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ABSTRACT 

 
Medical records are often kept on paper. However, the conversion of paper 

medical records to Electronic Health Records (EHRs) is now possible because 

to modern information and communication technologies. Therefore, safeguarding 

user data privacy is essential in healthcare environments. Finding a way to im- 

prove patient data security without sacrificing EHR system functioning and inter- 

operability is one of the fundamental challenges. Privacy protection for electronic 

health records is becoming an issue that the general public is becoming more and 

more interested.Current EHR management systems prioritize safeguarding user 

privacy information above the security risks that occur when patients engage with 

several roles. There is currently no adequate solution to the problem of insurance 

companies accessing confidential patient information and violating their privacy. 

Users’ privacy is under threat due to the increasing number of reported data 

breaches that jeopardize the current system, as third parties manage and obtain 

large amounts of personal data. In addition to identifying possible research gaps 

in the literature, this systematic mapping study aims to evaluate the state-of-the-

art research on security and privacy needs in EHR systems. The major difficulties 

lie in figuring out how to increase the security of patient data while maintaining 

the functionality and interoperability of EHR systems. The volume of patient data 

stored in Electronic Medical Records (EMRs) makes preserving patients’ privacy a 

growing priority that should not be minimized or disregarded. This study proposed 

a novel privacy model based on Machine Learning (ML) techniques and the con- 

ceptual privacy K-ANONYMITY for EHR systems. It highlights the difficulties 

that EHR systems now face, including striking a balance between user friendli- 

ness, privacy and accessibility, and regulatory compliance. The research created 
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a universal privacy model to effectively manage and exchange patients’ sensitive and 

private data across various platforms in order to solve these issues.The most accurate 

method among them was gradient boosting, demonstrating the efficiency of our ML-

based method in detecting insufficient privacy rules. 

This study describes future paths for research, highlighting the need for thor- 

ough assessments, testing in real-world case studies, exploring adaptable frame- 

works, ethical considerations, and encouraging stakeholder participation. This 

study presents a novel strategy for improving the privacy of healthcare informa- 

tion, laying the creative groundwork for further research in this area. A sophis- 

ticated method for storing medical data, conducting medical transactions, and 

building trust in the integration and interchange of medical data within a decen- 

tralised international healthcare network is provided by Blockchain Technology . 

While the healthcare sector has shown significant interest in Blockchain Technol- 

ogy, concerns around privacy and security remain the main areas of disagreement 

when considering using blockchain for exchanging medical data. This study offers 

a block chain-based solution to all of the aforementioned problems. Using Bitcoin 

smart contract technology and homomorphic encryption, we created a feature with 

Blockchain Based Secure Multiple Computations Scheme using Health Care Data 

(BSMPCS) that allows the insurance company to decide whether to execute in- 

surance requests even in the absence of a way to get the ID and plaintext of the 

EHR. Consequently, we ensure that no uninvited parties reveal any private patient 

information during communication, thereby enhancing user data privacy and se- 

curity. The Machine Learning Privacy-Preserving Model (MLPPM) employs Fully 

Homomorphic Encryption (FHE) to ensure data privacy and security while per- 

forming machine learning tasks. By performing computations on encrypted data 

without decrypting it, FHE maintains confidentiality throughout for developing an 

MLPPM model that leverages the Cheon-Kim-Kim-Song-Residue-Number-System 

(CKKS-RNS) FHE scheme and bootstraps to overcome the constraints of conven- 
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tional FHE techniques.Existing models like CryptoNet, SEALion, and CryptoDL 

primarily cater to basic or nonstandard machine learning models and have demon- 

strated limited effectiveness with more sophisticated datasets. These methods 

typically replace non-arithmetic activation functions with approximations before 

bootstrapping, restricting the model’s depth and complexity. This study shows 

a strong way to do deep learning on encrypted data by using CKKS-RNS and 

advanced approximation methods for functions that aren’t math, like ReLU and 

Softmax. Validated our ResNet-50-based model using the MNIST dataset, demon- 

strating high accuracy and performance. The proposed MLPPM model achieved a 

classification accuracy of 92.43 % ,closely aligning with the original ResNet-50 

model’s accuracy of 91.89 % . We have developed a block chain-based solution to 

address all the previously mentioned issues. Using Bitcoin smart contract technol- 

ogy and homomorphic encryption, we created a feature with BSMPCS that allows 

the insurance company to decide whether to execute insurance requests even in 

the absence of a way to get the ID and plaintext of the EHR. Consequently, we 

ensure that no uninvited parties receive any private patient information during 

communication, there by enhancing user data privacy and security. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

The healthcare sector has changed as a result of the extensive use of electronic 

health records, enabling efficient data management, improved patient outcomes, 

and better-informed clinical decision-making. However, this digital transition has 

also introduced new challenges, patient privacy, including data security, and in- 

teroperability across healthcare providers. Bitcoin, with its inherent properties of 

decentralization, transparency, and immutability, emerges as a promising solution 

to address these pressing concerns. A cryptographic technique called Homomor- 

phic Encryption (HE) makes it possible to perform computations on encrypted data 

without the requirement for decryption. This method is used in our solution, which 

further improves patient data confidentiality and privacy [1]. The healthcare sector 

stands to gain a great deal from the integration of Bitcoin into electronic health 

record systems. This is because Bitcoin tackles major challenges relating to the 

management, integrity, and security of data. The decentralised structure of 

blockchain, in which data is maintained across numerous nodes, reduces the need 

for a centralised authority. This minimises the danger of data breaches and ensures 

that patient records are kept in their original state. In addition, the irreversible 

nature of Bitcoin makes it possible to create a tamper-evident audit trail, which in 

turn enables more accountability and openness in the provision of healthcare. 
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1.2 Blockchain 

In addition to improving data integrity and advancing democratic values in the 

healthcare industry, a blockchain-based system puts patients at the centre of the 

system by empowering them with ownership over their data. Ledger system char- 

acterised by its inherent data non-repudiation and immutability, connected by 

an increasing series of records referred to as blocks. Blockchain constitutes a 

decentralised ledger technology. There are two main forms of distributed ledger 

network technologies: permissioned and permissionless blockchain systems. These 

technologies are able to accommodate With many different uses and a vast range of 

consequences, both technically and practically. Individuals are able to participate 

as nodes in the network of permissionless. This is because public blockchains do 

not have any network barriers that prevent them from doing so. Unlike the public 

blockchain, the permissioned blockchain, referred to as the private blockchain, en- 

compasses Hyperledger Fabric. This kind of blockchain utilises an access control 

mechanism to decide whether or not a new node should be added to the network 

[1]. The technology that underpins Bitcoin is known as blockchain, and it is this 

technology that makes it possible for this cryptocurrency to verify a reliable third 

party.When it comes to online payment systems and digital currencies, Bitcoin [2] 

is the first and biggest decentralised digital money. Satoshi Nakamoto was the 

one who first presented it in 2009, and it meant that central banks were replaced 

by computer nodes that were operating all over the globe to authenticate trans- 

actions. The cryptocurrency known as Bitcoin is founded on evidence rather than 

trust, and it functions in an environment that is fully distributed and does not need 

any reliable third parties. Blocks constitute the records that form the blockchain, 

an expanding assemblage of data interconnected by encryption. Each block may 

include health-related data or financial activities. The Genesis Block, the first 

transaction in a blockchain, uniquely lacks a hash of its predecessor. Blocks are 

connected by hash values, therefore even a little change to one block’s content 

might alter its hash and render all future blocks invalid as shown in Figure 5.1. 

A number of essential characteristics are made possible by the blockchain’s one- 
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Figure 1.1: Blockchain with valid data 

 

Figure 1.2: Blockchain with tampered data 

 
of-a-kind structure: A Blockchain Network is distributed in the sense that result, 

Consequently, the network becomes more stable as it lacks a single point of failure. 

Each node independently verifies the data before adding it to the ledger, ensuring that 

the ledger is secure. 

Records that are recorded in a blockchain are both visible and traceable since 

the ledger will forever maintain the history of all data alterations. This makes the 

records immutable and transparent. Many different technologies come together to 

form a blockchain as shown in Figure 5.2. 

The following is a list of the most important technologies that operate inside a 

Blockchain Network: 

1. The design of Blockchain Networks is dispersed, and nodes are connected to one 

another. Peer-to-peer communication methods, such as BitTorrent, are used in 

order to establish connections between participants in a Blockchain Network[3]. 

2. There are hash algorithms, such as MD5 [4], that are used for the purpose 
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of protecting data from being manipulated. 

 

1.2.1 Blockchain Types 

Since its inception in 2008, the Bitcoin has been the basis for the development of 

a great number of applications. Based on two different variables, we are able to 

classify them. 

Validators Right to Remain Naked: In a Blockchain Network, the nodes that are 

responsible for validating transactions are referred to as validators. It is pos- sible 

for validators to be either public or private inside a Blockchain Network. 

Blockchain Networks that include public validators make it possible and validate 

transactions.They are required to first receive the requisite certifications that are 

described by the protocol. Bitcoin [5] and Ethereum [6] . 

Therefore, proof-based consensus techniques are used by the nodes in a permis- 

sionless blockchain rather than trust-based ones. This is because the presumption 

in a permissionless blockchain is that everyone has the capacity to be corrupt. Proof-

based consensus methods, on the other hand, need a significant amount of time 

and have a high energy consumption. Permissioned blockchains, on the other hand, 

are designed to attain a better scalability rate by distributing the trust across a 

predetermined group of participants as shown in Figure 4.3 .For exam- ple, the 

Ethereum Casper blockchain requires permission to use, but the Bitcoin blockchain 

does not. 

 

1.2.2 Smart Contract 

Traditional contracts have been reimagined as computerised forms known as smart 

contracts.  Once certain criteria that have been described by contract writers are 

satisfied, they are a collection of procedures that have been created by the designer 

of the Blockchain Network. Within the context of smart contracts, the contract is 

enforced by a computer program, which eliminates the need for any third parties to 

intervene. A number of parties must reach a consensus on the terms of a contract 

in order to form a smart contract.  They then submit the 
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Figure 1.3: Blockchain types 
 
 

 
Figure 1.4: Submission of a smart contract to a BN 

 
smart contract to the blockchain ecosystem for final confirmation after integrating 

it into a transaction. The smart contract is subsequently automatically executed 

anytime the predetermined conditions are satisfied once it has been deployed to the 

blockchain as shown in Figure 5.3. 
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1.3 Blockchain Platforms and Distributed Stor- 

age 

The selected approach in the proposed framework is justified by comparing is 

made in order to support the technique that was chosen. Some of the most promi- 

nent blockchain systems, including Ethereum, Ganache, Quorum, and Hyperledger 

Fabric, are discussed in this document. As an additional feature, we investigate a 

number in-depth analysis of the Inter Planetary File System that has been sug- gested. 

As a permissionless BN that is distributed and open source, Ethereum comes 

equipped with a Turing-complete programming language that is built in. This 

language allows anybody to use it to construct decentralised applications,via the 

use of smart contract capabilities [7]. These smart contracts make use of a strong 

cryptographic consensus protocol mechanism known as Proof of Work. Block 

mining takes place in the permissionless network. Ether, which is analogous to a 

crytocurrency, serves as the driving force behind each and every transaction that 

takes place on Ethereum. Due to the fact that the network is open, trustless, and 

decentralised, anybody is able to join it; guard against assaults that are directed 

against ledger changes, which makes the network susceptible. Ganache is limited 

to supporting a maximum of ten Ethereum addresses and is unable to engage 

in network mining activities due to the absence of miners embedded inside the 

network. Quorum is an additional Ethereum client blockchain that has been 

enhanced with corporate functionality. This functionality includes enhanced 

performance in a private network, client permission, and privacy features such as 

encryption and encryption. In spite of the fact that it includes a robust RAFT 

consensus algorithm that can handle transactions in fifty milliseconds or less, there 

are still problems about scalability and privacy when it comes to using it to a health 

data network. Due to the fact that Hyperledger Fabric offers a greenhouse 

structure that can be adjusted according to the requirements of the organisation, 

it is suitable for applications in the healthcare industry. 
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Transferring power from a centralised institution to a system that is more 

broadly spread is what we mean when we talk about decentralisation. Blockchain 

technologies include Ethereum and Bitcoin that decentralise financial transactions 

and information systems. The word ”decentralisation” is now being used in con- 

nection to these forms of technology, despite the fact that the present storage 

systems are restricted and that they leak data. It is a system that allows for the 

storage of information without the need to answer to big, centralised data silos. 

This makes it possible for data to be kept in a manner that is both decentralised 

and safe. In specifically, the major goal of Swarm is to store and disseminate De- 

centralised Application (DAPP) code and data as well as blockchain data. One of 

the key objectives, In addition, Siacoin is a platform that offers incentives, much 

like Storj. 

IBM and the Linux foundation collaborated to build Hyperledger Fabric, a 

permissioned blockchain platform designed for business blockchain applications. 

In order to achieve its goals of robustness, flexibility, and secrecy, the Fabric de- 

sign applies a paradigm known as execute-order-validate. This paradigm assigns 

distinct duties to each node in the network. Among the following jobs, this might 

be one of them: 1) Clients provide the transaction suggestions for the purpose of 

being carried out 2) Transaction proposals are carried out by peers, and transac- 

tions are validated by peers. All peers uphold the ledger, wherein transactions are 

documented as a hash chain. 

 

1.3.1 Bitcoin and Cryptocurrencies 

At current moment in time, internet business and e-commerce are seeing rapid ex- 

pansion, and the majority of online payments are processed by third parties that 

are trusted by the companies involved. The financial institution that acts as a third 

party encounters a number of limits and defects, including those pertaining to 

cost, time, and storage, in addition to concerns about security. There is no 

attempt made to prevent the irreversibility of the transaction in order to resolve 

the disagreement via mediation. If the transactions are carried out in person and 
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with cash, then all of these problems may be avoided. In light of the fact that this 

is rapidly evolving, a new system that does not rely on a central authority is 

required to guarantee that the payments are legitimate and devoid of fraud. Be- 

cause of the pandemic, there is an increased need for a new technology that is both 

cutting-edge and capable of providing security. During the year 2008, a compara- 

ble electronic payment method was introduced [8]. Someone, an organisation, or 

an unknown individual with the moniker Satoshi Nakamoto came up with the idea 

first. Satoshi’s proposal was based on the concept of using cryptographic-proof 

techniques to develop an electronic system that would allow parties to conduct 

transactions without the requirement for third parties to be involved. As a result 

of the invention, a new technology that is today known as BT was developed. A 

greater degree of adaptability has been achieved by this technology as a result of 

its widespread use, versatility, usefulness, and accessibility. This technology elimi- 

nates the need for a middleman in the payment process and eliminates the issue of 

duplicate spending. In the context of cryptocurrency transactions, such as Bitcoin 

exchanges, it functions as a protocol. Bitcoin, the very first cryptocurrency, was 

the first to use this for trading purposes. It offers a probabilistic strategy, which 

allows it to address a very well-known issue in computer science known as ”The 

Byzantine Generals Problem.” This challenge raises problems about the consensus 

about distributed systems [9]. Numerous other crypto currencies came into being 

and quickly acquired popularity there after. 

cryptocurrencies: Bitcoin is considered by some who are involved in the cryp- 

tocurrency sector to be the internet’s equivalent of the gold standard. The first 

cryptocurrency to be released into the market was Bitcoin. exchange assets be- tween 

two individuals who are not subject to the authority of a single entity. Of all the 

cryptocurrencies now available on the market, it has the most widespread brand 

awareness. Bitcoin is not susceptible to fabrication or inflation in any form. The main 

goal of the blockchain for Bitcoin is to ensure that records of ownership of digital 

currency are kept. 

Ether: Swiftly ascended the ranks of the market capitalisation of cryptocurren- 
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cies to grab the second place position. In the near future, Ethereum is expected 

to surpass bitcoin. The Ethereum Blockchain is primarily concerned with the 

Ethereum Network, which may be thought of as the execution of individual com- 

puter programs. Because of the evolution of Ethereum, a single platform has the 

potential to host thousands of different applications [10]. 

When it was first released in 2011, Litecoin had the intention of eventually 

becoming silver. Litecoin was designed in order to address the inadequacies of Bitcoin 

itself. As a result, the time required to create a block for litecoin is around 2.5 

minutes, while the time required for bitcoin is 10 minutes. Moreover, it is capable of 

managing a greater number of transactions per second. Additionally, double spending 

may be prevented by reducing the block time length [11]. 

A distributed database, a decentralised network, and a digital ledger that is 

able to store and update data in an efficient manner are some of the characteristics 

that constitute Bitcoin. By employing the traditional procedures that are used 

in the financial industry, peer-to-peer networks that are constructed on nodes 

have the potential to store and connect more general assets. It is often referred 

to as three-dimensional technology. In order to prevent any changes from being made 

to the data, cryptographic algorithms and encryption methods are used to safeguard 

it. Every transaction is linked to one another via the use of hashes, and it is then 

kept as a block that has been time stamped. BT relies heavily on both 

cryptography and hashing to perform its critical functions. For the purpose of 

recording the transactional facts, the Merkle tree concept is used [11]. 

The operation of Bitcoin is shown by the fact that a decentralised system is 

managed by its users directly, without the participation of any intermediaries or 

central authority from the outside. It simplifies the process of transmitting money 

to any other node or user on the network, eliminating any potential complications. 

To put it another way, Blockchain makes it possible to make payments to everyone 

on the network in a quick and efficient manner. A cryptocurrency, such as Bitcoin, 

is made up of a network of peers that operate independently of one another. On 

file, each peer has a copy of the whole transactional history that has been recorded. 
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This illustrates that bitcoin is protected by clever mathematical computations 

rather than by persons who can be trusted. It makes no difference to blockchain 

if a cryptocurrency represents a certain quantity of dollars, cursors, or any other 

unit of measurement. It is up to the nodes to decide the currency unit they will 

use. There are a variety of transactions that may be conducted using BT, not only 

those that are linked to payments and finances. Several other commodities, such 

hundreds of barrels of oil, award credits, or an electoral vote, are all examples of 

things that may be represented by a cryptocurrency. The user is the one that 

initiates both the transaction and the building of the block first. The newly created 

block has to be validated across every node that comprises the BN. The transaction 

is not considered finalised at the receiving end until the block has been added to 

the Blockchain, which occurs only when confirmation has been completed. 

Following the completion of the transaction, the dispersed network subsequently 

receives an update [12]. 

Implementation of Bitcoin : Before trying to apply Blockchain in conventional 

applications, it is vital to evaluate whether or not the technology is compatible 

with all existing systems and whether or not it produces beneficial results. Follow- 

ing the completion of the study, a decision tree was developed in order to choose 

this and then apply it to the system that is most suitable for it. In order to 

make a choice, one may take into consideration the characteristics of an appli- 

cation, which include the required degree of trust, the speed of transactions, the 

secure system, authorisation, and the capability to prevent reversibility. This is a 

representation of the Decision Tree that will be used to assist in the choosing of 

procedure. Following the tree, there are two fundamental sorts of ledgers: permis- 

sioned blockchains, which are private, and permissionless blockchains, which are 

public. If one continues to be interested in using the rapidly expanding technology, 

there are two types of ledgers. 

1. Whether the Blockchain will be public or private is something that is de- 

cided by the Functional Requirements. The Permissioned Block is mined by 

verified miners who have been granted permission to do so.  A miner 
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who is permitted to do so will be in charge of managing the Permission 

Blockchain network. It is possible to configure each and every function in a 

network that has permissions in accordance with the rights that ought to be 

given determined by the platform. According to [13], the main responsi- bility 

of the block miner is to validate a transaction. A miner is eligible to earn 

compensation if they are able to successfully complete the verification process. 

2. Using a transaction ID, each and every transaction that is recorded in the ledger 

may be recognised. Specifically, the public key of the sender and the public 

key of the recipient are used to determine the contents of the transaction. The 

amount that is going to be sent to the beneficiary, in addition to the fees that 

are going to be charged for the verification of the transaction, is referred to as 

the ”input” in the transaction. The output in this case indicates the total 

amount of money that is now accessible in the user’s wallet. 

Bitcoin Protocols : Within the realm of computer science, a protocol may be 

defined as either a set of principles or a method that regulates the transfer of data 

between different technological devices. Because of this, it is much simpler for 

computers to connect with one another and exchange information in an appropri- ate 

way by adhering to already established standards. Specifically, the protocol 

specifies the format of the data that will be sent and received by the parties [14]. DNS 

and TCP/IP are the protocols that are used the most often on the internet. The 

word ”blockchain” describes a dispersed collection of computers, also known as 

”nodes,” that are connected to one another in a network via the use of the In- ternet. 

All of the computers (nodes) that are members of this distributed system and that 

are attempting to establish connections with one another have reached a 

consensus on a set of rules that have been predetermined and control how the system 

functions. A set of standard rules must be adhered to by networks in order for them 

to function properly. The governance of the BN that is responsible for controlling 

all of the nodes that are participating is referred to as the protocol. 



12  

This section [15] contains a list of many procedures. 

First and foremost, it was developed for the digital money known as Bitcoin. All 

bitcoin transactions are conducted in accordance with the rules and restrictions 

that are outlined in this protocol. 

These are the objectives that the Bitcoin Protocol aims to accomplish: 

 
1. Due to the fact that the Network is public in nature, anybody who has both 

private and public keys is able to join it. 

2. One is able to join this form of network without first obtaining authorisation. 

 
3. The implementation of technical components consensus mechanisms, Peer- To-

Peer (P2P) networks, digital signatures, encryption, and cryptographic hashing 

algorithms should be included. 

4. All of the information that is stored on the Bitcoin Blockchain will be ac- cessible 

to any system that is connected to this network. 

5. As a result of the fact that nodes are able to carry out transactions that 

cannot be undone, trust may exist without the participation of third parties. 

Ethereum Protocol is a decentralised platform for Bitcoin. Because it is open 

source, Ethereum makes it possible for developers to construct and run Decen- 

tralised Applications (DApps) without the need for support from other parties. 

Application creation is made easier by Ethereum’s native programming language, 

which is used for the platform. On July 30, 2015, the Ethereum main net was 

made available to the public. The implementation of Ethereum’s concepts in a manner 

that is more generalised is accomplished by the use of programming in general ways 

(all-in-one blockchain approach). Vitalik Buterin was the one who came to the 

conclusion. In addition, it makes it possible for multiple of these resources, each of 

which has its own state and programme that is now executing, to communicate 

with one another by using a framework that is designed for mes- sage passing. The 

Ethereum MainNet is accessible to each and every person that has access to the 

internet. Any anybody who has access to the internet is able 
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to generate transactions, verify them, and add them to the Ethereum production 

Blockchain. In addition, those connected to the main network may be able to 

access the recorded transaction. [16] 

Intelligent Contracts : A ”Smart Contract” is a piece of code which is built on 

Bitcoin that is used to facilitate, execute, and enforce any conditions of an 

agreement between unreliable parties. When it comes to the Blockchain, smart 

contracts are agents that are self-sufficient and self-verifying. An IF-THEN logic 

structure might be used to indicate the requirements or rules that are included in 

the agreement; however, the agreement is much more than that. Ethereum is an 

implementation of the Blockchain that makes it possible to use smart contracts, 

which in turn increases the usefulness of the product. A contract is a complete 

collection of code (modules) and data (context) that is created in Solidity and 

is kept on the Ethereum Platform at a specific address. Contracts that are able to 

carry out and enforce their own conditions are referred to as smart contracts. In 

order to regulate them, the terms and conditions that are specifically specified 

within them are applicable. In his article, Szabo asserts that physical vending 

machines are a ”ancient predecessor of smart contracts.” As well as a product, 

they are given coins and are responsible for providing the appropriate change in 

accordance with the price that has been indicated [17]. 

While ”smart” refers to anything that demonstrates quick thinking, ”contract” 

refers to something that is intended to be upheld by a court of law or other agreement. 

A ”smart contract” is an intelligent agreement that is automated, self-verifiable, 

and written in a computer language based on JavaScript. The Ethereum platform was 

the first to introduce smart contracts. For instance, smart contracts are instances of 

bespoke logic that has been installed. The Ethereum Virtual Machine(), often known 

as the EVM, can carry them out. With the use of smart contracts, it is now feasible to 

create transactions and transfer them across accounts. They are similar to classes in 

object-oriented programming in a number of aspects. Calls are the means by which 

smart contracts communicate with one other. Certain functions could be started 

during the instance creation process, and 
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specific logic might be used to update the contract’s contents. During the pro- 

cess of developing the Smart Contract, three significant areas of study, including 

anonymity, privacy, and confidentiality, are given priority. With the technology 

sharing all of the data without any checks or barriers, anonymity is a worry that 

has to be addressed. Users are able to generate an unlimited number of addresses, 

which has an impact on their identity. One cryptocurrency that has been sug- 

gested is called zero cash, and it is designed to fulfil privacy criteria by concealing 

all information other than the transactions [18]. It is also possible to achieve 

cryptocurrency privacy by using coin mixing techniques that are compatible with 

Bitcoin in order to establish an entirely new cryptocurrency. In his definition of a 

smart contract, A digital representation of it is what we mean when we talk about 

a smart contract.A lot of the definitions of smart contracts that were proposed by 

Sean and Cooper were taken into account by the author. Rather than being 

written in plain English, smart contracts are constructed using computer code. This 

is the defining characteristic of smart contracts. 

Cryptography : Inside the context of the cloud, the term ”cryptography” refers to 

a technique that may be used to acquire data that is either stored or utilised inside 

the cloud. It is possible for consumers to make use of shared cloud services in a 

way that is both helpful and safe since all of the information that is offered by 

cloud providers is secured for their protection. Over the course of the eigh- teenth 

century, the term cryptograph, as opposed to cryptogram, has been used for the 

majority of the time. Up until quite recently, the word ”cryptography” was solely 

used to refer to encryption, which is the act of transforming plaintext (information 

that is normally understood) into ciphertext (structure that is not understandable). 

Decoding is the opposite of decoding, which is the process of retrieving plaintext from 

scrambled ciphertext. There are a few calculations that make up a cypher (also known 

as a cypher) that are responsible for switching de- coding and encryption [19]. 

Together, the algorithm and a ”key” are responsible for governing the particular 

actions that are carried out by a cypher. The private key, which is often a string of 

characters that may be used to decipher ciphertext, 
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is meant to be known only by the individuals who are communicating with one 

another. In the past, cyphers were usually employed directly for the purpose of 

encrypting or decoding data without the necessity for any further processes, such 

as verification or credibility checks. To talk more generally, there are two sorts of 

cryptosystems, which are as follows: 

Cybersecurity based on symmetry : Before the 1970s, these systems used the 

same key for both encrypting and decrypting a message. This practice continued 

at that time. When contrasted with asymmetric cryptography, the length of the 

key that is used in symmetric cryptography is rather short by comparison. 

An example of a symmetric algorithm in use for a considerable amount of time. 

AES is among the most extensively used encryption algorithms. 

asymmetric : It is the ”public key” that is used in asymmetric systems for the purpose 

of scrambling a message, whereas a connected ”private key” is utilised for the 

purpose of unscrambling the message. Additionally, these two keys are linked to one 

another in some way. One of the reasons why this method makes the discussion 

more safe is because it is so difficult to detect the link between the two keys. This is 

one of the reasons why this strategy is so effective[20]. Both of these algorithms are 

instances of symmetric algorithms. 

 

1.4  Bitcoin for Preserving the Confidentiality 

of EHRs 

As EHRs are housed on centralised systems in silos, the security risk footprint is 

increased. Moreover, reliance on a one authority is essential, which is incapable 

of sufficiently safeguarding data from internal threats.. One of the challenges that 

the healthcare sector is now facing is a lack of interoperability in EHR. The 

absence of interoperability hinders the aggregation and evaluation of patient data. 

The fragmented nature of health data in the existing systems makes it difficult to 

exchange information with healthcare providers or other interested parties since 

these systems use diverse formats and standards. Internal attacks, in 
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which individuals who have authorised senior management inside organisations, 

are the attackers, are a serious problem in respect to health records that are stored in 

cloud servers. These assaults are far more severe than external attacks. under the 

systems that are already in place since service providers are the ones who are in 

charge of managing them. Patients may be left susceptible to assaults that have 

exacerbated cyber risks [21] EHRs. Centralised databases can leave patients 

vulnerable to attacks. 

E-Health, which stands for ”electronic health”, is a term that describes the use 

of information and communication technology in the medical field. Healthcare sec- 

tor as a result of the development of industry 4.0, which enables the Internet of Things 

(IoT), mobile technologies, wearable devices, and artificial intelligence. There have 

been significant developments in the healthcare sector brought about by the 

advancements in industry 4.0. These advancements include improved treat- ment 

quality, greater communication, remote monitoring, and a reduction in costs, among 

other benefits. EHRs mobile health, and anything else that falls under the umbrella of 

e-health are all included. According to Eysenbach (2001), the letter ’E’ in e-health 

is also a symbol for the ten E’s, which are as follows: efficiency, evidence-based care, 

enhancing the quality of care, education, empowerment, en- couragement, expanding 

the scope of health, enabling information sharing, ethics, and equity. 

Privacy preserving data publishing has gained good attention among researchers in 

the recent years. Healthcare data publishing is crucial for medical research such as 

innovative medicine, early diagnoses, and accurate treatments. Health- care 

organizations generally collaborate with research and development teams or 

pharmaceutical companies to perform data analytics. Healthcare organizations 

collect personal information from the patients. The collected data may contain 

personal identities, medical history, diagnosis, and test results. Such data possess 

huge volume of information for healthcare research. Hence, before publishing the 

data to the third party researchers or pharmaceutical companies the healthcare 

organizations should abide to the ethical and government regulations to protect 
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the privacy of the individuals. To protect the privacy, healthcare organization 

needs to transform the data that does not leaks the personal information. Privacy 

protected version is called anonymization.Anonymized version of the data can be 

shared among the third party researchers for data analytics. Hence, it is important 

that the anonymized version of the data provides proper data utility. 

Privacy preserving data publishing process comprises of three phases: data 

collection phase, data anonymization phase and data publishing phase. Data col- 

lection phase consists of data generation and data preparation phases. In data 

generation phase, the data is generated by patients, physicians, doctors, lab tech- 

nicians, and medical devices. The data controller then processes the produced raw 

data during the data preparation stage. The data controller prepares the data for 

publishing without the personal identities of the patients. In data anonymization 

phase, the data controller applies privacy preserving anonymization techniques to 

protect the data. The anonymization techniques transforms the specific details of 

individuals to less specific details. Then in data publishing phase, the anonymized 

version of the healthcare data are shared with the third party researchers and 

pharmaceutical companies. 

The Patient Controlled Electronic Health Record System(PCEHR) employs BT 

as a solution to address the predominant limitations of the existing distributed 

environment. In this approach, the patient universally consents to the sharing of 

personal data with all stakeholders, except in cases deemed emergencies. These 

blocks are interconnected to form a chain secured using public key encryption 

cryptographic principles. Blockchains are unalterable and publicly visible. 

Due to the fact that the blocks are connected, after the data have been 

recorded, it is not possible to make any changes to them retrospectively with- out 

also modifying all of the blocks that come after them. Additionally, it makes use of 

a scripting language in order to execute intelligent smart contracts [23]. Our study 

takes use of the inherent qualities of BT in order to construct a prospective 

framework that offers assistance for the transition. This framework is designed to 

meet use cases in the health care industry place between the entities that are part 
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of the Health chain network. 

These EHR are stored in the Inter Planetary File System (IPFS) in order 

to construct this private Healthchain network. The Healthchain framework is 

constructed on Hyperledger Fabric, which is a permissioned distributed ledger 

solution. Hyperledger Composer is used to create the framework. 

IPFS, which is a decentralised storage system. In addition, the Healthchain 

architecture that has been presented only permits the addition of genuine records 

to the blockchain, which is verified via the process of consensus information is only 

granted to users under the condition that they have given their consent. 

For the purpose of developing solid blockchain solutions for electronic health 

data, the information that is kept in the IPFS will be encrypted by means of 

a one-of-a-kind cryptographic method for public key encryption. The design of 

our research project is centred over the provision of access rights to authorised 

stakeholders. Prototype that not only analyses the blockchain approach but also 

reveals the potential applications of BT in healthcare solutions. 

 

1.5 Existing Methods in Bitcoin 

This is due to the absence of network obstacles in public blockchains that would inhibit 

such actions. Another aspect to consider is that transactions on public chains are 

transparent and accessible, although maintaining anonymity; never- theless, this level 

of visibility is less favourable in the healthcare sector, which is tasked with 

safeguarding sensitive health information. When compared to the pub- lic blockchain, 

the permissioned blockchain, also known as the private blockchain, which includes 

Hyperledger Fabric, utilises an access control mechanism to decide whether or not a 

new node should be added to the network at any given time. The earlier studies, 

on the other hand, call for ether to be provided in exchange for transactions in the 

healthcare sector. 

On the other hand, this system accesses data without the patient’s express 

consent, and it does not let other members of the data should be accessible to the 

patient’s relatives in case of an emergency. Scalability is a significant challenge, 
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since on-chain data storage results in the centralisation of the blockchain. This is 

due to the fast expansion of e-health data. Distributed ledger, and scalabil- ity 

presents an additional problem as the volume of EHRs increases each second. 

[22] have created an additional blockchain application, namely a blockchain that 

utilises EHRs to store healthcare data in a public and secured manner. Another 

use of blockchain innovation in the healthcare sector is Medchain, a permissioned 

collaboration between stakeholders created to make it easier for individuals, phar- 

macists, and hospitals to share medical data [23]. On the other hand, the ar- 

chitecture that stores the real data on the blockchain has serious problems with 

both privacy and scalability. An alternative that is decentralised was presented by 

Zyskind et al.[24], responsible for enforcing access control measures. Due to the 

fact that the metadata of the patient is revealed, which in turn exposes all other 

information, the safeguarding of data privacy is an extremely important concern 

with this BT. There is a lack of security, privacy, and scalability amongst all of the 

options that have been considered, and these problems have not yet been resolved 

[25]. 

Despite the fact that there are many techniques that employ BT to shar- 

ing healthcare information, such as EMRs and personal health records (PHR), 

these methods do not yet solve the issue of data storage or the effective exchange of 

health data [22] [18] .It was hypothesised that a different Internet of Things- 

oriented blockchain platform may use blockchain-based smart contracts to monitor 

patients’ vital signs [26]. Andrea and colleagues came up with the idea of using Hy- 

perledger Fabric blockchain smart contracts to create a provenance management 

platform that would allow for the monitoring of electronic healthcare information 

. Using Bitcoin and open electronic health record interoperability. 

 

1.5.1 Components of the Health chain Framework 

The Membership Service Provider (MSP) [9] is responsible for abstracting all of the 

cryptographic processes that are involved in the health chain. Participating 

organisations have the option to establish an external CA if they want to do so. 
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The consensus mechanism for transactions is a core layer of BT that is one of its 

most important properties. It was developed by IBM under the Linux Foundation 

with the purpose of providing solutions for distributed ledger transactions. Hyper- 

ledger Fabric, a permissioned blockchain infrastructure composed of pre-specified 

parties, is used in this research to enable the safe and reliable transmission of 

medical data without the need for a central authority. 

Go programming language and are distributed and instantiated on channel 

peers by authorised participants. The study uses smart contracts, which include 

the application logic for electronic health record transactions. These contracts are 

especially beneficial for data transfer, access management, and request processing. 

They may be used to update medical records, enable physicians to document 

information, transmit electronic referrals to other practitioners, modify ownership 

details, and issue electronic prescriptions to pharmacies. 

The Internet Protocol File System is a peer-to-peer distributed file system that 

might potentially replace HTTP. It aims to convert the existing iteration of the web 

into a decentralised one. In the case that the data surpasses a specified threshold 

(dimensions exceeding 256 KB), IPFS will distribute the encrypted data over many 

nodes. This research use the Internet Protocol File System (IPFS). 

 

1.6 Security and Privacy for Cloud-Based E-Health 

Data 

A pressing need to protect and preserve data in order to ensure patient confiden- 

tiality. The following are crucial requirements for EHR security and privacy: 

1. The protection of data confidentiality guarantees that sensitive health in- 

formation is not disclosed to anyone who are not permitted to receive it. 

Encryption of data is the most significant method for protecting the secrecy 

of data transmissions. Authenticity is the third component, and it guar- antees 

that only allowed and genuine authorities have access to sensitive health 

information. The need to be accountable and to defend the acts and 



21  

choices of people or organizations is what we mean when we talk about ac- 

countability. The concept of non-repudiation relates to the fact that the 

legitimacy of a sender and recipient is not undermined. Patients and medi- 

cal professionals, for example, are unable to renounce their claims after the 

theft of health information[29]. This paradigm is less patient-centric and is more 

susceptible to assaults from insiders, which renders individual health data more 

susceptible to being compromised. This is one of the most signif- icant 

drawbacks associated with cloud computing. In spite of the fact that cloud 

computing approaches successful when used in e-health, taking into 

consideration the security concerns. 

2. The electronic health system is a relatively new invention in the health- care 

industry that makes use of electronic operations and communication. 

According to [15] , an EHR and EMR is a methodical compilation of the 

electronic health information of patients. Additionally, the cloud enables 

cost-effective storage for any information that is stored. As a result of the 

fact that all of this information is saved on several servers, it is readily ac- 

cessible to users from a variety of places whenever they need it. E-health 

systems offer to provide patients with quick, reliable, and on-demand access 

to their medical information, as well as a reduction in medical errors and an 

improvement in the quality of treatment. However, they also put pa- tients’ 

privacy at risk by allowing incorrect authorization and allowing EHR data to 

be misused. When it comes to the sharing or accessing of patient data 

amongst several stakeholders, security and privacy are regarded to be 

essential needs. 

3. In order to ensure the confidentiality of electronic health record EHRs data, 

which contains sensitive patient information and is stored on servers owned by 

a third party, access control techniques are necessary. In the health- care 

system, access control is a security barrier that restricts the operation of 

healthcare documents and the access to those documents. The ability to give 

specific responsibilities to users in order to provide them access to data is 
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made possible by role-based systems [27]. In contrast to IBAC, which makes 

use of identity-based encryption procedures that make use of user identi- 

fication for the purpose of data encryption, Attribute Based Access Con- trol 

(ABAC) [28] makes use of both cryptographic and non-cryptographic 

approaches. A distinguishing characteristic of e-health systems is the abil- 

ity to share data. It is possible for numerous parties, including healthcare 

providers, hospitals, healthcare organisations, and others, to exchange data 

with one another. One further significant function that an electronic health 

record system may do is search. When compared to paper-based records, 

EHRs need less time, personnel, and physical storage [20] .EHRs provide a 

number of benefits, including the facilitation and acceleration of medical ex- 

penses, and the improvement and reinforcement of clinical decision-making 

support. This is because these institutions have recognised the advantages 

that an EHD system offers. 

In spite of the fact that EHRs face a number of issues in the healthcare industry, 

the most significant of these challenges deal to the protection of personal informa- 

tion and the prevention of unauthorised access [1] . Distributed Denial-Of-Service 

(DoS) attacks, which have the potential to prevent a system from providing ef- 

fective patient care, are two examples of the many types of risks that may occur. 

The consequences of cyberattacks, such as those generated by ransomware, are 

deeper and more far-reaching than the loss of financial resources or the invasion of 

personal privacy [5] . Anonymous, a group of online vigilantes, attacked a num- 

ber of hospitals and executed a distributed denial of service assault (DDoS) on 

their websites, which rendered medical services inoperable [2]. There are already 

a number of methods that are being used in order to protect the confidentiality 

and safety of intelligent health systems that are hosted on the cloud. 

It is possible to apply some of the more sophisticated privacy-protecting mea- 

sures that are used to maintain cloud security to e-health, while others cannot be used 

because of security concerns. This is because of the security concerns that are 

still there. At the same time as it offers the highest possible degree of data 
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privacy, the system is immune to attacks that include collaboration. This strategy 

has the potential to be used in the e-health cloud for the purpose of achieving effi- 

cient data storage. In addition, this method cannot be considered for EHRs since 

it does not prioritise the patient and is computationally impossible to implement 

for issues of a real-world size. 

 

1.6.1  Methods for Protecting Patients Confidentiality in 

EHRs 

Additionally, the difficulties that these methods provide in the field of e-health are 

also discussed. In addition, a number of methods that protect data privacy, data 

anonymity, and data security in the cloud are reviewed and assessed. Cer- tain 

searchable encryption (SE) approaches are offered which are discussed below. 

Normal searching strategies are unable to be used since the data is encrypted and 

kept on cloud servers that are owned and operated by a third party. Because it is 

difficult to search encrypted data, Searchable Symmetric Encryption (SSE) has 

been offered as a solution. This encryption method allows keyword searches to be 

conducted across encrypted cloud data. When compared to more current surveys, 

our research study is distinct. 

Covers in a methodical manner all topics and approaches of electronic health 

record EHRs privacy and security in the cloud. Additionally, the study sheds 

light on the sophisticated cloud computing security solutions as well as the re- 

search issues associated with them. At the same time, it combines the possible 

advantages of the BT in order to compensate for the deficiencies that have been 

identified. In addition, we bring the conversation to a close by addressing the 

areas of data privacy and security. Cryptographic systems make use of encryption 

methods, such as symmetric key encryption, public key encryption, and a number 

of other cryptographic primitives. The categorisation of the methods that protect 

individuals’ privacy 

As an early system, PEKS was suggested by Boneh et al. [22]. This technique does 

not reveal any information that is related and it also has a reduced communication 
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Figure 1.5: Categories of privacy preserving mechanisms 

 
complexity. The elimination of a secure channel, the processing of numerous 

keywords, and the renewing of keywords are the three primary concerns that are 

addressed by this technique [11], which addresses the PEKS scheme. The ones 

who first proposed the concept of PEK being combined with a registered keyword 

search (PERKS). The flexibility offered by this technique allows the sender to 

construct material that can be searched. This allows the sender to design content 

that is also searchable. Because of this, the technique is more effective and safe 

against attacks that involve guessing keywords away from the system. 

Using this method, the cloud service provider is responsible for performing partial 

decryption duties that have been given by the data user. However, the cloud 

service provider does not have any knowledge on the plain text that has been 

selected. Keyword search that is based on verified associated attributes. 
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1.7 HE: Preserving Privacy in EHRs 

Patients EHRs [1] include comprehensive information on their medical history and 

health problems. The records include sensitive information that the patient would 

wish to remain private, such as previously diagnosed medical conditions and drug 

abuse. Whether done purposefully or inadvertently, sharing such infor- mation 

might have very negative effects on the patient in question. Unfavourable 

outcomes might include things like social shame, trouble finding work or health 

insurance, and more [3]. Legislation like as the Health Insurance Probability and 

Accountability Act (HIPAA) has been established in an effort to give individuals 

greater control over their EHRs. As a result, the privacy of these documents has 

to be safeguarded, and this has led to extensive study and analysis [5] as shown in 

Figure 5.4. 

It is because of its vast storage capacity, resource savings, easier querying, and 

enhanced efficiency in diagnosis and treatment that EMRs, Concurrently, the rapid 

expansion of EMRs has resulted in the easy disclosure of patient privacy, which has 

become a problem [10]. The two basic ways in which EMRs have the potential to 

jeopardise medical privacy are the leaking of information from hospital internal 

information systems and the leaking of patient information owing to the sharing of 

EMRs inside the hospital. There is also an issue where medical staff members sell 

patient private data in certain regions. Additionally, privacy leaks are simple to occur 

during the publication of EMRs. Hospitals, for instance, provide patient data to 

medical analytic organisations in order to compile statistics on patient data. Patient 

data, particularly very sensitive illness information, will be fully visible if privacy 

information is not safeguarded. The problem of Electronic Medical Record (EMR) 

privacy leaks is receiving more attention these days. 

In order to safeguard the sensitive data, cryptography approaches make use of 

security precautions including encryption mechanisms [12, 13]. Lastly, policy 

approaches protect patient privacy by using guidelines and limitations to validate 

identity and provide access to confidential information [14, 15]. Consequently, 

anonymization techniques cannot ensure the privacy of a diligent patient who is 
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now receiving medical care or undergoing a surgery as identification is lost across 

several datasets. As a result, the workable solution in these situations necessitates 

the use of policy techniques, cryptography, or possibly both [16]. 

A topic that is both fascinating and difficult to tackle is the publication of data that 

protects patients’ privacy in EHRs. When it comes to releasing data, there is 

always a trade-off between one’s privacy and their usefulness. As a result of the 

fact that the majority of privacy-preserving models exhibit significant privacy 

disclosure concerns, these models are not resilient when applied to actual datasets. 

The k-anonymity model is a privacy model that is often used to analyse privacy 

disclosures; however, with the exception of identity revelation, this model is only 

helpful against privacy disclosures. In the last several years, a number of privacy model 

modifications have been developed in order to solve the restrictions that are 

associated with k-anonymity. 

Recent years have seen a significant advancement in information technology, with 

cloud computing seeing an increase in applications and the widespread usage of HE 

technologies in cloud computing and cloud storage [1]. But as cloud com- puting has 

grown, so has the issue of protecting data privacy, which has grown in importance and 

is now a critical security issue that has to be resolved. However, HE technology 

based on public key cryptosystem has a more complicated calcu- lation process that 

cannot handle high volumes of calculations and many users, and there is no reliable 

cloud centre [2–3]. Consequently, while aggregating data, the HE technique is used 

to safeguard data privacy, thereby safeguarding user privacy as well. The ultimate 

outcome of aggregation is what the cloud centre re- ceives, and because no user’s 

personal information is revealed, user data security is guaranteed. The HE technique 

offers several benefits over the RSA encryption method in terms of computing speed 

and data privacy protection, demonstrating its ability to successfully safeguard 

users data security. 

The primary issue with cloud computing is security. One major problem is the 

data that is sent to outside service providers for processing and automation. Every 

company or organisation wants access to the user’s private and sensitive 
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information. All organizations public, corporate, healthcare, or academic—need 

data to design new marketing campaigns, conduct research, develop policies, or in- 

troduce ground-breaking products. Our primary worry is healthcare privacy since, 

by 2026, the healthcare cloud computing industry is expected to surpass US$ 40 

billion, according to a report conducted by Acumen Research and Consulting [4]. 

Cloud computing in healthcare lowers costs while also boosting efficiency. It is 

quick, but the most important thing is to preserve patient-sensitive data since do- 

ing so will boost patient trust and support economic growth. The goal of digitising 

patient medical records is to save expenses while increasing the effectiveness and 

quality of service. However, patient records include a significant amount of private 

information. Patients must thus be able to quickly provide a variety of medical 

affiliations access to their private data in a straightforward, reliable, effective, and 

safe manner. Thus, it is essential to examine the use of HE in the healthcare indus- 

try and evaluate several homomorphic algorithms for data querying and sickness 

prediction while maintaining patient privacy. 

The rapid digitization of healthcare data has led to a significant increase in the 

availability of EHRs. However, this abundance of data has also raised con- cerns 

about patient privacy, as sensitive medical information could be accessed by 

unauthorized parties. The use of HE has emerged as a potentially useful solution 

to this problem. It makes it possible to do safe computations on encrypted data 

without going through the process of decryption. The use of HE makes it pos- 

sible to carry out certain mathematical operations on encrypted data, with the 

end result being identical to what would have occurred if the operations had been 

carried out on the data that had not been encrypted in the first place. This has 

significant implications for the healthcare industry, where large datasets of med- ical 

records can be analyzed while preserving patient privacy. One application of HE 

in the medical field is private predictive analysis on encrypted data. This technique 

allows for the development of predictive models using machine learning, contributing 

to advancements in medical science and public health. HE has also been proposed 

for use in secure medical cloud computing. By utilizing fully HE, 
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data can be stored and processed in the cloud without the cloud provider being 

able to access the sensitive information. Researchers have demonstrated the fea- 

sibility of implementing HE for medical applications. A study on private Naive 

Bayes classification of cancer data showed that fully HE can provide accurate re- sults 

while preserving patient privacy. Similarly, another study on cardiac health monitoring 

in the cloud found that HE can be a viable solution for secure medical data processing. 

The literature on the use of HE in healthcare is growing, with several studies 

highlighting the potential benefits and challenges of this technol- ogy. One study 

examined the use of HE for machine learning in medicine and bio informatics, 

demonstrating the ability to perform tasks such as data classification and model 

training on encrypted data. Another study explored the application of private 

Naive Bayes classification on personal biomedical data, including can- cer data 

analysis. The potential for HE to enable private predictive analysis on encrypted 

medical data has also been explored, with researchers highlighting the need to 

balance privacy concerns with the potential public good that can come from such 

analyses. 

The encryption and decryption processes of private key encryption are carried 

out using a single key. For the purpose of transmission, the asymmetric key 

encryption key makes use of a pair of keys. During the transmission process, 

the public key is typically accessible to both of the people involved. There is a 

possibility that the public key may be accessed via the directory that is generally 

accessible and has access to resources. The information included in the private 

key is only accessible to the individual who is sending the message. It will be kept 

confidential. In terms of the pace at which the encryption is performed, the private 

key encryption is a little bit quicker than the public key encryption. Users who are 

already familiar with one another may employ private key encryption. Because the 

sender and the recipient are required to have access to the secret key at the same 

time. Because of its adaptability, public key encryption may be used by users who 

are not known to the user. 

Various types of data such as text, image, audio, video and any multimedia 
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images can be encrypted using the encryption algorithm which is available in the 

Cryptography. By seeing the confidential level, availability of data and Size of the 

key a particular types of Encryption schemes are used. If the message is very 

confidential and important like military data, medical data, bank account data and 

privacy data various levels of the performance is retrieved by using the types of 

the Cryptography algorithm. 

Encryption algorithms are coming under Cryptography concept. Cryptography 

deals with the encryption algorithms. It may be key based algorithms, classical 

algorithms and modern algorithms. All the algorithms are written for the sake of data 

from the adversaries and hackers who are available in the insecure commu- nication 

channel. Each and every algorithm in the Cryptography considers the hacker of the 

data and hackers arrival from all the sides like efficient algorithms, efficient secret and 

public keys. Various attacks are analyzed by the Cryptography mechanisms. The 

communication network is insecure. Secret key algorithm and the secret key used 

to protect the message. 

The encryption technique and information are known to everybody save the 

Keys. It is a straightforward process that involves the encryption of plain text and 

the There is a decryption of the enc(f(m)). According to the encryption of m, it 

ought to be equivalent. The complete definition of the speed, efficiency, per- 

formance, and security of the crypto system is provided by these metrics. used in 

order to render the system susceptible to assaults including cryptographic analysis. 

Block by block, the pixels are processed in order to carry out the computations 

during the processing of the picture. 

HE Crypto System, various data types and its applications, OHE implemented 

Electronic voting, Medical data storage and access and Private Information Re- 

trieval.Security Performance of Symmetric and asymmetric are shown with the 

comparison of various Key Size. A comparison is made between the public key en- 

cryption techniques and the stream cyphers, block cyphers, transposition cyphers, 

and substitution cyphers. As the size of the key rises, the level of security af- 

forded to the data likewise increases. With the help of the public key cryptogra- 
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phy technique, arithmetic operations performed on the huge number went through 

verification. It is feasible to launch a Brute Force attack against the Private Key 

Encryption algorithm. Because of this, the size of the key is somewhat less com- 

plicated than that of the Public Key Encryption. It is a procedure that involves 

making assumptions and estimating values by comparing the plain text value to 

the cypher text that is provided. Private key encryption algorithms such as DES, 

AES, and IDEA International Data Encryption Algorithm (IDEA)are very well- known 

and usage by a large number of people. The comparison of the public key 

encrypted arithmetic operations across large amounts of data has been accom- 

plished with the help of Java Net beans. In order to facilitate comparison, the run 

time of that Java Platform has been recorded. The outcome of the Runtime 

demonstrates that the level of security offered by public key methods is superior 

than that offered by private key encryption. 

Among the several types of public key encryption schemes, the homomorphic 

crypto system is one that enables algebraic operations to be performed on the cypher 

texts. It is a significant and cutting-edge method that enables computing and 

analytical processing to be performed on encrypted data that has been sent across an 

unsecure intermediate communication channel. A multiplicative encryp- tion 

technique is being used here. The plain text that has been encrypted may be obtained 

by the multiplication of the ciphered text in this approach. When com- pared to the 

Plain text, the Cypher text expansion is much lengthier. The Cipher text has a higher 

ratio than the Plain text does to begin with. Comparatively, the least amount of 

expansion results in the least amount of noise in the calculation. 

 

1.8 Research Gaps 

1. The typical cloud-based healthcare data management systems have several 

problems, including vulnerabilities in the system and concerns over the pri- 

vacy of the data [13]. 

2. In the field of healthcare, the majority of the current research works on 
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blockchain have mostly concentrated on the Bitcoin network, which has a 

number of limitations, including a high energy consumption, restricted scal- 

ability, and poor transaction throughput[26]. 

3. To meet the demands of the healthcare industry, there is a significant need for 

the development of a blockchain that is safe, cost-effective, and protects data 

privacy[13] [20] [23]. 

 

1.9 Objectives 

1. To study and analyze the existing privacy persevering models developed for 

electronic healthcare records. 

2. To design a more efficient privacy preserving model for healthcare record 

using homomorphism encryption. 

3. To propose energy efficient auditable EHR model using blockchain. 

 
4. To compare the performance of the proposed model and existing models 

with various performance metrics. 

 

1.10 Research Methodology 

The expected outcome of the research work is to develop block chain inspired privacy 

preserving and auditable model for electronic health record in fog envi- ronment 

keeping in view of computation cost, communication cost, consensus cost and energy 

consumption. 

A flow chart in figure is a list activities to achieve the mentioned objectives followed 

by the research methodology for each objective as shown in Figure 5.5. 

1. To achieve the first objective, studied various research papers and analysed 

the existing privacy preserving models for the electronic health records.
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                                           Figure 1.6: Workflow model 
 

2. To achieve the second objective ,used Seal library popular implementation 

of Fully Homomorphic Encryption developed by C++, CKKS algorithm 

,Bootstrapping, RESNET 50 designed a new privacy model. 
 

3. To achieve the third objective, deployed a Blockchain into six machines some 

of them are UBUNTU 16, OS, windows10.Implementation of encryption and 

decryption of Homomorphic Encryption is done in Java and edited tools 

notepad++.IDE for deploying the solidity frame work. 
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4. To achieve the fourth objective , comparision of existing model with the 

proposed model based on the performance metrics. 

 

1.11 Summary 

This chapter introduces the significance of blockchain .It also explains the existing 

methods of healthcare industry ,security and privacy standards for cloud based e- 

health data .The motivation behind the development of this research work is also 

explained in this chapter.At the end ,it highlights the research gaps, objectives of 

the thesis and the research methodologies adopted to achieve the privacy and security 

using the blockchain. 

 

1.12 Organization of the Thesis 

As shown in Figure 1.7 ,the subsequent sections of the thesis are arranged into 

six parts . Chapter 1 presents the introduction of blockchain ,its platforms and 

distributed storage, existing methods in health care industry, components, secu- 

rity and privacy standards for cloud based e-health data. Chapter 2 deals with 

the background of healthcare, blockchain, privacy and homomorphic encryption 

.Chapter 3 presents how the blockchain is evaluated ,its framework and recommne- 

dations. Chapter 4 discuss about the network that is using machine learning pri- vacy 

preserving models with fully homomorphic encryption for deep neural net- 

work.Chapter 5 presents the implementation of a novel design blockchain based 
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Figure 1.7: Organisation of thesis 

 
secure multiple computations scheme for preserving and extraction of health care 

data. Chapter 6 presents the conclusion and future scope of the thesis wor
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Chapter 2 

RELATED  WORK 

2.1 Introduction 

In this chapter, we explore the critical intersections of Bitcoin and healthcare data 

management. They focus on data security, privacy, and integrity. As health- care 

systems increasingly transition to EHRs, the vulnerabilities associated with access 

become more pronounced. EHR security and transparency, as its decentral- ized 

ledger system ensures that patient data is immutable, traceable, and securely 

shared among stakeholders while preserving confidentiality. Coupled with homo- 

morphic encryption, this combination offers a powerful framework for developing 

privacy-preserving and auditable EHRs systems.This literature review investigates 

innovative solutions, particularly the synergies between blockchain and homomor- 

phic encryption. It highlights their potential to revolutionize healthcare data 

management by improving patient privacy, data security, and regulatory compli- 

ance. By examining the current state of research and emerging frameworks, this 

chapter aims to elucidate the transformative potential of these technologies in safe 

guarding patient information and enhancing healthcare delivery efficiency. 

 

2.2 Evolution of EMRs in Modern Healthcare 

Rathi et al.[29] proposed Health care’s journey towards digital transformation has 

been marked by the transition from paper-based medical records to EMRs.Healthcare 



36  

records were initially stored in bulky files and folders that were inaccessible, hard 

to maintain, and easily damaged. On the other hand, EMRs allow patients data 

to be stored, managed, and retrieved digitally in a systematic and efficient man- 

ner. EMRs improve quality and continuity of patient care. They streamline 

communication and coordination between healthcare providers, laboratories, and 

pharmacies, enabling faster diagnosis and better decision-making. 

Nkenyereye et al. [30] proposed the time needed to make critical healthcare deci- 

sions by providing test results, medication lists, and treatment plans by digitizing 

patient data. Furthermore, EMRs improve the overall healthcare ecosystem by 

enabling population health management, where aggregated data can be used to 

identify health trends, predict disease outbreaks, and implement preventative mea- 

sure. Kaushik et al. [14] as EMR adoption grows, the volume of sensitive patient 

data in digital form increases, posing security, privacy, and accessibility challenges. 

 

2.3 Adoption Challenges to EMR Implementa- 

tion 

Mistry et al.[31] proposed the numerous benefits of EMRs, the healthcare industry 

has faced notable challenges adopting and implementing EMR systems universally. 

One of the key barriers is the high costs associated with EMRs. Software acqui- 

sition, staff training, and maintenance costs are significant initial implementation 

expenses, often burdening small healthcare facilities, especially those with low or 

middle incomes. Budhiraja et al.[32] proposed, migrating from paper records to a 

fully digital system can be overwhelming, causing disruptions in daily opera- tions. 

Healthcare providers often resist adopting cutting-edge technologies due to 

concerns about usability,complexity, and time needed to adapt to the system. 

Srinivasu et al.[33] proposed EMR adoption is also challenged by interoperability. 

Due to the fragmentation of healthcare IT infrastructure, it can be difficult to 

integrate disparate EMR systems from different vendors. Data may be stored and 

transmitted in different formats by different systems, preventing seamless data 
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exchange between healthcare providers. This lack of interoperability hampers 

coordinated care, particularly in cases where patients seek treatment from multiple 

healthcare providers or facilities. 

 

2.4 Security and Privacy Challenges in EMR Sys- 

tems 

Feng et al.[34] proposed a digital health record can pose security and privacy risks. 

Cyber criminals often target patient data in data breaches because it includes 

sensitive information, such as personal identifiers, medical histories, and treatment 

records. Over 30 million records will be exposed to healthcare data breaches in 

2020 alone, underscoring the vulnerability of digital health systems. In addition to 

leading to identity theft, these breaches can cause significant financial and 

reputational damage to healthcare organizations. 

Khujamatov et al.[35] proposed a primary security challenge is unauthorized access to 

the EMR. Inadequate access controls can allow inappropriate personnel to gain access 

to patient information.  Among the common issues that expose EMRs to 

unauthorized access are poor password management, lack of encryption, and limited 

monitoring of user access. Further, insider threats pose a growing threat to 

healthcare organizations as employees misuse access privileges. There are over 50% 

of healthcare data breaches caused by internal actors, which highlights the need for 

robust access control policies and regular training for staff on data privacy and 

security. 

Vivekanandan et al.[36] proposed Inaccuracies or alterations in patient data can lead 

to incorrect diagnoses, inappropriate treatment plans, and even fatal out- comes. 

Cyber attacks such as ransomware and malware pose significant threats to data 

integrity because they are capable of altering, deleting, or locking critical health 

information. As a result of these attacks, healthcare services are disrupted, patients 

in critical conditions are delayed, and patients’ risks increase. A health- care systems 

data protection needs are governed by legal and regulatory require- 
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ments. In the United States, regulations such as Health Insurance Portability and 

Accountability Act (HIPAA) require strict protocols for securing patient infor- 

mation. Due to resource constraints and cyber threats, achieving full compliance 

with these regulations remains challenging. 

 

2.5 Cloud-Based EMR Storage:Opportunities 

and Limitations 

Gao et al.[37] proposed that healthcare providers have adopted cloud-based EMR 

storage solutions to deal with some of these security challenges. Cloud-based EMR 

systems offer several benefits, including scalability, remote access, and reduced 

hardware costs. Healthcare facilities can streamline data management and ensure 

continuity of care by outsourcing data storage to cloud providers. 

Zhou et al.[38] proposed Cloud-based EMR systems are not without limitations. 

Cloud storage introduces new security risks, such as unauthorized access by third 

parties and potential vulnerabilities during data transmission. According to a 

study, 88% of cloud service users express . Among these concerns are the lack of 

control over data and the possibility of data interception during transmission. In 

addition to encryption and multi factor authentication, cloud providers implement 

security measures. However, healthcare organizations must also comply with data 

protection laws, which may differ from jurisdiction to jurisdiction. The challenge 

of balancing data accessibility with strict security measures remains a major one 

in cloud-based EMR storage. 

 

2.6 EMR Security Challenges with Bitcoin 

Moreover, Bitcoin offers potential solutions to healthcare providers’ interoperabil- ity 

challenges. By eliminating complex integration processes, patients could access a 

single, blockchain-based health record via any authorized healthcare provider, 

eliminating the need to transfer data between incompatible EMR systems. 
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2.7 AI-Enabled Blockchain for Enhanced EMR 

Management 

Zhang et al.[39] proposed with the integration of Bitcoin into EMR systems, 

healthcare data management could be improved even further. With the help 

of AI, large volumes of patient data can be analyzed on a blockchain in order 

to identify patterns, predict outcomes, and support clinical decision-making. AI 

algorithms can detect early warning signs of chronic diseases, so that preventative 

care can be provided and personalized treatment plans can be devised. As part of 

a blockchain-based EMR system, AI could also automate data access and sharing 

permissions based on predefined rules, reducing manual interventions and ensuring 

compliance with privacy laws. 

A champong et al.[38] proposed implementing AI-enabled blockchain systems 

stages and faces several technical, regulatory, and ethical challenges. AI and 

blockchain’s high computational requirements may limit their scalability in resource- 

constrained healthcare settings. Moreover, ensuring data privacy while leveraging 

AI analytics remains a significant challenge, as AI models require access to large 

datasets to deliver accurate predictions. Nevertheless, AI-enabled blockchain sys- 

tems hold significant potential for transforming EMR management by enhancing 

security, interoperability, and data accessibility in healthcare. 

Alanazi et al.[1] proposed Bitcoin integration into EHRs represents a significant 

advancement in healthcare data management, focusing on enhancing security, pri- 

vacy, and data integrity. It also ensures immutability and transparency of trans- 

actions. This is particularly critical in healthcare. Furthermore, Khezr et al. 

Offer a comprehensive review of blockchain applications in healthcare, identifying 

key benefits such as transparency, traceability, and regulatory compliance facilita- 

tion. These foundational studies underscore enhancing both patient privacy and 

security. 

Allard et al.[40] proposed combination of homomorphic encryption and blockchain 

enhances the privacy-preserving capabilities of EHRs, enabling data processing 
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without decryption.This cryptographic technique ensures that sensitive health in- 

formation remains confidential, even during data analysis. In this paper, demon- 

strate how homomorphic encryption can be applied to EHRs to provide healthcare 

providers with insight into patient data while maintaining privacy. The ability to 

operate encrypted data is particularly crucial when data is shared for research or 

collaborative patient care. In these scenarios, patient confidentiality must be strictly 

maintained. As a result of blockchain’s decentralized architecture and ho- momorphic 

encryption’s privacy-preserving features, healthcare environments are able to address 

the dual challenges of data security and privacy. Furthermore, Be- naloh et al.[41] 

proposed review blockchain applications in healthcare, including frameworks, 

prototypes, and implementations, demonstrating their potential to revolutionize 

health data management. To promote patient trust and compliance with privacy 

regulations, emphasize the importance of privacy-friendly platforms using blockchain 

environments to secure health data. The importance of inte- grating these advanced 

technologies into existing healthcare systems cannot be overstated. 

Chen et al.[12] proposed to facilitate effective implementation of blockchain-based 

EHR systems that incorporate homomorphic encryption, several challenges must 

be addressed. Scalability, computational efficiency, and regulatory compliance 

are important factors to consider. Data security and privacy are significantly en- 

hanced by blockchain and homomorphic encryption, but computational overhead 

associated with such operations can impede system performance and responsive- 

ness. Sengupta et al. note that blockchain adoption in healthcare requires in- 

teroperability with existing health information systems. Describe the potential 

threats and security concerns related to Internet of Things (IoT) and Industrial 

Internet of Things (IIoT) applications, which further complicate healthcare envi- 

ronments. Blockchain protocols and homomorphic encryption techniques need to 

be optimized continuously in order to facilitate the widespread adoption of this 

integrated healthcare approach. 

Chenthara et al.[42] proposed Aside from ensuring model secrecy, Byzantine Fault 
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Tolerance (BFT) is important for maintaining high standards of traceability, trans- 

parency, and error tolerance. BFT is effective not only because it is resilient to 

various faults but also because it enhances distributed system reliability. In sen- 

sitive applications, such as healthcare, where data integrity and availability are 

crucial, this is particularly important. The system achieves a notable convergence 

rate, demonstrating its ability to rapidly approach optimal solutions even in the 

face of uncertainties. It is imperative to note, however, that although these ad- 

vancements have been significant, there is still no compelling evidence that this 

system has significantly improved its feasibility over traditional methods. A novel 

system that safeguards user privacy in cloud environments automatically by using 

deep learning architectures is required to address these identified challenges. As 

well as providing efficient solutions to complex problems, this advanced technol- 

ogy system aims to protect data and enhance user trust by leveraging advanced 

techniques. 

Dainton et al .[43] proposed Input files in Bitcoin can be managed and executed 

by a diverse array of parties using distributed ledgers. With this decentralized ar- 

chitecture, multiple stakeholders can participate in system maintenance without 

relying on a central authority. By maintaining multiple datasets collaboratively, 

stakeholders are able to trust that the information being processed is accurate 

and accurate. A standard protocol for interaction is then created by utilizing this 

information to establish the rules governing transactions within this blockchain 

framework. Though these advancements address previous inefficiencies in data 

management and communication, the current landscape of medical information 

management remains chaotic and fragmented. Errors, delays, and a lack of coor- 

dination among healthcare providers can occur as a result of this disorganization. 

In addition, the blockchain is designed to function as an immutable, secure, and 

traceable method of depositing funds. Effective data governance relies on opera- 

tions such as addition, deletion, modification, and querying medical information. 

Blockchain, however, focuses on simpler functions such as modification and in- 

quiry.  Compared to general activities, this streamlined approach significantly 
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reduces the time and effort spent processing medical information. 

Dehling et al.[6] proposed implementing Bitcoin, high levels of security and ir- 

reparability are guaranteed. Each block’s information includes both the creation 

time. The linked structure provides traceability, tracking, and regular audits over 

time. Besides increasing medical records security, this chain architecture facilitates 

an increased use of medical information across multiple healthcare systems. BT 

can improve healthcare outcomes by promoting interoperability and centralizing 

rules governing data distribution and benefit exchange. 

Dorgham et al.[7] proposed , enhancing automated information sharing efficiency can 

be achieved through block connections and smart contracts. By properly designing 

these contracts, automated processes can be achieved, ensuring that transactions are 

executed without interference from third parties. By combining these technologies, 

we can enter an exciting era of healthcare data management, where efficiency, 

security, and transparency are prioritized. 

 

2.8 ECC Cryptography and its Impact on Blockchain 

Since ECC does not require as much schemes, it offers significant advantages. ECC 

employs smaller key sizes while providing equivalent security levels, making it an 

efficient choice for various applications, especially in environments with limited 

computational resources. 

Edemekong et al.[44] proposed ECC could be used to enhance data security in the 

healthcare field by efficiently encrypting medical data, according to the proposed 

model. The addition operation in ECC symbolizes the most fundamental group 

operation performed on an elliptic curve, which is essential to the encryption 

process. The combination of two points on the curve, denoted as P and Q, yields 

a new point on the curve, denoted as P + Q. Cryptographic functions based on 

this mathematical operation form the basis of ECC’s security mechanisms. 

With Elliptic Curve Cryptography (ECC), rapid computations can be performed 

without sacrificing security, which highlights its efficiency in handling crypto- 

graphic calculations. Prior communications inadvertently omitted the conditions 
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required to complete. 

To ensure data confidentiality, elliptic curve-based cryptography relies on specific 

mathematical properties of elliptic curves. ECC is a formidable choice for pro- 

tecting sensitive information due to its difficulty with the Elliptic Curve Discrete 

Logarithm Problem (ECDLP). Therefore, these assumptions must be maintained during 

the implementation of the proposed model. Specific cryptographic meth- ods and 

elliptic curves will significantly influence the equations’ characteristics and 

properties. 

 

2.9 Hybrid Homomorphic Encryption 

Gao et al.[45] proposed the context of a blockchain-based healthcare system, hy- brid 

homomorphic encryption. This advanced encryption technique combines the benefits 

of homomorphic encryption with the flexibility of hybrid systems to pro- vide robust 

data protection. This secure collaboration and data analysis is a key advantage of 

implementing hybrid homomorphic encryption in conjunction with Bitcoin, as it 

promotes trust among participants and enhances the overall security of the 

system.One of the standout features of hybrid homomorphic encryption is its ability 

to allow computations to be performed directly on encrypted patient data stored 

on the blockchain. 

Geetha et al.[46] proposed Hybrid homomorphic encryption significantly enhances 

patient privacy, facilitates secure data sharing, and allows encrypted data to be 

processed securely. In addition to strengthening, this powerful combination also 

fosters trust among stakeholders, thereby making healthcare more efficient and 

secure. In an increasingly interconnected world, adopting these advanced tech- 

nologies will be crucial to protecting patient information. 

The integration of Bitcoin within 5G networks is set to revolutionize various sec- tors, 

particularly healthcare and smart city applications. Blockchain-enabled data sharing 

for flying drones in the 5G era is discussed by Feng et al.[36]. Proposed as drone 

technology becomes increasingly prevalent, ensuring data integrity and con- 

fidentiality is crucial. As well as addressing security concerns, the proposed frame- 
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work demonstrates the potential for real-time applications in logistics, surveillance, 

and emergency response. 

By having access to medical data in real time, decision-making processes are en- 

hanced, resulting in improved patient outcomes. In addition, blockchain can facil- 

itate better healthcare delivery by building trust between patients and healthcare 

providers because it is secure and transparent. 

A blockchain-based protocol for device-to-device authentication is introduced by 

Vivekanandan et al.[36] proposed in the context of IoT and smart cities. In smart city 

applications, where devices are interconnected, this protocol is essential for securing 

interactions among IoT devices. As a result of using blockchain for au- 

thentication, the system can streamline processes and boost overall network se- 

curity. With the development of a blockchain-SDN-enabled Internet of Vehicle 

environment, Bitcoin becomes even more versatile. Additionally, Zhou et al.[38] 

proposed PIRATE, a secure framework for distributed machine learning in 5G 

networks, demonstrating how blockchain can facilitate secure data processing and 

analytics. The integration of blockchain with AI technologies in the context of 

beyond 5G networks also holds promise for future innovations, as Zhang et al. 

[?] suggest. It is clear from these studies that BT is capable of creating secure, 

efficient, and reliable systems across a wide range of applications. 

There are additional pathways for enhancing the effectiveness the emphasis on 

federated learning. For the creation of a secure, privacy-preserving, auditable 

electronic health record framework, a synthesis of Bitcoin with homomorphic en- 

cryption holds considerable promise. It heralds a new era in healthcare data 

management, navigating the complexities associated with implementing these ad- 

vanced technologies while prioritizing patient security and confidentiality. Con- 

sumers may still be hesitant to entrust their private data to virtual storage, such 

as medical records, emails, or government documents, despite cloud computing’s 

many benefits. The cloud user has no further control over the use or the loca- tion 

of information once it has been uploaded to the cloud data center. Although Cloud 

Service Providers (CSP)have promised to deploy safeguards like virtualiza- 
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tion and firewalls to keep their customers’ data safe, network flaws often prevent 

these systems from providing comprehensive data security. CSPs have full access 

to their customers’ cloud-based software, hardware, and data, so encrypting data 

before hosting is essential to protect it. For cloud computing to keep information 

private and secure, reliable storage and management systems are necessary since 

most cloud access patterns incur high communication costs. 

To deliver high-quality treatment, healthcare providers must effectively manage 

patient-related media data, including text, images, audio, and other multimedia. 

The popularity of cloud-based healthcare applications has increased recently as 

they offer large computing power, flexible storage, and a variety of software ap- 

plications. On this platform, however, there remain several challenges associated 

with delivering and sharing large amounts of healthcare media data to distant 

terminals with guaranteed Quality of Service (QoS). 

Theoretical knowledge of cloud computing in healthcare is inadequate compared 

to its actual implementation. In some research, cloud computing has been concep- 

tualized or interpreted within healthcare settings, but most of it relies on broader 

interpretations, which may give cloud computing a distorted perspective. Cloud 

Computing Services (CCS) provided cloud-based applications, according to Haque 

et al.[18] .The scalability of cloud-based solutions allows hospitals to analyze vast 

amounts of data with complex mathematical models as a key benefit. Despite its 

restrictions on confidential, internal patient information, the CCS is not a real- 

time system, and medical professionals use it, but the general public cannot access 

the data management process. 

The authors of Keshta et al.[47] proposed an efficient network model combining 

wireless body area networks and cloud computing for reliable data exchange. It 

was shown that the proposed architecture could deliver healthcare data over a 

traditional IP-based network in real-time using the OPNET simulator. As a result 

of insufficient security protocols, a network flooding attack could compromise cloud 

storage availability, and a malicious insider could pose a serious threat. 

A diagnosis and treatment plan that is tailored to diabetes patients needs is es- 
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sential given the lifelong and systemic damage they experience. Min Kruse et 

al.[13] proposed a cloud-based, intelligent, and tailored solution for diabetes diag- 

nosis. Furthermore, 5G-Smart diabetes offers a method for data sharing and an 

individualized data analysis model. 

Smart city innovations are causing significant changes in healthcare, one of the largest 

industries in the world. Increasing public demand for ubiquitous, pre- ventative, and 

personalized healthcare at lower costs and risks is a driving force. By recording and 

analyzing patient data anywhere, anytime, mobile cloud com- puting could meet 

future healthcare needs. A major challenge in implementing next-generation 

healthcare is network latency, capacity, and reliability. To ad- dress these issues, 

Lafky et al. [13] proposed to improve cloud-enabled networked healthcare systems 

for smart cities in terms of security, privacy, reliability, and scalability. 

Lemke et al.[11] proposed a cloud-based architecture for implementing EMR sys- tems 

in Pakistani hospitals, although some healthcare providers use their own EMRs. By 

reducing the cost of maintaining paper-based records, this proposed architecture 

would enhance patient care, diagnosis, disease prevention, and acces- sibility to 

electronic health information around the clock. 

Li et al.[28] proposed cloud services have many benefits, several security risks re- 

main. For instance, consumers are often unaware of how much data CSPs store. 

In addition to storing and processing sensor data online effectively, cloud comput- ing 

and IoT present a unique approach to privacy preservation. The healthcare 

industry collects data from patients and shares it with authorized clinics or spe- cialists, 

as well as pharmaceutical companies and life insurance companies. Data 

synchronization and transfer, however, can lead to unauthorized access to patient 

information. 

 

2.10 Data Handling in Blockchain 

Liu et al .[15] proposed Healthcare and medical data must be shared in order to 

improve the quality of healthcare providers and make the healthcare system 
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more intelligent. It is possible for a patient to share his medical history with his 

physician at their first appointment. By providing a secure method of exchang- 

ing EMRs, Bitcoin can enhance communication and cooperation with the health- care 

sector. To improve the exchange of health data across European nations, Muhammed 

et al.[48] proposed a private blockchain-based recording system. 

It has become increasingly important to conduct research on BT and healthcare 

data management, particularly in the area of privacy and security. In cloud com- 

puting environments, Roy et al.[49] proposed emphasize the importance of main- 

taining healthcare data privacy. A significant risk to sensitive health information is 

often associated with traditional data storage methods, thus the need for advanced 

solutions such as blockchain, its decentralized nature, is highlighted in their work. 

As a result, we need effective data governance frameworks that maintain patient 

confidentiality while providing seamless access to data for authorized users. 

This notion is further expanded by Sarwar et al. [50] proposed the concept of 

Healthcare Data Gateways (HDGs), which utilize Bitcoin to facilitate secure 

healthcare data sharing. Their model not only protects data integrity but also 

gives patients control over their health information. This focus on patient-centric data 

management is critical, since it addresses both privacy concerns and the in- creasing 

demand for interoperable health systems that can function across various healthcare 

institutions. The Efficient and Privacy-Preserving Content-Based Im- age 

Retrieval (EPCBIR) scheme presents a method for managing and retrieving 

medical images securely in cloud environments. Bitcoin can be applied to diverse types 

of healthcare data, emphasizing its role in improving operational efficiency without 

compromising privacy. 

By reinforcing these findings, Thavamani et al. [51] proposed the importance of 

blockchain to the development of intelligent healthcare systems. By integrating 

blockchain into existing healthcare infrastructure, they claim that a trust-based 

ecosystem can be created, ensuring that sensitive information is only accessible to 

authorized individuals. Through better data sharing practices, their work illus- 

trates how blockchain can not only enhance security, but also enhance healthcare 



48  

delivery. Furthermore, recent studies have investigated the role of blockchain in 

facilitating secure data transactions, especially in light of emerging technologies 

like 5G, which present new opportunities for healthcare data exchange. 

Wang et al.[52] proposed Data privacy and security challenges continue to plague 

the healthcare industry, but BT provides promising solutions that enhance patient 

privacy while facilitating efficient data management. The works reviewed collec- 

tively contribute to the growing body of literature that advocates the adoption of 

blockchain as a foundational element in future healthcare system, addressing cur- 

rent shortcomings as well as future demands for data-driven healthcare solutions. 

 

2.11 Security Concerns in Blockchain 

Xia et al.[53] proposed encrypting data, especially text and images, and secur- ing 

its transmission through blockchain solutions, cryptography is often used to offer 

security. A decentralized EMR management system utilizing blockchain for data 

authorization, C.H. Ravikumar et al. [54] proposed combines suppliers’ full 

medical data for verification, confidentiality, and exchange, making such data and 

services accessible to patients. In the future, cloud computing and blockchain will 

offer promising solutions. In order to overcome current limitations in privacy, secu- 

rity, and scalability across cloud-based and blockchain-enabled healthcare systems, 

advanced data science approaches, encryption, and decentralized frameworks are 

necessary. 

C. Ravikumar et al.[55] proposed the challenges of maintaining data confidential- 

ity and privacy for customers and security vulnerabilities. Previous research on 

cloud storage mechanisms, key management, security, cryptographic primitives, 

and potential risks is reviewed in this review. It emphasizes the limitations of 

cloud environments, especially services stored in a central location. This study will 

analyze existing key management methods and distinguish between common 

cloud-based key management techniques and chaotic encryption based on Bitcoin. A 

comparison of the respective capabilities of various blockchain systems is also 

provided, as is the importance of integrating AI into blockchain. 
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2.12 Research gaps 

1. There is limited empirical research on the effectiveness of integrating homo- 

morphic encryption with blockchain for privacy-preserving EHRs, highlight- 

ing a need for real-world case studies [1][2]. 

2. Current studies often overlook the computational efficiency of homomorphic 

encryption when applied to large-scale healthcare datasets, raising concerns 

about its practicality in EHRs systems [3][4]. 

3. The security implications of combining blockchain with homomorphic en- 

cryption are not thoroughly examined, particularly regarding potential vul- 

nerabilities and attack vectors [5][6] 

4. Insufficient exploration exists on user perspectives regarding the usability 

and accessibility of blockchain-driven, homomorphic encryption-based EHRs 

systems, which could affect adoption [7][8]. 

5. There is a lack of comprehensive frameworks for evaluating the performance 

and scalability of EHR systems that utilize both blockchain and homomor- 

phic encryption, complicating the assessment of their effectiveness [9][10]. 

6. Ethical considerations surrounding data ownership and patient consent in 

blockchain systems employing homomorphic encryption are under-researched, 

which may hinder trust and compliance [11][12]. 

7. The interplay between regulatory requirements has not been adequately ad- 

dressed, posing challenges for compliance [13][14]. 

 

2.13 Summary 

The existing literature highlights the importance of robust, secure, and inter- 

operable EMR systems for improving healthcare delivery and patient outcomes. 

While EMRs have transformed patient data management, security and privacy 

challenges continue to threaten the integrity of digital health records. BT, with 
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its decentralized architecture and immutability, presents a promising solution to 

these challenges, offering enhanced security, transparency, and data control. As- 

sessing their scalability, cost-effectiveness, and regulatory compliance. Moreover, 

the integration of AI with blockchain in healthcare warrants further exploration to 

unlock new possibilities for data-driven, personalized healthcare solutions. 
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Table 2.1: Summary of Key Contributions 

Reference Authors Key Contributions Feature 
[63] Roy et al. Proposes a secure framework that 

ensures fine-grained access control to 
healthcare data across multiple cloud 
servers, enhancing security and 
accessibility in mobile healthcare 
applications. The study emphasizes the 
importance of user authentication and 
authorization mechanisms. 

Enchancing Cloud 
Security, Multi level 
access. 

[64] Sarwar et al. Presents a comprehensive cloud-based 
architecture designed for EHR systems 
in Pakistan. It discusses integration 
challenges and proposes solutions to 
enhance data security and improve 
interoperability among health- care 
providers. This work highlights the im- 
portance of cloud technology in 
facilitating efficient EHR 
management. 

Enchance Data 
Security, efficient 
data mobility 

[65] Thavamani  
& Rajakumar 

Investigates methods for preserving the 
privacy of healthcare data in cloud 
environments, focusing on encryption 
techniques and access controls. The 
authors discuss the implications of 
privacy breaches and propose a 
framework that combines cloud 
computing with secure data 
management practices. 

Data Privacy by 
working on Security 
breaches 

[66] Wang & Li Introduces  Healthcare  Data  
Gateways (HDGs) that leverage 
blockchain technology to enable secure 
sharing of healthcare data. The authors 
discuss how HDGs facilitate patient-
centric data management while 
ensuring data integrity and 
confidentiality, addressing privacy risks 
inherent in tradi- tional systems. 

Blockchain 
Technology 

[67] Xia et al. Proposes a novel scheme for securely 
managing and retrieving medical 
images in cloud settings. The study 
highlights the role of privacy-preserving 
techniques in ensuring the confidentiality 
of sensitive medical data while allowing 
efficient access and retrieval. 

Pricacy model on 
Medical data 
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[68] Ravikumar et 
al. 

Reiterates the critical role of 
blockchain in healthcare, emphasizing 
the creation of a trustworthy ecosystem 
through HDGs. The authors explore how 
integrating blockchain with existing 
systems can improve data shar- 
ing and enhance security. 

Blockchain 
Integration on HDG 
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Chapter 3 

 
Blockchain in Healthcare: An Evaluation of 

Literature, Frameworks and Recommendations 

 
3.1 Introduction 

Blockchain has increasingly been utilised in various sectors, including healthcare 

[51-53]. Given that blockchain is an immutable, transparent, and extensively 

distributed database that facilitates the creation of a reliable transaction sequence, 

this is unsurprising. The digitization of the healthcare sector has resulted in the 

creation of medical information systems. An individual’s existence relies on their 

healthcare, as do the accompanying statistics that assist in illness diagnosis and 

inform treatment options. Information was historically inscribed and documented 

on easily degradable or alterable mediums [55, 56].These systems must convey data 

efficiently and securely [13] .They must also furnish each user with enhanced access 

control, privacy, and anonymity. Individuals may hesitate to disclose sensitive 

information or delay pursuing therapy without sufficient security protocols, privacy 

protections, and a basis of trust [11] .Data protection is crucial. Consequently, 

Bitcoin has emerged as an innovative solution that ensures data protection against 

vulnerabilities and breaches. 

The reliance on Bitcoin may evolve due to its decentralized nature. It enables 

resilience against setbacks and assaults in a distributed and steadfast manner. 

Furthermore, it acts as a verification of the authenticity and ownership of the 

data [60]. As a result, blockchain is receiving growing acknowledgement as a mul- 
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tifaceted technology relevant to several industries and contexts, such as identity 

management and dispute resolution [48] , traceability, transparency, and reliabil- 

ity. Blockchain has the potential to resolve challenges related to interoperability, 

security, and confidentiality. Blockchain enables uncertain parties to execute var- 

ious network transactions. A blockchain can be utilised to record and preserve 

data from a decentralized network of devices . 

Nonetheless, there are concerns over blockchain’s security and privacy within the 

healthcare sector, especially about safeguarding confidential patient data[49] 

.Although recognizing the persistence of challenges, such as the necessity for in- 

teroperability and a legal framework, the authors ultimately contend that Bitcoin 

can improve security[50] .This will facilitate the attainment of the ultimate goals 

of accountability, authenticity, and assurance in data transmission. Nonetheless, 

hurdles persist, including the necessity for suitable access controls, regulatory 

obstacles, and interoperability issues. Additional inquiry is necessary to compre- 

hensively assess healthcare sector and ensure its ethical application in protecting 

patient confidentiality and privacy. While other intriguing research exists on this 

subject in the literature [54] ,the technique and aims of this paper diverge. 

 

3.2 Blockchain’s Need in Healthcare 

The demand for progress in the healthcare sector is intensifying rapidly. Ad- 

vanced state-of-the-art technology is essential to ensure the delivery of superior 

healthcare facilities. Moreover, the healthcare landscape is transitioning towards 

a patient-centred approach that emphasizes two fundamental components: con- 

sistently available services and enough medical resources. BT assists healthcare 

organizations in delivering superior medical services and suitable patient care. The 

implementation of technology can efficiently address the arduous and repetitive 

task of exchanging health information, a significant contributor to the elevated 

costs within the healthcare sector. Citizens can engage in health research efforts 

through the utilization of Bitcoin. Furthermore, enhanced public welfare research 

and data dissemination will augment care for numerous demographics. All health- 
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Figure 3.1: Blockchain in the medical field 

 
care organizations and systems are managed using a singular database [63–65]. 

When used properly, this technology promotes interoperability, enhances data in- 

terchange, ensures security and integrity, and makes real-time changes and access 

easier. Data security is a vital issue, particularly for wearables and personalized 

therapy. 

 

3.2.1 Functionalities of Blockchain in Healthcare 

Blockchain performs multiple tasks and has diverse uses in the medical field. BT 

enables healthcare practitioners. Figure 1 illustrates the spectrum of attributes 

and fundamental enablers of the Blockchain concept across several healthcare sec- 

tors and associated domains. The advancement and utilization of BT encompass 

intricate functionalities, like cryptocurrency security, digital tracking, and out- 

break management. Bitcoin are its total digitization and its applicability within the 

healthcare industry [68, 69]. 

The newly incorporated element is superfluous and results in inefficiency, pre- 

senting a considerable health risk. The rights or opportunities for accessibility may 

vary for each individual based on their position throughout the supply chain. 

Furthermore, the data transparency feature of Blockchain architecture would en- 

able comprehensive tracking of the root cause and the termination of counterfeit 

pharmaceutical distribution. The information gathered from custodians at the 
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individual establishments frequently lacks publicly accessible data. 
 

 

3.3 Privacy in Healthcare 

Bitcoin is a viable solution for enhancing healthcare privacy due to its numerous 

advantages. Data is disseminated over multiple network nodes. Consequently, 

the likelihood of encountering a singular site susceptible to failure or attack is 

diminished. [64]. Pseudonymized to protect private information while permitting 

access to essential data for authorized parties. A primary issue is the incompat- 

ibility among various blockchain platforms, as healthcare providers may utilise 

disparate, non-interoperable technologies [56] .One problem lies in the complex 

deployment of BT, as it requires resources and technical skills that may not be 

readily available in medical environments.Patients who possess the autonomy to 

determine who can access their data, thereby guaranteeing that healthcare data 

governance conforms to their wishes [57]. 

 

3.3.1 Interoperability and Standards 

The heterogeneous nature of healthcare systems, marked by the utilization of var- 

ious EHR systems and medical devices that conform to distinct data formats and 

standards, obstructs the fluid exchange of healthcare information. Integrating sev- 

eral systems into a Blockchain Network necessitates meticulous design and data 

transformation. The existence of legacy systems that are fundamentally incom- 

patible without BT exacerbates this challenge [58] .To tackle the challenges of 

interoperability and fully leverage BT in healthcare, various approaches and solu- 

tions are available. The standards encompass standardized data structures for test 

results, pharmacological information, patient records, and other pertinent data, 

to establish a unified language for data across various systems [59] .Implementing 

blockchain-based solutions for identity management may enhance interoperability 

and data security. These systems administer patient identities and access permis- 

sions discreetly, offering a secure framework for data transit. Various ways for mit- 
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igating interoperability challenges in healthcare blockchain integration encompass 

meticulous planning, data conversion, consensus on standards, implementation of 

middleware solutions, promotion of collaboration, and identity management. 

 

3.3.2 Workflow Process for Blockchain in Healthcare 

Further advantages of implementing Bitcoin in healthcare encompass enhance- 

ments in patient record management, improved oversight of the medical supply 

chain, greater interoperability among various systems, and the ability to collect 

both individual and longitudinal data. The aforementioned advantages have been 

recorded in references [60] and [61]. The initial phases of the interactive work- 

flow encompassed the establishment of distributed network flow, shared data, 

and ledger systems. These developments facilitated the operation of Blockchain 

drivers[93, 94]. The foundation of the interactive workflow consists of distributed 

network traffic, shared data, and a ledger. These elements facilitate the operation 

of Blockchain drivers.Bitcoin fundamentally operates as an ever-expanding net- 

work of blocks, which can be customized to meet diverse industry needs and spe- 

cific characteristics. The autonomous Blockchain will mitigate theft and unautho- 

rized document transfers, while significantly diminishing financial failures. It can 

address problems related to data surveillance and outcome manipulation. The ca- 

pacity to transmit clinical research data and findings with immutable time stamps 

mitigates the danger of fraud and errors in clinical investigations. The healthcare 

sector predominantly holds the responsibility for implementing Bitcoin [62] .Bit- 

coin influences every area in some capacity. Blockchain technologies are utilized, 

especially in domains requiring the establishment of trust among multiple parties 

and stakeholders. Blockchain possesses the capacity to significantly transform the 

existing disjointed consent process that patients must sign for each consultation, 

healthcare procedure, or medical test. Blockchain promises to facilitate the shar- 

ing of clinical trial data and to identify benefits for trial participants. Blockchain 

possesses the potential to serve as a pivotal element in healthcare consent manage- 

ment, facilitating the efficient exchange of information. Bitcoin enables patients 
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to promptly access their medical information from various organizations [63] [64] 

[65] .Bitcoin influences every area in some capacity. Blockchain promises to facili- tate 

the sharing of clinical trial data and to identify benefits for trial participants. Blockchain 

possesses the potential to serve as a pivotal element in healthcare consent 

management, facilitating the efficient exchange of information. Bitcoin enables 

patients to promptly access their medical information . 

 

3.4 Blockchain Applications in Healthcare 

Blockchain is an emerging technology gaining traction because of its novel uses in 

the healthcare sector. Digital transformation profoundly impacts the enhance- 

ment of quality of life, establishing it as a leading domain for innovation. BT is 

progressively being adopted, especially within the financial industry. The health- 

care sector faces numerous significant and unique opportunities, particularly in 

research, logistics, and practitioner-patient relations. 

 

3.4.1 Search Strategy 

The present study adapted techniques that synthesized complete criteria for ar- ticle 

assessment from previously published works. Our methodology had three primary 

phases: preparation, execution, and information reporting. To identify previously 

examined study contexts and primary constructs: to summarize find- ings and 

limitations to ascertain current intellectual capital; to extract key health informatics. 

Three suitable keyword combinations were identified for a database search: ”Health 

management”, ”blockchain in healthcare” and ”medical manage- ment”. The 

keywords were extracted from an analysis of previous studies in this domain that 

employed analogous keywords, including blockchain, healthcare and medical. 

Step 1: Planning 

1. Identified Research gaps need for our requirement 

2. Research questions & Objectives delineated 
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3. Specifying appropriate database & Selection criteria 

Step 2: Execution 

1. Database Search 

2. Article Screening 

3. Select articles curated for the present study 

Step 3: Assimilation 

1. Information Extraction & Structuring 

2. Synthesis of focal areas 

3. Proposition of future research issues 

 

3.4.2 Databases and Search Techniques 

A variety of industries may derive the greatest advantages in medical sector, where 

patient confidentiality is paramount and the verification of financial transactions is 

essential, blockchain’s principal objectives of secure data transmission and transac- 

tion documentation may be most advantageous. Moreover, Bitcoin could enable 

expedited data transmission and contribute to the development of a secure re- mote 

patient monitoring system for tele medicine. The decentralized architecture of 

blockchain may complicate patients ability to modify their data. These are but a 

few of the gaps that Bitcoin could potentially address. 

Table 3.1: Findings from the work 
 

Research Objective Challenges Ref 
System  for 
Managing 

Development of a 
decentralized data 

Data privacy, data tran- 
sit, data security, and ac- 
cessibility 

[69-73] 

Data se- 
curity and 
storage 

Creating technolo- 
gies for safe data 
transfer and stor- 
age 

Data integrity, data secu- 
rity, data permission, and 
safe transmission 

[71-81] 

 

 

3.4.3 Difficulties Associated with Security 

The blockchain’s application and architecture are riddled with security holes. 

Blockchain security weaknesses are often the result of problems with the consensus 
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Table 3.2: Findings from the work 
 

Aspects Criteria Explanation 
Cost saving Regulation 

of drugs 
and medical 
equipment 

Medical facil- 
ities are able 
to track the 
movement of 
medications 
and equip- 
ment  in  real 
time. 

Community 
organization 

Management 
of Health 

Blockchain- 
based con- 
sumer health 
data   collec- 
tion 

Medical 
Records 

Digitalized Blockchain 
helps main- 
tain data 

 
mechanism that authorizes and verifies transactions. The following are examples 

of security flaws: 51 per cent, block rejecting, greedy mining, block holding, DDoS, 

difficulty climbing, transaction malleability, eclipse, and double-spending attacks. 

These security vulnerabilities are not addressed by the consensus process algo- 

rithms of the distributed blockchain system. Threats cannot be eliminated by 

theoretical reasoning alone since the required resources are very expensive. 

Consensus approaches have very little role in addressing these security issues. 

That is to say, a protocol with defenses against such attacks should be part of the 

perfect solution. Malicious software may construct decentralized applications by 

taking advantage of security flaws in the blockchain. These malevolent assaults 

use security gaps in the execution of smart contracts to carry out more serious 

offenses like data and identity theft. 

The usage of blockchain introduces another possible weakness (i.e., pseudo- 

anonymity), wherein the public nature of the Blockchain Network allows the 

stream of transactions to be monitored to get true identities or other pertinent 

information [66]. 
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3.5 Discussion 

Bitcoin lends clinical investigations more validity and useful information. The 

digital fingerprint may be used to save the documents as smart contracts on the 

Blockchain. There are numerous advantages to using Bitcoin in the healthcare 

industry, including the implementation of uniform permission protocols for 

accessing electronic health data, participant identity verification and 

authentication, and network infrastructure security at all levels. The 

pharmaceutical supply chain is managed and drug commitments are tracked using 

a blockchain. This technology can be utilized for the analysis and validation of 

certain treatments because it can save patient data at the individual level. 

Blockchain is used to monitor patients, manage clinical trials, maintain medical 

records, enhance safety, disseminate information, and promote transparency. It 

preserves hospital financial statements while cutting down on the time and 

expense of data translation. It tackles many issues in the context of a data-driven 

society. Each block of patient medical records will use Bitcoin to create a hash. 

Additionally, the blockchain approach would encourage patients to provide third 

parties with necessary information while maintaining the privacy of their 

identities. Several data sets must be completed for a clinical inquiry. These data 

sets are the subject of the study, and regular systematic experiments are carried 

out to produce analyses, estimates, and efficiency ratios under various 

circumstances. Once we analyze the data, we draw conclusions from the results. 

However, many scientists might manipulate the results by fabricating the 

evidence and data gathered. Numerous pharmaceutical companies would also like 

to document the results that could lead to these benefits for their operations. 

Because of this, researchers are using Bitcoin to make clinical studies more 

transparent and equitable. It will make it possible to record clinical research that 

is safe, asymmetrical, and straightforward. The information gathered could 

improve post-market research and patient care, leading to maximum efficiency 

gains. These guidelines are based on the core features of Bitcoin, which include 

robustness, enhanced security and privacy, open management, visible audit trails, 

and unambiguous data visibility. This enables medical professionals to adhere to 



62  

the most recent regulations, particularly those pertaining to pharmaceutical 

supply chain safety. 

 

3.5.1 Future Recommendations 

The healthcare sector utilizes Bitcoin, which presents certain issues that require 

resolution. The principal obstacle encountered by medical institutions in using this 

advanced technology is a lack of knowledge. However, it relates to the re- 

sponsibilities of medical groups and regulators. The healthcare industry has to be 

improved. This technical advancement will increase its usefulness in the medical 

field by offering a thorough understanding of treatment results and developments. 

The fundamental framework for communication of data and transaction verifica- 

tion is provided by Bitcoin. Bitcoin will make it easier in the future to record and 

authenticate transactions with network members’ consent. By providing strong 

security at the patient level via public and private key encryption, blockchain will 

be the cornerstone of a new era in the transmission of health information. This 

technology ensures improved patient records, prevention of violations, heightened 

interoperability, optimized processes, effective medication and prescription man- 

agement, and robust monitoring of medical. The healthcare industry is expected 

to significantly profit from the implementation of Bitcoin in the next years. 

 

3.5.2 Difficulties Associated with Privacy 

However, if Bitcoin is used to improve current EHR programmes, the requester 

will want dependable patient data to provide customised services. It is now con- 

siderably more difficult to identify the specific patient using their account number 

thanks to this capability. Any such structure should address issues.Additionally, a 

few extra steps are added to confirm the patient’s reliability and credibility when 

a second node is added to the distributed ledger system that new patients need. 
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3.5.3 Access Control Problems in Medical System 

The authors of [41] addressed the issue of centralized authentication and 

protected the system from certain security vulnerabilities that arise when patient 

data is transferred between healthcare providers by developing a safe, 

decentralized authentication provider. The proposed solution addresses 

authorization and authentication problems associated with the sharing of private 

data in the existing EHR healthcare systems. It's incredible that blockchain 

technology can be utilized for authentication. In [67], they suggested using IoT 

RPM in conjunction with a blockchain-based technique to safely authenticate and 

connect in healthcare systems. 

 

3.5.4 Limitations 

Although these are acknowledged, prior research suggests that there are technical 

challenges. The protocols, novel algorithm development have divided the current 

limitations into four groups based on our research: performance, ethics, protection, 

assumptions, and restraints. 

 

3.6 Summary 

The intrinsic decentralization and encryption of Bitcoin render it very adaptable 

for various applications in the medical industry. It increases the profitability of 

health information, improves the security of people’s electronic medical data, helps 

combat counterfeit drugs, and develops the capacity of healthcare organizations 

to work together. Some healthcare occupations might undergo significant changes 

Using smart contracts to enable digital contracts is one important way that they 

eliminate middlemen from the payment process, smart contracts save costs. The 

degree to which the ecosystem incorporates and makes use of the related advanced 

technology will have a substantial impact on how well Blockchain is used in the 

healthcare industry. Clinical studies, medication monitoring,and system surveil- 

lance health insurance,are all included in the research. The reliance on a central 

storage system in the meta verse poses risks of data leakage, manipulation, or 
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deletion. In these and numerous instances, Bitcoin may play a crucial role in 

achieving a balance between interoperability and security.
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Chapter 4 

 
Deep Neural Network and Fully Homomorphic 

Encryption -Based Privacy Preserving Model for 

EHR 

 
4.1 Introduction 

The growing concern for data privacy in Machine Learning (ML)has propelled the 

adoption of FHE as a leading solution. FHE allows for operations on encrypted 

data without exposing the underlying sensitive information, ensuring that com- 

putations can be performed securely. The fundamental security model for FHE is 

known as indistinguishable under chosen-plaintext attack (IND-CPA) [68] , pro- 

viding a high level of assurance against data breaches. To execute machine learning 

tasks while maintaining data confidentiality, MLPPM systems rely on FHE, which 

enables computations to be performed on ciphertext’s without requiring decryp- 

tion.The Fast Fully Homomorphic Encryption (FFHE) for the Torus,developed by 

Lou and Jiang, has been notable for its efficiency in processing homomorphically 

encrypted data [97]. Unlike a fully homomorphic extended (FHE) version, TFHE 

employs a leveled approach that avoids bootstrapping. This method predeter- 

mines network characteristics, bypassing the need for bootstrapping but requiring 

impractically large parameters for complex neural networks. Additionally, the 

packing technique in TFHE can lead to inefficiencies in runtime and memory us- 

age, especially when processing multiple data points simultaneously [97]. Thus, 
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bootstrapping in conjunction with FHE is preferred to enhance the packing ap- 

proach and improve the performance of MLPPM simulations. 

The Cheon-Kim-Kim-Song (CKKS) scheme, along with the Brakerski-Fan- 

Vercauteren (BFV) scheme, represents a category of word-wise FHE systems. The 

CKKS scheme, in particular, is well-suited for handling encrypted real data and 

has been widely adopted for MLPPM applications[59]. Traditional FHE-based 

models have struggled with complex classification tasks when applied to datasets 

beyond simple examples like MNIST. One approach to address this limitation has 

been to approximate non-arithmetic activation functions using basic polynomials. 

The introduction of bootstrapping, which involves generating a new cipher text by 

increasing the level of the existing one, has been crucial for enabling deeper lay- ers 

in neural networks [63][64]. Early methods faced challenges with limited layer depth 

due to inefficient bootstrapping techniques. However, recent advancements have 

improved the accuracy, temporal complexity, and implementation of boot- strapping 

methods [65][69]. Utilizing pre-trained model parameters helps mitigate the high cost 

of training, which requires extensive computational resources and time. 

In this study, we utilize the SEAL library (version 3.6.1) [107], which imple- 

ments the CKKS-RNS for the MNIST dataset. CKKS-RNS scheme according to 

guidelines [64] [70] to enable operations. ResNet-50, a well-established convolu- 

tional neural network (CNN) model, is chosen for its precision and effectiveness in 

image classification. The model’s architecture, featuring multiple residual blocks, 

enhances its ability to achieve high classification accuracy by combining more 

layers. 

To address the challenges of evaluating non-arithmetic functions in encrypted 

form, we use advanced approximation techniques. The ReLU function is approx- 

imated using min max polynomials [71] , which provide a practical approach for 

evaluating activation functions within the constraints of FHE. By integrating boot- 

strapping with the CKKS-RNS scheme, we demonstrate the potential for deep 

learning models to perform effectively on encrypted data. 
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Model extraction attacks pose a significant risk to MLPPM systems, partic- 

ularly when Softmax functions are not evaluated within the FHE scheme [72] . To 

mitigate this risk, we utilize FHE to evaluate the Softmax function directly, 

ensuring that the model’s privacy is protected against extraction attacks. This 

approach represents a novel application of FHE in preserving privacy while per- 

forming machine learning tasks. 

The pretrained model parameters for ResNet-50 were computed with encrypted 

input images with pre-trained plain text parameters to achieve accurate results. 

The proposed model’s performance is evaluated based on its similarity to the 

original ResNet-50 model. The MLPPM model achieves a classification accuracy of 

92.43% ± 2.65%, which is comparable to the original model’s accuracy of 91.89%. This 

demonstrates the effectiveness of the MLPPM model in handling encrypted data 

while maintaining high classification performance. 

Considerable research has been dedicated to adapting machine learning mod- els 

for compatibility with Homomorphic Encryption (HE) schemes. A notable approach 

involves modifying traditional models to align with HE by substituting standard 

activation functions with simple nonlinear polynomials. This adaptation results in 

what is known as the ”HE-friendly network” [69] [73]. Despite the po- tential 

advantages of this method, such as enhanced privacy guarantees, it has not yet 

resulted in a superior MLPPM machine learning model. For instance, CNNs with 

word-wise HE implementations using basic polynomial activation functions have 

demonstrated a classification accuracy of 91.5% on the MNIST dataset [73]. While this 

represents a significant achievement, these models frequently show lim- ited efficacy 

on more complex datasets and tasks. The simplistic substitution of well-established 

activation functions with basic arithmetic functions may not be the optimal 

solution, given the nuanced role that activation functions play in ad- vanced machine 

learning models. Additionally, these models often necessitate a time-consuming pre-

training phase. Given the substantial data requirements and the prolonged training 

duration, leveraging pre-trained parameters from standard models such as ResNets 

and VGGNet on plain text data is advantageous for pre- 
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serving the privacy of the test datasets. 

Moreover, prior research has explored the use of Multi Party Computation (MPC) 

methods for evaluating non-arithmetic activation functions within privacy- preserving 

machine learning frameworks [73] [74] [75] [76] [77]. While MPC can accurately 

process non-arithmetic functions, it poses significant privacy risks. Specifically, the 

client must be privy to the model’s activation functions, which undermines the 

confidentiality of the MLPPM server’s model. This requirement is problematic for 

MLPPM scenarios where maintaining data privacy is paramount. Additionally, the 

necessity for client participation in computations complicates the communication 

process, which is not ideal for privacy-preserving applications where communication 

efficiency is crucial. 

This research highlights the importance of optimizing the configuration of lev- eled 

homomorphic encryption systems, which often necessitates substantial cir- cuit 

depth. Consequently, achieving practical implementations requires defining 

parameters that can accommodate deeper circuits. The challenge lies in the fact that 

the required parameters for evaluating more comprehensive learning models may be 

impractical within typical computational environments. Furthermore, the running 

time for homomorphic encryption operations may exceed linear time as circuit depth 

increases. This limitation underscores the need for efficient homo- morphic 

encryption strategies that balance practical feasibility with the complex- ity of deep 

learning models. Therefore, a critical area of research is the application of deep 

learning models based on FHE heuristics, which offer initial parameter sizes 

unconstrained by circuit depth. By addressing these challenges, researchers aim to 

develop practical solutions for implementing deep learning models within privacy-

preserving frameworks. 

Overall, the landscape of privacy-preserving machine learning is marked by 

ongoing efforts to enhance model accuracy and efficiency while ensuring robust 

privacy protection. The exploration of HE-friendly networks, MPC methods, and 

leveled homomorphic encryption techniques reflects the complexity of achieving 

effective and practical solutions in this field. Continued research is essential for 
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advancing the state-of-the-art in privacy-preserving machine learning in sophisti- 

cated models. 

 

4.2 Proposed Methodology 
 

4.2.1 CKKS-RNS  Scheme 

The CKKS scheme represents a significant advancement in FHE by facilitating 

arithmetic operations on encrypted data, whether the data is in the form of real 

or complex numbers. This encryption method organizes each element is referred to 

as a ”slot”. The CKKS scheme allows for manipulation of encrypted data without 

requiring decryption, provided the user possesses the public key ring learning with 

errors (ring-LWE) assumption, a well-established cryptographic concept. 

Most operations, with the exception of homomorphic rotation, are executed on a 

component-wise basis. Non-scalar multiplication is applied directly to the cipher text, 

while scalar multiplication is performed with plain text values. Rotation operations 

shift the vector homomorphically across multiple stages. 

During the encryption process, data is approximated to the nearest integer and 

scaled by a large number known as the scaling factor. Homomorphic multiplication 

also involves multiplying the scaling factors of the data being multiplied, neces- 

sitating a rescaling operation to restore the original scaling factor. Traditional 

implementations of CKKS use a multi-precision library to manage the significant 

numerical demands, which results in increased computational costs. To enhance 

efficiency, the CKKS-RNS variant was introduced. In the Residue Number System 

(RNS), large integers are decomposed into smaller, more manageable components, 

allowing arithmetic operations on these smaller integers to correspond with oper- 

ations on the larger values. This approach reduces computational overhead and 

improves overall efficiency Homomorphic rotation, we consider left rotation with 

r steps. Evaluating the Rectified Linear Unit (ReLU) function is essential for many 

neural network models but presents a challenge due to the need for high 

computational precision. In the context of the original ResNet-50 model, approxi- 
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mating the ReLU function with a single high-degree min max polynomial requires 

substantial computational resources. 

To address this, we employ an alternative method for approximating the ReLU 

function. This approach reduces the computational resources and time needed 

for homomorphic evaluation, making it more feasible to process non-arithmetic 

functions like ReLU within a homomorphic encryption framework. 

Overall, the CKKS-RNS scheme enhances the efficiency of fully homomorphic 

encryption by breaking down large integers into smaller components, which allows 

for more manageable computations. The improved approximation techniques for 

functions such as ReLU further optimize the performance of encrypted machine 

learning models, making it practical to deploy complex models like ResNet-50 in 

privacy-preserving environments. 

ReLU(x) = 1 2 x(1 + sign(x)) .............(4.1) 

 
To determine the optimal composite polynomials for approximating the sign func- 

tion, a systematic methodology is applied. This involves first identifying each 

polynomial that forms part of the composite polynomial. To minimize the compu- 

tational complexity while achieving the desired precision, a dynamic programming 

method is employed to calculate the degree of the polynomials. This approach en- 

sures that the number of non-scalar multiplications needed is optimized, balancing 

computational efficiency with accuracy in the approximation. 

 

4.2.2 Novelty for ResNet-50 ON CKKS-RNS Scheme 

Since stride of one or two is the sole convolution used in ResNet-50, we take it for 

granted. 

Initially set to zero, this parameter is incremented by one during the strided 

convolution process. Gazelle’s convolution technique is used for non-strided convo- 

lution, with steps modified by 2 slot str. Strided convolution resembles non-strided 

convolution, however with particular modifications for filtering. Bootstrapping in 

ResNet-50 is the most time-intensive phase, and the cipher text level for every 



71  

 

 

Figure 4.1: Stride-2 convolution 

 
key-switching transaction during bootstrapping stays invariant, irrespective of the 

Residual Network-50 (RESNET) design. Due to the multiple rotation operations 

involved in convolution, the number of key-switching operations is considerably 

higher compared to that in the ReLU function. Hence, bootstrapping should be 

performed immediately after the convolution process, with subsequent convolu- tion 

operations executed at the lowest level of cipher text to reduce the number of 

required rotation operations. 

 

4.3 Implementation of Resnet-50 on CKKS-RNS 

The ResNet-50 model’s structure is shown in Fig.2, and its specifications are 

displayed in Table 1. via this framework, we create our ResNet-50 implementation 

structure via the CKKS-RNS scheme, as seen in Fig.4. This framework includes 

convolution, fully connected layer and Softmax. With the exception of the addition 

of bootstrapping processes, This device and the original ResNet-50 model are 

almost identical. 
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4.3.1 Setup in General for the CKKS-RNS Scheme 
 

 
Parameters 

Bootstrapping, the number of levels is 13, while for general homomorphic pro- 

cesses, it is 11. With a maximum bit length of 1450 modulus, the system meets a 

security criterion of 111.6 bits. The hybrid dual attack, The most effective method 

for attacking the LWE with a sparse key and is used to establish the security level 

. The details are provided in Table 2. 

Each image is processed simultaneously, represented as a 32 × 32 × 3 MNIST 

RGB image. By selecting suitable parameters, we use 215 message slots within a 

single cipher text, which is half the polynomial degree. To efficiently compress an 

MNIST image channel into one cipher text, we apply the sparse packing technique 

and use only 210 sparse spaces, rather than all available slots. This approach 

allows for more efficient convolution operations with fewer rotation steps, resulting 

in a significant reduction in bootstrapping time compared to fully packed cipher 

text. Since the slot structure parameter produced by strided convolution alone is 

inadequate, we build the encrypted tensor structure, taking into account the 

tensor’s dimensions within the encrypted data to aid comprehension. 
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Table 4.1: The ResNet-50 standard 
 

Layer Input size Inputs Output 
Size 

Outputs 

Conv1 32 x 32 3 32 x 32 16 
Conv2 2-1 

2-2 
2-3 

32 
32 
32 

x 
x 
x 

32 
32 
32 

16 
16 
16 

32 x 32 
32 x 32 
32 x 32 

16 
16 
16 

Conv3 3-1-1 
3-1-2 
3-1-s 
3-2 
3-3 

32 
16 
32 
16 
16 

x 
x 
x 
x 
X 

32 
16 
32 
16 
16 

16 
32 
16 
32 
32 

16 x 16 
16 x 16 
16 x 16 
16 x 16 
16 x 16 

32 
32 
32 
32 
32 

Conv4 4-1-1 
4-1-2 
4-1-s 
4-2 
4-3 

16 x 16 
8 x 8 
16 x 16 
8 x 8 
8 x 8 

32 
64 
32 
64 
64 

8 x 8 
8 x 8 
8 x 8 
8 x 8 
8 x 8 

64 
64 
64 
64 
64 

Average Pool- 
Ing 

8 x 8 64 - 64 

Fully 
nected 

Con- 64 x 1 1 - 10 

 

4.3.2 Data Range and Precision 

ResNet: 

The Residual Blocks idea was created by this design to address the issue of the 

vanishing/exploding gradient. We apply a method known as skip connections in 

this network. The skip connection bypasses some levels in between to link-layer 

activations to subsequent layers. This creates a leftover block. These leftover 

blocks are stacked to create resnets. The strategy behind this network is to let the 

network fit the residual mapping rather than have layers learn the underlying 

mapping. The benefit of including this kind of skip link is that regularisation will 

skip any layer that degrades architecture performance. As a result, training an 

extremely deep neural network is possible without encountering issues with 

vanishing or expanding gradients. 

Polynomial estimation is often used to estimate continuous functions in situations 

with sparse data sources. The output’s absolute value might increase significantly 

and result in classification problems if any one value in the message exceeds slots 
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beyond this limited range. ReLU, bootstrapping, as well as Softmax functions are 

examples of non-arithmetic procedures, polynomial approximations are necessary 

because FHE supports only arithmetic operations. Therefore, the approximation 

 

Figure 4.2: Structure of ResNet-50 
 

range must encompass the input values for these functions. In the context of 

ResNet-50, we evaluate the absolute values of inputs for Softmax, bootstrapping, 

and ReLU functions using multiple images. It is hypothesized that the actual input 

values for these processes are highly likely to be below 40, as the highest absolute 

value recorded for these functions is 37.1. Based on this observation, all 

techniques are implemented accordingly. We also employ an average accuracy of 

16 bits while estimating all non-arithmetic functions since investigations show 

that the precision of estimated polynomials or functions must be at least 16 bits 

beyond the decimal point. 
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4.3.3 Optimizing the Accuracy of Homomorphic Opera- 

tions 

To optimize accuracy while minimizing rescaling and linearization, we employ several 

techniques, including scaling factor management helps in maintaining ac- curacy and 

avoiding errors in the resulting message. Since Number-Theoretic 

Transformation(NTT) can be computationally intensive, lazy rescaling and lazy 

relinearization provide alternative methods to enhance processing efficiency. 

. 

 

4.3.4 Implementation of ReLU Function 

Using the CKKS-RNS scheme, we first implemented the ReLU function in ResNet- 

50 by using the the min max polynomials approximation method created[114]. 

This method involves conducting iterative simulations of ResNet-50 under the 

CKKS-RNS framework while adjusting accuracy parameters as needed. Our find- 

ings indicate that a precision of 16 bits consistently provides effective performance. 

By integrating state-of-the-art bootstrapping techniques with FHE, we demon- 

strate the feasibility of running deep neural networks like ResNet-50 on encrypted 

data while preserving data privacy. The SEAL library was utilized for this pur- 

pose, along with advanced bootstrapping methods [72] [78] .We implemented Coeff 

to Slot and Slot to Coeff operations with a depth of two using FFT structure [79]. 
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Figure 4.3: ResNet-50’s architecture for the CKKS-RNS scheme 

 
Mod Reduction was constructed using Remez technique is used to properly esti- mate 

the cosine function and double-angle formulae [80] [76]. 

A significant challenge in using the CKKS-RNS system is bootstrapping failure, 

which can severely impact the overall performance of the neural network. This 

issue typically arises when a slot in the Mod Reduction procedure’s input cipher 

text falls outside the defined approximation range, leading to potential failures in 

bootstrapping. 

 

4.3.5 Pooling Averages and Fully Connected Layer 

After completing all convolutional layers, the tensor is reduced to a size of 8 × 8 

× 64. To convert this tensor into a vector of length 64, we apply average pooling across 

each channel. A completely linked layer is then used to produce a final vector 

with a length of 10. Each member of the 64-length array of cipher texts that is 

the result of the average pooling procedure includes information related to the 

starting slot.  During the fully connected layer operation, no rotation is 
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necessary as the data are divided among separate ciphe rtexts. 

 

4.3.6 Simulation Results 

The proposed method was implemented using Microsoft’s SEAL library [81] ,aug- 

mented with our CKKS-RNS bootstrapping solution. The simulation environment 

consisted of 512GB of RAM. To enhance the execution speed of ResNet-50, we 

utilized the OpenMP library, assigning a single thread to each channel across all 

layers. The total memory requirement for the simulation was 172GB. For training 

the model parameters, we first normalized the training dataset by removing the 

mean pixel values. We used 32 × 32 RGB images and applied data augmenta- tion 

techniques such as horizontal shifting and mirroring. He initialization was 

employed for weight initialization without dropout. The model was trained using 

a cross-entropy loss function with 32 × 32 mini-batches. The learning rate was 

initially set to 0.001 and was reduced to one-tenth after 80 epochs, with a further 

reduction after 120 epochs. 

 
Table 4.2: Comparision of various models 

. 

 

Model Accuracy 
CNN 90.56 
VGG16 89.12 
ResNet-501 91.89 
ResNet-502 92.00 
MLPPMResNet-50 92.43 

 
 

 
The model is deployed on a Hardware with 24gb Internal Ram along with GPU 

Processed machine with NVIDIA Graphic Chip set for processing the data. The 

model has an estimated running time of 38mins. The original ResNet-50’s 

classification accuracy for the same plain text picture was 92.95%± 2.56%, but the 

ResNet-50’s classification accuracy for the encrypted data is 92.43%± 2.65%. The 

proportion of cases where the classification output in the proposed MLPPM model 

matches We also measure what is called the agreement ratio in the original  
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ResNet-50 model. We have a rather good agreement ratio. 98.43%± 1.25%. As a 

result, we confirm that the CKKS-RNS scheme can effectively run the ResNet-50 

with enough accuracy for classification and the right bootstrapping procedure. 

 

4.3.7 Discussion 

Running Time 
 

The model’s current execution time of approximately 3 hours reveals significant 

challenges for practical applications. This duration highlights the necessity for 

substantial optimization to make the use of FHE in deep learning models more 

feasible. Our research shows that FHE can be used with respectable accuracy on 

common deep learning models. However, a few adjustments are necessary to make 

this strategy workable for real-world applications.. Future improvements could 

involve incorporating hardware accelerators such as GPUs, FPGAs, or ASICs, which 

are known to enhance computational efficiency significantly. Additionally, 

advancements in FHE techniques and implementations could contribute to faster 

processing times. By leveraging these accelerators, it may be possible to reduce 

the runtime substantially, making FHE more viable for deep learning applications. 

Moreover, applying the MLPPM model to individual images rather than batches 

and optimizing the CKKS-RNS scheme’s packing mechanism could further reduce 

execution time. This approach will be explored in subsequent research to optimize 

batch processing and enhance overall performance. 

 
Security Level 

 
Model is set at 111.6 bits, which represents a minimal threshold of security consid- 

ered adequate for many applications. However, this level is somewhat below the 

commonly accepted standard of 128 bits, which is often used to ensure higher se- 

curity levels. Although 111.6 bits provides a foundational level of protection, there 

is room for improvement. The security parameters of the CKKS-RNS scheme can 

be adjusted to enhance security, as higher security levels generally result in longer 

processing times. Therefore, adjusting the parameters to achieve a higher security 

level may be necessary depending sensitivity of the data being processed. 
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Classification Accuracy 
 

In training machine learning models, the initialization of weights is typically ran- 

dom, which introduces variability in the results even with identical hyper param- 

eters. To accurately assess model performance, it is important to consider the 

average accuracy obtained over multiple training sessions. For this study, we fo- 

cused on demonstrating the feasibility of applying ResNet-50 to homomorphically 

encrypted data. Despite training the model only once, our results show that the 

accuracy achieved with the encrypted ResNet-50 is nearly identical to that of the 

original, non-encrypted model. This finding is consistent with our earlier research 

[32] , which indicates that FHE bootstrapping can preserve accuracy in deep learn- 

ing models.Additionally, it is anticipated that deeper networks beyond ResNet-50 

could achieve similar results when bootstrapped with FHE, further validating the 

approach. 

 

4.4 Summary 

This study has successfully applied the advanced FHE technique CKKS-RNS to 

the ResNet-50 deep neural network, demonstrating that it is possible to achieve 

high classification accuracy while maintaining the confidentiality of the data. By 

employing precise approximations for critical functions such as ReLU, models can 

be effectively utilized with word-wise FHE. This approach eliminates the need for 

retraining and provides a robust framework for future research. The results 

obtained indicate that FHE can be integrated into deep learning models without 

compromising accuracy, paving the way for further exploration and optimization 

in this area. The promising results of this study suggest that with continued ad- 

vancements in FHE technology, its application to more complex models and larger 

datasets will become increasingly practical and efficient.The Machine Learning 

Privacy-Preserving Model (MLPPM) employs FHE to ensure data privacy and 

security while performing machine learning tasks. This study focuses on advanc- 

ing MLPPM models by utilizing the CKKS-RNS FHE scheme and bootstrapping 
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to address the limitations of traditional FHE methods. Existing models like Cryp- 

toNet, SEALion, and CryptoDL primarily cater to basic or nonstandard machine 

learning models and have demonstrated limited effectiveness with more sophisti- 

cated datasets. These methods typically with approximations before bootstrap- ping, 

restricting the model’s depth and complexity. By integrating CKKS-RNS and 

employing advanced approximation techniques for non-arithmetic functions such as 

ReLU and Softmax, this study presents a robust approach. Our model, based 

on ResNet-50, was validated using the MNIST dataset and demonstrated high 

accuracy and performance. The proposed MLPPM model achieved a classi- fication 

accuracy of 92.43% ± 2.65%, closely aligning with the original ResNet-50 model’s 

accuracy of 91.89%. Inference was performed in 20 minutes on a dual Intel Core 

i7 CPU with 8 GB RAM, showcasing the feasibility of applying FHE to complex 

machine learning models. 
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Chapter 5 

 
Blockchain-Based Secure Multiple Computation 

Scheme for Preserving and Extraction of Health 

Care Data 

 
5.1 Introduction 

The initial purpose of Secure Multiple Computation was to provide a decentralized 

solution to ”The Millionaires Problem”.The two-party calculation was expanded 

to include many parties [82]. A collaborative computing issue that safeguards 

privacy amongst a collection of untrusted individuals is solved using MPC. In this 

case, many parties with secret input want to compute a function together and get 

separate outputs. The intended outcome is the only information the participant 

receives throughout this process [83]. 

A variety of health-related data about individuals is collected in Electronic 

Healthcare Information (EHI). This data includes both medical information (dis- 

eases, prescription drugs, medical images, doctor names, hospital names, etc.) 

and person-specific information (social identity number, patient name, age, gen- 

der, address, etc.). Some patients (individuals) in this data have sensitive values 

and choose to disclose their identities to the public. Therefore, safeguarding this 

private information from unwanted access while providing it to insurance com- 

panies and researchers is the healthcare system’s most important responsibility. 

The conventional method of storing and managing this electronic medical data 
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via a centralized system has the disadvantage that it is hard to guarantee the data 

integrity of the EHI. With its evolution, cloud storage has become a reliable third-

party service provider for data storage and data transfer [84]. 

Single points of failure, vulnerability, and inadequate privacy and security char- 

acterise cloud-based data systems. Additionally, since third-party services are 

necessary for cloud-based data sharing, there is a greater chance of data theft, 

leakage, manipulation, or misuse [85]. While certain cloud-related problems have 

been resolved by prior cryptography and anonymity solutions, the single point of 

failure issue still cannot be resolved. On the other hand, access control for elec- 

tronic health information is often centralized and based on roles. On the other 

hand, the role-based access control (RBAC) paradigm requires the definition of 

complex rules in order to restrict access for different types of data users [86]. The 

process of establishing and modifying rules is especially susceptible to an attack 

because of the centralized data storage, which might swiftly elevate privileges and 

get authorization for the whole dataset [87]. 

Distributed ledger technology, or blockchain, seeks to decentralize data stor- 

age while also making it more secure and impossible to mess with. Substituting 

it for centralized cloud storage solutions might be a smart move [88] [89]. Thanks 

to the smart contract function in the blockchain ecosystem, players from vari- ous 

organizations, such as policy makers, insurance corporations, and hospitals, may 

decentrally check requests for data access.  To further simplify the setup of data 

access limitations based on user attributes, the Attribute-Based Access Control(ABAC) 

approach may be used. 

To protect the confidentiality of electronic health record data, we propose BSM- 

PCS, a blockchain-based substructure. Before being uploaded to the blockchain, 

the whole dataset is encrypted using the homomorphic encryption approach. Using 

this technique for comparisons and other operations only necessitates encryption; 

decryption is not necessary. On top of that, the owner will have the option to de- 

code the encrypted text in order to get plain text from the generated output. Data 

that has to be sent between various organizations or in decentralized situations is 
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best protected by this kind of encryption. 

The paper is organized with background work in section two which refers how 

actually technology works and its application in the current work. Literature 

survey in section three. Proposed work in section four with methodology in section 

five followed by experiments and results in section six and finally conclusion. 

 

5.2 Background Work 
 

5.2.1 Blockchain-Based Secure Multiple Computation Scheme 

Many effective secure multiple computing techniques have now been suggested by 

researchers [86] [89] . They have finished the secure multiple calculation for func- tion, 

even in a lab setting [90] .Under the assumption of a semi-honest opponent model, 

the majority of this study focuses on increasing the efficiency of MPC as much as 

feasible. In other words, everyone involved in secure multiple compu- tation is 

sincere. Regretfully, the present circumstances do not align with this. In actuality, 

there are malevolent opponents that deliberately alter the protocol’s execution in 

order to achieve the desired attack outcomes.Under the malicious adversary concept, 

there are also a few secure multiple computation techniques 

[91] [92]. 

However, two things really continue to occur: 

 
1. When one party receives findings that are more beneficial to him than to others, 

he won’t disclose them, which prevents other parties from receiving the desired 

benefits. 

2. Attacks by hostile opponents are a persistent source of disruption to the 

protocol, preventing it from functioning properly.Therefore, in practice, a 

realistic MPC is also very desired to be resilient. 
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→ 

5.2.2 Smart Contract 

A PC convention that meticulously works with, verifies, or executes the ar- rangement 

or execution of an agreement is known as a smart agreement. Astute contracts enable 

confidential conversations, comprehensive body of legislation, or external execution 

element [93] [94]. They provide observable, uncomplicated, and irreversible 

algorithms for trades. 

 

5.2.3 Bitcoin 

The Bitcoin distributed computing platform allows users to access the chain and 

perform smart contract functions. The block chain is available to the public [8]. 

Each user has access to an authenticated account in order to conduct block chain 

transactions. All operations and transactions are recorded in terms of units of gas. 

Every petrol unit may be mined or bought with cryptocurrency. At the moment 

that a user triggers a transaction, the triggered transaction ’s execution cost is 

added up. 

Po T=(EC +T C)*p. .........................(5.1) 

 
Transaction cost and P is the price of 1 gas unit. 

 

5.2.4 IPFS 

IPFS is both a convention and an organisation designed to provide a common, 

substance-addressable inside a conveyed record framework [95]. This eats away 

at the material that it keeps inside the company. An archive, audio file, image, 

videostored data. The arrangement of these identifiers is merkle dag. PKI-based 

character is used by IPFS as an organisational model[96]. A programme that can 

locate, share, and replicate merkledag items is called an IPFS Node. A private key 

identifies its personality [97]. 

KeyGen PUKey,PRKey ...................... (5.2) 
¯ 

Node Id= Multi Hash(PUKey). ............................ (5.3) 
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5.3 Methodology 

Bitcoin offers a decentralized, immutable network where all nodes may verify trans- 

actions using smart contracts and consensus techniques. The blockchain has been 

employed by a number of healthcare systems [98] [99] because it is a trustworthy way 

to increase communication security and privacy. 

Authors have used smart contracts in [100] to create a system that allows for 

remote patient monitoring and emergency notifications to medical profession- 

als.Through blockchain, this remote monitoring system ensures the patient’s pro- 

tection and privacy [97]. There are three actors and three functions in the sug- gested 

system. The platform’s patient and physician registration process is its primary use. 

They use a smartphone to access it and securely register personal information like 

name, age, and ID. They are also able to review and amend these records. Data from 

the IoT sensor will be processed for patient monitoring, and smart contracts on the 

blockchain will store the processed data. It is now sim- pler for physicians to 

monitor their patients in real time thanks to this step. The business and the medical 

gadgets are the subject of the final function. A smart contract is made between the 

patient and the corporation at the time of purchase to register the device in his name. 

The patient’s data that the IoT instrument obtained is therefore recorded in the care 

facility [64] [101] [102] [103]. 

The authors of the study [104] use the concepts of smart contracts and multi- 

agent systems to oversee and manage pharmaceutical logistics operations. They 

provide a framework that enables transactions between the various system partic- 

ipants to be stored on the blockchain. These transactions are managed via smart 

contracts, independent of any other party. As a result, the system is less costly 

and delivers information more quickly. But in order to assess its effectiveness and 

performance, a working prototype must be created concurrently with empirical 

validation. Study game theory and safe two-party computation [6]. When a safe 

two-party system is transformed into a computation protocol, it preserves two 

sides’ privacy, nash equilibrium, accuracy, and security [105]. 

The stated RMPC is reliant on game theory, which addresses MPC fairness 
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but falls short in addressing robustness issues. The MPC protocols are expressly 

engineered to provide near-fairness and include a decentralized trusted third-party 

system, both of which are absent in real-world settings. As a result of the grow- 

ing demand for block chain technology, which is embodied by Bit Coin [88], Bit 

Coin incentive mechanism became inseparable from Game Theory, and academics 

started incorporating Bit Coin’s fail-safe mechanisms into MPC economics. It gives 

parties a great incentive to take part in MPC processes. Based on the Bit coin 

network, [89] [90] offered a safe two-party lottery mechanism. The parties get 

economic remuneration in the form of Bit currency or the product. 

Multiple rounds of communication with the Bit coin network are required for 

the startup procedure. Several functions, such as the claim-or-refund function- 

ality, the t (secure computation with penalties functionality), and the q (secure 

lottery with penalties functionality) [91]. They created the MPC protocol, which 

requires calling a continuous round. FCR Iddo Bentov and Ranjit Kumaresan 

conducted more study on using Bit Coin to inspire patients obtaining the accu- 

rate calculations [106]. Four unique features are included into the work: verifiable 

computation, fair secure computation, non-interactive reward, and secure compu- 

tation with limited leakage. 

Bit coin is beneficial for building a decentralized poker game, as explained 

[107] .In 2017, he once again put up an enhanced plan to achieve favourable out- 

comes [92]. He discussed the optimization process in this technique to produce a safe 

computational model. Many of the scientists looked at the bit coin concept in 

order to fulfill the criteria. To ensure the protocol’s resilience, accuracy, and fairness, 

they made complete changes to the framework. Although there are sev- eral 

implementation restrictions for bit coins and block chains in the real world, scientists’ 

evolving tactics provide successful outcomes in real-world situations. Due to the 

incompleteness of BitCoins scripting language, it is limited in its abil- ity to enable 

complicated tasks that are intricate and challenging to implement. These tactics work 

well in theory, but they are not recommended for the bit coin’s implementation stage. 
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Global ledger-based multi-party computing protocol developed.Three elements 

are included in their work. Then, in order to achieve our objectives of robustness and 

fairness, an outsourced MPC scheme based on the EOS block chain was put 

forward. Nowadays, almost all of the top businesses choose and use the OAuth 

protocol [93] for their proprietary authentication, which functions as a reliable and 

trustworthy authority. Many researchers have put forward different methods to 

secure personal data from a security standpoint. Sensitive data in these 

anonymized datasets has to be protected. Every record at this location can be 

distinguished from at least k-1 other records [108] .A sufficiently wide range of 

feasible values of k-anonymity 1-diversity is used to represent the sensitive data. 

These methods are widely utilized nowadays to show how data sets are employed in 

our study [96] [97]. Numerous privacy-preserving techniques have differences that 

cause data exchange to be disrupted [64], and there are questions about how to 

compute encrypted data. One such method is called FHE for short 

[101] . This method’s use over encrypted data has a special quality. Although 

it may be effective in tackling real-world problems, it also has certain drawbacks. 

Thus, a plethora of alternative methods, such as accountable systems, have been 

developed as a remedy for this problem. It can safely transmit Bit Coin money 

between users without requiring a centralized system. Additionally, it has an open 

ledger and public verification capability. As block chain regulators, all projects are 

adopting this bit coin 2.0 together. We can accomplish trusted audibility with 

trusted functions by putting this into practice.Transparency, security, and 

effective, secure data are the outcomes. 

The BiiMed platform was recommended by the authors of [109] . This strat- 

egy aims to distribute the patient’s electronic health record across many parties. 

Data interoperability and integrity are provided via the blockchain. The BiiMed 

blockchain and the Health Information System (HIS) make up the two halves of the 

proposed architecture. Medical data is gathered, stored, and disseminated by the 

HIS, and shared data is maintained via the BiiMed platform [110].It is based on 

smart contracts and the Bitcoin blockchain. Data integrity and interop- 
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erability are essential components of electronic medical record interchange. These 

attributes are guaranteed by the technology built on a decentralized trustworthy 

network. 

 

5.4 Proposed System 

The platform that the proposed system, BSMPCS, uses to facilitate the shar- 

ing and exchange of patient medical data. Multi-agent systems and blockchain 

technologies are combined in this approach. Smart contracts and access control 

(ABAC and RBAC) are used to guarantee the security of the data that is altered by 

many stakeholders [111] [112] [113] [114]. A few conditions must also be met by 

the system. The identification of those authorized to take part in the elec- tronic 

medical record management procedure in the blockchain-based healthcare system 

has to be confirmed. In fact, in order to access resources, participants must verify 

themselves. Every participant also has a predetermined role in the way the patient 

file is processed. Actually, all of the resources people need to do their duties are 

available to them. Scalability is important because of the massive amounts of data 

that are transferred in the healthcare industry and the way the network grows 

with each new user. An electronic medical record system should have a flexible 

user interface that makes resource use simple and effective for all users in order 

for them to gain from the necessary medical data service. The CIA trifecta 

(confidentiality, integrity, availability) must be met by the application. To 

guarantee correctness and dependability, patient data must be shielded against 

viewing and any unauthorized access or change. Those with authorization who 

need it may also access it [115]. 

As shown in Figure 5.1 and the EMR system, several agents communicate with 

one another to share information. They make requests for or supply health 

information using a web application. They need to authenticate in order to access 

it. The automated and secure part of this transfer is added by the smart contract, 

depending on the kind of user. The relevant interface then displays the data that 

have been recorded on the blockchain. In order to protect patient data from 
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Figure 5.1: EHR privacy model in Blockchain 

 
assaults, we attempt to give each user an access role because of the blockchain’s 

transparency and immutability. 

As shown in figure 5.1 , the entities of our EHR Privacy Model on Blockchain 

include patients, physicians, insurance companies, research groups, and hospitals. 

A patient’s duties include updating the system with his medical information. The 

only legitimate form of identification the patient has is his Aadhar card, which 

is immediately connected to all the information he updates. A doctor’s duties 

include making sure the patients they have registered are being treated [116] [117]. 

The physician obtains authorization to see the patient information stored in the 

hospital module. The physician establishes a treatment ID for the patient after 

reviewing the patient’s medical data. He administers the precautions to the patient 

while also keeping an eye on them. The patient information that was registered 

for insurance is kept up to date by the insurance company. They keep records of 

information divided into categories, such as drugs that are covered by insurance 

and those that are not. 

As shown in picture 5.2, The patient compiles all of his medical documents. He 

creates digitised versions of the medical records. The EHRs are transformed into 

encoded data. The encoded EHR is created by assembling the encoded com- 

ponents. The blockchain has been updated for these encoded EHRs. The doctor 
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Figure 5.2: Flow of Homomorphic Encryption process 

 
obtains authorization to see the patient’s information. The physician generates a 

treatment ID for further care after reviewing the patient’s electronic health record. 

The patient receives the prescription from the doctor after receiving treatment. 

The prescription reports are also prepared by the doctor and sent to the insurance 

company so that they may be included in the database’s list of prescribed drugs. 

The blockchain has been updated with the files in 8 and 9. The doctor sends the 

papers to the insurance company. In order for patients to register with them, they 

update the terms and conditions and medication files. The patients sign up with 

the insurance provider on their own. They produce the medical records that are 

linked to insurance. The blockchain is updated with these entries. To access the 

EHRs, the research team asks authorization from the hospital. RG secures the 

necessary authorizations to carry out different types of analysis on the EHRs. 

In order to provide predictions and outcomes, RG analyses and evaluates the 

EHRs in a variety of ways. All of the produced forecasts and outcomes are updated 

on the blockchain. The hospital keeps an eye on other organizations and has the 

authority to grant or revoke them access to patient privacy-protected data. 
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5.5 Evaluation 
 

5.5.1 Homomorphic Encryption 

The algorithm used for performing homomorphic encryption is If the public key is 

(G, q, g, h),where = gx, and x is the secret key, then the encryption of a message 

is m (m) = (gr, m, r)for any random r{0, . . . , q − 1} in the ElGamal cryptosystem, 

which is a cyclic group G of rank q with generator g. Then, the homomorphic 

characteristic is 

”(m1).m2 = (gr1,m1.hr1)(gr2,m2.hr2) = (gr1+r2,(m1.m2)hr1+r2)”=(m1.m2) 

 
The formula Y= gx (mod p) ................. (5.4) 

He will email this to Alice. His public key is Y, g, and p.After that, Alice creates 

a message (M) and chooses a 

arbitrary value (k). Next, she calculates a and g. 

a = gk (mod p). .................................. (5.5) 

b = ykM (mod p). ............................... (5.6) 

After receiving these, both decrypt using 

M=x (mod p). ................................... (5.7) 

This is effective because 
 

b ykM (gz)k M gzkM 

az 
(modp) = 

(gk)x (modp) = 
(gk)x (modp) == 

gzk 
(modp) = M 

 
If we have  

a 1 = gk1 (mod p) 

a2 = gk2 (mod p) 

b1 = yk M1 (mod p) 

Following b2 = yk M2 (mod p), we get a=a1 × a2 = gk1×gk2 = gk1+k2. 

ykM1 × yk M2 = b= b1×b2 
 

b 
M = 

ax 
= 

ykM1 × ykM2 
 

 

gk1+k2z 
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Figure 5.3: Homomorphic Encryption process in EHR-PP model 

 

5.5.2 Algorithm for Registering Patients 

This smart contract is responsible for registering the patients, fetching details of 

patients and updating the precautions of patients to the blockchain. 

1. Begin 

 
2. P details[] ← Read patient’s details (Aadhar number, Name, address, phone number) 

 
3. if (P details[aadhar number].isValid()) then 

 
(a) if (P details[aadhar number].isAlreadyRegistered) then 

i. Display the message: “User already registered” 

(b) else 

i. Add details to blockchain 

 
4. else 

 
(a) Display: “Please enter valid user details” 

 
5. End 

 
This function fetches the aadhar card number of the patient and checks whether 

he is registered.If the user is patient and already registered then the details will 

get updated. 
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5.5.3 Algorithm for Insurance Medications 

This contract’s responsibility is to maintain the data of the patients who regis- 

tered for insurance. They also maintain the data of medications that are covered 

under insurance claim. If any necessary medications were not covered in the list 

formulated earlier, authorized doctors are given permissions to add the neces- 

sary medications to the insurance company data. This function takes in input of 

medication details. It checks whether the entered medications are covered under 

insurance or not. 

1. Begin 

 
2. Company details[] ← fetch(company id, name, phone number) 

 
3. If (Company details[id].isNotRegistered) then 

 
(a) Add company details to blockchain 

 
4. Else 

 
(a) Display(“ID already registered. Please enter a new ID”) 

 
5. End 

 
Medications: 

 
1. Begin 

 
2. Medication[] ← fetch(Medication details) 

 
3. UADDRESS ← fetch(User  Address) 

 
4. if  (UADDRESS.isInsurance  Company) then 

 
(a) Medic[] ← fetch(stored medication details) 

(b) If (Medic.Exists(Medication)) then 

i. Display(“Medications not covered under insurance”) 

(c) Else 
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i. Display(“Medication covered under insurance”) 

 
5. Else 

 
(a) Display(“Only insurance company can do this operation”) 

 
6. End 

 

5.5.4 Algorithm for claim for insurance 

This function takes in input of patient’s aadhar card number. It checks whether 

the entered aadhar number has already claimed for insurance or not. 

1. Begin 

 
2. Medication[] ← fetch(Medication details) 

 
3. UADDRESS ← fetch(User  Address) 

 
4. if  (UADDRESS.isInsuranceCompany) then 

 
(a) Medic[] ← fetch(stored medication details) 

(b) If (Medic.Exists(Medication)) then 

i. Display(“Medications not covered under insurance”) 

(c) Else 

i. Display(“Medication covered under insurance”) 

 
5. Else 

 
(a) Display(“Only insurance company can do this operation”) 

 
6. End 
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5.5.5 Algorithm for Doctor 

This contract takes care of all the operations performed by the doctor. First a 

doctor has to register himself with the system in order to perform any operation. The 

doctor requests permissions for accessing the patient’s medical data. After receiving 

the required permissions, the doctor creates a treatment id for the pa- tient, treats 

him and then uploads the prescription & the bill to the blockchain. He also sends 

a copy of the medication details that are not covered in insurance company’s details 

to the insurance company for addition. 

1. Start 

 
2. get(user details) 

userDetails[] 

3. User Address (UADDRESS) ← fetch 

 
4. Display “user already registered” if (UADDRESS.isAlreadyRegistered) 

 
5. Other 

 
6. Register doctor details to the blockchain 

 
7. End 

 

5.5.6  Algorithm for accessing the Patients data for treat- 

ment 

This function reads the patient’s aadhar card number. It creates an OTP for the 

entered aadhar card number, using which doctor can access the patient’s medical 

records. 

1. Begin 

 
2. Paadhar ← fetch(Aadhar details of the patient) 

 
3. UADDRESS ← fetch(User  Address) 



96  

4. If (UADDRESS.isDoctor) then 

 
(a) OTP ← keccak256(Paadhar) 

(b) Update OTP to blockchain 

 
5. Else 

 
(a) Display(“Only doctor can get access permissions to patient”) 

 
6. End 

 

5.5.7 Algorithm for treatment and insurance 

1. Begin 

 
2. UADDRESS ← fetch(User  Address) 

 
3. If (UADDRESS.isDoctor) then 

 
(a) Tid ← (142317 × Paadhar) mod 1000003 

 
4. Else 

 
(a) Display(“Only doctor can create a treatment id”) 

 
5. End 

 

5.5.8 Algorithm for treating a patient: 

This function takes in input of patient’s aadhar card number. It checks whether 

the entered aadhar number has already claimed for insurance or not. 

1. Start 

 
2. User Address (UADDRESS) → fetch 

 
3. Then, if (UADDRESS.isDoctor) 

 
(a) PatientDetails[] ← fetch(stored  patients  details) 
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(b) If  (PatientDetails.Exists) then 

i. Prescription ← Create(prescription, bill) 

ii. PatientDetails.add(Prescription) 

iii. Display(“Prescription and bill updated to patient”) 

iv. Update blockchain 

(c) Else 

i. Display(“Register the patient first”) 

 
4. Else 

 
(a) Display(“Only doctor can treat a patient”) 

 
5. End 

 
The following modules make up the MPS (multiple computation scheme) Contract, 

and the following is a detailed description of each module’s functions: 

1. Register: To become an MPS node, a participant must first register once this 

is done will the participant be eligible services in exchange for money. 

2. Reputation System: According to this contract, every MPS node has a repu- 

tation value. The reputation value of the MPS node will rise if it cooperates and 

does the calculation work successfully; if not, it will fall. The MPS nodes’ 

long-term usefulness is determined by their reputation value. 

3. Incentive Mechanism: The MPS node receives revenue from two sources: 

the price charged to users who use the service, and the penalty imposed on 

dishonest MPS nodes. The allocation of rewards after the completion of each 

service is a reflection of the real usefulness of MPS nodes, as determined by the 

Incentive Mechanism. 

4. Choose Quorum: In order to complete the present calculation work, users 

may choose. A low reputation does not guarantee selection, but the likeli- 

hood will drop very rapidly as the reputation value drops. The poor players 



98  

should be given another opportunity to make up for their previous actions. 

We must also take a newbie into account. This is in line with what is really 

true. 

 

5.5.9 Compute contract 

Users that need the multi-party computing service negotiate and implement Com- 

pute Contracts into the BN. The Compute Contract contains information about the 

MPS settings for the present calculation work. The accuracy of the given data will be 

confirmed by the smart contract. The smart contract will also determine which 

member failed to provide the right message at the start of the next round. The 

blockchain will then decide whether or not the computation may continue. This 

time restriction may represent the future height of a certain block. To get a quorum 

of MPS nodes taking part in the present calculation work, it will submit a 

transaction to MPS Contract in the first phase. 

 

5.5.10 MPS protocol 

We may make use of some research on contracts in this section [118] [119]. Our 

primary concerns in this research are MPS robustness and fairness. It is beyond 

the purview of this study to discuss how to build a secure MPS protocol using 

contracts. The parties calculate hidden shares of the function f’s outputs or a pointless 

intermediate value, as stated in [101] . Thus, upon the completion of each round in 

the blockchain. The blockchain platform’s Smart Contract automatically executes 

rewards or punishments. At the conclusion of every cycle, what the Users and MPS 

nodes must do. 

 

5.5.11 Fairness robustness analysis 

Bitcoin and (t, n)-threshold contracts form the foundation of BSMPCS, which op- 

erates in rounds. Time stamps on a blockchain may make it possible for protocols 

to run synchronously. The Smart Contract will identify and eliminate any player 
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who sends an improper message outside of the protocol at the start of the next 

round. All of this operates automatically in a blockchain context and is visible to 

the public. This is not feasible in earlier work when there isn’t a centralized node. 

On the blockchain, every member has a unique account and matching key pairs, 

making identity theft impossible. The following features primarily demonstrate 

BSMPCS robustness: 

Setup Phase: Each participant’s reputation value is publicly maintained by the 

ledger based on their previous actions. To make selection easier, individuals must 

build up their reputation values over an extended period of time. In order to 

prevent ”The Sybil Attack,” a deposit is required in the contract in order to become 

an MPS node. In other words, the attacker cannot add additional nodes to break 

the protocol. The phase may be repeated and a new subset can be chosen to begin 

with if the procedure is aborted. 

Phase of Input: When submitting the input, users must charge for the current job. 

The accuracy of the user’s input will. The service fee will be charged to the truthful 

Users if they fail to provide the accurate input within the allotted period. The 

service price will allow the programme to withstand denial-of-service assaults from 

users. 

Compute Phase: The Smart Contract also detects the MPS node’s intermediate 

value. 

In conclusion, the Smart Contract will identify any BSMPCS participant who violates 

the protocol and will prevent them from taking part in the subsequent task. The 

plan makes use of a (t, n)-threshold secret share, which provides some fault tolerance 

as long as an appropriate t is specified. Users may choose a new subset to resume the 

agreement even in the event that the protocol is terminated. As a result, BSMPCS is 

resilient. 

 

5.6 Experiment Evaluation 

All things considered, there are six parts to the implementation: IPFS Storage, the 

insurance company, the pharmacist, the BN, the patient, and the doctor. A 
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Java prototype has been constructed using Geth, which is used to build BT. The 

source code for both programs is freely accessible online. Due to the need for 

on-chain storage space in the blockchain, the CID value (hash value) is kept in 

the blockchain after being extracted from IPFS version 4, and all of the reports 

are recorded in IPFS version 4. A network has been established up using IPFS 

version 4. The computers include Intel Core i5 7th Gen processors with (i) 8 GB 

RAM and 500 GB local storage based on Windows x64, and (ii) 6 GB RAM and 

500 GB local storage based on Ubuntu 16 processors. 

It is a well-known fact that the average block creation time of the chosen blockchain 

determines the computational efficiency of all blockchain-based schemes. For 

instance, a Bitcoin transaction typically takes ten minutes to execute. The EOS 

blockchain platform is selected by BSMPCS. BFTDPoS, the current EOS consensus 

process, can reliably produce a block every 0.5 seconds. All MPC Con- tract and 

Compute Contract activities in BSMPCS are carried out on a chain. 

The primary time burden associated with off-chain execution in each round is the 

PVSS data distribution procedure, which involves sharing the Shamir’s secret and 

carrying out several asymmetric encryption operations. For MPC nodes that 

choose to take part in the present compute work during the Compute Contract Init 

phase, their execution duration is mostly determined by the size of the quorum. 

We may deduce that, for a given set of MPC nodes in Compute Contract, the 

cost of time for a BSMPCS round grows exponentially as the size of the quorum 

rises. This is so that additional asymmetric encryption computations may be 

performed during each round of computation as MPC nodes are added to a 

particular workload. Worse, in order to enable secret sharing, a higher power 

polynomial is required, which means that more bytes are used in the created shares, 

increasing the size and time required for the asymmetric encryption of the data. We 

may see that users choosing more MPC nodes to complete a compute work for greater 

privacy would result in a significant loss of efficiency when the quorum surpasses 40. 

This module is in charge of compiling their medical records and forwarding them 
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Figure 5.4: Sequence diagram for EHR report in Healthcare System 

 
to the data encoder so that the plain text may be changed to encoded language. 

These files will eventually be updated to the blockchain and transferred to the IPFS 

storage system. The upload and download times for various sizes are shown in Fig. 

5. The graphs show that the computational cost of uploading a transaction is 

higher than that of downloading it. 

Doctor: When a patient registers with the system, the request is sent to a related 

doctor. To access the data, he obtains authorization from the BN. In addition, he 

generates a treatment ID for the ongoing procedure. In addition to recommend- 

ing certain medications and testing, the doctor uploads the information to the 

blockchain. 

Insurance Company: The patients, hospital, and BN are all covered in this module. 

Depending on the kind of issue and emergency found, the patients register with the 

insurance provider. The hospital and the doctor confirm the information with the 

insurance company. If the request is determined to be legitimate, the patient’s claim 

is rejected; otherwise, the information is processed and money is awarded to the 

patient. 
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Figure 5.5: Transaction upload and download execution time 

 
Pharmacist: Patients may place online orders for medications from the pharmacy 

after obtaining prescriptions from their doctors. The blockchain will be updated with 

the same. 

IPFS Storage: The peers in the network store all of the reports in IPFS. Every 

file has a Content Identifier created for it when the reports are uploaded. This 

serves as a point of reference for network file access. In the blockchain, this 

produced Content Identifier value will be kept. 

BN: To verify transactions submitted by different participating entities and to 

construct a block, this module really implements the consensus procedures. A 

number of blocks containing the data from the participating entities—such as 

patient and doctor IDs, treatment IDs, insurance company details, etc.—will be 

formed during the mining process. The observation is that the mining process 

takes longer than the block creation process. This may be seen in fig. 6. 

Fig. 5.7 ,shows the time it takes peers to access (availability) a transaction for a 

range of report sizes. It seems sense that the access time would rise as the report’s 

size rose. Furthermore, a transaction takes longer to complete the more peers 

participate. 

Comparing the performance of the proposed framework with seven other existing 
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Figure 5.6: Execution time for block mining and block creation 
 

 

Figure 5.7: Running time for transaction access by number of nodes 
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schemes for protecting the privacy of Health Record Information systems is the focus 

of this section. The schemes include [103] [98] [99] [100] [104] [105] [120] 

.Seven benchmark privacy and security attributes are taken into consideration in 

our suggested framework, as shown in the table. 

The chart indicates that our suggested architecture has succeeded in achieving 

both security and privacy features. Notably, our suggested architecture offers the best 

means of protecting patient privacy and HER security in terms of tamper- proofing, 

data privacy protection, patient privacy preservation, access control, non-

repudiation, access revocation, and block search. 

Table 5.1: Metrics 
 

 Metrics [J] [F] [G] [K] [L] [M] [N] Proposed 
Scheme 

1 Tamper – Proof √ √ √ √ √ √ √ √ 

2 Privacy Preserv- 
ing of Patient 

 √  √    √ 

3 Data Pri- 
vacy(Confidentiality) 

 √      √ 

4 Access Control √    √ √ √ √ 

5 Non – Repudia- 
Tion 

√ √ √ √ √ √ √ √ 

6 Access Revocation     √  √ √ 

7 Block Search √   √ √ √ √ √ 

 

 

5.6.1 Evaluation 

If Patients EHRs are securely and safely maintained by this application. It includes 

modules for every aspect of an electronic health care system, including those for 

physicians, patients, the research team, hospitals, and insurance providers. En- 

suring the privacy of data collected and kept in the EHR system is the primary 

goal of this system. Additionally, the EHR Privacy Model in Blockchain is fo- 

cused on avoiding data tampering, unauthorised change, and general support for 

an online electronic health care system. This system uses homomorphic encryp- tion 

and a novel technology known as BT to provide data security and privacy. The 

smart contracts handle granting permission for data access, other modules, 
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Figure 5.8: Working mechanism of Homomorphic Encryption 

 
and collaborating entities. 

A prototype of the intended system was put into place in order to assess the 

system’s functionality and the degree of privacy and security achieved for the data 

kept therein. We used the Ethereum blockchain platform, go-ethereum, version 

7.5.4 of npm, and node version 15.8.0 to implement the prototype. Versions 5.1.66 

and 6.12.2 of the Solidity Framework and IDE are used to deploy smart contracts, 

respectively, while version 0.8.1 of the Solidity scripting language is used to develop 

the contracts. The version of web3js that. 

 
handles queries between Ethereum [2] nodes is v1.2.0.Six workstations were 

used to install the blockchain node each has an Intel CPU with a 2.30GHz core and 

8 GB of main memory. A few nodes were set up in different settings, such as 

Windows 10 and Ubuntu 16. Version 13.2 of Java is utilised to implement the 

encryption and decryption modules of the HME process in the EHR-PP paradigm, 

and Notepad++ is the editor of choice.On receiving the search word ”Fever” the 

HME algorithm performs encryption and generates the code”4zLE9”.Now this 

encrypted keyword is searched and matched with the values that are already en- 

crypted and stored in the database. 
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Figure 5.9: Encryption process in ElGamal encryption algorithm 
 
 
 

 

Figure 5.10: Decryption process in ElGamal decryption algorithm 
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Table 5.2: Transaction and execution cost 
 

S.No Operation 
Performed 

Transaction 
cost 

Execution- 
cost 

Total cost 
(in ether) 

  In gas 
units 

In 
ethers 

In gas 
units 

In 
ethers 

 

1. Contract 
Deployment 

1955973 0.2621004 1444301 0.1935363 0.4556367 

2. Addchemist 166589 0.0223229 142821 0.019138 0.0414609 
3. Adddoctor 207754 0.027839 182834 0.0244998 0.0523388 
4. Addinsurance 

Company 
126755 0.0169852 104651 0.0140232 0.0310084 

5. Addpatient 208706 0.0279666 184170 0.0246788 0.0526454 
6. Getpatient 

Information 
29325 0.0039296 7797 0.0010448 0.0049744 

7. UpdatePrecautio n4s4111 0.0059109 21367 0.0028632 0.0087741 
8. Getchemist 25707 0.0034447 4243 0.0005686 0.0040133 
9. Getinsurance 

Company 
26489 0.0035495 5089 0.0006819 0.0042314 

10. AddMedications 
notcoveredininsur 

65770 
ance 

0.0088132 44114 0.0059113 0.0147245 

11. CreateTreatmentI d21857 0.0029288 329 0.0000441 0.0029729 
12. TreatPatient 189040 0.0253314 165144 0.0221293 0.0474607 
13. Gettreatment 

Details 
27482 0.0036826 5890 0.0007893 0.0044719 

14. Medication 
Includedininsuran 

53756 
ce 

0.0072033 31780 0.0042585 0.0114618 

15. Getdoctordetails 24375 0.0032663 2911 0.0003901 0.0036564 

 
Because this experiment involves the deployment or execution of a smart contract, its 

complexity is measured in terms of gas. The costs associated with each proce- dure 

carried out in the experiment are shown in Table 1. Gwei metrics are used. Total cost 

is equal to the number of gas units used times the cost per gas unit. To execute 

the framework, all of the activities in rows 1, 2, 3, 5, 7, 10, 11, 12, 14, and 16 

must be completed. Therefore, 0.7274322 ethers are needed to execute this 

framework overall. 

Performance comparison Analysis: In this section, we address the performance 

assessment of proposed framework with other existing schemes related to privacy 

preserving of Health Record Information system schemes. 
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Table 5.3: Performance comparision analysis 
 

Reference Access 
Con- 
troll 

Access 
Revoca- 
tion 

Privacy 
Preserv- 
ing 

Access 
to Pa- 
tients 

Predictive 
Model 

Decision 
Making 

Al- 
Sumaidaee 
et al. 
(2023) 

Yes Yes No No NO Yes 

Egala et 
al. (2023) 

Yes No No Yes No No 

Abou El 
Houda et 
al. (2022) 

Yes No Yes Yes No No 

Proposed 
Model 

Yes Yes Yes Yes Yes Yes 

 

5.7 Summary 

MPC scheme to address the needs of robustness and fairness in multi-party com- 

puting. The suggested approach maintains a public reputation system in which 

probability of being chosen. The significance of electronic health information in 

terms of numerous security and privacy issues is covered in this study. After metic- 

ulously noting a number of issues, we established a novel architecture to protect 

and preserve the confidentiality of healthcare data. This is why data is sent and 

stored in an encrypted manner. With this innovative kind of encryption, users may 

safely work with encrypted text, ensuring that their data remains private. 

Consequently, it also reduced the time required to finish several encryption and 

decryption procedures for every obtained query. We also integrated it with BT to 

make it impenetrable. Results from our tests showed that the technology out- 

performed more traditional forms of encryption and storage. The Smart Contract 

needs to check the values of the intermediate and final stages of each cycle. When 

the timer goes off, the smart contract will know that either a message was sent or 

none was sent. Furthermore, an incentive structure promotes teamwork by all 

parties involved; those who are truthful will gain more and more, while those who 

are dishonest will suffer more severe repercussions. Concerns about privacy stem 

from the fact that blockchain maintains an immutable public record; MPC 
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was developed to tackle this very problem. In future studies, we will look at the 

potential privacy protection advantages that MPC offers blockchain.
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Chapter 6 

 
CONCLUSION AND FUTURE SCOPE 

 
6.1 Conclusion 

Bitcoin provides a sophisticated method for storing medical data, executing med- 

ical transactions, and fostering trust in the integration and interchange of medical 

information within a decentralized global healthcare network. The healthcare sec- 

tor has demonstrated considerable interest in Bitcoin yet, privacy and security 

issues persist as the primary points of contention about its application for medi- 

cal data exchange. This article examines a study on the privacy and security of BT 

within the healthcare sector, spanning the years 2017 to 2023. This critical review 

evaluates the present situation by analyzing the existing body of research, with 

particular emphasis on studies that investigate challenges and practical ap- 

plications. This study offers significant insights into potential future research 

avenues and advancements through a rigorous assessment. The findings indicate 

that blockchain is employed to develop advanced and innovative therapies that 

enhance the standard methods for managing, transferring. Blockchain utilization 

in the healthcare sector is fundamentally advancing, significantly enhancing data 

management process security, efficiency, access control, technical innovation, and 

privacy protection. The results also imply that the majority of the present limits 

are related to the model’s functionality, as well as the expenses and restrictions 

that come with putting it into practice. A comprehensive framework is shown to 
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encompass potential domains, including regulatory compliance, system design, and 

data security, where future scholars may make significant contributions. Last but 

not least, the Systematic Literature Review indicates that more study may make it 

easier for blockchain applications to be widely used to solve important problems in 

medical diagnosis, legal compliance, fraud prevention, and the enhancement of 

patient care in emergency situations or during remote monitoring. 

FHE is used by the Machine Learning Privacy-Preserving Model (MLPPM) to 

protect data security and privacy during machine learning activities. Completely 

homomorphic encryption maintains secrecy by enabling calculations on encrypted 

material without the need to decode it. This study focuses on advancing MLPPM 

models by utilizing the Cheon-Kim-Kim-Song-Residue-Number-System (CKKS- 

RNS) FHE scheme and bootstrapping to address the limitations of traditional 

FHE methods. Existing models like CryptoNet, SEALion, and CryptoDL primar- 

ily cater to basic or nonstandard machine learning models and have demonstrated 

limited effectiveness with more sophisticated datasets. These methods typically 

replace non-arithmetic activation functions with approximations before bootstrap- 

ping, restricting the model’s depth and complexity. By integrating CKKS-RNS 

and employing advanced approximation techniques for non-arithmetic functions such 

as ReLU and Softmax, this study presents a robust approach for deep learn- ing on 

encrypted data. Our model, based on ResNet-50, was validated using the MNIST 

dataset and demonstrated high accuracy and performance. The proposed MLPPM 

model achieved a classification accuracy of 92.43% ± 2.65%, closely aligning 

with the original ResNet-50 model’s accuracy of 91.89%. Inference was performed in 

20 minutes on a dual Intel Core i7 CPU with 8 GB RAM, showcasing the feasibility of 

applying FHE to complex machine learning models. 

Privacy protection for EHRs is becoming an issue that the general public is 

becoming more and more interested in. The increasing use of virtual currencies 

like bitcoin has led to the development of BT, which possesses the qualities of ”de- 

centralization” and ”immutability”. Current EHR management systems prioritize 

safeguarding user privacy information above the security risks that occur when 
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patients engage with several roles. As of right now, there is no sufficient solution 

to the problem of insurance companies accessing confidential patient information 

and violating their privacy. As the number of reported data breaches that threaten 

the current system rises, users’ privacy is called into question because of personal 

data that third parties manage and obtain in large amounts. This study offers 

a block chain-based solution to all of the aforementioned problems.The paper 

proposes a blockchain-based framework to address privacy concerns in electronic 

health record systems. It specifically applies the decentralized, immutable qual- 

ities of blockchain to secure data against unauthorized access. The use of smart 

contracts for EHR management is relatively novel, as it allows interactions with 

insurance companies without exposing sensitive data. This contribution should 

highlight why smart contracts are better suited for this use case compared to 

existing mechanisms. The application of homomorphic encryption ensures that 

the system can process encrypted data without decrypting it. This allows com- 

putations (such as insurance claim verifications) to be performed on encrypted 

data, preserving privacy. The BSMPCS system is a new framework that could 

potentially combine these technologies into a unified solution. The paper should 

emphasize how this is different from existing EHR management systems and what 

makes it more secure and privacy-preserving.Using Bitcoin smart contract tech- 

nology and homomorphic encryption, we create the feature with BSMPCS that 

allows the insurance company to decide whether to execute insurance requests 

even in the absence of a way to get the ID and the plain text of the EHR. As 

a consequence, during communication, no private patient information would be 

revealed to uninvited parties, improving user data privacy and security. 

 

6.2 Future Scope 

Blockchain-inspired privacy-preserving and auditable EHR models could improve 

healthcare data management. Healthcare systems generate massive volumes of 

numerical, classified, and unstructured data like photos, videos, and audio. Pri- 

vacy and the integrity of multidimensional data are essential. Decentralization, 
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immutability, and transparency make blockchain technology a possible solution. 

Healthcare organizations need customized solutions to improve blockchain-based 

EHR security, efficiency, and accessibility. Advanced anonymization and cryptog- 

raphy to secure healthcare data across formats are significant future goals. This 

connection would protect data privacy and meet strict legal standards. AI-driven 

methods can automate quasi-identifier identification in healthcare datasets. This 

breakthrough would make privacy protection frameworks more scalable and pre- 

cise, especially for high-dimensional and sensitive datasets, by eliminating manual 

intervention. AI and blockchain can improve healthcare data management security 

and efficiency to fulfill modern healthcare ecosystem needs Healthcare blockchain 

adoption presents particular problems, such as limited storage capacity, the neces- 

sity for privacy-preserving techniques for on-chain data, and the complexity of im- 

plementing revocable access control. To maximize blockchain technology for EHR 

systems, these issues must be addressed. This paper presents a blockchain-inspired 

access control mechanism using private blockchain technology and cryptographic 

primitives to overcome these challenges. This technique addresses major chal- 

lenges while keeping the model realistic, secure, and auditable. Tamper-resistant 

storage and revocable access control make electronic health record management 

secure and efficient. The model’s privacy and security are tested against tam- 

pering, collusion, replay attacks, and malicious access attempts to prove its re- 

silience. These studies verify the system meets healthcare application qualitative 

and functional requirements. Performance comparisons with existing healthcare 

data management solutions show blockchain-based solutions’ efficiency and scal- 

ability, indicating their real-world potential. This research develops a blockchain- 

inspired, privacy-preserving, auditable EHR framework. The concept addresses 

present constraints and anticipates future issues, ushering in an exciting era in 

healthcare data management. This framework protects sensitive patient data and 

ensures stakeholder confidence, transparency, and auditability. Future blockchain 

research in other healthcare fields could lead to revolutionary electronic health 

record management solutions that prioritize privacy, security, and efficiency. In 



114  

future,it is intended to extend the research work for multiple sensitive attributes 

and high-dimensional data. Nowadays, healthcare data not only consists of nu- 

merical and categorical attributes but consists of image, video, and audio kind of 

data. Privacy preserving approaches to protect such data should be identified. 

Anonymization approaches can be merged with crypto graphical approaches to 

protect healthcare data of different formats. An AI based model can be proposed 

to identify the quasi attributes of healthcare data without human intervention.
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Appendix A 

Appendix 

Implmentation Algorithms 

 
Privacy in Healthcare 

BT is a viable solution for enhancing healthcare privacy due to its numerous 

advantages. 

Data is disseminated over multiple network nodes. Consequently, the likelihood 

of encountering 

a singular site susceptible to failure or attack is diminished. 

Step 1: Planning 

1. Identified Research gaps need for our requirement 

2. Research questions & Objectives delineated 

3. Specifying appropriate database & Selection criteria 

Step 2: Execution 

1. Database Search 

2. Article Screening 

3. Select articles curated for the present study 

Step 3: Assimilation 

1. Information Extraction & Structuring 

2. Synthesis of focal areas 

3. Proposition of future research issues 

The Cheon-Kim-Kim-Song (CKKS) scheme, along with the Brakerski-Fan-Vercauteren 

(BFV) scheme, represents a category of word-wise FHE systems. The CKKS 
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scheme, in 

particular, is well-suited for handling encrypted real data and has been widely 

adopted for MLPPM applications 

ResNet-50 ON CKKS-RNS SCHEME 

This framework includes convolution (Conv), fully connected layer (FC), and Soft- 

max. With the exception of the addition of bootstrapping processes, This device 

and the original ResNet-50 model are almost identical. FHE techniques and im- 

plementations could contribute to faster processing times. By leveraging these 

accelerators, it may be possible to reduce the runtime substantially, making FHE 

more viable for deep learning applications. Moreover, applying the MLPPM model 

to individual images rather than batches and optimizing the CKKS-RNS scheme’s 

packing mechanism could further reduce execution time. This approach will be 

explored in subsequent research to optimize batch processing and enhance overall 

performance. 

Homomorphic encryption: 

The algorithm used for performing homomorphic encryption is If the public key is 

(G, q, g, h), where = gx, and x is the secret key, then the encryption of a 

message is m (m) = (gr, m, r) for any random r{0, . . . , q − 1} in the ElGamal 

cryptosystem, which is a cyclic group G of rank q with generator g. 

Register: To become an MPS node, a participant must first register once this is 

done will the participant be eligible services in exchange for money. 

Reputation System: According to this contract, every MPS node has a rep- utation 

value. The reputation value of the MPS node will rise if it cooperates and does 

the calculation work successfully; if not, it will fall. The MPS nodes’ long-term 

usefulness is determined by their reputation value. 

Incentive Mechanism: The MPS node receives revenue from two sources: the 

price charged to users who use the service, and the penalty imposed on dishonest MPS 

nodes. The allocation of rewards after the completion of each service is a reflection 

of the real usefulness of MPS nodes, as determined by the Incentive Mechanism. 
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Choose Quorum: In order to complete the present calculation work, users may 

choose. A low reputation does not guarantee selection, but the likelihood will 

drop very rapidly as the reputation value drops. The poor players should be given 

another opportunity to make up for their previous actions. We must also take a 

newbie into account. This is in line with what is really true 

Setup Phase: Each participant’s reputation value is publicly maintained by the 

ledger based on their previous actions. To make selection easier, individuals must 

build up their reputation values over an extended period of time 

Phase of Input: When submitting the input, users must charge for the current job. 

The accuracy of the user’s input will. The service fee will be charged to the truthful 

Users if they fail to provide the accurate input within the allotted period. The 

service price will allow the programme to withstand denial-of-service assaults from 

users 

Compute Phase: The Smart Contract also detects the MPS node’s intermediate value. 

In conclusion, the Smart Contract will identify any BSMPSS participant who violates 

the protocol and will prevent them from taking part in the subsequent task. The plan 

makes use of a (t, n)-theshold secret share, which provides some fault tolerance as 

long as an appropriate t is specified. Users may choose a new subset to resume the 

agreement even in the event that the protocol is terminated. As a result, BSMPSS is 

resilient 

Doctor: When a patient registers with the system, the request is sent to a related 

doctor. To access the data, he obtains authorization from the BN. In addition, he 

generates a treatment ID for the ongoing procedure. In addition to recommend- 

ing certain medications and testing, the doctor uploads the information to the 

blockchain. 

Insurance Company: The patients, hospital, and BN are all covered in this module. 

Depending on the kind of issue and emergency found, the patients register with the 

insurance provider. The hospital and the doctor confirm the information with the 

insurance company. If the request is determined to be legitimate, the patient’s claim 

is rejected; otherwise, the information is processed and money is 
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awarded to the patient. 

Pharmacist: Patients may place online orders for medications from the pharmacy 

after obtaining prescriptions from their doctors. The blockchain will be updated with 

the same. 

IPFS Storage: The peers in the network store all of the reports in IPFS. Every 

file has a Content Identifier created for it when the reports are uploaded. This 

serves as a point of reference for network file access. In the blockchain, this 

produced Content Identifier value will be kept. To verify transactions submitted 

by different participating entities and to construct a block, this module really 

implements the consensus procedures. 

The significance of electronic health information in terms of numerous security and 

privacy issues is covered in this study. After meticulously noting a number of is- 

sues, we established a novel architecture to protect and preserve the confidentiality 

of healthcare data. This is why data is sent and stored in an encrypted 
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