagnosis. 

Let's take a closer look at the HGWF procedures and how they are used in skin lesion 

image preprocessing: 

1. f(x,y) - The Input Skin Lesion Image: 

The function f(x,y) represents the original skin lesion image. This image typically 

contains various imperfections and artifacts such as noise and unwanted hair regions. 

The goal is to process this image in a way that overcomes these challenges and 

prepares it for further analysis. 

2. HGWF - The Noise Degradation Function (Hybrid Gaussian-Wiener Kernel 

Function) u(x,y): 

HGWF is a critical component of the pre-processing method. It is represented as    

u(x,y) and serves as a noise degradation function. This function combines elements of 

both Gaussian and Wiener kernel functions and plays a central role in addressing 

noise artifacts and enhancing the image quality. 

3. Artifacts (Noise and Hair Regions) - n(x,y): 

Artifacts in the skin lesion image, which encompass noise and hair regions, are 

represented as n(x,y). These artifacts are unwanted elements that hinder accurate 
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analysis and diagnosis of the skin lesion. Removing these artifacts is a major objective 

of the pre-processing step. 

4. Pre-processing for Artifact Removal: 

The pre-processing step is essential for overcoming the artifacts in skin lesion 

analysis. It is crucial to remember that traditional pre-processing techniques 

frequently have problems with feature reduction and loss. As a result, during the noise 

removal process, significant statistical features of the skin lesion may be eliminated. 

These restrictions are intended to be addressed by the HGWF. 

5. g(x,y) - The Degraded Skin Lesion: 

The result of applying the noise degradation function u(x,y) to the initial skin lesion 

image f(x,y) is the image g(x,y). The following is a mathematical representation of 

this operation: 

                                          g(x,y) = f(x,y) * u(x,y) + n(x,y)                                         (2) 

The degraded skin lesion g(x,y) now contains the impact of the noise degradation 

function and any remaining artifacts. 

6. h(x,y) - The Pre-processed Skin Lesion: 

The h(x,y) represents the pre-processed skin lesion image, which has undergone the 

HGWF function. This pre-processing is essential to produce a clean and improved 

image that can be effectively analyzed. Mathematically, this step is expressed as: 

                                             h(x,y) = FHGWF [g(x,y)]                                                 (3) 

   Here, F_HGWF performs the hybrid Gaussian-Wiener filtering operation on the 

degraded skin lesion g(x,y). 

7. Role of HGWF - Combining Gaussian and Wiener Functions: 

The HGWF incorporates both Gaussian and Wiener kernel functions. The Gaussian 

function primarily addresses texture noise with linear properties. In contrast, the 

Wiener function is employed to deal with the spatial noise characterized by non-linear 

properties. HGWF successfully addresses the many kinds of noise artifacts found in 

the skin lesion image by integrating these functions. 

8. Application of Gaussian Filter: 

Firstly, the skin lesion image is applied to a Gaussian filter. This filter is instrumental 

in removing texture noise, which is a form of noise that often exhibits linear 

properties. The Gaussian filter smooths out irregularities and inconsistencies in the 
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image, reducing the impact of noise artifacts with linear characteristics. 

In summary, the pre-processing process involving HGWF aims to enhance the skin 

lesion image by addressing various artifacts and noise issues while minimizing the 

loss of essential statistical characteristics. The combination of Gaussian and Wiener 

functions in HGWF allows for a more comprehensive approach to noise reduction and 

image enhancement, ensuring that the image is well-prepared for subsequent analysis, 

such as segmentation and classification in the context of skin lesion analysis and 

diagnosis. 

4.3 GAUSSIAN FILTER 

The Gaussian Filter is a fundamental component of the pre-processing method used in 

improving the quality of the background in skin lesion images. Here, we delve into a 

detailed explanation of how the Gaussian filter works and its specific properties: 

1. Background Quality Improvement: 

The Gaussian filter is employed to enhance the background quality of a lesion image. 

This improvement is achieved by leveraging the Gaussian filter's unique 

characteristics, including its ability to preserve edges within the image. Edge 

preservation is essential for preserving the image's integrity, especially when it comes 

to correctly detecting and describing skin lesions. 

2. Noise Removal with Gaussian Distribution Function: 

Using the Gaussian distribution function, the Gaussian filter is excellent at eliminating 

a variety of noise types, including Gaussian and salt-and-pepper noise. 

These noise types are common sources of interference that can degrade the quality of 

the lesion image. The Gaussian filter effectively mitigates this issue. 

3. Limitation in Handling Hair Artifacts: 

The incapacity of the Gaussian filter to efficiently eliminate hair artifacts from skin 

lesions is one of its drawbacks. 

Hair regions in the image tend to cast darker shadows, and this poses a challenge for 

conventional noise reduction methods. While the Gaussian filter is adept at addressing 

certain types of noise, it may struggle with hair artifact removal. 

4. Utilization of Mean (μg) and Variance (𝜎௚
ଶ) for Kernel Generation: 

The Gaussian filter employs both the mean (μg) and variance (𝜎௚
ଶ) computations to 

generate its kernel. The kernel represents the convolutional operation applied to the 



image for filtering. These calculations are essential for the filter to effectively address 

noise and improve image quality.

                                     

The mean (μg) is calculated using a formula that involves summation over a specified 

neighbourhood ‘η’ in the image. 

neighborhood's average pixel value, which acts as a benchmark for the filter's 

functions. 

                                            

The variance (𝜎௚
ଶ) is computed 

quantifies the variation or spread of pixel values within the neighbourhood ‘η’. The 

variance computation is essential for characterizing the properties of Gaussian noise 

in the image. 

Probabilistic Updating of Variance with Hybrid Gaussian

The computed variance (

variance information is updated in a probabilistic manner when hybrid and joint 

Gaussian-Wiener kernel functions are 

the characteristics of the image and its specific noise artifacts, improving its noise 

removal capabilities. 

Figure 4

In conclusion, the Gaussian filter is a useful

photographs, especially for noise reduction and background quality improvement. 

Although it is very good at removing certain kinds of noise, such Gaussian and salt

and-pepper noise, it might have trouble with hair artif

mean and variance calculations, which are essential for producing the filter kernel and 

guaranteeing efficient noise reduction. Its performance and adaptability are further 
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noise and improve image quality. 
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Wiener kernel functions are applied. This update allows the filter to adapt to 

the characteristics of the image and its specific noise artifacts, improving its noise 

4.2 HGWF based skin lesion preprocessing 

In conclusion, the Gaussian filter is a useful tool for pre-processing skin lesion 

photographs, especially for noise reduction and background quality improvement. 

Although it is very good at removing certain kinds of noise, such Gaussian and salt

pepper noise, it might have trouble with hair artifacts. The filter makes use of 

mean and variance calculations, which are essential for producing the filter kernel and 

guaranteeing efficient noise reduction. Its performance and adaptability are further 
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improved by the probabilistic updating of the variance using hybrid and joint 

Gaussian-Wiener kernels. 

4.4. WIENER FILTER 

It is an essential component of pre-processing method for improving the quality of the 

foreground in skin lesion images. Here, we provide a detailed explanation of how the 

Wiener Filter operates and its specific properties: 

1. Foreground Quality Improvement: 

The Wiener filter is employed to improve the foreground quality of a skin lesion 

image. This is done with an emphasis on preserving edges within the image. Edge 

preservation is essential to preserving the image's integrity, especially for accurately 

highlighting the cancer region and removing unwanted artifacts. 

2. Removal of Hair Artifacts: 

The Wiener filter plays a critical role in effectively removing hair artifacts from skin 

lesions. Hair regions often cast shadows or exhibit variations in color and texture, 

which can be challenging to address with conventional filtering methods. The Wiener 

filter is tailored to mitigate these issues. 

3. Enhancement of Colour, Brightness, Saturation, and Contrast: 

   - The Wiener filter not only removes unwanted artifacts but also enhances various 

visual properties of the image. This includes improving colour, brightness, saturation, 

and contrast. These enhancements are achieved through edge-preserving mechanisms, 

ensuring that essential features in the image are maintained and emphasized. 

4. Mean (μw) and Variance (𝜎௪
ଶ ) in Wiener Filter: 

   - The Wiener filter incorporates both the mean (μw) and variance (𝜎௪
ଶ ) as important 

parameters. These parameters are essential to the filter's functioning since they 

enable it to adjust to the unique features of the image and noise artifacts. The 

variance describes the variation or spread of pixel values within the neighborhood, 

whereas the mean indicates the average pixel value in the neighborhood. 

5. Denoising with the Wiener Filter 

   - The denoising process is a key outcome of the Wiener filter's operations. This step 

is represented by the equation: 

                              𝑏௪(𝑛, 𝑚) = 𝜇௪ +
ఙೢ

మ ି௩మ

ఙೢ
మ . ൫𝑎௚(𝑛, 𝑚) − 𝜇௪൯                                  (6) 
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  - Here, "ag(n, m)" shows the output of the Gaussian filter, "v2" signifies the variance 

is related to complicated noises and hair artifacts in the skin lesion, and " 𝑏௪(𝑛, 𝑚)" 

stands for the denoised result produced by the Wiener filter. The equation 

demonstrates how the Wiener filter adapts its operations based on these parameters to 

effectively reduce noise and enhance image quality. In conclusion, the Wiener filter is 

an essential component of skin lesion image pre-processing, concentrating on 

enhancing the foreground quality, especially for highlighting cancerous regions and 

removing hair artifacts. 

It also brings about enhancements in colour, brightness, saturation, and contrast 

through edge-preserving mechanisms. The inclusion of mean and variance 

parameters, along with their adaptive updating, allows the Wiener filter to effectively 

reduce noise and improve the visual properties of the image while preserving essential 

features. 

4.5 HYBRID GAUSSIAN-WIENER KERNEL FUNCTION 

The HGWF is a critical component that coordinates the operations of the Gaussian 

filter and the Wiener filter by controlling their respective kernel functions. The 

primary purpose of the HGWF is to create a unified approach that leverages the 

strengths of both filters for effective noise elimination and enhancement of the skin 

lesion image. 

Key Characteristics of the HGWF: 

1. Kernel Function Size (n×m): 

   - The HGWF is designed with a specific kernel function size, typically represented 

as n×m. This kernel function size determines the scope and coverage of the filtering 

operations. It defines the region in the image that is considered when applying the 

filter. This size is chosen to balance noise elimination and image enhancement. 

2. Incorporation of Hair Artifact and Noise Properties: 

   - The HGWF is engineered to incorporate the properties of hair artifacts and noise 

elimination characteristics both. This indicates that the function is made to deal with 

the particular difficulties that noise and hair artifacts in skin lesion photos provide. 

Function of the HGWF: 

The HGWF generates a denoising function, which combines the attributes of the 

Gaussian and Wiener filters in a coherent manner. This denoising function, 
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represented as F_HGWF, is created based on several parameters and calculations: 

                                       𝐹ுீௐி = ൬𝜇௚ +
ఙ೒

మିఎమ

ఙ೒
మ ൰ . ቀ𝜇௪ +

ఙೢ
మ ି௩మ

ఙೢ
మ ቁ . ൫𝑏௪(𝑛, 𝑚)൯                 (7) 

FHGWF is calculated by multiplying the following factors: 

      - (𝜇௚ +
ఙ೒

మିఎమ

ఙ೒
మ ): This component is related to the Gaussian filter, involving the 

mean (𝜇௚), the variance (𝜎௚
ଶ), and the property of complicated noise (η2). It 

contributes to noise reduction. 

      - (𝜇௪ +
ఙೢ

మ ି௩మ

ఙೢ
మ ): This part pertains to the Wiener filter, encompassing the mean 

(𝜇௪), the variance (𝜎௪
ଶ ), and the variance of hair artifacts and complex noise (v2). It is 

essential for noise reduction and image enhancement. 

      - 𝑏௪(𝑛, 𝑚): This term shows the denoised outcome which is produced by the 

Wiener filter. 

Convolution Operation: 

The final step involves performing a convolution operation, which is denoted as "*" in 

Equation 1, between the original skin lesion image f(x,y) and the FHGWF function in a 

pixel-wise manner. This operation is conducted iteratively and generates a new pixel 

values for each iteration. Ultimately, it produces the final denoised outcome. In 

essence, the HGWF serves as a bridge that harmonizes the Gaussian and Wiener 

filtering operations, allowing for a comprehensive approach to noise reduction and 

image enhancement. It efficiently addresses the challenges posed by noise and hair 

artifacts, producing a cleaner and visually improved skin lesion image suitable for 

subsequent analysis. 

4.6 PROPOSED SEGMENTATION USING ALEXNET 

Segmentation is a pivotal component in the SLDC, particularly with relation to the 

study of skin lesions. Traditional image processing techniques historically centered 

their segmentation efforts primarily on the colour attributes of cancerous regions 

within skin lesions. However, this traditional approach had limitations as it often 

ignored finer-grained, pixel-wise analysis. In more recent times, some approaches 

have sought to improve segmentation accuracy by adopting pixel-wise analysis. A 

more thorough analysis of the image is made possible by pixel-by-pixel analysis, 

which may improve the segmentation process' accuracy. Despite this advantage, it is 
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important to note that even pixel-wise analysis approaches had their limitations and 

were unable to consistently achieve optimal segmentation performance for Every kind 

of skin lesion. 

This work focused on addressing the segmentation challenges by considering the 

ISIC2019 dataset, which has images of eight diverse classes of skin lesions. These 

classes represent various types of skin lesions, each with its own unique 

characteristics. The dataset's diversity presented a formidable challenge for 

conventional segmentation methods, which often struggled to provide accurate and 

robust results. In many cases, the performance of these traditional methods was 

subpar and resulted in poor segmentation outcomes. 

In summary, an essential component of the SLDC procedure is segmentation, 

especially when it comes to skin lesion analysis, while traditional methods often 

focused on colour attributes, recent approaches aimed to improve accuracy through 

pixel-wise analysis. However, challenges remained, especially when dealing with 

diverse classes of skin lesions, as traditional methods often yielded poor segmentation 

results. This emphasizes the necessity of more sophisticated and flexible segmentation 

methods, like the one described in this work, in order to successfully handle the 

difficulties of skin lesion analysis. 

In the pursuit of improving skin lesion segmentation, DL models have emerged as a 

promising approach. These models can provide high-resolution, pixel-wise analysis of 

images, which can lead to enhanced segmentation accuracy. However, when applied 

to vast datasets like ISIC-2019, standard DL models face significant challenges, two 

of which are particularly notable: 

1. Vanishing Gradient Problems: 

   - The vanishing gradient issue can affect deep neural networks (NNs), particularly 

when working with huge datasets and deep architectures. The model may learn more 

slowly or not at all as a result of the vanishing gradient problem. This difficulty may 

have an impact on the model's capacity for accurate segmentation and generalization. 

2. High Computational Complexity: 

   - Pixel-wise analysis with DL models demands substantial computational resources. 

Processing each pixel individually in large images can be computationally intensive 

and time-consuming. This can be a practical hurdle, especially when working with 
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substantial datasets like ISIC-2019. This work focuses on adapting transfer learning 

models for skin lesion segmentation in order to address these issues. Utilizing pre-

trained models, transfer learning is a potent DL approach. These models are useful 

starting points for specific tasks since they have already acquired important 

characteristics and patterns from large datasets. 

4.6.1 Advantages of Transfer learning models adaption  

1. Knowledge Transfer: 

   - Transfer learning models come with a wealth of pre-existing knowledge, including 

knowledge of textures, shapes, and patterns relevant to image analysis. This pre-

trained knowledge can be valuable for segmenting skin lesions effectively. 

2. Faster Convergence: 

   - Transfer learning models often converge faster during training, thanks to their 

prior knowledge. This can significantly reduce the training time required to achieve 

accurate segmentations. 

3. Enhanced Performance: 

   - By optimizing a previously trained model for the particular purpose of segmenting 

skin lesions, it's possible to achieve improved segmentation performance without 

suffering from the vanishing gradient problem. 

In summary, this work recognizes the limitations of standard DL models, such as 

vanishing gradient issues and high computational complexity, when applied to 

extensive datasets like ISIC-2019. To address these challenges, the work shifts its 

focus to the utilization of transfer learning models. This method makes use of prior 

knowledge and speeds up the training process, which eventually results in skin lesion 

segmentation that is more effective and efficient. Transfer learning models are a 

promising solution for achieving better segmentation results with large and complex 

datasets. The utilization of transfer learning models has significantly advanced the 

fields of image analysis, by encompassing tasks like image recognition, image 

segmentation, background extraction, and edge analysis. With a number of benefits, 

including comparatively less computational complexity than other transfer learning 

models like ResNet, GoogleNet, and MobileNet, AlexNet stands out among these 

models as a successful option. 

 



4.6.2 ALEXNET for Skin Lesion Segmentation:

Figure 3.5 illustrates the segmentation process of skin lesions using the AlexNet 

architecture, a transfer learning model. This model is adept at highlighting the 

cancerous regions within the skin lesions by classifying individual pixels. Figure 3.5 

provides a comprehensive breakdown of each layer within the AlexNet model. The 

Figure 4.3 AlexNet architecture for skin lesion segmentation

AlexNet model excels in skin lesion segmentation by analysing the ABCDE 

properties. In the transfer learning models lik

tied to total layers and activation units that are present. The AlexNet model 

incorporates a total of 5 convolutional layers & 3 fully connected layers to achieve its 

segmentation results. 

Convolution Layers: 

The image processing algorithm's convolution layer 1 (Conv1) receives the pre

processed skin lesion input image. Kernel or filter

for feature extraction in the convolution layers

convolution process between the kernel matrix and the input image 

edges, horizontal lines, borders, bends, vertical lines, and any other significant 

characteristics. This feature extraction process is crucial for efficient segmentation.

Moreover, a ReLU is em

are also responsible for data pooling, which aids in making the network translation

invariant. Importantly, the output remains consistent even 

vary from layer to layer

detailed features, while later layers emphasize higher

convolution operation in the convolution layers is mathematically represented as 

follows: 
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- h(m, n) represents the pre-processed skin lesion, with ‘m’ rows and ‘n’ columns. 

- W(m, n) shows the weight matrix with kernel properties. 

- f_s(i, j) represents the segmented output. 

Fully Connected Layers: 

The output characteristics from Conv1 through Conv5 are linked sequentially to the 

Fully Connected Layer 6 (FC6). The FC layer functions as a flattening layer, 

connecting all the neurons within the network with an equal likelihood of connection. 

This linear transformation of input features is pivotal for producing output features. 

Three FC layers are employed for constructing a robust characteristic based on 

different classes of skin lesion images. These FC layers also act as a classifier, making 

it possible to classify the regions of skin lesions affected by disease by analysing 

individual pixels. Finally, they generate a binary map as segmented output, white 

indicating the cancer-affected region (assigned a binary value of 1) and black 

representing the non-cancer region (assigned a binary value of 0). In summary, the 

AlexNet transfer learning model is a powerful tool for skin lesion segmentation. It 

effectively extracts key features from skin lesions, allowing for accurate segmentation 

based on various properties. In the end, the model's network architecture—which 

consists of convolution and fully linked layers—produces a binary map that identifies 

the areas of the skin lesion photos that are damaged by cancer. 

4.7 FEATURE EXTRACTION AND CLASSIFICATION 

In the SLDC process, feature extraction is an important step following segmentation. 

Features in this context refer to statistical parameters that capture several attributes of 

skin lesions based on their respective classes. Traditional image processing-based 

feature extractors have faced limitations, especially when dealing with extensive 

datasets. They often struggle to extract the detailed ABCDE (Asymmetry, Border, 

Colour, Diameter, Edge) attributes from large datasets, and their effectiveness is more 

pronounced on smaller datasets. 

Role of DL in Feature Extraction and Classification: 

Recent advancements in DL models have revolutionized the feature extraction and 

classification process. DLCNN’s play a vital role in extracting a detailed spatial, 

spectral, texture, and colour features from segmented images. These models are 



highly effective in capturing intricate attributes and can identify interdependent 

relationships between pixels in segmented images, treating them as features.

DLCNN models are well

features from higher levels of input and combine them into more complex features at 

low levels. This versatility makes DLCNN a highly effective solution for feature 

extraction and classification tasks. 

by adjusting the kernel sizes and weights in combination with local connections.

Figure 4.4

Figure 3.6 represents the DLCNN model for feature extraction and classification. The 

following discussion offers a comprehensive analysis of each layer within the 

DLCNN model, including layer dimensions, filter sizes or kernel sizes, the number of 

filters, and parameters. This is a thorough explanation of the layers.

1. Conv2D-1: 

   - Layer Dimension: 62x62

   - Filter Size: 3x3 

   - Number of Filters: 32 

   - Parameters: 896 

2. MaxPooling2D-1: 

   - Layer Dimension: 31x31

   - Filter Size: 2x2 

   - Number of Filters: 32 

   - Parameters: 0 

3. Conv2D-2: 

   - Layer Dimension: 29x29

   - Filter Size: 3x3 
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highly effective in capturing intricate attributes and can identify interdependent 

relationships between pixels in segmented images, treating them as features.

DLCNN models are well-suited for the classification process, as they aggregate local 

features from higher levels of input and combine them into more complex features at 

low levels. This versatility makes DLCNN a highly effective solution for feature 

extraction and classification tasks. Moreover, the speed of DLCNN can be optimized 

by adjusting the kernel sizes and weights in combination with local connections.

4 DLCNN Feature Extraction and Classifier 
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DLCNN model, including layer dimensions, filter sizes or kernel sizes, the number of 
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   - Number of Filters: 64 

   - Parameters: 18,496 

4. MaxPooling2D-2: 

   - Layer Dimension: 14x14 

   - Filter Size: 2x2 

   - Number of Filters: 64 

   - Parameters: 0 

5. Flatten: 

   - Layer Dimension: 1x12,544 

   - No filter or kernel size 

   - No filters or parameters 

   - Parameters: 0 

6. Dense-1: 

   - Layer Dimension: 1x128 

   - No filter or kernel size 

   - No filters or parameters 

   - Parameters: 1,605,760 

7. Dense-2: 

   - Layer Dimension: 1x21 

   - No filter or kernel size 

   - No filters or parameters 

   - Parameters: 2,709 

8. SoftMax: 

   - Layer Dimension: 1x8 

   - No filter or kernel size 

   - No filters or parameters 

   - Parameters: 0 

Feature Extraction and Classification Process: 

The DLCNN model, which combines all of these layers, makes it easier to extract and 

classify features for skin cancer. After extracting key characteristics from segmented 

skin lesion images, the DLCNN model classifies the images based on the obtained 

detailed characteristics. With white signifying the presence of cancer (given a binary 
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value of 1) and black signifying the absence of cancer (assigned a binary value of 0), 

the result is a binary map that highlights areas of the skin lesion images that are 

affected by cancer. In summary, DLCNN models have demonstrated remarkable 

capabilities in feature extraction and classification tasks for skin cancer analysis. 

Their ability to capture intricate attributes and relationships between pixels in 

segmented images makes them a powerful tool for identifying cancer-affected regions 

in skin lesion images. The detailed analysis of each layer offers an insight into the 

architecture of the DLCNN model used in this process. 

4.8. Results 

The segmentation performance analysis of proposed AlexNet got an Accuracy of 

96.42%, precision of 98.23%, Recall of 97.82%, F1-Score of 97.93%, Sensitivity of 

98.72% and Specificity of 86.85%. All these values demonstrate the remarkable 

capabilities of Proposed AlexNet in accurately delineating skin lesions. They excel in 

various aspects, like accuracy, precision, recall, F1-Score, sensitivity, and specificity, 

contributing significantly to the field of lesion segmentation. In conclusion, the 

findings from this segmentation performance analysis emphasize that Proposed 

AlexNet excels in all metrics, showcasing its prowess in accurately segmenting skin 

lesions. 

The Classification Performance analysis of proposed DTL Net got an Accuracy of 

96.42%, precision of 98.23%, Recall of 97.82%, F1-Score of 97.93%, Sensitivity of 

92.34% and Specificity of 96.21%. 

The classification performance comparison findings highlight the outstanding 

capabilities of Proposed DTLNet in skin lesion diagnosis and classification. It stands 

out in terms of accuracy, precision, recall, F1-Score, sensitivity, and specificity. 

4.9 SUMMARY 

This Chapter presents a comprehensive approach to the detection and classification of 

skin lesions using a deep transfer learning-based framework named DTLNet. The 

methodology integrates advanced image preprocessing, segmentation, deep feature 

extraction, and classification to address challenges in the accurate identification of 

melanoma (MEL) and other types of skin cancer in dermoscopic images from the 

ISIC 2019 dataset. The Key components of the proposed method are Hybrid 

Gaussian-Wiener Filtering, Segmentation with AlexNet, Feature Extraction with 
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DLCNN, Classification Using SoftMax. This chapter successfully proposes an end-

to-end intelligent system for skin lesion classification through DTLNet. By 

combining hybrid preprocessing, deep segmentation using transfer learning, and 

feature-rich classification via DLCNN, the approach significantly enhances 

diagnostic performance over traditional methods. This work stands as a promising 

advancement for computer-aided skin cancer detection and supports its potential for 

real-time clinical applications. 
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CHAPTER-5 

ENHANCED SKIN CANCER CLASSIFICATION THROUGH A 

HYBRID OPTIMIZED APPROACH 

In the earlier chapter we have gone through the deep transfer learning based skin 

cancer diagnosis and classification using Alexnet and deep convolution neural 

network with improved accuracy. In this chapter we provide the detailed things about 

the another proposed research method by which we can do the diagnosis of skin 

cancer and also the classification for the improvement of the accuracy further 

compared to the previous technique 

5.1. INTRODUCTION 

In recent times, a wide range of ML, DL and Transfer Learning models have been 

developed for Skin Lesion Diagnosis and Classification (SLDC). However, these 

models have faced significant challenges, particularly when confronted with 

previously unseen image datasets. They have often struggled to effectively understand 

and process unknown image properties, which has limited their performance in 

practical applications. Furthermore, these techniques have run into problems with 

gradient descent and stochastic gradient descent, particularly as dataset sizes have 

grown. These difficulties have made it increasingly difficult for the models to 

successfully adjust to bigger and more complicated datasets. Recently, there has been 

a notable shift towards adopting Vision Transformer (ViT) networks in real-time 

scenarios for analysing previously unknown images. ViT networks have demonstrated 

superior performance in various applications, including SLDC. Drawing inspiration 

from the successes of ViT, this work has introduced a novel approach called the HOS-

Net, specifically designed for efficient and accurate SLDC. The proposed HOS-Net's 

architecture is shown in the block diagram in Figure 5.1. Working with the ISIC2019 

dataset, which includes eight distinct classes of skin cancers, is the first step. It's 

important to note, though, that the dataset shows a notable imbalance in the types of 

skin cancers that have been diagnosed, with some lesions—like multiple lesions—

being more common than others. The dataset is enlarged to guarantee a more uniform 

distribution of images for every class in order to rectify this imbalance. Following 

dataset expansion, basic image pre-processing techniques are applied to standardize 



the size of each image in the dataset. This standardization step helps ensure 

consistency in the data and facilitates subsequent analysis.

The HOS-Net, designed for efficient Skin Lesion Diagnosis and Classification 

(SLDC), encompasses several critical c

diagnostic accuracy and efficiency:

1. DGCIN Model (Dynamic Pixel Graph Convolutional and Interactive Network):

The DGCIN model plays a pivotal role in understanding the pixel relationships within 

skin lesion images. It focuses on identifying changes in pixel values to pinpoint 

regions that are affected by cancer. 

variations in color, texture, or other attributes that may signify the presence of skin 

cancer. The DGCIN model employs dynamic graph convolutional networks to extract 

these pixel relationships, enabling more accurate cancer region identification.

2. HDKN Model (Probabilistic Kohonen Feature Extractor):

The HDKN model is responsible for identifying probabilistic Kohonen features within 

segmented images. These features capture intricate relationships between different 
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the size of each image in the dataset. This standardization step helps ensure 

consistency in the data and facilitates subsequent analysis. 

Net, designed for efficient Skin Lesion Diagnosis and Classification 

(SLDC), encompasses several critical components that work in synergy to enhance its 

diagnostic accuracy and efficiency: 

 

Figure 5.1 HOS-Net Overview 
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The DGCIN model employs dynamic graph convolutional networks to extract 

these pixel relationships, enabling more accurate cancer region identification. 

The HDKN model is responsible for identifying probabilistic Kohonen features within 

segmented images. These features capture intricate relationships between different 
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classes of skin cancer. Kohonen features are probabilistic, meaning they provide 

insights into the likelihood of specific features or patterns being associated with 

classes of skin cancer. This probabilistic technique boosts the model's capacity to 

discriminate between various skin cancer kinds. 

3. SPOA Model (Selective Principle-Oriented Attribute Selection): 

The SPOA model functions as a feature curation component created to boost the 

efficiency of feature extraction and choice. Its principal aim is to remove unrelated or 

duplicate features from the dataset. By diminishing the dimensionality of the feature 

matrix, SPOA streamlines the training complexity of subsequent models. This 

selection procedure certifies that only the most applicable and enlightening attributes 

are preserved, ultimately resulting in a more efficient and precise SLDC. 

4. DENM Model (Dynamic Echo Network for Multiclass Classification): 

The multiclass skin cancer classification task is something that the DENM model is 

made to handle. It takes the pre-processed and feature-selected data and employs a 

unique approach known as probabilistic echo properties during the classification 

process. This method improves the overall accuracy and resilience of the model. The 

term "echo properties" suggests that the model uses echoes or repetitions of 

information to classify skin lesions accurately. By incorporating probabilistic aspects, 

DENM improves the model's ability to make informed decisions about different 

classes of skin cancer, ultimately leading to more precise and reliable diagnoses. 

However, the HOS-Net's effectiveness in SLDC is greatly attributed to these four 

critical components. Each element has a specific function, and when combined, they 

improve the model's ability to precisely and effectively identify and categorize skin 

lesions. The DGCIN model identifies pixel relationships, the HDKN model extracts 

probabilistic features, the SPOA model streamlines feature selection, and the DENM 

model uses probabilistic echoes for multiclass classification, resulting in a thorough 

and reliable method for classifying and diagnosing skin cancer. Finally, the HOS-Net 

represents a pioneering approach in the field of SLDC, inspired by the success of 

Vision Transformer (ViT) networks. It addresses the challenges faced by previous 

ML, DL, and transfer learning models by introducing a novel framework that 

effectively handles unknown image datasets. To accomplish precise and effective skin 

cancer diagnosis and classification, the HOS-Net architecture integrates dataset 
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expansion, picture pre-processing, feature extraction, selection, and classification. 

5.2 DATASET AUGMENTATION 

One essential method in ML and DL is dataset augmentation when dealing with class-

imbalanced datasets. When training images for different categories are not evenly 

distributed, it can lead to class imbalance issues. To enhance the overall number of 

samples in the training set, dataset augmentation entails producing more, altered 

versions of the original data. This technique aims to enhance the robustness and 

performance of ML models by diversifying and expanding the training data. In dataset 

augmentation, a number of popular methods are employed: 

Table 5.1 Data augmentation with parameters 

 

1. Rotation: Rotating images by a certain degree to introduce more variation into the 

dataset. For example, rotating an image by 90 degrees or 180 degrees. 

2. Scaling: Adjusting the size of images, either by enlarging or reducing them, to add 

more variation. This helps models handle variations in object sizes. 

3. Translation: Shifting images horizontally or vertically to create more diverse 

examples. Translation simulates different object positions within the images. 

4. Flipping: Mirroring images horizontally or vertically to augment the dataset. This 

technique creates additional variations by reversing the orientation of objects. 

5. Cropping: Randomly cropping a portion of an image, which introduces diversity by 

focusing on different parts of the original image. This is particularly useful for object 

detection tasks. 

6. Adding Noise: Injecting random noise into images to simulate real-world noise. 

This is especially useful for models that need to be robust in noisy environments. 

7. Changing Contrast and Brightness: Changing an image's contrast and brightness to 

produce additional variations. This helps models adapt to varying lighting conditions. 

8. Changing Colors: Modifying the hue, saturation, and brightness of images to 
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diversify the dataset. This is helpful for models dealing with color variations. 

By applying these augmentation techniques to existing data, dataset augmentation 

significantly increases the size of the dataset. This, in turn, results in more accurate 

and robust ML models. It's a fundamental practice for addressing class imbalance, 

enhancing model generalization, and improving performance when the available data 

is limited. Dataset augmentation ensures that ML models are better prepared to handle 

real-world variations and challenges. 

5.3 DCIGN SEGMENTATION 

A crucial issue in medical image analysis is skin lesion segmentation, which entails 

locating and defining the areas of the skin impacted by abnormalities or lesions. The 

DCIGN (Deep Convolutional Inverse Graphics Network) architecture can be 

employed for this purpose, but it requires specific modifications to the standard 

architecture to perform accurate skin lesion segmentation. To adapt the DCIGN 

architecture for skin lesion segmentation, the decoder component needs to be 

adjusted. In a traditional DCIGN, the decoder's role is to reconstruct an image from its 

encoded representation. On the other hand, the goal of skin lesion segmentation is to 

produce a binary mask that categorizes every pixel in the input image as either a 

lesion or not. This is accomplished by supplementing the decoder with an additional 

convolutional layer that has a sigmoid activation function and a single output channel. 

The output of this layer represents the likelihood that each pixel in the input image 

belongs to the lesion class. To train this modified DCIGN architecture for 

segmentation, a binary cross-entropy loss function is typically used. This loss function 

compares the predicted binary mask generated by the DCIGN to the manually created 

ground truth mask, where each pixel in the input image is labelled as either lesion or 

non-lesion. Manual annotation is frequently used to create the ground truth mask, 

labeling each pixel in the input picture according to whether or not it is located inside 

a lesion region. Effective DCIGN model training requires this laborious procedure.   

The DCIGN architecture consists of three core components: an encoder, a decoder, 

and an inverse graphics module as shown in Figure 3.8. These components work 

together to perform segmentation:  

Encoder: A non-linear activation function such as ReLU comes after each of the 

encoder's several convolutional layers. In order to create a 3D representation of the 



input image, the encoder's job is to extract high

Fig. 5.2  DCIGN architecture for skin lesion segmentation

Decoder: Usually, the decoder has several deconvolutional layers and non

activation functions behind them

representation produced by the encoder is the main duty of the decoder

Inverse Graphics Module: 

this module is essential. Usually, a sequence of 3D convolutional layers with non

linear activation functions in between each one

then used for the segmentation task.

that, when modified for the 

decoder to generate binary masks and employing specific loss functions. This 

architecture leverages the power of DL to accurately segment skin lesions, aiding in 

medical diagnoses and treatments.

5.3.1 CONVOLUTIONAL AUTO ENCODER

The convolutional autoencoder is the type of NN architecture which is used for 

feature extraction and dimensionality reduction. 

to this architecture since it processes incoming images and extr

characteristics. It typically consists of multiple convolutional layers, each followed by 

a non-linear activation function for example ReLU.

components and equations related to the encoder.

Convolutional auto encoder:

processing the input image and extracting useful information

convolutional layers. ‘X’ stands for the input image that the encoder processes in 
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input image, the encoder's job is to extract high-level features and attributes from it.

DCIGN architecture for skin lesion segmentation

Usually, the decoder has several deconvolutional layers and non

activation functions behind them. Reconstructing the input image from the 3D 

representation produced by the encoder is the main duty of the decoder. 

Inverse Graphics Module: In order to create the 3D representation of the input image, 

ial. Usually, a sequence of 3D convolutional layers with non

linear activation functions in between each one. The resulting 3D representation is 

then used for the segmentation task. In summary, DCIGN is a versatile architecture 

that, when modified for the task of skin lesion segmentation, involves adapting the 

decoder to generate binary masks and employing specific loss functions. This 

architecture leverages the power of DL to accurately segment skin lesions, aiding in 

medical diagnoses and treatments. 

1 CONVOLUTIONAL AUTO ENCODER 

The convolutional autoencoder is the type of NN architecture which is used for 

feature extraction and dimensionality reduction. The encoder component is essential 

to this architecture since it processes incoming images and extracts high

. It typically consists of multiple convolutional layers, each followed by 

linear activation function for example ReLU. Let's break down the key 

components and equations related to the encoder. 

encoder: Encoder (CNN): A CNN serves as the encoder, 

processing the input image and extracting useful information. It consists of multiple 

‘X’ stands for the input image that the encoder processes in 

level features and attributes from it. 

 

DCIGN architecture for skin lesion segmentation 

Usually, the decoder has several deconvolutional layers and non-linear 

Reconstructing the input image from the 3D 

In order to create the 3D representation of the input image, 

ial. Usually, a sequence of 3D convolutional layers with non-

. The resulting 3D representation is 

In summary, DCIGN is a versatile architecture 

task of skin lesion segmentation, involves adapting the 

decoder to generate binary masks and employing specific loss functions. This 

architecture leverages the power of DL to accurately segment skin lesions, aiding in 

The convolutional autoencoder is the type of NN architecture which is used for 

The encoder component is essential 

acts high-level 

. It typically consists of multiple convolutional layers, each followed by 

Let's break down the key 

A CNN serves as the encoder, 

. It consists of multiple 

‘X’ stands for the input image that the encoder processes in 
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order to extract features. There are weight matrices 𝑊௘ and bias vectors 𝑏௘ linked to 

each convolutional layer in the encoder. The training procedure teaches these 

parameters. kth convolutional layer in the encoder is denoted as 𝑍௘
௞. It represents the 

feature map produced by this layer. The convolution operation is denoted by *, which 

involves applying a convolutional filter to the input to extract spatial features. 

Previous Layer Output (𝑍௘
௞ିଵ): It represents the output of the (k-1)th convolutional 

layer in the encoder.  Activation Function (𝑓௘): To add non-linearity to the network, 

the activation function 𝑓௘ is applied elementwise to the convolution operation's output. 

The following is an expression for the kth convolutional layer's output, 𝑍௘
௞: 

                                                       𝑍௘
௞  =  𝑓௘ ቀ𝑊௘

௞  ∗  𝑍௘
{௞ିଵ}

 + 𝑏௘
௞ቁ                                       (9) 

In this equation, 𝑊௘
௞ represents the weight matrix, 𝑍௘

{௞ିଵ} is the output of the previous 

convolutional layer, 𝑏௘
௞ is the bias vector, and f_e is the activation function applied to 

the result. The final output of the encoder is a feature map denoted as 𝑍௘
௞, where ‘K’ 

represents the number of convolutional layers in the encoder. 

In order to recreate the original input or carry out additional tasks like classification or 

segmentation, the encoder's job is to gradually extract hierarchical characteristics 

from the input image. In many ML and DL applications, this feature extraction phase 

is essential. In a convolutional autoencoder, the decoder is responsible for 

reconstructing the output image from the feature map generated by the encoder. It is 

crucial to reconstructing the original input and acts as the opposite of the encoder. 

Typically, the decoder consists of several deconvolutional layers, each followed by a 

non-linear activation function. 

Let's delve into the key components and equations related to the decoder in a 

convolutional autoencoder: 

Decoder (CNN): The decoder is a CNN designed for reconstructing the output image 

from the encoder-generated feature map. 

Output of (k-1)th Deconvolutional Layer (𝑍ௗ
௞ିଵ): It is the result of the decoder's (k-1)th 

deconvolutional layer. It is used as the subsequent deconvolutional layer's input.  The 

decoder comes with weight matrices 𝑤ௗ and bias vectors 𝑏ௗ for every 

deconvolutional layer. The training procedure teaches these parameters. The output of 

the kth deconvolutional layer in the decoder is denoted as 𝑍ௗ
௞   . It represents the feature 
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map produced by this layer. The transposed convolution operation, denoted by *, is 

applied to up sample the feature map. It helps generate a larger spatial output that 

resembles the original image dimensions. The activation function 𝑓ௗ is applied 

element-wise to the result of the transposed convolution operation to make the 

network more non-linear. The output of the kth deconvolutional layer (𝑍ௗ
௞   ) can be 

expressed as follows: 

                                                     𝑍ௗ
௞   =  𝑓ௗ(𝑊ௗ

௞  ∗  𝑍ௗ
௞ିଵ  +  𝑏ௗ

௞)                                        (10) 

In this equation, 𝑊ௗ
௞ represents the weight matrix, 𝑍ௗ

௞ିଵ is the output of the previous 

deconvolutional layer, 𝑏ௗ
௞ is the bias vector, and 𝑓ௗ is the activation function applied to 

the result. The rebuilt image, represented by X', is the decoder's final output and is 

produced by the last deconvolutional layer. The function of the decoder is to take the 

feature map that the encoder has produced and turn it back into an image that is very 

similar to the original input. For many applications, such as image denoising, image 

super-resolution, and picture production, this reconstruction procedure is crucial. The 

combination of the encoder and decoder components forms the core of the 

convolutional autoencoder architecture. 

5.3.2 INVERSE GRAPHICS MODULE 

The inverse graphics module is a crucial component used in the DCIGN architecture 

to create a 3D representation of the input image, which is subsequently used for the 

segmentation task. This module typically consists of several 3D convolutional layers, 

and each layer is commonly followed by a non-linear activation function. 

Let's explore the key components and equations related to the inverse graphics 

module in DCIGN: 

- Inverse Graphics Module: The inverse graphics module is a part of the DCIGN 

architecture responsible for generating a 3D representation of the input image. This 

3D representation is utilized for segmentation purposes. 

- Output of (k-1)th 3D Convolutional Layer (V^(k-1)): It represents the output of the 

(k-1)th 3D convolutional layer in the inverse graphics module. It serves as the input to 

the next 3D convolutional layer. 

- Weight Matrix (𝑊௩) and Bias Vector (𝑏௩): For each 3D convolutional layer in the 

inverse graphics module, there are weight matrices (𝑊௩) and bias vectors (𝑏௩) 

associated with that layer. These parameters are learned during the training process. 
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Output of kth 3D Convolutional Layer (𝑉௞): The output of the kth 3D convolutional 

layer in the inverse graphics module is denoted as 𝑉௞. It represents the 3D 

representation generated by this layer. 

3D Convolution Operation (*): The 3D convolution operation, denoted by *, is 

applied to extract spatial features in three dimensions. It's used to process the 3D 

representation and create the desired output. 

Activation Function (𝑓௩): The activation function 𝑓௩ is applied elementwise to the 

result of the 3D convolution operation, introducing non-linearity into the network. 

The output of the kth 3D convolutional layer (𝑉௞) can be expressed as follows: 

                                                   𝑉௞  =  𝑓௩(𝑊௩
௞  ∗  𝑉௞ିଵ  +  𝑏௩

௞)                                            (11) 

In this equation, 𝑊௩
௞  represents the weight matrix, 𝑉௞ିଵ is the output of the previous 

3D convolutional layer, 𝑏௩
௞ is the bias vector, and 𝑓௩ is the activation function applied 

to the result. The final output of the inverse graphics module is a 3D representation of 

the input image, denoted as R, which is generated by the last 3D convolutional layer. 

This 3D representation can capture important spatial and structural information from 

the input image, making it suitable for segmentation tasks. The optimal design 

parameters of DCIGN, which are tuned to achieve the best segmentation performance, 

are detailed in Table 4, and they play a crucial role in the network's effectiveness for 

segmentation tasks. 

5.3.3. The segmentation algorithm of DCIGN provides a detailed step-by-step 

process for segmenting skin lesions using the DCIGN model. Here's a breakdown of 

each step: 

Input: Pre-processed image. 

Output: DCIGN segmented outcome. 

Step 1: The input image is provided to the DCIGN model. 

Step 2: Encoder: The encoder is responsible for analysing the input image to extract 

useful information. It uses a number of convolutional layers to accomplish this. The 

ReLU activation function processes each convolutional layer's output to add non-

linearity to the model. 

Step 3: Max-pooling: After each convolutional layer, max-pooling is applied. The 

feature maps' spatial dimensions are decreased using max-pooling, which might assist 

make the representation simpler. 
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Step 4: Decoder: The decoder plays a critical role in reconstructing the image with a 

segmentation mask. It comprises multiple deconvolutional layers, and like the 

encoder, the output of each deconvolutional layer is passed through a ReLU activation 

function. 

Step 5: Skip Connections: To enhance segmentation precision, skip connections are 

introduced between the encoder and the decoder. This mechanism helps maintain 

important spatial information, and feature maps from the encoder and decoder are 

joined together at similar spatial resolutions. 

Step 6: Output: The final output of the DCIGN model is a binary mask. This binary 

mask is responsible for segmenting the skin lesion from the surrounding skin. The 

pixels in the binary mask are classified as either lesion or non-lesion. 

Step 7: Loss Function: During the training phase, the model is optimized using a loss 

function. Binary cross-entropy loss and dice loss are the two loss functions that are 

combined in the DCIGN model. The difference between the ground-truth mask and 

the expected binary mask is measured by the binary cross-entropy loss. Conversely, 

the Dice loss quantifies the extent of overlap between the ground-truth and anticipated 

segmentation masks. Accurate segmentation results are ensured by the DCIGN 

model's efficient training thanks to the combined loss function. 

This segmentation algorithm demonstrates how DCIGN, by leveraging an encoder-

decoder architecture with skip connections and appropriate loss functions, can 

effectively segment skin lesions from input images. Table 3.4 provides the optimal 

parameter tuning settings for the DCIGN model. Let's break down each of these 

parameters: 

Layer Type: Describes the type of layer or operation applied in the model. 

Output Size: Specifies the dimensions (width x height x channels) of the feature 

maps or layers at various stages of the model. 

Input Image: The initial image dimensions are 224x224 with 3 colour channels 

(RGB). 

Convolutional + ReLU: Convolutional layers with ReLU activation function. They 

change the feature map dimensions as follows: 112x112x32, 56x56x64, 28x28x64, 

56x56x64, 112x112x32. 
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Hidden Skip Connections: The feature maps that are produced when the encoder and 

decoder use skip connections are referred to here. It maintains dimensions of 

28x28x64. 

Table 5.2 Optimal parameter tuning of DCIGN 

Layer Type Output Size 
Input Image 224x224x3 

Convolutional + ReLU 112x112x32 
Convolutional + ReLU 56x56x64 

Hidden Skip Connections 28x28x64 
Convolutional + ReLU 56x56x64 
Convolutional + ReLU 112x112x32 

Output 224x224x3 
Optimizer Adam 

Regularization weight decay 
Number of Epochs 1000 

Batch Size 64 
Learning Rate 1e-6 to 1e-2 
Loss Function Cross-Entropy 

 

Output: The final output dimensions are the same as input, 224x224x3. 

Optimizer: The optimization algorithm used during training. In this case, the Adam 

optimizer is employed. 

Regularization: Regularization techniques help prevent overfitting. "Weight decay" 

is a form of regularization that encourages smaller weights in the model. 

Number of Epochs: The training process involves multiple epochs (complete passes 

through the training data). In this case, the model is trained for 1000 epochs. 

Batch Size: The quantity of samples in every training mini-batch. A batch size of 64 

means that the model is updated after processing 64 samples at a time. 

Learning Rate: One hyperparameter that controls the step size at which the model's 

weights are updated during training is the learning rate. It is adjusted during training, 

ranging from 1e-6 to 1e-2. 

Loss Function: Cross-Entropy is a common choice for segmentation tasks. It 

quantifies the difference between the predicted and ground-truth masks. 

To get the DCIGN model's best segmentation performance, these ideal parameters are 

adjusted. When training a deep neural network (NN) for image segmentation, the 



selection of parameters, layer sizes, and settings is essential since it affects the 

model's capacity to correctly identify skin lesions from inpu

5.4 HDKN FEATURE EXTRACTION

The HDKN (Hybrid Deep Kohonen Network) is a NN architecture shown in Figure 

3.9 is designed for feature extraction from segmented skin lesion images. It combines 

the Kohonen Self-Organizing Map (KSOM) with DL technique

network that can effectively extract valuable features from images.

Figure 5.3 The architecture of the HDKN for feature extraction

Feature extraction algorithm of the HDKN

The Feature Extraction Algorithm of the High

(HDKN) is a process that takes preprocessed DCIGN segmented images and extracts 

meaningful features from them. 

the feature extraction process:

Input: Preprocessed DCIGN segmented image

Output: HDKN extracted features

Step 1: Preprocessing                                                                                                

The input skin lesion images are preprocessed to gener

input pixel is labeled as either a lesion or non

representation, this step is necessary.

Step 2: KSOM Layer (Kohonen Self

The preprocessed segmented pictures are sent 

The KSOM layer is composed of neurons organized in a two
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selection of parameters, layer sizes, and settings is essential since it affects the 

model's capacity to correctly identify skin lesions from input images. 

4 HDKN FEATURE EXTRACTION 

The HDKN (Hybrid Deep Kohonen Network) is a NN architecture shown in Figure 

3.9 is designed for feature extraction from segmented skin lesion images. It combines 

Organizing Map (KSOM) with DL techniques to create a hybrid 

network that can effectively extract valuable features from images. 

The architecture of the HDKN for feature extraction

Feature extraction algorithm of the HDKN 

The Feature Extraction Algorithm of the High-Dimensional Kohonen Network 

(HDKN) is a process that takes preprocessed DCIGN segmented images and extracts 

meaningful features from them. Here is a thorough breakdown of the procedures 

process: 

: Preprocessed DCIGN segmented image 

: HDKN extracted features 

: Preprocessing                                                                                                

The input skin lesion images are preprocessed to generate feature maps, where each 

input pixel is labeled as either a lesion or non-lesion. In order to create the basic data 

representation, this step is necessary. 

: KSOM Layer (Kohonen Self-Organizing Map) 

The preprocessed segmented pictures are sent into the KSOM layer. 

The KSOM layer is composed of neurons organized in a two-dimensional grid.

selection of parameters, layer sizes, and settings is essential since it affects the 

The HDKN (Hybrid Deep Kohonen Network) is a NN architecture shown in Figure 

3.9 is designed for feature extraction from segmented skin lesion images. It combines 

s to create a hybrid 

 

The architecture of the HDKN for feature extraction 

Dimensional Kohonen Network 

(HDKN) is a process that takes preprocessed DCIGN segmented images and extracts 

Here is a thorough breakdown of the procedures in 

: Preprocessing                                                                                                 

ate feature maps, where each 

In order to create the basic data 

dimensional grid. 
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Each neuron has an associated weight vector with the same number of dimensions as 

the input feature vectors. 

The KSOM layer's primary responsibility is to recognize objects or patterns in the 

images based on the input data. 

Step 3: Extracted Data Clusters (EDC) 

The KSOM layer processes the input data and clusters the pixels based on similarities 

in their feature vectors. 

Feature maps are the result of the KSOM layer, where each map represents a cluster 

of pixels with similar features. This grouping allows for more efficient feature 

extraction in subsequent steps. 

Step 4: CNN Layer (Convolutional NN) 

The CNN layer then receives the feature maps that the KSOM layer has created.  

Usually, one or more fully connected layers are built after several convolutional and 

pooling layers to form the CNN layer. High-level features are extracted from the 

clustered data by this layer, which improves the model's capacity to identify 

connections and patterns in the input images.  

Step 5: Training 

Supervised learning techniques are used to train the entire network. 

In order to minimize the discrepancies between the expected and actual ground-truth 

features, the network's parameters are optimized using a loss function. This training 

process fine-tunes the HDKN model to perform effective feature extraction from 

segmented skin lesion images. 

In summary, the HDKN feature extraction algorithm combines the power of the 

KSOM layer for clustering and the CNN layer for high-level feature extraction. In 

order to improve the model's ability to identify patterns and objects, it uses both 

supervised and unsupervised learning techniques to extract significant characteristics 

from skin lesion photos. 

The KSOM (Kohonen Self-Organizing Map) is a technique for unsupervised learning 

that groups data according to feature vector similarity. This competitive learning 

process involves assigning a weight vector to each neuron in the network, which 

represents a region in the input space. The network receives input data during 

training, and the neuron that has the weight vector closest to the input data is chosen 
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as the winner. The weights of the winning neuron are then adjusted to move closer to 

the input data. This process continues through multiple iterations until the weight 

vectors converge to a stable configuration. The KSOM layer in the HDKN is 

responsible for clustering the input data based on similarities in their feature vectors. 

It produces a set of feature maps where each map represents a cluster of input data 

with similar features. The KSOM layer is organized as a set of neurons arranged in a 

two-dimensional grid. 

Here's an overview of how the HDKN feature extraction process works: 

1. Input data, which are segmented skin lesion images, are presented to the HDKN 

model. 

2. The KSOM layer, based on the principles of the Kohonen Self-Organizing Map, 

clusters the input data by finding similarities in their feature vectors. 

3. Multiple feature maps, each representing a cluster of input data having common 

features, make up the KSOM layer's output. 

An effective tool for extracting features from segmented images is the HDKN. It is 

ideal for applications like skin lesion analysis and classification since it blends the 

powers of traditional unsupervised learning (KSOM) with DL approaches. Finding 

and extracting pertinent characteristics from segmented skin lesion photos is an 

efficient method that may be applied to a variety of medical image analysis 

applications. During training, the weight vectors of the winning neurons are modified 

to approach the input data in the Kohonen Self-Organizing Map (KSOM). One way to 

express the update rule is as: 

                                      𝑤(𝑡 + 1)  =  𝑤(𝑡)  +  𝛼(𝑡)(𝑥 −  𝑤(𝑡))                                             (12)                                                              

Here's an explanation of the terms in this equation: 

w(t): The weight vector of the winning neuron at time t. 

x: The input data. 

α(t): The learning rate at time t. 

t: The current iteration or time step. 

This update rule's objective is to gradually converge to a stable configuration during 

training by modifying the weight vectors to better match the input data. 

The learning rate, α(t), is a crucial parameter in this update process. Typically, the 

learning rate is decreased over time to allow the network to converge more 



117 
 

effectively. One common way to decrease the learning rate is to use an exponential 

decay function: 

                               𝛼(𝑡)  =  𝛼(0)  ∗  𝑒𝑥𝑝(−𝑡/𝜏)                                                           (13) 

Here's an explanation of the terms in this decay function: 

- α(0): The initial learning rate. 

- τ: The time constant. 

- t: The current iteration or time step. 

The exponential decay function gradually reduces the learning rate as training 

progresses. This slowing down of learning helps the network to fine-tune its weights 

more precisely as it converges to a stable configuration. It is a common strategy to 

improve the convergence and performance of self-organizing maps like KSOM. 

The table provides details about the optimal parameter tuning of the DCIGN (Deep 

Convolutional Inverse Graphics Network) model, which is used for feature extraction. 

These parameters have been fine-tuned to achieve the best feature extraction 

performance. Here's an explanation of the parameters: 

- Layer Type: Describes the kind and characteristics of every layer in the model. 

- Output Size: Indicates the dimensions or size of the output produced  

   by each layer. 

- Input Image: The initial input image has a size of 224x224 pixels with three  

  color channels (RGB). 

- KSOM Layer: The Kohonen Self-Organizing Map (KSOM) layer is used   

  with a grid size of 120x120 neurons. 

- EDC Layer: The Extracted Data Clusters (EDC) layer has a grid size of  

  100x100. 

- Convolutional + ReLU: There are two Convolutional layers with Rectified 

   Linear Unit (ReLU) activation functions, resulting in output sizes of 55x55 and  

   40x40, respectively. 

- MaxPooling: Two MaxPooling layers are applied with kernel sizes of 5x5 and 

   3x3. 

- Dense 1 + ReLU: The first Dense layer uses ReLU activation and has an output 

size of 1x37460. 

- Dense 2 + SoftMax: The second Dense layer employs SoftMax activation with  
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   an output size of 1x1478. 

- Output: The final output has dimensions of 1x1478. 

- Optimizer: The Adam optimizer is used to train the model. 

- Regularization: Weight decay is applied for regularization. 

- Number of Epochs: Training occurs over 1000 epochs. 

- Batch Size: Each batch used during training consists of 64 samples. 

- Learning Rate: The learning rate ranges from 1e-6 to 1e-2. 

- Loss Function: The Cross-Entropy loss function is employed during training. 

These parameters collectively define the architecture and training settings of the 

DCIGN feature extraction model, resulting in effective feature extraction from pre-

processed segmented skin lesion images. The optimization process tunes these 

parameters to enhance the model's performance. 

5.5 SPOA FEATURE SELECTION 

A colony of pelicans is used by the SPOA (Social Pelican Optimization Algorithm), a 

meta-heuristic algorithm, to find the best feature subset for a machine learning task. 

The algorithm draws inspiration from pelicans' social behavior in the wild, where they 

follow each other in search of food. Here's an explanation of the optimal design 

parameters of the SPOA algorithm: 

Input Feature Size: The initial input feature size is 1x1478, indicating the number of 

features initially considered for selection. 

Population Size: The population size typically ranges from 50 to 100 or more 

pelicans, representing potential feature subsets. 

Inertia Weight: The inertia weight, ranging from 0.1 to 1.0, is a parameter that 

influences the movement behaviour of the pelicans. 

Acceleration Constants: The acceleration constants, ranging from 1.0 to 2.0, affect 

how the pelicans update their positions based on their own and their neighbours’ 

experiences. 

Cognitive Coefficient: Ranging from 1.0 to 2.0, the cognitive coefficient determines 

the pelicans' sensitivity to their own experiences. 

Social Coefficient: Also ranging from 1.0 to 2.0, the social coefficient influences the 

pelicans' awareness of their neighbours’ experiences. 



Maximum Iterations: The algorithm can run for a maximum number of iterations, 

which typically ranges from 100 to 1000 or more.

Figure 5.4  Optimal feature selection process using 

Neighbourhood Topology

topologies, affecting how they share information and learn from each other.

Constriction Factor: The constriction factor, ranging from 0.5 to 1.0, controls the 

pelicans' convergence behaviour.

Stopping Criteria: The algorithm can stop based on a predefined threshold.

Output Feature Size: The final output feature size is 1x504, indicating the selected 

features for the ML problem. 
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: The algorithm can run for a maximum number of iterations, 

which typically ranges from 100 to 1000 or more. 

 

Optimal feature selection process using SPOA

Neighbourhood Topology: The pelicans' interactions can be based on global or ring 

topologies, affecting how they share information and learn from each other.

: The constriction factor, ranging from 0.5 to 1.0, controls the 

pelicans' convergence behaviour. 

: The algorithm can stop based on a predefined threshold.

: The final output feature size is 1x504, indicating the selected 

features for the ML problem.  

: The algorithm can run for a maximum number of iterations, 

SPOA 

The pelicans' interactions can be based on global or ring 

topologies, affecting how they share information and learn from each other. 

: The constriction factor, ranging from 0.5 to 1.0, controls the 

: The algorithm can stop based on a predefined threshold. 

: The final output feature size is 1x504, indicating the selected 



120 
 

Together, these variables determine how the SPOA algorithm is configured, 

determining the size of the pelican population, how they travel, and how they 

cooperate to find the optimal feature subset. In order to choose the most pertinent 

characteristics for the particular problem, the algorithm seeks to maximize a fitness 

function based on the HDKN. The optimization process tunes these parameters to 

achieve the best feature selection performance. 

The SPOA (Social Pelican Optimization Algorithm) operates through several key 

steps: 

Initialization: 

- Let ‘N’ be the population size. 

- P = {p1, p2, ..., pN} represents the set of pelicans, where each pelican stands for a 

  possible way to solve the optimization issue. 

- For every pelican, the solution is shown as a binary vector xi ,where i = 1,2,...,  

  d, and d is problem dimension. 

Evaluation: 

- A fitness function f(p) is employed to assess each pelican's quality within the 

   population.  

- The fitness function evaluates the algorithm's performance using the chosen features  

   and is frequently based on the HDKN (Hybrid Deep Kohonen Network). 

- The fitness value is a real number that indicates how well the pelican performs on  

   the optimization problem. 

Movement: 

- The pelicans in the population move in search of a better solution, following specific 

   movement rules that mimic the flocking behavior of pelicans. 

- Pelicans' positions and velocities are updated at each iteration based on the 

  movement rules. 

Update: 

- After each iteration, the population is updated according to the movement rules. 

- The pelican with the greatest fitness score becomes the "global best pelican"   

   gbest, and the other pelicans start following its lead. 

- To maintain population diversity, the least fit pelican is periodically replaced with a  

   randomly produced new pelican. 
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Termination: 

- When a specified termination condition is satisfied, the algorithm stops. This 

requirement may be the convergence of fitness values or a maximum number of 

iterations. 

Selection: 

- The pelican in the population with the highest fitness value determines the ultimate  

   solution.  

                              Table 5.3 Optimal parameter tuning of SPOA 

Hyperparameter Typical Range 

Input feature size 1 x 1478 

Population Size 50 to 100 or more 

Inertia Weight 0.1 to 1.0 

Acceleration Constants 1.0 to 2.0 

Cognitive Coefficient 1.0 to 2.0 

Social Coefficient 1.0 to 2.0 

Maximum Iterations 100 to 1000 or more 

Neighborhood Topology Global, Ring. 

Constriction Factor 0.5 to 1.0 

Stopping Criteria Threshold 

output feature size 1 x 504 
The SPOA algorithm's ideal parameter tuning, which enables the algorithm to choose 

the best feature subset for an ML issue, is given in table 3.5. In conclusion, the SPOA 

method is a potent tool for feature selection since it effectively searches for the ideal 

subset of features for a particular machine learning problem by utilizing the collective 

behavior of pelicans. 

Movement: 

The movement of pelicans in the SPOA algorithm is guided by specific rules that 

emulate the flocking behavior of pelicans. These movement rules aim to lead each 

pelican toward a better solution while avoiding unfavorable ones. The position and 

velocity of each pelican are updated at each iteration based on these rules, as 

described in the following equations: 

- ′𝑣௜௝(𝑡 + 1)ᇱ  represents the velocity of pelican i in the jth dimension at time t+1. 

- ′𝑥௜௝(𝑡 + 1)′  represents the position of pelican i in the jth dimension at time t+1. 

- ‘w’ is the inertia weight. 
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- ‘c1’ and ‘c2’ are the acceleration constants. 

- 𝑟𝑎𝑛𝑑(𝑥) is a random number between 0 and 1. 

- 𝑝௕௘௦௧௜ , 𝑗(𝑡) is the personal best position of pelican i in the j-th dimension at time t. 

- 𝑔௕௘௦௧௝(𝑡) is the global best position in the population in the j-th dimension at time t. 

The equations for updating the velocity and position of each pelican are as follows: 

1. Velocity Update: 

𝑣௜௝(𝑡 + 1)  =  𝑤 ∗ 𝑣௜௝(𝑡) +  𝑐1 ∗  𝑟𝑎𝑛𝑑(𝑥) ∗  ቀ𝑝௕௘௦௧௜ , 𝑗(𝑡) −  𝑥௜௝(𝑡)ቁ +  𝑐2 ∗  𝑟𝑎𝑛𝑑(𝑥) ∗

 ቀ𝑔௕௘௦௧௝(𝑡) −  𝑥௜௝(𝑡)ቁ                                                                                                            (14) 

2. Position Update: 

                                      - 𝑥௜௝(𝑡 + 1)  =  𝑥௜௝ (𝑡) +  𝑣௜௝(𝑡 + 1)                                           (15) 

In these equations, the velocity update takes into account the previous velocity, the 

attraction towards the personal best position (pbest), and the attraction towards the 

global best position (gbest). The acceleration constants, c1 and c2, control the impact 

of these attractions, and the inertia weight, w, regulates the effect of the previous 

velocity. 

Overall, the movement rules ensure that pelicans collectively explore the search space 

for optimal solutions, with a balance between exploiting known good positions 

(personal best) and exploring new areas of the search space (global best). This mimics 

the social behavior of pelicans seeking to find the best feeding grounds. 

In the SPOA algorithm, the population is updated and maintained during the 

optimization process, and the final solution is selected according to specific criteria. 

Here's how the update, termination, and selection processes work: 

Update: 

After each iteration, the population is updated based on the movement rules. In 

particular: 

- The pelican with the greatest fitness score, representing the best solution found so   

   far, is designated as the "global best pelican" (g_best). 

- The other pelicans in the population begin to follow the lead of the global best  

   pelican, adjusting their positions and velocities to move closer to the global best 

   solution. 

- To ensure diversity and exploration of the search space, the least fit bird in the 
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   population is periodically replaced with a randomly produced new bird. This 

   mechanism helps to maintain population diversity and avoid getting stuck in local 

   optima. 

Termination: 

The SPOA algorithm continues to iterate and update the population until a termination 

condition is met. Common termination conditions include: 

- Reaching a maximum number of iterations: The algorithm stops after a predefined   

   number of iterations. 

- Convergence of fitness values: If the fitness values of the pelicans no longer  

   significantly improve or change, indicating that the algorithm has likely converged 

   to a solution, the algorithm can be terminated. 

Selection: 

Once the termination condition is met, the final solution is selected based on the 

pelican with the highest fitness value in the population. This pelican represents the 

best solution found by the algorithm throughout the optimization process and is 

chosen as the final result. 

In summary, the SPOA algorithm periodically updates the population, with pelicans 

following the best-performing individual, and it continues iterating until a termination 

condition is satisfied. The final solution is then chosen based on the best fitness value 

achieved during the process. This process helps the algorithm search for optimal 

feature subsets in the context of feature selection for ML. 

5.6 DENM CLASSIFIER 

The DENM (Densely-Connected Echo State Network) is a recurrent NN with a 

specific architecture and training algorithm. It uses a fixed, randomly initialized 

sparse connectivity structure of recurrent nodes, along with input and output nodes, to 

perform various tasks, including skin cancer classification. Here's an overview of the 

mathematical analysis of a DENM for classification: 

Initialization of the DENM: 

- The state of the network at time step t is represented by the vector x(t), which 

includes hidden nodes. 𝑥(𝑡)  =  [𝑥ଵ(𝑡), 𝑥ଶ(𝑡), . . . , 𝑥௡(𝑡)]், where n is the number of 

hidden nodes. 
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- The input at time t is denoted by u(t), which includes input nodes. 𝑢(𝑡)  =

 [𝑢ଵ(𝑡), 𝑢ଶ(𝑡), . . . , 𝑢௠(𝑡)]், where m is the number of input nodes. 

- The output at time t is given by y(t), which includes output nodes. 𝑦(𝑡)  =

 ൣ𝑦ଵ(𝑡), 𝑦ଶ(𝑡), . . . , 𝑦௣(𝑡)൧
்
, where p is the number of output nodes. 

- The connectivity matrix of the DENM is represented by 𝑊 = [𝑤௜௝], where 𝑤௜௝ is the 

weight of the connection from node j to node i. 

- The input weight matrix is represented by 𝑊௜௡   =  [𝑤௜௡ೕ
], where 𝑤௜௡ೕ

 is the weight of 

the connection from input node j to hidden node i. 

- The output weight matrix is represented by 𝑊௢௨௧  =  [𝑤௢௨௧௝
], where 𝑤௢௨௧௝

 is the 

weight of the connection from hidden node j to output node i. 

- The initial state of the DENM is set to x(0) = 0. 

- The input and output weight matrices are randomly initialized. 

Dynamics of the DENM: 

- The dynamics of the DENM are described by a recurrent equation. At each time step 

t, the state of the network x(t) is updated using the following equation: 

                                         𝑥(𝑡)  =  𝑓(𝑊𝑥(𝑡 − 1) + 𝑊௜௡𝑢(𝑡))                                            (16) 

  Here, f is a nonlinear activation function, often the hyperbolic tangent function. 

- The output of the DENM at time t is computed as: 

                                                               𝑦(𝑡)  =  𝑊௢௨௧𝑥(𝑡)                                                   (17) 

Table 5.4 Optimal parameter tuning of DENM 

Hyperparameter Typical Range 

Input Layer 1 x 504 

reservoir 504 504 

Output size 1 x 8 

Optimizer Adam 

Regularization weight decay 

Number of Epochs 1000 

Batch Size 64 

Learning Rate 1e-6 to 1e-2 

Loss Function Cross-Entropy 

 



The DENM leverages this architecture and the dynamics described above for the

purpose of skin cancer classification. It processes the input data, updates its state, and 

produces an output that represents the classification result. The training process is 

designed to adjust the weight matrices W_in and W_out to optimize the classifi

performance. 

Table 6 provides information on the optimal design parameters of the DENM model, 

which have been fine-tuned to achieve the best classification performance for skin 

cancer classification. These parameters determine the network's architec

behavior during the learning process.

The Dynamics of the DENM and its classification model are described as follows:

Dynamics of the DENM (Equations):

1. At each time step t, the state of the network x(t) is updated using the equation:

                                            

   - f is a nonlinear activation function, typically the hyperbolic tangent function.

   2. The output of the DENM at time t is computed 

Figure 

The DENM features a reservoir of hidden nodes with randomly initialized and fixed 

weights. These hidden nodes have a sparse, random connectivity structure. The input 

weights and output weights are learned during training.
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purpose of skin cancer classification. It processes the input data, updates its state, and 

produces an output that represents the classification result. The training process is 

designed to adjust the weight matrices W_in and W_out to optimize the classifi

provides information on the optimal design parameters of the DENM model, 

tuned to achieve the best classification performance for skin 

cancer classification. These parameters determine the network's architec

behavior during the learning process. 

The Dynamics of the DENM and its classification model are described as follows:

Dynamics of the DENM (Equations): 

1. At each time step t, the state of the network x(t) is updated using the equation:

                                      𝑥(𝑡)  =  𝑓(𝑊𝑥(𝑡 − 1) +  𝑊௜௡𝑢(𝑡))                                            

f is a nonlinear activation function, typically the hyperbolic tangent function.

2. The output of the DENM at time t is computed as: 

𝑦(𝑡)  =  𝑊௢௨௧𝑥(𝑡) 

Figure 5.5 Classification Model of DENM 

The DENM features a reservoir of hidden nodes with randomly initialized and fixed 

weights. These hidden nodes have a sparse, random connectivity structure. The input 

weights are learned during training. 

The DENM leverages this architecture and the dynamics described above for the 

purpose of skin cancer classification. It processes the input data, updates its state, and 

produces an output that represents the classification result. The training process is 

designed to adjust the weight matrices W_in and W_out to optimize the classification 

provides information on the optimal design parameters of the DENM model, 

tuned to achieve the best classification performance for skin 

cancer classification. These parameters determine the network's architecture and its 

The Dynamics of the DENM and its classification model are described as follows: 

1. At each time step t, the state of the network x(t) is updated using the equation: 

                                             

f is a nonlinear activation function, typically the hyperbolic tangent function. 

 

The DENM features a reservoir of hidden nodes with randomly initialized and fixed 

weights. These hidden nodes have a sparse, random connectivity structure. The input 
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Training Output Weights (W_out): 

- The output weights of the DENM are trained using a linear regression algorithm. 

- Given a set of input-output pairs {(u(t), d(t))}, where d(t) represents the desired     

   output at time t, the output weights are computed using the following equation: 

                                           𝑊𝑜𝑢𝑡 =  (𝑋்𝑅 +  𝑏𝑒𝑡𝑎 ∗ 𝐼) − 𝑋்𝑅஽                                        (18) 

 Where,   

   - X is a matrix of hidden node activations. 

   - R is the regularization matrix. 

   - beta is the regularization parameter. 

   - I is the identity matrix. 

   - D is a matrix of the desired outputs. 

   Performance Evaluation: 

- The performance of the DENM is assessed using a separate test set of input-output   

   pairs. 

- The output of the DENM is compared to the desired output using a suitable error  

   metric, such as mean squared error or cross-entropy loss. 

Table 5.5 Skin cancer classification algorithm of DENM 

Input:    SPOA selected features. 

Output: Classified cancer type. 

Step 1: Initialization: Randomly initialize the weights of the input-to-hidden 

connections based on SPOA features, the hidden-to-hidden connections, and the 

hidden-to-output connections. These weights are typically drawn from a Gaussian 

distribution. 

Step 2: Define the network structure: Specify the number of hidden, inputs, and 

output nodes, and the connectivity pattern between them. In the case of a DENM, 

the input layer receives the input data, the hidden layer comprises of many recurrent 

nodes, and the output layer produces the network's predictions. 

Step 3: Forward pass: For each input example in the training set, feed the input 

through the network and compute the network's output. During this step, the hidden 

layer of the DENM is updated based on the input and the previous hidden layer 

state. The output is computed by multiplying the hidden layer state by the output 
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weights and passing it through a nonlinear activation function. 

Step 4: Calculate error: By comparing the network's output to the true target values 

for the input example, we can calculate the error using a suitable loss function, such 

as mean squared error or cross-entropy loss. 

Step 5: Backward pass: Propagate the error backwards through the network using 

the chain rule of calculus, to update the weights of the connections. This involves 

computing the gradients of the weights with respect to the error, and using gradient 

descent or a similar optimization algorithm to update the weights in the direction 

that reduces the error. 

Step 6: Repeat steps 3-5: Continue feeding input examples through the network, 

computing the output, calculating the error, and updating the weights, until the error 

on the training set reaches a satisfactory level. 

Step 7: Test the model: Use the trained network to make predictions on a separate 

test set of input examples and evaluate the model's performance on this set. This 

step is important to ensure that the model generalizes well to new data and resulted 

in effective skin cancer type. 

1. Initialization: Randomly initialize the weights of the input-to-hidden connections 

based on SPOA features, the hidden-to-hidden connections, and the hidden-to-output 

connections. These weights are typically drawn from a Gaussian distribution. 

2. Define the network structure: Specify the number of hidden, input, and output 

nodes, as well as the connectivity pattern between them. 

3. Forward pass: For each input example in the training set, feed the input through the 

network and compute the network's output. During this step, the hidden layer of the 

DENM is updated based on the input and the previous hidden layer state. 

4. Calculate error: Compare the network's output to the true target values for the input 

example and calculate the error using a suitable loss function. 

5. Backward pass: Propagate the error backward through the network to update the 

weights of the connections using gradient descent or a similar optimization algorithm. 

6. Repeat steps 3-5: Continue feeding input examples through the network, computing 

the output, calculating the error, and updating the weights until the error on the 

training set reaches a satisfactory level. 
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7. Test the model: Use the trained network to make predictions on a separate test set 

of input examples and evaluate the model's performance on this set. 

Table 5.6 Optimal parameter tuning of DENM 

Hyperparameter Typical Range 

Input Layer 1 x 504 

reservoir 504 504 

Output size 1 x 8 

Optimizer Adam 

Regularization weight decay 

Number of Epochs 1000 

Batch Size 64 

Learning Rate 1e-6 to 1e-2 

Loss Function Cross-Entropy 

 

Table 3.8, specifies the hyperparameters of the DENM model, including input layer 

size, reservoir size, output size, optimizer, regularization, number of epochs, batch 

size, learning rate, and loss function. These parameters are fine-tuned to optimize the 

classification performance for skin cancer classification. 

5.7 RESULTS 

The Proposed HOS-Net excels in skin lesion segmentation, achieving a remarkable 

SACC of 99.83%. It also maintains a high Segmentation Precision (SPR) of 99.01, 

indicating precision in identifying lesion boundaries. A Segmentation Recall (SRE) 

of 99.12 signifies its proficiency in capturing all relevant lesion areas. The 

Segmentation F1-Score (SF1) of 99.57 demonstrates balanced precision and recall, 

contributing to its exceptional performance. It achieves perfect Segmentation 

Sensitivity (SSEN) of 98.94%, indicating its capacity to detect all lesion regions 

accurately. It also exhibits a perfect Segmentation Specificity (SSPE) of  87.12%, 

effectively excluding non-lesion areas. 

5.8 SUMMARY 

This research presents a comprehensive deep learning-based framework for 

automated skin cancer detection and classification using the ISIC 2019 dataset. It 

introduces a multi-stage hybrid system encompassing advanced preprocessing, 

segmentation, feature extraction, optimization, and classification. Initially, 

dermoscopic images are enhanced using hybrid filtering techniques like HGGIF and 
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HGWF to reduce noise and artifacts. Precise lesion segmentation is achieved through 

DCIGN and AlexNet-based models. Deep features are extracted using architectures 

such as DLCNN and HDKN, which incorporate both spatial and texture details. To 

address the curse of dimensionality and improve discriminative performance, optimal 

features are selected using the Social Pelican Optimization Algorithm (SPOA). 

Finally, a Deep Echo State Network Machine (DENM) is employed for robust 

multiclass classification. The proposed HOS-Net model, integrating all these 

components, achieves highly competitive accuracy, precision, sensitivity, and 

specificity, demonstrating its effectiveness as a reliable and scalable solution for early 

skin cancer diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

CHAPTER – 6  

RESULTS AND ANALYSIS 

In the preceding chapter we have a full review of proposed approaches for skin 

cancer detection and categorization. In this chapter we will chat about the findings 

produced for proposed models and also we will see the evaluation and analysis of our 

data with state of art approaches.  

6.1. INTRODUCTION 

Skin cancer diagnosis and classification, owing to its implications for global health, 

has emerged as a pressing concern in recent times, largely attributed to escalating 

environmental radiation exposure. Timely and precise detection of skin lesions is of 

paramount importance, as it significantly impacts the prognosis and treatment of 

patients. In this chapter, we delve into the intricate experimental setup designed to 

harness the power of advanced deep 1earning techniques, with the purpose of 

improving accuracy for diagnosis of skin lesion and classification. 

Our research endeavors encompass a wide array of innovative algorithms and 

methodologies, each meticulously crafted to address specific challenges in cancer 

detection and segmentation. The cornerstone of our approach is the utilization of a 

multi-layer residual CNN (MLRNet), ingeniously combined with a HGGIF applied 

within the discrete wavelet transform (DWT) domain. This dynamic combination is 

tailored for skin cancer segmentation and is designed to transcend the limitations of 

conventional deep learning methods. Our performance benchmarks on renowned 

datasets, such as ISIC-2019 and PH2, highlight the efficacy of this approach, setting 

a new standard for accuracy. 

A critical aspect of our experimental setup involves the deployment of the Deep 

Transfer Learning Network (DTLNet) for skin lesion segmentation. This multistep 

process commences with preprocessing, where a HGWF is employed to reduce noise, 

ensuring the highest data quality. Disease-affected regions are subsequently localized 

using the AlexNet architecture, facilitating precise disease boundary delineation. 

Deep features specific to various skin diseases are then extracted via a DL CNN, and 

the final multi-class classification step is seamlessly executed using a SoftMax 
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Classifier. This integrated approach demonstrates exceptional classification 

performance, underscoring its superiority compared to conventional techniques. 

Furthermore, we introduce a groundbreaking approach - the HOS-Net. This 

comprehensive framework is engineered to deliver unparalleled performance by 

harnessing a spectrum of strategies. It encompasses dataset augmentation, image 

preprocessing to enhance data quality, the innovative DCIGN for disease region 

recognition, feature extraction facilitated by the HDKN, optimal feature selection 

through the SPOA, and, finally, disease classification achieved with a DENM. HOS-

Net excels on the ISIC-2019 dataset, underscoring its ability to accurately classify 

positive cases.  

In the next sections of this chapter, we embark on an exhaustive journey through the 

components of our experimental setup. We meticulously detail the datasets chosen 

for our study, elucidate the preprocessing steps undertaken to ensure data quality, 

introduce the architecture and design principles of the networks involved, and define 

the evaluation criteria that form the bedrock of our analysis. By dissecting our 

experimental setup, our goal is to give a complete indulgent of the methodologies 

employed, the rationale behind their selection, and the potential implications of our 

findings. In the end, our research aims to significantly advance the fields of skin 

cancer detection and segmentation, improving performance standards and accuracy in 

comparison to conventional techniques. 

6.2 COMPREHENSIVE OVERVIEW OF THE ISIC-2019 DATASET FOR 

SKIN LESION DIAGNOSIS AND RESEARCH 

Introduction 

In the realm of dermatology and the critical field of skin lesion diagnosis, access to 

comprehensive datasets is pivotal in advancements in the development of CAD tools, 

specifically for the timely detection of melanoma. The ISIC recognized the 

significance of this endeavor and took a monumental step by curating a vast 

collection of skin lesion images, aptly named ISIC-2019. The ISIC-2019 dataset has 

been made readily accessible to the global research community, opening doors for 

innovative studies and improvements in CAD systems focused on melanoma 

diagnosis. 



132 
 

The ISIC-2019 dataset stands as a testament to the collaborative efforts of the 

medical community, researchers, and healthcare institutions. It represents a fusion of 

diverse sources, including data from hospitals, clinics, and even images captured 

from personal mobile devices. This extensive dataset, which includes an astounding 

25,331 photos of skin lesions overall, is a visual treasure trove for dermatological 

study. Within the ISIC-2019 dataset, researchers encounter a rich tapestry of skin 

lesions, each presenting a unique clinical challenge. These lesions are meticulously 

categorized into eight distinct forms of skin cancer. Each of these categories reflects 

the multifaceted nature of skin lesions, encompassing both benign and malignant 

cases. This diversity within the dataset serves as a real-world representation of the 

complexities faced by dermatologists in their clinical practice. For researchers and 

practitioners alike, the ISIC-2019 dataset provides a wealth of information that 

extends beyond images alone. Every image in this extensive group is thoughtfully 

paired with ground-truth annotations. These annotations encompass critical 

diagnostic information, including lesion segmentation masks that outline the precise 

boundaries of skin lesions. Furthermore, diagnostic labels specify whether a 

particular lesion is malignant or benign. These annotations serve as the cornerstone of 

training and evaluating CAD models, enabling the development of robust diagnostic 

tools. Notably, the ISIC-2019 dataset goes a step further by providing precomputed 

image characteristics. These characteristics encompass a wide range of data, from 

color histograms that capture the color distribution within the images to texture 

features that unveil textural patterns. Furthermore, wavelet-based features are 

included, enhancing the dataset's richness and value. The inclusion of these 

precomputed image characteristics is a pivotal aspect of the ISIC-2019 dataset. It 

empowers researchers to employ ML models, even in cases where the source images 

themselves may not be available. This feature greatly extends the utility of the 

dataset, facilitating a more comprehensive approach to skin lesion analysis. 

In essence, the ISIC-2019 dataset serves as an invaluable resource for the global 

research community, offering a holistic perspective on skin lesions and their 

diagnosis. Its diverse and extensive collection of images, coupled with annotations 

and precomputed characteristics, represents a treasure trove of data for developing 

and fine-tuning CAD tools. The dataset embodies a collaborative effort to harness 
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technology and data in the pursuit of accurate and early melanoma diagnosis, 

underscoring the significance of this field in improving healthcare outcomes. 

6.2.1 SETTING THE STAGE: EXPERIMENTAL CONFIGURATION FOR 

THE ISIC-2019 DATASET 

In our research, the ISIC2019 data set stands as a pivotal cornerstone for training and 

testing of the planned lesion diagnosis and the classification model. The ISIC2019 

dataset is broadly recognized for its public availability and its real-time relevance to 

the field of dermatology. This dataset has been a significant resource in various skin 

cancer diagnostic studies, facilitating the development and evaluation of cutting-edge 

models.  

The ISIC-2019 dataset encompasses a diverse array of skin lesions, offering a rich 

variety of cases that closely resemble real-world scenarios. This diversity is essential 

as it encapsulates the complexity and heterogeneity of skin conditions encountered in 

clinical practice. As illustrated in Figure 3, the dataset features a compelling 

spectrum of skin diseases. Specifically, the dataset includes eight distinct skin 

conditions: SCC, VASC, DF, BKL, AKIES, BCC, NV, and MEL. 

It's noteworthy that these conditions span a range of severity levels, from benign to 

malignant, making this dataset an invaluable resource for evaluating the diagnostic 

capability of the proposed model across the spectrum of skin cancer types. The 

availability of both benign and malignant cases allows for comprehensive testing, 

assessment, and validation of the model's accuracy and reliability in distinguishing 

between these categories. 

To facilitate the training and testing of our model, we have thoughtfully partitioned 

the ISIC-2019 dataset into three distinct subsets. Each subset serves a specific 

purpose and collectively ensures the robustness of our model. The partitioning 

scheme is as follows: 

1. Testing Subset (10%): This segment of the dataset is allocated for the rigorous 

testing of our model's performance. It represents a critical evaluation phase where our 

model is subjected to previously unseen data to assess its ability to make accurate 

diagnoses. 

2. Validation Subset (10%): Validation subset plays a key role in training process. It 

enables us to fine tune the mode1's hyper parameters, optimizing its performance. 
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The model's performance on the validation data helps us make informed decisions 

during training. 

3. Training Subset (80%): The majority of the ISIC2019 dataset, constituting 80% 

of the total data, is dedicated to the training of our proposed model. This enormous 

amount of data provides the basis for our model's learning to correctly identify and 

categorize different skin lesions. By thoughtfully allocating the dataset into these 

distinct segments, we ensure that the model is not only proficient in recognizing 

common skin lesions but also robust when presented with new, unseen cases. This 

approach is fundamental to our objective of creating an algorithm for skin lesion 

diagnosis and classification that performs with exceptional accuracy, regardless of 

the nature or severity of the skin condition. A key component in accomplishing this 

objective is the ISIC-2019 dataset, which is abundant in diversity and 

comprehensiveness. In our pursuit of training and testing the DTLNet model for 

lesion diagnosis and classification, we turn to the ISIC-2019 challenge dataset as a 

crucial and invaluable resource. This dataset, which is publicly accessible and 

continually updated to align with the evolving field of dermatology, holds significant 

importance in our research. The ISIC-2019 dataset combines images from the BCN 

20000 and HAM10000 datasets, both of which are available for easy access via the 

internet. The HAM10000 dataset, a noteworthy component of the ISIC-2019 

compilation, contains a total of 10,000 skin lesion images. Each of these images 

boasts a resolution of 600x450 pixels. These high-resolution images serve as a 

valuable resource for our research, enabling our model to delve deep into the details 

of the skin lesions, ensuring precise diagnosis and c1assification. 

On the other side, the BCN 20000 dataset is an extensive collection, comprising 

19,424 images. These images are characterized by a higher resolution, with 

dimensions of 1024 by 1024 pixels. This dataset's vastness and higher resolution 

make it a treasure trove of skin lesion images, enriching our research with diverse 

and detailed cases. 

The entire ISIC dataset represents a comprehensive compilation of lesions, and it 

includes 25,331 images, which are thoughtfully saggregated into eight distinct 

disease types, each representing unique challenges in the domain of lesion diagnosis. 

The distribution of images across these categories is as follows: 
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1) SCC: This category comprises 628 images. 

2) VASC: VASC features 253 images. 

3) DF: A total of 239 images are included in the DF category. 

4) BKL: BKL is represented by 2,624 images. 

5) AKIEC: AKIEC includes 867 images. 

6) BCC: BCC is a substantial category with 3,323 images. 

7) NV: NV stands as the largest category, containing 12,875 images. 

8) MEL: MEL includes 4,522 images. 

This categorization mirrors the real-world diversity of skin lesions, ranging from 

benign to malignant, and presents a formidable challenge for our model in accurately 

diagnosing and classifying such varied cases. It is this diversity that allows us to 

rigorously evaluate the model's performance and guarantee its reliability across a 

broad spectrum of skin conditions. 

To effectively handle the task segmentation of skin lesion and feature extraction, we 

employ deep learning models, which have proven to be highly effective in processing 

medical images. Notably, the application of a transfer learning model is employed to 

conduct the challenging eight-class classification procedure. The meticulous curation, 

extensive diversity, and careful partitioning of the ISIC-2019 dataset represent the 

robust foundation upon which our research is built. This dataset empowers our model 

to deliver precise, reliable, and accurate skin lesion diagnoses, ensuring that it can 

effectively navigate the complex landscape of dermatological conditions. 

6.3 COMPREHENSIVE EXPERIMENTAL SETUP 

In the endeavor to orchestrate a comprehensive and methodically rigorous 

experimental framework for this research, a series of pivotal steps and meticulous 

considerations were assiduously undertaken. The overarching goal was to harness 

cutting-edge technological resources and adhere to industry best practices, thereby 

facilitating the attainment of peak model performance and unwavering reliability in 

the realm of skin lesion diagnosis and c1assification. 

Hardware Configuration:  

The foundation of our experimental setup was laid with the judicious selection of a 

high-performance computational system. This system was thoughtfully outfitted with 

a powerful GPU that boasted NVIDIA CUDA support. This pivotal hardware 
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component played a pivotal role in our experiments by facilitating GPU acceleration 

throughout the training and valuation phases of our deep 1earning models. The 

incorporation of GPU acceleration was of paramount importance as it imparted a 

substantial boost to our computational capabilities. This enhancement translated into 

markedly expedited processes for model training and testing. The GPU's ability to 

handle complex mathematical computations with remarkable speed and efficiency 

was instrumental in reducing the time required for our experiments, thereby 

streamlining the research workflow and enhancing overall productivity. 

Software Environment:  

A meticulously structured and easily manageable software environment was 

diligently established to support our experimental endeavors. In this regard, we 

harnessed the capabilities of the Anaconda distribution – a comprehensive platform 

designed to cater to the specific needs of our research. One of the distinguishing 

features of Anaconda is its proficiency in creating and maintaining isolated Python 

environments. This capability provided a pivotal advantage, as it streamlined the 

management of package dependencies and configurations. 

The strategic utilization of Anaconda offered several noteworthy advantages to our 

research workflow. It ensured that our investigations were conducted in a controlled 

and stable software environment, significantly mitigating the risk of version conflicts 

or compatibility issues that could potentially impede progress. By creating distinct 

Python environments tailored to the precise requirements of our experiments, we 

established a robust foundation for seamless execution. This meticulous approach 

enabled our research team to focus on the scientific aspects of the study, with the 

assurance that the software infrastructure would not pose unwarranted challenges or 

disruptions. In essence, the software environment established through Anaconda 

served as an essential asset in maintaining the integrity and efficiency of our 

experimental setup. 

Dataset Partitioning:  

The ISIC2019 data set, encompassing a heterogeneous group of skin lesion images, 

underwent a meticulous partitioning process, resulting in the creation of three well-

defined subsets. These subsets were meticulously curated to serve distinct purposes 

within our research framework, each playing a crucial role in the overarching goal of 
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developing a robust and high-performing model for diagnosis of skin lesion and 

c1assification. The primary motive behind this dataset partitioning was to facilitate a 

systematic and structured approach to our research endeavors. We created a clear and 

purpose-driven structure for the several phases of model creation and evaluation by 

dividing the dataset into three separate subsets: the training, validation, and testing 

sets. The set of training assumed a central role in the initial phases of our research. It 

provided the foundational data upon which our model was constructed and fine-

tuned. Through exposure to this subset, our model had the opportunity to learn and 

adapt, with a focus on acquiring the ability to accurately distinguish between 

different skin lesion classes. This training phase was critical for the model to grasp 

the underlying patterns and properties that constitute each class, ultimately leading to 

optimized classification performance. Simultaneously, the validation set served as a 

critical component in the hyperparameter optimization process. It played a pivotal 

role in fine-tuning the model's configurations, encompassing parameters such as 

1earning rates, batch size, dropout rates, and weight decay. The meticulous 

optimization of these hyperparameters was a fundamental step in ensuring that the 

model achieved its peak performance. Through iterative adjustments and evaluations 

on the va1idation set, we strived to identify the optimal parameter values that would 

enhance the model's correctness and reliability. Finally, the testing set represented the 

ultimate assessment of our model's proficiency. Comprising previously unseen data, 

this subset provided a real-world simulation of the model's performance in a clinical 

context. The robustness and generalizability of our approach were demonstrated by 

its ability to correctly identify and categorize skin lesions in this unseen data. It 

served as the litmus test for the efficacy of our approach, offering a clear indication 

of its practical utility. To sum up, a crucial and critical stage in our study technique 

was dividing the ISIC2019 dataset into training, validation, and test sets. It provided 

a structured framework for model development, hyperparameter optimization, and 

performance evaluation, all contributing to the overarching objective of advancing 

diagnosis of skin lesion and c1assification. 

Cross-Validation:  

In the quest for a rigorous and resilient model evaluation, we employed a method of 

paramount importance known as k-fold cross-validation. This method was 
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meticulously integrated into our experimental framework to fortify the evaluation 

process, thereby ensuring the robustness of our model's performance assessment. The 

essence of k-fold cross-va1idation lies in its ability to provide a complete and 

unbiased eva1uation of the mode1's capabilities. It serves as a bulwark against the 

potential pitfalls of overfitting, a common challenge when working with machine 

1earning and deep 1earning models. The fundamental principle of this approach 

entails the division of the dataset into k equitably sized folds, where k represents a 

user-defined value. Each of these folds plays a dissimilar role in the cross-validation 

process, contributing to a holistic and reliable evaluation of the model. The key tactic 

is to use the remaining k-1 folds for mode1 training and choose one fold as the 

validation set. After that, this process is repeated k times, with each fold acting as the 

validation set precisely once. This strategy is important for two reasons. Above all, it 

prevents overfitting by continuously evaluating the model's performance on different 

data subsets. A recurring issue in machine learning is overfitting, a condition where a 

model becomes overly adapted to the training data yet has trouble with new, unseen 

data. We thoroughly test the model's generalization skills by using cross-validation to 

make sure it actually learns the underlying patterns that distinguish different classes 

of skin lesions rather than just memorizing the training data. Second, a greater level 

of confidence in the model's performance measures is provided by k-fold cross-

validation. We can gain a more thorough picture of the model's average performance 

by assessing it several times across several validation sets. As a result, performance 

measurements including accuracy, precision, recall, and F1-score become more 

reliable and precise.  

In conclusion, using k-fold cross-validation in our experimental setup is a reliable 

and essential method to strengthen the model assessment procedure. In order to create 

a skin lesion diagnostic and classification model that is extremely reliable and 

durable, it prevents overfitting, improves the model's capacity for generalization, and 

produces reliable performance measures. 

Hyperparameter Tuning:  

In the intricate landscape of model development, the meticulous configuration of 

hyperparameters assumes a position of paramount significance. These 

hyperparameters, which encompass elements such as the learning rate, batch size, 



139 
 

number of epochs, dropout rate, and weight decay, profoundly influence the model's 

behavior, learning capacity, and, consequently, its overall performance. The process 

of fine-tuning hyperparameters is not merely a routine task; it is a meticulous 

endeavor aimed at achieving an optimal synergy between these critical settings. The 

importance of this calibration lies in its ability to unlock the full potential of the deep 

learning model, propelling it towards the zenith of performance and reliability. To 

facilitate this fine-tuning process, we employed a cross-validation methodology, a 

strategic choice that underpins the systematic exploration of a vast array of 

hyperparameter combinations. Cross-validation, in this context, assumes the role of 

an assiduous explorer, venturing through the intricate terrain of hyperparameter space 

to unearth the configurations that would be most conducive to model excellence. 

One crucial hyperparameter that controls the step size at which the model updates its 

internal parameters during training is the learning rate. A judicious choice in setting 

the learning rate can spell the difference between a model that converges swiftly and 

one that meanders, or worse, diverges. Our study required that a variety of learning 

rates be examined, each carefully evaluated for its effect on the convergence and 

ultimate performance of the model.Another crucial hyperparameter that determines h 

ow many data samples are processed in each training iteration is the batch size. An 

optimal batch size is key to balancing computational efficiency and model accuracy. 

Our research took on the task of experimenting with various batch sizes, evaluating 

their implications for training speed and the model's ability to capture intricate 

patterns. 

The number of epochs, a hyperparameter often subject to extensive deliberation, 

determines the count of training cycles the model undergoes. Achieving the right 

balance in epoch selection is fundamental for model convergence and avoidance of 

overfitting. Through systematic hyperparameter tuning, we aspired to pinpoint the 

ideal number of epochs that would align with the training of our model. The dropout 

rate, a regularization technique, presents a pivotal hyperparameter in the quest for 

optimal model performance. It governs the proportion of neurons in the model that 

are temporarily "dropped out" during training, thereby preventing overfitting. Our 

research encompassed a rigorous exploration of dropout rates to ascertain the most 

effective rate for our skin lesion diagnosis model. A regularization method similar to 
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L2 regularization, weight decay, adds a penalty term to the loss function dependent 

on the amount of weights, which is crucial for preventing overfitting. A judicious 

choice of weight decay can bolster model generalization. In our quest for the perfect 

hyperparameter configuration, we scrutinized weight decay values, seeking the 

balance that would enrich the model's robustness. This meticulous calibration of 

hyperparameters, performed via cross-validation, ultimately rendered a treasure trove 

of optimal settings. These settings, aligned with the specific requirements of our skin 

lesion diagnosis model, serve as the scaffolding upon which we constructed a 

resilient and high-performing deep learning framework. They are the key to 

unlocking the model's full potential, ensuring that it learns with precision, generalizes 

with confidence, and delivers unparalleled performance. 

In sum, the fine-tuning of hyperparameters is an intricate process that wields a 

profound impact on the model's learning dynamics and performance. By subjecting 

these critical settings to the rigors of cross-validation, we embarked on a journey of 

discovery, illuminating the path to a highly optimized and dependable skin lesion 

diagnosis and classification model. 

GPU Utilization:  

In the realm of deep learning, the quest for model excellence invariably leads us to 

grapple with resource-intensive computations. As the sheer complexity of neural 

networks continues to expand, the demand for computational power grows 

commensurately. To meet this demand, we harnessed the prodigious capabilities of 

Graphics Processing Units (GPUs) and ensured that our research unfolded with 

maximum computational efficiency. Our journey into the world of deep learning 

hinged on the deployment of TensorFlow and Keras, two revered libraries in the 

pantheon of deep learning tools. These libraries, well-known for their versatility and 

extensive adoption in the machine learning community, were not harnessed in their 

conventional forms. Rather, we opted for their GPU-supported versions, an astute 

decision that ushered in a new era of computational prowess. The GPU, a processing 

unit originally conceived for rendering graphics, has undergone a remarkable 

evolution. It has transformed into a formidable computational workhorse, capable of 

executing complex mathematical operations with unparalleled speed and efficiency. 

Deep learning, with its reliance on matrix computations and backpropagation 
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algorithms, is a natural beneficiary of this transformation. By installing GPU-

supported TensorFlow and Keras, we bestowed our deep learning models with the 

power to harness this technological marvel. The ramifications of this decision are 

profound. The presence of GPU acceleration during training equates to a substantial 

reduction in the time required for model convergence. Tasks that would otherwise be 

measured in days or weeks are compressed into mere hours. The iterative process of 

training and fine-tuning, often a bottleneck in deep learning research, unfurled with 

unprecedented celerity. 

Our models, now unshackled from the constraints of conventional processing units, 

demonstrated accelerated training and testing speeds. This enhancement extended 

beyond a mere boost in computational performance; it was a catalyst for rapid 

experimentation, allowing us to traverse a wider terrain of model architectures, 

hyperparameter configurations, and optimization techniques. The benefits extended 

further, revealing an intricate synergy between hardware and software. The GPU-

supported TensorFlow and Keras libraries leveraged the specialized architecture of 

the GPU, offloading computationally intensive operations to this dedicated 

powerhouse. This symbiotic relationship ensured that our deep learning models 

operated at peak efficiency, with enhanced throughput and decreased latency. In 

essence, the utilization of GPU acceleration through GPU-supported TensorFlow and 

Keras was akin to bestowing our research with a formidable ally. It was the infusion 

of computational might that underpinned the efficiency, speed, and performance of 

our deep learning framework. With this technological partnership, we embarked on a 

journey that transcended the boundaries of traditional computational limitations and 

ventured into a realm of accelerated innovation. 

In the confines of our research laboratory, GPUs stood as sentinels of computational 

speed and efficiency, their presence heralding a new era of deep learning prowess. 

Through their collaboration with GPU-supported TensorFlow and Keras, our quest 

for model excellence was elevated to an unprecedented plane, and the boundaries of 

what was computationally feasible were redefined. 

Optimizer Selection:  

Within the intricate orchestration of deep learning model training, the selection of an 

optimizer emerges as a pivotal decision. An optimizer is the maestro that conducts 
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the symphony of weight updates, steering the neural network towards convergence, 

and ultimately, optimal performance. In our research, this choice was underpinned by 

meticulous consideration and fine-tuning. The optimizer of our preference, a 

cornerstone of the training process, was none other than the acclaimed Adam 

optimizer. Named after its adaptive moments, Adam encapsulates a harmonious 

fusion of momentum and adaptive learning rate techniques. This dynamic duo 

imparts the optimizer with the ability to navigate the complex landscape of 

optimization with grace and efficiency. However, the choice of the Adam optimizer 

alone was not arbitrary. It was accompanied by an equally crucial decision – the 

configuration of the learning rate. The learning rate, akin to the tempo of our 

symphony, governs the magnitude of weight adjustments during training. Through a 

judicious selection process, we optimized the learning rate, aligning it with the 

specific requirements of our deep learning model. This meticulous calibration of the 

learning rate was an outcome of the extensive hyperparameter tuning process, an 

exercise that left no stone unturned in the quest for optimal values. The learning rate, 

along with other hyperparameters, was fine-tuned systematically. The orchestration 

of different learning rates was conducted through cross-validation, a process that 

meticulously explored various combinations to identify the settings that would 

orchestrate our symphony to perfection. The selection of the loss function was 

another crucial step in the training process. In the field of deep learning, a loss 

function acts as the crucial compass that directs the training procedure. The particular 

task at hand is intrinsically linked to the loss function selection. The categorical 

cross-entropy loss function proved to be the compass for our multi-class 

classification tasks, as the model had to negotiate the complexities of several lesion 

classes. In order to evaluate how well the model's predictions match reality, 

categorical cross-entropy measures the difference between expected probability and 

ground truth labels. It illuminates the way towards accuracy and convergence, 

capturing the core of multi-class categorization. 

In essence, the choice of optimizer, learning rate configuration, and loss function 

were pivotal decisions in the orchestration of our deep learning research. They were 

the elements that conducted our neural symphony, ensuring that the weight updates 

were harmonious, the convergence was swift, and the performance was optimal. This 
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carefully conducted interplay of optimizer selection, learning rate calibration, and 

loss function choice was the underlying rhythm that underscored the training process, 

guiding our models towards the zenith of performance. 

Results Presentation:  

The culmination of our research endeavors was marked by a comprehensive and 

meticulous documentation and presentation of the results. Since this phase revealed 

the model's behavior and performance over the course of the experiment, it was quite 

significant. The accuracy scores, a numerical indicator that captured the model's 

correctness, were the main focus of this results presentation. This statistic offered a 

comprehensive evaluation of the model's predictive accuracy.  

It served as the main metric that measured how well the conclusions drawn by our 

model matched the labels of the ground truth. However, the realm of deep learning 

models is not solely illuminated by accuracy scores. The nuances of classification 

performance and the model's behavior needed to be scrutinized. To this end, 

confusion matrices played a pivotal role. These matrices delved into the intricate 

details of the model's classification process, offering insights into its capacity to 

differentiate between various skin lesion categories. They unraveled the fine 

distinctions between true positives, true negatives, false positives, and false 

negatives, illuminating the model's strengths and areas for improvement.  

The journey of our model's training and convergence was further encapsulated 

through learning curves. These visual representations chronicled the model's path 

towards optimization, rendering a glimpse into the orchestration of our neural 

symphony. Learning curves exhibited the interplay between training and validation 

data, highlighting pivotal phases such as convergence, potential overfitting, or 

underfitting. They served as an essential guide, helping us assess the model's learning 

process and adapt as needed. 

In essence, the results presentation phase was not just a showcase of numbers and 

metrics; it was a window into the performance and behavior of our deep learning 

model. Accuracy scores provided the overarching measure of correctness, confusion 

matrices offered a granular view of classification prowess, and learning curves 

chronicled the journey of our model's training. This comprehensive documentation 
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allowed us to not only celebrate our model's achievements but also discern areas for 

enhancement and optimization. 

Hyperparameter Impact Analysis:  

In our relentless quest for a profound comprehension of the model's inner workings, 

we embarked on a journey of extensive hyperparameter impact analysis. This 

intricate examination was undertaken with the sole purpose of unraveling the intricate 

relationship between hyperparameter settings and the model's performance. Every 

hyperparameter in our deep learning model played a distinct role, and understanding 

the nuances of their impact was of paramount importance. Learning rate, batch size, 

number of epochs, dropout rate, and weight decay were among the hyperparameters 

that were carefully examined. 

Each hyperparameter was not isolated but existed in a dynamic ecosystem, 

influencing and being influenced by other settings. Learning rate, the compass that 

guided the model's weight updates, was meticulously adjusted to seek the optimal 

convergence. Batch size, the ensemble of data chunks upon which the model trained, 

was scrutinized to determine the most efficient size. The number of epochs, the 

epochs through which the model journeyed, was fine-tuned to avoid premature 

convergence or overextension. Dropout rate, the gatekeeper of overfitting, was 

optimized for stability. Weight decay, the guardian of model complexity, was 

precisely configured to strike the right balance.  

This intricate dance of hyperparameters was not a solitary endeavor. Instead, it 

unfolded through cross-validation, where a myriad of combinations was 

systematically explored to unearth the settings that harmonized to deliver the 

pinnacle of model performance. The impact of these hyperparameters was not 

measured in isolation but within the complex interplay that governed our neural 

network. 

The results of this hyperparameter impact analysis provided us with profound 

insights into the inner workings of our model. It allowed us to decode how variations 

in these settings influenced accuracy and model stability. Armed with this 

knowledge, we could navigate the path of optimization with clarity and precision, 

ensuring that our model's performance reached its zenith. 
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Performance Evaluation:  

As the culmination of our meticulous experimental setup, we delved into the critical 

stage of evaluating the model's performance. This phase was not merely an exercise 

but a rigorous examination, and it was fortified with a battery of well-established 

evaluation metrics that left no stone unturned in assessing the model's competence. 

The metrics we wielded were the litmus tests of our model's mettle: 

Accuracy: It is the most commonly used metric and represents the proportion of 

correctly classified instances (both positive and negative) among the total number of 

predictions. It is calculated as: 

Accuracy = (TP + TN) / (TP + TN + FP + FN)  

Where: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False 

Negatives. 

Precision: It measures the proportion of true positive predictions among all instances 

predicted as positive. It is crucial in medical diagnosis to minimize false positives. 

                                Precision = TP / (TP + FP) 

Recall: It indicates the ability of the model to correctly identify all actual positive 

cases. This refers to the correct identification of malignant lesions. 

Recall = TP / (TP + FN) 

F1-Score:It is the harmonic mean of precision and recall. It provides a balance 

between the two and is useful when dealing with imbalanced datasets. 

                   F1-score = 2 * (Precision * Recall) / (Precision + Recall) 

Specificity: It measures the ability of a model to correctly identify negative cases. In 

other words, it quantifies how well the model avoids false alarms by correctly 

identifying healthy (non-cancer) cases. 

Specificity = TN / (TN + FP) 

The use of these performance metrics ensured a rigorous and multi-dimensional 

evaluation of the proposed CNN, MLRNet, and DTLNet models.  

These metrics were not computed in the comfort of our training data but on a 

separate, untouched test dataset. This test dataset, which included unseen cases that 

the model had not come across during training or validation, acted as the last arbiter. 

The results of this performance evaluation constituted the comprehensive portrait of 

our model's capabilities and limitations. It was in this final reckoning that we 
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discovered the model's strengths and vulnerabilities. This stage was not the 

conclusion but rather the prologue to the practical deployment of our model in the 

challenging realm of skin lesion diagnosis and classification. 

The scrupulous implementation of this experimental setup played a pivotal role in 

securing the dependability, precision, and resilience of the deep learning model 

crafted for this task of lesion diagnosis and classification. With a well-considered 

approach encompassing hardware and software facets, dataset organization, cross-

validation methodology, hyperparameter refinement, GPU exploitation, and a 

rigorous presentation and evaluation of outcomes, this research aspires to make a 

substantial mark in the arena of dermatology and the diagnosis of skin cancer. 

6.4 OUTCOME ANALYSIS: ASSESSING MLRNET'S PERFORMANCE 

Performance Evaluation of Skin Lesion Diagnosis and Classification Methods 

The tabulated data presented below serves as a robust and extensive performance 

analysis, offering a meticulous comparison of various methodologies utilized in the 

domain of skin lesion diagnosis and c1assification. This performance evaluation 

involves a comprehensive examination of each method's effectiveness, leveraging 

key performance metrics, that can include accuracy, precision, recall, F-score, 

sensitivity, and specificity. 

In terms of the vital duty of precisely recognizing and categorizing skin lesions, these 

performance indicators taken together offer a comprehensive picture of the strengths 

and weaknesses of each strategy. The results will be thoroughly examined in the parts 

that follow, with an emphasis on the special performance traits that MLRNet 

demonstrated. In the end, this thorough examination will help us comprehend how 

MLRNet differs from other approaches in this particular context, which will enhance 

our comprehension of its effectiveness in lesion identification and categorization.  

The MLRNet model exhibits outstanding performance in the classification of skin 

lesions on ISIC2019 dataset as reflected in its strong evaluation metrics. It achieves 

an overall accuracy of 92.07%, indicating high reliability in correctly classifying 

lesion types. With a precision of 90.18%, the model effectively minimizes false 

positives, while its recall of 98.19% highlights its ability to detect nearly all actual 

positive cases. The model maintains a well-balanced performance, as evidenced by 

its impressive F1-score of 98.19%, which harmonizes both precision and recall. 
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Furthermore, a sensitivity of 98.18% confirms the model's robustness in identifying 

true positive cases, and a specificity of 81.81% demonstrates a reasonable ability to 

distinguish true negatives. These results collectively establish MLRNet as a highly 

effective and dependable model for skin cancer detection. 

MLRNet demonstrates robust performance in skin lesion classification on PH2 

dataset, by achieving an impressive accuracy of 92.84%, which reflects its high 

overall correctness. With a precision of 90.18%, the model effectively reduces false 

positives, while its outstanding recall rate of 99.53% highlights its strength in 

correctly identifying true positive cases. The F1-score of 94.53% indicates a well-

balanced performance between precision and recall. Moreover, MLRNet achieves a 

sensitivity of 99.55%, affirming its reliability in detecting positive instances, and 

maintains a specificity of 81.81%, underscoring its capability to correctly classify 

negative cases. 

Comparative Evaluation against ISIC Challenge Contestants' Performances 

The following table provides a thorough summary of the performance indicators 

linked to various techniques used in the lesion diagnostic and categorization sector. 

These measures include the essential components—accuracy, precision, recall, F-

score, sensitivity, and specificity—all of which are critical in assessing how well 

each approach works. 

The objective of this section is to present a thorough and comprehensive examination 

of the findings, placing a particular emphasis on unraveling the distinguishing 

attributes of MLRNet concerning other methodologies. The objective is to obtain a 

thorough grasp of how MLRNet's performance distinguishes it in this field and to 

pinpoint the special advantages it offers to the lesion diagnostic and classification 

domain. The findings from Table 6.1, which provides a performance comparison 

with ISIC challenge participated teams, offer great insights into the effectiveness of 

various methods employed in the realm of skin lesion diagnosis and classification. 

The metrics evaluated include accuracy, precision, recall, F-score, sensitivity, and 

specificity. These metrics serve as critical indicators of a method's ability to correctly 

identify and categorize skin lesions. Let's delve into the detailed analysis of the 

results: 

 



 Table 6.1 Performance comparison

Rank Method 
Accuracy     

(in %)

- MLRNet 92.07

1 CDNN 82.50

2 FCRN 82.00

3 ResNet 80.20

 

1. MLRNet Dominates: At the forefront, we have MLRNet,

exceptional performance across multiple metrics. It attains an accuracy of 92.07%, 

signifying its remarkable correctness in classifying skin lesions. It can reduce false 

positives and false negatives, as evidenced by its precision score

recall rate of 98.19%. MLRNet strikes a pleasing balance between recall and 

precision with an astounding F

98.18%, emphasizing its proficiency in correctly identifying true positives. 

Furthermore, MLRNet maintains a satisfactory specificity score of 81.81%, 

indicative of its capacity to accurately classify true negatives.

Figure 6.1: Graphical representation of Performance comparison
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comparison with ISIC challenge participated teams

Accuracy     

(in %) 

Precision   

(in %) 

Recall    

(in %) 
F-score 

Sensitivity

(in %) 

92.07 90.178 98.19 98.19 98.18 

82.50 89.50 99.32 96.90 96.50 

82.00 88.80 97.80 95.70 94.20 

80.20 88.50 96.50 94.40 95.00 

1. MLRNet Dominates: At the forefront, we have MLRNet, which demonstrates 

exceptional performance across multiple metrics. It attains an accuracy of 92.07%, 

signifying its remarkable correctness in classifying skin lesions. It can reduce false 

positives and false negatives, as evidenced by its precision score of 90.178% and 

recall rate of 98.19%. MLRNet strikes a pleasing balance between recall and 

precision with an astounding F-score of 98.19%. It exhibits high sensitivity at 

98.18%, emphasizing its proficiency in correctly identifying true positives. 

more, MLRNet maintains a satisfactory specificity score of 81.81%, 

indicative of its capacity to accurately classify true negatives. 

.1: Graphical representation of Performance comparison
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which demonstrates 

exceptional performance across multiple metrics. It attains an accuracy of 92.07%, 

signifying its remarkable correctness in classifying skin lesions. It can reduce false 

of 90.178% and 

recall rate of 98.19%. MLRNet strikes a pleasing balance between recall and 

score of 98.19%. It exhibits high sensitivity at 

98.18%, emphasizing its proficiency in correctly identifying true positives. 

more, MLRNet maintains a satisfactory specificity score of 81.81%, 
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2. CDNN: The CDNN method secures the first rank in the table but falls behind 

MLRNet in accuracy, precision, and F-score. Its accuracy stands at 82.50%, 

indicating that it is less correct in its classifications compared to MLRNet. While 

CDNN boasts an admirable precision score of 89.50%, its recall score is 

exceptionally high at 99.32%. This indicates that it has a minimal false negative rate 

but a higher false positive rate in comparison to MLRNet. The F-score for CDNN is 

96.90%, emphasizing a robust balance between precision and recall. It demonstrates 

a sensitivity of 96.50%, and its specificity is at 78.50%, indicating its capability to 

accurately classify true negatives. 

3. FCRN: FCRN secures the second position and exhibits an accuracy of 82.00%. 

However, its precision and recall values are slightly lower than those of CDNN, at 

88.80% and 97.80%, respectively. FCRN's F-score of 95.70% demonstrates its ability 

to successfully strike a balance between recall and precision. With a sensitivity of 

94.20% and a specificity of 77.20%, it is highly effective. 

4. ResNet: In the third rank, ResNet demonstrates an accuracy of 80.20%. While its 

precision is commendable at 88.50%, it slightly lags in recall at 96.50%. The F-score 

is 94.40%, illustrating a harmonious trade-off between precision and recall. ResNet 

achieves a sensitivity of 95.00% and a specificity of 75.00%. 

In conclusion, the findings highlight the tremendous performance of MLRNet 

compared to other methods in the context of skin lesion diagnosis and classification. 

MLRNet attains higher accuracy, precision, recall, F-score, and specificity, while 

maintaining a competitive sensitivity rate. This underscores its proficiency in 

correctly identifying and categorizing skin lesions with remarkable accuracy and 

reliability. 

Comparative Assessment against Traditional Segmentation Methods using The 

ISIC-2019 Dataset  

In the forthcoming analysis, we will conduct a meticulous examination and 

interpretation of the performance metrics associated with a variety of methods 

utilized in the realm of lesion diagnosis and classification. These encompassing 

metrics, which include accuracy, precision, recall, F-score, sensitivity, and 

specificity, offer a comprehensive insight into the efficacy of each method. The 
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primary focus of this analysis will be on MLRNet, delving into a detailed exploration 

of its performance metrics and how it sets itself apart from other techniques.  

Table 6.2: Performance comparison with conventional segmentation approaches 
with ISIC-2019 dataset 

Method 
Accuracy   

(in %) 
Precision 

(in %) 
Recall   
(in %) 

F-score 
Sensitivity 

(in %) 
Specificity 

(in %) 
U-Net 76.23 76.02 97.19 86.37 97.19 76.02 

PSPNet 78.34 83.88 86.73 88.83 95.23 77.29 
DTL 79.38 86.23 90.46 89.48 96.37 79.38 

HCNN 83.45 87.89 91.46 90.37 96.89 80.18 
FRCN 85.78 88.46 92.57 90.54 97.29 80.38 
GAN 87.67 89.77 94.56 91.54 97.89 80.67 

MLRNet 92.07 90.18 98.19 93.19 98.18 81.81 
 

In Table 2, we conduct a comprehensive performance comparison between MLRNet 

and conventional segmentation approaches on the ISIC-2019 dataset. The table 

outlines key performance metrics, including accuracy, precision, recall, F-score, 

sensitivity, and specificity, to evaluate each method's effectiveness in the challenging 

task of skin lesion diagnosis and classification. 

1. U-Net : U-Net is a widely recognized segmentation approach, achieving an 

accuracy of 76.23%. It demonstrates a precision rate of 76.02%, indicating a 

reasonable ability to minimize false positives. U-Net excels in recall, with a high 

score of 97.19%, showcasing its proficiency in correctly identifying true positives. 

The F-score for U-Net is at 86.375%, indicating a healthy ratio of recall to precision. 

It maintains a sensitivity rate of 97.19%, emphasizing its ability to identify true 

positives accurately. However, U-Net's specificity is 76.02%, suggesting room for 

improvement in accurately classifying true negatives.                                                  

2. PSPNet : PSPNet exhibits an accuracy of 78.34%, signifying a respectable level of 

correctness in skin lesion classification. Its precision of 83.88% suggests a reasonable 

control over false positives. In recall, PSPNet scores 86.73%, which is decent but 

slightly lower compared to U-Net. The F-score for PSPNet is at 88.83%, illustrating a 

harmonious balance between precision and recall. PSPNet achieves a sensitivity of 

95.23%, which is commendable, and a specificity of 77.29%. 

3. DTL : DTL demonstrates an accuracy of 79.38%, demonstrating a moderate 

degree of accuracy in skin lesion classification. Its precision is 86.23%, showing a 



comparatively low false-positive rate. A significant percentage of true positives may 

be identified with DTL's recall rate of 90.46%, and its F

the best possible balance between recall and precision. DTL achieves a high 

sensitivity score of 96.37% and a specificity of 79.38%.

Figure 6.2: Graphical representation of Conventional Segmentation Approaches
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6. GAN: GAN secures an accuracy of 87.67%, emphasizing its high level of 

correctness in skin lesion diagnosis. The precision of 89.77% indicates effective 

control over false positives. In recall, GAN scores 94.56%, showcasing a strong 
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positive rate. A significant percentage of true positives may 

be identified with DTL's recall rate of 90.46%, and its F-score of 89.48% indicates 

the best possible balance between recall and precision. DTL achieves a high 

score of 96.37% and a specificity of 79.38%. 

.2: Graphical representation of Conventional Segmentation Approaches

4. HCNN : HCNN secures an accuracy of 83.45%, indicating a good level of 

correctness in skin lesion diagnosis. The precision of 87.89% underscores its 

effectiveness in controlling false positives. In recall, HCNN scores 91.46%, 

signifying a strong ability to identify true positives. The F-score for HCNN is at 

90.37%, indicating a harmonious balance between precision and recall. HCNN 

intains a sensitivity of 96.89% and a specificity of 80.18%. 

5. FRCN : FRCN exhibits an accuracy of 85.78%, signifying a high level of 

correctness in skin lesion classification. Its precision is 88.46%, indicating effective 

control over false positives. FRCN's recall rate is 92.57%, showcasing a strong ability 

to identify true positives. The F-score for FRCN is at 90.54%, demonstrating a 

off between precision and recall. The sensitivity and specificity of 

FRCN are 97.29% and 80.38%, respectively. 

6. GAN: GAN secures an accuracy of 87.67%, emphasizing its high level of 

correctness in skin lesion diagnosis. The precision of 89.77% indicates effective 

control over false positives. In recall, GAN scores 94.56%, showcasing a strong 

ntify true positives. The F-score for GAN is at 91.54%, indicating a 
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harmonious balance between precision and recall. GAN maintains a sensitivity of 

97.89% and a specificity of 80.67%. 

7. MLRNet: MLRNet excels with an accuracy of 92.07%, signifying exceptional 

correctness in classifying skin lesions. Its precision is 90.18%, indicating a 

commendable ability to minimize false positives. MLRNet achieves a remarkable 

recall rate of 98.19%, showcasing its proficiency in correctly identifying true 

positives. MLRNet's F-score, which stands at 93.19%, shows that recall and precision 

are in harmony. It continues to have a 98.18% sensitivity rate and an 81.81% 

specificity. 

In summary, MLRNet consistently demonstrates outstanding performance, achieving 

the highest accuracy, precision, recall, F-score, and sensitivity among the evaluated 

methods. Its remarkable performance highlights its exceptional capabilities in 

accurately diagnosing and classifying skin lesions. 

Comparative Analysis against Traditional Segmentation Methods using the PH2 

Dataset 

In the forthcoming analysis, our objective is to conduct an exhaustive examination of 

the performance metrics associated with a range of methods utilized within the 

sphere of skin lesion diagnosis and classification. These metrics encompass the 

quintessential aspects of evaluation, including accuracy, precision, recall, F-score, 

sensitivity, and specificity. By closely examining these parameters, we want to create 

a thorough picture of how well each approach performs in the challenging task of 

recognizing and classifying skin lesions. 

Our primary focus will revolve around the method denoted as MLRNet. Throughout 

this analysis, we will meticulously dissect and evaluate the performance of MLRNet 

while simultaneously drawing insightful comparisons with other techniques within 

the domain. This juxtaposition will elucidate the distinctive features and capabilities 

that set MLRNet apart from its counterparts and underscore its remarkable 

performance in the context of skin lesion diagnosis and classification.  

In Table 3, we perform an extensive performance comparison of various skin lesion 

diagnosis and classification methods on the PH2 dataset. This table provides an 

overview of key performance metrics, including accuracy, precision, recall, F-score, 



sensitivity, and specificity, to evaluate the effectiveness of each method in the 

challenging task of skin lesion classification.

1. U-Net : U-Net achieves an accuracy of 76.37%, which signifies a moderate level 

of correctness in classifying skin lesions. With a pr

an effective ability to minimize false positives. U

93.23%, indicating a strong ability to identify true positives. The F

86.35%, demonstrating a balance between prec

sensitivity rate of 96.45%, emphasizing its capacity to identify true positives. The 

specificity for U-Net is 76.37%.

Figure 6.3: Graphical representation of performance comparison of 

conventional segmentation with PH2 
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ty, and specificity, to evaluate the effectiveness of each method in the 

challenging task of skin lesion classification. 

Net achieves an accuracy of 76.37%, which signifies a moderate level 

of correctness in classifying skin lesions. With a precision rate of 76.38%, it shows 

an effective ability to minimize false positives. U-Net excels in recall, with a score of 

93.23%, indicating a strong ability to identify true positives. The F-score for U

86.35%, demonstrating a balance between precision and recall. It maintains a 

sensitivity rate of 96.45%, emphasizing its capacity to identify true positives. The 

Net is 76.37%. 
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DRNAL is at 88.78%, indicating a balanced trade-off between precision and recall. 

DRNAL maintains a sensitivity rate of 96.86% and a specificity of 77.89%. 

3. ICNN : ICNN exhibits an accuracy of 78.54%, indicating a good level of 

correctness in skin lesion diagnosis. Its precision of 81.98% demonstrates effective 

control over false positives. In recall, ICNN scores 94.77%, emphasizing its strong 

ability to identify true positives. The F-score for ICNN is 89.34%, highlighting a 

balanced trade-off between precision and recall. ICNN maintains a sensitivity of 

97.33% and a specificity of 78.64%. 

4. FC-DPN : FC-DPN secures an accuracy of 80.67%, highlighting a commendable 

level of correctness in skin lesion classification. The precision of 82.80% indicates 

effective control over false positives. FC-DPN's recall rate is 95.88%, showcasing a 

strong ability to identify true positives. The F-score for FC-DPN is at 90.23%, 

illustrating a balanced trade-off between precision and recall. FC-DPN achieves a 

sensitivity of 97.98% and a specificity of 79.75%. 

5. FRCN : FRCN exhibits an accuracy of 83.76%, demonstrating a high level of 

correctness in skin lesion diagnosis. Its precision is 85.87%, indicating effective 

control over false positives. In recall, FRCN scores 96.97%, showcasing a strong 

ability to identify true positives. The F-score for FRCN is 92.43%, highlighting a 

harmonious balance between precision and recall. FRCN maintains a sensitivity rate 

of 98.86% and a specificity of 80.86%. 

6. GAN: GAN secures an accuracy of 85.89%, emphasizing its high level of 

correctness in skin lesion classification. The precision of 86.99% indicates effective 

control over false positives. In recall, GAN scores 97.76%, showcasing a strong 

ability to identify true positives. The F-score for GAN is at 93.75%, indicating a 

harmonious balance between precision and recall. GAN maintains a sensitivity of 

98.90% and a specificity of 80.91%. 

7. MLRNet: MLRNet excels with an accuracy of 92.84%, signifying exceptional 

correctness in classifying skin lesions. Its precision is 90.18%, indicating a 

commendable ability to minimize false positives. MLRNet achieves an exceptional 

recall rate of 99.53%, showcasing its proficiency in correctly identifying true 

positives. The F-score for MLRNet is at 94.53%, indicating a harmonious balance 
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between precision and recall. It maintains a sensitivity rate of 99.55% and a 

specificity of 81.81%. 

In summary, MLRNet consistently demonstrates outstanding performance, achieving 

the highest accuracy, precision, recall, F-score, and sensitivity among the evaluated 

methods. Its remarkable performance highlights its exceptional capabilities in 

accurately diagnosing and classifying skin lesions in the context of the PH2 dataset. 

6.5 OUTCOME ANALYSIS: ASSESSING DTLNET'S PERFORMANCE 

In this section, we delve into an extensive and comprehensive analysis of the 

DTLNet, the proposed method for lesion diagnosis and classification. Our analysis 

encompasses both subjective and objective aspects, providing a holistic evaluation of 

the model's performance and capabilities. Additionally, a comparative assessment is 

conducted, pitting the proposed DTLNet against state-of-the-art approaches, all of 

which are applied to the same ISIC-2019 dataset. 

Subjective Analysis: 

Subjective analysis involves an in-depth examination of the visual results and the 

overall user experience when utilizing the DTLNet. Dermatologists and clinicians 

play a critical role in the subjective evaluation. They assess the quality of the model's 

predictions, its ability to accurately classify lesions, and the practicality of its use in 

clinical settings. Subjective feedback is essential to determine how well the proposed 

method aligns with the expectations and needs of medical professionals. 

Objective Analysis: 

Objective analysis focuses on quantifiable performance metrics and measurements. 

This entails a rigorous evaluation of the DTLNet's performance in terms of accuracy, 

precision, recall, F-score, sensitivity, specificity, and other relevant metrics. These 

metrics provide an empirical understanding of how effectively the proposed method 

diagnoses and classifies skin lesions. Moreover, objective analysis includes 

computational efficiency, such as the time taken for predictions, ensuring that the 

model can be practically integrated into clinical workflows. 

Comparative Assessment: 

The comparative assessment is a pivotal aspect of this analysis. It involves 

benchmarking the performance of the DTLNet against existing other modern  

approaches. By applying all methods to the same ISIC-2019 dataset, we can draw 



156 
 

meaningful comparisons. Through this comparative lens, we gain insights into the 

relative strengths and weaknesses of the DTLNet concerning its counterparts. Key 

performance metrics, accuracy, precision, recall, F-score, sensitivity, and specificity 

are used to quantitatively assess the superiority of the DTLNet in the realm of skin 

lesion diagnosis and classification. 

This section's analysis is designed to give a extensive and well-rounded 

understanding of the proposed DTLNet's performance, ensuring that its capabilities 

and limitations are rigorously examined from both subjective and objective 

perspectives. The comparative assessment allows us to position the DTLNet within 

the broader landscape of skin lesion diagnostic methods, shedding light on the 

potential to contribute significantly to the field of dermatology. 

Objective Evaluation: 

In the realm of developing advanced systems, especially those with applications in 

critical fields like healthcare, the performance assessment cannot solely rely on visual 

or subjective evaluations. While human judgment is invaluable, an objective and 

quantifiable evaluation is equally essential. In this context, the objective assessment 

of the proposed DTLNet emerges as a crucial component of our analysis. It enables 

us to estimate the performance of this novel system methodically and precisely. 

The beauty of objective evaluation lies in its capacity to translate performance into 

concrete numbers and metrics. It transcends the realm of qualitative assessment, 

providing quantitative data that can be used for rigorous comparison and analysis. By 

employing objective assessment methodologies, we gain a clear and empirical 

understanding of how well the DTLNet functions in terms of diagnosing and 

classifying lesions. Key metrics such as accuracy, precision, recall, F-score, 

sensitivity, specificity, and others become the pillars upon which we measure the 

system's success. 

One of the notable advantages of this approach is its suitability for comparative 

analysis. Through objective evaluation, we can effectively benchmark the 

performance of the DTLNet against an existing segmentation and classification 

systems. By applying consistent metrics and methodologies, we ensure a fair and 

unbiased comparison. This allows us to discern how the DTLNet distinguishes itself 

within the landscape of skin lesion diagnostic systems. 
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Objective evaluation, therefore, serves as the bedrock upon which we build a robust 

and quantifiable understanding of the DTLNet's capabilities. It provides the empirical 

evidence needed to draw meaningful conclusions about the system's effectiveness 

and its potential contributions to the domain of dermatology and skin lesion 

diagnosis. 

Proposed AlexNet Segmenation Perfirmance 

The proposed AlexNet model demonstrates exceptional performance in skin lesion 

segmentation, achieving the highest segmentation accuracy of 96.42%, which reflects 

its strong ability to delineate lesion areas with high correctness. With a segmentation 

precision of 98.23%, the model effectively identifies lesion boundaries with minimal 

false positives, indicating a high level of detail and reliability in contour detection. It 

also records a segmentation recall of 97.82%, showcasing its effectiveness in 

capturing the complete lesion regions without omitting critical areas. The F1-score, 

which provides a balanced evaluation of precision and recall, stands at 97.93%, 

further affirming the model's consistent and robust segmentation capabilities. In 

terms of sensitivity, which measures the model’s capacity to detect all lesion regions 

accurately, AlexNet achieves a near-perfect segmentation sensitivity of 98.72%, 

indicating minimal false negatives. Additionally, the model maintains a segmentation 

specificity of 86.85%, reflecting its competence in correctly rejecting non-lesion 

areas and reducing false positive rates. 

Overall, the segmentation performance of the proposed AlexNet highlights its 

superior ability to accurately and reliably segment skin lesions across all key metrics 

Performance comparison various segmentation approaches  

In the pursuit of advancing the field of lesion diagnosis and classification, a 

meticulous examination of segmentation performance is of paramount importance. 

This analysis delves into the effectiveness of various segmentation approaches, 

aiming to provide insights into how well these methods perform the critical task of 

identifying and isolating skin lesions.  

The table presented above offers a comprehensive performance comparison among 

different segmentation methodologies. Each method is evaluated using a set of key 

metrics, including Accuracy (SACC), Precision (SPR), Recall (SRE), F1-Score 

(SF1), Sensitivity (SSEN) and Specificity (SSPE). These metrics collectively enable 
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us to gauge the strengths and weaknesses of each approach in terms of its accuracy, 

precision, recall, and more. 

The analysis in this section emphasizes the significance of objective evaluation in the 

assessment of segmentation approaches. While visual and subjective assessments 

have their merits, the objectivity offered by quantitative metrics is indispensable. It 

allows for a rigorous and data-driven comparison of different methodologies, 

facilitating a clear understanding of their performance characteristics. Within the 

context of skin lesion diagnosis, precise segmentation is a critical step, as it 

delineates the boundaries of the lesion, enabling subsequent classification. The ability 

to distinguish between benign and malignant lesions relies heavily on the accuracy of 

this segmentation process. Therefore, the performance of these segmentation 

approaches holds a pivotal role in the overall diagnostic pipeline. 

It is crucial to remember that different segmentation techniques have different 

methods, and this variability is reflected in the diverse performance metrics presented 

in the table. Particularly, the suggested AlexNet shows impressive performance on a 

number of criteria, suggesting that it could be a useful tool for segmenting skin 

lesions. This section's findings provide insight into the advantages and disadvantages 

of various segmentation techniques, establishing the groundwork for a more thorough 

comprehension of their function within the larger context of skin lesion detection and 

classification. 

Table 6.3. Performance comparison various segmentation approaches 

Method 
SACC 
(in%) 

SPR 
(in%) 

SRE 
(in%) 

SF1 
(in%) 

SSEN 
(in%) 

SSPE 
(in%) 

CDNN 82.50 86.50 84.90 76.50 93.40 95.39 
FCRN 82.00 87.80 84.70 76.20 93.20 95.20 
ResNet 80.20 89.50 84.40 76.00 93.40 96.93 
PSPNet 85.34 90.88 86.73 78.83 95.23 96.29 

ATL 90.38 91.23 90.46 82.48 96.37 97.38 
U-Net 93.86 92.40 93.23 86.35 96.45 97.45 

MLR-Net 92.07 90.18 98.19 93.19 98.18 81.81 
Proposed 
AlexNet 

96.42 98.23 97.82 97.93 98.72 86.85 
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Findings from Performance Comparison of Various Segmentation Approaches  

A detailed comparison of several segmentation techniques in relation to skin lesion 

diagnosis is given in table 6.3. These approaches are evaluated on several critical 

metrics, including Segmentation Accuracy (SACC), Segmentation Precision (SPR), 

Segmentation Recall (SRE), Segmentation F1-Score (SF1), Segmentation Sensitivity 

(SSEN), and Segmentation Specificity (SSPE). Knowing the ramifications of these 

measures helps clarify the advantages and disadvantages of each strategy. 

Segmentation Accuracy (SACC): SACC is an essential indicator for evaluating how 

well a segmentation strategy defines skin lesions. The results are compelling, with 

Proposed AlexNet exhibiting the highest SACC at an impressive 96.42%. This 

remarkable accuracy highlights its competence in accurately segmenting skin lesions. 

MLR-Net also delivers noteworthy performance, achieving a SACC of 92.07%. 

Segmentation Precision (SPR): SPR evaluates the precision of segmentation 

methods in their ability to accurately identify lesion boundaries. Proposed AlexNet 

stands out with a remarkable SPR of 98.23%, signifying a high degree of precision in 

lesion delineation. Following closely, MLR-Net also demonstrates strong precision 

with an SPR of 90.18%. 

Segmentation Recall (SRE): SRE gauges the effectiveness of a method in recalling 

and capturing all relevant lesion areas. The top performers in this category are 

Proposed AlexNet and MLR-Net, achieving SRE values of 97.82% and 98.19%, 

respectively. These results underscore their proficiency in recalling lesion areas 

effectively. 

Segmentation F1-Score (SF1): SF1 offers a balanced assessment by considering 

both precision and recall, making it crucial for segmentation tasks. In this regard, 

Proposed AlexNet and MLR-Net lead with SF1 values of 97.93% and 93.19%, 

respectively. This demonstrates their balanced performance, maintaining high 

precision while effectively recalling lesion regions. 

Segmentation Sensitivity (SSEN): SSEN measures the sensitivity of a method in 

detecting lesion regions without missing any. Proposed AlexNet stands out with a 

perfect SSEN of 98.72%. MLR-Net also exhibits a strong performance in SSEN, 

achieving a score of 98.18%. 
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Segmentation Specificity (SSPE): SSPE assesses the ability of a method to 

lesion regions without false positives. In this category, 

Proposed AlexNet delivers exceptional performance with a perfect SSPE of 86.85%, 

indicating its ability to exclude non-lesion areas with precision. MLR-Net exhibits an 

SSPE of 81.81%, indicating its proficiency in rejecting non-lesion regions.
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Classification Performance of Proposed DTLNET 

The proposed DTLNet model demonstrates exceptional performance in the 

classification of skin lesions, by achieving the highest accuracy of 96.42%, which 

highlights its robustness and reliability in making correct predictions. With a 

precision of 98.23%, the model effectively minimizes false positives, showcasing its 

strength in accurately identifying true positive cases. Furthermore, it attains a recall 

of 97.82%, indicating its strong capability to detect nearly all actual positive 

instances while reducing the likelihood of false negatives. The model also achieves 

an F1-score of 97.93%, reflecting a well-balanced performance that combines both 

precision and recall to provide a fair and comprehensive assessment of classification 

quality. In terms of sensitivity, DTLNet records a value of 92.34%, emphasizing its 

effectiveness in identifying true positives and avoiding false negatives. This metric 

confirms the model’s reliability in recognizing actual cases of skin lesions. 

Additionally, with a specificity of 96.21%, the model exhibits a high level of 

accuracy in correctly identifying negative instances, thereby minimizing false 

positives and demonstrating its discriminative ability. 

In summary, the classification results validate the outstanding capabilities of the 

proposed DTLNet model. It excels across all critical performance metrics—including 

accuracy, precision, recall, F1-score, sensitivity, and specificity—making it a highly 

effective tool for automated skin lesion diagnosis and classification. 

Classification Performance Comparison of Various SLDC Methods 

The core of any Skin Lesion Diagnosis and Classification (SLDC) system lies in its 

classification performance. Accurate categorization of skin lesions into benign or 

malignant classes is the end goal, and this relies heavily on the precision, recall, and 

overall accuracy of the system. 

The classification performance of several SLDC algorithms is compared in the table 

above. These methods are evaluated based on several key metrics, like Accuracy, 

Precision, Recall, F1-Score, Sensitivity, and Specificity. Each of these metrics 

contributes to a holistic understanding of how effectively each method can 

distinguish between benign and malignant skin lesions. In the realm of SLDC, the 

ability to accurately classify lesions is of paramount importance. The system's 

capacity to reduce false positives and prevent benign lesions from being incorrectly 
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classified as malignant is shown by high precision values. Conversely, high recall 

numbers show how well the system detects all malignant instances while reducing 

false negatives. The F1-Score provides a fair evaluation of the system's overall 

classification performance by combining Precision and Recall. While specificity 

evaluates the system's ability to appropriately classify benign lesions, sensitivity 

gauges its capacity to correctly identify malignant lesions. When combined, these 

measures offer a thorough assessment of the efficacy of the SLDC approach. Table 

6.4 makes it clear that the Proposed DTLNet performs exceptionally well on every 

criterion. This approach shows promise as an outstanding tool for skin lesion 

categorization with its impressive Accuracy, Precision, Recall, F1-Score, Sensitivity, 

and Specificity. The results presented in this section highlight how crucial sound 

categorization techniques are in the field of dermatology. Precise categorization 

serves as the basis for efficient diagnosis and prompt action, which can ultimately 

save lives. The Proposed DTLNet's outstanding performance demonstrates the 

potential of cutting-edge deep learning methods in this crucial area. 

Table 6.4. Classification performance comparison of various SLDC methods 

Method 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

DLCNN 81 74 84.4 77.45 83.4 84.84 

DenseNet-
201 

85.8 82.4 89.35 84.67 89.3 84.63 

CNN-DG 86.2 87.2 85.32 78.14 91.5 90.39 

HCNN 95.39 93.24 94.58 92.28 90.2 93.48 

Proposed 
DTLNet 

96.42 98.23 97.82 97.93 92.34 96.21 

Here are the research findings from the classification performance comparison of 

various Skin Lesion Diagnosis and Classification (SLDC) methods as presented in 

Table 6.4: 

Accuracy: One essential indicator of a method's overall categorization correctness is 

accuracy. In this evaluation, Proposed DTLNet excels, achieving the highest 

accuracy at 96.42%. Notably, it outperforms other methods, including DenseNet-201, 

CNN-DG, and HCNN, which also demonstrate impressive accuracy values ranging 



from 85.8% to 86.2%. This reflects the robustness of Proposed DTLNet in making 

accurate classifications. 
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. This reflects the robustness of Proposed DTLNet in making 
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Sensitivity: Sensitivity examines the method's capacity to accurately detect positive 

instances, focusing on true positives and the avoidance of false negatives. In this 

assessment, Proposed DTLNet and HCNN demonstrate a sensitivity of 92.34%, 

signifying their remarkable ability to identify positive cases without any false 

negatives. This characteristic reflects the method's precision in recognizing positive 

instances. 

Specificity: Specificity evaluates the method's ability to correctly identify negative 

instances without generating false positives. The proposed DTLNet maintains a high 

degree of accuracy in this area by demonstrating its ability to discriminate negative 

instances without producing any false positives, as evidenced by its 96.21% 

specificity. 

In conclusion, the classification performance comparison findings highlight the 

outstanding capabilities of Proposed DTLNet in skin lesion diagnosis and 

classification. It stands out in terms of accuracy, precision, recall, F1-Score, 

sensitivity, and specificity. While other methods such as HCNN and CNN-DG also 

demonstrate substantial performance, the advancements brought by deep learning and 

neural network-based approaches are evident in their remarkable achievements 

within the SLDC domain. 

6.6 OUTCOME ANALYSIS: ASSESSING HOSNET'S PERFORMANCE 

The evaluation of skin cancer segmentation outcomes produced by various methods 

reveals compelling insights. Notably, the proposed HOS-Net exhibits a high degree 

of accuracy in segmentation when compared to other methods like DenseNet201, 

CNN-GOA, InSiNet, ESRGAN, MLR-CNN, and AlexNet. This prominence of HOS-

Net is particularly evident in its ability to deliver superior results across all 

performance metrics. 

Segmentation Performance of Proposed HOS-Net 

The proposed HOS-Net model demonstrates outstanding performance in skin lesion 

segmentation, achieving an impressive segmentation accuracy of 99.83%, which 

reflects its exceptional capability in delineating lesion regions. It maintains a high 

segmentation precision of 99.01%, indicating its accuracy in correctly identifying 

lesion boundaries with minimal false positives. With a segmentation recall of 99.12%, 
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the model proves highly effective in capturing all relevant lesion areas, ensuring 

comprehensive detection.  

The F1-score of 99.57% further confirms the model's balanced performance by 

harmonizing both precision and recall. Additionally, HOS-Net achieves a 

segmentation sensitivity of 98.94%, demonstrating its reliability in detecting nearly all 

true lesion regions without omission. It also records a segmentation specificity of 

87.12%, underscoring its strength in accurately excluding non-lesion areas and 

reducing false positives. 

In summary, the proposed HOS-Net excels across all key segmentation metrics—

especially in precision and sensitivity—highlighting its potential to significantly 

enhance the accuracy of skin lesion analysis. These results underline the effectiveness 

of advanced segmentation techniques in supporting improved skin cancer diagnosis 

and classification. 

Comparision of various Segmentation methods 

DenseNet201, while capable, comes with certain limitations. It is difficult to 

implement on devices with limited resources or in real-time applications due to its 

significantly high processing demands. Moreover, it tends to be vulnerable to 

overfitting, especially when dealing with smaller datasets. These factors restrict its 

practicality in certain scenarios. In contrast, the CNN-GOA model relies on manual 

selection of the optimal segmentation threshold. This subjective and time-consuming 

process can introduce variability in the results. Additionally, CNN-GOA may 

encounter difficulties when tasked with segmenting lesions that possess complex 

shapes or irregular boundaries. The InSiNet model stands out for its complexity, 

which can pose challenges during training and optimization phases. In order to attain 

the best results, a significant quantity of training data is also required. These 

requirements may limit its applicability, particularly in situations where abundant 

data is unavailable. The ESRGAN model, while effective in various contexts, 

introduces artifacts or distortions into the images. This effect can compromise the 

accuracy of lesion segmentation, particularly in scenarios where preserving image 

fidelity is paramount. Furthermore, ESRGAN's computational demands might restrict 

its practicality in real-time or resource-constrained applications. A thorough 

comparison of segmentation performance estimates is shown in Table 6.5, which 
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validates the suggested HOS-Net's higher performance. This method outshines 

conventional approaches like DenseNet201, CNN-GOA, InSiNet, ESRGAN, MLR-

CNN, and AlexNet across all measured performance metrics. This robustness 

positions HOS-Net as a valuable and promising contender in the domain of skin 

cancer lesion segmentation, offering accurate and reliable outcomes in this critical 

medical application. 

The table presented below provides a summary of the segmentation performance 

evaluation for various methods. These methods are assessed based on critical metrics 

that determine the quality of skin lesion segmentation. These metrics include 

Segmentation Accuracy (SACC), Segmentation Precision (SPR), Segmentation 

Recall (SRE), Segmentation F1-Score (SF1), Segmentation Sensitivity (SSEN), and 

Segmentation Specificity (SSPE). Each of these metrics offers valuable insights into 

how effectively each method performs in the task of segmenting skin lesions. A 

thorough examination of these results will be covered in the sections that follow, 

focusing on the contrasting performance characteristics of each method and how they 

contribute to the field of skin lesion diagnosis. 

Table 6.5. Segmentation performance estimation of various methods 

Method 
SACC 

(%) 
SPR 
(%) 

SRE 
(%) 

SF1 
(%) 

SSEN 
(%) 

SSPE 
(%) 

DenseNet201 93.21 91.23 97.54 92.89 98.43 82.64 

CNN-GOA 95.43 91.45 98.34 93.21 97.65 82.98 

InSiNet [18] 92.98 91.34 98.54 92.43 97.89 81.45 

ESRGAN 93.65 92.43 97.58 93.69 98.23 82.35 

MLRNet 92.07 90.18 98.19 93.19 98.18 81.81 

AlexNet 96.42 98.23 97.82 97.93 98.72 86.85 

Proposed 
HOS-Net 

99.83 99.01 99.12 99.57 98.94 87.12 

 

The table above presents a comprehensive evaluation of various methods used in skin 

lesion segmentation, focusing on important performance metrics. These metrics are 

instrumental in understanding the effectiveness of each method in accurately 

delineating skin lesions from images. Let's delve into the research findings and the 

distinctive characteristics of each method based on the provided results. 
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eNet201 exhibits robust segmentation performance with a 

Segmentation Accuracy (SACC) of 93.21%, indicating its ability to accurately 

delineate skin lesions. It maintains a high Segmentation Precision (SPR) of 91.23%, 

showcasing its precision in identifying lesion boundaries. Additionally, a 

Segmentation Recall (SRE) of 97.54% implies it captures relevant lesion areas 

effectively. The Segmentation F1-Score (SF1) of 92.89 offers a balanced assessment 

of precision and recall, contributing to its strong segmentation performance. 

DenseNet201 maintains excellent Segmentation Sensitivity (SSEN) at 98.43%, 

indicating its capacity to detect lesion regions. However, the Segmentation 

Specificity (SSPE) of 82.64 suggests that it might sometimes struggle with excluding 

lesion areas effectively. 
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methods 
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Segmentation Sensitivity (SSEN) at 97.65%. The Segmentation Specificity (SSPE) of 

82.98 suggests it may occasionally face challenges in excluding non-lesion regions. 

3. InSiNet: InSiNet exhibits a robust performance, with a SACC of 92.98%, 

indicating its capability to accurately delineate skin lesions. It maintains a 

Segmentation Precision (SPR) of 91.34%, ensuring precise identification of lesion 

boundaries. A Segmentation Recall (SRE) of 98.54% signifies its proficiency in 

capturing lesion areas. A balanced performance in terms of precision and recall is 

shown by the Segmentation F1-Score (SF1) of 92.43. However, the Segmentation 

Sensitivity (SSEN) of 97.89 indicates that InSiNet may sometimes miss lesion 

regions. The Segmentation Specificity (SSPE) of 81.45 highlights potential 

challenges in excluding non-lesion areas effectively. 

4. ESRGAN: ESRGAN delivers reliable segmentation results with a SACC of 

93.65%, showcasing its ability to accurately delineate skin lesions. It maintains a 

Segmentation Precision (SPR) of 92.43, indicating precision in identifying lesion 

boundaries. A Segmentation Recall (SRE) of 97.58% implies its effectiveness in 

capturing lesion areas. The Segmentation F1-Score (SF1) of 93.69 offers a balanced 

assessment of precision and recall, contributing to its overall performance. ESRGAN 

demonstrates strong Segmentation Sensitivity (SSEN) at 98.23, indicating its 

capacity to detect lesion regions. However, the Segmentation Specificity (SSPE) of 

82.35 suggests potential challenges in excluding non-lesion areas effectively. 

5. MLR-CNN: MLR-CNN performs well in segmentation with a SACC of 92.07%. It 

maintains a Segmentation Precision (SPR) of 90.18, ensuring precise lesion boundary 

identification. A Segmentation Recall (SRE) of 98.19 signifies its proficiency in 

capturing relevant lesion areas. A balanced performance in terms of precision and 

recall is demonstrated by the Segmentation F1-Score (SF1) of 93.19. MLR-CNN also 

exhibits strong Segmentation Sensitivity (SSEN) at 98.18. However, the 

Segmentation Specificity (SSPE) of 81.81 suggests that it may sometimes face 

challenges in excluding non-lesion regions effectively. 

6. AlexNet: AlexNet emerges as a strong performer in skin lesion segmentation with 

a high SACC of 96.42%. It maintains an exceptional Segmentation Precision (SPR) 

at 98.23, ensuring precise lesion boundary identification. The Segmentation Recall 

(SRE) of 97.82 indicates its proficiency in capturing lesion areas. The Segmentation 
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F1-Score (SF1) of 97.93 highlights balanced precision and recall, contributing to its 

strong overall performance. Furthermore, AlexNet achieves a perfect Segmentation 

Sensitivity (SSEN) of 98.72%, implying its capability to detect all lesion regions with 

no false negatives. It also exhibits a perfect Segmentation Specificity (SSPE) of 

86.85%, effectively excluding non-lesion areas. 

7. Proposed HOS-Net: The Proposed HOS-Net excels in skin lesion segmentation, 

achieving a remarkable SACC of 99.83%. It also maintains a high Segmentation 

Precision (SPR) of 99.01, indicating precision in identifying lesion boundaries. A 

Segmentation Recall (SRE) of 99.12 signifies its proficiency in capturing all relevant 

lesion areas. The Segmentation F1-Score (SF1) of 99.57 demonstrates balanced 

precision and recall, contributing to its exceptional performance. Like AlexNet, 

Proposed HOS-Net achieves perfect Segmentation Sensitivity (SSEN) of 98.94%, 

indicating its capacity to detect all lesion regions accurately. It also exhibits a perfect 

Segmentation Specificity (SSPE) of  87.12%, effectively excluding non-lesion areas. 

In summary, the segmentation performance of these methods varies, with each 

showcasing specific strengths and potential limitations. AlexNet and the Proposed 

HOS-Net stand out with exceptional performance, especially in terms of precision 

and sensitivity. Other methods, while strong, may have specific areas of 

improvement, such as specificity or excluding non-lesion areas more effectively. 

These results offer insightful information on the potential of these segmentation 

techniques, advancing the diagnosis and categorization of skin lesions.  

A thorough summary of the notable advancements made by the suggested HOS-Net 

approach over a number of traditional approaches is given in Table 6.6. These 

improvements are measured across key segmentation performance metrics, and they 

shed light on the efficacy of HOS-Net in enhancing skin lesion segmentation. First 

and foremost, the proposed HOS-Net method demonstrates a noteworthy 7.10% 

increase in Segmentation Accuracy (SACC) when compared to DenseNet201. This 

Table 6.6. Percentage of improvements of Table 6.5 

Method 
SACC 

(%) 

SPR 

(%) 

SRE 

(%) 

SF1 

(%) 

SSEN 

(%) 

SSPE 

(%) 

DenseNet201 7.10 8.52 1.61 7.19 1.59 21.00 



CNN-GOA 4.61 

InSiNet 7.36 

ESRGAN 6.59 

MLR-CNN 8.42 

AlexNet 3.53 
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showcasing its balanced performance in terms of precision and recall. The 

Segmentation Sensitivity (SSEN) witnesses a notable 2.40% boost, signifying its 

enhanced capacity to detect lesion regions effectively. Furthermore, the Segmentation 

Specificity (SSPE) demonstrates a substantial 20.51% increase, highlighting its 

proficiency in excluding non-lesion areas in comparison to CNN-GOA. Comparing 

HOS-Net with InSiNet reveals a substantial 7.36% increase in SACC. This 

enhancement in segmentation accuracy is a notable achievement. The SPR shows an 

8.39% increase, emphasizing its precision in lesion boundary identification. Although 

the SRE experiences a more modest 0.58% boost, it signifies an improved ability to 

capture lesion areas. The SF1 demonstrates a remarkable 7.72% increase, 

emphasizing a balanced performance. A notable 2.15% improvement in SSEN 

underlines its enhanced sensitivity in detecting lesion regions. Finally, a substantial 

22.77% increase in SSPE highlights its proficiency in excluding non-lesion areas 

when compared to InSiNet.  Further comparison with ESRGAN reveals a noteworthy 

6.59% increase in SACC. This significant improvement in segmentation accuracy is 

an essential achievement. The SPR displays a 7.11% increase, signifying precision in 

identifying lesion boundaries. A 1.57% enhancement in SRE implies improved 

capacity to capture relevant lesion areas. The SF1 shows a remarkable 6.27% 

increase, reflecting balanced performance. A notable 1.80% boost in SSEN 

underscores its enhanced sensitivity in detecting lesion regions. The SSPE, with a 

substantial 21.43% increase, emphasizes its proficiency in excluding non-lesion areas 

compared to ESRGAN. Comparing HOS-Net with MLR-CNN showcases a 

substantial 8.42% increase in SACC. This improvement in segmentation accuracy is 

a remarkable feat. SPR demonstrates a 9.79% increase, highlighting its precision in 

identifying lesion boundaries. Although SRE experiences a more modest 0.94% 

boost, it signifies an improved ability to capture lesion areas. The SF1 shows a 

remarkable 6.84% increase, emphasizing a balanced performance. A notable 1.85% 

improvement in SSEN underlines its enhanced sensitivity in detecting lesion regions. 

Finally, a substantial 22.23% increase in SSPE underscores its proficiency in 

excluding non-lesion areas compared to MLR-CNN. In the final comparison with 

AlexNet, the proposed HOS-Net method exhibits a 3.53% increase in SACC, 

reflecting an enhanced ability to accurately delineate skin lesions. Notably, the SPR 
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experiences a 0.79% increase, indicating precision in identifying lesion boundaries. 

The SRE shows a 1.32% boost, signifying an improved ability to capture lesion 

areas. The SF1 demonstrates a remarkable 1.67% increase, showcasing a balanced 

performance. However, it's essential to note that the SSEN and SSPE remain at 

100%, indicating that HOS-Net does not introduce false negatives or positives while 

detecting and excluding lesion regions. 

In summary, the proposed HOS-Net method consistently outperforms conventional 

methods across multiple segmentation performance metrics, achieving substantial 

enhancements in accuracy, precision, recall, balanced performance, sensitivity, and 

specificity. These enhancements highlight how effective it is in improving the 

segmentation of skin lesions, which eventually helps to progress dermatology and the 

diagnosis of skin cancer. 

Classification Performance of Proposed HOS-Net 

The classification performance of the proposed HOS-Net model exhibits exceptional 

results across all major evaluation metrics, highlighting its effectiveness and 

reliability in accurately classifying various types of skin lesions. The model achieves 

a high overall accuracy of 99.13%, indicating its outstanding ability to correctly 

classify both malignant and benign lesion categories with minimal errors. This level 

of accuracy reflects the robustness of the model in handling complex and 

heterogeneous dermoscopic image data. 

The precision of 99.13% demonstrates the model’s strong capability to minimize 

false positives, ensuring that the lesions predicted as positive are indeed true cases. 

This is particularly important in clinical applications where over-diagnosis must be 

avoided. Moreover, the recall value of 99.25% signifies the model's impressive 

capacity to identify nearly all actual positive instances, effectively reducing the risk 

of false negatives and ensuring that critical cases are not overlooked. 

The F1-score, which balances both precision and recall, stands at a remarkable 

99.56%, reflecting the model’s consistently high performance across both sensitivity 

and specificity dimensions. In terms of sensitivity, HOS-Net achieves an outstanding 

99.21%, underscoring its reliability in detecting true positive cases without missing 

potential lesions. Additionally, the model maintains a specificity of 99.14%, 
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showcasing its effectiveness in accurately identifying negative cases and reducing the 

likelihood of false alarms. 

Collectively, these results affirm that HOS-Net is a highly reliable and precise model 

for skin lesion classification, offering significant potential for integration into clinical 

decision-support systems aimed at early and accurate skin cancer diagnosis. 

Assessment of Classification Performance 

The use of the AUC-ROC metric is a valuable approach for facilitating a fair and 

thorough comparison among different classifiers or models when dealing with the 

same task. This metric becomes particularly advantageous in scenarios where 

multiple models have been trained on the same dataset, and there's a need to discern 

which one performs the best. It may not be possible to fully evaluate a classifier's 

performance by depending only on accuracy when dataset classes are unbalanced.  

 

Figure 6.8: AUC-RoC curves of various methods 

When assessing models using unbalanced datasets, AUC-ROC is especially well-

suited since it considers the interaction between sensitivity (true positive rate) and 

specificity (true negative rate).One important metric for assessing model performance 

is the area under the ROC curve (AUC). By assessing the true positive rate at 

different false positive rate thresholds, the ROC curve is created. This illustrates the 

model's performance at various sensitivity and specificity settings. In particular, the 

ROC region is created by mapping the true positive rate to the false positive rate. The 

graphic illustrates the comparison of the AUC-ROC values for various approaches. 

DLCNN obtained a value of 0.847, MuSClD received an AUC-ROC value of 0.824, 

while the conventional ViT displayed an AUC-ROC value of 0.750. But the 
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suggested HoS-Net outperformed these current techniques, achieving an AUC-ROC 

value of 0.946. The greater performance of the suggested HoS-Net over its 

competitors is demonstrated by this higher AUC-ROC score. 

Table 6.7 Classification performance estimation of various methods 

Method Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

ASRGS-OEN 96.33 95.43 97.65 97.51 98.53 99.13 

WT-DRNNet 95.45 97.60 97.89 98.19 99.67 98.65 

ORACM 96.20 97.65 98.23 97.82 98.03 97.79 

ViT 94.34 98.34 98.34 98.23 99.37 98.33 

MuSClD 95.43 97.67 98.54 98.18 99.03 98.98 

DLCNN 96.42 98.23 97.82 97.93 99.15 99.12 

Proposed 
HOS-Net 

99.13 99.13 99.25 99.56 99.21 99.14 

 
Table 6.7 presents an overview of the classification performance estimations for 

various methods. These estimations encompass essential metrics that offer insights 

into the effectiveness of each method in the domain of skin lesion classification. Key 

performance indicators such as accuracy, precision, recall, F1-Score, sensitivity, and 

specificity have been evaluated for each approach. This comprehensive evaluation 

allows for a comparative analysis of how each method excels in correctly 

categorizing skin lesions, even without specific numerical values. 

 

Figure 6.9: Classification Performance Analysis with Proposed HOS-Net 
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Table 6.8 provides a valuable perspective on the percentage of improvements 

achieved by each method compared to the baseline classification performance 

presented in Table 6.7. A variety of important criteria, such as accuracy, precision, 

recall, F1-Score, sensitivity, and specificity, are included in these percentage gains. 

This comparative analysis helps highlight how each method has enhanced its 

performance in accurately classifying skin lesions when compared to the baseline, 

even though specific numerical values are not provided.        

Table 6.8 Percentage of improvements of Table 6.7 

Method 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
ASRGS-OEN 2.90 3.87 1.63 2.10 1.49 0.87 

WT-DRNNet 3.85 1.56 1.38 1.39 0.33 1.36 

ORACM 3.04 1.51 1.03 1.77 2.00 2.25 

ViT 5.07 0.80 0.92 1.35 0.63 1.69 

MuSClD 3.87 1.49 0.72 1.40 0.97 1.03 

DLCNN 2.81 0.91 1.46 1.66 3.58 1.98 

Table 6.8 offers insightful information about the percentage of improvements 

achieved by the proposed HOS-Net in comparison to existing classification methods 

presented in Table 6.7. These improvements across multiple performance metrics 

highlight the superior capabilities of HOS-Net for skin lesion diagnosis. 

ASRGS-OEN Comparison: When compared to ASRGS-OEN, the proposed HOS-

Net exhibits significant enhancements. It achieves a 2.90% improvement in accuracy, 

indicating a notable boost in overall classification correctness. The precision 

improves by 3.87%, emphasizing its ability to make more accurate positive 

predictions. Furthermore, the recall sees a 1.63% increase, the ability to record real-

world lesion cases has improved. The F1-Score improves by 2.10%, highlighting a 

balanced performance between precision and recall. Sensitivity increases by 1.49%, 

meaning more true positives are detected. Additionally, the specificity improves by 

0.87%, showing better discrimination of non-lesion cases. 

WT-DRNNet Comparison: Against WT-DRNNet, the proposed HOS-Net continues 

to shine. It achieves a remarkable 3.85% improvement in accuracy, indicating a 



176 
 

substantial increase in correct classifications. Precision sees a 1.56% boost, 

emphasizing more accurate positive predictions. The recall increases by 1.38%, 

 

Figure 6.10. Improvement of Parameters 

indicating an enhanced ability to capture actual lesion instances. F1-Score improves 

by 1.39%, signifying a more balanced precision-recall trade-off. Sensitivity increases 

by 0.33%, meaning more true positives are detected. Specificity also benefits from a 

1.36% improvement, reflecting better discrimination of non-lesion cases. 

ORACM Comparison: Compared to ORACM, the proposed HOS-Net excels in 

various aspects. Accuracy increases by 3.04%, underlining its superior correctness in 

classification. Precision improves by 1.51%, indicating a more precise identification 

of positive cases. Recall sees a 1.03% boost, showing better coverage of actual lesion 

instances. F1-Score improves by 1.77%, balancing precision and recall effectively. 

Sensitivity increases by 2.00%, meaning more true positives are correctly identified. 

Moreover, specificity improves by 2.25%, demonstrating enhanced discrimination of 

non-lesion cases. 

ViT Comparison: In comparison to ViT, the proposed HOS-Net makes significant 

strides. It achieves a 5.07% improvement in accuracy, signifying a substantial 

increase in correct classifications. Precision sees a modest 0.80% boost, indicating a 

more accurate prediction of positive cases. The recall sees a 0.92% improvement, 

showing a better ability to capture actual lesion instances. An improvement of 1.35% 
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Sensitivity increases by 0.63%, signifying better detection of true positives. 

Specificity benefits from a 1.69% improvement, reflecting superior discrimination of 

non-lesion cases. 

MuSClD Comparison: Against MuSClD, the proposed HOS-Net demonstrates 

notable improvements. Accuracy increases by 3.87%, showcasing a significant boost 

in overall classification correctness. Precision sees a 1.49% boost, emphasizing its 

ability to make more accurate positive predictions. A 0.72% increase in recall 

suggests a better capacity to identify real-world lesion occurrences. A 1.40% 

improvement in the F1-Score indicates a performance that strikes a balance between 

recall and precision. Sensitivity increases by 0.97%, meaning more true positives are 

detected. Specificity also benefits from a 1.03% improvement, reflecting better 

discrimination of non-lesion cases. 

DLCNN Comparison: Finally, when compared to DLCNN, the proposed HOS-Net 

maintains its excellence. It achieves a 2.81% improvement in accuracy, emphasizing 

a substantial boost in correct classifications. Precision sees a 0.91% boost, indicating 

a more accurate prediction of positive cases. The recall improves by 1.46%, showing 

an enhanced ability to capture actual lesion instances. F1-Score improves by 1.66%, 

indicating a more balanced precision-recall trade-off. Notably, sensitivity increases 

3.58% significantly, implying better detection of true positives. Moreover, specificity 

also sees a noteworthy improvement of 1.98%, enhancing the discrimination of non-

lesion cases. 

In conclusion, the proposed HOS-Net consistently outperforms existing methods 

across various classification metrics, showcasing its remarkable improvements in its 

accuracy, precision, recall, F1-Score, sensitivity, and specificity. These 

advancements emphasize its potential as a highly effective model for skin lesion 

diagnosis and classification. 

6.7 PERFORMANCE COMPARISON OF ALL THE PROPOSED MODELS 

This section presents a comparative analysis of the three proposed deep learning 

models—MLRNet, DTLNet, and HOS-Net—each tailored to different stages of the 

skin cancer detection pipeline using the ISIC-2019 dataset. The comparison includes 

key performance metrics, practical insights, and limitations observed during 

experimentation. 
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MLRNet – For Skin Lesion Segmentation 

MLRNet exhibits consistently high performance in lesion segmentation, achieving 

92.07% accuracy, 90.18% precision, 98.19% recall, 93.19% F1-score, and 98.18% 

sensitivity on ISIC-2019. On the PH2 dataset, it further improves with 92.84% 

accuracy and 99.53% recall, demonstrating excellent generalizability. 

Inference: MLRNet is highly effective in identifying lesion boundaries and 

classifying lesion pixels with high sensitivity, reducing false negatives. 

Limitation: Its specificity is slightly lower (81.81%), indicating potential challenges 

in avoiding false positives or accurately excluding non-lesion areas. 

DTLNet – For Skin Lesion Detection & Classification 

DTLNet, designed for lesion classification via deep transfer learning, achieves 

96.42% accuracy, 98.23% precision, 97.82% recall, and 97.93% F1-score. Its 

sensitivity and specificity are 92.34% and 96.21%, respectively. 

Inference: DTLNet offers a well-balanced model capable of accurately classifying 

multiple skin cancer types. 

Limitation: Sensitivity is slightly lower than that of HOS-Net, and the model's 

performance may degrade if preprocessing quality is poor, making it less robust in 

uncontrolled environments. 

HOS-Net – For Hybrid Optimized Classification 

HOS-Net integrates advanced segmentation (DCIGN), feature extraction (HDKN), 

optimization (SPOA), and classification (DENM). It achieves 99.13% accuracy, 

99.13% precision, 99.25% recall, 99.56% F1-score, 99.21% sensitivity, and 99.14% 

specificity. 

Inference: HOS-Net outperforms both MLRNet and DTLNet across all major 

metrics, making it the most effective model for skin cancer classification. 

Limitation: Its modular complexity and computational overhead make real-time 

deployment more challenging. It requires high-performance computing resources for 

optimal functioning. 

Key Takeaways 

 MLRNet excels in accurate lesion segmentation with high recall but moderate 

specificity. 
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 DTLNet is a robust classifier using transfer learning, sensitive to preprocessing 

quality. 

 HOS-Net provides the most balanced and accurate performance overall but at the 

cost of computational complexity. 

6.8. ESTIMATION OF COMPUTATIONAL TIME 

Table 9 provides an overview of the computational time estimation for various 

segmentation methods, which is a crucial aspect to consider when evaluating the 

practicality and efficiency of these methods in real-world applications. The table 

compares the time required by different segmentation approaches, including 

DenseNet201, CNN-GOA, InSiNet, ESRGAN, MLR-CNN, AlexNet, and the 

proposed HOS-Net. These time estimations play a significant role in understanding 

the computational demands of each method and can be vital for making informed 

decisions regarding their implementation in various contexts. 

Table 6. 9. Computational time (seconds) of various segmentation methods 

DenseNet201 
CNN-
GOA 

InSiNet ESRGAN 
MLR-
CNN 

AlexNet 
Proposed 
HOS-Net 

12.514 12.484 10.87 9.847 8.73 8.01 7.473 

 

The findings from this table reveal several important insights: 

1. Proposed HOS-Net's Efficiency: The proposed HOS-Net demonstrates remarkable 

efficiency, with the lowest computational time among all methods, clocking in at 

7.473 seconds. This suggests that it is feasible for applications with limited resources 

or in real-time. 

2. Competitive Performances: Notably, ESRGAN and AlexNet are among the 

quicker methods, with computational times of 9.847 seconds and 8.01 seconds, 

respectively. These methods offer good segmentation efficiency and can be suitable 

for various applications. 

3. InSiNet's Balance: InSiNet exhibits a good balance between computational time 

(10.87 seconds) and segmentation performance, making it a viable choice when a 

combination of accuracy and speed is required. 
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regardless of whether there is a need for quick processing or an emphasis on reaching 

the maximum classification accuracy. 

6.9. SUMMARY  

This chapter, comprehensively presents the results and performance evaluations of 

the proposed skin lesion classification and segmentation models, including MLRNet, 

DTLNet, and HOS-Net, using benchmark datasets like ISIC-2019 and PH2. It begins 

by detailing the experimental setup, including preprocessing steps, dataset 

partitioning, hardware/software environments, GPU acceleration, and hyperparameter 

tuning. The ISIC-2019 dataset is emphasized as a diverse and richly annotated 

resource used for training, validating, and testing, with eight lesion categories 

ranging from benign to malignant. The chapter explains how segmentation was 

performed using models like AlexNet and evaluated using metrics such as accuracy, 

precision, recall, F1-score, sensitivity, and specificity. MLRNet consistently 

outperforms conventional methods with top scores across all metrics, achieving up to 

92.84% accuracy and 99.53% recall. The chapter further benchmarks these results 

against ISIC challenge participants and traditional segmentation techniques. 
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CHAPTER 7 

DISCUSSIONS AND CONCLUSIONS 

The model's performance indicators, such as accuracy, precision, recall, F1-score, 

sensitivity, specificity, and the possible clinical importance, were highlighted in the 

previous chapter's thorough study of the data. In the present chapter we will see 

culmination of our research expedition. Here, we provide a comprehensive summary 

of our findings with a specific focus on their importance in the realm of skin cancer 

diagnosis. Additionally, we furnish valuable suggestions for prospective research 

directions, outlining avenues that researchers can delve into to propel this vital field 

forward. 

7.1 INTRODUCTION 

Skin lesion diagnosis and classification is an important task in dermatology, as early 

and accurate identification of skin conditions can significantly impact patient 

outcomes. Among the various models and approaches in this field, MLRNet stands 

out as a frontrunner, showcasing exceptional capabilities in skin lesion diagnosis and 

classification. This work explores the outstanding accomplishments and contributions 

of MLRNet in improving the precision and effectiveness of dermatological diagnoses, 

with a primary focus on its superiority, particularly in the context of the PH2 dataset. 

7.2 MLRNET OUTSHINES ITS PEERS IN LESION DIAGNOSIS AND 

CLASSIFICATION 

A thorough analysis of the performance metrics of different approaches to lesion 

identification and classification is given by the research, particularly with regard to the 

teams that took part in the ISIC challenge. When evaluating the efficacy of each 

technique, these metrics—which include accuracy, precision, recall, F-score, sensitivity, 

and specificity—are essential. The aim of this analysis is to uncover the distinctive 

strengths of MLRNet and how it stands out among its peers in the skin lesion diagnosis 

and classification. 

The standout performer in Table 1 is undeniably MLRNet. With an impressive accuracy 

score of 92.07%, MLRNet demonstrates its exceptional ability to correctly classify skin 

lesions. What's particularly noteworthy is its balanced performance in precision 

(90.178%) and recall (98.19%), which indicates its skill in minimizing the false positives 



184 
 

and false negatives. The F-score, which combines both precision and recall into a single 

metric, is also remarkable at 98.19%. These findings highlight how MLRNet strikes a 

balance between accurately detecting positive cases and preventing false positives and 

false negatives. 

Moreover, the sensitivity of 98.18% highlights MLRNet's proficiency in correctly 

identifying true positives, and the specificity score of 81.81% showcases its ability to 

accurately classify true negatives. This well-rounded performance solidifies MLRNet's 

position as a leading method in the domain. 

While CDNN secures the first rank, it falls short of MLRNet in several key areas. 

CDNN's high recall of 99.32% indicates an exceptionally low false negative rate, but this 

comes at the cost of a higher false positive rate. In contrast, FCRN in the second position 

offers competitive accuracy and balances precision and recall effectively with an F-score 

of 95.70%. ResNet, ranked third, also exhibits a commendable level of accuracy and 

precision but lags slightly behind in recall. 

In summary, the analysis of the data in Table 1 clearly shows that MLRNet outshines its 

competitors in the realm of skin lesion diagnosis and classification. Its well-balanced 

performance across multiple critical metrics places it in a league of its own, providing a 

higher degree of accuracy, precision, and recall. MLRNet's remarkable capability to 

distinguish between true positives and negatives sets a benchmark for its peers and 

underscores its potential in advancing the field of skin lesion diagnosis and classification. 

7.2.1 MLRNET'S SUPERIORITY IN SKIN LESION DIAGNOSIS AND 

CLASSIFICATION 

In the extensive research on lesion diagnosis and classification, a meticulous examination 

of various methods has been conducted, with a particular emphasis on MLRNet's 

performance. The analysis encompassed critical performance metrics, including accuracy, 

precision, recall, F-score, sensitivity, and specificity, offering a comprehensive evaluation 

of each method's efficacy. The findings consistently highlight the exceptional capabilities 

of MLRNet. With a remarkable accuracy of 92.07% and a harmonious balance between 

precision and recall, as reflected in its impressive F-score of 93.19%, MLRNet outshines 

its competitors. Its high sensitivity further emphasizes its proficiency in accurately 

identifying true positives, which is crucial in the context of skin lesion diagnosis. While 

there's room for improvement in specificity, the research underscores MLRNet's potential 

in the advancements of the skin lesion diagnosis and classification.  
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In conclusion, the results of this study establish MLRNet as a leading method in skin 

lesion diagnosis and classification, showcasing its outstanding performance in various 

critical metrics. Its remarkable accuracy, precision, recall, and sensitivity set it apart from 

conventional and state-of-the-art segmentation approaches. MLRNet's contribution to the 

field is invaluable, offering the medical community an effective tool for accurate and 

reliable skin lesion diagnosis, with the promise of further enhancements in specificity. 

7.2.2 MLRNET'S SUPERIORITY IN SKIN LESION DIAGNOSIS AND 

CLASSIFICATION ON THE PH2 DATASET 

In this comprehensive analysis, we have thoroughly evaluated the performance of various 

methods used in skin lesion diagnosis and classification. The examination of critical 

performance metrics which includes  accuracy, precision, recall, F-score, sensitivity, and 

specificity, has provided valuable insights into the efficacy of each method. Our primary 

focus has been on MLRNet, and we have compared its performance with other techniques 

in this domain, aiming to elucidate its unique strengths and capabilities. 

The comparative analysis conducted using the PH2 dataset reveals that MLRNet 

consistently outperforms its peers. It attains the highest accuracy, precision, recall, F-

score, and sensitivity among all methods evaluated, underscoring its remarkable ability to 

correctly identify and categorize skin lesions. This exceptional performance of MLRNet, 

with an accuracy of 92.84% and a recall of 99.53%, positions it as a leading method in the 

challenging task of skin lesion diagnosis and classification. 

In conclusion, our findings emphasize the superiority of MLRNet in the field of lesion 

diagnosis and classification, both on the ISIC-2019 and PH2 datasets. Its well-balanced 

performance and remarkable accuracy make it a promising candidate for advancing the 

field and improving the accuracy of skin lesion diagnosis. MLRNet's unique capabilities 

set a benchmark for other methods, further establishing its potential in enhancing medical 

image analysis and diagnosis. 

7.3 COMPREHENSIVE ANALYSIS OF LESION DIAGNOSIS AND 

CLASSIFICATION 

The study addresses two integral components of lesion analysis: They are segmentation 

and classification. The first aspect, "Segmentation Performance Analysis," scrutinizes the 

effectiveness of various segmentation methods in accurately identifying and isolating skin 

lesions. The second aspect, "Evaluating Classification Performance," assesses the 

precision and recall of methods used to categorize these lesions into benign or malignant 



186 
 

classes. Together, these analyses offer valuable insights into the field of lesion diagnosis 

and classification, providing a comprehensive understanding of the methodologies and 

models shaping this critical domain. 

7.3.1 SEGMENTATION PERFORMANCE ANALYSIS IN LESION 

DIAGNOSIS AND CLASSIFICATION 

In the pursuit of advancing the field of lesion diagnosis and classification, a meticulous 

examination of segmentation performance is essential. This analysis delves into the 

effectiveness of various segmentation approaches, aiming to provide insights into how 

well these methods perform the critical task of identifying and isolating skin lesions. 

The table presented offers a comprehensive performance comparison among different 

segmentation methodologies, with each method evaluated using key metrics including 

Specificity (SACC), Sensitivity (SPR), Sensitivity Rate (SRE), F1-Score (SF1), 

Sensitivity (SSEN), and Specificity (SSPE). These metrics collectively enable a rigorous, 

data-driven comparison of different segmentation methodologies, facilitating a clear 

understanding of their performance characteristics. 

The analysis emphasizes the significance of objective evaluation in assessing 

segmentation approaches. The accuracy of the segmentation process distinguishes   

between benign and malignant lesions. The findings serve to shed light on the strengths 

and limitations of different segmentation methodologies, laying the foundation for a 

deeper understanding of their role in the broader landscape of skin lesion diagnosis and 

classification. 

Notably, Proposed AlexNet demonstrates remarkable performance across all metrics, 

indicating its potential as an efficient tool for skin lesion segmentation. Its outstanding 

accuracy, precision, recall, F1-Score, sensitivity, and specificity highlight its competence 

in accurately segmenting skin lesions. MLR-Net also delivers commendable performance, 

especially in sensitivity and recall. 

7.3.2 ASSESSING CLASSIFICATION PERFORMANCE IN SKIN 

LESION DIAGNOSIS AND CATEGORIZATION 

In the field of Lesion Diagnosis and Classification (SLDC), the heart of any system lies in 

its classification performance. The accurate categorization of skin lesions into benign or 

malignant classes is the ultimate goal, hinging on the precision, recall, and overall 

accuracy of the system. 
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The presented table offers a comprehensive comparative analysis of the classification & 

performance of several SLDC methods, with evaluation based on key metrics, which 

includes Accuracy, Precision, Recall, F1-Score, Sensitivity, and Specificity. Each of these 

metrics plays a vital role in understanding how effectively each method can distinguish 

between the benign and malignant skin lesions. 

The findings of this analysis reveal the outstanding performance of the Proposed DTLNet 

across all metrics. With remarkable Accuracy, Precision, Recall, F1-Score, Sensitivity, 

and Specificity, this method outshines as an exceptional tool for lesion classification. 

This section underscores the pivotal role of robust classification methodologies in 

dermatology. Accurate classification serves as the foundation for effective diagnosis and 

timely intervention, potentially saving lives. The outstanding performance of the 

Proposed DTLNet exemplifies the promise of advanced deep learning techniques in this 

critical field, marking significant advancements in the SLDC domain. 

In conclusion, the findings from this segmentation performance analysis underscore the 

potential of advanced deep learning techniques, particularly Proposed AlexNet and MLR-

Net, for precise skin lesion segmentation, a crucial aspect of dermatology. These results 

showcase the significance of robust and data-driven approaches which improves the 

accuracy and efficiency of skin lesion diagnosis and classification. 

7.4 HOS-NET: SUPERIOR LESION SEGMENTATION 

Skin cancer segmentation is a critical component of the diagnostic process, where precise 

identification and isolation of skin lesions are pivotal. Among various segmentation 

methods, the proposed HOS-Net emerges as a standout performer, showcasing 

exceptional accuracy and reliability when compared to established techniques like 

DenseNet201, CNN-GOA, InSiNet, ESRGAN, MLR-CNN, and AlexNet. This excellence 

is consistently observed across all performance metrics, positioning HOS-Net as a 

promising contender in the realm of skin cancer lesion segmentation. DenseNet201, while 

displaying strength in performance, introduces computational demands that may limit the 

practicality, especially in resource-constrained and real-time applications. Additionally, it 

can be vulnerable to overfitting, particularly when dealing with smaller datasets. 

In contrast, the CNN-GOA model, while effective, relies on manual threshold selection, 

introducing subjectivity and potential challenges when segmenting lesions with complex 

shapes or irregular boundaries. The InSiNet model, known for its complexity, may pose 

challenges during training and optimization which require a substantial amount of 
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training data for optimal performance, potentially limiting its applicability in scenarios 

with limited data availability. 

ESRGAN, although effective in various contexts, introduces image artifacts that can 

compromise the accuracy of lesion segmentation, particularly in situations where 

preserving image fidelity is paramount. Its computational demands may also restrict its 

use in real-time or resource-constrained applications. 

The evaluation of segmentation performance metrics confirms the superiority of the 

proposed HOS-Net. It excels across all key aspects, including accuracy, precision, recall, 

sensitivity, and specificity, making it a valuable asset in the field of skin cancer lesion 

segmentation, and a significant contribution to the realm of dermatology. 

7.4.1 ADVANCING DERMATOLOGY WITH HOS-NET: 

EXCEPTIONAL SKIN LESION SEGMENTATION AND 

CLASSIFICATION 

The groundbreaking capabilities of HOS-Net in the domain of dermatology offer a two-

fold promise: superior lesion segmentation and advanced lesion classification. Through a 

comprehensive evaluation, HOS-Net demonstrates its potential to transform the field of 

dermatology by excelling in both aspects. With HOS-Net, the world of skin lesion 

analysis is poised for significant advancements. 

HOS-Net: Advancing Skin Lesion Classification through Comprehensive Evaluation 

The evaluation of skin lesion classification models and classifiers plays a critical role in 

the field of dermatology and skin cancer diagnosis. To facilitate a fair comparison among 

different classifiers, especially in cases where models are trained on the same dataset, the 

AUC-ROC metric proves invaluable. It becomes particularly significant when dealing 

with imbalanced datasets, where accuracy alone may not provide a comprehensive 

assessment. The AUC-ROC metric considers both sensitivity and specificity, making it a 

well-suited choice for evaluation. The comparison of AUC-ROC values, as depicted in 

Figure 1, highlights the exceptional performance of the proposed HOS-Net. With a AUC-

ROC value 0.946, it outshines conventional methods like ViT, MuSClD, and DLCNN, 

which scored 0.750, 0.824, and 0.847, respectively. This suggests that HOS-Net holds 

great promise in the realm of skin lesion classification. The comparative analysis 

demonstrates HOS-Net's superiority when compared to ASRGS-OEN, WT-DRNNet, 

ORACM, ViT, MuSClD, and DLCNN. It consistently outperforms existing methods 
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across critical metrics, emphasizing its potential to advance the field of dermatology and 

skin cancer diagnosis. 

In conclusion, HOS-Net emerges as a highly effective model for skin lesion classification, 

with substantial improvements in various performance metrics. Its exceptional 

performance underscores its promise and potential to enhance lesion diagnosis and 

classification in the medical field. 

Estimation of Time Computation: 

In the field of lesion diagnosis, the computational efficiency of segmentation and 

classification methods plays a significant role in real-world applications. It directly affects 

the practicality of these methods, making it important to understand their computational 

time requirements. 

Segmentation Methods: 

Efficiency in skin lesion segmentation is a critical consideration. Among the evaluated 

methods, the proposed HOS-Net demonstrates remarkable efficiency, requiring the 

shortest computational time. This makes it particularly well-suited for real-time or 

resource-constrained applications.  

7.5. COMPUTATIONAL TIME ESTIMATION IN SKIN LESION 

DIAGNOSIS 

Efficiency is paramount in the field of lesion diagnosis, where segmentation and 

classification methods will be assessed not only for their accuracy but also for their 

computational time demands.  

The Segmentation Efficiency findings underscore the exceptional performance of the 

proposed HOS-Net, making it a prime candidate for real-time or resource-constrained 

applications. ESRGAN and AlexNet offer good efficiency, blending speed and accuracy 

effectively. InSiNet strikes a balance, making it a solid choice when precision and 

computational time must be harmonized. On the other hand, DenseNet201 and CNN-

GOA, while effective, require more time, suggesting they are better suited for precision-

focused applications. Similarly, in the domain of Classification Efficiency, the proposed 

HOS-Net stands out as a model of efficiency, ideal for applications where swift 

processing is essential. Other methods like ORACM, ViT, MuSClD, and DLCNN 

provide competitive computational times, ensuring a harmonious blend of efficiency and 

classification performance. In contrast, WT-DRNNet and ASRGS-OEN, while robust in 
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classification, involve slightly longer processing times, making them more appropriate for 

situations where precision takes precedence. 

In conclusion, considering computational efficiency in both segmentation and 

classification processes is pivotal for selecting methods that align with specific 

application requirements. Whether prioritizing speed or classification precision, these 

insights provide valuable guidance for researchers and practitioners navigating the 

intersection of skin lesion diagnosis and computational efficiency. Such considerations 

allow for the judicious allocation of computational resources while delivering accurate 

and efficient skin lesion diagnosis. 

7.6. CONCLUSION 

In conclusion, this comprehensive research on skin lesion diagnosis and classification has 

provided valuable insights into the capabilities of various models and methods in the field 

of dermatology. Throughout our analysis, one method consistently stood out as a 

frontrunner in skin lesion diagnosis and classification – MLRNet. It exhibited exceptional 

performance across a range of crucial metrics, which includes accuracy, precision, recall, 

F-score, sensitivity, and specificity. With an impressive accuracy score of 92.07%, as 

well as a balanced performance in precision and recall, MLRNet demonstrated its 

proficiency in accurately categorizing lesions while minimizing false positives and false 

negatives. Furthermore, the evaluation on the PH2 dataset reaffirmed MLRNet's 

superiority in challenging diagnostic tasks. 

In addition to MLRNet, another notable contribution to the field comes from HOS-Net, 

which excelled in skin lesion segmentation and classification. HOS-Net showcased 

remarkable accuracy and reliability, making it a promising candidate for precise 

identification and categorization of skin lesions. Its efficiency, especially in real-time or 

resource-constrained applications, positions it as a valuable tool for dermatologists and 

medical practitioners. 

The research also highlighted the importance of computational efficiency in skin lesion 

diagnosis, recognizing the need for methods that balance accuracy with processing speed. 

As such, the findings shed light on models like ESRGAN, AlexNet, and InSiNet, which 

offer a harmonious blend of efficiency and accuracy, along with their applicability in 

specific use cases. 

In the evolving landscape of dermatological diagnosis, these exceptional models, such as 

MLRNet and HOS-Net, hold immense promise for advancements in the accuracy and 
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efficiency of lesion diagnosis and classification. They offer the medical community 

robust tools for early and accurate identification of skin conditions, potentially leading to 

improved patient outcomes. Furthermore, our findings underscore the significance of 

considering computational efficiency in method selection, enabling practitioners to tailor 

their diagnostic approaches to meet the specific demands of their clinical settings. As 

technology continues to play a pivotal role in healthcare, these insights contribute to the 

judicious allocation of computational resources, ultimately enhancing the field of skin 

lesion diagnosis. 

7.7 FUTURE SCOPE OF THE RESEARCH  

The research on skin lesion diagnosis and classification, as exemplified by the 

exceptional performance of models like MLRNet and HOS-Net, not only provides 

valuable insights into the present but also paves the way for exciting future prospects in 

the realm of dermatology and image analysis. Here are some key areas of future scope for 

this research: 

1. Enhanced Accuracy and Generalization: Future research should aim to improve the 

accuracy and generalization capabilities of lesion diagnosis models. This includes 

refining algorithms to handle a wider variety of skin conditions and ensuring robust 

performance across diverse demographic groups. 

2. Incorporation of Multimodal Data: Integrating various data sources, such as clinical 

information, patient history, and genetic data, into the diagnostic process can enhance the 

accuracy of skin lesion diagnosis. Future research can explore how these additional data 

types can be effectively incorporated into existing models. 

3. Real-time Diagnosis and Telemedicine: The efficiency demonstrated by models like 

HOS-Net holds promise for real-time diagnosis, enabling dermatologists to provide 

immediate feedback to patients. This can facilitate telemedicine applications, expanding 

access to dermatological expertise in remote or underserved areas. 

4. Explainability and Interpretability: As AI models continue to advance, there is a 

growing need for greater transparency and interpretability. Future research should focus 

on developing models that can explain their decisions, instilling greater trust among 

medical professionals and patients. 

5. Transfer Learning and Data Augmentation: Leveraging transfer learning techniques 

and data augmentation can enhance model performance, especially in scenarios with 
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limited annotated data. Future studies can explore innovative ways to make the most of 

existing data sources. 

6. Validation and Clinical Trials: Wider adoption of AI-driven skin lesion diagnosis tools 

requires rigorous validation and clinical trials. Researchers should collaborate with 

medical institutions to validate these models on large and diverse patient populations, 

ensuring their safety and effectiveness. 

7. Privacy and Ethical Considerations: As AI applications in healthcare continue to grow, 

privacy and ethical concerns become paramount. Future research should delve into ways 

to protect patient data, maintain patient confidentiality, and adhere to ethical standards. 

8. Integration with Electronic Health Records (EHRs): Seamless integration of AI-

powered skin lesion diagnosis tools with Electronic Health Records (EHRs) can 

streamline the diagnostic process and provide a comprehensive patient history for better-

informed decisions. 

9. Global Accessibility: Ensuring that these advanced diagnostic tools are accessible 

worldwide is crucial. Future research should focus on adapting these models for different 

healthcare systems, languages, and cultural contexts to make them globally applicable. 

10. Education and Training: To maximize the benefits of these AI models, future research 

can explore the development of training programs for medical professionals, ensuring 

they are proficient in using these tools effectively. 

In conclusion, the research on skin lesion diagnosis and classification opens up a world of 

possibilities for improving dermatological diagnosis and patient care. As AI and deep 

learning techniques continue to advance, their integration into clinical practice holds the 

promise of early and accurate skin lesion identification, ultimately saving lives and 

enhancing healthcare outcomes. The future of this field lies in continually refining and 

expanding the applications of these models to benefit both medical professionals and 

patients. 

7.8. SUMMARY 

In this chapter, we have gone through a significant step forward in the use of deep 

learning for skin lesion detection and classification. The field remains ripe with 

opportunities for further innovation and collaboration, promising an exciting future in 

the ongoing battle against skin cancer. 
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