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ABSTRACT 

The thesis entitled “Study of Elastodynamic Problems in Micropolar Thermoelastic 

Media” is divided into six chapters and contribution of the chapters is as follows: 

In the first chapter, an introduction is provided that includes a brief history to theories 

of micropolar elasticity, micropolar thermoelasticity, modified Green-Lindsay (MG-L) 

thermoelasticity, and Moore-Gibson-Thompson (MGT) thermoelasticity with hyperbolic 

two-temperature (HTT), two-temperature (TT), non-local (N-L), and voids. Additionally, a 

concise literature review of the relevant research in the area is presented. 

Chapter 2 presents the reflection of plane waves in homogeneous, isotropic, micropolar 

thermoelastic (MT) half-space using the MG-L generalised thermoelasticity theory. The 

governing equations are rendered dimensionless for two-dimensional problem, and potential 

functions are employed to facilitate further simplification. When a plane wave (longitudinal 

displacement wave (LDW) or thermal wave (TW) or coupled transverse wave (CD-IW), or 

coupled microrotational wave (CD-IIW)) is incident on the surface x3 = 0, four types of 

reflected waves are identified, namely LDW, TW, CD-IW, and CD-IIW. The impedance 

boundary restrictions are employed to calculate the amplitude ratios (AR) of these reflected 

waves. Graphs illustrate the impacts of impedance parameters on the AR of reflected waves 

for a variety of thermoelasticity theories. Some particular cases are also discussed. 

A mathematical model of micropolar thermoelasticity is introduced in chapter 3, which 

is based on the MGT heat equation with N-L and HTT parameters. The governing equations 

are transformed into a two-dimensional problem, which is then simplified using potential 

functions and rendered dimensionless. Subsequently, a reflection-based methodology is 

implemented to solve the problem. Four types of reflected waves are identified when a plane 

wave (LDW or CD-IW) strikes the surface x3 = 0, namely LDW, TW, CD-IW, and CD-IIW. 

The impedance boundary restrictions are employed to calculate the AR of these reflected 

waves. The graphic representation of numerical findings depicts the effects of N-L, HTT, TT, 

and impedance parameters on AR. Specific cases are also considered. 

The reflection of plane waves in a micropolar elastic medium with voids at the non-

free surface is the area of investigation in chapter 4. The governing equations are translated 

into a two-dimensional, dimensionless form for the model under consideration, and potential 

functions are employed to further simplify the formulation. Four types of reflected waves are 

identified when a plane wave (LDW or longitudinal void volume fraction wave (LVVFW) or 

CD-IW, or CD-IIW) is incident at the surface x3 = 0, namely LDW, LVVFW, CD-IW, and 

CD-IIW. Using non-free boundary conditions, the AR of various reflected waves are 
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determined. The graphic representation of the AR with respect to the angle of incidence for 

both non-free and free surfaces is used to illustrate the effects of stiffnesses and voids. 

Specific cases are also deduced.  

In chapter 5, the MGT heat equation is employed to solve a two-dimensional 

deformation problem in an isotropic, homogeneous MT half-space. The problem is solved 

under thermomechanical conditions, and N-L and HTT parameters are incorporated. Potential 

functions are employed to further simplify the governing equations, which are presented in 

dimensionless form. The problem is solved by employing the Laplace and Fourier transforms. 

The transformed domain is used to calculate physical quantities, such as components of 

displacement, force stresses, tangential couple stress, thermodynamic temperature, and 

conductive temperature, for a specific thermal source and normal force at the boundary 

surface. The quantities in the original domain are subsequently recovered using a numerical 

inversion technique. Graphs are used to demonstrate how the N-L, HTT, and TT parameters 

affect the resulting quantities. Certain cases are also deduced. 

The primary objective of chapter 6 is to utilize the MGT heat equation to examine the 

axisymmetric deformity in homogeneous, isotropic, MT with N-L, and HTT parameters as a 

result of the distinct loads (ring load and disc load). The equations are reduced in two-

dimensional form and then transformed by using dimensionless quantities and potential 

functions. The Laplace and Hankel transforms are employed to solve governing equations. 

The displacement components, force stresses, tangential couple stress, thermodynamic 

temperature, and conductive temperature are obtained in the transformed form. To recover 

physical quantities into the original domain, a numerical inversion technique is used. The 

graphic representation of numerical findings for force stress components, tangential couple 

stress and conductive temperature depicts the effects of N-L, HTT, and TT factors. Some 

cases of interest are also drawn. 

Problems discussed in the thesis are published in the form of research papers in SCI 

and Scopus indexed journals with good impact factor. 
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This chapter provides a brief introduction to the theories 

of micropolar elasticity, micropolar thermoelasticity, 

modified Green-Lindsay thermoelasticity, and Moore- 

Gibson-Thompson thermoelasticity with hyperbolic two-

temperature, two-temperature, non-local, and voids. 

Various researchers' work on these aspects is briefly 

reviewed. 
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Chapter 1 

1.1 Introduction  

The classical theory of elasticity aligns well with experimental results for many structural 

materials under elastic conditions. However, it often falls short in scenarios where the material’s 

microstructure plays a critical role. Notable discrepancies arise near stress concentrators such as 

holes, notches, and cracks in materials like steel, aluminum, and concrete. These inconsistencies 

become more pronounced in high-frequency phenomena, such as ultrasonic wave propagation, 

and in dynamic behaviors like vibrations of granular or multimolecular structures. Since most 

natural and engineered materials including metals, composites, soils, and concrete exhibit 

inherent microstructures, a more refined theory is needed to accurately capture their mechanical 

response. 

 Voigt (1887) [165] was the first to suggest that the interaction between two components 

in a material is described by both a force vector and a moment vector. This proposal addressed 

the shortcomings of classical elasticity and resulted in the development of couple stress theory. 

Cosserat and Cosserat (1909) [25] established an asymmetric elasticity theory for deformable 

bodies, taking into account a three-dimensional continuum in which material particles can move 

linearly and rotate during material deformation. As a result, a body's deformation is 

characterized by two vectors: displacement and independent rotation. Although the idea was 

innovative, the Cosserat brothers' work attracted little attention from researchers, and the theory 

remained largely overlooked during their lifetime, possibly due to its non-linear nature. After 

several years of Cosserat's work, some researchers Gunthier (1958) [55], Grioli (1960) [54], 

Truesdell and Toupin (1960) [164], and Mindlin and Tiersten (1962) [107] extended Cosserat 

continuum theory as Cosserat Pseudocontinuum. 

 Eringen (1964) [34] developed the theory of simple microfluids, incorporating the 

concept of microinertia conservation. Later, Eringen and Suhubi (1964) [45], along with Suhubi 

and Eringen (1964) [158], formulated a general theory for nonlinear microelastic solids. This 

theory considers the internal motions of microelements within the macrovolume and introduces 

new balance laws for continuum mechanics. 

 Green and Rivlin (1964) [53] and Green (1965) [48] devised a multipolar continuum 

theory that appears to be a specific instance of Eringen and Suhubi (1964) [45] theory. A 

micromorphic continuum is composed of materials that exhibit both classical motion and 
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deformation, with the assumption that the deformation is affine. Consequently, the material point 

in the micromorphic medium possesses twelve degrees of freedom, with three of these degrees 

being dedicated to macro motion and nine to micro motion. Eringen (1966) [35] renamed the 

theory of micromorphic continuum that Eringen and Suhubi devised in 1964. Micromorphic 

continuum theory, which encompasses both Cosserat continuum theory and indeterminate 

couple stress theory, presents challenges in its application due to its complexity. 

 Eringen (1966 [36], 1966 [37]) later simplified the theory of the micromorphic 

continuum and introduced the term “micropolar elasticity” in his papers. In micropolar elasticity, 

the body is considered to be composed of interconnected material particles, resembling small 

rigid bodies that can move both rotationally and translationally. The motion of these particles is 

characterized by both deformation and microrotation, resulting in six degrees of freedom. They 

are free to rotate independently. Consequently, the interaction between two regions of a 

material’s constituents is transmitted through both force and torque, resulting in asymmetric 

force and couple stresses within the material. Examples of materials in this category include 

solid propellant granules, polymeric compounds and fiberglass.  

 Nowacki (1968) [109] and Eringen (1970) [39] introduced thermal effects into the theory 

of micropolar materials, leading to the development of micropolar coupled thermoelasticity 

theory. This theory is based on the conduction equation and stress-strain relation, both of which 

are influenced by thermal processes or heat. Tauchert et al. (1968) [159] formulated the 

fundamental equations for the linear theory of micropolar thermoelasticity, encompassing the 

constitutive equations, displacement components, microrotation, and coupling stresses. 

Nowacki (1970) [110] established the “second” plane problem in micropolar elastic solid. 

 Iesan (1971) [57] also developed the existence theorems using the fundamental three-

dimensional boundary value problems in micropolar elastic solids. Nowacki (1971 [111], 1972 

[112]) studied axisymmetric problems in micropolar elasticity. Boschi and Iesan (1973) [20] 

used Green and Lindsay's (G-L) (1972) [49] entropy production inequality to investigate the 

linear theory of generalised thermoelasticity for a homogeneous micropolar continuum. Rao and 

Rao (1983) [125] investigated longitudinal wave propagation in a long, circular cylinder of linear 

micropolar elastic material. The theory of micropolar thermoelasticity, which has heat flux as 

one of its constitutive variables, was devised by Chandrasekharaiah (1986) [21].  
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 Eringen (1999) [43] presented the connections between several microcontinuity theories. 

Kumar and Deswal (2000) [73] studied the steady-state response of a micropolar generalized 

thermoelastic solid under the influence of a moving force applied normal to the boundary, 

accounting for the effects of microrotation. Kumar et al. (2007) [90] employed the eigenvalue 

method to examine thermal and mechanical disturbances in a micropolar thermoelastic (MT) 

medium.  

 In the context of the Green and Naghdi III (GN-III) (1992) [51] theory of 

thermoelasticity, Partap and Kumar (2010) [116] employed the separation of variables technique 

to solve the resultant equation that governs an isotropic, homogeneous MT cylindrical curved 

plate in a circumferential direction. The axisymmetric problem of micropolar porous 

thermoelastic materials under thermal source and normal force was investigated by Kumar and 

Gupta (2010) [75] using the potential function.  

 Shaw and Mukhopadhyay (2011) [148] used Lord-Shulman's (L-S) (1967) [98] 

generalised theory of thermoelasticity to explore the properties of waves in various modes on an 

isotropic MT plate. Zhang et al. (2015) [171] calculated the energy flux ratios of 

reflected waves at the non-free surface in a micropolar elastic semi-solid. Abouelregal and 

Zenkour (2017) [4] calculated thermodynamic and conductive temperatures, micro-rotation, and 

stresses when surface waves propagate in MT media. Singh et al. (2019) [151] derived the 

reflection coefficients and energy ratios for various reflected waves in a generalized MT 

medium. 

 Khan and Tanveer (2022) [69] studied the refraction and reflection of waves at the 

interface between micropolar solid and liquid layers. Kumar and Partap (2022) [91] used normal 

mode (NM) analysis technique to derive wave dispersion relation in a MT plate with memory 

dependent derivatives. Othman and Abbas (2023) [114] developed the phase lag theory to 

investigate the impact of rotation for the two-dimensional MT medium by employing the 

eigenvalue approach.   

 Somaiah and Kumar (2023) [155] formulated secular equations to analyze Rayleigh 

wave propagation in a homogeneous, isotropic micropolar elastic solid coupled with a viscous 

liquid, and studied the nature of different Rayleigh waves. Sahu et al. (2023) [128] studied 

propagation of Rayleigh wave in a micropolar semi-space and explored the impacts of material 

density and micropolarity on phase velocity.  
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 By combining a linear TT theory with a higher-order derivative in a micropolar 

thermoelasticity semi-solid, Abouelregal and Rashid (2024) [3] employed a NM analysis 

approach to demonstrate the effects of initial stress and magnetic Hall current on wave fields 

and media characteristics. Bhat et al. (2024) [18] studied the behaviour of Rayleigh waves 

caused by seismic surface pulses in both an isotropic micropolar elastic semi-space and 

multilayered micropolar media. 

 The non-locality postulates, when viewed through the lens of functional basic relations, 

reveal a study of every particle's behaviour within a physical material. According to the non-

local (N-L) theory of elasticity, the condition of each place inside the substance influences a 

specific property of a particle. This property differentiates N-L theory of elasticity from classical 

theory of elasticity. N-L atomic interactions have a significant impact on material characteristics 

in solid-state physics. This theory focuses on an internal characteristic length parameter crucial 

for accurately describing the physical behaviour of materials at the nanoscale. 

 With the help of universal balance laws along with thermodynamic second law, Eringen 

and Edelen (1972) [44] established the N-L theory of thermoelastic solids. Eringen (1972) [40] 

evolved a N-L theory of polar elastic continua. In this theory, he formulated the constitutive 

equations by using N-L thermodynamics and invariance under rigid motions of N-L 

micromorphic elastic solid. N-L theory of elasticity evaluates strain at every point in the 

medium, as compared to classical theory of elasticity, which only considers strain at a single 

point. N-L thermoelasticity theory serves as a bridge between the classical continuum limit and 

the atomic lattice theory. It incorporates surface, thermal and elastic effects, providing a 

framework to analyze solids with finite boundaries. This approach enables a more 

comprehensive treatment of material behavior, particularly at scales where classical theories 

may not adequately describe phenomena due to their inherent assumptions about locality and 

boundary conditions.  

 Eringen (1974) [41] formulated the foundational equations of N-L theory of 

thermoelasticity, establishing a framework that considers the N-L effects in thermal and elastic 

behavior of materials. Eringen (1984) [42] developed the dispersion relation for transverse plane 

waves in N-L micropolar elastic materials. Yu et al. (2016) [169] introduced a N-L 

thermoelasticity theory to investigate the effects of elastic deformation and heat conduction in 

nanoscale structures.  
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 Kalkal et al. (2020) [63] studied the effects of N-L, rotational, and micropolar parameters 

on the energy ratios and reflection coefficients of different reflected waves in a rotating MT 

medium. Sahrawat et al. (2023) [127] studied the reflection and refraction phenomena of waves 

at an interface in a N-L MT media. They also computed the reflection and refraction coefficients 

of various waves concerning their angle of incidence and angular frequency. Poonam et al. 

(2024) [117] investigated the basic solution in an isotropic N-L MT materials with voids. They 

also explored how N-L and void parameters affected the attenuation coefficients and phase 

velocity of distinct waves. With the NM analysis approach, Dhankhar et al. (2024) [31] 

investigated thermo-mechanical interactions in functionally graded MT half-space with N-L 

impact due to inclined load.  

 A linear elastic material with voids consists of microscopic pores. In classical elasticity 

theory, the volume of these pores is typically ignored. However, the volume of these pores is 

crucial and must be considered as an independent kinematic variable. Voids are common in the 

composite manufacturing process and have the potential to change stiffness, strength, and 

fracture characteristics. Incorporating voids into micropolar media enriches the model by 

introducing additional physical phenomena such as porosity-induced wave modes and coupling 

effects. This extended model is vital for simulating and analysing real-world materials where 

porosity and microstructure significantly influence mechanical behaviour. The study of wave 

propagation in such media supports advanced material design, geophysical exploration etc. As 

a result, many researchers have worked on void-containing materials in various fields of study 

and applications. 

 Nunziato and Cowin (1979) [113] developed a hypothesis that was predicated on the 

existence of apertures in non-linear elastic materials. Cowin and Nunziato (1983) [26] expanded 

this concept to include linear elastic materials with apertures. Iesan (1985) [58] investigated 

shock wave propagation in micropolar elastic materials containing voids. Iesan (1986) [59] built 

on Cowin and Nunziato's (1983) linear theory of thermoelastic solids with voids by 

incorporating thermal effects. Marin (1996) [100] employed elliptic equation theory to establish 

the existence and uniqueness of solutions for boundary value problems in micropolar elastic 

materials with apertures. 

 The dynamic problem of isotropic, homogeneous semi-space that contain voids under a 

normal point source was investigated by Kumar and Choudhary (2003) [72]. Miglani and 
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Kaushal (2011) [105] studied a two-dimensional problem involving micropolar elastic solids 

with voids in an inviscid fluid. Othman and Atwa (2012) [115] used the Green and Naghdi type 

I (GN-I) (1991) [50] and type II (GN-II) (1993) [52] thermoelasticity theories to explore the 

deformation of MT solids with cavities under the effect of various sources at the boundary. Singh 

and Singh (2013) [153] used the eigenvalue method to solve the field equations for an 

axisymmetric problem in a micropolar elastic medium with apertures. 

 Marin (2016) [101] proposed a heat-flux theory for micropolar porous media that 

incorporates both the heat-flux vector and its accompanying evolution equation. Lianngenga, & 

Singh and Lianngenga (2017 [96], 2017 [154]) examined various wave analysis problems in 

micropolar elastic and MT material containing cavities. Marin et al. (2019) [102] used advanced 

mathematical techniques to generalize Dafermos's results to prove the existence and uniqueness 

of finite energy solutions in thermoelasticity for micropolar materials with pores. With the help 

of NM analysis approach, Alharbi et al. (2020) [15] obtained expressions of temperature, volume 

fraction fields, displacement components, microrotation and stresses in the micropolar medium 

with voids using the three-phase-lag model of thermoelasticity and studied the impacts of heat 

source, temperature dependence and void parameters on resulting quantities.  

 In order to investigate thermomechanical interactions in a N-L MT semi-space that was 

initially stressed and contained pores, Kundu et al. (2023) [94] implemented a NM analysis 

approach under a moving thermal load. Jangra et al. (2024) [62] applied NM analysis approach 

to derive expression of stresses, temperature, and pore pressure and studied the impacts of time, 

velocity of the load, micropolarity and void parameters on these quantities in MT saturated 

porous medium, under the framework of G-L theory of thermoelasticity. 

 Chen and Gurtin (1968) [22] and Chen et al. (1969) [23] presented the thermoelasticity 

hypothesis of the two temperatures (TT). This hypothesis is based on two temperatures: 

thermodynamic temperature and conductive temperature. The thermodynamic temperature was 

caused by mechanical interactions between particles, but the conductive temperature was caused 

by thermal interactions. Quintanilla (2003) [119] obtained TT theory of thermoelasticity and 

characterized its properties, including structural stability, convergence, and spatial behaviour.  

 Youssef (2006) [167] proposed a model of heat conduction that considers two types of 

temperatures: dynamic and conductive. The difference in temperatures is related to the amount 

of heat given. In this model, thermal wave propagates at infinite speed. The TT model was 
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updated to the hyperbolic two-temperature (HTT) model by Youssef and El-Bary (2018) [168]. 

In this model the difference between the second derivatives of dynamical temperature and 

conductive temperature is proportional to heat supply over time and it creates a thermal wave 

with limited speed. 

 Kumar and Abbas (2013) [71] studied the substantial impacts of TT on displacement, 

stresses, microrotation, temperature field, and conductive temperature after incorporating a 

thermal source at the boundary in MT materials with TT under L-S theory.  Sharma et al. (2013) 

[140] established the equations for leaky and non-leaky Lamb waves in MT materials with TT. 

Kumar et al. (2014) [78] explored wave propagation in an MT plate with TT, using secular 

equations under stress-free, insulated, and isothermal scenarios. 

 Kumar and Kaur (2015) [76] used the GN-III theory of thermoelasticity to investigate 

wave propagation at the interface of two MT mediums and studied the impacts of TT and 

stiffness on the amplitude ratios (AR) of various reflected and transmitted waves. Kumar et al. 

(2017) [82] explored the impacts of thermodynamic and conductive temperatures on the 

transmission and reflection coefficients at the interface of two separate micropolar visco- 

thermoelastic solid semi-spaces using the G-L theory of thermoelasticity. 

 Kumar et al. (2018) [84] studied the deformation of a micropolar porous circular plate 

using a three-phase lag model in conjunction with the TT theory of thermoelasticity. Bayones et 

al. (2022) [16] used NM analysis technique to explore the impacts of the Thomson and TT 

parameters on physical quantities in MT materials with voids. El-Sapa et al. (2023) [33] 

examined the impacts of rotation and viscosity on generalized micropolar thermoelasticity with 

TT, considering various thermoelasticity theories such as L-S, G-L, GN-II, and GN-III. 

 To account for microscopic characteristics in materials, Abouelregal et al. (2023) [6] 

investigated the propagation of planar waves in rotating MT media using the TT thermoelastic 

model with higher-order time derivatives and dual-phase latency. With help of NM analysis 

approach, Abouelregal et al. (2024) [11] computed theoretical and graphical results, showing 

significant effects of higher-order phase delays and TT facts on deformations in MT model under 

Hall current. Rani et al. (2025) [124] employed the normal mode analysis technique to investigate 

wave behavior and thermomechanical deformation in a porous thermoelastic medium with 

microtemperature, considering non-local effects and dual phase lag theory. They evaluated 

various wave characteristics and deformation parameters which offer valuable insights for 
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applications in material engineering, geophysical studies, and related scientific areas. 

Abouelregal et al. (2025) [8] presented a novel dual-phase-lag (DPL) thermoelastic theory by 

incorporating non-local elasticity and micropolar effects to analyzes temperature, displacement, 

and stress responses under laser pulse heating at the boundary which effectively offering valuable 

insights for nanoscale applications such as laser heating, nanomaterials, and MEMS. 

 Green and Lindsay (G-L) (1972) [49] developed a thermoelasticity theory with two 

relaxation times by including the rate of temperature change among the constitutive variables, 

all while adhering to Fourier's law of heat conduction. Yu et al. (2018) [170] introduced a new 

model, the modified Green-Lindsay (MG-L) model, by integrating the strain rate term into the 

G-L thermoelastic model using principles from extended thermodynamics. This model further 

refines this framework by incorporating additional physical effects such as non-locality and 

temperature-dependent material properties. This enhancement allows for a more accurate 

representation of complex thermoelastic behaviours in advanced materials, such as micropolar 

materials, where classical assumptions may fall short. Consequently, the MG-L theory offers a 

more comprehensive tool for analysing and predicting the behaviour of materials under thermal 

and mechanical loads, accommodating a broader range of real-world applications. 

 Within the framework of the MG-L model, Quintanilla (2018) [120] demonstrated the 

exponential decay of solutions and analysed their spatial behaviour. Sarkar et al. (2020) [131] 

used the MG-L model with TT effects to study the reflection of magneto-thermoelastic plane 

waves from stress-free and thermally insulated barriers. Sarkar and Mondal (2020) [130] utilized 

the MG-L model with TT effects to examine the reflection of thermoelastic plane waves from 

thermally insulated and stress-free boundary. They also compared the reflection coefficients for 

L-S and G-L models.  

 Shakeriaski et al. (2021) [133] created a non-linear numerical technique for solving the 

governing equations in a highly deformed elastic medium under thermal shock using the MG-L 

model. Kumar et al. (2022) [79] studied the impacts of heat source and thermomechanical 

loading on stresses, components of displacement, thermodynamic and conductive temperatures 

using the MG-L model with N-L and TT parameters. 

 Kaushal et al. (2023) [67] studied the effects of HTT and N-L factors, as well as various 

thermoelasticity theories, on the temperature distribution, conductive temperature, and stresses 

under the application of a ramp-type thermal source and normal force at the boundary using the 
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MG-L thermoelasticity theory. Kaushal et al. (2024) [68] examined the effects of N-L and TT 

parameters on displacement components, stresses, and temperature fields in generalized 

thermoelastic medium under the MG-L theory of thermoelasticity.  Ailawalia and Priyanka 

(2024) [13] investigated the impact of thermal conductivity on photothermal interaction in a 

semiconducting medium under the MG-L theory of thermoelasticity. 

 The Moore-Gibson-Thompson (MGT) heat equation has attracted considerable attention 

in recent years due to its wide range of applications in industrial and medical fields. 

Consequently, it is not surprising that many studies have focused on the use of high-intensity 

ultrasound. The MGT thermoelasticity theory was formulated to characterize high-amplitude 

sound vibrations, which have various potential applications in medicine and industry, including 

lithotripsy, heat therapy, and ultrasound cleaning. 

 Thompson (1972) [161] established this theory based on a third-order differential 

equation that highlighted the significance of specific fluid dynamics concepts. Quintanilla 

(2019) [121] later developed an innovative MGT thermoelasticity theory that gained serious 

attention from researchers, which is a combination (or generalization) of the Lord-Shulman and 

Green-Naghdi thermoelasticity theory of type III. L-S and GN-III models can be recovered when 

we omit the dependence with respect to suitable variables in this model. The MGT equation for 

thermal conductivity was presented by Quintanilla (2020) [122] with TT effects. The solutions 

are well-presented and decrease substantially when the constitutive parameters are set correctly.  

 Jangid and Mukhopadhyay (2021) [61] formulated several theorems to tackle heat flux 

and natural stress problems within the MGT theory of thermoelasticity. Meanwhile, Fernandez 

and Quintanilla (2021) [46] examined linear thermoelastic deformations in dielectrics using the 

MGT theory of thermoelasticity. In context of MGT thermoelastic theory, Bazarra et al. (2021) 

[17] analysed radially symmetric solutions and establish their exponential decay with respect to 

(w.r.t) time using energy arguments.  

 Abouelregal et al. (2022) [9] studied thermal and mechanical wave characteristics in a 

thermoviscoelastic orthotropic cylinder using a Kelvin-Voigt viscoelastic model under MGT 

theory of thermoelasticity. Tiwari et al. (2022) [163] studied thermoelastic vibrations of a 

clamped nano-beam under a variable axial load using Euler–Bernoulli beam theory and the 

Moore–Gibson generalized thermoelastic (MGTE) model. They employed Laplace transform 
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technique for analytical solutions, and analyzed significant effects of thermoelastic models, axial 

load, and ramping time on nano-beam responses. 

 Within the framework of the MGT theory of thermoelasticity, Megahid et al. (2023) 

[104] utilized the NM analysis approach to explore the relationship between the modulus of 

modified Ohm's law and rotation across various physical parameters. Kumar et al. (2024) [81] 

examined a two-dimensional axisymmetric thermoelastic problem incorporating fractional order 

derivatives and analysed the effects of HTT and N-L parameters on temperature distribution, 

conductive temperature, stress components, and displacement in the context of the MGT heat 

equation under mechanical loading. 

1.2 Research Gap 

Over the past decade, significant progress has been made in the field of generalized 

thermoelasticity, particularly in developing various models that incorporate thermal relaxation 

and non-classical heat conduction effects. These advancements are largely driven by the need to 

understand the thermoelastic responses of structures such as railways, bridges, and aerospace 

components under dynamic loading conditions. Despite this progress, a comprehensive 

mathematical treatment of micropolar thermoelastic media that integrates non-local effects, 

energy dissipation, and hyperbolic two temperature remains limited. In particular, the application 

of modified Green–Lindsay (MG-L) theory, coupled with nonlocal parameters, fractional 

calculus, and Moore-Gibson-Thompson (MGT) heat conduction, has not been adequately 

addressed in existing literature. Furthermore, the role of additional physical phenomena such as 

viscosity, porosity, and mass diffusion within the framework of two-temperature and hyperbolic 

two-temperature theories has not been thoroughly explored. This highlights a critical need for 

interdisciplinary approaches that bridge theoretical modeling with practical engineering 

applications.  

The current study aims to fill this gap by developing and analyzing new mathematical 

models in micropolar thermoelasticity that incorporate these advanced features. These models 

will be investigated under various boundary conditions relevant to the physical context and 

evaluated through numerical simulations. Comparative analyses with existing models will be 

conducted to assess improvements in predictive capability, and parametric studies will be used 

to illustrate the influence of key factors such as relaxation times, diffusion coefficients, non-local 

parameters, and void effects on the thermoelastic response. 
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1.3 Foundation of Waves 

For the wave equation 
∂2y

∂x2 =
1

c2

∂2y

∂t2 , a plane wave travelling with speed c in the positive x-

direction is represented by y(x, t) = Aei(kx−ωt), where A is the amplitude of wave, k is the 

number, ω = ck is the angular frequency. 

 In the framework of micropolar thermoelasticity, a wave is a disturbance that transmits 

energy through a medium by inducing both translational and micro-rotational motion of material 

particles, without causing permanent deformation. Seismic waves are generated by natural events 

like earthquakes or artificial explosions are studied extensively using seismometers, which record 

wave amplitudes and help in the exploration of subsurface features such as oil and mineral 

deposits.  These waves are broadly categorized into body waves and surface waves. Body waves 

traverse the interior of the earth, bending due to spatial variation in modulus, density, and thermal 

properties caused by changes in temperature and material composition. Primary waves (P-

waves), also referred to as longitudinal, compressional, or irrotational waves, are the fastest and 

first to appear on a seismogram. In micropolar thermoelastic media, they involve not only 

compressional motion but also couple with thermal fields and micro-rotational effects. The 

particles oscillate in the direction of wave propagation, and the velocity of these waves is  

√
λ+2μ+K

ρ
, where λ and μ are Lamé constants, ρ is the mass density and K is micropolar constant. 

Secondary waves (S-waves) arrive after P-waves and are known as transverse, shear, or rotational 

waves. In the micropolar context, these waves gain added complexity, as the particle motion 

perpendicular to the wave vector now includes micro-rotation and couple stress effects. Their 

speed is approximately √
μ+K

ρ
. Surface waves, which propagate along the earth's surface, travel 

slower than body waves but are often more destructive due to their larger amplitudes and longer 

durations. Their amplitude decays exponentially with depth, and their sensitivity to surface 

defects makes them useful in non-destructive testing. Thus, the inclusion of micropolar and 

thermoelastic effects provides a more complete understanding of wave behavior, especially in 

materials with internal structure or subjected to thermal gradients. 

 The reflection of waves at material interfaces is a classical problem in continuum 

mechanics and mathematical physics. It arises in numerous fields including elasticity, acoustics, 

thermoelasticity and micropolar thermoelasticity. The study of wave propagation with their 
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reflection in micropolar thermoelastic medium at boundary surfaces or interfaces, has long been 

a subject of considerable interest. Numerous researchers have investigated these phenomena 

using various theoretical models, resulting in a substantial body of work available in the scientific 

literature.  

1.4 Constitutive Relations and Basic Equations for Different Mathematical 

Models 

The classical theory of elasticity is a foundational branch of continuum mechanics, focusing on 

the stress and deformation responses of elastic materials under the influence of external forces or 

thermal variations. The derivation of constitutive relations and basic equations used in this study 

are as follows:   

1.4.1 Classical Elasticity 

Strain-displacement relations 

eij =
1

2
(ui,j + uj,i),   (i, j = 1,2,3)       (1.1) 

where eij is the strain tensor and ui is the displacement component. 

Strain compatibility equations  

eij ,kl+ ekl,ij− eik ,jl− ejl,ik=0,  (i, j, k, l = 1,2,3)     (1.2) 

Stress- strain relations  

For homogeneous isotropic material, Hooke’s law becomes 

tij = λuk,kδij + 2μeij         (1.3)  

where λ, μ  are Lame's constants, δij is Kronecker’s delta, tij represents stress tensor and uk,k is 

the dilatation. 

Equations of motion 

For homogeneous isotropic medium 

tij,j + ρFi = ρüi         (1.4)  

where tij,j represents divergence of stress tensor tij, Fi is the component of external body force 

per unit mass, üi is second time derivative of displacement component ui and ρ is the mass 

density. 

1.4.2 Classical Thermoelasticity  

The classical theory of thermoelasticity (CTE) originated with the work of Duhamel (1837) [32] 

who formulated equations to describe how strain distributes within an elastic medium subjected 
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to temperature gradients. Building on this foundation, Neumann (1885) [108] introduced the 

Duhamel–Neumann stress, strain and temperature relation, which remains a cornerstone of CTE. 

Stress-strain-temperature relations 

tij = 2μeij + (λuk,k − βT)δij    (i, j, k = 1,2,3)     (1.5) 

where β = (3λ + 2μ)αt, αt - coefficient for linear thermal expansion of the material, T is the 

increase in temperature above the reference temperature T0 such that |
T

T0
| << 1. 

Fourier’s law of heat conduction 

qi = −K∗ T,i           (1.6) 

where qi indicate the component of the heat flux vector 𝐪 and  K∗ is the thermal conductivity.  

Energy equation 

-qi,i + ρQ = ρCeṪ         (1.7) 

where Ce is the specific heat at constant strain, Q is the heat source and t is the time. 

Heat equation 

The equations (1.6) and (1.7) together yield the parabolic heat transport equation as 

K∗ T,ii+ ρQ = ρCeṪ         (1.8) 

This theory predicts two events that contradict physical observations. First, there are no elastic 

factors in this theory’s heat conduction equation. Second, the heat equation is of the parabolic 

type, predicting infinite speeds of propagation for heat waves. 

Equations (1.4), (1.5) and (1.8) constitute the complete mathematical model of the classical 

thermoelasticity. 

1.4.3 Classical Coupled Thermoelasticity  

Biot (1956) [19] proposed the theory of classical coupled thermoelasticity. The governing 

equations of this theory are coupled, which eliminates the first paradox of the classical theory of 

thermoelasticity. 

 Energy equation 

-qi,i + ρQ = ρCeṪ + βT0u̇k,k        (1.9) 

where the term βT0u̇k,k introduces a thermo-mechanical coupling between the temperature field 

and the mechanical deformation. 

Heat Equation 

By eliminating qi between equations (1.6) and (1.9), we get parabolic type heat transport equation  
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K∗ T,ii+ ρQ = ρCeṪ + βT0u̇k,k       (1.10) 

Equation (1.10), describes the coupling between the thermal and elastic fields. This suggests that 

thermal signals propagate at infinite speed, a conclusion that is physically unrealistic. 

Equations (1.4), (1.5) and (1.10) together constitute the complete mathematical model of the 

classical coupled thermoelasticity. 

1.4.4 Lord-Shulman Model [L-S Model]  

To address the paradox inherent in classical coupled thermoelasticity, Lord and Shulman (1967) 

[98] proposed a generalized theory of thermoelasticity by introducing a modification to the 

classical Fourier heat conduction law as 

Modified Fourier law of heat conduction 

(1 + τ0
∂

∂t
) qi = −K∗T,i         (1.11) 

Heat equation 

Eliminating qi from equations (1.9) and (1.11), one gets the following generalization of the heat 

conduction equation 

 K∗T,ii   = (1 + τ0
∂

∂t
) [ ρCe Ṫ+ βT0u̇k,k − ρQ]     (1.12)  

where τ0 is called relaxation time. This model yields hyperbolic type heat transport equation with 

finite speed of thermal wave. 

Equation (1.12) together with equations (1.4), (1.5) constitute the field equations of L-S model. 

1.4.5 Green-Lindsay Model [G-L Model]  

Green and Lindsay (G-L) (1972) [49] proposed a generalized thermoelasticity theory that 

introduces notable distinctions from the L-S model, which employs a single relaxation time 

parameter. Unlike the L-S theory, the G-L model retains the classical Fourier law of heat 

conduction but modifies both the energy equation and the constitutive relations between stress, 

strain, and temperature. 

Stress-strain-temperature relations 

tij = 2μeij + λuk,kδij − β(T+τ1Ṫ)δij       (1.13) 

Fourier law of heat conduction 

qi = −K∗T,i          (1.14)   

Energy Equation 

−qi,i + ρQ =  ρCe (Ṫ + τ0T̈) + βT0u̇k,k      (1.15) 
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Heat equation 

Elimination of qi from equations (1.14) and (1.15), give the following heat conduction equation 

K∗ T,ii  + ρQ = ρCe (Ṫ + τ0T̈) + βT0u̇k,k       (1.16) 

where τ1 is relaxation time. τ1 and τ0 satisfy τ1 ≥ τ0 > 0 for G-L model only. However, it has 

been proved by Strunin (2001) [157] that the inequalities τ1 ≥ τ0 > 0 are not mandatory for τ0 

and τ1 to follow. This theory gives hyperbolic type heat transport equation with finite speed of 

thermal wave.  

The system of equations (1.4), (1.13) and (1.16) constitute the complete mathematical model for 

G-L model. 

1.4.6 Modified Green-Lindsay Model [MG-L Model]  

Yu et al. (2018) [170] proposed the MG-L model by incorporating the strain rate term into the 

G-L thermoelastic framework. This enhancement was achieved based on the principles of 

extended thermodynamics, aiming to capture more realistic thermo-mechanical coupling effects, 

especially in materials with microstructural interactions or under high-frequency excitations. 

Stress-strain-temperature relations 

tij = (1 + η1τ1
∂

∂t
) (2μeij + λuk,kδij) − β(T+η2τ1Ṫ)δij    (1.17) 

Energy Equation 

−qi,i + ρQ =  ρCe (Ṫ + η3τ0T̈) + βT0 (1 + η4τ0
∂

∂t
) u̇k,k     (1.18) 

Heat equation 

Elimination of qi from equations (1.14) and (1.18), give the following heat conduction equation 

K∗ T,ii  + ρQ = ρCe (Ṫ + η3τ0T̈) + βT0 (1 + η4τ0
∂

∂t
) u̇k,k     (1.19) 

where η1, η2, η3 and  η4 are constants and by replacing  η1 = η4 = 0, η2 = η3 = 1, this model 

reduces to G-L model. 

The system of equations (1.4), (1.17) and (1.19) constitute the complete mathematical model for 

MG-L model. 

1.4.7 Green-Naghdi Model II (GN II (1993)) 

The governing equations of the generalized thermoelasticity proposed by Green and 

Naghdi [52] are 

Law of heat conduction 

qi = −K1
∗ ϑ,i          (1.20) 
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where ϑ is the thermal displacement such that ϑ̇ = T and K1
∗  is thermal conductivity rate. 

Heat equation 

Eliminating qi from the equations (1.20) and (1.9), we get 

K1
∗ T,ii+ ρQ̇  = ρCeT̈ + βT0u̇k,k       (1.21) 

Equations (1.4), (1.5) and (1.21) constitute the complete mathematical model of GN II model. 

A re-examination of equations (1.5) and (1.21) within the framework of the GN II model 

indicates the absence of any damping term in the governing equations. As a result, the GN II 

model is commonly referred to as thermoelasticity without energy dissipation. 

1.4.8 Green-Naghdi model III (GN III (1992))  

The modified heat conduction law proposed by Green and Naghdi [51] are  

Law of heat conduction 

qi = −(K∗ T,i+ K1
∗  ϑ,i )        (1.22)  

Heat equation 

Equations (1.9) and (1.22) together give the generalized heat transport equation  

K∗ Ṫ,ii+ K1
∗  T,ii +  ρQ̇ = ρCeT̈ + βT0ük,k      (1.23) 

Equations (1.4), (1.5) and (1.23) constitute the complete mathematical model of GN III model. 

This theory is also known as thermoelasticity with energy dissipation. 

By putting K∗ = 0 in the equations of GN III model, we obtain the GN II model. When K1
∗ = 0, 

the equations of GN III model reduce to GN I model, which is identical with the classical theory 

of thermoelasticity.     

1.4.9 Moore Gibson Thompson (MGT) Model 

Quintanilla (2019) [121] proposed a modified heat conduction law by incorporating the 

relaxation parameter τ0 into the GN-III theory of thermoelasticity as 

Modified Law of heat conduction 

(1 + τ0
∂

∂t
) qi = −(K∗ T,i+ K1

∗  ϑ,i )       (1.24) 

Heat equation 

Eliminating qi from (1.24) and (1.9), one can get heat conduction equation (in absence of heat source) 

as  

(1 + τ0
∂

∂t
) [ρCeT̈ + βT0ük,k ] = (K∗ ∂

∂t
+ K1

∗ ) T,ii.       (1.25)  
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  This theory is useful for studying wave propagation and thermomechanical problems 

particularly under conditions involving rapid thermal or mechanical disturbances.  

1.4.10 Micropolar Thermoelasticity 

The constitutive equations of linear micropolar thermoelasticity for homogenous isotropic 

medium given by Tauchert et al. (1968) [159] are 

tij = λuk,kδij + μ(ui,j + uj,i) + K(uj,i − εijkϕk) − γ1Tδij    (1.26) 

mij = αϕk,kδij + ηϕi,j + ζϕj,i        (1.27) 

-qi,i + ρQ = ρCeṪ + γ1T0u̇k,k       (1.28) 

where γ1 = (3λ + 2μ + K)αt, αt - coefficient for linear thermal expansion of the material, mij 

denote couple stress tensor, ϕk represents component of microrotation vector, εijk represents 

alternating tensor and K, η, α, ζ are micropolar constants. Index after comma denotes the partial 

derivative. 

As per the Eringen’s (1966) [36]  

Equation of motion:  

 tij,j + ρ(Fi − üi) = 0         (1.29)  

 mij,j + ϵijktjk + ρ(𝑙𝑖 − Jϕ̈i) = 0       (1.30)  

where 𝑙𝑖 is body couple per unit mass, J is microrotation inertia. 

Using constitutive equations (1.26) -(1.27) into field equations (1.29) -(1.30), we get 

(λ + μ)ui,jj+ (μ + K)uj,ij+ Kϵijk ϕk,j− γ1T,i+ ρ(Fi − üi) = 0,   (1.31) 

(α + η)ϕi,jj+ ζϕj,ij+ Kϵijk uk,j− 2Kϕi + ρ(𝑙𝑖 − Jϕ̈i) = 0.    (1.32) 

Eliminating qi from equations (1.28) and (1.11), we get 

K∗T,ii   = (1 + τ0
∂

∂t
) [ ρCe Ṫ+γ1T0u̇k,k − ρQ]     (1.33)  

1.5 Thesis Layout 

This section briefly explains the problems mentioned in chapter 1 to chapter 6 of the thesis. 

In chapter 1, an introduction is provided that contains a brief history and basic concepts of the 

problem under consideration. In addition, a brief literature review in the field under 

consideration is provided. 

 The MG-L generalised thermoelasticity theory is used in Chapter 2 to study the reflection 

of plane waves in homogeneous, isotropic MT half-space. The governing equations are rendered 
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dimensionless for two-dimensional problem, and potential functions are employed to facilitate 

further simplification. When a plane wave (longitudinal displacement wave (LDW) or thermal 

wave (TW) or coupled transverse wave (CD-IW), or coupled microrotational wave (CD-IIW)) 

is incident at the surface x3 = 0, four types of reflected waves are identified as LDW, TW, CD-

IW, and CD-IIW. The impedance boundary restrictions are employed to calculate the AR of 

these reflected waves numerically. The graphs depict the effects of impedance parameters on the 

AR of reflected waves across different theories of thermoelasticity. Several specific cases are 

also analysed. 

 Chapter 3 introduces a mathematical model of micropolar thermoelasticity based on the 

MGT heat equation and the N-L and HTT parameters. The governing equations are transformed 

into a two-dimensional problem, which is then simplified using potential functions and rendered 

dimensionless. Subsequently, a reflection-based methodology is implemented to solve the 

problem. Four types of reflected waves are identified when a plane wave (LDW or CD-IW) is 

incident at the surface x3 = 0, namely LDW, TW, CD-IW, and CD-IIW. The impedance 

boundary restrictions are employed to calculate the AR of these reflected waves. The graphic 

representation of numerical findings depicts the effects of N-L, HTT, TT, and impedance 

parameters on AR. Specific cases are also considered. 

 The reflection of plane waves in a micropolar elastic medium with voids at the non-free 

surface is presented in Chapter 4. The governing equations are translated into a two-dimensional, 

dimensionless form for the model under consideration, and potential functions are employed to 

further simplify the formulation. Four types of reflected waves are identified when a plane wave 

(LDW or longitudinal void volume fraction wave (LVVFW) or CD-IW, or CD-IIW) is incident 

at the surface x3 = 0, namely LDW, LVVFW, CD-IW, and CD-IIW. Using non-free boundary 

conditions, the AR of various reflected waves are determined. The graphic representation of the 

AR with respect to the angle of incidence for both non-free and free surfaces is used to illustrate 

the effects of stiffnesses and voids. Specific cases are also deduced.  

 In Chapter 5, the MGT heat equation is used to solve a two-dimensional deformation 

problem in an isotropic and homogeneous MT half-space. The problem is solved under 

thermomechanical conditions, and N-L and HTT parameters are incorporated. Potential 

functions are employed to further simplify the governing equations, which are presented in 

dimensionless form. The problem is addressed using the Laplace and Fourier transforms. In the 
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transformed domain, physical quantities such as displacement components, force stresses, 

thermodynamic temperature, and conductive temperature are calculated for a specific thermal 

source and normal force applied at the boundary surface. The quantities in the original domain 

are subsequently recovered using a numerical inversion technique. Graphs are used to 

demonstrate how the N-L, HTT, and TT parameters affect the resulting quantities. Certain cases 

are also deduced. 

 The primary objective of chapter 6 is to utilize the MGT heat equation to examine the 

axisymmetric deformity in homogeneous, isotropic MT with N-L, and HTT parameters as a 

result of the distinct loads (ring load and disc load). The equations are reduced in two-

dimensional form and then transformed by using dimensionless quantities and potential 

functions. The governing equations are solved using the Laplace and Hankel transforms. In the 

transformed domain, the displacement components, force stresses, tangential couple stress, 

thermodynamic temperature, and conductive temperature are obtained. A numerical inversion 

technique is then applied to recover the physical quantities in the original domain. The graphic 

representation of numerical findings for stress components, conductive temperature and 

tangential couple stress depicts the effects of N-L, HTT, and TT factors. Some cases of interest 

are also drawn. 
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Chapter 2  

Wave propagation in a micropolar thermoelastic media under impedance 

boundary in the framework of modified Green-Lindsay theory of 

thermoelasticity 

2.1 Introduction 

Sharma and Marin (2013) [139] studied the impact of two temperature (TT) parameter 

on plane wave propagation in a micropolar thermoelastic (MT) medium. Kumar et al. (2018) 

[89] derived a secular equation for Rayleigh wave propagation in a MT half-space 

incorporating impedance parameters. In context of modified Green-Lindsay (MG-L) theory 

of generalized thermoelasticity, Sarkar et al. (2020) [132] calculated the amplitude ratios 

(AR) of reflected waves at boundaries that are both stress-free and isothermal. 

In order to examine the influence of laser radiation in a two-dimensional thermoelastic 

half-space, Tayel et al. (2021) [160] implemented the MG-L model. Singh and Kaur (2022) 

[150] examined the variation in the speed of Rayleigh waves due to impedance boundary in 

micropolar elastic media. In order to investigate the propagation of plane waves in MT media 

with TT, Abouelregal et al. (2022) [5] implemented the normal mode analysis technique. 

Energy ratios and reflection coefficients for reflected waves in a rotating micropolar double 

porous thermoelastic medium were determined by Sheoran et al. (2024) [149]. They also 

examined the impact of angular velocity, micropolarity, and double porosity on these energy 

ratios. 

Kaushal et al. (2024) [66] examined the reflection of plane waves using the MG-L 

theory of thermoelasticity and analyzed how TT, non-local (N-L) parameters, and different 

thermoelasticity theories affect the AR of the reflected waves. Kumar et al. (2024) [92] 

explored wave propagation in MT plates by incorporating memory-dependent derivatives and 

employing the normal mode analysis technique. 

This chapter presents the reflection of plane waves in an isotropic, homogeneous MT 

half-space within the framework of the MG-L theory of generalized thermoelasticity. For the 

two-dimensional problem, governing equations are rendered dimensionless and potential 

functions are employed to facilitate further simplification. When a plane wave (longitudinal 

displacement wave (LDW) or thermal wave (TW) or coupled transverse wave (CD-IW) or 

coupled microrotational wave (CD-IIW)) is incident on the surface  x3 = 0, four types of 

reflected waves are identified as LDW, TW, CD-IW, and CD-IIW. An impedance boundary 

is used to determine the AR of these reflected waves. The wave characteristics and material 
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properties of the medium influence the AR, which depend upon the angle of incidence, 

frequency, and impedance parameters. Graphs are used to demonstrate the effects of 

impedance on the AR of various reflected waves in relation to different thermoelasticity 

theories. Several special cases are also included for comparison. 

This study is motivated by the limitations of classical wave reflection theories, which 

fail to capture the complex interactions arising from microstructural effects, thermal 

relaxation, and impedance related phenomena in advanced materials. To address these 

shortcomings, a refined and unified framework is developed for analyzing wave propagation 

in micropolar thermoelastic media. Based on the MG-L theory of thermoelasticity, the 

proposed model integrates micro-rotational behavior, thermal relaxations, and impedance 

interactions into a single formulation. This novel approach not only improves the accuracy of 

wave reflection analysis but also deepens the theoretical understanding of wave behavior in 

microstructured environments. 

2.2 Governing Equations 

The following are the field equations and constitutive relations for micropolar 

thermoelasticity under the MG-L model after removing body couples, body forces, and heat 

sources (as described by Eringen (1966) [36] and Yu et al. (2018) [170]): 

(1 + η1τ1
∂

∂t
) [(λ + μ)∇(∇. 𝐮) + (μ + K)∆𝐮 + K(∇ × 𝛟)]  

− (1 + η2τ1
∂

∂t
) γ1∇T = ρ

∂2𝐮

∂t2 , (2.1) 

γ∆𝛟 + (α + β)∇(∇. 𝛟) + K[(∇ × 𝐮) − 2𝛟] = ρĵ
∂2𝛟

∂t2 ,    (2.2) 

K∗∆T = ρCe (1 + η3τ0
∂

∂t
)

∂T

∂t
+ (1 + η4τ0

∂

∂t
) γ1T0

∂

∂t
(uh,h),   (2.3) 

tpq = (1 + η1τ1

∂

∂t
) [λuh,hδpq + μ(up,q + uq,p) + K(uq,p − εpqhϕh)] 

      −γ1 (1 + η2τ1
∂

∂t
) Tδpq,       (2.4) 

mpq = αϕh,hδpq + βϕp,q + γϕq,p,    (p, q, h = 1 − 3), (2.5) 

In above, microrotation vector - 𝛟, displacement vector – 𝐮, thermodynamic temperature - T, 

micropolar constants - K, β, α, γ, density - ρ, microrotation inertia - j,̂ Lame's constants - λ, μ , 

thermal conductivity - K∗, components of force stress tensor - tpq, time - t, relaxation times - 

τ0 and τ1,  γ1 = (3λ + 2μ + K)αt, αt - coefficient for linear thermal expansion, components 

of couple stress tensor - mpq, specific heat - Ce,  η1, η2, η3 and  η4 - constants, reference 

temperature -  T0, Kronecker’s delta - δpq, alternating tensor - εpqh , Laplacian operator - ∆,  

nabla (gradient) operator - ∇.  
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Following cases arises: 

(i) η1 = η2 = 0, η3 = η4 = 1:  Lord-Shulman (L-S) theory (1967) [98], 

(ii)  η1 = η4 = 0, η2 = η3 = 1: Green-Lindsay (G-L) theory (1972) [49], 

(iii)  η1 = η2 = η3 = η4 = 0: Coupled thermoelasticity (C-T) theory (1980) [30], 

(iv) η1 = η2 = η3 = η4 = 1: MG-L theory (2018) [170]. 

Equations (2.1) -(2.5), in components form for Cartesian coordinates (x1, x2, x3) are written 

as  

(1 + η1τ1
∂

∂t
) [(λ + μ)

∂

∂x1
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u1 + K (

∂ϕ3

∂x2
−

∂ϕ2

∂x3
)]  

 − (1 + η2τ1
∂

∂t
) γ1

∂T 

∂x1
 = ρ

∂2u1

∂t2 ,  (2.6) 

(1 + η1τ1
∂

∂t
) [(λ + μ)

∂

∂x2
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u2 + K (

∂ϕ1

∂x3
−

∂ϕ3

∂x1
)]   

− (1 + η2τ1
∂

∂t
) γ1

∂T

∂x2
 = ρ

∂2u2

∂t2 ,  (2.7) 

(1 + η1τ1
∂

∂t
) [(λ + μ)

∂

∂x3
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u3 + K (

∂ϕ2

∂x1
−

∂ϕ1

∂x2
)]  

− (1 + η2τ1
∂

∂t
) γ1

∂T

∂x3
 = ρ

∂2u3

∂t2 ,  (2.8) 

γ∆ϕ1 + (α + β)
∂

∂x1
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + K ((

∂u3

∂x2
−

∂u2

∂x3
) − 2ϕ1) = ρĵ

∂2ϕ1

∂t2 , (2.9) 

γ∆ϕ2 + (α + β)
∂

∂x2
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + K ((

∂u1

∂x3
−

∂u3

∂x1
) − 2ϕ2) = ρĵ

∂2ϕ2

∂t2 , (2.10) 

γ∆ϕ3 + (α + β)
∂

∂x3
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + K ((

∂u2

∂x1
−

∂u1

∂x2
) − 2ϕ3) = ρĵ

∂2ϕ3

∂t2 ,       (2.11) 

K∗∆T = ρCe (1 + η3τ0
∂

∂t
)

∂T

∂t
+ (1 + η4τ0

∂

∂t
) γ1T0

∂

∂t
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
),        (2.12)    

t11 = (1 + η1τ1
∂

∂t
) [λ (

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u1

∂x1
] − γ1 (1 + η2τ1

∂

∂t
) T,   (2.13) 

t22 = (1 + η1τ1
∂

∂t
) [λ (

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u2

∂x2
] − γ1 (1 + η2τ1

∂

∂t
) T, (2.14) 

t33 = (1 + η1τ1
∂

∂t
) [λ (

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
] − γ1 (1 + η2τ1

∂

∂t
) T, (2.15)                       

t31 = (1 + η1τ1
∂

∂t
) [μ (

∂u3

∂x1
+

∂u1

∂x3
) + K (

∂u1

∂x3
− ϕ2)],    (2.16) 

t32 = (1 + η1τ1
∂

∂t
) [μ (

∂u3

∂x2
+

∂u2

∂x3
) + K (

∂u2

∂x3
+ ϕ1)],    (2.17) 

t21 = (1 + η1τ1
∂

∂t
) [μ (

∂u2

∂x1
+

∂u1

∂x2
) + K (

∂u1

∂x2
+ ϕ3)],    (2.18) 

m11 = α (
∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + (β + γ)

∂ϕ1

∂x1
,      (2.19) 



23 

m22 = α (
∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + (β + γ)

∂ϕ2

∂x2
,      (2.20) 

m33 = α (
∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + (β + γ)

∂ϕ3

∂x3
,      (2.21) 

m31 = β
∂ϕ3

∂x1
+ γ

∂ϕ1

∂x3
,         (2.22) 

m32 = β
∂ϕ3

∂x2
+ γ

∂ϕ2

∂x3
,         (2.23) 

m12 = β
∂ϕ1

∂x2
+ γ

∂ϕ2

∂x1
,         (2.24) 

where 

∆=
∂2

∂x1
2 +

∂2

∂x2
2 +

∂2

∂x3
2.  

2.3 Problem Statement 

A micropolar MG-L half-space that is homogeneous and isotropic, and has an impedance 

boundary, is examined. We employ a rectangular Cartesian coordinate system (x1, x2, x3), 

with the origin positioned at the plane boundary at x3 = 0.  The x3-axis extends vertically 

downward into the medium, while the x1-axis is oriented horizontally, as illustrated in figure 

2.1. The x2-axis is aligned along the direction where the plane wave front intersects the plane 

surface. The field variables are contingent upon x1, x3 and t, if we restrict our analysis to the 

x1 − x3 plane, we assume that 

 𝐮 = (u1(x1, x3, t), 0, u3(x1, x3, t)),  𝛟 = (0, ϕ2(x1, x3, t),0),     T = T(x1, x3, t). (2.25) 

Using equation (2.25) in (2.6) - (2.12), (2.15), (2.16) and (2.23), recast as 

(1 + η1τ1
∂

∂t
) [(λ + μ)

∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u1 − K

∂ϕ2

∂x3
]  

     − (1 + η2τ1
∂

∂t
) γ1

∂ T

∂x1
 =ρ

∂2u1

∂t2 ,   (2.26) 

(1 + η1τ1
∂

∂t
) [(λ + μ)

∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u3 + K

∂ϕ2

∂x1
]  

− (1 + η2τ1
∂

∂t
) γ1

∂T

∂x3
 = ρ

∂2u3

∂t2 ,   (2.27) 

γ∆ϕ2 + K [(
∂u1

∂x3
−

∂u3

∂x1
) − 2ϕ2] = ρĵ

∂2ϕ2

∂t2 ,      (2.28) 

K∗∆T = ρCe (1 + η3τ0
∂

∂t
)

∂T

∂t
+ (1 + η4τ0

∂

∂t
) γ1T0

∂

∂t
(

∂u1

∂x1
+

∂u3

∂x3
),   (2.29) 

t33 = (1 + η1τ1
∂

∂t
) [λ(

∂u1

∂x1
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
] − γ1 (1 + η2τ1

∂

∂t
) T,  (2.30) 

t31 = (1 + η1τ1
∂

∂t
) [μ (

∂u3

∂x1
+

∂u1

∂x3
) + K (

∂u1

∂x3
− ϕ2)],    (2.31)                       

m32 = γ
∂ϕ2

∂x3
,          (2.32) 

where 
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∆=
∂2

∂x1
2 +

∂2

∂x3
2.   

To simplify further, we consider the dimensionless quantities as follows: 

(xi′, ui
′) =

ω1

c1
(xi, ui),  t3i

′ =
1

γ1T0
t3i,  m32

′ =
ω1

γ1c1T0
m32, ϕ2

′ =
ρc1

2

γ1T0
ϕ2, 

(t′, τ0
′ , τ1

′ ) = ω1(t, τ0, τ1), T′ =
T

T0
, (z1

′, z2
′) =

c1

γ1T0
(z1, z2), z3

′ =
ω1

2

ρc1
3 z3, 

z4
′ =

c1

K∗ z4,    ω′ =
ω

ω1
, (i = 1,3),       (2.33) 

where  

c1
2 =

λ+2μ+K

ρ
  and  ω1 =

ρCec1
2

K∗ .       (2.34) 

Using (2.33) in (2.26) -(2.32) after suppressing the primes, yield 

(1 + η1τ1
∂

∂t
) [a1

∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + a2∆u1 − a3

∂ϕ2

∂x3
] − a4 (1 + η2τ1

∂

∂t
)

∂T

∂x1
 = 

∂2u1

∂t2 , (2.35) 

(1 + η1τ1
∂

∂t
) [a1

∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + a2∆u3 + a3

∂ϕ2

∂x1
] − a4 (1 + η2τ1

∂

∂t
)

∂T

∂x3
 = 

∂2u3

∂t2 ,(2.36) 

a5∆ϕ2 + a6 (
∂u1

∂x3
−

∂u3

∂x1
) − a7ϕ2 =

∂2ϕ2

∂t2 ,                     (2.37) 

∆T = (1 + η3τ0
∂

∂t
)

∂T

∂t
+ a8 (1 + η4τ0

∂

∂t
)

∂

∂t
(

∂u1

∂x1
+

∂u3

∂x3
),     (2.38) 

t33 = (1 + η1τ1
∂

∂t
) (a12

∂u3

∂x3
+ a13

∂u1

∂x1
) − (1 + η2τ1

∂

∂t
) T,    (2.39) 

t31 = (1 + η1τ1
∂

∂t
) (a9

∂u1

∂x3
+ a10

∂u3

∂x1
− a11ϕ2),          (2.40)    

m32 = a14
∂ϕ2

∂x3
,         (2.41) 

where 

a1 =
λ+μ

ρc1
2 ,     a2 =

μ+K

ρc1
2 ,     a3 =

Kγ1T0

ρ2c1
4 ,       a4 =

γ1T0

ρc1
2 ,      a5 =

γ

ρc1
2ĵ

,  a6 = 
Kc1

2

ĵγ1ω1
2T0

,       

a7 =
2K

ĵρω1
2 ,     a8 =

γ1c1
2

K∗ω1
, a9 =

μ+K

γ1T0
, a10 =

μ

γ1T0
,

 

a11 =
K

ρc1
2, a12 =

ρc1
2

γ1T0
,

  

a13 =
λ

γ1T0
,  a14 =

γω1
2

ρc1
4 .        (2.42) 

2.4 Solution Procedure 

With the help of Helmholtz decomposition, u1 and u3 can be expressed as 

 u1 =
∂q

∂x1
−

∂ψ

∂x3
,  u3 =

∂q

∂x3
+

∂ψ

∂x1
.                (2.43) 

After using (2.43), equations (2.35) -(2.38) reduce to the following equations: 

(1 + η1τ1
∂

∂t
) ∆q − a4 (1 + η2τ1

∂

∂t
) T =

∂2q

∂t2 ,                   (2.44) 

(1 + η1τ1
∂

∂t
) (a2∆ψ + a3ϕ2) =

∂2ψ

∂t2 ,                                    (2.45) 
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𝑎5∆ϕ2 − a6∆ψ − a7ϕ2 =
∂2ϕ2

∂t2 ,                     (2.46) 

(1 + η3τ0
∂

∂t
)

∂T

∂t
+ a8 (1 + η4τ0

∂

∂t
)

∂

∂t
∆q = ∆T.                           (2.47) 

Assuming harmonic motion and aiming to solve equations, (2.44) -(2.47), we adopt the 

solutions in the form: 

(q, T, ψ, ϕ2) = (qο, Tο, ψο, ϕ2
o )eικ(x1 sin θ0−x3 cos θ0+νt),               (2.48) 

where qο, Tο, ψο, ϕ2
o represent the wave amplitudes, ν denotes phase speed, ι is known as iota, 

κ is indicated wave number, θ0 is angle of inclination, and ω is angular frequency having the 

relation ω = κν.  

Simplifying equations (2.44) - (2.47) by inserting the values of q, T, ψ, ϕ2 from (2.48), yield 

the following equations 

(υ4 + C01υ2 + C02)(qο, Tο) = 0,                     (2.49) 

(υ4 + C03υ2 + C04)(ψο, ϕ2
o ) = 0,                     (2.50) 

where 

C01 =
ω(τeτ𝜃+a4a8τfτg)−ι

ιτe
, C02 =

−ωτ𝜃

ιτe
,  C03 =

ιωτθ(a2a7−a3a6−a2ω2)−a5ω2

ω2−a7
, 

C04 =
a2a5ιω3τθ

ω2−a7
,  

and  

τθ = (τ1η1 −
ι

ω
),             τe = (τ0η3 −

ι

ω
), τf = (τ1η2 −

ι

ω
), τg = (τ0η4 −

ι

ω
). 

Let υi(i = 1,2) denote the roots of the characteristic equation (υ4 + C01υ2 + C02) = 0 , which 

correspond to the velocities of the LDW and TW in decreasing order. In the same way, the 

roots of the characteristic equation (υ4 + C03υ2 + C04) = 0, are represented by υj (j = 3, 4) 

and correspond to velocities of CD-IW and CD-IIW in decreasing order. 

2.5 Reflection Phenomenon of Waves 

Consider a plane harmonic wave (LDW or TW or CD-IW or CD-IIW) that form an angle θ0 

with the normal to the surface at x3 = 0. When any incident wave (LDW or TW or CD-IW 

or CD-IIW) strikes the boundary, it generates four reflected waves (LDW, TW, CD-IW and 

CD-IIW). These reflected waves make angles θ1, θ2, θ3, and θ4 with the positive x3- axis, as 

illustrated in figure 2.1. The complete wave field structure in the half-space, incorporating 

both incident and reflected waves, can be expressed as follows: 

q = ∑ [A0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Aie

ικi(x3 cos θi +x1 sin θi)+ιωt]2
i=1 ,  (2.51)  

T = ∑ [di(A0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Aie

ικi(x3 cos θi +x1 sin θi)+ιωt)]2
i=1 ,  (2.52) 

ψ = ∑ [B0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Bie

ικj(x3 cos θj +x1 sin θj)+ιωt]2
i=1 ,  (2.53) 
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ϕ2 = ∑ [fi(B0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Bie

ικj(x3 cos θj +x1 sin θj)+ιωt)]2
i=1 , (2.54) 

where 

di =
ω − κi

2ιτθ

a4ιτf
,     fi =

a6κj
2

a5κj
2 + a7 − ω2

, (i = 1,2), (j = 3,4), 

and, the amplitudes of the incident LDW, TW, CD-IW and CD-IIW are designated as A01, 

A02, B01 and B02, respectively. A1, A2, B1 and B2 represent the amplitudes of the reflected 

LDW, TW, CD-IW and CD-IIW respectively.  

2.6 Boundary Conditions  

Generally, when seismic waves interact with discontinuities, an ideally welded contact 

surface is often assumed, ensuring continuity of displacement and stress components. 

Impedance boundary conditions typically involve a linear combination of the unknown 

functions and their derivatives, defined at the boundary. Therefore, following the 

formulations by Tiersten (1969) [162] and Malischewsky (1987) [99], the impedance 

boundary conditions at x3 = 0 are as follows: 

(i) t33 + ωz1u3 = 0,    (ii) t31 + ωz2u1 = 0, 

(iii) m32 + ωz3ϕ2 = 0,       (iv) K∗ ∂T

∂x3
+ ωz4T = 0,                       (2.55) 

where z1, z2 represent impedance parameters with dimensions of N sec m−3, while z3 and z4 

denote impedance parameters with dimensions of N sec m−1 and N m−1K−1 respectively. 

Equation (2.55) reduces as following after using equation (2.33)    

(i) t33 + ωz1u3 = 0,   (ii) t31 + ωz2u1 = 0,     

(iii) m32 + ωz3ϕ2 = 0,    (iv) 
∂T

∂x3
+ ωz4T = 0.    (2.56) 

Using equation (2.43) into the equations (2.39) and (2.40), yield  

t33 = (1 + η1τ1
∂

∂t
) [(a12 − a13)

∂2ψ

∂x1 ∂x3
+ a12

∂2q

∂x3
2 + a13

∂2q

∂x1
2] − (1 + η2τ1

∂

∂t
) T, (2.57) 

t31 = (1 + η1τ1
∂

∂t
) [(a9 + a10)

∂2q

∂x1 ∂x3
− a9

∂2ψ

∂x3
2 + a10

∂2ψ

∂x1
2 − a11ϕ2].   (2.58) 

The angles of the reflected waves must satisfy a specific relationship with the angle of the 

incident wave in order to meet the boundary condition (2.56) at x3 = 0 as follows: 

κ0 sin θ0 = κi sin θi, (i = 1 ⋯ 4)       (2.59)  

Relation (2.59) can be written as        

sin θ0

𝜐0
=

sin θi

𝜐i
,  (i = 1 ⋯ 4)       (2.60)                 

where 
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υ0 = {

υ1,   incident LDW,
υ2, incident  TW,
υ3,
υ4,

       incident CD − IW,
     incident CD − IIW.

 

Replacing the values of q, T, ψ, ϕ2 from (2.51) -(2.54) into the equation (2.56), along with 

equations (2.41), (2.43) and (2.57) -(2.60), determine following system of equations as: 

∑ bijRj
4
i=1 = Yi,                                (j = 1 ⋯ 4),                     (2.61) 

where 

b1p = ιτθω[a13sin2θp + a12cos2θp]κp
2 + ιω[τfdp − κpz1 cos θp],  

b1q = −ιωκq[κq(a13 − a12)τθ sin θq  cos θq + z1 sin θq], 

b2p = ιωκp[κp(a9 + a10)τθ sin θp cos θp − z2sin θp], 

b2q = κq
2ιτθω[−a9cos2θq + a10sin2θq] + ιω[a11fpτθ + κqz2 cos θq],  

b3p = 0, b3q = −fp(a14ικq cos θq + ωz3), b4p = −dp[ικp cos θp + ωz4], 

b4q = 0, (p = 1,2), (q = 3,4),       (2.62) 

and R1, R2, R3 and R4 denote the AR of reflected LDW, TW, CD-IW and CD-IIW, each 

making an angle θ1, θ2, θ3, and θ4 respectively, as depicted in figure 2.1 and these are given 

as 

R1 =
A1

B∗ ,       R2 =
A2

B∗ ,      R3 =
B1

B∗ ,       R4 =
B2

B∗.                      (2.63) 

For incident LDW: 

B∗ = A01  and A02 = B01 = B02 = 0, 

Y1 = − ιωτθ[a13sin2θ0 + a12cos2θ0]κ0
2 − ιω[τfd1 + κ0z1 cos θ0], 

Y2 = ιωκ0[κ0(a9 + a10)τθ sin θ0 cos θ0 + z2sin θ0], 

Y3 = 0, 

Y4 = −d1[ικ0 cos θ0 − ωz4].        (2.64) 

For incident TW: 

B∗ = A02  and A01 = B01 = B02 = 0, 

Y1 = − ιωτθ[a13sin2θ0 + a12cos2θ0]κ0
2 − ιω[τfd2 + κ0z1 cos θ0], 

Y2 = ιωκ0[κ0(a9 + a10)τθ sin θ0 cos θ0 + z2sin θ0], 

Y3 = 0, 

Y4 = −d2[ικ0 cos θ0 − ωz4].        (2.65) 

For incident CD-IW: 

B∗ = B01 and A01 = A02 = B02 = 0, 

Y1 = −ιωκ0[κ0(a13 − a12)τθ sin θ0 cos θ0 − z1 sin θ0], 
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Y2 = −κ0
2ιωτθ[−a9cos2θ0 + a10sin2θ0] − ιω[a11f1τθ − κ0z2 cos θ0], 

Y3 = −(a14ικ0 cos θ0 − ωz3)f1, 

Y4 = 0.          (2.66) 

For incident CD-IIW: 

B∗ = B02 and A01 = A02 = B01 = 0,  

Y1 = −ιωκ0[κ0(a13 − a12)τθ sin θ0 cos θ0 − z1 sin θ0], 

Y2 = −κ0
2ιωτθ[−a9cos2θ0 + a10sin2θ0] − ιω[a11f2τθ − κ0z2 cos θ0], 

Y3 = −(a14ικ0 cos θ0 − ωz3)f2, 

Y4 = 0.          (2.67) 

It is noted that the AR, Ri(i = 1 ⋯ 4) are influenced by the angle of incidence θ0 and the 

material parameters of the MT medium under MG-L theory of thermoelasticity. 

2.7 Validations 

i)  By establishing α = β = γ = K = 0 and η1 = η2 = η3 = η4 = 1, the equations (2.49) 

and (2.50) reduces as  

(υ4 + C1υ2 + C2)(qο , Tο) = 0,                 (2.68) 

(υ2 − C3)ψο = 0,                    (2.69) 

with changed values of  

C1 =
ω2−ιωR1R2(1+a3a4)

ιωR2
, C2 =

−ωR1

ιR2
, C3 = (1 + τ1ιω)a2,  S1 = (1 + τ1ιω),  

S2 = (1 + τ0ιω),      a2 =
μ

ρc1
2 ,     a3 =

γ1T0

ρc1
2 ,      a4 =

γ1c1
2

K∗ω1
,  a5 = 

λ+2μ

γ1T0
,  a6 =

λ

γ1T0
 

a7 =
μ

γ1T0
,   γ1 = (3λ + 2μ)αt, c1

2 =
λ+2μ

ρ
. 

Also, the system of equations (2.61) reduces to 

∑ aijZj
3
i=1 = Yi,                           (j = 1 ⋯ 3),                     (2.70) 

where 

a1p = −S1[a5cos2θp+a6sin2θp]κp
2 + S1dp − ικpωz1 cos θp ,  

a13 = κ3
2(a6 − a5)S1 sin θ3 cos θ3 + ικ3ωz1 sin θ3, 

a2p = −2S1a7κp
2 sin θp cos θp + ικpωz2 sin θp, 

a23 = S1a7κ3
2(cos2θ3 − sin2θ3) − ικ3ωz2 cos θ3, 

a3p = dp[ικp cos θp + ωz3], dp =
ιωa4S2κ3

2

κ3
2+ιωS2

, (p = 1,2).   (2.71) 

The above equations are obtained for MG-L model with impedance boundary and these are 

consistent with those obtained by Kaushal et al. (2024) [65] (In absence of N-L and TT 

effects). 
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ii)  In absence of impedance parameters along with the conditions  η1 = η2 = 0, η3 =

η4 = 1, the equations (2.49) and (2.50) reduces  

(υ4 + W01υ2 + W02)(qο, Tο) = 0,                     (2.72) 

(υ4 + W03υ2 + W04)(ψο, ϕ2
o ) = 0,                     (2.73) 

with changed values of  

W01 =
−(1+τe+a4a8τe)

τe
,  W02 =

1

τe
, W03 =

a2a7−a3a6−ω2(a2+a5)

ω2−a7
, W04 =

a2a5ω2

ω2−a7
, 

  τe = (τ0 −
ι

ω
). 

Also, the system of equations (2.61) reduces to  

∑ bijRj
4
i=1 = Yi,                                (j = 1 ⋯ 4),                     (2.74) 

where 

b1p = [a13sin2θp + a12cos2θp]κp
2 + dp,  

b1q = −κq
2[(a13 − a12) sin θq cos θq], 

b2p = κp
2 [(a9 + a10) sin θp cos θp], 

b2q = κq
2[−a9cos2θq + a10sin2θq] + a11fp,  

b3p = 0, b3q = −fpa14ικq cos θq , b4p = −dpικp cos θp ,      b4q = 0,  

dp =
ω2−κp

2

a4
,     fp =

a6κq
2

a5κq
2 +a7−ω2 (p = 1,2), (q = 3,4).    (2.75) 

The equation (2.75) is obtained for the micropolar generalized thermoelasticity (L-S model) 

without impedance boundary and these are identical as obtained by Sharma and Marin (2013) 

[139] (In absence of TT parameter). 

iii)  By taking  η1 = η4 = 0, η2 = η3 = 1 along with z1 = z2 = z3 = z4 = 0, the 

equations (2.49) and (2.50) reduces as  

(υ4 + L01υ2 + L02)(qο, Tο) = 0,                     (2.76) 

(υ4 + L03υ2 + L04)(ψο, ϕ2
o ) = 0,                     (2.77) 

With changed values of  

L01 =
−(1+τe+a4a8τf)

τe
,  L02 =

1

τe
, L03 =

a2a7−a3a6−ω2(𝑎2+a5)

ω2−a7
, L04 =

a2a5ω2

ω2−a7
, 

  τe = (τ0 −
ι

ω
), τf = (τ1 −

ι

ω
). 

Also, the system of equations (2.61) reduces to  

∑ bijRj
4
i=1 = Yi,                                (j = 1 ⋯ 4),                     (2.78) 

where 

b1p = [a13sin2θp + a12cos2θp]κp
2 + ιωτfdp,  
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b1q = −κq
2[(a13 − a12) sin θq cos θq], 

b2p = κp
2 [(a9 + a10) sin θp cos θp], 

b2q = κq
2[−a9cos2θq + a10sin2θq] + a11fp,  

b3p = 0, b3q = −fpa14ικq cos θq , b4p = −dpικp cos θp ,  b4q = 0,  

dp =
ω2−κp

2

a4ιωτf
,     fp =

a6κq
2

a5κq
2 +a7−ω2. (p = 1,2), (q = 3,4).    (2.79) 

The results obtained in equation (2.79) are for micropolar generalized thermoelasticity (G-L 

model) and these results tally with those obtained by Sharma (2013) [136] in a particular case 

when TT parameter is absent. 

2.7.1 Unique Cases  

(i)  To obtain the corresponding expressions for AR in micropolar MG-L 

generalized thermoelastic half-space with normal impedance parameter, 

substitute z2 = z3 = z4 = 0 in (2.61). 

(ii)  The results are inferred for micropolar MG-L generalized thermoelastic half-

space with tangential impedance parameter by adopting  z1 = z3 = z4 = 0 in 

(2.61). 

(iii)   By substituting  z1 = z2 = z4 = 0 in (2.61), the resulting expressions are determined 

for micropolar MG-L generalized thermoelastic half-space with tangential 

coupled stress impedance parameter. 

(iv)  By setting  z1 = z2 = z3 = 0 in (2.61), the resulting expressions are obtained for 

micropolar MG-L generalized thermoelastic half- space with thermal conducted 

impedance parameter. 

2.8 Discussion and Numerical Results  

To proceed with numerical results and discussions for the micropolar MG-L generalized 

thermoelastic half-space with impedance parameter, we utilized aluminum-epoxy material 

with the physical constants given by Gauthier (1982) [47], 

μ = 1.89 × 1010Nm−2, K = 0.0149 × 1010Nm−2, γ = 0.268 × 106N,  

Ce = 2.361 × 1010m2sec−2K−1, ρ = 2.7 × 103 Kgm−3, T0 = 298 K, 

αt = 2.36 × 10−6K−1, τ0 = 0.2sec, τ1 = 0.4sec, λ = 7.59 × 1010Nm−2, 

ĵ = 0.196 × 104m2,  K∗ = 0.492 × 102Nsec−1K−1.  

Graphical representations illustrate the AR of reflected waves versus the angle of incidence 

θ0 for MT MG-L model, G-L model, and L-S model. This includes scenarios with impedance 

parameters ( z1 = 1, z2 = 5,  z3 = 2, z4 = 3 )  and without impedance parameters (z1 =
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z2 = z3 =  z4 = 0).  

The computation for following cases is considered as: 

• The micropolar MG-L model with impedance parameters (IMGL) is represented by 

the solid line (      )  

• The micropolar MG-L model without impedance parameters (NIMGL) is represented 

by the solid line with the center symbol diamond (        ). 

• The micropolar G-L model with impedance parameters (IGL) is denoted by the large 

dashed line (− − −). 

• The micropolar G-L model without impedance parameters (NIGL) is represented by 

the large dashed line with a central symbol circle (−o − ). 

• The micropolar L-S model with impedance parameters (ILS) is denoted by the small 

dashed line (---).  

• The micropolar L-S model without impedance parameters (NILS) is represented by 

the small dashed line with a triangle symbol at the center (--∆--). 

Figures 2.2-2.5 are for LDW, figures 2.6-2.9 are for TW, figures 2.10-2.13 are for CD-

IW and figures 2.14-2.17 are for CD-IIW. 

2.8.1 LD-Wave 

The variations of |R1| vs. θ0 are displayed in figure 2.2. It is evident that the values of |R1| 

for L-S and G-L models (with and without impedance) show ascending trend whereas in case 

of MG-L model opposite behaviour is noticed for |R1| in presence and absence of impedance 

parameters. 

The variations of |R2| vs. θ0 are illustrated in figure 2.3. The magnitude of |R2| show a 

declining trend for all the examined cases, however the magnitude of |R2| for IMGL remain 

high for entire range except some values of θ0.  

Figure 2.4 depicts the variations of |R3| vs. θ0. It is evident that due to impedance parameters 

the magnitude of |R3| is higher for all the considered models i.e. for ILS, IGL and IMGL 

when compared with NILS, NIGL and NIMGL respectively. 

Figure 2.5 shows the variations of  |R4| vs. θ0. The magnitude of |R4| follow similar trend 

for all studied cases, however the magnitude of |R4| for IMGL, IGL and ILS is higher than 

NIMGL, NIGL and NILS, respectively. 

2.8.2 T-Wave 

The figure 2.6 demonstrates the variations of |R1| vs. θ0. |R1| follows monotonic ascending 

trend for NILS and NIGL, whereas steady state behavior is noticed for NIMGL. It is also 
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noted that in presence of impedance i.e. ILS, IGL and IMGL, |R1| shows steady state 

variation with distinct magnitude. 

Figure 2.7 depicts the variations of |R2| vs. θ0. It is seen that the magnitude of |R2| exhibits 

steady state behavior due to presence of impedance parameters, whereas descending trend is 

noticed in absence of impedance parameters for all considered models, magnitude of |R2| 

remain high for MG-L model as compared to other models.  

Figure 2.8 depicts the variations of |R3| vs. θ0. The magnitude of |R3| depicts ascending 

behaviour for NIGL and NILS, attaining maximum value at θ0 = 54o before decreasing in 

the rest of interval, whereas |R3| shows increasing trend throughout the interval for all the 

remaining cases, magnitude |R3| remains high for G-L model compared to L-S model. 

Figure 2.9 displays the variations of |R4| vs. θ0. It is seen that the magnitude of |R4| shows 

an upward trend for all cases that are being considered, with a significant difference in their 

magnitude.  

 2.8.3 CD-I-Wave  

Figure 2.10 demonstrates the variations of |R1| vs. θ0. The values of |R1| follow a similar 

trend for all studied cases however, the magnitude of |R1| for MG-L model (with and without 

impedance) remains high when compared to other models, except some values of θ0. 

Figure 2.11 depicts the variations of |R2| vs. θ0. In absence of impedance parameters, the 

magnitude of |R2|  reveals oscillatory behaviour whereas due to impedance boundary, the 

values of  |R2| exhibit a downward trend for entire range except some values of θ0. 

Figure 2.12 demonstrates the variations of |R3| vs. θ0. The magnitude of |R3| exhibits a 

decreasing trend for NIMGL, NIGL, NILS, IGL and ILS in the interval  0o ≤ θ0 ≤ 83o and 

increases in left over the interval. However, the values of |R3| for IMGL exhibit an oscillatory 

trend, indicating the effects of impedance parameters. 

Figure 2.13 depicts the variations of |R4| vs. θ0. It is evident that |R4| decreases 

monotonically and reaches a minimum value at θ0 = 74o. When θ0 > 74o, |R4| exhibits 

ascending behaviour for all studied models in absence of impedance parameters and 

oscillating trend is noticed in presence of impedance parameters. 

2.8.4 CD-II-Wave 

Figure 2.14 is plot of |R1| vs. θ0. It is seen that the magnitude of |R1| follows oscillatory 

trend for all the examined cases but magnitude of |R1| remain high for IMGL. 

Figure 2.15 reveals the variations of |R2| vs. θ0. Impedance parameters increase the 

magnitude of |R2| near and far away from boundary, except for some values of θ0 whereas 
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in absence of impedance, |R2| follow oscillatory behavior for all the studied models but 

magnitude of |R2| remain higher for G-L model. 

Figure 2.16 displays the variations of |R3| vs. θ0. It is noticed that the magnitude of |R3| 

decrease abruptly for IGL, ILS, NIGL and NILS whereas |R3| shows oscillating behavior 

with decreasing magnitude for IMGL in entire range. It is also noted that the values of 

|R3| increase monotonically in the range 0o ≤ θ0 ≤ 45o and decrease in the remaining 

interval in the case of NIMGL. 

The variations of |R4| vs. θ0 are illustrated in figure 2.17. It is seen that the values of |R4| for 

IMGL and NIMGL (in the interval  0o ≤ θ0 ≤ 18o), IGL and NIGL, ILS and NILS 

respectively (in the interval  0o ≤ θ0 ≤ 24o), show opposite trend whereas similar behavior 

is noticed in the rest of the interval.  

2.9 Conclusion 

This chapter presents a formulation for a MT medium using the MG-L theory of generalised 

thermoelasticity. In order to simplify two-dimensional problem, potential functions and 

dimensionless quantities are implemented. The impedance boundary restrictions are 

employed to investigate the reflection of plane waves in an assumed model. In the model 

under consideration, the plane wave (LDW or TW or CD-IW or CD-IIW) is incident, resulting 

in four reflected waves (LDW, TW, CD-IW, and CD-IIW). The AR of these reflected waves 

are determined in accordance with the impedance boundary restrictions. The AR of various 

reflected waves are numerically calculated and graphically presented for generalized 

thermoelasticity theories, including MG-L, G-L, and L-S. The influence of impedance 

characteristics is examined, and the following conclusions are derived from the numerical 

results: 

i. The AR of reflected LDW, CD-IW and CD-IIW across the MG-L, L-S and G-

L theories of thermoelasticity are intensified by impedance parameters when 

LDW is incident. At the same time, the AR of the reflected TW for NILS and NIGL 

are higher than those observed for ILS and IGL, respectively. 

ii. It has been observed that the magnitude of AR for all reflected waves is increased due 

to the presence of impedance parameters in the MG-L theory of thermoelasticity when 

a TW is incident. Conversely, the L-S and G-L theories of thermoelasticity exhibit a 

comparable pattern, albeit with significant variations in the magnitude of AR. 

iii. The AR exhibit consistent behavior across the L-S and G-L theories of 

thermoelasticity when a CD-IW or CD-IIW is incident, with significant differences in 

their magnitudes under both the cases (with and without impedance parameters). 
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However, the MG-L theory of thermoelasticity exhibits oscillatory behavior.  

Thus, the study provides critical insights into the impact of impedance parameters on the AR 

during wave propagation and underscores the significance of impedance and thermal 

relaxation effects in the design of materials for aerospace, defense and engineering 

applications. By employing dimensionless analysis, potential functions and harmonic 

solutions, the structure facilitates analytical tractability while preserving physical realism. 

The developed model not only generalizes existing theories but also establishes a robust 

foundation for future research involving N-L effects, anisotropic media and layered structure. 
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Fig. 2.1: Geometry of the problem 
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Fig. 2.2: |R1| vs. 𝛉𝟎  
                        (LD-wave) 
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Fig. 2.3: |R2| vs. 𝛉𝟎  
                                 (LD-wave) 
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Fig. 2.4: |R3| vs. 𝛉𝟎  
                (LD-wave) 

 

0 18 36 54 72 90
Angle of incidence

0

0.4

0.8

1.2

1.6

A
m

p
li
tu

d
e
 r

a
ti

o
 I
R

4
l

IMGL

IGL

ILS

NIMGL

NIGL

NILS

 

Fig. 2.5:  |R4| vs. 𝛉𝟎  
                         (LD-wave) 
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Fig. 2.6: |R1| vs. 𝛉𝟎  
                        (T-wave) 
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Fig. 2.7: |R2| vs. 𝛉𝟎  
                      (T-wave) 
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Fig. 2.8: |R3| vs. 𝛉𝟎  
                     (T-wave) 
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  Fig. 2.9: |R4| vs. 𝛉𝟎  
                         (T-wave) 
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Fig. 2.10: |R1| vs. 𝛉𝟎  
                       (CD-I wave) 
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  Fig. 2.11: |R2| vs. 𝛉𝟎  
                       (CD-I wave) 
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   Fig. 2.12: |R3| vs. 𝛉𝟎  
                     (CD-I wave) 
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Fig. 2.13: |R4| vs. 𝛉𝟎  
              (CD-I wave) 
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Fig. 2.14: |R1| vs. 𝛉𝟎  
                   (CD-II wave) 
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   Fig. 2.15: |R2| vs. 𝛉𝟎  
                     (CD-II wave) 
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Fig. 2.16: |R3| vs. 𝛉𝟎  
                            (CD-II wave) 
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     Fig. 2.17: |R4| vs. 𝛉𝟎  
                      (CD-II wave) 
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Chapter 3  

Propagation of plane waves in a micropolar thermoelastic medium based 

on the Moore-Gibson-Thompson heat equation, including non-local effects 

and hyperbolic two-temperature effects 

3.1 Introduction 

Sharma (2013) [136] studied how two temperature (TT) parameter effects the reflection 

coefficients of various reflected waves in a micropolar thermoelastic (MT) semi-space. 

Sharma et al. (2014) [147] investigated the propagation of waves in an electro-microstretch 

elastic solid. Kaushal et al. (2021) [64] explored the influence of impedance parameters, 

diffusion and relaxation time on the amplitude ratios (AR) of reflected waves in a 

thermoelastic medium.  

Das et al. (2023) [27] studied the reflection problem at an insulated, isothermal and 

stress-free plane boundary and explored the influence of non-local (N-L) parameters on 

reflection coefficients and energy ratios of various reflected waves within the framework of 

the Moore-Gibson-Thompson (MGT) theory of thermoelasticity. Kumar et al. (2023) [88] 

investigated the fundamental solution and plane wave propagation in photothermoelastic 

under the MGT heat equation. They also calculated attenuation coefficient and phase velocity 

of plane waves using various thermoelastic theories.  

 Deswal et al. (2024) [29] investigated how micropolarity, N-L parameters, and 

temperature affected the energy ratios and AR of reflected plane waves. Kumar et al. (2024) 

[70] calculated the phase speed, energy ratios, and reflection/transmission coefficients of 

various reflected and transmitted waves at the interface of two distinct N-L triclinic MT semi-

spaces to study the effects of N-L and micropolar parameters on the resulting quantities. Said 

(2024) [129] studied the effect of viscosity and gravitational field on different reflected waves 

in a MT media. 

This chapter presents a novel mathematical formulation for analyzing wave propagation 

in micropolar thermoelastic media by incorporating the MGT heat conduction equation 

together with hyperbolic two-temperature (HTT) and N-L effects. After being converted to a 

two-dimensional case, the governing equations are rendered dimensionless, and potential 

functions are implemented to facilitate additional simplification. In order to solve the 

problem, a reflection technique is implemented. Four types of reflected waves are identified 

when a plane wave (longitudinal displacement wave (LDW) or coupled transverse wave (CD-

IW)) is incident on the surface x3 = 0, namely LDW, thermal wave (TW), CD-IW, and 
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coupled microrotational wave (CD-IIW). The impedance boundary restrictions are employed 

to calculate the AR of these reflected waves. The effects of N-L, HTT, TT, and impedance 

factors on these AR are graphically represented.  Some special cases are also covered. 

This study is motivated by the increasing need to better understand how waves 

propagate through complex materials with microstructures, where traditional theories cannot 

fully explain micro-rotational effects. It is especially important for modern technologies like 

microscale thermal sensors, where having accurate models is essential for improving design 

and performance. The novelty of this work is embodied in its integration of the MGT 

thermoelasticity theory with N-L and HTT parameters within a micropolar continuum 

framework. This unified model enables a rigorous evaluation of how N-L effects, HTT 

behavior, and impedance boundary conditions influence AR of various reflected waves. By 

bridging microstructural mechanics and advanced thermal modeling, the study offers a more 

comprehensive and realistic approach to wave analysis in next-generation engineered 

materials. 

3.2 Fundamental Equations 

Eringen (1966) [36], Youssef and El-Bary (2018) [168], and Quintanilla (2019) [121] provide 

the field equations and constitutive relations for MT medium under the MGT heat equation, 

encompassing N-L effects and HTT, after eliminating body couples, heat sources, and body 

forces as 

(λ + μ)∇(∇. 𝐮) + (μ + K)∆𝐮 + K(∇ × 𝛟) − γ1∇T = ρ(1 − ξ1
2∆)

∂2𝐮

∂t2 ,   (3.1) 

(α + β)∇(∇. 𝛟) + γ∆𝛟 + K(∇ × 𝐮) − 2K𝛟 = ρj(̂1 − ξ2
2∆)

∂2𝛟

∂t2 ,    (3.2) 

(1 + τ0
∂

∂t
) [ρCe

∂2T

∂t2 + γ1T0
∂2

∂t2
(∇. 𝐮)] = K∗ ∂

∂t
∆φ + K1

∗∆φ,    (3.3) 

tpq = λuh,hδpq + μ(up,q + uq,p) + K(uq,p − εpqhϕh) − γ1Tδpq,   (3.4) 

mpq = αϕh,hδpq + βϕp,q + γϕq,p,         (3.5) 

T̈ = φ̈ − β∗∆φ,        (p, q, h = 1 − 3),  (3.6)  

where φ - conductive temperature, β∗ - HTT parameter, K1
∗ =

(λ+2μ)Ce

4
 - rate of the thermal 

conductivity, ξ1 and ξ2 -non-local parameters and other symbols 𝐮, 𝛟, T, λ, μ, K, j ̂, K∗ , β, Ce, 

γ1, t, tpq, mpq, τ0, α, γ, T0, δpq , ρ, εpqh , ∆ , ∇ are as defined in section 2.2 [Chapter 2]. 

Following cases arises: 

 (i) For Lord-Shulman (L-S) theory (1967) [98]: K1
∗ = 0, 

(ii) For Coupled theory of thermoelasticity (1980) [30]: K1
∗ = τ0 = 0, 

(iii) For Green-Naghdi–II (GN-II) theory (1993) [52]: K∗ = τ0 = 0, 
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(iv) For Green-Naghdi–III (GN-III) theory (1992) [51]: τ0 = 0. 

Equations (3.1) -(3.6) in components form for Cartesian coordinates (x1 , x2, x3) are written 

as  

(λ + μ)
∂

∂x1
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u1 + K (

∂ϕ3

∂x2
−

∂ϕ2

∂x3
) −γ1

∂T

∂x1
  

= ρ(1 − ξ1
2∆)

∂2u1

∂t2 ,    (3.7) 

(λ + μ)
∂

∂x2
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u2 + K (

∂ϕ1

∂x3
−

∂ϕ3

∂x1
) −γ1

∂T

∂x2
  

= ρ(1 − ξ1
2∆)

∂2u2

∂t2 ,    (3.8) 

(λ + μ)
∂

∂x3
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u3 + K (

∂ϕ2

∂x1
−

∂ϕ1

∂x2
) −γ1

∂T

∂x3
      

= ρ(1 − ξ1
2∆)

∂2u3

∂t2 ,    (3.9) 

(α + β)
∂

∂x1
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ1 + K ((

∂u3

∂x2
−

∂u2

∂x3
) − 2ϕ1)     

        = ρj(̂1 − ξ2
2∆)

∂2ϕ1

∂t2 ,   (3.10) 

(α + β)
∂

∂x2
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ2 + K ((

∂u1

∂x3
−

∂u3

∂x1
) − 2ϕ2)      

        = ρj(̂1 − ξ2
2∆)

∂2ϕ2

∂t2 ,   (3.11) 

(α + β)
∂

∂x3
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ3 + K ((

∂u2

∂x1
−

∂u1

∂x2
) − 2ϕ3)    

        = ρj(̂1 − ξ2
2∆)

∂2ϕ3

∂t2 ,   (3.12) 

(1 + τ0
∂

∂t
) [ρCe

∂2T

∂t2 + γ1T0
∂2

∂t2 (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
)] = K∗ ∂

∂t
∆φ + K1

∗∆φ,   (3.13)    

t11 = λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u1

∂x1
− γ1T,       (3.14) 

t22 = λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u2

∂x2
− γ1T,               (3.15) 

t33 = λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
− γ1T,                                  (3.16) 

t31 = μ (
∂u3

∂x1
+

∂u1

∂x3
) + K (

∂u1

∂x3
− ϕ2),                                                    (3.17) 

t32 = μ (
∂u3

∂x2
+

∂u2

∂x3
) + K (

∂u2

∂x3
+ ϕ1),                               (3.18) 

t21 = μ (
∂u2

∂x1
+

∂u1

∂x2
) + K (

∂u1

∂x2
+ ϕ3),                               (3.19) 

T̈ = φ̈ − β∗∆φ,            (3.20) 
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and the values of m11, m22, m33  m31,  m32  and m12 are as given by equations (2.19) -(2.24) 

in section 2.2 [Chapter 2]. Additionally, the value of ∆ is as described in section 2.2 [Chapter 

2]. 

3.3 Problem Formulation  

We are examining a MT half-space that is homogeneous and isotropic, governed by the MGT 

heat equation, and subjected to impedance boundary conditions. This half-space also includes 

N-L and HTT effects. We consider a rectangular Cartesian coordinate system (x1, x2, x3), 

with the origin positioned at the plane boundary x3 = 0. The x3 -axis extends vertically 

downward into the medium, while the x1 – axis runs horizontally. The x2-axis is aligned 

with the direction of the line where the plane wave front intersects the plane surface. The field 

variables are contingent upon x1, x3, and t, if we confine our analysis to a plane strain 

problem in x1 − x3 plane.  

In the case of a two-dimensional problem, we consider the following:  

𝐮 = (u1(x1, x3, t), 0, u3(x1, x3, t)),   𝛟 = (0,ϕ2(x1, x3, t),0), T = T(x1, x3, t), 

φ = φ(x1, x3, t),            (3.21) 

Using equation (3.21) in (3.7) -(3.13), (3.16), (3.17), (2.23) and (3.20), yield 

(λ + μ)
∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u1 − K

∂ϕ2

∂x3
−γ1

∂T

∂x1
= ρ(1 − ξ1

2∆)
∂2u1

∂t2 ,   (3.22) 

(λ + μ)
∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u3 + K

∂ϕ2

∂x1
−γ1

∂T

∂x3
= ρ(1 − ξ1

2∆)
∂2u3

∂t2 ,   (3.23) 

γ∆ϕ2 + K ((
∂u1

∂x3
−

∂u3

∂x1
) + 2ϕ2) = ρj(̂1 − ξ2

2∆)
∂2ϕ2

∂t2 ,     (3.24) 

(1 + τ0
∂

∂t
) [ρCe

∂2T

∂t2 + γ1T0
∂2

∂t2 (
∂u1

∂x1
+

∂u3

∂x3
)] = K∗ ∂

∂t
∆φ + K1

∗∆φ,    (3.25)   

t33 = λ(
∂u1

∂x1
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
− γ1T,                     (3.26)  

t31 = μ (
∂u3

∂x1
+

∂u1

∂x3
) + K

∂u1

∂x3
− Kϕ2,           (3.27)   

m32 = γ
∂ϕ2

∂x3
,              (3.28)               

T̈ = φ̈ − β∗∆φ,            (3.29)   

where the value of ∆ is as defined in section 2.3 [Chapter 2]. 

To simplify further, we consider the dimensionless quantities as follows: 

(xi′, ui
′) =

ω1

c1
(xi, ui), t3i

′ =
1

γ1T0
t3i, (T′, ′) =

1

T0
 (T, ), ϕ2

′ =
ρc1

2

γ1T0
ϕ2,   

 m32
′ =

ω1

γ1c1T0
m32, (t′, τ0

′ ) = ω1(t, τ0), (z1
′, z2

′) =
c1

γ1T0
(z1, z2), z3

′ =
ω1

2

ρc1
3 z3, 

z4
′ =

c1

K∗ z4,  (ξ1
′ , ξ2

′ ) =
ω1

c1
(ξ1, ξ2), β∗′ =

1

c1
2 β∗,  ω′ =

ω

ω1
, (i = 1,3),  (3.30)  
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where  

c1
2 =

λ+2μ+K

ρ
  and  ω1 =

ρCec1
2

K∗ .         (3.31) 

Using (3.30) in (3.22) -(3.29) after suppressing the primes, yield 

a1
∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + a2∆u1−a3

∂ϕ2

∂x3
− a4

∂T

∂x1
= (1 − ξ1

2∆)
∂2u1

∂t2 ,    (3.32) 

a1
∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + a2∆u3 + a3

∂ϕ2

∂x1
− a4

∂T

∂x3
= (1 − ξ1

2∆)
∂2u3

∂t2 ,      (3.33) 

a5∆ϕ2 + a6 (
∂u1

∂x3
−

∂u3

∂x1
) − a7ϕ2 = (1 − ξ2

2∆)
∂2ϕ2

∂t2 ,                    (3.34) 

∂

∂t
∆φ + a8∆φ = (1 + τ0

∂

∂t
) [

∂2T

∂t2 + a9
∂2

∂t2 (
∂u1

∂x1
+

∂u3

∂x3
)],              (3.35) 

t33 = a13
∂u1

∂x1
+ a14

∂u3

∂x3
− T,                      (3.36) 

t31 = a10 (
∂u3

∂x1
+

∂u1

∂x3
) + a11

∂u1

∂x3
− a12ϕ2,              (3.37) 

m32 = a15
∂ϕ2

∂x3
,              (3.38)    

T̈ = φ̈ − β∗∆φ,            (3.39)   

where  ai (i = 1 ⋯ 7) are as given by equation (2.42) [Chapter 2] and  

a8 =
K1

∗

ω1K∗,  a9 =
γ1c1

2

ω1K∗,  a10 =
μ

γ1T0
,  a11 =

μ+K

γ1T0
,  a12 =

K

ρc1
2,  

a13 =
λ

γ1T0
,

  

a14 =
(λ+2μ+K)

γ1T0
, a15 =

γω1
2

ρc1
4 .       (3.40) 

3.4 Solution Procedure 

Relation between displacement components and scalar potentials is as given by equation 

(2.43) [Chapter 2]. 

Using equation (2.43) in equations (3.32) -(3.35), yield 

∆q − a4T = (1 − ξ1
2∆)

∂2q

∂t2 ,          (3.41) 

a2∆ψ + a3ϕ2 = (1 − ξ1
2∆)

∂2ψ

∂t2 ,         (3.42) 

a5∆ϕ2 − a6∆ψ − a7ϕ2 = (1 − ξ2
2∆)

∂2ϕ2

∂t2 ,       (3.43) 

∂

∂t
∆φ + a8∆φ = (1 + τ0

∂

∂t
) (

∂2T

∂t2 + a9
∂2

∂t2 ∆q).       (3.44) 

To solve the system of equations (3.41) - (3.44), we approach the solution as follows: 

(q, T, φ, ψ, ϕ2) = (q̅, T̅,  φ̅, ψ̅, ϕ̅2)eικ(x1 sin θ0−x3 cos θ0+νt),     (3.45) 

where ω, ι, θ0, ν, and κ are as defined in section 2.4 [Chapter 2] and quantities such as 

q̅, T̅,  φ̅,  ψ̅ and ϕ̅2 are constants representing the wave amplitudes. 

Substituting the value of T from equation (3.45) in (3.39), (after removing the bars) yields 
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T = φ + ∆φ,            (3.46) 

where 

  = {

β∗

ω2 , for (HTT)

a, for  (TT)

0, for one temperature (1T).

 

Using the equation (3.46) in equations (3.41) and (3.44), yield 

∆q − a4(1 + ∆)φ = (1 − ξ1
2∆)

∂2q

∂t2 ,        (3.47) 

∂

∂t
∆φ + a8∆φ = (1 + τ0

∂

∂t
) [

∂2

∂t2 (1 + ∆)φ + a9
∂2

∂t2 ∆q],     (3.48) 

The following equations are obtained by simplifying and inserting the values of 

q, φ, ψ and ϕ2 from the equation (3.45) into equations (3.47), (3.48), (3.42), and (3.43)  

(υ4 + G01υ2 + G02)(q̅,  φ̅) = 0,         (3.49) 

(υ4 + G03υ2 + G04)(ψ̅, ϕ̅2) = 0,         (3.50) 

where 

G01 =
−((ιω+a8)+ιωτe(1−ξ1

2
ω2+a4a9+ω2))

ιωτe
,  G02 =

(ιω+a8)(1−ξ1
2

ω2)+ιτeω3(1−ξ1
2

ω2+a4a9)

ιωτe
, 

G03 =
ω2(a2+a5+a7ξ1

2
−ω2(ξ1

2
+ξ2

2
))−a2a7+a3a6

a7−ω2 , G04 =
ω4(a5ξ1

2
−ω2ξ1

2
ξ2

2
+a2ξ2

2
)−ω2(a2a5)

a7−ω2 ,  

τe = (τ0 −
ι

ω
). 

Let υi(i = 1,2) designate the roots of the characteristic equation (υ4 + G01υ2 + G02) = 0, 

which correspond to the velocities of the LDW and TW in decreasing order. In the same way, 

the roots of the characteristic equation (υ4 + G03υ2 + G04) = 0  are represented by υj (j = 3, 

4) and correspond to velocities of CD-IW and CD-IIW in decreasing order. 

3.5 Wave Reflection Phenomenon 

Consider a plane harmonic wave (LDW or CD-IW) that forms an angle θ0 with normal to the 

surface at x3 = 0, as illustrated in figure 3.1. When any incident wave (LDW or CD-IW) hits 

at the boundary x3 = 0, four types of reflected waves are generated in the medium namely 

LDW, TW, CD-IW, and CD-IIW. These reflected waves make angles θ1, θ2, θ3, and θ4 with 

the positive x3-axis. The wave field for the half-space, encompassing both incident and 

reflected waves, can be expressed as: 

q = ∑ [E0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Eie

ικi(x3 cos θi +x1 sin θi)+ιωt]2
i=1 ,   (3.51) 

φ = ∑ [ri (E0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Eie

ικi(x3 cos θi +x1 sin θi)+ιωt)]2
i=1 ,  (3.52) 

ψ = ∑ [F0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Fie

ικj(x3 cos θj +x1 sin θj)+ιωt],2
i=1    (3.53) 
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ϕ2 = ∑ [si(F0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Fie

ικj(x3 cos θj +x1 sin θj)+ιωt)]2
i=1 ,  (3.54) 

where ri and si are coupling constants, defined as 

ri =
[ω2(1+ξ1

2
κi

2)−κi
2]

a4(1−κi
2)

,     si =
a2κj

2−ω2(1+ξ1
2

κj
2)

a3
, (i = 1,2), (j = 3,4),    

and E0i(i = 1,2) denote the amplitudes of incident LDW and TW, respectively. F0i(i = 1,2) 

represent the amplitudes of incident CD-IW and CD-IIW. Ei(i = 1,2) denote the amplitudes 

of the reflected LDW and TW whereas Fi(i = 1,2) corresponds to the amplitudes of the 

reflected CD-IW and CD-IIW respectively. 

3.6 Boundary Conditions  

Following Tiersten (1969) [162] and Malischewsky (1987) [99], the appropriate impedance 

boundary restrictions at x3 = 0 are  

(i) t33 + ωz1u3 = 0,   (ii) t31 + ωz2u1 = 0,     

(iii) m32 + ωz3ϕ2 = 0,    (iv)  K∗ ∂φ

∂x3
+ ωz4φ = 0,    (3.55) 

where z1, z2 are impedance parameters with dimension N sec m−3. z3 and z4 are impedance 

parameters have dimensions N sec m−1 and N m−1K−1 respectively. Taking z1 =  z2 =

 z3 =  z4 = 0 yields stress free boundary conditions. 

Using non-dimensional quantities given by (3.30) on equation (3.55), yield  

(i) t33 + ωz1u3 = 0,   (ii) t31 + ωz2u1 = 0,     

(iii) m32 + ωz3ϕ2 = 0,    (iv) 
∂φ

∂x3
+ ωz4φ = 0,     (3.56) 

Using equation (2.43) in equations (3.36), (3.37) and with the aid of equation (3.46), yield 

t33 = a13 [
∂2q

∂x1
2 −

∂2ψ

∂x1 ∂x3
] + a14 [

∂2ψ

∂x1 ∂x3
+

∂2q

∂x3
2] − (1 + ∆)φ,    (3.57) 

t31 = (2a10 + a11) (
∂2q

∂x1 ∂x3
) − (a10 + a11)

∂2ψ

∂x3
2 + a10

∂2ψ

∂x1
2 − a12ϕ2.   (3.58) 

To meet the boundary condition (3.56) at x3 = 0, the angles of the reflected waves must 

follow a precise connection with the angle of the incident wave as  

κ0 sin θ0 = κ1 sin θi,  (i = 1 ⋯ 4)        (3.59) 

Relation (3.59) can be written as        

sin θ0

υ0
=

sin θi

υi
,  (i = 1 ⋯ 4)         (3.60)                 

where 

υ0 = {

υ1,   incident LDW
υ2, incident  TW
υ3,
υ4,

    incident CD − IW
     incident CD − IIW.
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By inserting the values of q, φ, ψ, ϕ2 from equations (3.51) -(3.54) into the boundary 

condition (3.56) with the assistance of equations (2.43), (3.38) and (3.57) -(3.60), we derive 

the following system of equations: 

∑ cijRj
4
i=1 = Xi,                                (j = 1 ⋯ 4),        (3.61) 

where 

c1p = [a13sin2θp + a14cos2θp]κp
2 + (1 − κp

2)rp − κpz1ιω cos θp,  

c1q = [κq
2 (a14 − a13)cos θq − κqz1ιω]sin θq, 

c2p = κp
2 sin θpcos θp(2a10 + a11) − κpz2ιωsin θp ,  

c2q = −κq
2[(a10 + a11)cos2θq − a10sin2θq] + a12sp + κqz2ιω cos θq ,   

c3p = 0, c3q = −(a15ικq cos θp + ωz3)sp,  

c4p = −rp[ικp cos θp + ωz4], 

c4q = 0,   (p = 1,2), (q = 3,4),         (3.62) 

and, the AR of reflected waves, denoted as Rj(j = 1 ⋯  4)  are given by:  

R1 =
E1

A∗ ,       R2 =
E2

A∗ ,      R3 =
F1

A∗ ,       R4 =
F2

A∗.                       (3.63) 

For incident LDW, A∗ = E01 and E02 = F01 = F02 = 0, 

X1 = −[a13sin2θ0 + a14cos2θ0]κ0
2 − (1 − κ0

2)r1 − κ0z1ιω cos θ0, 

X2 = κ0
2sin θ0cos θ0(2a10 + a11) + κ0z2ιωsin θ0,  

X3 = 0,  

X4 = −r1[ικ0 cos θ0 − ωz4].          (3.64) 

For incident CD-IW, A∗ = F01 and E01 = E02 = F02 = 0, 

X1 = [κ0
2(a14 − a13)cos θ0 + κ0z1ιω]sin θ0, 

X2 = κ0
2[(a10 + a11)cos2θ0 − a10sin2θ0] − a12s1 + κ0z2ιω cos θ0, 

X3 = −(a15ικ0 cos θ0 − ωz3)s1, 

X4 = 0.             (3.65) 

3.7 Validations 

i) By considering ξ1 = 0 , ξ2 = 0, τ0 = 0 and  = 0  along with z1 =  z2 =  z3 =

 z4 = 0, equations (3.49) and (3.50) reduces as 

(υ4 + G01υ2 + G02)(q̅,  T̅) = 0,         (3.66) 

(υ4 + G03υ2 + G04)(ψ̅, ϕ̅2) = 0,         (3.67) 

with changed values of  

G01 = −(ιω + a8 + 1 + a4a9)  G02 = (ιω + a8),  G03 =
a2a7−a3a6−ω2(a2+a5)

ω2−a7
, 

G04 =
ω2(a2a5)

ω2−a7
.  

Also, equation (3.61) reduces as  
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∑ cijRj
4
i=1 = Xi,                                (j = 1 ⋯ 4),        (3.68) 

where 

c1p = [a13sin2θp + a14cos2θp]κp
2 + rp,  

c1q = κq
2 (a14 − a13)cos θqsin θq, 

c2p = κp
2 sin θpcos θp(2a10 + a11), 

c2q = −κq
2[(a10 + a11)cos2θq − a10sin2θq] + a12sp ,   

c3p = 0, c3q = −ικq a15cos θpsp  

c4p = −ικprp cos θp, c4q = 0,           

rp =
(ω2−κp

2)

a4
,     sp =

a2κq
2 −ω2

a3
, (p = 1,2), (q = 3,4).     (3.69) 

In equation (3.69), we obtained resulting expressions for MT with energy dissipation 

(GN-III model) and these are consistent with those obtained by Kumar et al. (2014) 

[85] for the particular case. 

ii) By taking  K1
∗ = 0  along with absence of N-L, HTT and impedance parameters, 

the equations (3.49) and (3.50) reduces as  

(υ4 + G01υ2 + G02)(q̅,  T̅) = 0,         (3.70) 

(υ4 + G03υ2 + G04)(ψ̅, ϕ̅2) = 0,         (3.71) 

with changed values of  

G01 = −
(1+τe(1+a4a8))

τe
  G02 =

1

τe
,  G03 =

ω2(a2+a5)−a2a7+a3a6

a7−ω2 , 

G04 =
−ω2a2a5

a7−ω2 ,  τe = (τ0 −
ι

ω
), a8 =

γ1c1
2

ω1K∗,  a9 =
μ

γ1T0
,  a10 =

μ+K

γ1T0
,  

a11 =
K

ρc1
2,  a12 =

λ

γ1T0
,

  

a13 =
(λ+2μ+K)

γ1T0
,  a14 =

γω1
2

ρc1
4 .  

Also, equation (3.61) reduces as  

∑ cijRj
4
i=1 = Xi,                                (j = 1 ⋯ 4),        (3.72) 

where 

c1p = [a12sin2θp + a13cos2θp]κp
2 + rp,  

c1q = κq
2 (a13 − a12)cos θqsin θq, 

c2p = κp
2 sin θpcos θp(2a9 + a10), 

c2q = −κq
2[(a9 + a10)cos2θq − a9sin2θq] + a11sp ,   

c3p = 0, c3q = −ικq a14cos θpsp  

c4p = −ικprp cos θp, c4q = 0,  

rp =
[ω2−κp

2]

a4
,     sp =

a2κq
2 −ω2

a3
, (p = 1,2), (q = 3,4).      (3.73) 

In equation (3.73), we obtained resulting expressions for micropolar generalized 

thermoelasticity (L-S model) and these results tally with those obtained by Yadav 

(2024) [166] (In absence of diffusion and void parameters). 

iii)  In absence of N-L and impedance parameters along with  K1
∗ = τ0 = 0,  = a   
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the equations (3.49) and (3.50) reduces as  

(υ4 + G01υ2 + G02)(q̅,  T̅) = 0,         (3.74) 

(υ4 + G03υ2 + G04)(ψ̅, ϕ̅2) = 0,         (3.75) 

with changed values of  

G01 = −(ιω + 1 + ω2a + a4a8)  G02 = (ιω + ω2a(1 + a4a8)),   

G03 =
ω2(a2+a5)−a2a7+a3a6

a7−ω2 ,  G04 =
−ω2a2a5

a7−ω2 ,  a8 =
γ1c1

2

ω1K∗, a9 =
μ

γ1T0
, a10 =

μ+K

γ1T0
,  

a11 =
K

ρc1
2, a12 =

λ

γ1T0
,

  

a13 =
(λ+2μ+K)

γ1T0
, a14 =

γω1
2

ρc1
4 .  

Also, equation (3.61) reduces as  

∑ cijRj
4
i=1 = Xi,                                (j = 1 ⋯ 4),        (3.76) 

where 

c1p = [a12sin2θp + a13cos2θp]κp
2 + (1 − aκp

2)rp,  

c1q = κq
2 (a13 − a12)cos θqsin θq, 

c2p = κp
2 sin θpcos θp(2a9 + a10), 

c2q = −κq
2[(a9 + a10)cos2θq − a9sin2θq] + a11sp ,   

c3p = 0, c3q = −ικq a14cos θpsp  

c4p = −ικprp cos θp, c4q = 0,  

rp =
(ω2−κp

2)

(1−aκp
2 )a4

,     sp =
a2κq

2 −ω2

a3
, (p = 1,2), (q = 3,4).       (3.77) 

In equation (3.77), we obtained resulting expressions for micropolar thermoelasticity with 

TT and these results tally with those obtained by Kumar et al. (2014) [85] in the particular 

case. 

3.7.1 Particular Cases 

(i)  Substituting  α = β = γ = K = 0 into equation (3.61), reduce the results for 

MGT thermoelastic half-space with N-L, HTT parameters with impedance 

boundary. 

(ii) Taking K1
∗ = 0 and  τ0 = 0 into equation (3.61), reduce the results for 

micropolar thermoelasticity with N-L and HTT effects under impedance 

boundary. 

3.8 Discussion and Numerical Results 

Numerical calculations are implemented for different cases in order to examine the impact of 

numerous parameters: (i) N-L parameters ξ1 and ξ2 (ii) impedance parameters, HTT and TT 

parameters for the AR in the MT medium under the MGT theory of thermoelasticity. 

Using a material like Magnesium crystal for numerical results and discussions, the values of 

the micropolar constants are as follows (Eringen (1984) [42]): 



54 
 

μ = 4 × 1010 Nm−2,  ρ = 1.74 × 103 Kgm−3, γ = 0.779 × 10−9N,   

λ = 9.4 × 1010 Nm−2,  K = 1.0 × 1010Nm−2,  ĵ = 0.2 × 10−19m2,   

Thermal parameters according to Dhaliwal and Singh (1980) [30]: 

 K∗ = 1.7 × 102 Nsec−1K−1,  τ0 = 0.2sec,  αt = 2.36 × 10−6K−1,  

T0 = 298 K, Ce = 1.04 × 1010m2sec−2K−1. 

3.8.1 Non-Local Effect 

We consider HTT parameter and impedance parameters (z1 = 1, z2 = 5, z3 = 2 and z4 =

3) for the range  0o ≤ θ0 ≤ 90o. 

The computations of graphs are as following: 

• In absence of N-L parameters (ξ1 = 0 and ξ2 = 0), the curve is presented by solid 

line (        ). 

• In presence of  ξ1 only i.e., (ξ1 = 0.25 and ξ2 = 0.0), the curve is presented by big 

dashed line (− − −). 

• The curve is presented by solid line with centered symbol triangle (     ) in presence  

of  ξ2 only i.e., (ξ1 = 0.0 and ξ2 = 0.5). 

• In presence of both N-L parameters (ξ1 = 0.35 and ξ2 = 0.75), the curve is presented 

by big dashed line with centered symbol diamond (−◇− ). 

3.8.1.1 LD-Wave 

Figure 3.2 demonstrate the variations of |R1| vs. θ0.  The magnitude of |R1| follow ascending 

trend for the interval  0o ≤ θ0 ≤ 64o for (ξ1 = 0.0 and ξ2 = 0.0), (ξ1 = 0.25 and ξ2 = 0.0) 

and (ξ1 = 0.0 and ξ2 = 0.5) respectively and attain maximum value at θ0 = 64o then 

depicts descending trend for the rest of the interval whereas in case of presence of both N-L 

parameters, |R1| follow increasing trend in entire range.  

Figure 3.3 depicts variations of |R2| vs. θ0. It is seen that the values of |R2| exhibit a 

descending trend across the entire range but magnitude of |R2| is smallest when both N-L 

parameters are absent. 

The plot of |R3| vs. θ0 is depicted in figure 3.4. The values of  |R3| exhibit an increasing 

trend for the range  0o ≤ θ0 ≤ 45o and a decreasing trend for the rest of the interval across 

all considered cases. Furthermore, the magnitude of |R3| is noted to be greater in the presence 

of both N-L parameters in all other scenarios. 

The plot of |R4| vs.  θ0 is illustrated in figure 3.5. It is noted that values of |R4| exhibit a 

similar pattern across all considered cases but magnitude of |R4| is lowest in absence of both 

N-L parameters as compared to other cases. 
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3.8.1.2 CD-I-Wave 

Figure 3.6 depicts the variations of |R1| vs. θ0. The magnitude of |R1| exhibits an increasing 

trend near the boundary then descending trend in the rest of interval across all the considered 

cases however, the magnitude of |R1| is higher for (ξ1 = 0.25 and ξ2 = 0.0) compared to 

other cases, highlighting the impact N-L parameter ξ1.  

Figure 3.7 depicts variations of |R2| vs. θ0. It is noticed that the values of |R2| show an 

oscillatory trend across all the considered cases, with a substantial difference in their 

magnitudes.  

The variations of |R3| vs. θ0 are illustrated in figure 3.8. The values of |R3| exhibit a 

descending trend for the range  0o ≤ θ0 ≤ 54o across all cases, except (ξ1 = 0.25 and ξ2 =

0.0), whereas an opposite trend is noticed for (ξ1 = 0.0 and ξ2 = 0.50) in the remaining 

interval.  Additionally, it is noticed that the magnitude of  |R3| depicts almost static behavior 

for (ξ1 = 0.25 and ξ2 = 0) in the range  0o ≤ θ0 ≤ 81o and decreasing in remaining range.  

Figure 3.9 exhibits the variations of |R4| vs. θ0. The magnitude of |R4| shows opposite trend 

in the range  0o ≤ θ0 ≤ 63o when both N-L parameters are present, compared to other cases 

i.e. (ξ1 = 0.0 and ξ2 = 0.0)  and (ξ1 = 0.0 and ξ2 = 0.5). Beyond this range, similar 

behavior is noticed, though with significant differences in magnitude. Additionally, for (ξ1 =

0.25 and ξ2 = 0.0), |R4| exhibits small variations in the interval  0o ≤ θ0 ≤ 70o before 

showing a descending trend in remaining interval. 

3.8.2 The effects of HTT and TT with Impedance 

For the range  0o ≤ θ0 ≤ 90o, we consider N-L parameters (ξ1 = 0.35 and ξ2 = 0.75) and 

impedance parameters ( z1 = 1, z2 = 5, z3 = 2 and z4 = 3) . 

Graphs are computed as follows: 

•  The curves with HTT ( = 0.75) and impedance parameters are depicted by solid line 

(      ) (IHT).    

• The curves without HTT ( = 0) and with impedance parameters are depicted by small 

dashed line (---) (IWHT). 

• The curves with TT (a = 0.104) and impedance parameters are depicted by big 

dashed line (− − −)  (ITT). 

• The curves with HTT ( = 0.75) and without impedance are depicted as solid line 

with central symbol triangle (      ) (NIHT). 

• The curves without HTT ( = 0) and impedance parameters are shown by small 

dashed line with the central symbol diamond (--◇--) (NIWHT). 
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• The curves with TT (a = 0.0104) and without impedance parameters are indicated by 

big dashed line with center symbol circle (−o − ) (NITT).  

3.8.2.1 LD-Wave 

Figure 3.10 demonstrates the variations of |R1| vs. θ0. The values of |R1|, for IHT show 

opposite behavior when compared with IWHT and ITT. It is also noticed that, |R1| shows 

similar trend for NIHT, NIWHT and NITT with a substantial difference in their magnitudes. 

The variations of |R2| vs. θ0 are illustrated in figure 3.11. It is evident that the values of |R2| 

exhibit a downward trend in the presence of impedance parameters, while |R2| has an 

oscillating behavior with a decreasing magnitude for NIHT, NITT, and NIWHT.  

Figure 3.12 depicts the variations of |R3| vs. θ0. The magnitude of |R3| depicts ascending 

behaviour for IHT and NIHT in the range 0o ≤ θ0 ≤ 48o and as θ0 increases it start 

decreasing for the rest of interval whereas |R3| shows oscillating trend for IWHT, ITT 

NIWHT and NITT in the entire interval. 

Figure 3.13 depicts the variations of |R4| vs. θ0.  |R4| is significantly affected by the HTT 

parameter, as the magnitude of |R4| for NIHT is greater than that of NIWHT and NITT and 

this trend is reversed in the presence of impedance parameters.  

3.8.2.2 CD-I-Wave 

The trends of |R1| vs. θ0 are illustrated in figure 3.14. It is evident that |R1| follow similar 

trend across all considered cases. However, its magnitude is higher for IHT, IWHT and ITT 

compared to NIHT, NIWHT, and NITT, respectively. 

Figure 3.15 reveals the variations of |R2| vs. θ0. The magnitude of |R2| exhibits an increasing 

trend for IHT, IWHT and ITT in the interval  0o ≤ θ0 ≤ 54o and for NIHT, NIWHT and 

NITT in the interval  0o ≤ θ0 ≤ 60o. For all cases that are taken into account, the value of 

|R2| decreases beyond these intervals. 

The variations of |R3| vs. θ0 are illustrated in figure 3.16. The magnitude of |R3| exhibits 

steady behaviour for NIHT, NIWHT and NITT in the interval  0o ≤ θ0 ≤ 65o , followed by 

an abrupt decrease in the remaining interval. In contrast, for impedance boundary conditions, 

|R3| shows a decreasing trend across the entire range θ0, highlighting the significant impact 

of impedance parameters on AR. 

Figure 3.17 exhibits the trend of |R4| vs. θ0. Initially, the magnitude of  |R4| follows a reverse 

trend for NIHT, NIWHT and NITT compared to IHT, IWHT and ITT, respectively, in the 

range  0o ≤ θ0 ≤ 54o. A similar trend is observed for all the cases that are considered beyond 
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this range. Additionally, it is noted that due to TT parameter, the magnitude of |R4| is higher 

for ITT compared to IHT.  

3.9 Conclusion 

This chapter presents the reflection of plane waves in an isotropic, homogeneous, MT half-

space within framework of the MGT heat equation, considering both N-L and HTT effects. 

The problem is converted into two-dimensional and simplified by using dimensionless 

quantities and potential functions. Four types of reflected waves are identified when a plane 

wave (LDW or CD-IW) is incident at the surface x3 = 0, namely LDW, TW, CD-IW, and 

CD-IIW. Under impedance boundary conditions, the AR of these reflected waves are 

determined. The AR of various reflected waves have been analyzed and presented graphically 

to depict the impact of N-L, HTT, TT, and impedance parameters on these AR. The numerical 

results yielded the following critical observations: 

i)  The magnitude of AR exhibits a similar trend in the absence of N-L parameters and in 

the presence of the N-L parameter ξ2 alone when LDW is incident. However, the 

values of these AR are consistently higher due to presence of N-L parameter 

(ξ2) for all reflected waves. 

ii)  In the presence of both N-L parameters, the magnitude of AR corresponding to reflected 

TW, CD-IW, and CD-IIW is higher than in other cases when LDW is incident. 

Conversely, a reverse trend is observed for the AR of the reflected LDW. 

iii) The magnitude of AR associated with reflected CD-IW and CD-IIW demonstrates 

oscillatory behavior as a result of the HTT parameter. Conversely, the magnitude of AR 

for the reflected LDW exhibits an opposite trend compared to the reflected TW 

throughout the entire range, with the exception of certain values of θ0, when LDW is 

incident. 

iv)  The HTT parameter increases the magnitude of AR associated with reflected LDW and 

CD-IIW when a CD-IW is incident. Conversely, the magnitude of AR for reflected TW 

and CD-IW exhibits a decreasing trend in the presence of impedance parameters. 

v)  When CD-IW is incident, N-L parameter (ξ1) enhances the magnitude of AR 

for all reflected waves. 

vi)  It is observed that the impedance parameters amplify the magnitude of AR of all 

reflected waves across the entire range for the incident LDW, with the exception of 

certain values of θ0 in the case of ITT and IWHT. 

vii)  The magnitudes of AR corresponding to reflected LDW, TW, and CD-IIW exhibit 

oscillatory behavior throughout the entire range when CD-IW is incident. Conversely, 
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the AR of the reflected CD-IW exhibit a decreasing trend as a result of the impedance 

parameters. 

The presented results offer an analytical and numerical framework for investigating wave 

reflection phenomena in N-L micropolar thermoelastic media incorporating HTT effects. This 

study provides valuable insights into the complex interplay between physical parameters 

namely nonlocality, HTT, and impedance highlight their significant influence on AR of 

reflected waves. The theoretical findings have broad applicability in engineering, geophysics, 

and materials science, particularly in domains where high-frequency wave propagation, 

microstructural interactions, and thermal effects are of paramount importance. Furthermore, 

the characterization and control of multiple reflected waves enhance our understanding of 

wave material interactions at the microscale with direct implications for the design of 

advanced materials. 
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Figure 3.1 Geometry of the problem 
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Fig. 3.2 |R1| w.r.t 𝛉𝟎 for LD-wave 
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Fig. 3.3 |R2| w.r.t 𝛉𝟎 for LD-wave  

(Impact of N-L parameters) 



61 
 

0 18 36 54 72 90
Angle of incidence

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e
 r

a
ti

o
 I
R

3
I 

= =

= =

= =

= =

 

Fig. 3.4 |R3| w.r.t 𝛉𝟎 for LD-wave 
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Fig. 3.5 |R4| w.r.t 𝛉𝟎 for LD-wave  

(Impact of N-L parameters) 
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Fig. 3.6 |R1| w.r.t 𝛉𝟎 for CD-I wave 
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Fig.3.7 |R2| w.r.t 𝛉𝟎 for CD-I wave 

(Impact of N-L parameters)  
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Fig. 3.8 |R3| w.r.t 𝛉𝟎  for CD-I wave 

(Impact of N-L parameters) 

0 18 36 54 72 90
Angle of incidence

0

1

2

3

4

A
m

p
li
tu

d
e
 r

a
ti

o
 I
R

4
I 

= =

= =

= =

= =

 

    Fig.3.9 |R4| w.r.t 𝛉𝟎 for CD-I wave 

(Impact of N-L parameters) 
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Fig. 3.10 |R1| w.r.t 𝛉𝟎 for LD-wave  

(Impact of impedance parameters with HTT and TT) 
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 Fig. 3.11 |R2| w.r.t 𝛉𝟎 for LD-wave 

 (Impact of impedance parameters with HTT and TT) 
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Fig. 3.12 |R3 | w.r.t 𝛉𝟎 for LD-wave 

 (Impact of impedance parameters with HTT and TT) 

0 18 36 54 72 90
Angle of incidence

0

10

20

30

40

50

A
m

p
li
tu

d
e
 r

a
ti

o
 I
R

4
l

IHT

IWHT

ITT

NIHT

NIWHT

NITT

 

    Fig. 3.13 |R4| w.r.t 𝛉𝟎 for LD-wave 

  (Impact of impedance parameters with HTT and TT) 
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Fig. 3.14 |R1| w.r.t 𝛉𝟎 for CD-I wave  

(Impact of impedance parameters with HTT and TT) 
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Fig. 3.15 |R2| w.r.t 𝛉𝟎 for CD-I wave 

(Impact of impedance parameters with HTT and TT) 
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Fig. 3.16 |R3| w.r.t 𝛉𝟎 for CD-I wave 

(Impact of impedance parameters with TT and HTT) 
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     Fig. 3.17 |R4| w.r.t 𝛉𝟎 for CD-I wave 

(Impact of impedance parameters with TT and HTT)    
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Chapter 4 

Propagation of plane waves in a micropolar elastic medium affected by 

voids and non-free surfaces 

4.1 Introduction 

Sharma (2012) [135] investigated the reflection of plane waves in a thermodiffusive 

elastic half-space that included voids. Sharma and Kumar (2013) [138] explored how plane 

waves propagated through a thermoviscoelastic material with voids. Sharma and Bhargava 

(2014) [137] calculated the amplitude ratios (AR) of different transmitted and reflected waves 

at imperfect barriers and investigated the impacts of material stiffness and thermal parameters 

on these ratios. Kumari and Kaliraman (2018) [93] determined the AR of various reflected 

and refracted waves against the angle of incidence in a micropolar elastic material that 

contained voids.  

Lianngenga (2022) [97] examined the impact of impedance parameters on the reflection 

coefficients of different reflected waves in a porous micropolar thermoelastic material. 

Jahangir et al. (2023) [60] calculated velocity, attenuation coefficient, and specific heat loss 

for various reflected waves in viscoelastic solids using the non-local (N-L) elasticity theory 

and the revised heat conduction model. Rajkumar et al. (2024) [123] investigated the impact 

of impedance parameters and micropolarity on propagation of elastic wave along a cylindrical 

rod with impedance boundary conditions. 

This chapter presents the reflection of plane waves in micropolar elastic media with 

voids at non-free surface. The model-specific governing equations are formulated. These 

equations are then converted into two dimensions, transformed into dimensionless form, and 

potential functions are employed for further simplification. Four types of reflected waves are 

identified when a plane wave (longitudinal displacement wave (LDW) or longitudinal void 

volume fraction wave (LVVFW) or coupled transverse wave (CD-IW) or coupled 

microrotational wave (CD-IIW)) is incident at the surface x3 = 0, namely LDW, LVVFW, 

CD-IW, and CD-IIW. Using non-free boundary conditions, the AR of various reflected waves 

are determined. The variations of these AR with angle of incidence are also shown graphically 

for both the non-free surface and the free surfaces, highlighting the influences of stiffnesses 

and voids. Certain cases are also deduced.  

The reason for this study stems from the inadequacy of classical elastic models in 

capturing the complex wave behavior in materials with microstructures, voids, and non-free 

boundary conditions. Accurate modeling of such phenomena is essential for understanding 
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the dynamic response of materials like geological formations, porous foams, and composites, 

which exhibit significant microscale interactions. The motivation is driven by the need to 

enhance the predictive capability of wave propagation models for use in structural 

diagnostics, performance evaluation and advanced engineering applications. The novelty of 

this work lies in its incorporation of voids and non-free surface boundaries within a 

micropolar elastic framework, offering a more realistic and physically representative model. 

Unlike conventional theories that assume idealized free surfaces, this study accounts for non-

free boundary constraints, thereby improving the fidelity of wave structure interaction 

analysis and contributing to the design of more robust and accurate material systems. 

4.2 Governing equations 

The field equations and constitutive relations for a micropolar elastic semi-space with voids, 

excluding body couples, body forces, and heat sources (as described by Eringen (1968) [38] 

and Iesan (1985) [58]), are as follows: 

(λ + μ)∇(∇. 𝐮) + (μ + K)∆𝐮 + K(∇ × 𝛟) + β1
∗ ∇q∗ = ρ

∂2𝐮

∂t2 ,    (4.1) 

(α + β)∇(∇. 𝛟) + γ∆𝛟 + K[(∇ × 𝐮) − 2𝛟] = ρĵ
∂2𝛟

∂t2 ,    (4.2) 

α∗∆q∗ − ω∗q∗
•

− ξ∗q∗ − β1
∗(∇. 𝐮) = ρκ∗ ∂2q∗

∂t2 ,      (4.3) 

tpq = λuh,hδpq + μ(up,q + uq,p) + K(uq,p − εpqhϕh) + β1
∗q∗δpq,   (4.4) 

mpq = αϕh,hδpq + βϕp,q + γϕq,p,    (p, q, h = 1 − 3), (4.5) 

where 

 ω∗, β1
∗ , α∗, ξ∗, κ∗- void parameters, q∗- void fraction field and other symbols 𝐮, 𝛟,

μ, λ, γ, K, ρ, j ̂, t, tpq, mpq, β, α, δpq, εpqh, ∆ , ∇ are as described in section 2.2 [Chapter 2]. 

Equations (4.1) -(4.5) in components form for Cartesian coordinates (x1 , x2, x3) are 

expressed as  

(λ + μ)
∂

∂x1
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u1 + K (

∂ϕ3

∂x2
−

∂ϕ2

∂x3
) + β1

∗ ∂q∗

∂x1
 = ρ

∂2u1

∂t2 ,  (4.6) 

(λ + μ)
∂

∂x2
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u2 + K (

∂ϕ1

∂x3
−

∂ϕ3

∂x1
) + β1

∗ ∂q∗

∂x2
= ρ

∂2u2

∂t2 ,  (4.7) 

(λ + μ)
∂

∂x3
(

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (μ + K)∆u3 + K (

∂ϕ2

∂x1
−

∂ϕ1

∂x2
) + β1

∗ ∂q∗

∂x3
= ρ

∂2u3

∂t2 ,  (4.8) 

(α + β)
∂

∂x1
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ1 + K ((

∂u3

∂x2
−

∂u2

∂x3
) − 2ϕ1) = ρĵ

∂2ϕ1

∂t2 ,  (4.9) 

(α + β)
∂

∂x2
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ2 + K ((

∂u1

∂x3
−

∂u3

∂x1
) − 2ϕ2) = ρĵ

∂2ϕ2

∂t2 , (4.10) 
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(α + β)
∂

∂x3
(

∂ϕ1

∂x1
+

∂ϕ2

∂x2
+

∂ϕ3

∂x3
) + γ∆ϕ3 + K ((

∂u2

∂x1
−

∂u1

∂x2
) − 2ϕ3) = ρĵ

∂2ϕ3

∂t2 ,  (4.11) 

α∗∆q∗ − ω∗q∗
•

− ξ∗q∗ − β1
∗ (

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) = ρκ∗ ∂2q∗

∂t2 ,    (4.12) 

t11 = [λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u1

∂x1
] + β1

∗q∗,     (4.13) 

t22 = [λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u2

∂x2
] + β1

∗q∗,     (4.14) 

t33 = [λ (
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
] + β1

∗q∗,     (4.15)                       

t31 = [μ (
∂u3

∂x1
+

∂u1

∂x3
) + K (

∂u1

∂x3
− ϕ2)],                                      (4.16) 

t32 = [μ (
∂u3

∂x2
+

∂u2

∂x3
) + K (

∂u2

∂x3
+ ϕ1)],      (4.17) 

t21 = [μ (
∂u2

∂x1
+

∂u1

∂x2
) + K (

∂u1

∂x2
+ ϕ3)],      (4.18) 

and the values of m11,  m22,  m33, m31,  m32  and m12 are as given by equations (2.19) -(2.24) 

[Chapter 2]. Additionally, the value of ∆ is as provided in section 2.2 [Chapter 2]. 

4.3 Problem Statement
 

We consider an isotropic, homogeneous micropolar elastic semi-space that includes voids. A 

rectangular Cartesian coordinate system (x1, x2, x3) is employed, with the origin positioned 

at the plane boundary x3 = 0. The x3 - axis extends vertically downward into the medium, 

while the x1 – axis runs horizontally. The x2-axis is aligned with the direction of the line 

where the plane wave front intersects the plane surface. The field variables are contingent 

upon x1, x3, and t, if we confine our analysis to the x1 − x3 plane.  

Consider the following two-dimensional problem: 𝐮 = (u1(x1, x3, t), 0, u3(x1, x3, t)), 

𝛟 = (0, ϕ2(x1, x3, t), 0), q∗ = q∗(x1, x3, t).     (4.19) 

Employing equation (4.19) in equations (4.6) -(4.12), (4.15), (4.16) and (2.23), yield 

(λ + μ)
∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u1 − K

∂ϕ2

∂x3
+ β1

∗ ∂q∗

∂x1
 = ρ

∂2u1

∂t2 ,    (4.20) 

(λ + μ)
∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + (μ + K)∆u3 + K

∂ϕ2

∂x1
+ β1

∗ ∂q∗

∂x3
= ρ

∂2u3

∂t2 ,    (4.21) 

γ∆ϕ2 + K [(
∂u1

∂x3
−

∂u3

∂x1
) + 2ϕ2] = ρĵ

∂2ϕ2

∂t2 ,      (4.22) 

α∗∆q∗ − ω∗q∗
•

− ξ∗q∗ − β1
∗ (

∂u1

∂x1
+

∂u3

∂x3
) = ρκ∗ ∂2q∗

∂t2 ,     (4.23) 

t33 = [λ (
∂u1

∂x1
+

∂u3

∂x3
) + (2μ + K)

∂u3

∂x3
] + β1

∗q∗,               (4.24)   

t31 = [μ (
∂u3

∂x1
+

∂u1

∂x3
) + K (

∂u1

∂x3
− ϕ2)],                                      (4.25) 
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m32 = γ
∂ϕ2

∂x3
,            (4.26) 

where ∆  is as defined in section 2.3 [Chapter 2]. 

For further simplification, following dimensionless quantities are taken as  

(xi′, ui
′) =

ω1

c1
(xi, ui),  t3i

′ =
1

μ
t3i, q∗′ =

κ∗ω1
2

c1
2 q∗,  ϕ2

′ =
ĵω1

2

c1
2 ϕ2, 

t′ = ω1t,  m32
′ =

ĵω1

γc1
m32, (S1

′ , S2
′ ) =

c1

μω1
(S1, S2), S3

′ =
c1

γω1
S3,(i = 1,3), 

           (4.27) 

where 

c1
2 =

λ+2μ+K

ρ
       and  ω1

2 =
K

ρĵ
.       (4.28) 

Using (4.27) in equations (4.20) -(4.26) after suppressing the primes, yield 

b1
0 ∂

∂x1
(

∂u1

∂x1
+

∂u3

∂x3
) + b2

0∆u1 − b3
0 ∂ϕ2

∂x3
+ b4

0 ∂q∗

∂x1
=

∂2u1

∂t2 ,    (4.29) 

b1
0 ∂

∂x3
(

∂u1

∂x1
+

∂u3

∂x3
) + b2

0∆u3 + b3
0 ∂ϕ2

∂x1
+ b4

0 ∂q∗

∂x3
=

∂2u3

∂t2 ,    (4.30) 

b5
0∆ϕ2 + b6

0 (
∂u1

∂x3
−

∂u3

∂x1
) − b7

0ϕ2 =
∂2ϕ2

∂t2 ,      (4.31) 

b8
0∆q∗ − b9

0q∗ − b10
0 ∂q∗

∂t
− b11

0 (
∂u1

∂x1
+

∂u3

∂x3
) =

∂2q∗

∂t2 ,     (4.32) 

t33 = b14
0 ∂u1

∂x1
+ b15

0 ∂u3

∂x3
+ b16

0 q∗,       (4.33) 

t31 = b12
0 ∂u1

∂x3
+

∂u3

∂x1
− b13

0 ϕ2,        (4.34) 

m32 =
∂ϕ2

∂x3
,          (4.35) 

where 

b1
0 =

λ+μ

ρc1
2 , b2

0 =
μ+K

ρc1
2 , b3

0 =
K

ĵρω1
2, b4

0 =
β1

∗

κ∗ω1
2ρ

, b5
0 =

γ

ρc1
2ĵ

, b6
0 =

K

ρc1
2, 

b7
0 =

2K

ĵρω1
2, b8

0 =
α∗

κ∗ρc1
2,       

 

b9
0 =

ξ∗

κ∗ρω1
2, b10

0 =
ω∗

κ∗ρω1
,       b11

0 =
β1

∗

ρc1
2,          b12

0 =
μ+K

μ
, 

b13
0 =  

Kc1
2

μĵω1
2, b14

0 =
λ

μ
, b15

0 =
λ+2μ+K

μ
,  b16

0 =
β1

∗ c1
2

κ∗ω1
2.  

4.4 Solution Procedure 

Relation between displacement components and scalar potentials is as given by equation 

(2.43) [Chapter 2]. 

Using (2.43) in equations (4.29) -(4.32), we get 

(∆ −
∂2

∂t2) q + b4
0q∗ = 0,        (4.36) 

(b2
0∆ −

∂2

∂t2) ψ + b3
0ϕ2 = 0,        (4.37) 
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(b5
0∆ −

∂2

∂t2 − b7
0) ϕ2 − b6

0∆ψ = 0,       (4.38) 

(b8
0∆ −

∂2

∂t2 − b9
0 − b10

0 ∂

∂t
) q∗ − b11

0 ∆q = 0.      (4.39) 

For solving equations (4.36) -(4.39), we assume the solution as 

( q, q∗, ψ, ϕ2) = (q̅,  q∗̅̅̅̅ ,  ψ̅ , ϕ̅2)eικ(x1 sin θ0−x3 cos θ0+νt),    (4.40) 

where ι, ν, ω, κ and θ0 are as defined in [Chapter 2]. Quantities like q̅,  q∗̅̅̅̅ ,  ψ̅ and ϕ̅2 are 

described the wave amplitudes. 

The following equations are obtained by simplifying and inserting the values of 

q, q∗, ψ and  ϕ2 from equation (4.40) into equations (4.36) -(4.39): 

(ν4 + D01ν2 + D02)( q∗̅̅̅̅ , q̅) = 0,       (4.41)

 (ν4 + D03ν2 + D04)( ψ̅ , ϕ̅2) = 0,       (4.42) 

where 

D01 =
−(b4

0b11
0 −b9

0+(b8
0+1)ω2−ιωb10

0 )

ω2−b9
0−ιωb10

0 ,   D02 =
b8

0ω2

ω2−b9
0−ιωb10

0 , 

D03 =
b2

0b7
0−b3

0b6
0−(b5

0+b2
0)ω2

ω2−b7
0 ,    D04 =

b2
0b5

0ω2

ω2−b7
0  . 

Let υi(i = 1,2) be roots of characteristic equation (ν4 + D01ν2 + D02) = 0,  which correspond 

to velocities of LDW and LVVFW, respectively in decreasing order. Similarly, υj (j = 3, 4) 

designate the roots of the characteristic equation (ν4 + D03ν2 + D04) = 0, which correspond 

to the velocities of CD-IW and CD-IIW, respectively in decreasing order. 

4.5. Reflection at boundary surface 

Let a plane harmonic wave (LDW or LVVFW or CD-IW or CD-IIW) form an angle θ0 with 

the normal to the surface at x3 = 0. When any incident wave (LDW or LVVFW or CD-IW 

or CD-IIW) strikes the boundary, it generates four reflected waves (LDW, LVVFW, CD-IW 

and CD-IIW). These reflected waves make angles θ1, θ2, θ3, and θ4 with the positive x3-axis, 

as illustrated in figure 4.1. The complete wave field structure in the half-space, consisting of 

both incident and reflected waves, can be expressed as: 

q = ∑ [Ã0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Ãie

ικi(x3 cos θi +x1 sin θi)+ιωt]2
i=1 ,  (4.43) 

q∗ = ∑ [d̃i(Ã0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + Ãie

ικi(x3 cos θi +x1 sin θi)+ιωt)]2
i=1 , (4.44) 

ψ = ∑ [B̃0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + B̃ie

ικj(x3 cos θj +x1 sin θj)+ιωt]2
i=1 ,  (4.45) 

ϕ2 = ∑ [f̃i(B̃0ie
ικ0(x1 sin θ0 −x3 cos θ0)+ιωt + B̃ie

ικj(x3 cos θj +x1 sin θj)+ιωt)]2
i=1 , (4.46) 

where 

d̃i =
κi

2−ω2

b4
0 ,            f̃i =

b6
0κj

2

b5
0κj

2+b7
0−ω2, (i = 1,2), (j = 3,4), 
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also, Ã0i and B̃0i(i = 1,2) indicate the amplitudes of incident LDW, LVVFW, CD-IW and 

CD-IIW, respectively. Similarly,  Ãi and B̃i(i = 1,2) describe the amplitudes of the reflected 

LDW, LVVFW, CD-IW, and CD-IIW, respectively. 

4.6 Restrictions on Boundary 

The stress components (force stress and couple stress) are zero on the free surface. However, 

at the non-free surface, these stress components can have finite values proportional to both 

displacement and rotational components, namely 

[
 t33

t31

m32

] = −ι [
S1 0 0
0 S2 0
0 0 S3

] [

u3

u1

ϕ2

],      (4.47) 

where S1, S2 and S3 are proportional coefficients representing the stiffness of the normal, 

tangential, and rotational elastic supports, respectively. The free surface condition is restored 

when S1, S2, S3 → 0, whereas the fixed surface condition is achieved when S1, S2, S3 → ∞. 

A negative imaginary number −ι is multiplied on right hand side of equation (4.47) to remove 

the phase shift between stress (force stress and couple stress) field, displacement field and 

microrotation field. We also require the gradient of the volume fraction field to vanish at the 

surface x3 = 0.   

Thus, the suitable boundary conditions at x3 = 0 are: 

(i) t33 = −ιS1u3,  (ii)t31 = −ιS2u1,           

(iii)m32 = −ιS3ϕ2,  (iv)
∂q∗

∂x3
= 0.      (4.48) 

Using equation (2.43) into equations (4.33) and (4.34), yield 

t33 = (b15
0 − b14

0 )
∂2ψ

∂x1 ∂x3
+ b14

0 ∂2q

∂x1
2 + b15

0 ∂2q

∂x3
2 + b16

0 q∗,    (4.49) 

t31 = (b12
0 + 1)

∂2q

∂x1 ∂x3
− b12

0 ∂2ψ

∂x3
2 +

∂2ψ

∂x1
2 − b13

0 ϕ2.     (4.50) 

To meet the boundary condition (4.48) at x3 = 0, the angle of incident wave must be 

connected to the angles of reflected waves using the following relation: 

κ0 sin θ0 = κi sin θi,  (i = 1 ⋯ 4)      (4.51)  

Relation (4.51) can be written as        

sin θ0

𝜐0
=

sin θi

𝜐i
,  (i = 1 ⋯ 4)       (4.52)                 

where 

υ0 = {

υ1, incident LDW
υ2,       incident  LVVFW
υ3,
υ4,

incident CD − IW
 incident CD − IIW

. 
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Substituting the values of q, q∗ , ψ, and  ϕ2 from (4.43) - (4.46) in (4.48) with the aid of 

equations (2.43), (4.35), (4.49)- (4.52), yield the following system of equations as 

∑ gijRj
4
i=1 = Xi,                                (j = 1 ⋯ 4),      (4.53) 

where 

g1p = [b14
0 sin2θp + b15

0 cos2θp]κp
2 − b16

0 d̃p + S1κpcos θp ,  

g1q = −κq[κq(b14
0 − b15

0 )sin θqcos θq − S1sin θq], 

g2p = κp[κp(b12
0 + 1)sin θpcos θp + S2sin θp], 

g2q = −κq
2[b12

0 cos2θq − sin2θq] + b13
0 f̃p − κqS2cos θq,   

g3p = 0, g3q = −ι(cos θqκq + S3)f̃p , 

g4p = −ικpd̃pcos θp,  g4q = 0,  (p = 1,2), (q = 3,4),   (4.54)  

and the AR of reflected waves, denoted as Rj(j = 1 ⋯  4) are given by:   

R1 =
Ã1

A∗
,       R2 =

Ã2

A∗
,      R3 =

B̃1

A∗
,       R4 =

B̃2

A∗
. 

For incident LDW: 

A∗ = Ã01 and  Ã02 = B̃01 = B̃02 = 0, 

X1 = −[b14
0 sin2θ0 + b15

0 cos2θ0]κ0
2 + b16

0 d̃1 + S1κ0cos θ0, 

X2 = κ0[κ0(b12
0 + 1)sin θ0cos θ0 − S2sin θ0], 

X3 = 0, 

X4 = −ικ0d̃1cos θ0.         (4.55) 

For incident LVVFW: 

A∗ = Ã02 and Ã01 = B̃01 = B̃02 = 0, 

X1 = −[b14
0 sin2θ0 + b15

0 cos2θ0]κ0
2 + b16

0 d̃2 + S1κ0cos θ0, 

X2 = κ0[κ0(b12
0 + 1)sin θ0cos θ0 − S2sin θ0], 

X3 = 0, 

X4 = −ικ0d̃2cos θ0.         (4.56) 

For incident CD-IW: 

A∗ = B̃01 and Ã01 = Ã02 = B̃02 = 0, 

X1 = −[b14
0 − b15

0 ]κ0
2 sin θ0 cos θ0 − S1κ0cos θ0, 

X2 = κ0
2[b12

0 cos2θ0 − sin2θ0] − b13
0 f̃1 − κ0S2cos θ0, 

X3 = −ι(cos θ0κ0 − S3)f̃1, 

X4 = 0.          (4.57) 

 



75 

 

For incident CD-IIW: 

A∗ = B̃02 and Ã01 = Ã02 = B̃01 = 0, 

X1 = −[b14
0 − b15

0 ]κ0
2 sin θ0 cos θ0 − S1κ0cos θ0, 

X2 = κ0
2[b12

0 cos2θ0 − sin2θ0] − b13
0 f̃2 − κ0S2cos θ0, 

X3 = −ι(cos θ0κ0 − S3)f̃2, 

X4 = 0.          (4.58) 

4.7 Specific Cases 

4.7.1 Micropolar Elastic media 

Taking α∗ = β∗ = ξ∗ = ω∗ = κ∗ = 0 in equations (4.41) and (4.42) reduce to following 

form as 

(ν2 − 1)q̅ = 0, 

(ν4 + D03ν2 + D04)( ψ̅ , ϕ̅2) = 0, 

where 

 D03 =
b2

0b7
0−b3

0b6
0−(b5

0+b2
0)ω2

ω2−b7
0 , D04 =

b2
0b5

0ω2

ω2−b7
0 ,  

also, the system of equations (4.53) reduces to 

∑ gij
0Rj

03
i=1 = Xi,                                

0 (j = 1 ⋯ 3),      (4.59) 

where  

g1p
0 = [b14

0 sin2θp + b15
0 cos2θp]κp

2 + S1κpcos θp,  

g1q
0 = −κq[κq(b14

0 − b15
0 )sin θqcos θq − S1sin θq], 

g2p
0 = κp[κp(b12

0 + 1)sin θpcos θp + S2sin θp], 

g2q
0 = −κq

2[b12
0 cos2θq − sin2θq] + b13

0 f̃p − κqS2cos θq,   

g3p
0 = 0, g3q

0 = −ι(cos θqκq + S3)f̃p ,   (p = 1), (q = 2,3),   (4.60) 

and the AR of reflected LDW, CD-IW and CD-IIW, denoted as Rj
0(j = 1 ⋯ 3)  are given by  

R1
0 =

Ã1

A∗
, R2

0 =
B̃1

A∗
,       R3

0 =
B̃2

A∗
.  

For incident LDW: 

A∗ = Ã01 and  B̃01 = B̃02 = 0, 

X1
0 = −[b14

0 sin2θ0 + b15
0 cos2θ0]κ0

2 + S1κ0cos θ0, 

X2
0 = κ0[κ0(b12

0 + 1)sin θ0cos θ0 − S2sin θ0], 

X3
0 = 0.          (4.61) 

For incident CD-IW: 

A∗ = B̃01 and Ã01 = B̃02 = 0, 

X1
0 = −[b14

0 − b15
0 ]κ0

2 sin θ0 cos θ0 − S1κ0cos θ0, 
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X2
0 = κ0

2[b12
0 cos2θ0 − sin2θ0] − b13

0 f̃1 − κ0S2cos θ0, 

X3
0 = −ι(cos θ0κ0 − S3)f̃1.        (4.62) 

For incident CD-IIW: 

A∗ = B̃02 and Ã01 = Ã02 = B̃01 = 0, 

X1
0 = −[b14

0 − b15
0 ]κ0

2 sin θ0 cos θ0 − S1κ0cos θ0, 

X2
0 = κ0

2[b12
0 cos2θ0 − sin2θ0] − b13

0 f̃2 − κ0S2cos θ0, 

X3
0 = −ι(cos θ0κ0 − S3)f̃2.        (4.63) 

and these results consistent with those reported by Zhang et al. (2015) [171].  

4.7.2 Elastic Medium with Void 

Taking α = β = γ = K = 0 in equations (4.41) and (4.42) reduce to following form as  
(ν4 + D01ν2 + D02)( q∗̅̅̅̅ , q̅) = 0,        

 (ν2 − b2
0) ψ̅ = 0, 

where 

D01 =
−(b4

0b11
0 −b9

0+(b8
0+1)ω2−𝜄ωb10

0 )

ω2−b9
0−𝜄ωb10

0 ,  D02 =
b8

0ω2

ω2−b9
0−ιωb10

0 , b2
0 =

μ

ρc1
2, b15

0 =
λ+2μ

μ
, 

also, the system of equations (4.53) reduces to 

∑ gij
∗ Rj

∗3
i=1 = Xi    ,                    

∗ (j = 1 ⋯ 3),      (4.64) 

where 

g1p
∗ = [b14

0 sin2θp + b15
0 cos2θp]κp

2 − b16
0 d̃p + S1κpcos θp ,  

g1q
∗ = −κq[κq(b14

0 − b15
0 )sin θqcos θq − S1sin θq], 

g2p
∗ = κp[κp(b12

0 + 1)sin θpcos θp + S2sin θp], 

g2q
∗ = −κq

2[b12
0 cos2θq − sin2θq] − κqS2cos θq ,   

g3p
∗ = −ικpd̃pcos θp,  g3q

∗ = 0,  (p = 1,2), (q = 3),    (4.65)  

and the AR of reflected LDW, LVVFW and CD-IIW, denoted as Rj
∗(j = 1 ⋯ 3)  are given by  

R1
∗ =

Ã1

A∗ , R2
∗ =

Ã2

A∗ , R3
∗ =

B̃1

A∗.  

For incident LDW: 

A∗ = Ã01 and  Ã02 = B̃01 = 0, 

X1 
∗ = −[b14

0 sin2θ0 + b15
0 cos2θ0]κ0

2 + b16
0 d̃1 + S1κ0cos θ0, 

X2 
∗ = κ0[κ0(b12

0 + 1)sin θ0cos θ0 − S2sin θ0], 

X3 
∗ = −ικ0d̃1cos θ0.         (4.66) 

For incident LVVFW: 

A∗ = Ã02 and Ã01 = B̃01 = 0, 

X1 
∗ = −[b14

0 sin2θ0 + b15
0 cos2θ0]κ0

2 + b16
0 d̃2 + S1κ0cos θ0, 
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X2 
∗ = κ0[κ0(b12

0 + 1)sin θ0cos θ0 − S2sin θ0], 

X3 
∗ = −ικ0d̃2cos θ0.         (4.67) 

For incident CD-IW: 

A∗ = B̃01 and Ã01 = Ã02 = 0, 

X1 
∗ = −[b14

0 − b15
0 ]κ0

2 sin θ0 cos θ0 − S1κ0cos θ0, 

X2 
∗ = κ0

2[b12
0 cos2θ0 − sin2θ0] − κ0S2cos θ0, 

X3 
∗ = 0.          (4.68) 

and these results are consistent with those reported by Singh et al. (2017) [152] (In absence 

of N-L parameter). 

4.7.3 For Free-Surface 

In absence of S1, S2 and S3, the results given by equation (4.53) are reduced for micropolar 

elastic media with void for free surface and these results align with those obtained by Kumar 

and Deswal (2006) [74]. 

4.8 Discussion and Numerical Results 

According to numerical calculations and conversations, the material under consideration is 

similar to Magnesium crystal. The numerical values for micropolar constants following 

Eringen (1984) [42] are as given in section 3.8 [Chapter 3], and the values of the void 

parameters following Iesan (1985) [58] are taken as 

β1
∗ = 1.1384 × 1010 Nm−2, ξ∗ = 1.147 × 1010 Nm−2, κ∗ = 1.175 × 10−19m2, 

α∗ = 3.688 × 10−9 N, ω∗ = 0.0787 × 10−1 N sec m−2.  

A comparison of values of the AR of different reflected waves against the angle of 

incidence θ0 are represented graphically for micropolar non-free surface i.e. S1 = 2, S2 = 1,

S3 = 3 (with the void and without void) and for free surface i.e. S1 = S2 = S3 = 0 (with the 

void and without void). 

The graphs are computed as follow: 

• For micropolar free surface without voids (MFS) is denoted by the solid line (     ). 

• For micropolar non-free surface without voids (MNFS) is represented by the small 

dashed line (---). 

• For micropolar free surface with voids (MVFS) is denoted by the solid line with 

central symbols diamond (     ). 

• For micropolar non-free surface with voids (MVNFS) is represented by the small 

dashed line with central symbols circle (----). 
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4.8.1 LD-Wave 

Figure 4.2 depicts the variations of |R1| vs. θ0. It is evident that the magnitude of |R1| exhibits 

an opposite trend for MNFS compared to MVFS and MVNFS, respectively, whereas a steady 

state behavior of |R1| is noted for MFS.  

The variations of |R2| vs. θ0 are illustrated in figure 4.3. The magnitude of |R2| follow 

descending trend in the entire interval for MVFS and MVNFS but due to stiffness impact the 

magnitude of |R2| is higher for MVNFS.  

Figure 4.4 displays the plot of |R3| vs. θ0. The behavior of |R3| is similar across all the cases 

considered, although notable differences in magnitude. However, the magnitude of |R3| for 

MFS is higher compared to remaining cases. 

Figure 4.5 clearly shows that the magnitude of |R4| for MVFS and MFS increase in the first 

half of the interval and then decrease later. The magnitude of |R4| remains high for MFS and 

MNFS compared to MVFS and MVNFS, respectively. 

4.8.2 LVVF–Wave 

The variations of |R1| vs. θ0 are illustrated in figure 4.6. The magnitude of |R1| decreases for 

MVNFS and MVFS as θ0 increases. Additionally, it is noted that magnitude of |R1| is higher 

for MVNFS compared to those observed for MVFS.  

Figure 4.7 exhibits the variations of |R2| vs. θ0. It is seen that the magnitude of |R2| for 

MVFS decreases for small values of  θ0 and as θ0 increases, |R2| shows an ascending trend 

for both MVFS & MVNFS. The magnitude of |R2| for MVNFS is higher compared to MVFS, 

due to presence of stiffness. 

Figure 4.8 shows how |R3| varies with respect to θ0. The magnitude of |R3| exhibits a similar 

trend for MVFS and MVNFS, initially increasing and reaching its maximum value at θ0 =

450 for MVFS and at θ0 = 150 for MVNFS, respectively, and then decreasing as θ0 

increases.  

Figure 4.9 depicts the variations of |R4| vs. θ0. It is seen that the values of |R4| follow the 

same trend as noted for |R3|, with significant difference in their magnitudes. 

4.8.3 CD-I–Wave 

Figure 4.10 displays the variations of |R1| vs. θ0. The values of  |R1| show an ascending trend 

for MNFS and MVFS in the first half of interval, and a decreasing trend in latter half. 

However, due to presence of stiffness, |R1| for MVNFS shows an increasing trend for the 

range  0o ≤ θ0 ≤ 9o and a descending behavior for the rest of the interval. Additionally,  |R1| 

exhibits an oscillatory behaviour for MFS. 
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From figure 4.11, it is seen that the values of |R2| for MVNFS and MVFS follow oscillatory 

trend in entire interval. However, magnitude of |R2| is higher MVFS. 

Figure 4.12 depicts variations of |R3| vs. θ0. The values of |R3| for MFS and MVNFS exhibit 

ascending behavior near and far away from boundary and a descending trend in the rest of 

the interval. However, due to stiffness, reverse trend is noticed for MNFS. It is also seen that, 

due to void parameter, |R3| follows an oscillatory behaviour for MVFS. 

Figure 4.13 demonstrates that the values of |R4| follow same trend as noticed for |R3| but 

have a significant difference in magnitude. 

4.8.4 CD-II-Wave 

Figure 4.14 depicts the variations of |R1| vs. θ0. It is seen that the magnitude of |R1| exhibits 

an increasing trend for MFS and MNFS, whereas an oscillatory behaviour is noticed for 

MVFS and MVNFS. 

Figure 4.15 demonstrates that the magnitude of |R2| for MVNFS increases near the boundary 

and reaches the maximum at θ0 = 18o, then decreases in the remaining interval. However, 

an oscillatory trend is noted for MVFS. 

Figure 4.16 exhibits the variations of  |R3| vs. θ0. It is evident that  |R3| follows steady state 

behaviour for MNFS whereas small variations are noticed for MFS. It is also noticed that the 

magnitudes of |R3| follow oscillatory behaviour for MVNFS and MVFS. 

Figure 4.17 indicates that the magnitude of |R4|, depicts mirror image throughout the whole 

range for MFS and MVFS. Additionally, it is noted that magnitude of |R4| follows a similar 

trend for MNFS and MVNFS near the boundary and exhibits a reverse trend for rest of the 

interval.  

4.9 Conclusion 

In this chapter, we study the reflection of plane waves from a non-free surface in a micropolar 

elastic material that includes voids. The governing equations are transformed into two-

dimensional forms, then dimensionless quantities and potential functions are utilized for 

further simplifications. The plane wave (LDW or LVVFW or CD-IW or CD-IIW) is incident 

in the assumed model, resulting in four reflected waves namely LDW, LVVFW, CD-IW, and 

CD-IIW. The AR of these reflected waves are calculated for both free and non-free surfaces. 

The impacts of stiffness and void parameters on the AR of various reflected waves are 

calculated numerically and displayed graphically. 

The numerically generated findings yielded the following observations:  

(i)  The results indicate that due to presence of stiffness, the magnitude of AR 

corresponding to reflected LDW, CD-IW and CD-IIW are smaller across the entire 
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range compared to those obtained for free surface, except at certain values of θ0 when 

LDW is incident. In contrast, the magnitude of AR of reflected LVVFW exhibits the 

opposite trend. 

(ii)  When an LVVFW is incident, it is noted that the AR of the reflected LDW and LVVFW 

show opposite trends. Furthermore, the AR of the reflected CD-IW and CD-IIW display 

oscillatory behavior with distinct magnitudes. 

(iii)  The AR of reflected LDW and LVVFW demonstrate oscillatory behavior, while a 

opposite trend is observed for the reflected CD-IW and CD-IIW in the cases of MNFS 

and MVNFS across all angles of incidence. This highlights the influence of void 

parameters on the AR when CD-IW is incident.  

(iv)  It has been demonstrated that when CD-IIW is incident, the magnitude of AR for all 

reflected waves exhibits oscillatory behavior in the cases of MVFS and MVNFS, each 

with distinct magnitudes. 

The above analysis provides a comprehensive understanding of wave boundary interactions 

in microstructured media, illustrating how variations in boundary constraints (free vs. non-

free surfaces) and internal material characteristics such as voids and microrotation 

significantly influence AR of reflected waves. These insights are crucial for the tailored 

design of advanced materials and engineered structures in applications where precise control 

over wave propagation is vital, such as in geophysical exploration and acoustic metamaterials. 
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Figure 4.1 Geometry of the problem 
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Fig. 4.2: |R1| vs. 𝛉𝟎  
                     (LD-wave) 
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Fig. 4.3: |R2| vs. 𝛉𝟎  
                    (LD-wave) 
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Fig. 4.4: |R3| vs. 𝛉𝟎  
                    (LD-wave) 
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Fig. 4.5: |R4| vs. 𝛉𝟎  
                     (LD-wave) 
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Fig. 4.6: |R1| vs. 𝛉𝟎  
                    (LVVF-wave) 
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Fig. 4.7: |R2| vs. 𝛉𝟎  
              (LVVF-wave) 
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Fig. 4.8: |R3| vs. 𝛉𝟎  
                    (LVVF-wave) 
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Fig. 4.9: |R4| vs. 𝛉𝟎  
                    (LVVF-wave) 
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Fig. 4.10:|R1| vs. 𝛉𝟎  
                    (CD-I wave) 
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Fig. 4.11:|R2| vs. 𝛉𝟎  
                     (CD-I wave) 
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Fig. 4.12:|R3| vs. 𝛉𝟎  
                    (CD-I wave) 
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Fig. 4.13: |R4| vs. 𝛉𝟎  
                  (CD-I wave) 
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Fig. 4.14: |R1| vs. 𝛉𝟎  
                    (CD-II wave) 
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Fig. 4.15: |R2| vs. 𝛉𝟎  
                   (CD-II wave) 
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Fig. 4.16: |R3| vs. 𝛉𝟎  
                      (CD-II wave) 
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Fig. 4.17: |R4| vs. 𝛉𝟎  
                 (CD-II wave) 
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Chapter 5 

Deformation induced by normal force and thermal source within the 

micropolar Moore-Gibson-Thompson theory of thermoelasticity, considering 

hyperbolic two-temperature and non-local effects 

5.1 Introduction 

Sharma (2011) [134] examined the deformation caused by an inclined load in a generalized 

thermoelastic diffusive media. Abouelregal (2020) [2] used non-local (N-L) theory of 

thermoelasticity with higher-order time derivatives and two-phase lags to study thermoelastic 

interactions in a N-L medium subjected to a magnetic field and periodic heat source. Marin et al. 

(2020) [103] proposed a domain of impact theorem for the combined initial-boundary value 

problem in Moore-Gibson-Thompson (MGT) thermoelasticity theory for dipole bodies. Sharma 

and Khator (2021 [144], 2022 [145]) investigated issues related to power generation from 

renewable sources and also explored micro-grid planning in the renewable-inclusive prosumer 

market.  

Abouelregal et al. (2022) [12] performed a computational study on a N-L isotropic 

magneto-thermoelastic semi-space influenced by a periodically varying heat source, utilizing the 

MGT heat equation. Kumar et al. (2022) [86] developed a novel model to estimate the response 

of thermomechanical and carrier density loading in an anisotropic photothermoelastic plate. They 

obtained the displacement components, stresses, temperature distribution, and carrier density 

distribution. Kumar et al. (2023) [80] calculated physical quantities such as displacements, 

stresses, conductive temperature, and thermodynamic temperature using the MGT theory of 

thermoelasticity in the presence of thermal load and normal distributed force, as well as a moving 

heat source, and studied the impacts of hyperbolic two-temperature (HTT) and N-L on the results.  

Abouelregal et al. (2023) [10] used the normal mode analysis approach to study the effects 

of the higher-order derivatives and Hall current on tangential couple stress, temperature, stresses, 

and displacements in an electromagnetic micropolar thermoelastic (MT) medium with surface 

heating and a transverse magnetic field. Abouelregal et al. (2024) [7] utilized a memory-based 

derivative in conjunction with the MGT equation to examine the viscoelastic properties of 

materials. They analyzed the materials' response to external loads and deformations over time, 

using a non-Gaussian laser radiation heat source at the boundary. 
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In this chapter, a two-dimensional deformation problem in homogeneous, isotropic MT 

half-space has been presented under the framework of the MGT heat equation, incorporating N-

L and HTT parameters. The governing equations are converted into dimensionless form, and 

potential functions are used to simplify further under thermomechanical conditions. The problem 

is addressed using the Laplace transform (L.T) with respect to (w.r.t) the time variable t and the 

Fourier transform (F.T) w.r.t the space variable x1. Physical quantities such as displacement 

components, force stresses, tangential couple stress, conductive temperature and thermodynamic 

temperature, are computed in the transformed domain using specified normal force and thermal 

source conditions at the boundary surface. These values are then retrieved in the original domain 

through a numerical inversion technique. Graphical representations exhibit the influence of HTT, 

N-L and two-temperature (TT) parameters on these quantities. Certain cases of interest are also 

discussed. 

The impetus for this study arises from the well-known shortcomings of classical 

thermoelastic theories, which fall short in capturing essential microstructural effects and the finite 

propagation speed of thermal disturbances. As materials and systems increasingly operate at 

micro and nano scales, these shortcomings become critical. The motivation behind the study is 

to develop a more realistic and unified theoretical framework that can accurately capture the 

coupled thermo-mechanical behavior of advanced materials where microrotation and N-L 

interactions are prominent. The novelty of this work is reflected in its integration of N-L effects 

and HTT within a micropolar continuum framework an approach that significantly enriches 

generalized thermoelasticity. By addressing both mechanical and thermal loading, this study 

provides a more comprehensive foundation for analyzing stress-thermal interactions in micro-

engineered environments, where traditional models fall short. 

5.2 Fundamental Equations 

The field equations and constitutive relations for micropolar thermoelasticity under MGT heat 

equation, incorporating N-L and HTT effects, after excluding body couples, body forces, and 

heat sources, are provided in equations (3.1) - (3.6) [Chapter 3]. All symbols, including 

𝐮, 𝛟, T, φ, β, γ, K, ρ, μ, ĵ , K∗, K1
∗ , γ1, Ce, t, tpq, λ, α, mpq, τ0,  β∗ , T0, ξ1, ξ2, δpq, εpqh, ∆ , ∇ are as 

defined in section 2.2 [Chapter 2] and in section 3.2 [Chapter 3]. 
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5.3 Statement of the Problem 

In the context of the MGT heat equation, we examine a domain of isotropic, homogeneous MT 

solid semi-space is examined w.r.t N-L and HTT effects. We use a rectangular Cartesian 

coordinate system (x1, x2, x3), with the origin located at the plane boundary at x3 = 0.  The x3-

axis is oriented vertically downward into the medium. The semi-space is subjected to normal 

force and a thermal source at the stress-free boundary. If we confine our analysis to a plane strain 

problem parallel to x1x3- plane, the field variables are dependent on x1, x3 and t. 

In two-dimensional problem, displacement components, microrotational components, 

thermodynamic temperature and conductive temperature are taken as given by equation (3.21) 

[Chapter 3].  

After using equation (3.21) in equations (3.7) -(3.13), (3.16), (3.17) [Chapter 3], (2.23) [Chapter 

2] and (3.20) [Chapter 3] yield the equations (3.22) -(3.29) [Chapter 3]. Therefore, for further 

simplification, we use equations (3.22) -(3.29) [Chapter 3].   

Following dimensionless quantities are taken, in addition to dimensionless quantities given by 

(3.30) [Chapter 3]  

F10
′ =  

1

γ1T0
F10,  F20

′ =  
c1

ω1T0
F20.     (5.1) 

Using (3.30) [Chapter 3] in equations (3.22) -(3.29) after suppressing the primes, we get the 

resulting equations [(3.32) -(3.39)] [Chapter 3], 

and, ai(i = 1 ⋯ 7) are as given by equation (2.42) [Chapter 2] and ai(i = 8 ⋯ 15) are as given 

by equation (3.40) [Chapter 3]. 

5.4 Solution Procedure 

Relation between displacement components and scalar potentials is same as given in equation 

(2.43) [Chapter 2].  

Applying (2.43) on equations (3.32) -(3.35) [Chapter 3], yield 

∆q − a4T = (1 − ξ1
2∆)

∂2q

∂t2 ,        (5.2) 

a2∆ψ + a3ϕ2 = (1 − ξ1
2∆)

∂2ψ

∂t2 ,       (5.3) 

a5∆ϕ2 − a6∆ψ − a7ϕ2 = (1 − ξ2
2∆)

∂2ϕ2

∂t2 ,      (5.4) 

∂

∂t
∆φ + a8∆φ = (1 + τ0

∂

∂t
) (

∂2T

∂t2 + a9
∂2

∂t2 ∆q).     (5.5) 
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According to Debnath (1995) [28], the L.T of a function g(x1, x3, t) w.r.t time variable t, where 

s is the L.T variable, is defined as follows, with its essential properties: 

ḡ(x1, x3, s) = L{g(x1, x3, t)} = ∫ g(x1, x3, t)
∞

0
exp(−st) dt,    (5.6) 

i) L (
∂g

∂t
) = sḡ(x1, x3, s) − g(x1, x3, 0),      (5.7) 

ii) L (
∂2g

∂t2 ) = s2ḡ(x1, x3, s) − sg(x1, x3, 0) − (
∂g

∂t
)

t=0
.    (5.8) 

Initial conditions are as follows: 

u1(x1, x3, 0) = (
∂u1

∂t
)

t=0
= 0,  u3(x1, x3, 0) = (

∂u3

∂t
)

t=0
= 0, 

q(x1, x3, 0) = (
∂q

∂t
)

t=0
= 0,  T(x1, x3, 0) = (

∂T

∂t
)

t=0
= 0, 

ψ(x1, x3, 0) = (
∂ψ

∂t
)

t=0
= 0,  φ(x1, x3, 0) = (

∂φ

∂t
)

t=0
= 0, 

ϕ2(x1, x3, 0) = (
∂ϕ2

∂t
)

t=0
= 0,       (5.9) 

and the regularity conditions are  

q(x1, x3, t) = u3(x1, x3, t) = T(x1, x3, t) = ψ(x1, x3, t) = u1(x1, x3, t) =  0,  

ϕ2(x1, x3, t) = φ(x1, x3, t) =  0, for t > 0, x3 → ∞.     (5.10) 

Following Sneddon (1975) [156], Fourier transform (F.T) of a function ḡ(x1, x3, s) w.r.t space 

variable x1 is defined as  

ĝ(ξ, x3, s) = ∫ ḡ(x1, x3, s) exp (iξx1)
∞

−∞
 dx1.      (5.11) 

Appling L.T and F.T defined by equations (5.6) and (5.11) on equations (5.2) -(5.5) and (3.39) 

[Chapter 3], with aid of equations (5.7) -(5.9), yield 

[(D2 − ξ2) − (1 − ξ1
2(D2 − ξ2))s2]q̂ − a4T̂ = 0,      (5.12) 

[a2(D2 − ξ2) − (1 − ξ1
2(D2 − ξ2))s2]ψ̂ + a3ϕ̂2 = 0,    (5.13) 

[a5(D2 − ξ2) − a7 − (1 − ξ2
2(D2 − ξ2))s2]ϕ̂2 − a6(D2 − ξ2)ψ̂ = 0,  (5.14) 

[(D2 − ξ2)(s + a8)]φ̂ − (1 + τ0s)s2T̂ −a9(1 + τ0s)s2(D2 − ξ2)q̂ = 0,  (5.15)  

T̂ = φ̂ − (D2 − ξ2)φ,̂         (5.16) 

where 

   = {

β∗

s2 , for (HTT)

a, for two temperature (TT)

0, for one temperature (1T),
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and 

 D =
d

dx3
.     

Using equation (5.16) in equations (5.12) and (5.15), yield 

[(D2 − ξ2) − (1 − ξ1
2(D2 − ξ2))s2]q̂ − a4(1 − (D2 − ξ2))φ̂ = 0,     (5.17) 

[(D2 − ξ2)(s + a8)]φ̂ − (1 + τ0s)s2(1 − (D2 − ξ2)) φ̂  

−a9(1 + τ0s)s2(D2 − ξ2)q̂ = 0, (5.18) 

After algebraic simplifications, equations (5.17), (5.18) (5.13) and (5.14), yield 

(D4 − P01D2 + P02)(q̂, φ̂) = 0,       (5.19)

 (D4 − P03D2 + P04)(ϕ̂2, ψ̂) = 0,       (5.20)  

where  

P01 =
P15P17+ξ2P15P16+(1+τ0s)s2(1+ξ2)P18+(1+τ0s)s2P19

P15P16+(1+τ0s)s2P18
, P02 =

P15P17ξ2+(1+τ0s)s2(1+ξ2)P19

P15P16+(1+τ0s)s2P18
, 

P03 =
P13P12+P11P14−a3a6

P13P14
,   P04 =

P11P12−a3a6ξ2

P13P14
, 

P11 = a5ξ2 + a7 + s2(1 + ξ2ξ2
2), P12 = a2ξ2 + s2(1 + ξ2ξ1

2), P13 = a5 + s2ξ2
2,  

P14 = a2 + s2ξ1
2, P15 = a8 + s, P16 = 1 + ξ1

2s2,            P17 = ξ2 + s2(1 + ξ2ξ1
2), 

P18 = 1 + ξ1
2s2 + a4a9, P19 = ξ2(1 + ξ1

2s2 + a4a9) + s2.  

The bounded solution of equations (5.19) and (5.20), satisfying the regularity conditions given 

by (5.10) are 

q̂ = ∑  (Kie
−λix3),2

i=1          (5.21) 

φ̂ = ∑ (liKie
−λix3),2

i=1          (5.22) 

ψ̂ = ∑ (Kje
−λjx3),4

j=3          (5.23) 

ϕ̂2 = ∑ (mjKje
−λjx3),4

j=3         (5.24) 

where the roots of characteristic equations (D4 − P01D2 + P02) = 0,  and (D4 − P03D2 + P04) =

0 are ±λi(i = 1,2) and ±λj (j = 3,4), respectively. Arbitrary constants Ki (i = 1,2) and Kj(j =

3,4), as well as coupling constants  li (i = 1,2) and mj (j = 3,4), can be represented as follows: 

li =
(1+ξ1

2s2)(λi
2−ξ2)−s2

a4(1+ξ2−λi
2)

,      mj =
s2(1+ξ2ξ1

2−ξ1
2λj

2)−a2(λj
2−ξ2)

a3
 ,   (i = 1, 2), (j = 3, 4).  
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5.5 Boundary Restrictions  

A normal force and thermal source are applied to the boundary surface of an MT half-space at 

x3 = 0. The normal force is concentrated in spatial coordinates and distributed over time, while 

the thermal source is concentrated in time and distributed in spatial coordinates. Tangential force 

stress and tangential couple stress are set to zero. These can be stated mathematically as follows: 

(i) t33 = F1(x1, t), (ii) t31 = 0, (iii) m32 = 0,        (iv)
∂φ

∂x3
= F2(x1, t), (5.25) 

where 

 F1(x1, t) = F10 {
δ(x1) sin

πt

η
, 0 ≤ t ≤ η

0,                  t > 𝜂
,              F2(x1, t) = F20H(x1)e−bx1δ(t), (5.26) 

additionally, δ( ) represents the Dirac-delta, b is a constant, H () denotes the Heaviside step 

function,  F10 is magnitude of the force, and  F20 is a constant temperature applied at the boundary 

surface. 

Applying the dimensionless quantities given by equations (3.30) [Chapter 3] and (5.1) in 

equations (5.25) and (5.26), yield the non-dimensional boundary condition and after applying 

L.T and F.T determine, 

(i) t̂33 = F̂1(ξ, s),   (ii) t̂31   = 0,      

(iii) m̂32 = 0 ,     (iv) 
∂φ̂

∂x3
= F̂2(ξ, s),     (5.27) 

where 

 F̂1(ξ, s) = F10
(1+e−ηs)η

π2+s2η2 ,          F̂2(ξ, s) = F20
1

s(b−iξ)
.    (5.28)  

After applying L.T and F.T defined by (5.6) and (5.11) in equations (2.43) [Chapter 2], (3.36)- 

(3.38) [Chapter 3] and with aid of equation (5.16), yield 

û1 = −ιξq̂ −
dψ̂

dx3
,          (5.29) 

û3 =
dq̂

dx3
− ιξψ̂,         (5.30) 

t̂33 = −ιξa13û1 + a14
dû3

dx3
− (1 − (D2 − ξ2))φ,̂                   (5.31) 

t̂31 = (a10 + a11)
dû1

dx3
+ ιξ a10û3 − a12ϕ̂2,             (5.32) 

m̂32 = a15
dϕ̂2

dx3
.           (5.33)    
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Inserting the values of  q̂, φ̂, ψ̂, ϕ̂2 from (5.21) -(5.24) in the transformed boundary condition 

(5.27) with the aid of equations (5.29) -(5.33), yield the desired expressions as 

û1 =
1

Δ1
[∑ (−ιξ(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3) + ∑ (λi(Δi1F̂1(ξ, s)4
i=3 + 

 Δi2F̂2(ξ, s))e−λix3 )], (5.34) 

û3 =
1

Δ1
[∑ (−λi(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3 )+ ∑ (−ιξ(Δi1F̂1(ξ, s)4
i=3 +  

        Δi2F̂2(ξ, s))e−λix3 )], (5.35) 

t̂33 =
1

Δ1
[∑ (Hi+4(Δi1F̂1(ξ, s)4

i=1 + Δi2F̂2(ξ, s))e−λix3 )],    (5.36) 

t̂31 =
1

Δ1
[∑ (Hi(Δi1F̂1(ξ, s)4

i=1 + Δi2F̂2(ξ, s))e−λix3)],    (5.37) 

m̂32 =
1

Δ1
[∑ (Hi+6(Δi1F̂1(ξ, s)4

i=3 + Δi2F̂2(ξ, s))e−λix3)],    (5.38) 

φ̂ =
1

Δ1
[∑ (li(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3)],     (5.39) 

T̂ =
1

Δ1
[∑ (Hi+10(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3 )],    (5.40) 

where

 

Δ1 = TH1 + TH2, Δ11 = λ2l2(H4H9 − H3H10),   

Δ12 = H9(H4H6 − H2H8) − H10(H3H6 − H2H7), 

Δ21 = −λ1l1(H4H9 − H3H10), Δ22 = −H9(H4H5 − H1H8) + H10(H3H5 − H1H7), 

Δ31 = −H10(λ1l1H1 − λ2l2H2), Δ32 = −H10(H1H6 − H2H5),   

Δ41 = −H9(λ1l1H2 − λ2l2H1), Δ42 = H9(H1H6 − H2H5), 

TH1 = −λ1l1[H9(H4H6 − H2H8) − H10(H3H6 − H2H7)], 

TH2 = λ2l2[H9(H4H5 − H1H8) − H10(H3H5 − H1H7)], Hi = ιξλi(2a10+a11),  

Hj = −a10(ξ2 + λj
2) − a11λj

2 − a12mj, Hi+4 = −ξ2a13+λi
2a14 − li(1 + (ξ2 − λi

2)), 

Hj+4 = −ιξλj(a13−a14), Hj+6 = −a15λjmj,  

Hi+10 = li(1 + (ξ2 − λi
2)), (i = 1 − 2), (j = 3 − 4), 

and, F̂1(ξ, s) and F̂2(ξ, s) are given by equation (5.28). 

5.6 Validations 

i)  By considering α = β = γ = K = 0 along with ξ2 = 0, the equations (5.19) - (5.20)  

reduces as 
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 (D4 − P01D2 + P02)(q̂, φ̂) = 0,       (5.41)

 (D2 − λ3 
2 )ψ̂ = 0,         (5.42) 

with changed values of  

P01 =
P15P17+ξ2P15P16+(1+τ0s)s2(1+ξ2)P18+(1+τ0s)s2P19

P15P16+(1+τ0s)s2P18
, P02 =

P15P17ξ2+(1+τ0s)s2(1+ξ2)P19

P15P16+(1+τ0s)s2P18
, 

P15 = a4 + s, P18 = 1 + ξ1
2s2 + a3a5, P19 = ξ2(1 + ξ1

2s2 + a3a5) + s2,  

λ3 
2 =

(a2ξ2+s2(1+ξ1
2

ξ2))

a2+ξ1
2

s2
, a2 =

μ

ρc1
2 ,     a3 =

γ1T0

ρc1
2 ,  a4 =

K1
∗

ω1K∗, a5 =
γ1c1

2

ω1K∗, a6 =
μ

γ1T0
, 

a7 =
λ

γ1T0
,

 

a8 =
(λ+2μ)

γ1T0
.   

Also, equations (5.34) -(5.40) reduces as  

û1 =
1

Δ1
[∑ (−ιξ(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3) + (λ3(Δ31F̂1(ξ, s) + 

 Δ32F̂2(ξ, s))e−λ3x3], (5.43) 

û3 =
1

Δ1
[∑ (−λi(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3 )+ (−ιξ(Δ31F̂1(ξ, s) +  

        Δ32F̂2(ξ, s))e−λ3x3], (5.44) 

t̂33 =
1

Δ1
[∑ (Hi+3(Δi1F̂1(ξ, s)3

i=1 + Δi2F̂2(ξ, s))e−λix3 )],    (5.45) 

t̂31 =
1

Δ1
[∑ (Hi(Δi1F̂1(ξ, s)3

i=1 + Δi2F̂2(ξ, s))e−λix3)],    (5.46) 

φ̂ =
1

Δ1
[∑ (li(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3)],     (5.47) 

T̂ =
1

Δ1
[∑ (Hi+6(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3)],    (5.48) 

where

 Δ1 = λ1l1(H2H6 − H3H5) + λ2l2(H3H4 − H1H6), 

Δ11 = λ2l2H3,  Δ12 = H3H5 − H2H6,  Δ21 = −λ1l1H3,  

Δ22 = (H1H6 − H3H4), Δ31 = (λ1l1H2 − λ2l2H1), Δ32 = (H2H4 − H1H5), 

Hi = ιξ3λia6,  H3 = −a6(2λ3
2 + ξ2),  Hi+3 = −ξ2a7+λi

2a8 − li(1 + (ξ2 − λi
2)), 

H6 = −ιξλ3(a7−a8), Hi+6 = li(1 + (ξ2 − λi
2)), li =

(1+ξ1
2s2)(λi

2−ξ2)−s2

a3(1+(ξ2−λi
2))

 (i = 1 − 2). 

these results are consistent with those obtained by Kumar et al. (2023) [80] (In absence 

of heat source). 

ii)  In absence of micropolar effect along with the conditions K1
∗ =  τ0 = 0  and   =



98 

 

a, the equations (5.19) - (5.20), reduces as 

(D4 − P01D2 + P02)(q̂, φ̂) = 0,       (5.49)

 (D2 − λ3 
2 )ψ̂ = 0,         (5.50) 

With changed values of  

P01 =
 P17+ξ2P16+s(1+ξ2a)P18+saP19

P16+saP18
, P02 =

P17ξ2+s(1+ξ2a)P19

P16+saP18
, P18 = 1 + ξ1

2s2 + a3a4, 

P19 = ξ2(1 + ξ1
2s2 + a3a4) + s2,  λ3 

2 =
(a2ξ2+s2(1+ξ1

2
ξ2))

a2+ξ1
2

s2
, a2 =

μ

ρc1
2 ,     a3 =

γ1T0

ρc1
2 ,  

a4 =
γ1c1

2

ω1K∗, a5 =
μ

γ1T0
, a6 =

λ

γ1T0
,

 

a7 =
(λ+2μ)

γ1T0
.        

Also, equations (5.34) -(5.40) reduces as  

û1 =
1

Δ1
[∑ (−ιξ(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3) + (λ3(Δ31F̂1(ξ, s) + 

 Δ32F̂2(ξ, s))e−λ3x3], (5.51) 

û3 =
1

Δ1
[∑ (−λi(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3 )+ (−ιξ(Δ31F̂1(ξ, s) +  

        Δ32F̂2(ξ, s))e−λ3x3], (5.52) 

t̂33 =
1

Δ1
[∑ (Hi+3(Δi1F̂1(ξ, s)3

i=1 + Δi2F̂2(ξ, s))e−λix3 )],    (5.53) 

t̂31 =
1

Δ1
[∑ (Hi(Δi1F̂1(ξ, s)3

i=1 + Δi2F̂2(ξ, s))e−λix3)],    (5.54) 

φ̂ =
1

Δ1
[∑ (li(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3)],     (5.55) 

T̂ =
1

Δ1
[∑ (Hi+6(Δi1F̂1(ξ, s)2

i=1 + Δi2F̂2(ξ, s))e−λix3)],    (5.56) 

where

 Δ1 = λ1l1(H2H6 − H3H5) + λ2l2(H3H4 − H1H6), 

Δ11 = λ2l2H3,  Δ12 = H3H5 − H2H6,  Δ21 = −λ1l1H3,  

Δ22 = (H1H6 − H3H4), Δ31 = (λ1l1H2 − λ2l2H1), Δ32 = (H2H4 − H1H5), 

Hi = 3ιξλia6,  H3 = −a5(2λ3
2 + ξ2),  Hi+3 = −ξ2a6+λi

2a7 − li(1 + a(ξ2 − λi
2)), 

H6 = −ιξλ3(a6−a7), Hi+6 = li(1 + a(ξ2 − λi
2)), li =

(1+ξ1
2s2)(λi

2−ξ2)−s2

a3(1+a(ξ2−λi
2))

 (i = 1 − 2). 

these results are consistent with those reported by Lata and Singh (2020) [95] (In 

absence of ramp-type heat source). 
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5.6.1 Special Cases 

i)  When F20 = 0 in equations (5.34) -(5.40), we derive the corresponding results for 

the normal force. 

ii)  When F10 = 0, the expressions from equations (5.34) -(5.40) simplify for the 

thermal source. 

5.7 Inverse Transformations 

To obtain the physical domain solutions to the current problem, we must invert the converted 

components given in equations (5.34) -(5.40). To retrieve the function g(x1, x3, t) in the physical 

domain, we begin by inverting the F.T as 

ḡ(x1, x3, s) =
1

2π
∫ ĝ(ξ, x3, s) exp (−iξx1)

∞

−∞
 dξ =

1

2π
∫ |cos(ξx1) ge − i sin(ξx1) g0|

∞

−∞
dξ, (5.57) 

where ge and g0 denote the odd and even parts of ĝ(ξ, x3, s), respectively.  

According to Honig and Hirdes (1984) [56], the inverse L.T of the function ḡ(x1, x3, s) yields 

g(x1, x3, t)  through 

g(x1, x3, t) =
1

2πi
∫ ḡ(x1, x3, s)

C+i∞

C−i∞
exp(st) ds,     (5.58) 

where C is a freely chosen real number that surpasses the real parts of all singularities of 

ḡ(x1, x3, s).  

Substituting s = C + ιy into equation (5.58), we obtain 

g(t) =
exp (Ct)

2π
∫ ḡ(C + ιy)

+i∞

−i∞
exp(ιyt) dy,      (5.59) 

By defining h(t) = exp (−Ct)g(t) and expanding it using a Fourier series over the interval [0, 

2L], we drive the following approximation formula: 

g(t) = FD + g∞(t), 

where  

g∞(t) =
C0

2
+ ∑ Cm

∞
m=1 ,  0 ≤ t ≤ 2L,     (5.60) 

and  

Cm = 
exp(Ct)

L
Re [ḡ (C +

ιmπ

L
) exp (

ιmπt

L
)],      (5.61) 

By choosing a suitably large number for C, the discretization error FD can be made arbitrarily 

tiny. The values of C and L are determined based on criteria established by Honig and Hirdes 
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(1984) [56]. In equation (5.61), the infinite series can be truncated after a finite number of N 

terms.  

Consequently, g(t)'s approximate value  

gN(t) =
C0

2
+ ∑ Cm

N
m=1 ,  0 ≤ t ≤ 2L,     (5.62) 

When computing g(t) using expression (5.62), the total approximate error is obtained by 

combining the discretization error with the truncation error FT. 

To reduce this total error, two methods are employed. The first is the Korrektur method, which 

focuses on minimizing the discretization error. The second method utilizes the ε- algorithm to 

improve convergence speed.  

The Korrektur technique uses the formula below to evaluate the function g(t): 

g(t)=F′
D − g∞(2L + t) exp(−2CL) + g∞(t), 

where  

|F′
D| ≪ |FD|, 

Therefore, the approximate value of g(t) is given by 

gNK(t)=− gN1
′ (2L + t)exp(−2CL) +gN(t),      (5.63) 

where N1
′  is an integer such that N1

′ < N. 

We will now apply the ε- algorithm to accelerate the convergence of the series in equation (5.63). 

Consider N = 2q + 1, where q is a natural number, and define sn = ∑ Cm
n
m=1  be the sequence 

of the partial sums of the series in equation (5.63). 

Defining the ε-sequence as follows: 

ε0,n = 0, ε1,n = sn,  

and  

εa+1,n = εa−1,n+1 +
1

εa,n+1 −εa,n 
, a = 1,2,3 …  . 

ε1,1, ε3,1, … εN,1 converges to FD + g(t) −
C̅0

2
  quicker than the sequence of the partial sums 

sn, where n is natural number. This procedure is used to invert L.T, consisting of equation (5.63) 

together with the ε-algorithm. 

5.8 Numerical Implementation and Discussion 

To examine the effects of different parameters, numerical calculations are performed for several 

cases: (i) HTT (ii)  ξ1 and  ξ2, taking into account normal force and thermal source in a MT 



101 

 

medium governed by the MGT heat equation. For the numerical results and analysis, we use a 

magnesium crystal-like material, utilizing the numerical data provided in section 3.8 [Chapter 3]. 

5.8.1 HTT Effects 

We consider  ξ1 = 0.50 and ξ2 = 0.4 for the range 0 ≤ x1 ≤ 10.   

The curves with HTT ( = 0.75) are denoted by solid line (     ). 

The curves with TT (a = 0.104) are represented by small dashed line (---). 

The curves without HTT ( = 0) are denoted by big dashed line (− − −).     

Figures 5.2-5.5, show the effects of HTT and TT due to normal force on all considered cases. 

Figures 5.6-5.9, show the effects of HTT and TT due to thermal source on all considered cases. 

5.8.1.1 Normal Force 

The figure 5.2 depicts variations of t33 vs. x1.  The value of t33 for a = 0.104 and  = 0, exhibits 

an ascending behavior in the range 0 ≤ x1 ≤ 6 and a descending trend in the rest of interval. 

However,  for  = 0.75, the value of t33 shows a declining trend throughout the range. 

The trend of m32 vs. x1 is depicted in figure 5.3.  It is evident that for  = 0 and a = 0.104, m32 

exhibits oscillatory behavior and its magnitude remains high for a = 0.104. However, the value 

of m32 drops in the range 0 ≤ x1 ≤ 7,  reaching a low at x1=7. 

Figure 5.4 depicts variations of T vs. x1. For the interval 0 ≤ x1 ≤ 6, the value of T decreases 

for  = 0 and a = 0.104 but its behavior is opposite for   = 0.75.  In the remaining range, T 

follows an increasing trend for all the cases. 

Figure 5.5 exhibits the variations of φ vs. x1. The trend of φ for   = 0.75 is inverse in nature 

when compared to  = 0  and a = 0.104 for the range 0 ≤ x1 ≤ 6, and displays a similar trend in 

the remaining interval. 

5.8.1.2 Thermal Source 

Figure 5.6 shows variations of t33 vs. x1. The value of t33 for a = 0.104 and  = 0 shows a 

descending trend over the range  0 ≤ x1 ≤ 6 and reaches its minimum value at x1 = 6. In 

contrast, for  = 0.75, t33  decreases throughout the range 0 ≤ x1 ≤ 4, and vice-versa for left over 

the interval. 

Figure 5.7 shows a plot of m32 vs. x1. It is evident that m32 exhibits opposite behavior for  = 

0.75 compared to the other considered cases within the interval 0 ≤ x1 ≤ 7. However, it reaches 
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its maximum value near the source and behaves similarly for all other cases in the remaining 

interval. 

Figure 5.8 depicts the variations of T vs. x1. For  = 0.75, the magnitude of T increase within the 

range 0 ≤ x1 ≤ 4  before reaching a steady state for the left over the interval. In contrast, for 

other considered cases, T increases inside the range of  0 ≤ x1 ≤ 6 and decreases in the 

remaining interval. 

Figure 5.9 shows a plot of φ vs. x1 . It is seen that the values of φ follow the same trend as noted 

for T, with significant difference in their magnitudes. 

5.8.2 Non-Local Effect ( 𝛏𝟏) 

We assume,  ξ2 = 0.4 with HTT parameter for the range 0 ≤ x1 ≤ 10.  

For  ξ1 = 0.75, the curves are represented by the solid line (     ). 

For  ξ1 = 0.50, the curves are denoted by the small dashed line (---). 

In absence of  ξ1, the curves are represented by the big dashed line (− − −).   

Figures 5.10-5.13, show the impact of N-L parameter ( ξ1) due to normal force on all considered 

cases. Figures 5.14-5.17, show the impact of N-L parameter ( ξ1) due to thermal source on all 

considered cases. 

5.8.2.1 Normal Force 

The variations of t33 vs. x1 is shown by figure 5.10.  It is evident that the magnitude of t33 for 

ξ
1

= 0.75 and  ξ
1

= 0.50, shows a descending trend across the entire range except some value 

of x1 whereas in absence of N-L parameter (ξ
1
), magnitude of t33 depicts increasing trend near 

and far away from boundary and decreasing in the rest of the interval. 

Figure 5.11 shows a plot of m32 vs. x1. The magnitude of m32 increases for highest value of N-

L parameter, reaching its maximum value at the end of interval. In contrast, m32 shows a 

decreasing trend for ξ
1

= 0.50 in the range 0 ≤ 𝑥1 ≤ 7 and increases in the remaining interval 

whereas in absence of  ξ
1
, m32 depicts steady state behaviour about origin. 

Figure 5.12 shows the variations of T vs. x1. The magnitude of T shows an increasing trend 

throughout the entire interval for ξ
1

= 0.75 and ξ
1

= 0.50 whereas for  ξ
1

= 0.0, T depicts 

oscillatory trend. 
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Figure 5.13 exhibits the variations of φ vs. x1. The values of φ follow same trend as seen for T, 

but with significant differences across all considered cases.  

5.8.2.2 Thermal Source 

Figure 5.14 demonstrate the variations of t33 vs. x1. The magnitude of t33 decreases near the 

source, and reaching a minimum value at x1 = 2 for ξ1 = 0.75. Due to presence of N-L 

parameter, the values of  t33 rise as x1 increases. 

Figure 5.15 exhibits the plot of m32 vs. x1. The magnitude of m32 depicts descending trend for 

all the values of  ξ1 as x1increases. 

The variations of T vs. x1 are illustrated in Figure 5.16. It is evident the near the boundary, T 

shows escalating trend for all the considered cases. For x1 > 4, T exhibits a reverse trend for 

 ξ1 = 0.0 compared to the other values of ξ1. 

The importance of N-L parameters is seen in figure 5.17, as magnitude of φ is higher for  ξ1 =

0.75  compared to other values of  ξ1 in the first half of interval. As x1 increases, the trend of φ 

reverses i.e., the values of φ are smaller for  ξ1 = 0.75 compared to other considered cases. 

5.8.3 Non-Local Effect ( 𝛏𝟐) 

We assume  ξ1 = 0.50 with HTT parameter for the range 0 ≤ x1 ≤ 10.  

For  ξ2 = 0.6, the curves are represented by a solid line (      ). 

For  ξ2 = 0.4, the curves are denoted by a small dashed line (------). 

In absence of  ξ2, the curves are depicted by a big dashed line (− − −). 

Figures 5.18-5.21, show the impact of N-L parameter  (ξ2) due to normal force on all considered 

cases. Figures 5.22-5.25, show the impact of N-L parameter (ξ2) due to thermal source on all 

considered cases.  

5.8.3.1 Normal Force 

Figure 5.18 depicts a plot of  t33 vs. x1. The value of  t33 indicates an increasing trend for all 

values of ξ2 in the range 0 ≤ x1 ≤ 2, with a maximum at  x1 = 2. As x1 increases further, the 

values of t33 decreases, but the magnitude of t33 is highest for ξ2 = 0.6.  

Figure 5.19 shows the plot for m32 vs. x1. The trend of m32 for ξ2 = 0.6 and ξ2 = 0.0  is identical 

for the range 0 ≤ x1 ≤ 4  but an inverse trend is observed in the remaining interval. For ξ2 =

0.4, m32 decreases in the range of  0 ≤ x1 ≤ 7 and increases in the rest of interval. 
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Figure 5.20 exhibits variations of T vs. x1. The values of T increases throughout the interval for 

all cases, despite the magnitude difference. 

Figure 5.21 shows variations of φ vs. x1. The values of φ follow increasing trend across the 

interval for all investigated scenarios, but the magnitude of φ is higher for higher values of ξ2. 

5.8.3.2 Thermal Source 

Figure 5.22 exhibits the variations in t33 vs.  x1. The magnitude of t33 displays a descending 

behavior for the range 0 ≤ x1 ≤ 4, reaching its minimum value at x1 = 4  for all cases, and then 

increases for the remaining interval. 

Figure 5.23 reveals the variations of m32 with x1. The magnitude of m32 declines rapidly for ξ2 =

0.6 and ξ2 = 0.4  across the whole range, but for  ξ2 = 0, there are small variations around 1. 

Figure 5.24 displays the variations in T vs. x1. The magnitude of T increases near the source for 

all values of  ξ2 and diminishes after x1 ≥ 5, with significant differences in their magnitudes. 

Figure 5.25 exhibits the variations of φ vs. x1. The magnitude of φ grows in the region 0 ≤ x1 ≤

4  for all values of ξ2.  For x1 ≥ 5, it exhibits steady-state behavior. 

5.9 Conclusion 

This chapter presents a two-dimensional problem in an isotropic, homogeneous and MT semi-

space under the MGT heat equation, together with HTT and N-L parameters. After transforming 

the system into a dimensionless form and applying potential functions, the revised set of 

governing equations is solved using L.T and F.T techniques, taking into account the application 

of normal force and thermal source at the boundary surface. The components of displacement, 

force stresses, tangential couple stress, conductive temperature and thermodynamic temperature 

are then recovered in the physical domain through a numerical inversion technique. The effects 

of HTT, TT, and N-L parameters on these quantities are examined numerically and displayed 

graphically. 

Based on the empirical study, following observations are noted: 

i)  The HTT parameter amplifies the magnitude of conductive temperature, tangential couple 

stress, and thermodynamic temperature. However, it diminishes the magnitude of normal 

stress, resulting on minima compared to 1T and TT theories, when normal force applied 

at boundary. 
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ii) When normal force is applied at the boundary tangential couple stress, thermodynamic 

temperature and conductive temperature exhibit an ascending behavior, whereas normal 

stress shows a downward trend across the entire interval for higher values of the N-L 

parameter (ξ1).  

iii)  When a thermal source is present, the HTT parameter is found to increase the magnitude 

of the normal force stress while reducing the magnitudes of the thermodynamic 

temperature and conductive temperature compared to the 1T and TT theories. In contrast, 

the tangential couple stress shows opposite behavior in the HTT case relative to the other 

theories. 

iv) It is observed that as the distance increases, the normal force stress becomes significantly 

higher when N-L parameter ξ1 has a larger value. In contrast, tangential couple stress shows 

the opposite trend under the influence of a thermal source. 

v)  It has been observed that as the N-L parameter ξ2 increases, the normal stress, 

thermodynamic temperature, and conductive temperature increase significantly. In 

contrast, the tangential couple stress exhibits oscillatory behavior for all values of  ξ2 when 

a normal force is applied at the boundary. 

vi)  Thermodynamic temperature, normal stress, and conductive temperature are observed to 

have lower magnitudes for intermediate values of the N-L parameter ξ2 compared to its 

extreme values. In contrast, the tangential couple stress exhibits a decreasing and steady-

state behavior regardless of the presence or absence of N-L parameter ξ2 when a thermal 

source is applied. 

The theoretical framework and graphical results presented here hold substantial promise for a 

wide range of applications. These include thermoelastic sensors, acoustic waveguides, and 

advanced composite materials, where understanding the interplay between mechanical forces and 

thermal source at small scales is essential. Additionally, the findings offer valuable insights for 

geophysical modeling and energy harvesting devices, where delayed thermal responses, 

microrotational effects, and boundary interactions critically influence system performance. This 

work thus provides a robust foundation for both theoretical advancements and practical design 

strategies in modern materials science and micro-engineering disciplines. 
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Figure 5.1: Normal Force and Thermal Source 
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Fig.5.2 𝐭𝟑𝟑 w.r.t  𝐱𝟏 
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Fig.5.4 T w.r.t 𝐱𝟏 
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Fig.5.5 φ w.r.t  𝐱𝟏 

(Normal Force) 



109 

 

0 2 4 6 8 10
Distance x1

-0.6

-0.4

-0.2

0

0.2

0.4

N
o

rm
a

l 
S

tr
e

s
s
 t

3
3

 = 

a = 0.104

 = 

 

Fig.5.6 𝐭𝟑𝟑 w.r.t  𝐱𝟏 
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      Fig.5.7 𝐦𝟑𝟐 w.r.t.  𝐱𝟏 
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Fig.5.8 T w.r.t 𝐱𝟏 

(Thermal Source) 
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Fig.5.9 φ w.r.t  𝐱𝟏 
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Fig.5.10 𝐭𝟑𝟑 w.r.t  𝐱𝟏 
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Fig.5.11 𝐦𝟑𝟐 w.r.t  𝐱𝟏 

(Normal Force) 



112 

 

0 2 4 6 8 10
Distance x1

0.56

0.6

0.64

0.68

0.72

0.76

0.8

T
h

e
rm

o
d

y
n

a
m

ic
 t
e

m
p

e
ra

tu
re

 T

 = 

 = 

 = 

 

Fig.5.12 T w.r.t  𝐱𝟏 
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0 2 4 6 8 10
Distance x1

1.28

1.32

1.36

1.4

1.44

1.48

C
o

n
d

u
c
ti
v
e

 t
e

m
p
e

ra
tu

re
 

 = 

 = 

 = 

 
Fig.5.13 φ w.r.t  𝐱𝟏 
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Fig.5.14 𝐭𝟑𝟑 w.r.t  𝐱𝟏 

(Thermal Source) 
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Fig.5.15  𝐦𝟑𝟐 w.r.t  𝐱𝟏 
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Fig.5.16 T w.r.t  𝐱𝟏 

(Thermal Source) 
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Fig.5.17 φ w.r.t  𝐱𝟏 
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Fig. 5.18 𝐭𝟑𝟑 w.r.t  𝐱𝟏 

(Normal Force) 
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Fig. 5.19 𝐦𝟑𝟐 w.r.t  𝐱𝟏 
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Fig. 5.20 T w.r.t  𝐱𝟏 
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Fig. 5.21 φ w.r.t  𝐱𝟏 
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Chapter 6 

Axisymmetric deformation in a micropolar thermoelastic media, 

considering non-local and hyperbolic two-temperature effects under 

Moore-Gibson-Thompson heat equation  

6.1 Introduction 

Miglani and Kaushal (2011) [106] employed the axisymmetric technique to study 

deformation owing to thermal source and normal force in a thermoelastic medium with two 

temperatures (TT) in the context of generalised thermoelasticity theories. Sharma and Sharma 

(2014) [146] investigated how relaxation times and heat sources affect the temperature 

distribution in tissues. Kumar et al. (2014) [83] computed the stresses, displacement, pore 

pressure, and temperature changes caused by ring and disc loads in a thermoporoelastic 

material, as well as the effects of porosity on the results.  

Abbas and Kumar (2014) [1] explored thermally induced deformation in micropolar 

generalised thermoelastic materials and the effect of relaxation times on the derived 

quantities. Sharma et al. (2015) [143] investigated a deformation problem under an inclined 

load using the Green-Naghdi II (GN-II) (1992) [52] theory of thermoelasticity with TT. 

Kumar and Kumar (2021) [77] analysed thermoelastic vibration of micro and nano-beam 

resonators using Euler-Bernoulli beam theory and TT generalized theory of thermoelasticity, 

and compared the results with other theories of thermoelasticity. Sharma and Kumar (2021 

[141], 2022 [142]) investigated some problems in photothermoelastic medium due to 

distributed load and inclined load respectively. 

Chteoui et al. (2022) [24] used the normal mode analysis approach to investigate the 

effect of rotation and initial stress on various fundamental physical quantities under the 

Moore-Gibson-Thompson (MGT) heat equation with TT. Kumar et al. (2022) [87] used the 

MGT thermoelastic model to investigate the deformation caused by thermomechanical and 

carrier density loading in an orthotropic photothermoelastic plate. Roy and Lahiri (2024) 

[126] presented a problem in MT medium under higher order heat conduction and 

electromagnetic field due to moving heat source by using normal mode analysis and eigen 

value approach. Ailawalia et al. (2024) [14] studied the impact of variable thermal 

conductivity on components of displacement, stresses, couple stress, micro-stress, and 

temperature distributions in a generalized thermoelastic solid with microstretch based on 

Green-Naghdi theory. 
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In this chapter, the primary goal is to use MGT heat equation to examine the 

axisymmetric deformity in micropolar homogenous, isotropic MT with hyperbolic two-

temperature (HTT) and non-local (N-L) parameters under different loads (ring load and disc 

load). The equations are reduced in two-dimensional form and then transformed by using 

dimensionless quantities and potential functions. A new set of governing equations is solved 

using the Laplace transform (L.T) and Hankel transform (H.T). The transformed forms of the 

components of displacement, force stresses, tangential couple stress, conductive temperature, 

and thermodynamic temperature are derived. A numerical inversion technique is then applied 

to recover these physical quantities in the original domain. The graphical representation of 

numerical findings for stress components, conductive temperature and tangential couple 

stress, highlighting the impacts of N-L, HTT and TT parameters. Specific cases of interest are 

also drawn. 

The motivation for this work stems from the practical need to accurately analyze 

microstructured materials subjected to ring and disc loads, which are commonly encountered 

in various engineering applications. Traditional continuum theories fall short in describing 

key physical phenomena like microrotation and N-L interactions effects which are 

particularly significant in advanced systems like aerospace structures. The reason for 

pursuing this study is to overcome these limitations by incorporating a more advanced 

theoretical framework. To this end, the work integrates micropolar thermoelasticity with N-

L parameters, HTT theory, and the MGT heat conduction equation. The novelty of this 

research lies in its unified treatment of these models under axisymmetric thermomechanical 

loading conditions, a combination that provides a more realistic and comprehensive approach 

to deformation analysis and has not been extensively addressed in the existing literature. 

 6.2 Fundamental Equations 

Equations (3.1) -(3.6) [Chapter 3] describe the field equations and constitutive relations in an 

isotropic, homogeneous, MT under MGT heat equation, considering the influence of N-L and 

HTT factors after removing body couples, body forces, and heat sources. All symbols, 

including 𝐮,𝛟, T,φ, β, γ, K, ρ, μ, j ̂, K∗, K1
∗ , γ1, Ce, t, tpq, λ, α,mpq, τ0,  β

∗ , T0, ξ1, ξ2, δpq, εpqh, 

∆ , ∇ are as defined in section 2.2 [Chapter 2] and in section 3.2 [Chapter 3]. 

Equations (3.1) -(3.6) in components form for cylindrical polar coordinates (r, θ, z) are 

expressed as: 

(λ + μ)
∂e1

∂r
+ (μ + K) (∆ur −

ur

r2
−

2

r2
∂uθ

∂θ
) +

K

r
(
∂ϕz

∂θ
− r

∂ϕθ

∂z
) − γ1

∂T

∂r
  

= ρ(1 − ξ1
2∆)

∂2ur

∂t2
,  (6.1) 
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(λ + μ)
1

r

∂e1

∂θ
+ (μ + K) (∆uθ −

uθ

r2
+

2

r2
∂ur

∂θ
) + K(

∂ϕr

∂z
−

∂ϕz

∂r
) −

γ1

r

∂T

∂θ
  

= ρ(1 − ξ1
2∆)

∂2uθ

∂t2
,   (6.2) 

(λ + μ)
∂e1

∂z
+ (μ + K)∆uz +

K

r
(
∂(rϕθ)

∂r
−

∂ϕr

∂z
) − γ1

∂T

∂z
 = ρ(1 − ξ1

2∆)
∂2uz

∂t2
,   (6.3) 

(α + β)
∂e2

∂r
+ γ (∆ϕr −

ϕr

r2
−

2

r2
∂ϕθ

∂θ
) +

K

r
(
∂uz

∂θ
− r

∂uθ

∂z
) − 2Kϕr  

= ρj(̂1 − ξ2
2∆)

∂2ϕr

∂t2
,   (6.4) 

(α + β)
1

r

∂e2

∂θ
+ γ (∆ϕθ −

ϕθ

r2
+

2

r2
∂ϕr

∂θ
) + K (

∂ur

∂z
−

∂uz

∂r
) − 2Kϕθ  

= ρj(̂1 − ξ2
2∆)

∂2ϕθ

∂t2
,   (6.5) 

(α + β)
∂e2

∂z
+ γ∆ϕz +

K

r
(
∂(ruθ)

∂r
−

∂ur

∂z
) − 2Kϕz = ρj(̂1 − ξ2

2∆)
∂2ϕz

∂t2
,  (6.6) 

(1 + τ0
∂

∂t
) [ρCe

∂2T

∂t2
+ γ1T0

∂2𝑒1

∂t2
] = K∗

∂

∂t
∆φ + K1

∗∆φ,    (6.7) 

tzz = λe1 + (2μ + K)
∂uz

∂z
− γ1T,                     (6.8) 

tzr = μ (
∂ur

∂z
+

∂uz

∂r
) + K

∂ur

∂z
− Kϕθ ,                                                     (6.9) 

mzθ = β
∂ϕz

∂θ
+ γ

∂ϕθ

∂z
,                   (6.10) 

T̈ = φ̈ − β∗∆φ,         (6.11) 

where 

 e1 =
ur

r
+

∂ur

∂r
+

1

r

∂uθ

∂θ
+

∂uz

∂z
,         e2 =

ϕr

r
+

∂ϕr

∂r
+

1

r

∂ϕθ

∂θ
+

∂ϕ𝑧

∂z
,      

 ∆=
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+

1

r2
∂2

∂θ2
.         (6.12)              

6.3 Formulation of Problem 

Under the MGT heat equation, we consider an isotropic, homogeneous MT solid half-space 

with HTT and N-L parameters. Cylindrical polar coordinates (r, θ, z) are chosen to align with 

the axis of symmetry. The half-space surface is defined as the plane z=0 that points vertically 

into the medium. A ring or disc load is assumed to act at the origin of the cylindrical polar 

coordinates, as illustrated in Figure 6.1. The problem is an axisymmetric deformation 

problem, and we assume that all functions are dependent on spatial variables r and z, as well 

as temporal variable t.  

As a result, we use  𝐮 = (ur(r, z, t),0, uz(r, z, t)),  𝛟 = (0,ϕθ(r, z, t),0),   T = T
(r, z, t) 

and  φ = φ(r, z, t),          (6.13) 

Because of symmetry around z-axis, the quantities are independent of θ, resulting in  
∂

∂θ
= 0.       

With these assumptions, and using equation (6.13), equations (6.1) -(6.11) simplify as 
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(λ + μ)
∂e1

∂r
+ (μ + K) [(∆ −

1

r2
)ur] − K

∂ϕθ

∂z
− γ1

∂T

∂r
= ρ(1 − ξ1

2∆)
∂2ur

∂t2
,   (6.14) 

(λ + μ)
∂e1

∂z
+ (μ + K)∆uz +

K

r

∂

∂r
(rϕθ) − γ1

∂T

∂z
= ρ(1 − ξ1

2∆)
∂2uz

∂t2
,  (6.15) 

γ (∆ −
1

r2
− 2K)ϕθ + K [

∂ur

∂z
+

∂uz

∂r
] = ρj(̂1 − ξ2

2∆)
∂2ϕθ

∂t2
,      (6.16) 

(1 + τ0
∂

∂t
) [ρCe

∂2T

∂t2
+ γ1T0

∂2𝑒1

∂t2
] = ∆φ(K∗

∂

∂t
+ K1

∗),      (6.17)                 

tzz = λ(
∂uz

∂z
+

∂ur

∂r
+

ur

r
) + (2μ + K)

∂uz

∂z
− γ1T,                   (6.18) 

tzr = μ (
∂ur

∂z
+

∂uz

∂r
) + K(

∂ur

∂z
− ϕθ),                    (6.19)                 

mzθ = γ
∂ϕθ

∂z
,           (6.20) 

T̈ = φ̈ − β∗∆φ,         (6.21)   

where 

 e1 =
ur

r
+

∂ur

∂r
+

∂uz

∂z
,        ∆=

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
.            (6.22) 

To further simplify, the dimensionless quantities listed below are used: 

(r′, z′, ur
′ , uz

′ , ξ1
′ , ξ2

′ ) =
ω1

c1
(r, z, ur, uz, ξ1, ξ2),  ϕθ

′ =
ρc1

2

γ1T0
ϕθ,   (τ0

′ , t′) = ω1(τ0, t),  

(φ′, T′) =
1

T0
(φ, T),   (tzz

′ , tzr
′ , F0

′ ) =
1

γ1T0
(tzz, tzr, F0), mzθ

′ = 
ω1

γ1c1T0
mzθ,          

β∗′ =
1

c1
2 β

∗,          (6.23) 

where 

 c1
2 =

λ+2μ+K

ρ
  and  ω1 =

ρCec1
2

K∗
.   

Using (6.23) in equations (6.14) -(6.21) after omitting the primes, yield 

a1
∂e1

∂r
+ a2 [(∆ −

1

r2
)ur] − a3

∂ϕθ

∂z
− a4

∂T

∂r
= (1 − ξ1

2∆)
∂2ur

∂t2
,   (6.24) 

a1
∂e1

∂z
+ a2∆uz + a3

1

r

∂

∂r
(rϕθ) − a4

∂T

∂z
= (1 − ξ1

2∆)
∂2uz

∂t2
,    (6.25) 

[a5 (∆ −
1

r2
) − a7] ϕθ + a6 [

∂ur

∂z
−

∂uz

∂r
] = (1 − ξ2

2∆)
∂2ϕθ

∂t2
,       (6.26) 

(1 + τ0
∂

∂t
) [

∂2T

∂t2
+ a9

∂2𝑒1

∂t2
] = ∆φ(

∂

∂t
+ a8),        (6.27) 

tzz = a14
∂uz

∂z
+ a13(

∂ur

∂r
+

ur

r
) − T,                     (6.28) 

tzr = a10 (
∂ur

∂z
+

∂uz

∂r
) + a11

∂ur

∂z
− a12ϕθ,         (6.29)   

mzθ = a15
∂ϕθ

∂z
,          (6.30)    

 T̈ = φ̈ − β∗∆φ.         (6.31) 
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where ai(i = 1⋯7) are as given by equation (2.42) [Chapter 2] and ai(i = 8⋯15) are as 

given by equation (3.40) [Chapter3]. 

6.4 Solution Procedure 

The displacement components ur and uz, as well as the microrotational component ϕ𝜃 , are 

written as scalar potential functions using Helmholtz decomposition: 

ur =
∂ψ1

∂r
+

∂2ψ2

∂r ∂z
, uz =

∂ψ1

∂z
− (

∂2

∂r2
+

1

r

∂

∂r
)ψ2, ϕθ = −

∂Γ

∂r
.   (6.32) 

With the aid of (6.32), equations (6.24) -(6.27) reduce to   

Δψ1 − (1 − ξ1
2
Δ) 

∂2ψ1

∂t2
 − a4T =0                         (6.33) 

  

a2Δψ2 − (1 − ξ1
2
Δ) 

∂2ψ2

∂t2
+ a3Γ = 0,      (6.34) 

a5 (∆ −
1

r2
) Γ + a6∆ψ2 − a7Γ = (1 − ξ2

2∆)
∂2Γ

∂t2
,     (6.35) 

(1 + τ0
∂

∂t
) (

∂2T

∂t2
+ a9 (

∂2

∂t2
∆ψ1)) = ∆φ(

∂

∂t
+ a8),           (6.36) 

According to Debnath (1995) [28], the L.T of a function g(x1, x3, t) w.r.t the time variable t, 

where s is the L.T variable, is defined as follows, along with its fundamental properties: 

ḡ(r, z, s) = L{g(r, z, t)} = ∫ g(r, z, t)
∞

0
e−stdt,     (6.37) 

i) L (
∂g

∂t
) = sḡ(r, z, s) − g(r, z, 0),       (6.38) 

ii) L (
∂2g

∂t2
) = s2ḡ(r, z, s) − sg(r, z, 0) − (

∂g

∂t
)
t=0
.     (6.39) 

Initial conditions are as follows: 

ψ1(r, z, 0) = (
∂q

∂t
)
t=0

= 0,  T(r, z, 0) = (
∂T

∂t
)
t=0

= 0, 

ψ2(r, z, 0) = (
∂ψ

∂t
)
t=0

= 0,  φ(r, z, 0) = (
∂φ

∂t
)
t=0

= 0, 

ur(r, z, 0) = (
∂ur

∂t
)
t=0

= 0,  uz(r, z, 0) = (
∂uz

∂t
)
t=0

= 0, 

Γ(r, z, 0) = (
∂Γ

∂t
)
t=0

= 0,        (6.40) 

Following Sneddon (1975) [156], the H.T of ḡ(r, z, s) w.r.t the variable r is defined as follows: 

g̃(χ, z, s) = Hn{ḡ(r, z, s)} = ∫ rḡ
∞

0
(r, z, s)Jn(χr)dr,      (6.41) 

where χ represents Hankel's parameter and Jn() is the Bessel function of first kind of order n 

with the following essential properties: 

H0 (
∂ḡ

∂r
+

1

r
ḡ) = χH1(ḡ), H0 (

∂2ḡ

∂r2
+

1

r

∂ḡ

∂r
) = −χ2H0(ḡ),    
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H1 (
∂ḡ

∂r
) = −χH0(ḡ),  H1 (

∂2ḡ

∂r2
+

1

r

∂ḡ

∂r
−

1

r2
ḡ) = −χ2H1(ḡ).   (6.42)  

Applying L.T and H.T transforms defined in equations (6.37) and (6.41) on equations (6.33) 

-(6.36) and (6.31) with the aid of (6.38) -(6.40) and (6.42), yield 

[D0
2b4 − (χ

2 + b1)]ψ̃1 − a4T̃ = 0,        (6.43) 

[(D0
2(a2 + s

2ξ1
2) − (a2χ

2 + b1)]ψ̃2 + a3Γ̃ = 0,     (6.44) 

[−D0
2(a5 + s

2ξ2
2) + (a5χ

2 + a7 + b2)]Γ̃ + a6(D0
2 − χ2)ψ̃2 = 0,   (6.45) 

[b3s
2T̃ − (a8 + s)(D0

2 − χ2)φ̃] + b3s
2(D0

2 − χ2)a9ψ̃1 = 0,    (6.46) 

T̃ = φ̃ − (D0
2 − χ2)φ̃,        (6.47) 

where 

  = {

β∗

s2
, for (HTT)

a, for  (TT)

0, for one temperature (1T),

  

and 

 b1 = s
2(1 + χ2ξ1

2), b2 = s
2(1 + χ2ξ2

2), b3 = (1 + τ0s), b4 = (1 + s
2ξ1
2), D0 =

d

dz
.  

Using equation (6.47) in equations (6.43) and (6.46), yield 

[D0
2b4 − (χ

2 + b1)]ψ̃1 − a4(1 − (D0
2 − χ2))φ̃ = 0,     (6.48) 

[b3s
2(1 − (D0

2 − χ2)) − (a8 + s)(D0
2 − χ2)]φ̃ + b3s

2(D0
2 − χ2)a9ψ̃1 = 0, (6.49) 

After algebraic simplifications, equations (6.48), (6.49), (6.44) and (6.45), yield 

(D0
4 − S01D0

2 + S02)(φ̃, ψ̃1) = 0,       (6.50) 

(D0
4 − S03D0

2 + S04)(Γ̃, ψ̃2) = 0,       (6.51) 

where             

S01 =
[(b3s2 + s + a8)(χ

2 + b1)] + b4[s
2b3(1 + χ

2) + χ2(s + a8)] + a9b3s
2(1 + 2χ2)

b4(b3s2 + s + a8) + a9b3s2
, 

S02 =
(χ2 + b1)[s

2b3(1 + χ
2) + χ2(s + a8)] + b3a9χ

2(1 + χ2)

b4(b3s2 + s + a8) + a9b3s2
, 

S03 =
[(a2 + s

2ξ1
2)(a5χ

2 + a7 + b2)] + [(a5 + s
2ξ2

2)(a2χ
2 + b1)] − a3a6

(a5 + s2ξ2
2)(a2 + s2ξ1

2)
, 

S04 =
[(a2χ

2 + b1)(a5χ
2 + a7 + b2)] + a3a6χ

2

(a5 + s2ξ2
2)(a2 + s2ξ1

2)
. 

The solution of equations (6.50) and (6.51), utilizing the radiation conditions ψ̃1, φ̃, ψ̃2 and 

Γ̃ → 0 as z → ∞, can be expressed as 

ψ̃1 = ∑ (Qie
−λiz)2

i=1 ,         (6.52) 

φ̃ = ∑ (OiQie
−λiz),2

i=1          (6.53) 
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ψ̃2 = ∑ (Qje
−λjz)4

j=3 ,         (6.54) 

Γ̃ = ∑ (OjQje
−λjz),4

j=3          (6.55)  

where ±λi (i = 1,2) and  ±λj (j = 3,4) are the roots of the characteristic equations 

(D0
4 − S01D0

2 + S02) = 0 and (D0
4 − S03D0

2 + S04) = 0, respectively. Here, Qi(i = 1,2),

Qj(j = 3,4) are arbitrary constants, and Oi(i = 1,2), Oj(j = 3,4) are coupling constants, 

represented as: 

Oi =
λi
2b4−(χ

2+b1)

a4(1+(χ2−λi
2))
,          Oj =

(a2χ
2+b4)−λj

2(a2+s
2ξ1
2)

a3
, (i = 1,2), (j = 3,4).

 

6.5 Boundary Restrictions 

A normal (ring/disc) load is applied at the free surface z = 0, as seen in figure 6.1. This load 

originates at the coordinate origin and spreads rapidly over the surface at a constant rate 'c'. 

Under isothermal boundary conditions, both tangential stress and tangential couple stress 

vanish. These criteria can be stated mathematically as 

(i)    tzz = F1(r, t), (ii)    tzr = 0, (iii)    mzθ = 0, (iv)  φ = 0,    (6.56) 

where 

F1(r, t) = F0 {

1

2πr
δ(ct − r),            ring load,    

1

π(ct)2
H(ct − r),            disc load.        

     (6.57) 

In context of above boundary conditions, the total force applied on the surface remains 

constant over time and is denoted as  F0 which is initially applied at r = 0. As normal ring and 

disc loads expand, the normal stress decays as  
1

r
  and 

1

t2
, respectively. δ() is a Dirac delta 

function, F0 is magnitude of force and H () is known as Heaviside step function. 

Applying the dimensionless quantities given by equation (6.23) on (6.56) and (6.57), yield 

the non-dimensional boundary condition and applying L.T and H.T on the non-dimensional 

boundary condition, we get 

(i) t̃zz = F̃1(χ, s), (ii)  t̃zr   = 0, (iii) m̃zθ = 0, (iv) φ̃ = 0,  at  z = 0 (6.58) 

where 

 F̃1(χ, s) = F0

{
 
 

 
 

1

2π√χ2+
s2

c2

,                    ring load

1

πcχ
(√χ2 +

s2

c2
−

s

c
) ,   disc load.   

         (6.59)  

Using (6.37) -(6.42) on (6.32) and (6.28) -(6.30) with the aid of (6.47), components of 

displacement, microrotational and stresses are obtained as 

ũr = − χ (ψ̃1 +
dψ̃2

dz
),         (6.60) 
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ũz =
dψ̃1

dz
+ χ2ψ̃2,          (6.61) 

ϕ̃θ = χΓ̃          (6.62) 

t̃zz = a14
dũz

dz
+ a13χũr − (1 −  (

d2

dz2
− χ2))φ̃,                   (6.63) 

t̃zr = (a10 + a11)
dũr

dz
− a10χũz − a12ϕ̃θ,         (6.64)   

m̃zθ = a15
dϕ̃θ

dz
.          (6.65)     

By substituting the values of  ψ̃1, φ̃, ψ̃2 and Γ̃ from (6.52) -(6.55) into the boundary condition 

(6.58), and using equations (6.60) -(6.65), we derive the following results for displacement 

components, stresses, tangential couple stress, conductive temperature, and thermodynamic 

temperature as 

ur̃ =
−F̃1(χ,s)χ

Ω
[∑ (Ωi1

2
i=1 e−λiz) − ∑ (λiΩi1

4
i=3 e−λiz)],    (6.66) 

ũz =
−F̃1(χ,s)

Ω
[∑ (λiΩi1

2
i=1 e−λiz) − ∑ (χ2Ωi1

4
i=3 e−λiz)],    (6.67)  

t̃zz =
F̃1(χ,s)

Ω
[∑ (UiΩi1

4
i=1 e−λiz)],       (6.68)  

t̃zr =
F̃1(χ,s)

Ω
[∑ (Ui+4Ωi1

4
i=1 e−λiz)],       (6.69) 

m̃zθ =
F̃1(χ,s)

Ω
[∑ (Ui+6Ωi1

4
i=3 e−λiz)],       (6.70) 

φ̃ =
F̃1(χ,s)

Ω
[∑ (OiΩi1

2
i=1 e−λiz)],       (6.71) 

T̃ =
F̃1(χ,s)

Ω
[∑ (OiUi+10Ωi1

2
i=1 e−λiz)],        (6.72) 

where 

Ω = HT1 +HT2, Ω11 = O2(U7U10 − U8U9), Ω21 = O1(U8U9 − U7U10), 

Ω31 = −U10(O2U5 − O1U6),  Ω41 = −U9(O1U6 − O2U5),  

HT1 = −O1[U9(U4U6 − U2U8) − U10(U3U6 − U2U7)], 

HT2 = O2[U9(U4U5 − U1U8) + U10(U1U7 − U3U5)],  

Ui = (a14λi
2 − (1 + χ2)Oi + Oiλi

2 − χ2a13), Uj = χ2λj(a13 − a14),  

Ui+4 = χλi(a11+2a10), Uj+4 = −χ((a10 + a11)λj
2+χ2a10 + a12Oj), 

Uj+6 = a15χλjOj, Ui+10 = (1 + (χ2 − λi
2)),      (i = 1,2), (j = 3,4).  

6.6 Validations 

i) In the absence of N-L parameters (ξ1 = ξ2 = 0) and micropolar parameters (α =

β = γ = K = 0), together with   = a, and  K1
∗ = 0, the equations (6.50) and (6.51) 

reduces as 
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(D0
4 − S01D0

2 + S02)(φ̃, ψ̃1) = 0,       (6.73) 

(D0
2 − λ3

2)ψ̃2 = 0,         (6.74) 

with changed values of           

S01 =
(2χ2+s2)+ab1(χ

2+s2+a3a4χ
2)+b1(1+aχ

2)(1+a3a4)

1+ab1(1+a3a4)
, S02 =

χ2(χ2+s2)+b1(1+aχ
2)(χ2+s2+a3a4χ

2)

1+ab1(1+a3a4)
,     

 λ3
2 =

( a2χ
2+s2)

a2
 , a2 =

μ

ρc1
2 ,     a3 =

γ1T0

ρc1
2 ,      a4 =

γ1c1
2

ω1K
∗,  a5 =

μ

γ1T0
,   

a6 =
λ

γ1T0
, a7 =

(λ+2μ)

γ1T0
, b1 = (1 + τ0s)s.        

Also, equations (6.66) -(6.72) reduces as  

ur̃ =
−F̃1(χ,s)χ

Ω
[∑ (Ωi1

2
i=1 e−λiz) − λ3Ω31e

−λ3z],     (6.75) 

ũz =
−F̃1(χ,s)

Ω
[∑ (λiΩi1

2
i=1 e−λiz) − χ2Ω31e

−λ3z],     (6.76)  

t̃zz =
F̃1(χ,s)

Ω
[∑ (UiΩi1

3
i=1 e−λiz)],       (6.77)  

t̃zr =
F̃1(χ,s)

Ω
[∑ (Ui+3Ωi1

3
i=1 e−λiz)],       (6.78) 

φ̃ =
F̃1(χ,s)

Ω
[∑ (OiΩi1

2
i=1 e−λiz)],        (6.79) 

T̃ =
F̃1(χ,s)

Ω
[∑ (OiUi+6Ωi1

2
i=1 e−λiz)],        (6.80) 

where 

Ω = O1(U2U6 − U3U5) + O2(U3U4 − U1U6),  Ω11 = O2U6, Ω21 = O1U6, 

Ω31 = (O2U4 − O1U5), Ui = (a7λi
2 − (1 + aχ2)Oi + aOiλi

2 − χ2a6),  

U3 = χ
2λ3(a6 − a7), Ui+3 = 3a5χλI , Ui+6 = (1 + a(χ

2 − λi
2)),   

Oi =
λi
2−(χ2+s2)

a3(1+a(χ
2−λi

2))
,     (i = 1,2).  

The above equations represent results for L-S model with TT, which are consistent 

to those obtained by Miglani and Kaushal (2011) [106] (In absence of normal force 

and thermal source at boundary). 

ii) Assuming ξ1 = ξ2 =   = α = β = γ = K = τ0 =  K1
∗ = 0,  the equations (6.50) 

and (6.51) reduces as 

(D0
4 − S01D0

2 + S02)(φ̃, ψ̃1) = 0,       (6.81) 

(D0
2 − λ3

2)ψ̃2 = 0,         (6.82) 

with changed values of           

S01 = (2χ
2 + s2) + s(1 + a3a4),  S02 = χ

2(χ2 + s2) + s(χ2 + s2 + a3a4χ
2),     

 λ3
2 =

( a2χ
2+s2)

a2
 , a2 =

μ

ρc1
2 ,     a3 =

γ1T0

ρc1
2 ,      a4 =

γ1c1
2

ω1K
∗,    a5 =

μ

γ1T0
,  a6 =

λ

γ1T0
, a7 =

(λ+2μ)

γ1T0
.        

Also, equations (6.66) -(6.72) reduces as  
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ur̃ =
−F̃1(χ,s)χ

Ω
[∑ (Ωi1

2
i=1 e−λiz) − λ3Ω31e

−λ3z],     (6.83) 

ũz =
−F̃1(χ,s)

Ω
[∑ (λiΩi1

2
i=1 e−λiz) − χ2Ω31e

−λ3z],     (6.84)  

t̃zz =
F̃1(χ,s)

Ω
[∑ (UiΩi1

3
i=1 e−λiz)],       (6.85)  

t̃zr =
F̃1(χ,s)

Ω
[∑ (Ui+3Ωi1

3
i=1 e−λiz)],       (6.86) 

φ̃ =
F̃1(χ,s)

Ω
[∑ (OiΩi1

2
i=1 e−λiz)],        (6.87) 

where 

Ω = O1(U2U6 − U3U5) + O2(U3U4 − U1U6),  Ω11 = O2U6, Ω21 = O1U6, 

Ω31 = (O2U4 − O1U5), Ui = (a7λi
2 − Oi − χ

2a6), U3 = χ
2λ3(a6 − a7), 

Ui+3 = 3a5χλI , Oi =
λi
2−(χ2+s2)

a3
,     (i = 1,2).  

These results align with the classical theory of thermoelasticity, which are consistent with 

those reported by Kumar et al. (2014) [83] in the absence of porous media. 

6.6.1 Special Cases 

i)  When K1
∗ ≠ 0,K∗ = 0 and  τ0 = 0 are considered, then expressions from (6.66) 

-(6.72) reduce for GN-II theory of thermoelasticity with micropolar, N-L and HTT 

effects.  

(ii) If K1
∗ ≠ 0,K∗ ≠ 0 and τ0 = 0 , the derived results from (6.66) -(6.72) diminish 

for Green-Naghdi–III (GN-III) thermoelasticity theory with N-L, micropolar 

and HTT effects. 

(iii)  To reduce the results to the MGT thermoelastic model with HTT and N-L 

effects, we substitute α = β = γ = K = 0 in equations (6.66) -(6.72). 

6.7 Inversion of Transformations 

To address the problem in the physical realm, where the components of displacement, 

stresses, tangential couple stress, conductive temperature, and thermodynamic temperature 

are expressed as functions of g̃(χ, z, s), we need to invert the transforms. We begin by 

inverting the H.T utilising 

ḡ(r, z, s) = ∫ χ g̃(χ, z, s)
∞

0
Jn(χr)dχ,       (6.88) 

Press et al. (1986) [118] detailed a method to evaluate integral (6.88) using Romberg's 

integration technique with adaptive step size. This approach involves iteratively refining the 

results using the extended trapezoidal rule and extrapolating these results as the step size 

approaches zero. 
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The expression (6.88) calculates the L.T of the function g(r, z, t). Honig and Hirdes 

(1984) [53] propose inverting ḡ(r, z, s) to produce g(r, z, t) as 

g(r, z, t) =
1

2πi
∫ ḡ(r, z, s)
C+i∞

C−i∞
exp(st) ds,      (6.89) 

where C is a real number that exceeds the real components of all singularities ḡ(r, z, s).  

The final step involves calculating the integral in equation (6.89). The details of this method 

are described in section 5.7 [Chapter 5]. 

6.8 Discussion and Implementation of Numerical Solutions 

To study the effects of various parameters, numerical simulations are performed for several 

cases: (i) HTT (ii) ξ1 and ξ2  (iii) time domain analysis, under ring and disc loads in MT media 

governed by MGT heat equation.  

For the numerical results and discussions, a magnesium crystal-like material is considered, 

with numerical data as provided in section 3.8 [Chapter 3]. 

6.8.1 Impacts of HTT and TT 

We assume N-L parameters ξ1 = 0.25 and ξ2 = 0.35 for the range 0 ≤ r ≤ 10.     

All the curves with HTT ( = 0.75) are represented by solid line (     ). 

All the curve with TT (a = 0.0104) are denoted by small dashed line (---). 

All the curves without HTT ( = 0) are represented by big dashed line (−− −).     

Figures 6.2-6.5, show the effects of HTT and TT due to ring load on all considered cases. 

Figures 6.6-6.9, show the effects of HTT and TT due to disc load on all considered cases. 

6.8.1.1 Ring Load 

Figure 6.2 exhibits variations of tzz vs. r. The value of tzz shows an increasing trend in the 

range 0≤ r ≤ 2 in all cases. As r increases, tzz shows small variations about origin. 

Figure 6.3 is a plot of tzr vs. r. The magnitude of tzr exhibits a descending behavior for the 

range 0≤ r ≤ 1 across all considered cases. As r increases, tzr shows steady state about the 

value ‘0’. 

Figure 6.4 demonstrates the variations of mzθ vs. r. It is evident that mzθ shows opposite 

behavior throughout the entire range for TT and in the absence of HTT, highlighting the 

impact of TT parameter. While the value of mzθ for  = 0.75 decrease with larger magnitude 

in 0≤ r ≤ 2 and exhibits an oscillatory behavior in rest of the interval. 

Figure 6.5 exhibits variations φ vs. r. The values of φ decreases strictly within the bounded 

region 0≤ r ≤ 2 and beyond this range, small variations are noted near the origin for all the 

considered cases, magnitude of φ remain lower for  = 0.75 as compared to remaining cases. 
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6.8.1.2 Disc Load  

Figure 6.6 illustrates the variations of  tzz vs. r. For  = 0.75, tzz increases prominently for 

the range 0≤ r ≤ 2, while it displays reverse behavior for a = 0.0104 and  = 0. As r 

increases,  tzz  exhibits oscillatory behavior, with the magnitude of oscillation being greater 

for  = 0.75.   

Figure 6.7 displays the variations of tzr vs. r. For  = 0.75, the magnitude of tzr decrease 

abruptly in the region 0≤ r ≤ 1, whereas for TT and without HTT, it exhibits an increasing 

trend. As r increases, tzr oscillates with decreasing magnitude for  = 0.75. In case of a = 

0.0104 and  = 0,  tzr shows small variations about the origin. 

Figure 6.8 demonstrates mzθ vs. r. It is evident that the behavior of mzθ for a = 0.0104 is 

opposite in comparison to  = 0.75 and  = 0, with significant difference in their magnitudes. 

Figure 6.9 is a plot of φ vs. r. It is noticed that the magnitude of φ drops for the region 0≤

r ≤ 2 and oscillates beyond that region for all cases. Additionally, it is noted that the 

magnitude of φ is higher for  = 0.75 when compared to other cases. 

6.8.2 Non-Local Effect 

In this case, we take the HTT parameter for the range 0 ≤ r ≤ 10.  

For ξ1 = 0.0, ξ2 = 0.0,  the curves are represented by the solid line (     ).  

For ξ1 = 0.25, ξ2 = 0.0, the curves are denoted by the small dashed line (---). 

For ξ1 = 0.0, ξ2 = 0.35, the curves are represented by the solid line (     ). 

For ξ1 = 0.25, ξ2 = 0.35, the curves are denoted by the small dashed line (-◇-). 

Figures 6.10-6.13 depict the impacts of  ξ1 and  ξ2 due to the ring load on all considered cases. 

Figures 6.14-6.17 depict the impacts of  ξ1 and  ξ2  due to the disc load on all considered 

cases. 

6.8.2.1 Ring Load 

Figure 6.10 illustrates the variations of tzz vs. r. It is noticed that, the values of tzz shows 

increasing trend for all considered cases near the loading surface. However, the magnitude of 

tzz is higher for (ξ1 = 0.25, ξ2 = 0.0) and (ξ1 = 0.0, ξ2 = 0.35) compared to (ξ1 =

0.25, ξ2 = 0.35 ) and (ξ1 = 0.0, ξ2 = 0.0) respectively. As r increases, the values of tzz  

exhibit oscillating behavior.  

Figure 6.11 is a plot of tzr vs. r. It is evident that tzr follows a similar pattern across all models, 

with substantial differences in their magnitude. Furthermore, the values of tzr are maximum 

for (ξ1 = 0.25 and ξ2 = 0.0), and lowest in the absence of N-L parameters. 
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Figure 6.12 exhibits the behaviour of mzθ vs. r. The magnitude of mzθ varies significantly 

across all scenarios, despite a consistent trend. 

Figure 6.13 demonstrate the variations of φ vs. r. The magnitude of φ drops in the range of 

0≤ r ≤ 2, with a greater decrement in the absence of N-L parameters. As r increases, the 

values of φ vary around zero with decreasing magnitude. Furthermore, the values of φ for 

(ξ1 = 0.25, ξ2 = 0.0) remain higher compared to other cases. 

6.8.2.2 Disc Load 

Figure 6.14 exhibits variations of tzz vs. r. The magnitude of  tzz  increases in the ranges 0≤

r ≤ 2, 4≤ r ≤ 6,  8≤ r ≤ 10, but decreases in the remaining range for all cases considered. 

Figure 6.15 demonstrates that the magnitude of tzr decreases in the ranges 0≤ r ≤ 1, 3≤ r ≤

5, 7≤ r ≤ 8, while the opposite trend is noticed in the remaining interval for all cases. 

Furthermore, the magnitude of tzr is shown to be lowest in the absence of N-L parameters 

across entire range except some values of r. 

Figure 6.16 displays the variations of mzθ vs. r. The magnitude of mzθ for  ξ1 = 0.25, ξ2 =

0.35 differs significantly from other cases, indicating the impact of N-L factors. 

Figure 6.17 exhibits variations of φ vs. r. It is noticed that the magnitude of φ declines 

throughout a limited region 0≤ r ≤ 2, with minor changes around the origin for all considered 

cases. Furthermore, the values of φ remain higher for ξ1 = 0.25, ξ2 = 0.0  compared to other 

cases. 

6.8.3 Time Domain Variation 

We consider ξ1 = 0.25 and ξ2 = 0.35 with HTT parameter for the range 0 ≤ r ≤ 10.  

The solid line (      ) represents the curves for t = 0.5 RL. 

The small dashed line (---) denotes the curves for t = 0.1 RL. 

The solid line (        ) represents the curves for t = 0.5 DL. 

The small dashed line (--◇--) denotes the curves for t = 0.1 DL. 

Here, RL and DL represent ring load and disc load respectively. 

Figures 6.18-6.21, show the impacts of different time domains under ring load and disc load 

on all considered cases.  

6.8.3.1 Due to Ring load and Disc load 

Figure 6.18 exhibits the variation of tzz vs. r due to ring and disc loads. It is noticed that, due 

to the loading and different time domains, the material along the boundary surface expands 

in an uncontrolled direction. This suggests that stress moves initially in the negative direction, 

then transitions from negative to positive, and finally tends to zero to achieve a steady state 
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in all investigated cases. However, magnitude of tzz is higher for t=0.1 RL for most of the 

range. 

Figure 6.19 displays the trend of  tzr vs. r due to ring and disc loads. The values of  tzr for 

t=0.5 RL oscillate about origin for the entire range of r. For other considered cases, the values 

decrease monotonically within the range of 0 ≤ r ≤ 1.7, and then oscillate about origin as r 

increase further for both time domains.  

Figure 6.20 shows the variations of mzθ vs. r due to ring and disc loads. The values of mzθ 

initially increase sharply and then approaches to zero in an oscillatory manner for t=0.5 DL. 

In contrast, for the remaining cases, mzθ shows a small initial decrement and then oscillates 

near the application of load. 

Figure 6.21 demonstrates the trend of φ vs. r due to ring and disc loads. It is evident that 

magnitude of φ decreases strictly within the bounded region 0≤ r ≤ 2. Beyond that, small 

variations are noticed near the origin for all cases. The magnitude of φ remains higher for 

t=0.5 RL compared to the remaining cases. 

6.9 Conclusion 

In this chapter, a two-dimensional micropolar axisymmetric problem governed by the MGT 

heat equation, incorporating HTT and N-L parameters is presented. We obtain a new set of 

governing equations by translating the equation system into dimensionless form and 

introducing potential functions. These equations are solved using L.T and H.T. The 

components of displacement, stresses, tangential couple stress, conductive temperature, and 

thermodynamic temperature are then reverted to the original domain through a numerical 

inversion technique. The numerical computations assess the effects of HTT, TT and N-L 

parameters, as well as ring and disc loads, on these physical quantities. These impacts are 

illustrated graphically.  

From the empirical study, following observations are made: 

i. Due to N-L parameters, the trend of tangential stress, normal stress, and tangential 

couple stress become oscillatory in presence of ring load. 

ii. In the case of ring load, HTT parameter enhances the magnitude of conductive 

temperature, normal stress, and tangential couple stress. 

iii. Due to ring load, uniform pattern is noticed for conductive temperature, tangential 

couple stress, and tangential stress, whereas their magnitudes show a decreasing trend 

in the absence of N-L parameters. 

iv. Tangential stress attains a higher value for TT parameter near and far away from the 

boundary when a ring load is applied. 
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v. N-L parameters increase the magnitude of both tangential stress and conductive 

temperature in presence of disc load. 

vi. Due to HTT parameter, normal stress, tangential stress, and tangential couple stress 

exhibit opposite behavior compared with other cases when a disc load is applied. 

vii. In the presence of N-L parameters, the behavior of normal stress and tangential 

couple stress presents a mirror image of each other due to the disc loading. 

viii. Due to mechanical loading, tangential couple stress, conductive temperature and 

tangential stress exhibit a descending behavior in both time domains near the 

boundary, while an opposite trend is observed for normal stress. 

These findings are especially significant for practical applications involving materials with 

inherent microstructures subjected to ring and disc loadings. In particular, subsurface 

environments such as granular rock formations demand a deep understanding of these 

complex thermo-mechanical interactions. The insights gained from this study offer valuable 

contributions to fields such as geomechanics, seismic wave propagation, soil dynamics, and 

geo-material characterization, where the incorporation of micropolar thermoelastic behaviour 

markedly improves the accuracy of predictive models. By integrating microstructural effects 

and non-local interactions, this research provides a more realistic and robust framework for 

analysing material responses under real-world problems, thereby advancing both theoretical 

understanding and practical engineering solutions. 
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Figure 6.1: Schematic representation of the problem 
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Fig. 6.2: 𝐭𝐳𝐳 vs. r  

(Ring load) 
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Fig.6.3:  𝐭𝐳𝐫 vs.  r  

(Ring load) 
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Fig.6.4: 𝐦𝐳𝛉 vs. r 

 (Ring load) 
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Fig.6.5: 𝛗 vs. r 

(Ring load) 
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Fig. 6.6: 𝐭𝐳𝐳 vs. r 

  (Disc load) 
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Fig.6.7: 𝐭𝐳𝐫 vs. r  

   (Disc load) 
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Fig.6.8: 𝐦𝐳𝛉 vs. r  

(Disc load) 
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Fig.6.9: 𝛗 vs. r 

 (Disc load) 
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Fig. 6.10: 𝐭𝐳𝐳 vs. r 

 (Ring load) 
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Fig.6.11: 𝐭𝐳𝐫 vs. r  

(Ring load) 
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Fig.6.12: 𝐦𝐳𝛉 vs. r 

 (Ring load) 
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Fig. 6.13: 𝛗 vs. r  

(Ring load) 

 
 



141 
 

0 2 4 6 8 10

Radial distance (r)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

N
o

rm
a
l 

S
tr

e
s
s
 (

t z
z
)

 =   = 

 =   = 

 =   = 

 =   = 

 
Fig. 6.14: 𝐭𝐳𝐳 vs. r 

 (Disc load) 
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Fig. 6.15: 𝐭𝐳𝐫 vs. r  

(Disc load) 



142 
 

0 2 4 6 8 10

Radial distance (r)

-4

-2

0

2

4

6

8

10

12

14

T
a
n

g
e
n

ti
a

l 
C

o
u

p
le

 S
tr

e
s

s
 (

m
z

)

 =   = 

 =   = 

 =   = 

 =   = 

 
Fig.6.16: 𝐦𝐳𝛉 vs. r  

(Disc load) 
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Fig.6.17: 𝛗 vs. r  

(Disc load) 

 



143 
 

 

0 2 4 6 8 10

Radial distance (r)

-10

-8

-6

-4

-2

0

2

4

6

8

N
o

rm
a
l 

S
tr

e
s

s
 (

t z
z
)

t=0.5 RL

t=0.1 RL

t=0.5 DL

t=0.1 DL

 
            Fig. 6.18: 𝐭𝐳𝐳 vs. r 

             (Time Domain) 
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Fig. 6.19: 𝐭𝐳𝐫 vs. r 

           (Time Domain) 
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Fig.6.20: 𝐦𝐳𝛉 vs. r 

             (Time Domain) 
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        Fig. 6.21: 𝛗 vs. r 

        (Time Domain) 
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Future Scope 

• Various problems related to the reflection of waves and thermomechanical 

deformation in micropolar elasticity and micropolar thermoelasticity have been 

investigated within the framework of the MG-L theory of thermoelasticity and the 

MGT heat equation. The effects of impedance, voids, non-local parameters, HTT, and 

TT are examined in the problems presented in chapters 2-6 and many more problems 

can be discussed. Although the models discussed in this thesis are theoretical, they 

hold great significance in the fields of geophysics, seismology, earthquake 

engineering, and other related areas, attracting researchers to contribute to this field. 

• These problems can also be examined by taking into account the effects of magnetic 

rotation, three-phase lag, and fractional-order derivatives. 

• Mathematical modeling can be illustrated using the finite element method, the 

homotopy perturbation method, and other numerical techniques. 

• The problems discussed in this thesis can be extended by incorporating anisotropy 

material and higher-order time symmetries. 
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Conferences Attended/Paper Presented 

1. Presented paper in International Conference on “Emerging Trends in Engineering, 

Science & Management (ICETESM-2024)” organized by Global Group of 

Institutes Amritsar, Amritsar held on 10th May, 2024. 

2. Presented paper in International Conference on “Recent Developments in 

Mathematical Sciences, Artificial Intelligence and Machine Learning 

(ICRMAM-2023)” organized by Sri Guru Teg Bahadur Khalsa College, 

Anandpur Sahib held on 14th March to 15th March 2023. 

3. Presented paper in National Conference on “Recent Developments in Mathematics 

(NCRDM-2022)” sponsored by Haryana State Council of Science and 

Technology, and organized by Department of Mathematics Kurukshetra 

University, Kurukshetra held on 26th Dec. to 27th Dec. 2022. 

4. Presented paper in International Conference on “Research and Innovation in 

Multidisciplinary studies (ICRIMS-2022)” organized by Sant Baba Bhag 

University held on 30th May to 1st June 2022. 

5. Presented paper in 4th International conference on “Frontiers in Industrial and 

Applied Mathematics” organized by department of Mathematics, Sant 

Longowal Institute for Engineering and Technology, Longowal held on 21-22 

December, 2021. 

6. Presented paper in conference on “Application of Mathematics in Science and 

Technology” sponsored by Director General Higher Education, Haryana held on 

1 Feb.,2020 at Maharaja Agrasen Mahavidyalaya, Jagadhri. 

7. Won first prize in poster presentation during the conference on “Recent Advances 

in Fundamental and Applied Sciences (RAFAS 2019)” held on November 5- 6, 

2019 at Lovely Professional University, Phagwara. 
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