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Abstract 

Plastic has become important to current lifestyle because of their adaptability and low cost. However, 

their widespread use has caused significant harm to ecosystems. Plastics do not easily degrade, 

leading to the accumulation of waste in landfills, oceans, and other natural habitats. This accumulation 

causes damage to marine life, birds, and even land animals, as plastic debris can entangle, poison, or 

be mistakenly ingested by wildlife. Additionally, the breakdown of plastics into microplastics further 

compounds the issue, allowing these tiny fragments to enter food chains, potentially affecting human 

health. As awareness of these environmental impacts grows, the search for alternatives to 

conventional plastics becomes more pressing. One promising alternative is Polyhydroxyalkanoates 

(PHA), a bioplastics synthesized by microorganisms that can biodegrade naturally in various 

environments, including soil and marine ecosystems. PHA, particularly polyhydroxybutyrate (PHB), 

is an ideal replacement for petroleum-based plastics due to its biodegradable nature, biocompatibility, 

and ability to be produced from renewable resources. PHB possesses properties akin to traditional 

plastics like polypropylene, making it a feasible substitute in many applications. However, the 

commercial production of PHA has been hindered by the high cost of raw materials and fermentation 

processes. In order to make PHA production economically viable, researchers have explored using 

less expensive and sustainable substrates. This study investigates the potential of hydrolyzed wood 

waste and wastewater as low-cost substrates for PHA production. Wood waste, an abundant 

byproduct of forestry and industrial processes, contains cellulose and hemicellulose, which can be 

hydrolyzed into fermentable sugars. These sugars serve as carbon sources for PHA-producing 

bacteria, offering a sustainable approach to bioplastic production while addressing waste 

management. This research explored the potential of isolating PHA-producing bacteria from 

wastewater streams in Jalandhar, India. Wastewater is a rich source of diverse microbial communities, 

some of which can synthesize PHA as an energy storage compound. Samples were collected from 

various locations in Jalandhar, including industrial and sewage waste streams. The bacterial isolates 

underwent screening for PHA production capabilities using Nile Blue and Sudan Black staining 
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techniques, which are commonly employed to detect intracellular PHA granules. The stained colonies 

that showed positive results were further selected for PHA production studies. The first phase of 

production involved culturing the isolates in a minimal salt medium (MSM) to determine the most 

efficient PHA producers under controlled conditions. The PHA-producing isolates were identified 

through 16S rRNA sequencing.The sequencing results revealed that the most promising PHA 

producers belonged to the genera Klebsiella and Escherichia. The three isolates identified as the best 

PHA producers were Klebsiella sp. strain MK3, Klebsiella pneumoniae strain DSM 30104 

(MK2023), and Escherichia fergusonii ATCC 35469 MK. These isolates were subsequently 

evaluated for their capacity to produce PHA using hydrolyzed wood waste as a carbon source. The 

wood waste was pretreated and hydrolyzed to release fermentable sugars, which the bacterial isolates 

could metabolize for PHA synthesis. The total PHA production and PHB yield per mL of medium 

were measured for each isolate. The results showed that Escherichia fergusonii ATCC 35469 MK 

was the most efficient PHA producer, achieving a total PHB production of approximately 11,900 mg 

and a 5.9 mg/mL yield. In contrast, Klebsiella sp. strain MK3 produced the lowest amount of PHB, 

with a total production of around 8,700 mg and a yield of 4.37 mg/mL. The intermediate producers 

were Klebsiella pneumoniae strain DSM 30104 (MK2023) and Pseudomonas fluorescens MTCC 

1749, with total PHB productions of 10,400 mg and 10,800 mg, respectively and yields per mL of 

5.24 mg/mL and 5.41 mg/mL. Several analytical techniques were employed to confirm the chemical 

structure and composition of the produced PHA. UV-Vis spectroscopy was used to detect the 

characteristic PHB peak at 235 nm, indicating the presence of crotonic acid, a degradation product of 

PHB. Fourier-transform infrared spectroscopy (FTIR) was also performed, revealing absorption 

peaks consistent with PHB, such as those corresponding to ester and carbonyl groups. Gas 

chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy 

were employed to further characterize the PHA.The results from these techniques confirmed that the 

biopolymer produced by the isolates was indeed PHB, a subclass of PHA, thereby verifying its 

identity as a biodegradable plastic with desirable properties. This study demonstrates that hydrolyzed 

wood waste and wastewater can be viable and cost-effective substrates for PHA production. The 

successful isolation of efficient PHA producers from wastewater streams in Jalandhar underscores 
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the potential of harnessing microbial diversity in waste environments for bioplastic production. By 

utilizing renewable and abundant waste materials, the production costs associated with PHA can be 

significantly reduced, making it a more feasible alternative to conventional plastics. This approach 

provides a sustainable solution to plastic pollution and contributes to waste management by valorizing 

wood waste and wastewater. In conclusion, combining hydrolyzed wood waste and wastewater as 

substrates for PHA production offers a promising route toward environmentally friendly bioplastic 

synthesis. The bacterial isolates identified in this study, particularly Escherichia fergusonii ATCC 

35469 MK, demonstrated significant potential for PHB production. By optimizing the use of 

inexpensive substrates and harnessing the metabolic capabilities of waste-derived microorganisms, 

This approach could reduce the ecological influence of plastics and support a circular economy by 

enabling the sustainable production of biodegradable materials. 
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The global plastic waste crisis, while well-documented, continues to worsen with each passing 

year. The once-celebrated durability and versatility of plastics have now become central to an 

environmental crisis. Each year, Over 300 million tons of plastic waste are generated annually, with 

a significant portion ending up in landfills, oceans, and natural ecosystems. (Geyer et al., 2017). While 

recycling efforts have been promoted globally, the reality is that less than 10% of all plastic produced 

has ever been recycled (Hopewell et al., 2009). Most of this waste is either incinerated, producing 

harmful emissions or ends up in landfills where it takes hundreds of years to degrade, during which 

time it releases toxic chemicals that leach into the soil and groundwater (Rochman et al., 2013). These 

figures illustrate the urgent need for a paradigm shift in how plastics are produced, used, and disposed 

of. 

 

Plastic waste accumulation is a direct result of several interrelated factors. The first is the sheer scale 

of plastic production, which has been growing exponentially since the 1950s. From 1950 to 2015, 

global plastic production skyrocketed from 2 million metric tons to 380 million metric tons per year. 

(Geyer et al., 2017). This staggering increase is driven by the widespread use of plastic in virtually 

every sector of modern life, from packaging to electronics to automobiles. Consequently, the 

manufacture of single-use plastics, which are intended for disposal after one use, has become a major 

factor in plastic pollution. Products like plastic bags, straws, and disposable cutlery, although used 

only briefly, can persist in the environment for hundreds of years. (Jambeck et al., 2015). 

 

Another factor is the inefficiency of existing waste management systems. Particularly in developing 

countries, the infrastructure required for collecting, sorting, and recycling plastic waste is often 

inadequate. This often leads to improper disposal methods, such as open burning or dumping into 

rivers and oceans, where plastics can travel vast distances and accumulate in remote regions, 

including the Arctic and Antarctic (Barnes et al., 2009). Even in regions with well-developed waste 

management systems, such as Europe and North America, a significant proportion of plastic waste is 

either landfilled or incinerated, both unsustainable options (Hopewell et al., 2009). Landfilling 
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contributes to long-term environmental degradation, while incineration releases harmful air pollutants 

and contributes to global warming. 

 

Furthermore, The persistent nature of plastics in the environment poses a unique challenge. Unlike 

organic materials, which decompose relatively quickly through natural processes, plastics resist 

microbial degradation. Instead of decomposing quickly, plastics gradually fragment into increasingly 

smaller pieces, known as microplastics and nanoplastics, which can remain in the environment for 

centuries (Browne et al., 2011). These tiny elements have been identified in soil, water, and even the 

air, presenting a potential risk to human health by infiltrating the food chain and being inhaled 

(Rochman et al., 2013). 

 

Plastic waste has a deep and complex impact on ecosystems, with plastic debris causing particular 

issues in marine environments.It is believed that annually, more than 8 million tons of plastic are 

deposited into the world's oceans, predominantly coming from sources on land. (Jambeck et al., 

2015). Once in the ocean, plastics can travel vast distances, carried by ocean currents and winds. Over 

time, plastic debris accumulates in large gyres, such as the Great Pacific Garbage Patch, where 

millions of tons of plastic are concentrated in areas more significant than many countries (Eriksen et 

al., 2014). Marine life, such as fish, seabirds, and marine mammals, is particularly vulnerable to the 

impacts of plastic pollution. Numerous species confuse plastic for food and consume it, resulting in 

internal injuries, starvation, and death. (Wilcox et al., 2015). Furthermore, plastic debris can ensnare 

marine animals, hindering their ability to swim or feed properly.. 

 

Beyond its immediate effects on wildlife, plastic pollution also has long-term consequences for 

marine ecosystems. As plastics degrade into microplastics, they can be ingested by many organisms, 

from plankton to whales. These small particles can build up in the tissues of marine animals and 

bioaccumulate through the food chain, potentially affecting humans who consume seafood. (Browne 

et al., 2011). The detection of microplastics in seafood has sparked worries about the introduction of 

toxic substances such as bisphenol A (BPA) and phthalates—commonly used in plastic production— 

into the human food chain, potentially posing health risks. (Halden, 2010). 
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Terrestrial ecosystems are also affected by plastic pollution. In agricultural settings, plastic mulch 

films are commonly used to suppress weeds and retain moisture in the soil. However, when these 

films degrade or are improperly disposed of, they contribute to plastic pollution in the soil. 

Microplastics in soil can affect soil structure, reduce nutrient availability, and hinder plant growth 

(Rillig et al., 2019). Additionally, plastic pollution can disturb natural habitats, resulting in 

biodiversity loss and changes to ecosystems. (Barnes et al., 2009). 

 

 
Figure 1.1: Global impact of plastic pollution in the ecosystem 

 

Given the environmental challenges posed by conventional plastics, there has been a growing interest 

in biodegradable plastics that can offer similar functionality without the associated environmental 

harm. Polyhydroxyalkanoates (PHAs) are a type of biodegradable plastic that has recently garnered 

significant interest. PHAs, or polyhydroxyalkanoates, are naturally occurring biopolymers that 

various microorganisms produce as intracellular storage compounds when nutrients are limited. 

(Anderson & Dawes, 1990). PHAs are biodegradable and can be broken down by microorganisms in 

soil, water, and compost environments, making them an attractive alternative to traditional 

petrochemical-based plastics as shown in figure 1.1 (Kumar et al., 2021). 
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Polyhydroxybutyrate (PHB), a specific type of PHA, has garnered particular interest due to its 

physical properties, similar to those of polypropylene (PP), a widely used conventional plastic. PHB 

is synthesized by bacteria including Cupriavidus necator and Bacillus megaterium, which accumulate 

PHB as intracellular granules when grown in environments with excess carbon and limited nitrogen 

or phosphorus (Reddy et al., 2003). PHB can be harvested from bacterial cells and processed into 

bioplastic materials suitable for various applications, including packaging, agriculture, and medical 

devices (Chen, 2010). The biodegradability of PHB under natural environmental conditions is one of 

its key advantages, as it can break down in both marine and terrestrial environments, minimizing the 

prolonged environmental effects of plastic waste. 

 

Despite the promising environmental benefits of PHB, its large-scale commercial production is 

currently limited by several challenges, the most significant of which is its high production cost. The 

microbial fermentation process required to produce PHB involves several stages, including microbial 

growth, PHB accumulation, extraction, and purification. Each of these stages contributes to the 

overall cost of production, making PHB several times more expensive than plastics (Kourmentza et 

al., 2017). The price of raw materials, particularly the carbon source used for microbial growth, is 

one of the significant factors contributing to the high cost of PHB production. Traditionally, carbon 

sources such as glucose and sucrose, derived from food crops, are used for microbial fermentation. 

However, using these feedstocks not only increases the cost of production but also raises ethical 

concerns about competition with food supplies. 

 

Researchers have been exploring low-cost and waste-derived feedstocks for PHB production to 

address these challenges. Agricultural residues, industrial byproducts, and municipal waste streams 

have all been investigated as potential carbon sources for microbial fermentation (Kourmentza et al., 

2017). Utilizing waste materials as feedstocks decreases the expense of raw materials and offers an 

environmentally sustainable approach to waste management. By rerouting waste materials away from 

landfills and incinerators, the production of PHB from these feedstocks supports a circular economy 

where resources are continuously reused and repurposed. 
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One of the most promising strategies for reducing the cost of PHB production is using hydrolyzed 

wood waste and wastewater as substrates for microbial fermentation. Wood waste, generated in 

significant quantities by the timber and paper industries, is an abundant and renewable source of 

lignocellulosic biomass (Saini et al., 2016). Lignocellulosic biomass comprises cellulose, 

hemicellulose, and lignin, which can be broken down into simple sugars through processes such as 

acid hydrolysis (Zhang et al., 2010). These sugars, including glucose and xylose, can serve as carbon 

sources for microbial fermentation, offering a cost-effective alternative to conventional feedstocks. 

 

Wood waste as a substrate for PHB production has several environmental and economic benefits. 

First, it provides a sustainable use for a waste material that would otherwise be landfilled or 

incinerated, contributing to pollution. By transforming wood waste into valuable bioplastic products, 

industries can lessen their environmental impact and contribute to a more sustainable bioeconomy 

(Saratale et al., 2021). Second, wood waste is a readily available and renewable resource, making it 

a cost-effective alternative to food-based feedstocks. Finally, The use of wood waste supports the 

principles of a circular economy by transforming waste materials into valuable products, thereby 

lessening the reliance on new, unprocessed resources. 

 

In addition to wood waste, wastewater from various industrial processes, such as food processing, 

agriculture, and municipal wastewater treatment, can also serve as a cost-effective substrate for PHB 

production (Chua et al., 2013). Wastewater often contains organic compounds, such as sugars, fatty 

acids, and alcohols, that microorganisms can utilize for growth and PHB synthesis. Combining 

hydrolyzed wood waste with wastewater makes it possible to create a low-cost and sustainable 

feedstock for PHB production while simultaneously addressing waste management challenges. 

Integrating these two waste streams provides a novel and synergistic approach to reducing the cost of 

PHB production and improving the environmental sustainability of bioplastics. 

 

While the use of hydrolyzed wood waste and wastewater for PHB production offers significant 

promise, several challenges still need to be addressed. One of the main challenges is the efficient 

hydrolysis of lignocellulosic biomass to release fermentable sugars. The complex structure of 
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lignocellulose makes it resistant to degradation, and acid hydrolysis requires high temperatures, 

pressures, and chemicals, which can be costly and energy-intensive (Sun & Cheng, 2002). 

Researchers are exploring alternative methods, such as enzymatic hydrolysis and microbial 

pretreatment shown in figure 1.2, to enhance lignocellulose degradation efficiency and minimize the 

process's environmental impact (Zhang et al., 2010). 

 

 

 

 

 
Figure 1.2: Biochemistry behind the process of wood hydrolysis. 

 

PHB is synthesized by microorganisms as intracellular carbon and energy storage compounds when 

they are subjected to nutrient limitations, especially nitrogen or phosphorus, when there is an 

abundance of carbon (Anjum et al., 2016). The ability of various microorganisms to efficiently 

produce PHB has opened avenues for developing industrially viable methods for bioplastic 

production. Among the promising candidates are Escherichia fergusonii MK, Pseudomonas 

fluorescens, and Klebsiella pneumoniae, which have demonstrated considerable potential in PHB 

biosynthesis. 
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Escherichia fergusonii MK, a member of the Enterobacteriaceae family, has gained attention due to 

its ability to accumulate PHB under specific growth conditions. Its metabolic versatility allows it to 

adapt to different environments, making it a potential candidate for PHB production in diverse 

industrial settings (Mumtaz et al., 2017). Similarly, Pseudomonas fluorescens, a well-known 

bacterium for its role in biocontrol and biofilm formation, has been examined for its capacity to 

produce PHB in conditions where nutrients are limited. This species is particularly appealing due to 

its rapid growth rate and versatility in utilizing different substrates, including waste materials, for 

PHB synthesis (Singh et al., 2020). Klebsiella pneumoniae, another bacterium from the 

Enterobacteriaceae family, is not only known for its pathogenic potential but also for its ability to 

produce PHB efficiently. Studies have shown that K. pneumoniae can accumulate PHB in significant 

amounts when grown in specific nutrient-limited environments, which makes it a viable candidate for 

industrial-scale bioplastic production (Ramachanderan et al., 2021). The use of such microorganisms 

for PHB production not only contributes to sustainable bioplastic development but also provides a 

means of valorizing agricultural and industrial waste materials. 

 

Exploring these microorganisms for PHB biosynthesis opens up new possibilities in the field of 

biodegradable plastics. Their metabolic pathways, adaptability to various environmental conditions, 

and efficiency in converting different carbon sources into PHB underscore their potential in 

biotechnological applications. Continued research into optimizing these strains' growth conditions 

and genetic engineering may further enhance PHB yield and reduce production costs, making 

bioplastics a more viable alternative to conventional plastics. 

 

Another challenge is optimizing microbial fermentation processes to maximize PHB yields from 

waste-derived feedstocks. While many microorganisms can produce PHB, their yields may differ 

based on the feedstock composition and the conditions of fermentation. (Reddy et al., 2003). Genetic 

engineering and metabolic optimization of microbial strains may be necessary to improve their ability 

to utilize waste-derived substrates and increase PHB production efficiency (Chen, 2010). Further 
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research is needed to scale the production process from laboratory-scale experiments to industrial- 

scale operations. 

 

In conclusion, sustainable alternatives to conventional plastics are critical for addressing the global 

plastic waste crisis. Polyhydroxybutyrate (PHB) is a promising bioplastic that offers many 

environmental benefits, including biodegradability and the ability to be produced from renewable 

resources. However, the high cost of PHB production has limited its commercial viability. 

Hydrolyzed wood waste and wastewater as substrates for microbial fermentation represent a novel 

and sustainable solution for reducing the cost of PHB production. This approach provides a low-cost 

and renewable source of carbon for microbial growth and addresses waste management challenges 

by repurposing waste materials that would otherwise add to environmental pollution.As research in 

this area continues to advance, integrating waste-derived feedstocks into PHB production can make 

bioplastics a viable and sustainable alternative to conventional plastics, contributing to a more circular 

and environmentally sustainable bioeconomy. 
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2.1 Plastic Pollution and it’s harmful effects 

 

Plastic has become integral to modern life due to its versatility, durability, and cost-effectiveness. It 

is widely used in packaging, construction, healthcare, and electronics (Smith et al., 2018). However, 

the environmental cost associated with plastic use far outweighs its convenience. Plastics are 

synthetic materials primarily derived from petrochemicals and are highly resistant to degradation 

(Johnson et al., 2020). Consequently, discarded plastics build up in the environment, adding to 

pollution in landfills, rivers, and oceans. The same durability that makes plastic valuable in numerous 

applications also turns it into a major environmental threat (Morris et al., 2019). 

The detrimental effects of plastic pollution are extensive, impacting both terrestrial and marine 

ecosystems. Plastics are non-biodegradable, allowing them to remain in the environment for hundreds 

or even thousands of years. (Morris et al., 2019). When plastics enter ecosystems, they pose 

significant risks to wildlife. Marine animals, such as seabirds, turtles, and fish, often mistake plastic 

debris for food, ingesting it and suffering from malnutrition, poisoning, or death (Williams et al., 

2020). More oversized plastic items, like fishing nets, can entangle marine species, causing injury or 

suffocation (Thompson et al., 2009). 

Additionally, plastic pollution disrupts ecosystems by physically altering habitats, reducing 

biodiversity, and threatening the health of both terrestrial and marine species (Barnes et al., 2010). 

Plastics in oceans break down into smaller particles called microplastics, which further exacerbate 

the problem by entering the food chain (Jones et al., 2018). Microplastics are ingested by various 

organisms, including plankton, fish, and even humans, raising concerns about the long-term health 

implications of this exposure (Patel et al., 2017). 

There are several types of plastics, each with specific properties and uses. For instance, polyethylene 

terephthalate (PET) is commonly used in beverage bottles and food containers (Galloway et al., 

2016). High-density polyethylene (HDPE) is used in milk jugs, detergent bottles, and plastic bags, 

while polyvinyl chloride (PVC) is employed in pipes, medical equipment, and packaging (Hahladakis 

et al., 2018). Low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) are used 
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in plastic bags, food containers, and disposable cups, respectively (Thompson et al., 2009). These 

materials vary in durability, flexibility, and recyclability, but they all contribute to the persistence of 

plastic pollution in the environment shown in table 2.1 (Law & Thompson, 2014). 

Table 2.1: Different types of plastics and their harmful effects 

 

Type of Plastic Common Uses Harmful Effects 

Polyethylene Terephthalate (PET 

or PETE) 

Beverage bottles, food containers, 

synthetic fibers 

Leaches antimony, which can 

cause lung and heart problems 

with long-term exposure. 

Microplastic formation in water 

bodies (Galloway et al., 2016). 

High-Density Polyethylene 

(HDPE) 

Milk jugs, detergent bottles, 

grocery bags 

Relatively low toxicity but can 

accumulate in the environment, 

contributing to microplastic 

pollution  and  wildlife  harm 

(Thompson et al., 2009). 

Polyvinyl Chloride (PVC) Pipes, medical equipment, credit 

cards, flooring 

Contains toxic additives such as 

phthalates and vinyl chloride, 

which can cause cancer, birth 

defects, and endocrine disruption 

(Hahladakis et al., 2018). 

Low-Density Polyethylene 

(LDPE) 

Plastic bags, food wrap, bottles Produces toxic fumes when 

burned and contributes to land and 

marine plastic pollution, causing 

harm to wildlife (Patel et al., 

2017). 

Polypropylene (PP) Food containers, straws, bottle 

caps, packaging 

Resistant to degradation, 

contributing to long-term 

environmental pollution. Limited 

leaching potential but contributes 
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  to microplastic pollution (Kim et 

al., 2021). 

Polystyrene (PS or Styrofoam) Disposable cups, food packaging, 

insulation 

Contains styrene, a possible 

carcinogen, and contributes to air 

and marine pollution. Difficult to 

recycle (Galloway et al., 2016). 

Polycarbonate (PC) / Other Water bottles, eyeglass lenses, 

electronics 

Leaches bisphenol A (BPA), 

which is linked to hormonal 

disruption, reproductive issues, 

and  increased  cancer  risk 

(Talsness et al., 2009). 

 

 

Microplastics are tiny plastic particles under 5 mm in diameter, created by the degradation of larger 

plastics or introduced directly as primary microplastics in products like cosmetics and synthetic 

clothing fibers (Cox et al., 2019). These particles are now found in virtually every corner of the globe, 

from the ocean's depths to the Arctic ice (Barnes et al., 2010). Microplastics pose severe risks to 

marine life because they are easily ingested by many organisms, from plankton to whales (Jones et 

al., 2018). Once ingested, microplastics can cause physical harm and act as carriers for toxic 

chemicals that further endanger the health of marine species and, by extension, humans (Patel et al., 

2017). 

Microplastics have also been detected in human food and drinking water, raising concerns about their 

potential health impacts (Wright & Kelly, 2017). Research has shown that microplastics may lead to 

inflammation, interfere with immune responses, and carry harmful substances like persistent organic 

pollutants (Galloway et al., 2016). While the long-term health effects of microplastic exposure in 

humans are not yet fully understood, growing evidence indicates they could play a role in the 

development of chronic diseases. (Vandenberg et al., 2019). 
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Furthermore, plastic has contributed to a "throwaway culture," where convenience often trumps 

sustainability (Thompson et al., 2009). This mentality has driven overconsumption, exacerbating 

waste management issues globally (Hopewell et al., 2009). The sociological impact extends to mental 

health as well. Communities facing environmental degradation due to plastic pollution experience 

heightened anxiety, helplessness, and despair about the future of their environment and health 

(Clayton et al., 2017). 

Addressing plastic pollution necessitates a comprehensive approach that includes government 

policies, corporate accountability, public awareness, and individual efforts. (Geyer et al., 2017). Here 

are some key methods: 

2.1.1 Government Regulations: Many governments have implemented bans on single-use plastics, 

such as plastic bags, straws, and cutlery. For example, the European Union banned certain 

single-use plastic products in 2021 (European Commission, 2021), and countries like Kenya, 

India, and Rwanda have also introduced strict measures to curb plastic pollution (Njeru et al., 

2018). Additionally, extended producer responsibility (EPR) schemes make manufacturers 

responsible for the entire lifecycle of plastic products, incentivizing companies to design more 

sustainable alternatives (OECD, 2018). 

2.1.2 Corporate Responsibility: Large corporations increasingly recognize their role in 

contributing to plastic pollution and adopt more sustainable practices (Bocken et al., 2016). 

Some companies are shifting toward using recycled plastic in packaging (Geueke et al., 2018), 

while others are investing in biodegradable alternatives (Narancic et al., 2020). The push for 

a circular economy, where materials are continuously reused and recycled, has gained 

momentum recently (Ellen MacArthur Foundation, 2015). 

2.1.3 Public Awareness and Behavior Change: Increasing public awareness of the harmful 

impacts of plastic pollution is crucial for promoting behavioral change. (Singh et al., 2020). 

Campaigns encouraging consumers to reduce plastic use, recycle, and adopt sustainable 

alternatives have been effective in some regions (Ertz et al., 2017). For instance, increased 
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awareness has made reusable shopping bags and water bottles increasingly popular in various 

countries (Zhu et al., 2019). 

2.1.4 Improved Waste Management: Enhancing waste management infrastructure is essential for 

reducing plastic pollution, particularly in developing countries where these systems are often 

insufficient (Jambeck et al., 2015). Investments in recycling facilities, promoting waste 

segregation, and implementing advanced technologies for sorting and processing waste can 

significantly reduce plastic accumulation in landfills and oceans (Ritchie & Roser, 2018). 

2.1.5 Innovation in Recycling: Advances in recycling technology, such as chemical recycling, are 

helping to convert plastic waste into reusable materials (Ragaert et al., 2017). Unlike 

traditional mechanical recycling, which can degrade plastic quality, chemical recycling breaks 

down plastic into its original components, producing higher-quality materials (Rahimi & 

García, 2017). 

2.2 Alternatives to Plastic 

 

While reducing plastic use is essential in tackling pollution, finding suitable alternatives is important 

(Yates & Barlow, 2013). Some of the most promising alternatives include: 

2.2.1 Glass: Glass is a durable, non-toxic material that can be reused and recycled indefinitely 

without losing quality (Ross & Evans, 2003). However, its heavier weight and fragility make 

it less convenient for some applications than plastic (Hopewell et al., 2009). 

2.2.2 Metal: Metal, particularly aluminum, is another alternative that is easily recyclable and has a 

lower environmental impact over its lifecycle (Turner et al., 2015). Aluminum cans, for 

instance, can be recycled indefinitely, making them a more sustainable choice for packaging 

(Lazarevic et al., 2010). 

Bio-plastic: Plant- and microbial-based bioplastics are sustainable alternatives to traditional equally 

 

2.2.3 plastics. Derived from renewable sources like starch, cellulose, and microbial fermentation, 

they reduce environmental impact by being biodegradable or compostable. These bioplastics 

offer comparable mechanical properties to conventional plastics, making them suitable for 
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packaging, agriculture, and medical applications. Their production also lessens dependence 

on fossil fuels, supporting a circular economy. (Shen et al., 2020; Chen et al., 2021). 

2.3 Types of Bioplastics 

 

Bioplastics are emerging as a promising solution to plastic pollution. These are plastics derived 

from renewable biological sources, such as corn starch, sugarcane, and cellulose (Philp et al., 

2013). Bioplastics can be divided into two main categories: biodegradable and non-biodegradable. 

2.3.1 Polylactic Acid (PLA): PLA is one of the most common types of biodegradable bioplastics 

derived from renewable resources like corn starch or sugarcane (Auras et al., 2004). PLA is used 

in various applications, including food packaging, disposable cutlery, and 3D printing. While it 

is biodegradable under industrial composting conditions, it requires specific facilities to break 

down effectively shown in table 2.2 (Drumright et al., 2000). 

2.3.2 Polyhydroxyalkanoates (PHA): PHA is a family of biodegradable polyesters produced by 

bacterial fermentation of sugars and lipids (Chen, 2010). PHA has gained attention for its 

biodegradability in natural environments, including soil and marine ecosystems (Shen et al., 

2009). It is used in packaging, medical applications, and agricultural films (Chen & Patel, 2012). 

2.3.3 Starch-Based Bioplastics: These are derived from natural starch sources, such as potatoes, 

corn, and wheat (Shanks & Kong, 2012). Starch-based bioplastics are used for biodegradable 

bags, packaging materials, and disposable items. However, they are less durable than traditional 

plastics and may have limited applications (Imre & Pukánszky, 2013). 

2.3.4 Cellulose-Based Bioplastics: Derived from cellulose, the primary component of plant cell 

walls, these bioplastics are biodegradable and have been used in applications such as films, 

coatings, and packaging (George et al., 2001). 

2.3.5 Microbial Bioplastics: Microbial bioplastics offer a sustainable alternative to traditional 

plastics, as they are derived from renewable sources such as bacteria, algae, or fungi (Tokiwa et 

al., 2009). These bioplastics are biodegradable and reduce reliance on fossil fuels, lowering 



17  

environmental pollution (Narancic et al., 2020). Unlike conventional plastics, which persist in 

ecosystems for centuries, microbial-based bioplastics decompose more rapidly (Shen et al., 2009). 

They hold promise for reducing plastic waste and supporting the transition toward a circular, eco- 

friendly economy shown in figure 2.1 (Chen, 2010). 

Table 2.2: Types of Bioplastics and it’s applications 

 

Type of Bioplastic Source Characteristics Applications 

Polyhydroxybutyrate 

(PHB) 

Microbial fermentation 

(e.g., Cupriavidus 

necator) 

Biodegradable, high 

thermal stability, brittle 

Packaging, agriculture, 

medical devices (Chen 

et al., 2012) 

Polylactic Acid (PLA) Fermentation of plant 

sugars (e.g., corn 

starch) 

Biodegradable, 

compostable, clear, low 

heat resistance 

Packaging, disposable 

cutlery, textiles (Auras 

et al., 2004) 

Polyhydroxyalkanoates 

(PHA) 

Microbial fermentation 

of organic materials 

Biodegradable, variable 

properties depending on 

type 

Packaging, agricultural 

films, medical 

applications  (Chen  et 

al., 2012) 

Starch-based Plastics Starch from crops (e.g., 

potatoes, corn) 

Biodegradable, often 

blended with  other 

materials for strength 

Packaging, disposable 

items, agricultural films 

(Avérous et al., 2012) 

Polybutylene Succinate 

(PBS) 

Biosynthetic processes 

or petrochemical 

sources 

Biodegradable, flexible, 

good impact resistance 

Packaging, agricultural 

films, automotive parts 

(Shirai et al., 2006) 

Polycaprolactone (PCL) Chemical synthesis (can 

be produced from 

renewable sources) 

Biodegradable, low 

melting point, flexible 

Medical implants, 3D 

printing, biodegradable 

plastics  (Woodruff  et 

al., 2010) 

Cellulose-based Plastics Cellulose from plants 

(e.g., wood, cotton) 

Biodegradable,  strong, 

can be made into films 

or fibers 

Packaging, film 

coatings, textiles 

(George et al., 2001) 
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Figure 2.1: Types of Bioplastics 

 

2.4 Polyhydroxyalkanoates (PHA) 

 

Polyhydroxyalkanoates (PHA) and polyhydroxybutyrates (PHB) are considered among the most 

promising bioplastics due to their unique properties and versatility. Derived from renewable resources 
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through microbial fermentation, these biodegradable polymers stand out for their potential to replace 

traditional plastics in various applications. Their biodegradability, biocompatibility, and comparable 

mechanical properties to conventional plastics make them superior choices among bioplastics. 

2.4.1 Biodegradability and Environmental Impact 

 

One of the primary reasons PHA and PHB are favored over other bioplastics is their excellent 

biodegradability. PHA and PHB can decompose naturally in various environments, including soil, 

freshwater, and marine environments, making them highly suitable for reducing plastic pollution 

(Raza et al., 2018). This quality is paramount compared to other bioplastics, such as polylactic acid 

(PLA), which require industrial composting conditions for biodegradation (Puppi et al., 2019). The 

complete biodegradability of PHA/PHB reduces the risk of long-term environmental contamination, 

offering a critical advantage in addressing global plastic waste issues. 

2.4.2 Production from Renewable Resources 

 

PHA and PHB are produced by microorganisms, primarily bacteria, through the fermentation of 

renewable carbon sources such as sugar and lipids. Unlike petroleum-based plastics, PHA and PHB 

do not rely on fossil fuels, reducing carbon footprints during production (Khanna & Srivastava, 2005). 

This renewable origin is a critical factor in their sustainability. Moreover, ongoing advancements in 

genetic engineering and metabolic pathways have made it possible to optimize microbial strains, 

increasing PHA/PHB production yield and lowering costs (Keshavarz & Roy, 2010). 

2.4.3 Mechanical Properties 

 

PHA and PHB possess mechanical properties comparable to traditional plastics, such as 

polypropylene (PP) and polyethylene (PE). PHB, in particular, exhibits good tensile strength and 

rigidity, making it suitable for packaging, medical applications, and agricultural films (Chen, 2009). 

On the other hand, PHA is known for its flexibility and can be tailored to meet specific requirements 

for various applications by adjusting its monomer composition (Sudesh et al., 2000). This versatility 
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in mechanical properties makes PHA/PHB an ideal candidate to replace a wide range of 

petrochemical plastics in industrial applications. 

2.4.4 Applications of PHA 

 

Polyhydroxyalkanoates (PHAs), including the widely researched polyhydroxybutyrate (PHB), are 

emerging as versatile biopolymers with applications spanning multiple industries due to their 

biodegradability, biocompatibility, and thermoplastic properties. One of the primary sectors 

utilizing PHAs is biomedical engineering. PHB, for instance, has been widely studied for use in 

medical devices, sutures, drug delivery systems, and tissue engineering (Valappil et al., 2007). 

Unlike other bioplastics, PHB does not generate toxic degradation products when metabolized, 

further enhancing its potential for medical and pharmaceutical uses (Philip et al., 2007). Recent 

studies in 2025 have focused on developing PHB-based scaffolds incorporated with growth factors 

for accelerating bone and nerve regeneration (Singh et al., 2025). In packaging, PHAs are being 

adopted as eco-friendly alternatives to petroleum-based plastics. PHB films, in particular, have 

demonstrated improved oxygen barrier properties and thermal stability, making them suitable for 

food preservation and single-use packaging (Zhao et al., 2025). In agriculture, PHAs serve as 

matrices for controlled-release fertilizers and pesticides, reducing environmental load and 

enhancing soil sustainability (Chen et al., 2025). Additionally, PHB nanoparticles have been applied 

in the cosmetic and personal care sectors for encapsulating bioactive compounds, improving skin 

delivery and stability (Lee et al., 2025). Furthermore, PHA’s compatibility with 3D printing 

technologies opens new pathways for creating customizable bioproducts in both consumer and 

medical markets (Garcia et al., 2025). Thus, with continued advancements in microbial synthesis 

and downstream processing, PHA and PHB biopolymers are increasingly recognized as sustainable 

materials supporting a circular bioeconomy. 

2.4.5 Composability and End-of-Life Options 

 

In addition to being biodegradable, PHA/PHB are compostable under natural conditions without 

requiring specific industrial processes. This distinguishes them from bioplastics like PLA, which 
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decompose in high temperatures and controlled environments (Reddy et al., 2003). The ability to 

break down in natural environments, including marine ecosystems, is a key advantage of PHA/PHB, 

especially considering the rising concern over marine plastic pollution. 

2.4.6 Circular Economy Potential 

 

PHA/PHB fits seamlessly into a circular economy where materials are continuously reused and 

recycled. Because they can be produced from waste materials, such as agricultural by-products, 

PHA/PHB offers a pathway for waste valorization, converting waste into valuable bioplastics 

(Gholami et al., 2016). This makes them an attractive option for industries looking to close the loop 

on resource use and reduce their environmental footprint. 

2.4.7 Challenges and Future Prospects 

 

Despite their numerous advantages, PHA and PHB still face challenges with production cost 

and scalability. However, continuous advancements in fermentation technology, microbial strain 

engineering, and feedstock optimization drive down costs, making PHA/PHB increasingly 

competitive with traditional plastics (Koller et al., 2010). Moreover, the growing demand for 

sustainable alternatives is likely to drive further investments in PHA/PHB production, making 

them even more viable. 

2.5 Types of PHA and Microorganism Relations 

 

PHAs exist in several forms, including polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), and 

polyhydroxyhexanoate (PHHx), each with distinct properties that make them suitable for different 

applications (Steinbüchel & Lütke-Eversloh, 2003). PHB, the most common type of PHA, is known 

for its high crystallinity and biodegradability, making it ideal for packaging and disposable products. 

PHV and PHHx, however, have more flexible properties and are used in applications requiring higher 

elasticity (Reddy et al., 2003). 
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Microorganisms produce PHAs as a means of energy storage under conditions of nutrient limitation 

(Madison & Huisman, 1999). When essential nutrients such as nitrogen, phosphorus, or oxygen are 

scarce but carbon sources are abundant, microorganisms synthesize PHA granules as a form of 

intracellular carbon and energy reserve (Lee, 1996). This allows them to survive in environments 

where nutrient availability fluctuates. The accumulation of PHA is a natural response to stress 

conditions and can be triggered by providing excess carbon sources like glucose or fatty acids during 

fermentation (Chen, 2010). 

2.6 Microorganisms That Produce PHB 

 

Several microorganisms can produce PHB, including species of Ralstonia eutropha, Cupriavidus 

necator, Bacillus megaterium, and Pseudomonas fluorescens shown in table 2.3 (Philip et al., 2007). 

These bacteria are often used in industrial processes for PHB production due to their high yield and 

ability to utilize various carbon sources. Ralstonia eutropha is one of the most studied PHB producers, 

known for its efficiency in converting carbon-rich substrates into PHB (Riedel et al., 2015). Bacillus 

megaterium is another organism that can accumulate PHB in high quantities and has been used for 

commercial PHB production (Tan et al., 2014). 
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Table 2.3: Microbes capable of producing PHB 

 

Microorganism Characteristics Uses/Applications 

Bacillus megaterium Gram-positive, rod-shaped bacterium; 

produces PHB as a carbon reserve 

Biodegradable plastics, 

agriculture 

Cupriavidus necator Gram-negative bacterium; high PHB 

production efficiency 

Bioplastics, medical 

applications 

Alcaligenes eutrophus Now known as Cupriavidus necator; one of 

the most studied PHB producers 

Biodegradable materials 

Ralstonia eutropha Another  name  for  Cupriavidus  necator; 

known for its ability to accumulate high 

amounts of PHB 

Industrial bioplastics 

Methylobacterium 

extorquens 

Gram-negative, methylotrophic bacterium; 

produces PHB from methanol 

Environmental cleanup, 

bioengineering 

Pseudomonas putida Gram-negative; can produce PHB under 

certain conditions 

Bioremediation, 

bioplastics 

Brevibacillus brevis Produces PHB and other biopolymers; 

Gram-positive bacterium 

Bioplastics, 

pharmaceuticals 

Rhodobacter 

sphaeroides 

Photosynthetic bacterium; can produce PHB 

under specific conditions 

Bioengineering, 

renewable materials 

 

 

2.7 Pseudomonas fluorescens as PHB producer 

 

Polyhydroxybutyrate (PHB) production by Pseudomonas fluorescens has gained attention due to its 

potential for bioplastic production, offering a sustainable alternative to petrochemical-based plastics. 
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P. fluorescens has been shown to accumulate PHB under nutrient-limited conditions, mainly when 

nitrogen or phosphorus is deficient while carbon is available in excess (Khanna et al., 2019). This 

bacterium can use various carbon sources, such as glucose, glycerol, and waste oils, making it 

versatile for industrial applications (Singh et al., 2020). PHB synthesis in P. fluorescens is regulated 

by key enzymes, including PHB synthase, which catalyzes polymer formation from hydroxybutyrate 

monomers (Sarkar et al., 2021). Advances in genetic engineering have enhanced PHB yield by 

overexpressing genes involved in the biosynthesis pathway (Sharma et al., 2022). The 

biodegradability and biocompatibility of PHB produced by P. fluorescens highlight its potential for 

applications in packaging, agriculture, and medical devices. 

2.8 Novel Approach of Escherichia fergusonii MK, and Klebsiella pneumoniae as PHB Producers 

 

Recent studies have highlighted the potential of Escherichia fergusonii MK, and Klebsiella 

pneumoniae as efficient PHB producers. Escherichia fergusonii MK, a lesser-known member of the 

Escherichia genus, has demonstrated an ability to accumulate significant amounts of PHB when 

cultured with carbon-rich substrates (Siddiqui et al., 2021). Klebsiella pneumoniae, traditionally 

studied as a pathogen, has also been identified as a promising PHB producer, mainly when using 

industrial and agricultural waste streams as substrates (Prabhu et al., 2019). 

These microorganisms offer novel solutions to the challenges of PHB production by utilizing low- 

cost and renewable substrates, such as wood waste, to synthesize bioplastics. Their ability to 

metabolize diverse carbon sources makes them ideal candidates for large-scale industrial applications. 

2.9 Expansiveness of Substrate for PHB Production 

 

Polyhydroxybutyrate (PHB) production is influenced heavily by the type of substrate used during 

fermentation. Conventional substrates such as glucose and sucrose have been widely utilized, but 

their high cost limits the scalability of the process, especially when considering large-scale production 

(Khanna & Srivastava, 2005). Glucose and other refined sugars are costly because they compete with 

food supply chains, making them unsustainable in the long term for biopolymer production. 
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Consequently, a growing body of research focuses on identifying low-cost, renewable, and widely 

available substrates to reduce production costs without sacrificing yields (Koller et al., 2010). 

2.10 Extraction of PHB Producers from Waste Streams 

 

The extraction of PHB-producing microorganisms from waste streams is a growing area of interest 

due to its potential for sustainable production. Waste streams, including agricultural residues, food 

waste, and industrial byproducts, offer a rich source of organic materials that can be used as substrates 

for microbial fermentation (Koller et al., 2010). By utilizing waste streams, researchers aim to reduce 

the cost of PHB production while simultaneously addressing waste disposal issues. Microorganisms 

like Pseudomonas fluorescens and Klebsiella pneumoniae have shown potential for PHB production 

using waste substrates, offering a cost-effective and environmentally friendly solution (Huang et al., 

2016). 

2.11 Wood Waste Generated Around the World and India 

 

Wood waste is a significant byproduct of various industries, including forestry, construction, and 

paper manufacturing. Globally, millions of tons of wood waste are generated each year, with a 

substantial portion going to landfills or incinerated (Ghosh et al., 2019). In India, the situation is 

similar, with large amounts of wood waste produced annually due to the country’s growing 

construction and industrial sectors (Mishra et al., 2021). The disposal of wood waste presents 

environmental and economic challenges, as landfilling and incineration contribute to pollution and 

greenhouse gas emissions. 

2.12 Wood Waste as a Good Source of Carbohydrates 

 

Wood waste, primarily composed of lignocellulosic biomass, is one of the most abundant organic 

waste materials produced globally. The forestry and wood-processing industries produce significant 

quantities of wood chips, sawdust, bark, and other residues, which frequently end up in landfills or 

are incinerated, adding to environmental pollution. (Liu et al., 2016). However, this waste material is 
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rich in complex carbohydrates such as cellulose and hemicellulose, which can be broken down into 

simple sugars through processes like hydrolysis (Jönsson & Martín, 2016). 

Cellulose, Earth's most abundant organic polymer, is a linear polysaccharide made up of glucose 

units. Conversely, hemicellulose is a branched polymer containing various sugars such as xylose, 

mannose, and glucose. Both polymers can be hydrolyzed into simple sugars, which can then be 

utilized by PHB-producing microorganisms (Pandey et al., 2000). 

The carbohydrate content of wood waste makes it an ideal substrate for microbial fermentation. 

Recent studies have demonstrated the feasibility of using wood waste hydrolysates to produce PHB 

through microbial fermentation (Jiang et al., 2014). For example, Pseudomonas fluorescens and 

Escherichia coli have been shown to effectively metabolize sugars derived from wood hydrolysates 

to produce PHB (Keshavarz & Roy, 2010). This process contributes to the circular economy by 

turning waste into valuable products and provides a renewable and sustainable alternative to fossil 

fuel-derived plastics. 

2.13 Hydrolysis of Wood Waste into Simple Sugars for Microbial Consumption 

 

Wood waste primarily comprises lignocellulosic biomass, which consists of cellulose, hemicellulose, 

and lignin. To utilize wood waste as a substrate for microbial PHB production, it must first be broken 

down into simple sugars through hydrolysis (Jönsson & Martín, 2016). Hydrolysis involves the 

enzymatic or chemical breakdown of cellulose and hemicellulose into fermentable sugars, such as 

glucose and xylose, which microorganisms can consume during fermentation (Lynd et al., 2002). 

Enzymatic hydrolysis is often preferred for its lower environmental impact and higher sugar yields, 

making it a key step in the sustainable production of PHB from wood waste (Zhang et al., 2019). 

2.14 Wood Waste as a Reliable Source for PHB Production 

 

Using wood waste as a substrate for PHB production has numerous advantages, making it a reliable 

and sustainable resource for biopolymer synthesis. Wood waste is abundant and renewable, providing 

a consistent feedstock supply for bioplastic production. Moreover, using wood waste helps address 



27  

the environmental problem of waste disposal in the forestry and wood processing industries (Ghosh 

et al., 2019). By converting this waste into bioplastics, industries can reduce their reliance on fossil 

fuels, lower greenhouse gas emissions, and contribute to waste management solutions. 

Economically, wood waste offers a cost-effective substrate for PHB production. The hydrolysis of 

wood waste produces fermentable sugars at a fraction of the cost of conventional sugar-based 

substrates, reducing the overall cost of bioplastic production (Lynd et al., 2002). In addition, using 

waste materials helps minimize competition with food crops for land and resources, addressing one 

of the critical concerns associated with using sugar-based substrates for bio-based production (Pandey 

et al., 2000). 

Technologically, advancements in pre-treatment methods have made it possible to convert wood 

waste into fermentable sugars efficiently. Pre-treatment processes, such as steam explosion, dilute 

acid hydrolysis, and enzymatic hydrolysis, have been optimized to increase sugar yields and reduce 

inhibitors that may affect microbial fermentation (Jönsson & Martín, 2016). These methods improve 

the efficiency of converting lignocellulosic biomass into usable substrates, further enhancing the 

viability of wood waste as a reliable feedstock for PHB production. 

Microorganisms like Klebsiella pneumoniae, Pseudomonas fluorescens, and Escherichia fergusonii 

MK have demonstrated the capability to produce PHB from lignocellulosic hydrolysates, including 

wood waste. These organisms are known for metabolizing various carbon sources, including xylose 

and glucose, making them ideal candidates for PHB production using hydrolyzed wood waste 

(Siddiqui et al., 2021; Silva et al., 2014). 

Beyond the environmental and economic advantages, utilizing wood waste as a substrate for PHB 

production aligns with circular economy principles. Industries can create closed-loop systems that 

reduce waste and environmental impact by converting waste into valuable bioplastics. This approach 

not only contributes to sustainability but also provides new economic opportunities in the field of bio- 

based materials (Koller et al., 2010). 
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3.1 Research gap 

 

The increasing environmental concerns surrounding the detrimental effects of conventional plastics 

have spurred significant interest in finding sustainable alternatives. While polyhydroxyalkanoates 

(PHA) have emerged as a promising biodegradable substitute for plastics, the major challenge 

limiting their commercial scalability is the high cost of production, mainly due to the expensive 

carbon sources required for microbial fermentation. Extensive research has been conducted on using 

various substrates, but most efforts have focused on industrial sugars or agricultural waste, which, 

while promising, still pose logistical and economic challenges. A clear research gap exists in 

exploring more abundant, underutilized waste materials, such as wood waste, and their potential to 

act as a low-cost feedstock for PHA production. Additionally, wastewater, a resource rich in nutrients 

and microbial diversity, remains largely unexplored as a medium for isolating highly efficient PHA- 

producing microorganisms. Combining wood waste and wastewater as sustainable substrates has not 

yet been thoroughly studied, leaving a gap in understanding the feasibility and effectiveness of such 

an approach for large-scale PHA production. 

Another gap lies in the comprehensive screening and identification of novel, efficient PHA-producing 

bacteria from diverse environments, sewage streams. While significant progress has been made in 

identifying microorganisms capable of synthesizing PHA, there remains a need for more extensive 

screening of bacterial strains from highly polluted and nutrient-rich environments like wastewater 

streams. These environments are likely to harbor microbial species that have adapted to thrive in 

challenging conditions and could potentially possess superior capabilities for PHA production, 

significantly when grown on unconventional substrates like hydrolyzed wood waste. Furthermore, 

existing studies on PHA production often focus on single substrates, whereas the combination of 

multiple waste sources, such as wood waste and wastewater, could provide a more cost-effective and 

nutrient-balanced medium, improving yields and reducing production costs. However, little attention 

has been given to how different waste-derived substrates affect microbial PHA production efficiency 

and yield, presenting a critical gap in current knowledge. 
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3.2 Hypothesis 

 

This study hypothesizes that combining hydrolyzed wood waste and wastewater as a substrate for 

PHA production will provide an economical and sustainable alternative to traditional carbon sources. 

The microbial isolates from wastewater streams are expected to exhibit high efficiency in utilizing 

these substrates for PHA synthesis due to their natural adaptation to nutrient-dense, waste-rich 

environments. Furthermore, combining wood waste and wastewater will provide a balanced nutrient 

profile that can enhance microbial growth and PHA production, thereby reducing the overall cost of 

bioplastic production. This approach also aims to valorize two abundant waste streams, contributing 

to waste reduction while producing biodegradable bioplastics. By optimizing the conditions for PHA 

production using these unconventional substrates, the study anticipates identifying a cost-effective 

method for producing large quantities of PHA, ultimately making bioplastics a more feasible 

alternative to conventional plastics on an industrial scale. 
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Objectives: 

 

1. Isolation, screening, and characterization of PHA-producing bacteria from the Wastewater 

streams of the Jalandhar area. 

2. Pre-treatment, hydrolysis, and composition assay of wood waste. 

 

3. Production of PHA by using a combination of wastewater and hydrolysed wood waste as a 

substrate medium by positive control and isolated bacterial strains. 

4. Comparative analysis and optimization of PHA produced by positive control and isolated 

bacterial strains 

5. Scale-up production and extraction of PHA by a selected bacterial strain using a combination 

of wastewater and Hydrolysed wood waste as a substrate. 
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5.1 Isolation and screening of PHA-producing bacteria 

5.1.1 Sample collection 

Different sewage samples were collected from areas (Location 1: 31.2520761, 75.6812032; Location 

2: 31.2704923, 75.6903445; Location 3: 31.2533141, 75.6639076; Location 4: 31.2268515, 

75.6341338) of jalandhar, Punjab, India. All the samples were collected using grab sampling 

technique in a sterile container (Mikelonis et al., 2020). 

5.1.2 Isolation of Pure Cultures 

 

Sewage samples were collected and transferred into sterile nutritional broth, with these initial samples 

being referred to as "mother samples." Serial dilution was employed to facilitate further investigation 

and quantification. This process involved transferring 1 mL of the original sample into 9 mL of 

distilled water, with the dilution process repeated to create a series of dilutions from 10^-1 to 10^-6. 

Each dilution reduced the concentration of bacteria by a factor of ten compared to the previous one 

(Medvecky et al., 2018). 

In the final stage of the experiment, 100 µL of the 10^-5 and 10^-6 dilutions were spread evenly on 

Nile Blue minimal salt agar medium. This specialized medium encourages the growth of 

polyhydroxyalkanoates (PHA), which produce bacterial strains while inhibiting the growth of others. 

It may also include specific nutrients or markers to help identify particular microbial characteristics. 

This approach enables the selective growth and subsequent analysis of bacterial populations from the 

initial samples, providing a method to measure their abundance and evaluate their characteristics (Li 

et al., 2018). 

5.2 Screening of PHA-Producing Isolates 

 

5.2.1 Primary Screening: Nile blue 

 

The primary screening process for identifying potential polyhydroxybutyrate (PHB) producers begins 

with sample collection, which involves inoculating collected samples into sterile nutrient broth and 

labeling them as "mother samples." These samples then undergo serial dilution to manage the 
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concentration of organisms effectively. After dilution, aliquots of 0.1 mL are spread onto Modified 

Selective Medium (MSM) agar plates. The MSM agar is specifically prepared with 10 g/L sucrose to 

provide a carbon source essential for microbial growth, 0.225 mg/L Nile blue to facilitate PHB 

detection, and 15 g/L agar to solidify the medium. The plates are then incubated at 30°C for 48 hours. 

During this period, the Nile blue, which is incorporated into the bacterial cytoplasm, allows for the 

preliminary identification of PHB producers. This is achieved by examining the plates under UV 

light, where fluorescence indicates positive PHB production, facilitating the selection of fluorescent 

colonies for further analysis (Hartman, 1940). 

5.2.2 Secondary Screening: Sudan black Stain 

 

Following the primary screening, the secondary screening process utilizes Sudan Black staining to 

confirm PHB production. Samples previously identified as potential PHB producers are heat-fixed 

on slides. The staining process involves a solution of 0.3 grams of Sudan Black B dissolved in 75 mL 

of 95% ethanol, diluted to 100 mL with distilled water. This solution is applied to the samples for 10 

minutes, staining them effectively. After staining, the samples are dried using filter paper and clarified 

with a few drops of xylene to remove any excess stain and improve visibility under microscopic 

examination. Once dry, the samples are counterstained with a 0.5% aqueous solution of safranine for 

5 seconds to enhance contrast. Observation under a microscope reveals blue-black colonies, 

indicative of PHB production. Colonies exhibiting this characteristic staining are selected and picked 

for further validation and study, confirming them as PHB producers. This two-tiered screening 

process efficiently narrows down the candidates to those most likely to be valuable for PHB synthesis 

studies. (Khamnkong et al., 2022). 

5.3 Partial Identification of PHA Accumulating Species According to Bergey’s Manual 

 

5.3.1 Gram Reaction 

 

The Gram staining technique is a fundamental method in microbiology for differentiating bacteria 

based on their cell wall composition. This method is critical for bacterial classification and serves as 
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an initial step in the identification process. In Gram staining, bacterial cells are first fixed onto a glass 

slide and then stained with crystal violet for approximately one minute. Following this, iodine is 

applied for another minute to act as a mordant, forming a complex with the crystal violet. Afterward, 

the slide is treated with ethanol or acetone for about 10–30 seconds, which is crucial in distinguishing 

two main types of bacteria: Gram-positive and Gram-negative. 

Gram-positive bacteria retain the crystal violet-iodine complex and appear purple or blue due to their 

thick peptidoglycan layer. Conversely, Gram-negative bacteria, which have a thinner peptidoglycan 

layer, do not retain the dye complex and instead take up a counterstain, typically safranin, which 

imparts a red or pink color. The outcome of Gram staining provides essential information about the 

cell wall composition of a bacterium, aiding further investigation and helping to expedite the 

preliminary classification of bacterial species (Rhode, 2019). 

5.3.2 Motility Test 

 

The motility test is a technique used to determine whether microorganisms, such as bacteria, possess 

the ability to move. This is an essential physiological trait that can help differentiate bacterial species. 

A commonly employed method to observe bacterial motility is the hanging drop method, often 

conducted using a cavity slide. To perform this test, a small drop of bacterial culture is carefully 

placed into the concave cavity of the slide. A coverslip is then applied, creating an airtight chamber 

that traps the bacteria while allowing microscopic observation of their movement. 

Once prepared, the slide is placed under the microscope to observe the bacteria, typically at high 

magnifications of 40x or 100x. Motile bacteria will display movement within the confined space, 

often manifesting as a shimmering or swirling motion. Non-motile bacteria, by contrast, remain 

stationary. The hanging drop technique is particularly advantageous because it allows for the direct 

observation of bacterial motility, providing conclusive evidence of their movement capabilities. This 

method is highly useful in microbiological studies for distinguishing bacterial species based on their 

motility and other physiological traits (Jain et al., 2020). 
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5.3.3 Biochemical Tests 

 

A series of biochemical tests were carried out to help identify the genus of the bacterial isolates. These 

tests include the indole, methyl red, Voges-Proskauer, citrate, starch hydrolysis, urease, catalase, 

triple sugar iron, oxidase, and sugar utilization tests. Each test provides specific insights into the 

metabolic capabilities of the bacteria, contributing to the partial identification of the isolates 

(Cappuccino & Sherman, 1998). 

1. Indole Test 

 

The indole test determines whether bacteria can metabolize tryptophan to produce indole. A bacterial 

culture in the exponential growth phase is inoculated into a sterilized test tube containing 5 mL of 

tryptone broth to conduct the test. The test tube is incubated at 37°C for 18-24 hours. After incubation, 

approximately 0.5 mL of Kovac's reagent containing dimethylaminobenzaldehyde is carefully added 

to the broth surface without agitation. A positive result, indicated by the appearance of a crimson 

layer on the surface, signifies that the bacteria can degrade tryptophan to produce indole. A negative 

result, where no color change occurs, indicates the absence of indole production. 

The indole test is beneficial in differentiating members of the Enterobacteriaceae family. Bacteria 

like Escherichia coli produce indole, resulting in a positive test, whereas species like Enterobacter 

and Klebsiella do not produce indole, leading to a negative test (Leboffe & Pierce, 2012). 

2. Methyl Red Test 

 

The methyl red test is employed to detect the production of mixed acids during glucose fermentation. 

Bacteria are inoculated into 5 mL of MR-VP broth containing glucose and incubated at 37°C for 24- 

48 hours. After incubation, a few drops of methyl red indicator solution are added. This pH indicator 

turns red when the pH drops below 4.4, indicating the production of stable acid end products from 

glucose fermentation. A positive result, signified by a red color, means that the bacterium produces 

mixed acids, lowering the pH of the medium. A negative result, where the color remains unchanged, 

indicates that the bacterium does not perform mixed acid fermentation. 
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This test helps distinguish between Escherichia coli (which yields a positive result) and Enterobacter 

species (which gives a negative result), both of which are essential members of the Enterobacteriaceae 

family (Cappuccino & Sherman, 1998). 

3. Voges-Proskauer Test 

 

The Voges-Proskauer test is used to detect the presence of acetoin, a neutral end product of glucose 

fermentation. Bacterial cultures are inoculated into MR-VP broth and incubated at 37°C for 24-48 

hours. After incubation, alpha-naphthol and potassium hydroxide (KOH) are added. The development 

of a red or pink color within 30 minutes indicates a positive result, suggesting that the bacterium 

produces acetoin. A lack of color change indicates a negative result, meaning that acetoin is not 

produced. 

This test is commonly used in combination with the methyl red test to differentiate between bacteria 

that produce stable acids from glucose fermentation (such as Escherichia coli) and those that produce 

neutral end products like acetoin (such as Enterobacter and Klebsiella) (Leboffe & Pierce, 2012). 

4. Citrate Utilization Test 

 

The citrate utilization test determines whether a bacterial strain can metabolize citrate as its sole 

carbon source. To conduct this test, a pure bacterial culture is inoculated onto a Simmons citrate agar 

slant using a sterile inoculating loop. The inoculated slant is incubated at an optimal temperature, 

typically 37°C, for up to 48 hours. A positive result is indicated by a color change from green to blue, 

showing the bacteria’s ability to utilize citrate and produce alkaline byproducts. A negative result, 

where no color change occurs, demonstrates the bacteria's inability to use citrate as a carbon source. 

This test is crucial in bacterial classification because different species exhibit varying metabolic 

capabilities (Cappuccino & Sherman, 1998). 

5. Starch Hydrolysis Test 

 

The starch hydrolysis test assesses a bacterium's ability to produce amylase, an enzyme that breaks 

down starch into smaller sugar molecules. This test is essential for identifying species, especially 
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those within the genus Bacillus. A bacterial culture is streaked onto a starch agar plate and incubated 

at a suitable temperature, generally between 25-30°C, for a few days to perform the test. After 

incubation, iodine is applied to the surface of the plate. A clear zone around the bacterial growth 

indicates a positive result, where the amylase has hydrolyzed the starch, preventing it from reacting 

with iodine to form a blue-black color. A negative result, where no clear zone is present, signifies the 

bacterium’s inability to hydrolyze starch (Jain et al., 2020). This test helps identify bacteria with 

specific enzymatic properties. 

6. Oxidase Test 

 

The oxidase test detects the presence of cytochrome c oxidase, an enzyme involved in the bacterial 

electron transport chain. In this test, a sterile swab or loop is used to collect a small amount of bacterial 

culture, which is then rubbed onto a piece of filter paper or an oxidase test strip impregnated with the 

reagent N,N,N',N'-tetramethyl-p-phenylenediamine. A color change to purple or blue within 10 to 30 

seconds indicates a positive result, showing the presence of cytochrome c oxidase. The test is negative 

if there is no color change or only a faint color. This test is often used to differentiate Pseudomonas 

species, which are oxidase-positive, from Enterobacteriaceae, which are oxidase-negative (Leboffe 

& Pierce, 2012). 

7. Catalase Test 

 

The catalase test detects the presence of the enzyme catalase, which breaks down hydrogen peroxide 

(H2O2) into water and oxygen. This reaction helps bacteria detoxify harmful byproducts of aerobic 

respiration. A small amount of bacterial culture is placed on a sterile glass slide to perform this test, 

and a few drops of hydrogen peroxide are added. If catalase is present, the hydrogen peroxide will be 

broken down, producing oxygen bubbles—a positive result. A negative result, where no bubbles are 

observed, indicates the absence of catalase. The catalase test is beneficial for differentiating between 

catalase-positive bacteria like Staphylococcus and catalase-negative bacteria like Streptococcus 

(Cappuccino & Sherman, 1998). It is a quick and easy method for the preliminary identification of 

bacteria. 
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8. Urease Test 

 

The urease test determines a bacterium's ability to produce the enzyme urease, which hydrolyzes urea 

into ammonia and carbon dioxide. For this test, a pure bacterial culture is inoculated into a urea agar 

broth and incubated at 35-37°C for up to 48 hours. A positive result is indicated by a color change 

from pale yellow to pink or magenta caused by increased pH due to ammonia production. A negative 

result, where the color remains unchanged, indicates the absence of urease activity. This test is 

beneficial in identifying urease-positive bacteria, such as Proteus species, which are often implicated 

in urinary tract infections (Jain et al., 2020). The urease test is commonly used in clinical 

microbiology to identify bacteria based on their enzymatic properties. 

9. Sulfide Reduction Test 

 

The sulfide reduction test evaluates a bacterium’s ability to reduce sulfur compounds, such as 

thiosulfate, to hydrogen sulfide (H2S) gas. This test commonly uses SIM (Sulphide, Indole, Motility) 

agar. A pure bacterial culture is inoculated into the SIM agar by stab-inoculation with a sterile wire 

or loop to perform the test. The inoculated agar is incubated at 35-37°C for 18-48 hours. A positive 

result is indicated by the formation of a black precipitate in the medium due to the reaction between 

hydrogen sulfide and iron compounds in the agar. The absence of any blackening in the medium 

indicates a negative result. This test is valuable for identifying bacteria capable of sulfur reduction, 

such as members of the genus Salmonella (Rhode, 2019). The sulfide reduction test is also helpful in 

distinguishing between Gram-negative enteric bacteria. 

10. Nitrate Reduction Test 

 

The nitrate reduction test is a crucial microbiological method to determine whether a bacterium can 

reduce nitrate (NO3-) to nitrite (NO2-) or other nitrogenous compounds. This test is instrumental in 

differentiating between bacterial species, particularly within the Enterobacteriaceae family. A pure 

bacterial culture is inoculated into nitrate broth and incubated at 35-37°C for 24-48 hours to perform 

the nitrate reduction test. After incubation, nitrate reagent A, which contains sulfanilic acid dissolved 

in hydrochloric acid (HCl), and nitrate reagent B, composed of alpha-naphthylamine in HCl, are 
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added to the broth. A red color indicates the presence of nitrite, which confirms that nitrate reduction 

has occurred, signaling a positive result. If no red color develops, zinc powder is added. A red color 

after zinc addition indicates that the bacteria did not reduce nitrate, confirming a negative result. If 

no color change occurs after zinc is added, nitrate has been reduced beyond nitrite, producing other 

nitrogenous compounds. This test provides significant information on a bacterium's nitrogen 

reduction pathways, which are vital in bacterial identification (Jain et al., 2020). 

11. Triple Sugar Iron (TSI) Test 

 

The Triple Sugar Iron (TSI) test is widely used in microbiology to differentiate bacteria based on their 

ability to ferment sugars and produce gas or hydrogen sulfide. The TSI agar contains glucose, lactose, 

sucrose, phenol red as a pH indicator, and ferrous sulfate for detecting hydrogen sulfide production. 

To conduct the test, a pure bacterial culture is inoculated into the TSI agar by stabbing the butt and 

streaking the slant, followed by incubation at 35-37°C for 18-24 hours. After incubation, various 

reactions can be observed: an alkaline slant (red) with an acidic butt (yellow) indicates glucose 

fermentation only, while an acidic slant and butt (yellow) indicate fermentation of glucose, lactose, 

or sucrose. Gas production is evidenced by cracks or lifting of the agar, and the blackening of the 

medium indicates hydrogen sulfide production due to the reaction with ferrous sulfate. The TSI test 

is a fundamental technique in microbiology, especially for identifying members of the 

Enterobacteriaceae family by providing insights into their metabolic capabilities (Cappuccino & 

Sherman, 1998). 

12. Sugar Utilization Test 

 

The sugar utilization test assesses a bacterium’s ability to ferment specific sugars, such as glucose, 

maltose, fructose, mannitol, lactose, and galactose. This test uses a medium containing a particular 

sugar and a pH indicator, such as bromocresol purple, to detect acid production from sugar 

fermentation. A pure bacterial culture is inoculated into tubes or wells containing different sugars and 

incubated at 35-37°C for 24-48 hours to perform the test. Yellow indicates acid production and sugar 

fermentation, while the medium remaining purple signifies no fermentation. Additionally, gas 
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production can be assessed using inverted Durham tubes placed in the medium. The gas bubbles in 

these tubes indicate that the bacterium produces gas during fermentation. This test provides valuable 

information about a bacterium’s ability to metabolize different carbohydrates and helps distinguish 

among bacterial species based on their fermentation profiles (Leboffe & Pierce, 2012). 

13. Growth on Differential Agar Media 

 

Differentiated agar media such as Blood Agar Plates (BAP), Mannitol Salt Agar (MSA), and Spirit 

Blue Agar (SBA) were used to assess the growth of gram-positive isolates. Blood agar is an enriched 

and differential medium that helps detect hemolytic activity. Bacteria that produce hemolysins create 

clear zones (beta-hemolysis) or partial clearing (alpha-hemolysis) around colonies, while gamma- 

hemolysis indicates no hemolytic activity. Mannitol Salt Agar is selective for staphylococci due to its 

high salt concentration and differentiates species based on their ability to ferment mannitol. 

Pathogenic Staphylococcus aureus ferments mannitol, turning the medium yellow, while non- 

pathogenic species do not, leaving the medium unchanged. Spirit Blue Agar detects lipase activity, 

where bacteria that hydrolyze lipids create clear zones around their colonies. After incubation at 37°C 

for 24-48 hours, these media were examined for growth patterns, color changes, and clear zones to 

identify hemolytic activity, mannitol fermentation, and lipase production, respectively (Jain et al., 

2020). 

5.4 PHA Production 

 

5.4.1 Production of PHA Using MSM Media 

 

All bacterial isolates and positive control strains were inoculated in triplicate test tubes containing 10 

mL of mineral salts medium (MSM) to produce polyhydroxyalkanoates (PHA). The cultures were 

incubated at 37°C and 150 rpm for 72 hours. The composition of MSM (in g/L) was as follows: 

ammonium chloride (1.5), yeast extract (0.16), potassium dihydrogen phosphate (KH2PO4) (1.52), 

disodium hydrogen phosphate (Na2HPO4) (4.0), magnesium sulfate heptahydrate (MgSO4∙7H2O) 

(0.52), calcium chloride (CaCl2) (0.02), glucose (20), and 0.1 mL of a trace element solution. The 
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trace element solution was composed of (in g/L) zinc sulfate heptahydrate (ZnSO4∙7H2O) (0.13), 

ferrous sulfate heptahydrate (FeSO4∙7H2O) (0.02), ammonium molybdate tetrahydrate 

((NH4)6Mo7O24∙4H2O) (0.06), and boric acid (H3BO3) (0.06). Both glucose and the trace element 

solution were sterilized separately by autoclaving and reconstituted before inoculation (Khamankong 

et al., 2022). 

After 72 hours of incubation, the culture media were centrifuged at 12,000 rpm for 15 minutes to 

pellet the cells. The cell pellets were then treated with 13% sodium hypochlorite to digest the bacterial 

cells, and the mixture was incubated at 50°C for 2 hours. The treated solution was centrifuged again 

at 8,000 rpm for 15-20 minutes. The resulting pellets were washed sequentially with distilled water, 

acetone, and methanol. The remaining white-colored precipitates were believed to be PHA granules 

(Khanna & Srivastava, 2005). 

5.5 Synthesis of PHA Film 

 

For PHA film synthesis, the extracted PHA granules were dissolved in chloroform and heated until 

boiling. The dissolved solution was then transferred to sterile Petri dishes or watch glasses and left to 

incubate overnight. After the incubation period, a light-colored, transparent, thin layer of PHA film 

became visible in the Petri plate (Verlinden et al., 2007).9 

The dry biomass of extracted polyhydroxybutyrate (PHB) was assessed as grams per liter (g/L). The 

remaining biomass was estimated by calculating the difference between dry cell biomass and dry 

biomass of PHB. The percentage of intracellular PHB accumulation was calculated as the percentage 

composition of PHB in the dry cell weight (DCW). DCW refers to the total dry cell weight. The 

calculation  for  the  dry  weight  of  extracted  PHB  (g/ml)  is  as  follows: 

PHB accumulation is calculated as the percentage composition of PHB in the dry cell weight (DCW= 

Total dry cell weight) (Kumar et al., 2017). 

 

The dry weight of extracted PHB (g/ml) = DCW (g/ml) – Residual biomass (g/ml) 

PHB accumulation (%) = Dry weight of extracted PHB (g/ml) × 100 / DCW (g/ml) 
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5.6 16 S Sequencing 

The experiment began with isolating DNA from bacterial cultures using standard methods for 

genomic DNA extraction. In this case, 3 ml of an overnight bacterial culture was centrifuged at high 

speed and removed the supernatant. The pellet was resuspended in molecular-grade water and 

subjected to further centrifugation. After discarding the supernatant, the pellet was resuspended in 

Buffer R1 to facilitate cell lysis. Lysozyme was added to degrade the bacterial cell wall, followed by 

incubation at 37°C for 20 minutes. Afterward, centrifugation was performed to pellet the cellular 

contents, and the supernatant was discarded. The pellet was treated with Proteinase K and Buffer R2 

to digest proteins and release nucleic acids. RNase A was also added to degrade RNA, ensuring only 

DNA remained for further analysis (Sambrook & Russell, 2001). 

The lysate was treated with Buffer BG and molecular ethanol to precipitate the DNA, which was then 

purified using a spin column method. The column was washed with a specific buffer to remove 

contaminants, and then the DNA was eluted using a preheated Elution Buffer. The resulting genomic 

DNA was stored for downstream applications, including polymerase chain reaction (PCR) 

amplification of the 16S rRNA gene. 

The isolated genomic DNA was used as a template for PCR amplification of the 16S rRNA gene 

(~1200 bp) using universal primers (27F and 1492R) targeting conserved regions. The PCR reaction 

contained standard components, including Taq polymerase, dNTPs, and primers. The PCR program 

included an initial denaturation at 95°C, followed by 32 cycles of denaturation, annealing, and 

extension, with a final extension step. This protocol is commonly used in bacterial identification 

studies, ensuring amplification of the highly conserved 16S rRNA gene (Weisburg et al., 1991). 

The amplified DNA was confirmed by agarose gel electrophoresis, where the expected ~1200 bp 

amplicon was visualized under UV light after staining with ethidium bromide. This technique is 

routinely used in molecular biology to verify the size and presence of PCR products (Sambrook & 

Russell, 2001). The PCR product was purified through gel elution to remove excess primers and 

nucleotides before sequencing. 
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The purified amplicon was sequenced using the Sanger method, which remains the gold standard for 

DNA sequencing due to its accuracy and reliability. The sequence obtained was compared to 

reference sequences in the NCBI database using BLAST, allowing for the identification of bacterial 

species based on 16S rRNA gene similarity (Altschul et al., 1990). This method is widely recognized 

as a robust approach for bacterial identification in clinical and environmental microbiology (Janda & 

Abbott, 2007). 

 

5.7 Hydrolysis of Wood Waste 

Wood waste from Sal (Shorea robusta) and Teak (Tectona grandis) was collected from local regions 

of Phagwara and Jalandhar, India, where timber industries often generate large quantities of these 

residues. Before hydrolysis, the collected wood waste was air-dried to remove excess moisture and 

passed through a sieve to ensure a uniform particle size distribution, improving the consistency of the 

subsequent chemical treatments (Gupta et al., 2019). 

A 10% (w/v) of wood waste was prepared by mixing the dried and sieved material with 100 mL of 

distilled water. To hydrolyze the lignocellulosic structure of the wood waste and release fermentable 

sugars, sulfuric acid (H₂SO₄) was added to a final concentration of 4% (v/v). The mixture was then 

subjected to high-pressure steam treatment by heating at 120°C for 1 hour in an autoclave shown in 

figure 5.1, which facilitates the breakdown of hemicellulose and partial hydrolysis of cellulose (Singh 

et al., 2020). 
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Figure 5.1: Preparation of wheat straw extract for pretreatment using H2SO4 

 

After heating, the mixture was filtered using a muslin cloth to separate the solid residue from the 

liquid fraction or supernatant. The supernatant containing soluble sugars and other breakdown 

products was collected for further analysis (Jha et al., 2021). To determine the concentration of sugars 

released during the hydrolysis, a combination of quantitative and qualitative tests was performed: 

5.7.1 Molisch Test: The Molisch test is a widely used chemical assay to detect the presence of 

carbohydrates by relying on their reaction with α-naphthol and sulfuric acid, resulting in a 

characteristic violet or purple ring at the interface of the two reagents. This reaction occurs 

through dehydration of carbohydrates by sulfuric acid, which leads to the formation of furfural 

from pentoses or 5-hydroxymethylfurfural from hexoses. These intermediates then react with 

α-naphthol, forming a colored complex (Gupte et al., 2020). The susceptible test can identify 

carbohydrates ranging from simple monosaccharides to more complex disaccharides and 

polysaccharides. Due to its generality, the Molisch test is often used as a preliminary screening 

tool for the presence of carbohydrates in biological samples (Chawla et al., 2019). 

In biochemical studies, the Molisch test is commonly employed to verify the success of 

hydrolysis processes, such as breaking down complex carbohydrates into monosaccharides. 

For instance, during the hydrolysis of starch into glucose, a positive Molisch test indicates the 
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presence of glucose or other simpler sugars, confirming the effectiveness of the enzymatic or 

acid-catalyzed hydrolysis (Rao et al., 2018). The test, however, does not provide information 

on the specific type of carbohydrate present, making it useful as an initial qualitative analysis 

rather than a detailed characterization tool (Tiwari et al., 2021). Despite its limitations, the 

Molisch test remains a standard in both academic research and industrial carbohydrate 

analysis due to its simplicity and reliability 

5.7.2 DNS Spectrophotometry: The 3,5-dinitrosalicylic acid (DNS) method is a widely used 

spectrophotometric assay for quantifying reducing sugars. This method is based on the 

reduction of 3,5-dinitrosalicylic acid by free aldehyde or ketone groups present in reducing 

sugars, which leads to the formation of a reddish-brown compound, 3-amino-5-nitrosalicylic 

acid (Miller, 1959). The color intensity of the resulting solution correlates with the 

concentration of reducing sugars, and this color change can be measured 

spectrophotometrically at 540 nm. The principle of the DNS assay relies on reducing sugars, 

such as glucose, to donate electrons, reducing the DNS reagent in the process (Ghose, 1987). 

The DNS method has been extensively used in carbohydrate research, particularly in 

enzymatic hydrolysis experiments where the concentration of reducing sugars in the 

supernatant is measured to monitor the breakdown of polysaccharides into simpler sugars 

(Bailey et al., 1992). This assay is especially useful because it is simple, inexpensive, and 

effective in quantifying reducing sugars in various samples, including industrial and research 

applications (Chaplin et al., 2012). However, it is essential to note that the DNS assay is 

specific for reducing sugars and will not detect non-reducing sugars, such as sucrose, unless 

they are first hydrolyzed. The assay is sensitive to changes in reaction conditions, including 

temperature and pH, which can affect the colorimetric response and should be carefully 

controlled during the experiment (Zhang et al., 2017). Despite some limitations, the DNS 

method remains a cornerstone in the quantitative analysis of reducing sugars due to its 

robustness and ease of use. 

The graph shows a relationship between glucose concentration (mg/ml) and absorbance. The 

x-axis represents the glucose concentration in mg/ml, and the y-axis represents absorbance, 
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which appears to increase as glucose concentration increases. The data points are connected 

by a solid line, with a linear regression trend shown as a dotted line. The linear regression 

equation is y = 0.057x + 0.2093, and the R^2 value is 0.988 shown in figure 5.1, indicating a 

strong correlation between glucose concentration and absorbance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Standard graph of glucose presence mg/ml. 

• Linear Relationship: The absorbance increases steadily with glucose concentration, 

indicating a positive linear relationship. This is consistent with the trendline, which 

has a positive slope of 0.057. This slope suggests that for every unit increase in glucose 

concentration, the absorbance increases by approximately 0.057 units. 

• Goodness of Fit: The R2R^2R2 value of 0.988 indicates that the linear relationship 

with glucose concentration can explain 98.8% of the variance in absorbance. This 

implies that the model is a good fit, but some variation remains unexplained, possibly 

due to experimental error or biological variability. 

• Trendline vs. Actual Data: The data points closely follow the trendline, with only 

minor deviations at higher concentrations. The tight clustering of points around the 

line further supports the strength of the correlation. 
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• Potential Anomalies: There is a slight deviation in the higher glucose concentrations 

(10-12 mg/ml), where the data points appear slightly above the trendline. This could 

indicate a minor non-linearity at higher concentrations, which may warrant further 

investigation. 

 

5.7.3 Sugar Utilization Test: The use of microbial strains capable of metabolizing specific sugars 

is a common approach to verify the availability and concentration of sugars in hydrolysates, 

particularly in studies involving enzymatic hydrolysis or biomass conversion. In this process, 

microorganisms such as Saccharomyces cerevisiae or Escherichia coli are cultured in the 

presence of hydrolysate, which contains sugars released from the breakdown of 

polysaccharides. The metabolic activity of these strains, as indicated by their growth or 

fermentation products, confirms the presence and concentration of fermentable sugars, such 

as glucose or xylose, in the hydrolysate (Patel et al., 2021). 

This microbial assay complements chemical methods, like the DNS method, by providing 

functional validation that the sugars in the hydrolysate are bioavailable and can be utilized by 

living organisms. This is crucial in biofuel production or other biotechnological applications 

where sugar availability directly impacts the efficiency of fermentation processes (Jain et al., 

2020). The growth of microbial strains in hydrolysate-based media not only indicates the 

concentration of specific sugars but also reflects the overall quality of the hydrolysate, 

including the presence of inhibitors like furfural or hydroxymethylfurfural, which can affect 

microbial metabolism (Sun et al., 2016). Thus, microbial culturing is valuable in confirming 

that hydrolysates are suitable for downstream processes such as bioethanol production. 

The approach is beneficial when coupled with chemical quantification methods, as it provides 

a holistic understanding of the chemical composition and the biological availability of sugars 

in the hydrolysate (Singh et al., 2019). While microbial assays may be slower than direct 

chemical measurements, they offer insight into the real-world applicability of the hydrolysate 

in industrial fermentation settings. 
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The combination of these tests provided insight into the efficiency of the hydrolysis process and the 

potential utility of the hydrolysate in bio-production processes, such as fermentation for bioethanol 

or bioplastic precursors like polyhydroxyalkanoates (PHAs) (Thakur & Reddy, 2022). Further 

improvements in hydrolysis conditions, such as varying acid concentration or reaction time, have 

been explored to enhance sugar yields and optimize the overall process (Chandel et al., 2013). 

 

5.8 Optimization Using Statistical Experimental Design 

The Design of Experiments (DOE), also known as Statistical Experimental Design (SED), is a robust 

methodology that facilitates the efficient planning and execution of experiments, particularly when 

multiple variables or causal factors are involved. It systematically tests the relationships between 

these factors, enabling researchers to determine the factors that have a significant impact on the 

outcomes (Montgomery, 2017). DOE allows for the minimization of experimental runs while 

maximizing the information gained, making it particularly advantageous in fields such as 

biotechnology, where optimization of production processes is essential. 

A key component of DOE is the use of screening designs, which help narrow down the list of variables 

by identifying those that significantly impact the system. This is especially valuable in complex 

biological systems like microbial fermentation processes for PHA production, where various 

factors—including nutrient levels, temperature, pH, and agitation speed—can affect PHA yield. By 

employing a screening design, researchers can reduce the number of variables that need to be tested 

in further experiments, thus streamlining the optimization process (Antony, 2014). 

A commonly used screening approach is the Plackett-Burman (P.B.) design, which is ideal for two- 

level factorial experiments. P.B. orthogonal arrays enable the assessment of direct effects with 

reduced design complexity, allowing efficient testing of all factors in a limited number of 

experimental runs (Ramesh et al., 2019). This method is especially beneficial for processes such as 

PHA production, where optimizing multiple environmental and nutritional factors is essential to 

maximize yield. 

In the case of PHA production, the Plackett-Burman Design (PBD) is often employed to screen for 

the most influential factors affecting microbial growth and product accumulation. The design is 
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typically used to evaluate the effects of 11 independent variables, such as carbon and nitrogen sources, 

temperature, pH, and agitation speed, which can affect PHA production. These variables are coded 

into two levels, High (+1) and Low (-1), and a series of experiments are conducted based on the PBD 

matrix. Each trial is assessed for significance, generally using a 95% confidence interval to determine 

the reliability of the results. (Mehta et al., 2020). 

The design process involves several key steps: 

1. Selection of Factors: The first step is identifying the most relevant variables likely to affect 

PHA production. These variables may include carbon and nitrogen sources, micronutrient 

concentrations, temperature, pH, aeration rate, and agitation speed (Liu et al., 2021). 

2. Range Determination: Each factor is assigned a range of values to be tested. It is essential to 

select a broad enough range to capture significant variations in the outcome while avoiding 

extreme combinations that could lead to experimental failure (Singh & Reddy, 2022). 

3. Statistical Analysis: Following the experiments, the data are analyzed to identify which 

factors have a significant impact on PHA production.This analysis often involves ANOVA 

(Analysis of Variance) to assess the contribution of each factor to the overall variance in the 

results (Montgomery, 2017). 

Using a DOE approach, particularly the P.B. design, researchers can efficiently screen and optimize 

multiple variables in a relatively short time. This process is crucial for improving biotechnological 

processes like PHA production, as it maximizes yields with minimal experimental effort and cost. 

The amount of carbon source optimized using DNS spectroscopy technique will be used for 

preparation of production media. 

Recent studies have demonstrated the effectiveness of using PBD in optimizing PHA production from 

various microbial strains. For example, researchers have used the PBD approach to optimize the 

production of PHA in Bacillus megaterium, focusing on carbon source, temperature, and pH as key 

factors influencing yield shown in table 5.1 (Patel et al., 2020). Similarly, another study used the 

PBD design to optimize nutrient concentrations for PHA production in Ralstonia eutropha, 

significantly increasing biomass accumulation and PHA yield (Singh et al., 2021). 
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Table 5.1: Illustrating higher and lower values of factors used in PBD 

 

Sr. no. Factors Low level Higher level 

1. Carbon 1% 4% 

2. Nitrogen 0.01% 0.2% 

3. Ferric citrate 0.001% 0.01% 

4. Temperature 28 40 

5. pH 5 9 

6. Inoculum size 2 10 

7. MgSO4.7H2O 0.01 0.1 

8. Na2HPO4 0.1 0.4 

9. K2HPO4 0.1 0.4 

10. Incubation period 48 96 

11. Trace elements 0.1 1 
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5.9 Optimization Using Response Surface Methodology (RSM) 

Response Surface Methodology (RSM) is a powerful tool for modeling and optimizing processes in 

which several independent variables influence the desired outcome. For biopolymer production, RSM 

was utilized to optimize operational parameters and nutrient levels to enhance PHA yield. This 

method involves fitting a polynomial model to the experimental data and employing contour plots to 

examine the relationships between factors and response variables. (Montgomery, 2017). 

This study identified three primary factors as having the most significant impact on PHA production: 

carbon concentration, nitrogen concentration, and temperature. Carbon sources are critical as they 

provide the building blocks for biopolymer synthesis. Nitrogen sources, such as ammonium chloride 

or yeast extract, are also essential, but an imbalance in the carbon-to-nitrogen ratio can lead to 

suboptimal microbial growth or PHA production (Kumar et al., 2020). Temperature, conversely, 

affects enzyme activity and microbial metabolism, making it another crucial factor for PHA synthesis 

(Reddy et al., 2019). 

A full factorial design was applied to investigate the optimal levels of these factors, and the data were 

analyzed using RSM to identify these optimal conditions. The following table 5.2 presents the design 

of experiments (DoE) for these factors 
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Table 5.2 shows the response surface methodology runs and the values of its factors. 

 

 

Std 

 

Run 

Factor 1 

A: Carbon 

% 

Factor 2 

B: Nitrogen 

% 

 

Factor3 C: Temperature 

Celsius 

 

PHA 

mg/ml 

5 1 1 0.105 28  

11 2 2.5 0.01 40  

17 3 2.5 0.105 34  

7 4 1 0.105 40  

8 5 4 0.105 40  

14 6 2.5 0.105 34  

2 7 4 0.01 34  

1 8 1 0.01 34  

13 9 2.5 0.105 34  

6 10 4 0.105 28  

3 11 1 0.2 34  

9 12 2.5 0.01 28 

10 13 2.5 0.2 28 

16 14 2.5 0.105 34 

4 15 4 0.2 34 

12 16 2.5 0.2 40 

15 17 2.5 0.105 34 
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The experiments followed this design, and the results were fitted to a quadratic model using RSM. 

Statistical analysis indicated significant interactions between carbon concentration and temperature, 

suggesting that optimal PHA production is achieved at high carbon concentrations and moderate 

temperatures (Patel et al., 2021). 

 

5.10 Scale Up production 

The predicted values from the Response Surface Methodology (RSM) served as crucial guidelines 

for optimizing the final production stage of polyhydroxybutyrate (PHB). A 2-liter biological 

fermenter containing optimized production media based on the RSM model was used in this phase. 

The variables such as carbon source concentration, nitrogen limitation, pH, temperature, and aeration 

were fine-tuned to achieve maximum PHB yield. The fermenter conditions were closely monitored, 

and the final quantity of PHB generated was determined using precise calculations based on the 

biomass yield and PHB concentration in the cells (Mehta et al., 2021). 

The PHB was harvested through cell lysis, typically using sodium hypochlorite treatment or 

mechanical disruption, followed by solvent extraction with chloroform. After extraction, the PHB 

was precipitated, dried, and weighed to determine the total yield (Patel et al., 2020). The purity of the 

produced PHB was also calculated by determining the ratio of PHB weight to the total biomass. 

 

5.11 PHA Characterization 
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5.11.1 UV-Vis spectroscopy 

For UV-Vis analysis, the dried PHA granules (1 mg) were heated for 10 minutes. The heated sample 

was then dissolved in 2 mL of concentrated sulfuric acid. UV spectra were recorded in the 800 to 200 

nm range to capture the full spectrum. A baseline calibration was performed using concentrated 

sulfuric acid, and the standard crotonic acid was utilized as a reference, procured from the Central 

Drug House Laboratory Reagent, New Delhi, India. 

The characteristic absorption peak of PHB was observed at 235 nm, corresponding to the double- 

bond conjugation in the crotonic acid produced from the thermal degradation of PHB. According to 

Smith et al. (2015), this wavelength is a reliable indicator for quantifying PHB content in the sample. 

The precision of the measurements was ensured by consistently maintaining baseline calibration 

standards and reference solutions (Johnson et al., 2020). 

 

5.11.2 Fourier Transform-Infrared Spectroscopy (FT-IR Analysis) 

Fourier Transform-Infrared (FT-IR) spectroscopy is another essential analytical technique for 

studying the molecular structure and composition of polyhydroxybutyrate (PHB). The FT-IR method 

works by detecting molecular vibrations within a sample, offering insights into the functional groups 

present in the polymer. In this analysis, the FT-IR spectra are typically recorded using a Perkin Elmer 

FT-IR spectrometer, operating in the range of 4000 to 400 cm⁻¹, using Spectrum 10 software for data 

acquisition and analysis (Singh et al., 2020). 

FT-IR spectroscopy is particularly valuable for identifying specific functional groups in PHB, such 

as carbonyl (C=O) stretching vibrations typically observed around 1720 cm⁻¹. These carbonyl 

vibrations are characteristic of the ester linkage in the PHB polymer chain. In addition to the carbonyl 

group, other functional groups, such as hydroxyl (O-H) and methyl (C-H) groups, can also be 

identified using FT-IR, providing a comprehensive understanding of the PHB molecule’s structure 

(Reddy et al., 2021). 

The FT-IR spectrum of PHB often shows firm absorption peaks at specific wavenumbers 

corresponding to various molecular bonds. For example, absorption bands around 1279 cm⁻¹ and 
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1055 cm⁻¹ are associated with C-O-C stretching, confirming the presence of ester bonds in the 

polymer. The detailed information provided by FT-IR allows researchers to assess the chemical 

composition of PHB, detect any impurities, and monitor changes in the polymer structure during 

various processing steps (Mehta et al., 2021). 

The combination of UV-Vis and FT-IR spectroscopic techniques provides a comprehensive approach 

to PHB analysis, allowing researchers to assess the polymer's structural and functional integrity. 

These methods are indispensable in biotechnological applications where quality control and process 

optimization are critical. FT-IR, in particular, aids in confirming the successful synthesis of PHB by 

detecting the characteristic functional groups of the polymer, while UV-Vis quantifies the 

concentration of PHB in the samples (Miller et al., 2020). 

 

5.11.3 Gas Chromatography-Mass Spectrometry (GC-MS) 

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique for identifying 

and quantifying chemical compounds in a mixture. In the case of polyhydroxybutyrate (PHB) 

granules, GC-MS is beneficial for determining the monomer composition and analyzing the 

degradation products of PHB. The principle of GC-MS involves separating compounds based on their 

volatility using gas chromatography (GC) and then identifying them through mass spectrometry (MS) 

by measuring their mass-to-charge ratio (m/z) (Koller et al., 2017). 

In the analysis of PHB, the granules are first subjected to methanolysis to convert the polymer into 

its monomeric form, 3-hydroxybutyric acid methyl ester. This step is crucial as it enables the volatile 

nature of the compound, making it suitable for GC analysis. Methanolysis is typically done using a 

mixture of methanol and sulfuric acid, heated at 100°C for 3–4 hours. The resulting methyl esters of 

3-hydroxybutyrate are then injected into the GC-MS system (Tan et al., 2014). 

During the GC process, the volatile methyl esters are vaporized and carried by an inert gas, such as 

helium, through a capillary column. The column separates the different components based on their 

volatility and interaction with the column’s stationary phase. After separation, the compounds enter 

the mass spectrometer, where they are ionized and fragmented. The resulting ion fragments are 
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detected, generating a mass spectrum for each compound. The mass spectra are compared to reference 

libraries for identification (Reddy et al., 2020). 

GC-MS is highly sensitive and provides detailed information about the chemical composition of PHB, 

making it an essential tool for monitoring PHB purity and degradation during production or 

processing (Kumar et al., 2019). 

 

5.11.4 Nuclear Magnetic Resonance (NMR) 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique used for 

determining the structure, purity, and composition of polymers such as polyhydroxybutyrate (PHB). 

The principle of NMR is based on the interaction of atomic nuclei with an external magnetic field. 

When nuclei, mainly hydrogen (^1H) or carbon (^13C), are exposed to a strong magnetic field, they 

align in the direction of the field. Upon applying a radiofrequency pulse, these nuclei absorb energy 

and shift to a higher energy state. As the nuclei return to their original lower energy state, they emit 

electromagnetic radiation that is detected by the NMR instrument. The emitted signals provide 

detailed information about the molecular structure, including the chemical environment and bonding 

of atoms within the PHB sample (Moir et al., 2019). 

^1H and ^13C NMR spectroscopy are commonly used to analyze the polymer. The methodology 

begins with dissolving the PHB sample in a deuterated solvent, such as deuterated chloroform 

(CDCl₃). The sample is placed in an NMR tube and inserted into the NMR spectrometer. For ^1H 

NMR, the instrument detects signals from hydrogen atoms in the polymer backbone, providing 

information on the polymer’s repeating units and chain length. ^13C NMR offers insight into the 

carbonyl (C=O) and methylene (CH₂) groups within the polymer chain (Reddy et al., 2020). The 

resulting spectra are analyzed for chemical shifts, peak splitting, and integration, which help confirm 

PHB's molecular structure and purity. This method is essential for verifying the production and 

quality of PHB in research and industrial applications (Patel et al., 2021). 
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CHAPTER 6 

RESULT AND DISCUSSION 
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6.1 Isolation and screening of PHA-producing bacteria 

 

6.1.1 Sample collection and Preparation of Mother Samples 

 

 
Figure 6.1: sample collection site for the isolation of PHA producing bacterial consortia 

 

All collected samples were collected from different locations of Jalandhar as shown in figure 6.1 

and inoculated into the sterile nutrient broth and labeled as mother samples 

6.1.2 Screening using Nile blue and Sudan black B staining methods. 
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Resolution: 1000X Resolution: 1000X 

 

 

Figure 6.2: PHB producers isolation using nile blue staining technique 

 

 

 

 

 

 

Figure 6.3: Secondary screening of PHB producing isolates using Sudan black staining techniqu 
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Table 6.1: Sudan black staining results 
 

Isolates no. Observation Isolates no. Observations 

S-2 Positive S-14 Positive 

S-3 Positive S-15 Negative 

S-4 Positive S-16 Positive 

S-5 Positive S-17 Negative 

S-6 Negative S-18 Positive 

S-7 Positive S-19 Positive 

S-8 Negative S-20 Positive 

S-9 Positive S-21 Positive 

S-10 Negative S-22 Negative 

S-11 Positive S-23 Negative 

S-12 Positive S-24 Positive 

S-13 Positive S-25 Positive 

  S-26 Positive 

 

In the investigation of polyhydroxyalkanoate (PHA)--producing bacterial strains from four 

different environmental samples, a total of 56 isolates were initially identified. These isolates 

were screened for their ability to accumulate PHA. Among the 56 isolates, 26 exhibited 

fluorescence, indicating potential PHA production. These isolates were distributed as follows: 

Sample 1 yielded five fluorescent isolates, Sample 2 provided 8, Sample 3 contributed 7, and 

Sample 4 resulted in 6 isolates. To confirm the presence of PHA, the 26 fluorescent isolates as 

shown in figure 6.2 were subjected to Sudan Black B staining, a widely used technique to detect 

intracellular PHA granules. The staining method helps differentiate genuine PHA producers, 

as it stains the PHA granules black or blue-black within the bacterial cells. Among the 26 

fluorescent isolates, 19 demonstrated positive results as shown in figure 6.3 and table 6.1with 

Sudan Black B staining, indicating the presence of PHA granules. These 19 isolates were, 
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therefore, classified as ideal PHA producers. This step ensures that the isolates selected for 

further study are capable of significant PHA accumulation, making them suitable candidates 

for industrial applications in biopolymer production. Despite showing fluorescence, the 

remaining isolates were likely not selected as they did not meet the criteria for PHA production, 

as confirmed by the Sudan Black B staining method. 

Table 6.2: Screening results of PHB-producing bacterial isolation 
 

Sample Total Isolates 

Identified 

Fluorescent Isolates (Nile 

blue MSM) 

Positive for PHA 

(Sudan Black B 

Staining) 

Sample 1 14 5 4 

Sample 2 15 8 6 

Sample 3 14 7 5 

Sample 4 13 6 4 

 

This data in table 6.2 shows the isolates identified, fluorescent isolates, and those that tested 

positive for PHA using Sudan Black B staining 

 

6.2 Biochemical tests 

 

The partial identification of bacterial species capable of polyhydroxyalkanoate (PHA) 

accumulation was performed using Bergey's Manual of Systematic Bacteriology as a guide. To 

begin with, the morphology of the PHA-producing isolates was characterized through gram 

staining following the Sudan Black B test. The results revealed that many isolates, particularly 

those from sewage water, were gram-negative bacteria, contrary to initial expectations of gram- 

positive strains. The morphology of these gram-negative isolates predominantly consisted of 

small rod-shaped cells. A summary of these gram reaction findings is provided in Table 6.3. In 

addition to gram staining, motility testing offered further insight into the characterization of 

the isolates. Using the hanging drop method, all isolates demonstrated motility when observed 

under a 40X bright-field microscope, confirming their ability to move in liquid media. The 

motility test results are illustrated in Table 6.4. 

Regarding biochemical properties, the isolates exhibited a broad range of metabolic abilities, 

suggesting diverse biochemical capabilities. These abilities were assessed through their 

capacity to utilize various substrates, especially in carbohydrate catabolism. Most isolates 

metabolize glucose, fructose, mannitol, and lactose efficiently. However, a few isolates 



64  

struggled to metabolize certain sugars, such as maltose and galactose. This sugar fermentation 

variability highlights the isolates' metabolic diversity, which could be crucial for their 

adaptation to different environmental niches and nutrient sources. 

Furthermore, the isolates were tested for their growth on differential agar media, particularly 

Spirit Blue agar, which helped partially identify the bacterial genera. Based on their 

biochemical behavior and growth patterns, some isolates were suspected to belong to the 

Escherichia and Pseudomonas genera. The ability of these isolates to grow on differential 

media like Spirit Blue agar, alongside their gram-negative rod-shaped morphology and 

motility, reinforced this hypothesis. The growth patterns on differential media and results from 

various biochemical tests are detailed in Tables 6.3, 6.4, 6.5, 6.6 and 6.7 . These tables 

comprehensively summarize the sugar fermentation tests, further corroborating the isolates' 

capacity to metabolize different carbohydrates. 

Overall, the identification process incorporated classical microbiological methods, such as 

gram staining, motility observation, biochemical tests, and differential media growth to identify 

the bacterial genera and their characteristics. While partial, this identification provides a strong 

foundation for further study into the metabolic pathways of these PHA-accumulating species, 

especially given their diversity in biochemical traits. The findings suggest that the isolates 

possess a wide range of metabolic capabilities, making them potential candidates for PHA 

production studies in various environmental and industrial contexts. 

 
Table 6.3: Gram staining reaction 

  

Isolates 

no. 

Observation 

S-1 Gram-positive rods 

S-2 Gram-positive rods 

S-3 Gram-negative rods 

S-4 Gram-positive rods 

S-5 Gram-negative rods 

 

Isolates 

no. 

Observation 

S-18 Gram-positive rods 

S-19 Gram-positive rods 

S-20 Gram-negative rods 

S-21 Gram-negative rods 

S-24 Gram-positive rods 
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(A)  (B)  

 

(C)  (D)  

S-7 Gram-positive rods 

S-9 Gram-positive rods 

S-11 Gram-positive rods 

S-12 Gram-negative rods 

S-13 Gram-negative rods 

S-14 Gram-positive rods 

S-16 Gram-positive rods 

 

S-25 Gram-positive rods 

S-26 Gram-positive rods 
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Figure 6.4: Gram staining results of bacterial isolates. (A) Isolate 3 showing Gram-negative 

morphology. (B) Isolate 7 displaying Gram-positive characteristics. (C) Isolate 11 identified 

as Gram-positive. (D) Isolate 13 confirmed as Gram-negative. 

 

 

Table 6.4: Motility test 

 

 

Isolates 

no. 

Observation 

S-1 Motile 

S-2 Motile 

S-3 Non-Motile 

S-4 Motile 

S-5 Non-Motile 

S-7 Motile 

S-9 Motile 

S-11 Non-Motile 

S-12 Motile 

S-13 Motile 

 

Isolates 

no. 

Observation 

S-14 Motile 

S-16 Motile 

S-18 Motile 

S-19 Motile 

S-20 Motile 

S-21 Motile 

S-24 Motile 

S-25 Non-Motile 

S-26 Non-Motile 
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Table 6.5: Biochemical tests of PHA producing bacterial isolates 

ISOLATES OBSERVATIONS 

NAME OF THE 

BIOCHEMICAL 

TESTS 

   

S-1 

 

S-2 

 

S-3 

 

S-4 

 

S-5 

 

S-7 

 

S-9 

 

S-11 

 

S-12 

 

S-13 

 

S-14 

 

S-16 

 

S-18 

 

S-19 

 

S-20 

 

S-21 

 

S-24 

 

S-25 

 

S-26 

Indole test + + + + - + + + + + + + + + + + + + + 

Methyl-red test - + - - - - + - - + - - - + - - - + - 

Voges-Proskauer 

test 

- - - - - - - - - - - - - - - - - - - 

Citrate 

utilization test 

+ + + + + + - + - + + - + + - - + + + 

Starch 

hydrolysis test 

- - - - - - - - - - - - - - - - - - - 

Oxidase test - + + - + + + - + + + + + + + - + + + 
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Catalase test + + + + + + + + + + + + + + + + + + + 

Urease test - - - - - - - - - - - - - - - - - - - 

Sulfide reduction 

test 

- - - + - + + + + - - + - - - - - + + 

Nitrate reduction 

test 

- - - - + + - - - + + + - - - + - - - 

Triple Sugar 

Iron test 

a/a* a/a* a/a* a/a* a/a* a/a* a/a* a/a* a/a a/a a/a* a/a a/a* a/a a/a* a/a a/a* a/a* a/a* 

‘+’ indicates positive result for the test 

‘-’ indicates negative result for the test 

‘a/a’ indicates acidic slant and butt 

‘a/a*’ indicates acidic slant and but with gas production 

‘NA’ indicates Not applicable 
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Table 6.6: Observation of growth on differential agar medium 

 GROWTH ON   

ISOLATES MANNITOL SALT 

AGAR 

BLOOD AGAR SPIRIT BLUE AGAR 

S-1   LIPASE POSITIVE 

S-2   LIPASE NEGATIVE 

S-3    

S-4    

S-5   LIPASE POSITIVE 

S-7    

S-9    

 
 

S-11 
 γ HEMOLYSIS  

 

 
 

S-12 
NO GROWTH   

S-13   LIPASE NEGATIVE 

S-14    

S-16    

S-18   LIPASE POSITIVE 

S-19   LIPASE NEGATIVE 

S-20    

S-21   LIPASE POSITIVE 

S-24    

S-25  α HEMOLYSIS LIPASE NEGATIVE 

S-26    

 

 

 

Table 6.7: Sugar Fermentation test observation  

Isolates Sugar Utilization 

 



70  

 Glucose Maltose Fructose Mannitol Lactose Galactose 

S-1 a* a* a* a* a* a* 

S-2 a* a* a* a* a* a* 

S-3 a* -* a* a* - a* 

S-4 a* a* a* a* - a* 

S-5 a* a* a* a* - a* 

S-7 a* -* a* - a* a* 

S-9 a* a* a* a* a* a* 

S-11 a* -* a* - a* a* 

S-12 a* -* a* a* a* a* 

S-13 a* -* a* a* a* a* 

S-14 a* -* a* a* a* a* 

S-16 a* -* a* a* a* -* 

S-18 a* -* a* a* a* a* 

S-19 a* -* a* a* a* a* 

S-20 a* -* a* a* a* -* 

S-21 a* -* a* a* a* a* 

S-24 a* +* a* a* a* a* 

S-25 
a* +* a* a* a* a* 

S-26 
a* +* a* a* a* a* 

 
a* indicates acid with gas production 

-* indicates no acid with gas production 

- indicates a negative result 
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6.3 Extraction and quantification of PHA 

 

After the extraction process and washing, a white precipitate will remain, which was estimated 

to be the pure PHA content, and will be measured as shown in table 6.8 and figure 6.4 for 

further study of the production rate of PHA. 

Table 6.8: showing DCW of PHA and its production percentage 

 

Sample 

name 

DCW (mg/ml) 

(Mean) 

Dry weight of 

extracted PHA 

(mg/ml) (mean) 

Expected % of the 

PHA 

(mean) 

Standard 

Deviation 

1 10.45 6.05 57 1.3 

2 10.35 5.9 56.5 1.2 

3 10.05 6.75 67 0.4 

4 9.75 4.25 41.9 1.3 

5 9.85 6.05 60.6 1.2 

7 10.2 4.05 38 1.3 

9 9.9 3.05 28.8 1.2 

11 9.95 2.25 21.8 0.5 

12 10.15 5.45 52.7 0.6 

13 9.4 5.65 60.2 1.6 

14 9.6 4.05 42.1 1.0 

16 10.1 5.45 53.6 0.9 

18 9.65 4.25 43 1.2 

19 9.9 3.25 31.5 1.1 

20 10.4 3.5 31.4 1.6 

21 10.3 2.75 26.6 1.3 

24 9.7 4.05 40.8 1.4 

25 9.85 3 28.8 1.7 

26 10.65 4.25 39.6 0.8 
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Fig 6.5: Polyhydroxyalkanoate production using different isolates; 

 

6.5 For the synthesis of PHA film 

 

Dissolving polyhydroxyalkanoate (PHA) in chloroform and forming a thin film is a critical 

step in studying and characterizing PHA biopolymers. This method isolates PHA from the cell 

matrix and forms a material that can be visually and physically analyzed (Khanna & Srivastava, 

2005). The PHA was first dissolved in chloroform, a solvent commonly used for non-polar 

polymers like PHA due to its ability to dissolve hydrophobic compounds (Jiang et al., 2006). 

Chloroform is an effective solvent for PHA because it can break down the polymer chains and 

bring them into a solution, making it ideal for further experimentation, such as film formation 

(Serafim et al., 2008). 

Heating chloroform until it boils, is necessary for the dissolution process, as higher 

temperatures increase the solvent’s capacity to interact with and dissolve the polymer. This is 

particularly important for PHA, which may not dissolve readily at room temperature (Sudesh 

et al., 2000). However, care must be taken when handling chloroform, as it is a volatile and 

hazardous substance, requiring a controlled environment such as a fume hood to ensure safety. 

Once the PHA is fully dissolved in the boiling chloroform, the solution is transferred to a sterile 

Petri plate, which serves as the substrate for PHA film formation (Gopi et al., 2018). 

The overnight incubation of the chloroform-PHA solution in the Petri plate leads to the 

evaporation of chloroform, allowing the dissolved PHA to precipitate out and form a thin film. 
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This slow and controlled process enables the polymer chains to align and form a uniform film 

as the solvent gradually evaporates (Sangeetha et al., 2020). The transparent, light-white thin 

layer of PHA observed after incubation indicates a successful film formation process as shown 

in figure 6.4. The transparent nature of the film suggests that the polymer chains were evenly 

distributed and that no significant crystallization occurred, which could lead to opacity (Sudesh 

et al., 2000). 

This PHA film is of particular interest for several reasons. First, it demonstrates the polymer’s 

capacity to form films, which is desirable for applications in packaging, coatings, and 

biomedical devices (Reddy et al., 2003). PHA films are biodegradable, making them an 

environmentally friendly alternative to conventional plastics. Furthermore, the light white color 

of the film suggests that it is pure and relatively free of impurities, which could be confirmed 

through further analytical techniques such as Fourier-transform infrared (FTIR) spectroscopy 

or scanning electron microscopy (SEM) (Verlinden et al., 2007) 

 

 

In this dataset, three key isolates stand out as top producers of PHA: samples 3, 5, and 13. 

These isolates displayed the highest percentages of PHA content at 67%, 60.6%, and 60.2%, 

respectively. The high PHA content in these samples suggests they may possess efficient PHA 

synthesis pathways, making them ideal candidates for further research and development. The 

standard deviation values, which represent the variability of the measurements, were relatively 

low for these samples (0.4 for sample 3, 1.2 for sample 5, and 1.6 for sample 13), indicating 

consistency in the results and reinforcing the potential of these isolates as reliable PHA 

producers. 

16S ribosomal RNA (rRNA) sequencing could be employed better to understand the microbial 

identity of these top-producing isolates. The 16S rRNA gene is highly conserved across 

bacterial species but contains variable regions that can be used for precise taxonomic 

identification. By sequencing the 16S rRNA gene of isolates 3, 5, and 13, it would be possible 

to determine their taxonomic classification, potentially identifying them as novel or well- 

known PHA-producing strains. Once identified, these isolates could be further experimented 

to optimize PHA production under different conditions. One promising avenue for 

experimentation is using sustainable substrate sources, such as hydrolyzed wood waste. Wood 

waste, a byproduct of the forestry industry, is a carbon source that aligns with the growing need 

for sustainable bioprocesses. 
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6.5 16s Sequencing 

 

The identification and classification of bacterial strains M3 and M5 were accomplished through 

16S rRNA sequence analysis and subsequent phylogenetic analysis, utilizing a neighbor- 

joining tree to determine their evolutionary relationships. Both strains were isolated from 

sewage water for their potential in polyhydroxyalkanoate (PHA) production, and their genetic 

information was submitted to the NCBI, with M3 receiving the accession number PP109354 

and being named Klebsiella sp. strain MK3, while M5 received the accession number 

OR362761 and was named Klebsiella pneumoniae strain DSM 30104 (MK2023) . 

 

The 16S rRNA gene is an essential molecular marker due to its highly conserved nature across 

bacterial species, coupled with specific hypervariable regions that provide sufficient variability 

to distinguish between even closely related taxa. This gene's reliability allows for precise 

bacterial identification and classification, as demonstrated in the neighbor-joining phylogenetic 

tree used in this study. The neighbor-joining method arranges bacterial sequences based on 

genetic distances, effectively illustrating the evolutionary closeness between the strains under 

study and reference strains from the NCBI database. 

 

6.5.1 Klebsiella sp. strain MK3 (S3) 
 

 

 

 

 

 

 

 
Figure 6.6: Phylogenetic tree showing relevance of the strain with klebsiella sp. 



75  

The phylogenetic tree presented indicates that Klebsiella sp. strain MK3 (M3) does not align 

perfectly with a single species but shows genetic similarities with various Klebsiella strains. It 

is closely related to Klebsiella pneumoniae (NR 114506.1 and NR 114507.1), Klebsiella 

variicola (NR 025635.1), and Klebsiella africana (NR 180233.1) as shown in figure 6.6, 

suggesting that while the strain shares evolutionary traits with these species, it cannot be 

conclusively classified under any one of them. This ambiguous alignment implies that MK3 

may represent a distinct or intermediate lineage. Therefore, it was registered in the NCBI 

database as Klebsiella sp. strain MK3, reflecting the uncertainty in its exact taxonomic 

classification. 

 

The assignment of NCBI accession number PP109354 for MK3 ensures that its genetic 

sequence is uniquely identified and accessible, providing a valuable resource for further 

comparative studies and research in microbial taxonomy. The precise identification and 

phylogenetic positioning of MK3 demonstrate the effectiveness of 16S rRNA sequencing in 

distinguishing bacterial strains, thus providing a foundation for future research on this strain’s 

characteristics, particularly its potential application in biotechnological and environmental 

fields, given its isolation for PHA production. 

 

 

6.5.2 Analysis of Klebsiella pneumoniae strain DSM 30104 (MK2023) (S5) 
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Figure 6.7: Phylogenetic tree shows most 99.86% sequence similarity with Klebsiella pneumoniae strain DSM 

30104 (MK2023) 

The phylogenetic tree analysis shows that strain M5 shares a 99.86% similarity with other 

Klebsiella pneumoniae strain DSM 30104 (MK2023) strains as shown in figure 6.7. However, 

it does not reach a 100% match, indicating a slight divergence. This slight difference may imply 

that M5 does not exhibit the same level of virulence as the most pathogenic strains of Klebsiella 

pneumoniae categorized as biosafety level 3 or 4 organisms. Although it belongs to risk group 

2, the lower percentage match suggests that it may not be the most dangerous strain within this 

species. This finding is beneficial in terms of safety, especially when working with this strain 

for biotechnological purposes. 
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Studies have shown that Klebsiella pneumoniae has been used for polyhydroxyalkanoate 

(PHA) production, particularly in strains like K. pneumoniae E22, which has been casually 

employed in research without strict committee approvals (Aneja et al., 2020; Singh et al., 

2019). These works highlight the use of this bacterium for sustainable bioplastic production, 

often without the rigorous oversight that pathogenic bacteria generally require. Klebsiella 

pneumoniae strain DSM 30104 (MK2023) , has been officially registered in the NCBI database 

under the accession number OR362761, where it is named Klebsiella pneumoniae strain DSM 

30104 (MK2023). 

 

 

6.5.3 Analysis of Escherichia fergusonii ATCC 35469 MK (S13) 

 

 
Figure 6.8: Phylogenetic tree shows sequence similarity with Escherichia fergusonii ATCC 

35469 MK 
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The phylogenetic tree presented shows that the bacterial strain M13 aligns closely with 

Escherichia fergusonii ATCC 35469 MK based on 16S rRNA gene sequence analysis. Upon 

conducting a BLAST search, it matches most closely with Escherichia fergusonii ATCC 35469 

MK, as shown in figure 6.8 confirming its genetic similarity to this species. In terms of 

industrial applications, especially in the production of polyhydroxybutyrate (PHB), there has 

been no reported research on this specific strain. 

6.6 Hydrolysis of wood waste 

 

6.6.1 Molisch test: The Molisch test, a classic qualitative assay for detecting carbohydrates, 

yielded a positive result in the form of a purple ring at the interface of the test tube, which 

indicates the successful release of carbohydrates during the hydrolysis process as shown in 

figure 6.9 (Patel et al., 2021). This finding is significant because it confirms that the hydrolysis 

of wood waste, which likely involved breaking down complex polysaccharides into simpler 

sugars, was successful. Carbohydrates, mainly in the form of polysaccharides such as cellulose 

and hemicellulose, are key components of lignocellulosic biomass. These polymers must be 

hydrolyzed into simpler monosaccharides like glucose and xylose to be utilized in microbial 

fermentation processes (Jain et al., 2020). 

 

Figure 6.9: moilsch test showing the presence of carbohydrates in the hydrolyzed wood waste. 

 

 

6.6.2 DNS test for reducing sugar: The 3,5-dinitrosalicylic acid (DNS) method was employed 

to quantify the concentration of reducing sugars in the hydrolysates. As described by Miller 

(1959), the DNS reagent reacts with reducing sugars, leading to a color change that can be 

measured spectrophotometrically. The absorbance values at 540 nm provided quantitative data 

on the sugar content in the hydrolysed wood samples. The sal and teak wood hydrolysates 

showed absorbances of 0.722 and 0.741, respectively, while the combined sal and teak wood 

hydrolysate had a significantly higher absorbance of 0.973 after one-third dilution. These 

readings, when compared with a standard curve of glucose, indicated that the combined 

hydrolysate contained approximately 36 mg/mL of reducing sugar. This higher concentration 



79  

in the combined sample suggests that hydrolysis of sal and teak wood may enhance the release 

of fermentable sugars, potentially due to synergistic effects that improve the enzymatic 

breakdown of lignocellulose (Patel et al., 2021). This finding aligns with other studies that have 

demonstrated enhanced sugar yields from mixed biomass substrates, as the structural diversity 

of lignocellulosic components may facilitate more efficient hydrolysis (Jain et al., 2020). 

 

6.6.3 Sugar utilization: a sugar utilization test was performed to assess the ability of microbial 

isolates to ferment the sugars present in the hydrolysed wood waste. The selected isolates were 

introduced into a nutrient medium containing peptone and bromocresol as a pH indicator. The 

initial purple color of the solution indicated a neutral pH. After 24 hours of incubation, the 

color changed to light brownish as shown in figure 6.10, signifying a drop in pH due to acid 

production during sugar metabolism by the microbes. This result confirms that the isolates 

were able to utilize the sugars in the hydrolysate as a carbon source, leading to fermentation 

(Chandel et al., 2012). 

 

 
Figure 6.10: sugar utilization showing that our isolate can consume wood waste as a substrate media. 

 

Moreover, the sugar utilization test, in conjunction with the DNS assay, provides a 

comprehensive assessment of both the chemical composition and the bioavailability of sugars 

in the hydrolysate. While the DNS method quantifies the total reducing sugar content, the 

microbial fermentation test demonstrates the functional availability of these sugars for 

biological processes. This two-pronged approach is critical for evaluating the suitability of 

lignocellulosic hydrolysates for downstream applications such as fermentation-based biofuel 

production (Sun et al., 2016). 

6.7 Statistical analysis 
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In this study, statistical optimization was performed using Design Expert 12 software to 

enhance the production of Polyhydroxyalkanoates (PHA) from 19 different bacterial isolates, 

with isolate no 3, showing the highest yield at over 60%. The optimization was carried out in 

two phases using the Plackett-Burman Design (PBD) and Response Surface Methodology 

(RSM). Initially, PBD was employed to screen 11 variables, including carbon, nitrogen, ferric 

citrate, temperature, pH, inoculum size, MgSO4·7H2O, Na2HPO4, K2HPO4, incubation 

period, and trace elements. PBD is an effective statistical tool for screening many variables 

with minimal runs, allowing for identifying significant factors with limited resources (Mousavi 

et al., 2013). In this experiment, each variable was tested at two levels (high and low), and the 

Design Expert software generated 12 runs for each sample. The results were statistically 

analyzed using ANOVA, which provided insights into the significance of the tested variables. 

PBD was chosen due to its capacity to screen for essential variables with fewer experimental 

trials, which makes it ideal for studies with resource constraints. PBD ensures a balanced 

representation of factors and allows researchers to focus on the most influential variables for 

further optimization (Patil et al., 2015). 

Following the PBD screening, the identified significant factors were optimized using Response 

Surface Methodology (RSM). RSM allows for fine-tuning the critical variables identified 

during PBD by examining their interactions and optimizing their levels to maximize the 

production of PHA (Nath et al., 2008). The optimization process led to the improvement of 

PHA yield, demonstrating the effectiveness of statistical design in enhancing microbial 

production processes. The experimental design employed in this study demonstrates the power 

of Design of Experiments (DOE) approaches like PBD and RSM in bioprocess optimization. 

The study efficiently identified key factors influencing PHA production by utilizing statistical 

methods, enabling targeted optimization with a reduced number of experimental runs. This 

methodology is increasingly adopted in biotechnological research to improve yields while 

minimizing resource usage (Rai et al., 2011) 

6.7.1 Isolate no. 3: Klebsiella sp. strain MK3 

 
Table 6.9: PBD runs and response PHA readings for isolate Klebsiella sp. strain MK3 



81  

 

 

 

 

Run 

 

A: carbon 

% 

B: 

Nitrogen 

% 

C: 

Ferric 

citrate 

% 

D: 

Tempe 

rature 

Celsius 

 

E: 

pH 

F: 

Inoculum 

size micro 

ml 

G: 

MgSO4. 

7H2O % 

H: 

Na2HPO4 

% 

J: 

K2HPO4 

% 

K: 

Incubati 

on 

period 

Hours 

L: 

Trace 

elemen 

ts % 

 

PHA mg/10mL 

1 4 0.01 0.001 28 9 2 0.1 0.4 0.1 96 1 57 

2 4 0.01 0.01 40 9 2 0.01 0.1 0.4 48 1 60.5 

3 1 0.01 0.01 28 9 10 0.01 0.4 0.4 96 0.1 41 

4 4 0.2 0.001 28 5 10 0.01 0.4 0.4 48 1 59.5 

5 4 0.01 0.01 40 5 10 0.1 0.4 0.1 48 0.1 51 

6 4 0.2 0.001 40 9 10 0.01 0.1 0.1 96 0.1 66 

7 1 0.01 0.001 40 5 10 0.1 0.1 0.4 96 1 41 

8 1 0.2 0.01 40 5 2 0.01 0.4 0.1 96 1 56.5 

9 1 0.2 0.001 40 9 2 0.1 0.4 0.4 48 0.1 52.5 

10 1 0.01 0.001 28 5 2 0.01 0.1 0.1 48 0.1 35.5 

11 1 0.2 0.01 28 9 10 0.1 0.1 0.1 48 1 47 
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12 4 0.2 0.01 28 5 2 0.1 0.1 0.4 96 0.1 54.5 
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The provided dataset showcases a factorial design to investigate various factors' effects on 

PHA (Polyhydroxyalkanoates) production, measured in milligrams per 10 mL, across 12 

experimental runs. The factors include Carbon (%), Nitrogen (%), Ferric citrate (%), 

Temperature (°C), pH, Inoculum size (μL), MgSO4.7H2O (%), Na2HPO4 (%), K2HPO4 

(%), Incubation period (hours), and Trace elements (%). 

From the results, Run 6 yields the highest PHA production (66 mg/10 mL) as shown in table 

6.9, with high carbon (4%), low nitrogen (0.001%), and the maximum temperature (40°C), 

indicating that higher carbon content, lower nitrogen, and elevated temperature seem to favor 

PHA accumulation. This result aligns with previous studies highlighting the importance of 

carbon as a primary substrate for microbial PHA synthesis (Laycock et al., 2013). A neutral 

pH (9), moderate inoculum size (10 μL), and low MgSO4.7H2O (0.01%) also contributed 

positively in this experiment. 

Run 10, on the other hand, shows the lowest PHA production (35 mg/10 mL) under conditions 

of low carbon (1%) and low nitrogen (0.001%) at a lower temperature (28°C) and lower pH 

(5). Insufficient carbon and lower temperatures limit microbial growth and PHA production. 

 

Interestingly, runs with higher temperatures (above 28°C), high carbon content (4%), and a 

more neutral pH (around 9) consistently resulted in higher PHA yields. Additionally, Runs 4, 

2, and 12 exhibited high PHA values, indicating that temperature and carbon levels are crucial 

in optimizing PHA production (Koller et al., 2010). The impact of trace elements, nitrogen 

concentration, and MgSO4.7H2O levels also appears to be important but to a lesser extent. 

6.7.1.1 ANOVA for selected factorial model 

Table 6.10: ANOVA statistics for isolate Klebsiella sp. strain MK3 

 

Source Sum of Squares df Mean Square F-value p-value  

Model 3664.33 10 366.43 1099.30 0.0235 significant 

A-Carbon 1875.00 1 1875.00 5625.00 0.0085  

B-Nitrogen 833.33 1 833.33 2500.00 0.0127  

D-temperature 363.00 1 363.00 1089.00 0.0193  
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E-PH 225.33 1 225.33 676.00 0.0245 

F-inoculum size 40.33 1 40.33 121.00 0.0577 

G-MgSo4.7H2o 85.33 1 85.33 256.00 0.0397 

H-Na2HPo4 56.33 1 56.33 169.00 0.0489 

J-K2HPo4 5.33 1 5.33 16.00 0.1560 

K-incubation period 33.33 1 33.33 100.00 0.0635 

L-trace elements 147.00 1 147.00 441.00 0.0303 

Residual 0.3333 1 0.3333   

Cor Total 3664.67 11    

 

 

The data presented indicates that the Model F-value of 1099.30, with a corresponding p-value 

of 0.0235, suggests the overall model is significant. The model explains a large portion of the 

variance in the response variable, confirming its suitability for predicting outcomes. Significant 

factors have p-values below 0.05 as shown in table 6.10, emphasizing their impact on the 

system. 

Among the factors, A-Carbon has the most substantial influence, with a Sum of Squares (SS) 

of 1875.00 and an exceptionally low p-value of 0.0085, indicating it is the most critical 

parameter. Similarly, B-Nitrogen and D-temperature also significantly contribute to the 

response, with F-values of 2500.00 and 1089.00, respectively. These factors are critical to 

optimizing the system, likely affecting microbial growth or biochemical reactions. 

The contributions of E-PH, G-MgSO4.7H2O, H-Na2HPO4, and L-trace elements are also 

significant, with p-values ranging from 0.0245 to 0.0489. These parameters impact system 

performance but to a lesser extent than Carbon and Nitrogen. Interestingly, the J-K2HPO4 

and K-incubation periods are insignificant, as their p-values exceed 0.05, implying their 

minimal impact under the tested conditions. 
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The residual error is extremely low, with a Sum of Squares of only 0.3333, further validating 

the model's fit. These results suggest that focusing on the significant factors—especially 

Carbon, Nitrogen, temperature 

6.7.1.2 Fit Statistics 

 
Table 6.11: Fit statistics for isolate Klebsiella sp. strain MK3 

 

Std. Dev. 0.5774 R² 0.9999 

Mean 103.67 Adjusted R² 0.9990 

C.V. % 0.5569 Predicted R² 0.9869 

  Adeq Precision 110.3532 

The fit statistics provided indicate an excellent model fit for predicting the outcomes of the 

system under study. The Predicted R² of 0.9869 is closely aligned with the Adjusted R² of 

0.9990, with a difference of less than 0.2 as shown in table 6.11, demonstrating that the model's 

predictive accuracy reasonably agrees with its adjusted explanatory power. This alignment 

suggests that the model is robust and does not suffer from overfitting, meaning that it is reliable 

for making predictions beyond the data used to build it (Montgomery et al., 2017). 

The Standard Deviation (Std. Dev.) of 0.577 shows that the model's residuals are minimal, 

indicating that the model has a high degree of precision. The C.V. % (Coefficient of Variation) 

of 0.557% also reinforces the consistency and precision of the results, as a lower C.V. indicates 

less variability relative to the mean (Box et al., 2005). 

Moreover, the Adequate Precision of 110.353, which measures the signal-to-noise ratio, is 

well above the recommended threshold of 4. This extremely high value confirms that the model 

has an adequate signal and can reliably navigate the design space, making it highly effective 

for further experimental optimization (Anderson & Whitcomb, 2016). These fit statistics 

collectively suggest that the model is robust, precise, and reliable for prediction and further 

experimentation. 

6.7.1.3 Percentage contribution 

Table 6.12: percentage contribution of each factor affecting PHB production rate 
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Term Stdized Effect Sum of Squares % Contribution 

A-Carbon 25 1875 51.1643 

B-Nitrogen 16.6667 833.333 22.7397 

C-Ferric Citrate -0.33333 0.333333 0.009096 

D-Temperature 11 363 9.9054 

E-PH 8.66667 225.333 6.14881 

F-Inoculum Size -3.66667 40.3333 1.1006 

G-MgSO4·7H2O -5.33333 85.3333 2.32854 

H-Na2HPO4 4.33333 56.3333 1.5372 

J-K2HPO4 -1.33333 5.33333 0.145534 

K-Incubation Period 3.33333 33.3333 0.909587 

L-Trace Elements 7 147 4.01128 

 

 

• A-Carbon is the dominant factor, contributing the most at 51.16% as shown in table 

6.12, with a significant standardized effect of 25 and the most considerable sum of 

squares at 1875. 

• B-Nitrogen is the second most influential factor, contributing 22.74%, with a 

standardized effect of 16.67 and a sum of squares at 833.33. 

• C-Ferric Citrate and J-K2HPO4 have negligible contributions, around 0.01%, 

indicating they have little to no impact on the outcome. 

• D-Temperature also has a noteworthy contribution of 9.91%, suggesting it plays a 

moderately significant role. 

• Other factors like E-PH, F-Inoculum Size, and G-MgSO4.7H2O contribute 6.15%, 

1.10%, and 2.33%, respectively, implying they have a more minor but still notable 

effect. 

• H-Na2HPO4 and L-Trace Elements contribute around 1.54% and 4.01%, 

respectively. 

The standardized effects range from highly positive (A-Carbon) to slightly negative (F- 

Inoculum Size and G-MgSO4). This negative value implies an inverse relationship between 

those factors and the outcome. The percentage contribution helps prioritize which factors have 
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the most significant effect on the outcome for decision-making and optimization. Factors with 

low contributions, like C-Ferric Citrate as shown in figure 6.11, may be less relevant for further 

analysis or experimentation. 

 

 

 

 
Figure 6.11: pie chart representation of the percentage contribution of each factor affecting PHB production rate 

 

6.7.1.4 Pareto Chart 

 

The Pareto chart visually represents the effects of different factors on the system, with the t- 

value of each effect displayed on the y-axis and the rank on the x-axis. This chart emphasizes 

which factors have the greatest impact on the process, categorized into positive and negative 

effects. Factors such as A-Carbon and B-Nitrogen show the most significant positive effects, 

with t-values exceeding 70, highlighting their critical role in influencing the outcome. This 

confirms the importance of carbon and nitrogen as essential components, potentially 

contributing to key biological processes like microbial growth or enzymatic activities 

(Montgomery et al., 2017). 

D-Temperature and E-PH are also significant factors, with notable positive effects on the 

system, although they rank lower than carbon and nitrogen. These factors are often critical in 

biochemical reactions, influencing reaction rates and microbial activity (Box et al., 2005). 
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Though positive, trace elements contribute less significantly compared to the top-ranked 

factors. 

On the other hand, the chart shows G-MgSO4.7H2O, H-Na2HPO4, and F-Inoculum size as 

negative factors, suggesting their inhibitory role in the process when present at higher 

concentrations. Interestingly, J-K2HPO4 shows the most negligible impact as shown in figure 

6.12, as its t-value is significantly lower than the others, indicating minimal influence under 

the current experimental setup. 

This analysis underscores the need to optimize vital positive factors like carbon, nitrogen, and 

temperature while carefully controlling the concentration of harmful factors to avoid inhibition. 

 

 
Figure 6.12: Pareto chart representing each factor within Bonferroni limits 

 

This analysis underscores the need to optimize critical positive factors like carbon, nitrogen, 

and temperature while carefully controlling the concentration of negative factors to avoid 

inhibition. 

6.7.2 For isolate 5: Klebsiella pneumoniae strain DSM 30104 (MK2023) 

 
Table 6.13: PBD runs and response PHA readings for isolate Klebsiella pneumoniae DSM 30104 (MK2023) 
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Run 

A: 

carbon 

% 

B: 

Nitroge 

n % 

C: 

Ferric 

citrate 

% 

D: 

Temper 

ature 

Celsius 

 

E: 

pH 

F: 

Inoculum 

size micro 

ml 

G: 

MgSO4.7 

H2O % 

H: 

Na2HPO4 

% 

J: 

K2HPO4 

% 

K: 

Incubati 

on 

period 

Hours 

L: 

Trace 

element 

s % 

PHA 

mg/10 

ml 

1 4 0.01 0.001 28 9 2 0.1 0.4 0.1 96 1 54 

2 4 0.01 0.01 40 9 2 0.01 0.1 0.4 48 1 56.5 

3 1 0.01 0.01 28 9 10 0.01 0.4 0.4 96 0.1 40 

4 4 0.2 0.001 28 5 10 0.01 0.4 0.4 48 1 61.5 

5 4 0.01 0.01 40 5 10 0.1 0.4 0.1 48 0.1 50.5 

6 4 0.2 0.001 40 9 10 0.01 0.1 0.1 96 0.1 68.5 

7 1 0.01 0.001 40 5 10 0.1 0.1 0.4 96 1 44 

8 1 0.2 0.01 40 5 2 0.01 0.4 0.1 96 1 55.5 

9 1 0.2 0.001 40 9 2 0.1 0.4 0.4 48 0.1 49.5 

10 1 0.01 0.001 28 5 2 0.01 0.1 0.1 48 0.1 35.5 

11 1 0.2 0.01 28 9 10 0.1 0.1 0.1 48 1 48 
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12 4 0.2 0.01 28 5 2 0.1 0.1 0.4 96 0.1 56.5 
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This dataset explores the influence of several factors on Polyhydroxyalkanoate (PHA) 

production, measured in mg/10ml, across 12 experimental runs. The factors include varying 

carbon, nitrogen, ferric citrate levels, temperature, pH, inoculum size, and several trace 

elements like MgSO₄·7H₂O, Na₂HPO₄, K₂HPO₄, and the incubation period as shown in table 

6.13. 

One of the key patterns observed is that carbon concentration plays a crucial role in PHA 

production. Higher carbon levels (4%) consistently correspond to higher PHA yields, such as 

in run 6, where the highest yield of 68.5 mg/10ml is achieved. In contrast, lower carbon levels 

(1%) result in significantly lower yields, such as in run 3 with a 40 mg/10ml PHA output. 

Nitrogen and ferric citrate levels remain primarily constant across the runs, suggesting these 

variables may not significantly influence the PHA yields. However, temperature and pH vary, 

with higher temperatures (40°C) and pH levels (5 or 9) producing varying PHA outputs. 

Inoculum size also has a noticeable impact, where higher levels (10 micro ml) appear to 

contribute to increased PHA production, especially in combination with higher carbon levels. 

The incubation period, either 48 or 96 hours, seems to favor longer durations, often leading 

to higher yields. The trace elements, like MgSO₄·7H₂O and Na₂HPO₄, exhibit minimal 

variability but could still play a supportive role in optimizing PHA production. Carbon 

concentration, incubation period, and inoculum size seem to be the most influential factors 

affecting PHA yield. 

6.7.2.1 ANOVA for selected factorial model 

 
Figure 6.14: ANOVA statistics for isolate Klebsiella pneumoniae DSM 30104 (MK2023) 

 

Source Sum of Squares df Mean Square F-value p-value  

Model 3689.33 10 368.93 276.70 0.0468 significant 

A-Carbon 1875.00 1 1875.00 1406.25 0.0170  

B-Nitrogen 1160.33 1 1160.33 870.25 0.0216  

C-ferric citrate 12.00 1 12.00 9.00 0.2048  
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D-temperature 280.33 1 280.33 210.25 0.0438 

E-PH 56.33 1 56.33 42.25 0.0972 

F-inoculum size 8.33 1 8.33 6.25 0.2422 

G-MgSo4.7H2o 75.00 1 75.00 56.25 0.0844 

J-K2HPo4 5.33 1 5.33 4.00 0.2952 

K-incubation period 96.33 1 96.33 72.25 0.0746 

L-trace elements 120.33 1 120.33 90.25 0.0668 

Residual 1.33 1 1.33   

Cor Total 3690.67 11    

 

 

The Model F-value of 276.70 suggests that the model is highly significant, meaning it 

effectively explains the variability in the dataset. An F-value this large indicates a strong 

relationship between the factors and the response variable (e.g., PHA production), with only a 

4.68% probability that such a value could result from random noise as shown in table 6.14. 

This low probability reinforces the model's reliability in predicting outcomes based on the 

variables used. 

The p-values provide further insight into the significance of individual model terms. In this 

case, factors A (Carbon), B (Nitrogen), and D (Temperature) are identified as significant, as 

their p-values are less than 0.0500, meaning they have a strong influence on the response 

variable. These factors contribute most to the model’s ability to predict PHA yield. 

On the other hand, model terms with p-values more significant than 0.1000 are considered 

insignificant, meaning they do not contribute meaningfully to the model's predictive power. If 

several such terms exist, they are not critical to the model. Reducing these insignificant terms 

can streamline the model, improving its simplicity without sacrificing accuracy. However, 

terms part of a hierarchical structure should be retained to maintain model integrity. 
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6.7.2.2 Fit Statistics 

 
Figure 6.15: fit statistics for isolate Klebsiella pneumoniae DSM 30104 (MK2023) 

 

Std. Dev. 1.15 R² 0.9996 

Mean 103.33 Adjusted R² 0.9960 

C.V. % 1.12 Predicted R² 0.9480 

  Adeq Precision 59.6992 

 

The Predicted R² of 0.9480, in close agreement with the Adjusted R² of 0.9960, with a 

difference of less than 0.2 as shown in table 6.15, indicates that the model is reliable and has 

good predictive accuracy. The Predicted R² reflects the model's ability to predict new data, 

while the Adjusted R² accounts for the number of predictors in the model. The closeness of 

these values suggests that the model fits the data well without being overfitted. 

Adequate Precision, which measures the signal-to-noise ratio, shows that a ratio above 4 is 

desirable for a strong model. With a ratio of 59.699, this model has an excellent signal-to-noise 

ratio, which is robust and reliable for navigating the design space. Hence, it is suitable for 

making predictions and optimizing the variables within the given design. 

6.7.2.3 Percentage Contribution 

 
Table 6.16: Percentage contribution for isolate Klebsiella pneumoniae DSM 30104 (MK2023) 

 

Term Stdized Effect Sum of Squares % Contribution 

A-Carbon 25 1875 50.8038 

B-Nitrogen 19.6667 1160.33 31.4397 

C-Ferric Citrate -0.33333 0.333333 0.325145 

D-Temperature 9.66667 280.333 7.59787 

E-PH 4.33333 56.3333 1.52637 

F-Inoculum Size 1.66667 8.33333 0.225194 

G-MgSO₄·7H₂O -5 75 2.02915 

H-Na₂HPO₄ -1.33333 5.33333 0.144509 

J-K₂HPO₄ -0.66667 1.33333 0.036157 
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K-Incubation Period 3.33333 33.3333 0.90194 

L-Trace Elements 6.33333 147 3.62048 

 

 

This dataset offers insights into the contributions of various factors influencing a response 

variable, likely associated with PHA production or a similar biological output.The most 

dominant factor is A-Carbon, contributing 50.80% to the overall model, indicating its critical 

role in driving the response. The second most influential factor is B-Nitrogen as shown in table 

6.16, which contributes 31.44%. This suggests that nitrogen concentration also plays a 

significant role, though not as prominently as carbon. 

D-Temperature follows with a contribution of 7.60%, highlighting its moderate but essential 

impact on the process. The factors E-PH and F-Inoculum Size contribute 1.53% and 0.23%, 

respectively, indicating that while they are essential, their influence is considerably more 

negligible than carbon and nitrogen. 

Interestingly, G-MgSO₄·7H₂O has a negative standardized effect but still contributes 2.03%, 

implying a potential inverse relationship with the response. H-Na₂HPO₄ town-center, J- 

K₂HPO₄ town-center, and K-Incubation Period have minor contributions, all under 1%, 

suggesting they may not significantly impact the output under the conditions tested. 

The relatively small contributions of some factors, like ferric citrate (0.33%), indicate these 

variables may have little influence on the outcome. Carbon and nitrogen are the primary drivers 

as shown in figure 6.11, while the other factors contribute to fine-tuning the response. 



95  

 
 

 

 

 

Figure 6.13: pie chart representation of percentage contribution for isolate Klebsiella pneumoniae DSM 30104 

(MK2023) 

6.7.2.4 Pareto chart: 
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Figure 6.14: Pareto chart representing each factor within Bonferroni limits for Klebsiella pneumoniae DSM 30104 

(MK2023) 

This Pareto chart displays the standardized t-values of various factors affecting PHA 

production, ranked in descending order of significance. The chart separates positive effects 

(orange) from negative effects (blue) on the response variable, with a Bonferroni limit of 

140.054 indicated by a red line as shown in figure 6.12. Any factor exceeding the t-value limit 

would be considered highly significant; in this case, only three factors surpass this limit. 

Key factors contributing to the model are: 

 

• A-Carbon has the highest positive effect with a t-value above 35, indicating that carbon 

concentration significantly influences PHA production. 

• B-Nitrogen follows closely, having a substantial positive effect, just below carbon's. 

 

• D-Temperature has a moderate but positive effect, suggesting it is the next most 

important factor in driving PHA production. 

• Smaller factors include L-Trace Elements, K-Incubation Period, and G- 

MgSO₄·7H₂O, which have minor positive or negative effects on the response. Factors 
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like C-Ferric Citrate, H-Na₂HPO₄, and J-K₂HPO₄ show negligible influence, 

indicated by their minimal t-values below the significance threshold. 

The chart underscores the importance of focusing on carbon, nitrogen, and temperature to 

optimize PHA yield while potentially reducing the focus on other less impactful variables. 

 

 

 

 

 

6.7.3 For isolate 13: Escherichia fergusonii ATCC 35469 MK 

 
Table 6.17: PBD runs and response PHA readings for isolating Escherichia fergusonii ATCC 35469 MK 
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A: 

carbon 

% 

B: 

Nitroge 

n % 

C: 

Ferric 

citrate 

% 

D: 

Temper 

ature 

Celsius 

E: 

pH 

F: 

Inoculum 

size micro 

ml 

G: 

MgSO4.7 

H2O % 

H: 

Na2HPO4 

% 

J: 

K2HPO4 

% 

K: 

Incubatio 

n period 

Hours 

L: 

Trace 

element 

s % 

PHA 

mg/10m 

l 

4 0.01 0.001 28 9 2 0.1 0.4 0.1 96 1 55 

4 0.01 0.01 40 9 2 0.01 0.1 0.4 48 1 58.5 

1 0.01 0.01 28 9 10 0.01 0.4 0.4 96 0.1 42 

4 0.2 0.001 28 5 10 0.01 0.4 0.4 48 1 60 

4 0.01 0.01 40 5 10 0.1 0.4 0.1 48 0.1 53 

4 0.2 0.001 40 9 10 0.01 0.1 0.1 96 0.1 69.5 

1 0.01 0.001 40 5 10 0.1 0.1 0.4 96 1 41 

1 0.2 0.01 40 5 2 0.01 0.4 0.1 96 1 55.5 

1 0.2 0.001 40 9 2 0.1 0.4 0.4 48 0.1 53.5 

1 0.01 0.001 28 5 2 0.01 0.1 0.1 48 0.1 38.5 

1 0.2 0.01 28 9 10 0.1 0.1 0.1 48 1 48 
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4 0.2 0.01 28 5 2 0.1 0.1 0.4 96 0.1 54.5 
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In this table, carbon concentration appears to impact PHA yield significantly. Higher carbon 

levels (4%) generally lead to higher PHA outputs, with the maximum yield (69.5 mg/10mL) 

observed in run 6 as shown in table 6.17, which combines 4% carbon, 0.2% nitrogen, and a 96- 

hour incubation period. In contrast, runs with 1% carbon show lower PHA production, such as 

run 10, with only 38.5 mg/10mL yield. 

Nitrogen levels also play an essential role. A slight increase from 0.001% to 0.2% nitrogen 

often results in a higher PHA yield, as seen in runs 8 and 11. Other factors, such as temperature 

and pH, fluctuate across runs, with temperatures of 28°C and 40°C and pH levels of 5 and 9, 

showing varied results. 

Interestingly, the inoculum size (ranging from 2 to 10 micro ml) and the trace elements do not 

seem to have a consistent or substantial impact on the PHA yield compared to carbon and 

nitrogen. Carbon concentration, nitrogen levels, and incubation period are the key factors 

influencing PHA production in this experiment. 

6.7.3.1 ANOVA for selected factorial model 

 
Table 6.18: Anova statistics for isolate isolate Escherichia fergusonii ATCC 35469 MK 

 

Source Sum of Squares df Mean Square F-value p-value  

Model 3440.33 10 344.03 258.03 0.0484 significant 

A-Carbon 1728.00 1 1728.00 1296.00 0.0177  

B-Nitrogen 936.33 1 936.33 702.25 0.0240  

C-ferric citrate 12.00 1 12.00 9.00 0.2048  

D-temperature 363.00 1 363.00 272.25 0.0385  

E-PH 192.00 1 192.00 144.00 0.0529  

G-MgSo4.7H2o 120.33 1 120.33 90.25 0.0668  

H-Na2HPo4 27.00 1 27.00 20.25 0.1392  

J-K2HPo4 33.33 1 33.33 25.00 0.1257  

K-incubation period 12.00 1 12.00 9.00 0.2048  
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L-trace elements 16.33 1 16.33 12.25 0.1772 

Residual 1.33 1 1.33   

Cor Total 3441.67 11    

 

 

The Model F-value of 258.03 suggests that the model is highly significant as shown in table 

6.18, effectively explaining the variation in the response variable (such as PHA production). 

The low probability (4.84%) that an F-value this large could result from random noise indicates 

indicating that the model is robust and unlikely to be affected by external noise or random 

variability, thereby increasing confidence in its predictive accuracy. 

The p-values provide insight into their significance in individual model terms. For p-values 

less than 0.0500, the associated terms are considered significant. In this case, A (Carbon), B 

(Nitrogen), and D (Temperature) are the significant model terms, meaning they have a strong 

influence on the response. These terms are critical to the model and play a key role in driving 

the output variable. 

On the other hand, terms with p-values more significant than 0.1000 are considered 

insignificant and do not contribute meaningfully to the model's performance. If many such 

terms exist, they may be removed to simplify the model without losing predictive power. Model 

reduction in these cases can improve the efficiency and interpretability of the model, ensuring 

it remains focused on the most impactful factors while minimizing unnecessary complexity. 

6.7.3.2 Fit Statistics 

 
Table 6.19: Fit statistics for isolate Escherichia fergusonii ATCC 35469 MK 

 

Std. Dev. 1.15 R² 0.9996 

Mean 104.83 Adjusted R² 0.9957 

C.V. % 1.10 Predicted R² 0.9442 

  Adeq Precision 56.6841 
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The Predicted R² of 0.9442, being in close agreement with the Adjusted R² of 0.9957 as shown 

in table 6.19, with a difference of less than 0.2, indicates that the model has good predictive 

accuracy and is well-fitted to the data. The Predicted R² reflects the model's ability to predict 

new observations, while the Adjusted R² accounts for the number of predictors in the model. 

The closeness of these values suggests minimal overfitting and reliable generalization to new 

data. 

Adequate Precision, which measures the signal-to-noise ratio, shows that a ratio above 4 is 

desirable. The model's ratio of 56.684 is exceptionally high, indicating a strong signal and a 

reliable model. This high ratio confirms that the model is suitable for navigating the design 

space and making accurate predictions for optimization purposes. 

6.7.3.3 Percentage Contribution 

 
Table 6.20: percentage contribution of each factor for isolate Escherichia fergusonii ATCC 35469 MK 

 

Term Stdized Effect Sum of Squares % Contribution 

A-Carbon 24 1728 50.2082 

B-Nitrogen 17.6667 936.333 27.2058 

C-Ferric Citrate -2 12 0.348668 

D-Temperature 11 363 10.5472 

E-PH 8 192 5.57869 

F-Inoculum Size -0.66667 1.33333 0.038741 

G-MgSO₄·7H₂O -6.33333 120.333 3.49637 

H-Na₂HPO₄ 3 27 0.784504 

J-K₂HPO₄ -3.33333 33.3333 0.968523 

K-Incubation Period 2 12 0.348668 

L-Trace Elements 2.33333 16.3333 0.474576 

 

 

This data highlights the contributions of various factors to the outcome, with A-Carbon being 

the most significant, contributing 50.21% to the overall result as shown in table 6.20. This 

suggests that carbon plays a critical role in driving the outcome. B-Nitrogen follows with a 

significant contribution of 27.21%, indicating that nitrogen is also essential but less impactful 

than carbon. 
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D-Temperature accounts for 10.55%, showing a moderate influence, while E-PH contributes 

5.58%, indicating that pH levels also have a role but to a lesser degree. G-MgSO₄·7H₂O 

contributes 3.50%, which suggests that while it plays a role, its impact is relatively more minor. 

Other factors like C-Ferric Citrate, F-Inoculum Size, and K-Incubation Period contribute 

less than 1%, indicating minimal influence on the outcome as shown in figure 6.15. Overall, 

the data emphasizes the critical importance of carbon and nitrogen, with temperature and pH 

providing additional but lesser contributions to the observed results. 

 

 

 

 
Figure 6.15: Pie chart representation of percentage contribution for isolate Escherichia fergusonii ATCC 35469 

MK 

 

 

 

6.7.3.4 Pareto Chart 



104  

 
 

 

Figure 6.16: Pareto chart representation of each factor 

 

This Pareto chart illustrates the significance of factors affecting PHA production, using t-values 

to rank their effects. The orange bars represent positive effects, while the blue bars indicate 

negative effects. The Bonferroni limit of 140.054, shown by the red line, is a threshold. Any 

factor exceeding the t-value limit would be considered highly significant; in this case, only 

three factors surpass this limit. 

Key contributors include A-Carbon and B-Nitrogen, which both have significant positive 

effects, as their t-values are well above the t-value limit of 12.7062 as shown in figure 6.16. D- 

Temperature also shows a moderate positive influence, while E-pH and G-MgSO₄·7H₂O 

have relatively smaller positive effects. The remaining factors, such as C-Ferric Citrate, H- 

Na₂HPO₄, and J-K₂HPO₄, have t-values below the significance threshold, suggesting they 

have little to no impact on PHA production. The chart underscores the importance of focusing 

on carbon, nitrogen, and temperature to optimize PHA yields. 

6.7.4 For Isolate: Pseudomonas fluorescens MTCC 1749 

 
Table 6.21: Provides the experimental data of PHA using PBD for isolate Pseudomonas fluorescence MTCC1749 
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Run 

A: 

carbon 

% 

B: 

Nitrog 

en % 

C: 

Ferric 

citrate 

% 

D: 

Tempe 

rature 

Celsius 

 

E: 

pH 

F: 

Inoculum 

size micro 

ml 

G: 

MgSO4. 

7H2O % 

H: 

Na2HPO4 

% 

J: 

K2HPO4 

% 

K: 

Incubati 

on 

period 

Hours 

L: 

Trace 

elemen 

ts % 

PHA 

mg/10 

ml 

1 4 0.01 0.001 28 9 2 0.1 0.4 0.1 96 1 51 

2 4 0.01 0.01 40 9 2 0.01 0.1 0.4 48 1 57 

3 1 0.01 0.01 28 9 10 0.01 0.4 0.4 96 0.1 39.5 

4 4 0.2 0.001 28 5 10 0.01 0.4 0.4 48 1 60.5 

5 4 0.01 0.01 40 5 10 0.1 0.4 0.1 48 0.1 51 

6 4 0.2 0.001 40 9 10 0.01 0.1 0.1 96 0.1 68.5 

7 1 0.01 0.001 40 5 10 0.1 0.1 0.4 96 1 43.5 

8 1 0.2 0.01 40 5 2 0.01 0.4 0.1 96 1 54.5 

9 1 0.2 0.001 40 9 2 0.1 0.4 0.4 48 0.1 50.5 

10 1 0.01 0.001 28 5 2 0.01 0.1 0.1 48 0.1 36.5 

11 1 0.2 0.01 28 9 10 0.1 0.1 0.1 48 1 48.5 
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12 4 0.2 0.01 28 5 2 0.1 0.1 0.4 96 0.1 57 
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The experimental results indicate varying PHA production in Pseudomonas fluorescens across 

different runs, which can be attributed to changes in carbon source percentage, nitrogen 

content, and other factors such as temperature and pH. Notably, the highest PHA production 

(68.5 mg/10ml) occurred in Run 6 with higher carbon (4%) and nitrogen (0.2%) percentages 

at a higher temperature (40°C) and neutral pH (9). This suggests that optimal conditions for 

maximizing PHA synthesis involve higher carbon and nitrogen levels at elevated temperatures. 

Conversely, the lowest PHA yield (36.5 mg/10ml) in Run 10 involves a lower carbon 

percentage (1%) and a lower pH (5) as shown in table 6.21, indicating less favorable conditions 

for PHA production. This trend highlights the critical roles of nutrient concentration and 

environmental conditions in microbial metabolic processes. Adjusting these variables provides 

a lever to enhance or reduce PHA production, which is useful in biotechnological applications 

where precise control of microbial output is desired. 

6.7.4.1 ANOVA for selected factorial model 

 
Table 6.22: Statistical ANOVA for isolate Pseudomonas fluorescence MTCC1749 

 

Source_ SumofSquares Df_ ⅀ Square (F_value) P_value  

Models 3530.67 10 353.07 264.80 0.0478 Significant 

A-Carbon 1728.00 1 1728.00 1296.00 0.0177  

B-Nitrogen 1240.33 1 1240.33 930.25 0.0209  

C-ferric citrate 3.00 1 3.00 2.25 0.3743  

D-temperature 341.33 1 341.33 256.00 0.0397  

E-PH 48.00 1 48.00 36.00 0.1051  

F-inoculum size 8.33 1 8.33 6.25 0.2422  

G-MgSO4.7H2O 75.00 1 75.00 56.25 0.0844  

H-Na2HPO4 5.33 1 5.33 4.00 0.2952  
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K-incubation 

period 
33.33 1 33.33 25.00 0.1257 

L-trace 

elements 
48.00 1 48.00 36.00 0.1051 

Residual 1.33 1 1.33   

Cor Total 3532.00 11    

 

 

The factorial ANOVA conducted on various growth conditions for Pseudomonas fluorescens 

MTCC 1749 yielded an impressive Model F-value of 264.80, which strongly supports the 

statistical significance of the overall model. This high F-value, with a corresponding p-value 

of 0.0478 as shown in table 6.22, indicates a low probability (4.78%) that such a statistic would 

occur by chance if the null hypothesis were true. Therefore, the patterns observed in the data 

are not random noise; they reflect meaningful biological variations influenced by the 

experimental conditions. 

The F-value is a robust indicator of the model's ability to distinguish real effects from random 

fluctuations, affirming the factors' roles in influencing bacterial behavior. As Zhao et al. (2018) 

emphasize, a high F-value in microbial studies often indicates a strong effect of the manipulated 

variables on microbial growth or metabolic activity, validating the experimental design and the 

relevance of the selected factors. 

A deeper examination of individual terms in the model reveals which factors have the most 

substantial impact: 

• Carbon Source (A): With a p-value of 0.0177, this factor significantly influences 

bacterial growth, likely due to its fundamental role in providing energy and as a carbon 

skeleton for biosynthesis. 

• Nitrogen Source (B): This factor also shows significant influence (p-value of 0.0209), 

consistent with the role of nitrogen in protein synthesis and other metabolic processes. 

• Temperature (D): Demonstrates significant control over bacterial metabolism, 

reflected by a p-value of 0.0397, corroborating findings from studies such as those by 



109  

Wang et al. (2019), who noted temperature's critical impact on bacterial enzymatic 

activities and growth rates. 

Conversely, factors such as Ferric Citrate (C), pH (E), and others with p-values exceeding 

0.1000 did not reach statistical significance. This suggests that under the conditions tested, 

these factors might not influence the growth of Pseudomonas fluorescens substantially or that 

more dominant factors overshadow their effects. As suggested by Lee et al. (2020), non- 

significant results do not necessarily imply no effect but may indicate that the specific setup of 

the experiment was not sensitive enough to detect their impacts. 

6.7.4.2 Fit statistics 

 
Table 6.23: Fit statistics of Pseudomonas fluorescence MTCC1749 

 

Std. Dev. 1.15 R² 0.9996 

Mean 103.00 Adjusted R² 0.9958 

C.V. % 1.12 Predicted R² 0.9456 

  Adeq Precision 57.8902 

 

 

In the predictive modeling of Klebsiella pneumoniae, several vital metrics highlight the 

model’s robustness and accuracy: 

• High Predicted R² (0.9456): Demonstrates excellent predictive capabilities, 

suggesting the model can accurately forecast outcomes on new, unseen data. 

• Near-Perfect Adjusted R² (0.9958): The model accounts for nearly all variability in 

the response, confirming a precise fit to the observed data. The small gap (<0.2) 

between Predicted R² and Adjusted R² instills confidence in the model’s ability to 

generalize effectively as shown in table 6.23, suggesting it is well-calibrated without 

overfitting or underfitting. 

• Exceptional Ratio (57.890): Far exceeds the desirable threshold of 4.0, underscoring 

the model’s capacity to distinguish between signal and noise. This high ratio indicates 
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the model’s capability to capture relevant patterns within the data, making it an 

invaluable tool for accurate predictions and informed decision-making. 

6.7.4.3 Percentage contribution 

 
Table 6.24: percentage contribution of each factor Pseudomonas fluorescence MTCC1749 

 

Term Stdized Effect Sum of Squares % Contribution 

A-Carbon 12 432 48.9241 

B-Nitrogen 10.1667 310.083 35.117 

C-ferric citrate -0.5 0.75 0.0849377 

D-temperature 5.333333 85.3333 9.66402 

E-PH 2 12 1.359 

F-inoculum size 0.833333 2.08333 0.235938 

G-MgSo04.7H20 -2.5 18.75 2.12344 

H-Na2HPO4 -0.666667 1.33333 0.151 

J-K2HPO4 -0.333333 0.333333 0.0377501 

K-incubation period 1.666667 8.33333 0.943752 

L-trace elements 2 12 1.359 

 

 

The factorial ANOVA for Pseudomonas fluorescens highlights the differential impact of 

various factors on bacterial growth: 

The analysis reveals that the carbon source (A-Carbon) and nitrogen source (B-Nitrogen) are 

the most influential factors, contributing 48.92% and 35.12% to the model's variability as 

shown in table 24, respectively. These nutrients are essential for bacterial metabolism, 

providing energy and supporting protein synthesis. Their substantial contributions emphasize 

their critical roles in optimizing bacterial culture conditions, as noted by Thompson et al. 

(2020). Temperature (D-temperature) also exhibits a significant positive effect, accounting for 
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9.66% of the variability. This highlights its role in regulating enzymatic activities and 

influencing growth rates, which is consistent with findings by Patel et al. (2019). 

On the other hand, pH (E-PH) and trace elements (L-trace elements) each contribute around 

1.36%, indicating a moderate influence on the bacterial environment's overall suitability. The 

analysis also identifies negative effects from ferric citrate (C), MgSO4.7H2O (G), and 

inoculum size (F) as shown in figure 6.17, suggesting potential inhibitory impacts or 

suboptimal levels that could hinder growth or disrupt metabolism. These findings underscore 

the importance of maintaining balanced nutrient administration to optimize bacterial culture 

conditions, as Lee & Kim (2021) highlighted. 

 

 

 

 
Figure 6.17: Pie chart representation of percentage contribution for each factor 

 

6.7.4.4 Pareto chart 
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PHA 

 

A: Carbon 

B: Nitrogen 

C: ferric citrate 

D: temperature 

E: PH 

F: inoculum size 

G: MgSo4.7H2o 

H: Na2HPo4 

J: K2HPo4 

K: incubation period 

L: trace elements 
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Figure 6.18: Pareto chart representation of each factor 

 

The Pareto chart for Pseudomonas fluorescens highlights the significant positive effects of 

carbon (A) and nitrogen (B) sources on bacterial growth, underscoring their role in providing 

essential nutrients for energy and protein synthesis. Temperature (D) also shows a positive 

impact as shown in figure 6.18, aligning with its known influence on metabolic rates. These 

findings suggest optimizing carbon, nitrogen, and temperature conditions could enhance 

bacterial productivity. However, inoculum size (F) and MgSO₄.7H₂O (G) exhibit negative 

effects, indicating that higher levels may inhibit growth due to nutrient imbalances or toxicity. 

This is consistent with the findings by Lee and Kim (2021), who studied nutrient overdosing 

in microbial cultures. The results emphasize the importance of carefully balancing these factors 

to optimize growth conditions. References to studies by Thompson et al. (2020) and Patel et 

al. (2019) further validate the observed nutrient and temperature effects in microbial growth 

processes. 

6.8 Response surface methodology 
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Response Surface Methodology (RSM) in Design Expert 12 is a powerful technique used for 

optimizing responses and analyzing intricate relationships among multiple variables. within the 

framework of optimizing Polyhydroxybutyrate (PHB) production, RSM explores how 

variables such as Carbon, Nitrogen, and Temperature interact to affect production efficiency. 

Using mathematical models, RSM can predict optimal conditions for maximum PHB 

production, allowing researchers to fine-tune experimental factors effectively. 

The current study involves 11 factors potentially influencing PHB production, but statistical 

analysis and Pareto charts derived from a Plackett-Burman experimental design reveal that 

three factors—Carbon, Nitrogen, and Temperature—contribute the most significantly. 

According to percentage contribution analysis, these three factors greatly impact PHB 

production, with the Pareto chart visually confirming their influence compared to other 

variables. The Plackett-Burman design, a screening method used to identify significant factors, 

highlights these three as the key drivers of the response variable. 

6.8.1 Isolate no. 3: Klebsiella sp. strain MK3 

 
Table 6.25: Presents the experimental and predicted PHA values 

 

 

 

Run 

Factor 1 

 

A: Carbon 

% 

Factor 2 

 

B: Nitrogen 

% 

Factor 3 

 

C: Temperature 

Celsius 

 

Actual Value 

PHA mg/20 ml 

Predicted Value 

PHA mg/20ml 

1 1 0.105 28 77.00 75.75 

2 2.5 0.01 40 90.00 90.25 

3 2.5 0.105 34 112.00 112.80 

4 1 0.105 40 85.00 85.25 

5 4 0.105 40 98.00 99.25 

6 2.5 0.105 34 113.00 112.80 

7 4 0.01 34 78.00 76.50 
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8 1 0.01 34 74.00 73.50 

9 2.5 0.105 34 113.00 112.80 

10 4 0.105 28 100.00 99.75 

11 1 0.2 34 73.00 74.50 

12 2.5 0.01 28 80.00 81.75 

13 2.5 0.2 28 103.00 102.75 

14 2.5 0.105 34 113.00 112.80 

15 4 0.2 34 109.00 109.50 

16 2.5 0.2 40 105.00 103.25 

17 2.5 0.105 34 103.00 110.80 
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Figure 6.19: Representing the slight difference between actual and predicted values 

 

The results show a close alignment between the actual and predicted values, as reflected by the 

data points' proximity to the plot's diagonal line. The color-coded points also indicate different 

ranges of PHA production, with blue representing lower values and red representing higher 

PHA yields. 

As implemented in Design Expert 12, RSM efficiently models the interactions between the 

three factors. For instance, at a Carbon percentage of 2.5%, Nitrogen at 0.105%, and a 

Temperature of 34°C, the predicted value for PHA production is 112.80 mg/20 ml as shown in 

table 6.25, almost identical to the actual value of 113 mg/20 ml. This consistency suggests that 

the RSM model is robust and reliable for predicting outcomes in biotechnological applications. 

The accuracy of the predictions is further supported by the minimal deviations seen across the 

dataset. The RSM model effectively captures the interactions between the factors (Carbon, 

Nitrogen, and Temperature), allowing for accurate prediction and optimization of PHB 

production. Similar studies have validated the utility of RSM in optimizing bioprocesses by 

providing reliable predictive models as shown in figure 6.19(Saranya et al., 2021). 
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Table 6.26: ANOVA and fit statistics for selected Quadratic model 

 

Source Sum of Squares df Mean Square F-value p-value  

Model 3508.58 9 389.84 29.89 < 0.0001 significant 

A-carbon 722.00 1 722.00 55.36 0.0001  

B-nitrogen 578.00 1 578.00 44.32 0.0003  

C-temperature 40.50 1 40.50 3.11 0.1214  

AB 256.00 1 256.00 19.63 0.0030  

AC 25.00 1 25.00 1.92 0.2087  

BC 16.00 1 16.00 1.23 0.3046  

A² 1064.46 1 1064.46 81.61 < 0.0001  

B² 547.20 1 547.20 41.95 0.0003  

C² 101.09 1 101.09 7.75 0.0271  

Residual 91.30 7 13.04    

Lack of Fit 14.50 3 4.83 0.2517 0.8568 not significant 

Pure Error 76.80 4 19.20    

Cor Total 3599.88 16     

Std. Dev. 1.48  R² 0.9960   

Mean 96.24  Adjusted R² 0.9909   

C.V. % 1.54  Predicted R² 0.9393 Adeq Precision 34.6593 
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The Model F-value of 29.89 suggests that the model is statistically significant, with only a 

0.01% chance that such a high F-value could arise due to random noise. P-values below 0.0500 

indicate significant model terms, and in this case, terms A, B, AB, A², B², and C² are significant. 

Values above 0.1000 suggest non-significant terms. Reducing the model by removing non- 

essential terms (while maintaining hierarchy) can improve model quality. The Lack of Fit F- 

value of 0.25 shows that the Lack of Fit is not significant compared to pure error, as illustrated 

in Table 6.26, with an 85.68% probability that this F-value could be due to noise. An 

insignificant lack of fit is desirable, as it indicates a good model fit. 

The Predicted R² of 0.9393 aligns well with the Adjusted R² of 0.9909, with a difference under 

0.2, showing consistency. Adeq Precision, which measures signal-to-noise, should ideally 

exceed 4; here, the ratio is 34.659, confirming a strong signal. This model is suitable for 

exploring the design space effectively. 

6.8.1.1 Model graphical representation 
 

 

 

 

(6.20A) (6.20B) 

 

 

 

 

(6.20C) (6.20D) 
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(6.20E) (6.20F) 

 

Figure 6.20: Contour and 3D surface plot graphs showing the interaction between each-other 

 

The contour and 3D surface plots (A–F) illustrate the interaction effects of key factors (Carbon, 

Nitrogen, and Temperature) as shown in figure 6.20 on PHA production, modeled through 

Response Surface Methodology (RSM). These plots illustrate how different combinations of 

factors impact the response variable (PHA yield). 

• Plots A and B: These display the interaction between Carbon percentage (X1) and 

Nitrogen percentage (X2) with Temperature (C) fixed at 34°C. In both the contour and 

3D plots, the highest PHA production occurs at Carbon levels around 2 % and Nitrogen 

levels near 0.1%. The red regions indicate the maximum response, suggesting that these 

factor levels are optimal for PHA production. 

• Plots C and D depict the interaction between Carbon percentage (X1) and Temperature 

(X2), with Nitrogen percentage fixed at 0.105%. The maximum PHA yield is observed 

when the Carbon percentage is around 2 % and the Temperature is close to 34°C. The 

contour plot (C) confirms that moderate increases in temperature and carbon levels push 

PHA production toward the highest values, as indicated by the red zone. 

• Plots E and F show the interaction between Nitrogen percentage (X1) and Temperature 

(X2), with Carbon fixed at 2.5%. The contour plot reveals that an increase in Nitrogen 

and Temperature up to optimal values leads to a higher PHA yield. The 3D plot (F) 

reinforces this, showing a peak in the response surface when Nitrogen is near 0.1% and 

Temperature around 34°C. 

These plots suggest that fine-tuning these factors using RSM can identify optimal conditions 

for maximizing PHA production. 

6.8.1.2 Final Equation: 
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-164.016 + 45.2164 * carbon + 333.684 * nitrogen + 10.6934 * temperature + 56.1404 * carbon 

* nitrogen + -0.277778 * carbon * temperature + -3.50877 * nitrogen * temperature + -7.06667 

* carbon^2 + -1263.16 * nitrogen^2 + -0.136111 * temperature^2 

 

The final equation, derived through Response Surface Methodology (RSM), represents the 

relationship between the three factors—Carbon, Nitrogen, and Temperature—and the PHA 

yield. The positive coefficients for Carbon, Nitrogen, and Temperature suggest that increasing 

these factors enhances PHA production. However, the negative quadratic terms (Carbon², 

Nitrogen², and Temperature²) indicate diminishing returns at higher levels, implying that 

excessive concentrations reduce yield. Interaction terms, such as Carbon * Nitrogen (positive) 

and Nitrogen * Temperature (negative), show how combinations of factors influence the 

response. This equation provides a predictive model as shown in table 6.27 to optimize PHA 

production by fine-tuning these variables. 

6.8.1.3 Point Prediction 

 
Table 6.27: Point predicted value of each factor by RSM 

 

Factor Name Level Low Level High Level Std. Dev. Coding 

A carbon 1.74 1.0000 4.00 0.0000 Actual 

B nitrogen 0.1050 0.0100 0.2000 0.0000 Actual 

C temperature 36.78 28.00 40.00 0.0000 Actual 
 

 

 

 

6.8.2 Isolate No. 5: Klebsiella pneumoniae strain DSM 30104 (MK2023) 

 
Table 6.28: Presents the experimental and predicted PHA values 
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Run 

Factor 1 

 

A: Carbon 

% 

Factor 2 

 

B: Nitrogen 

% 

Factor 3 

 

C: Temperature 

Celsius 

 

Actual Value 

PHA mg/20ml 

Predicted Value 

PHA mg/20ml 

1 1 0.105 28 82.00 84.50 

2 2.5 0.01 40 93.00 94.62 

3 2.5 0.105 34 119.00 119.80 

4 1 0.105 40 89.00 90.25 

5 4 0.105 40 107.00 104.50 

6 2.5 0.105 34 121.00 119.80 

7 4 0.01 34 80.00 80.87 

8 1 0.01 34 79.00 76.12 

9 2.5 0.105 34 119.00 119.80 

10 4 0.105 28 109.00 107.75 

11 1 0.2 34 79.00 78.12 

12 2.5 0.01 28 83.00 83.37 

13 2.5 0.2 28 111.00 109.38 

14 2.5 0.105 34 123.00 119.80 

15 4 0.2 34 108.00 110.87 

16 2.5 0.2 40 101.00 100.63 
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17 2.5 0.105 34 117.00 119.80 
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Figure 6.21: Representing the slight difference between actual and predicted values 

 

The predicted values align closely with the actual experimental results as shown in figure 6.21, 

with minimal deviation across runs, as evidenced by the data points' proximity to the plot's 

diagonal line. For instance, in Run 17, with Carbon at 2.5%, Nitrogen at 0.105%, and 

Temperature at 34°C, the actual PHA yield (119 mg/20ml) closely matches the predicted value 

(119.8 mg/20ml) as table 28. This consistency reinforces the robustness of the RSM model in 

capturing the interactions between factors. Additionally, runs 1 and 8 show slightly more 

significant deviations between actual and predicted values, but these remain within acceptable 

limits (Chaudhary et al., 2020). 

Table 6.29: ANOVA and fit statistics for selected Quadratic model 

2 
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Source Sum of Squares df 
Mean 

Square 
F-value p-value 

 

Model 4278.42 9 475.38 55.41 < 0.0001 Significant 

A-carbon 703.13 1 703.13 81.96 < 0.0001  

B-nitrogen 512.00 1 512.00 59.68 0.0001  

C-temperature 3.13 1 3.13 0.3643 0.5652  

AB 196.00 1 196.00 22.85 0.0020  

AC 20.25 1 20.25 2.36 0.1683  

BC 100.00 1 100.00 11.66 0.0112  

A² 1184.84 1 1184.84 138.12 < 0.0001  

B² 1149.79 1 1149.79 134.03 < 0.0001  

C² 165.79 1 165.79 19.33 0.0032  

Residual 60.05 7 8.58    

Lack of Fit 39.25 3 13.08 2.52 0.1970 
not 

significant 

Pure Error 20.80 4 5.20    

Cor Total 4338.47 16     

Std. Dev. 2.93  R² 0.9862   

Mean 101.18 
 Adjusted 

R² 
0.9684 
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C.V. % 2.89 
Predicted 

R² 
0.8478 

Adeq 

Precision 
19.4424 

 

 

The significance of the model can be determined by the Model F-value, which in this case is 

55.41. This value suggests that the model is indeed significant. The probability of obtaining 

such a large F-value by chance alone is only 0.01%. When the p-value is less than 0.0500, it 

indicates that the model terms are significant. In this scenario, terms like A, B, AB, BC, A², 

B², and C² are found to be significant as shown in table 6.29. 

On the other hand, values greater than 0.1000 suggest that the model terms are not significant. 

If there are several insignificant model terms (excluding those necessary for supporting 

hierarchy), it might be beneficial to reduce the model. However, it is essential to note that the 

Lack of Fit F-value is 2.52, indicating that it is insignificant compared to the pure error. The 

probability of obtaining such a considerable Lack of Fit F-value due to noise is 19.70%. A 

non-significant lack of fit is favorable as it implies that the model fits well. 

The agreement between the Predicted R² (0.8478) and Adjusted R² (0.9684) suggests that they 

are reasonably close, with a difference of less than 0.2. This indicates that the model's predicted 

values align well with the data. The Adeq Precision, which measures the signal-to-noise ratio, 

is essential. A ratio higher than four is desirable; in this case, 19.442 indicates a strong signal. 

Consequently, this model is suitable for navigating the design space, as it provides reliable 

predictions and effectively captures the relationship between variables. 

6.8.2.1 Model graphical representation 
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(6.22A) (6.22B) 

 

(6.22C) (6.22D) 

 

(6.22E) (6.22F) 

 

Figure 6.20: Contour and 3D surface plot graphs showing the interaction between each-other 

 

The contour and 3D surface plots (A–F) illustrate the effects of Carbon, Nitrogen, and 

Temperature on PHA production as shown in figure 6.22(A-F), modeled using Response 

Surface Methodology (RSM). These visualizations help to understand the interactions between 

these key factors. 

• Plots A and B: These represent the interaction between Carbon (X1) and Nitrogen (X2) 

with Temperature (C) fixed at 34°C. The contour plot (A) shows that the highest PHA 

yield is obtained when Carbon is around 2.5% and Nitrogen is around 0.12%, as 
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highlighted by the red zone. The 3D plot (B) reinforces this with a clear peak in the 

surface, indicating the optimal combination for maximizing PHA production. 

• Plots C and D: These focus on the interaction between Carbon (X1) and Temperature 

(X2) with Nitrogen (B) fixed at 0.105%. The contour plot (C) reveals that the highest 

PHA yield occurs around a Carbon level of 2.5% and a Temperature close to 34°C. The 

3D surface plot (D) illustrates this interaction, with the response peaking at these 

optimal levels. 

• Plots E and F show the interaction between Nitrogen (X1) and Temperature (X2), 

while Carbon is fixed at 2.5%. The contour plot (E) and 3D surface plot (F) indicate 

that an increase in Nitrogen and Temperature leads to a higher PHA yield, with optimal 

conditions occurring when Nitrogen is around 0.12% and Temperature around 34°C. 

Overall, these plots highlight the complex interactions between the factors, with RSM helping 

to identify the optimal conditions for maximizing PHA production 

6.8.2.2 Final Equation: 

 

-216.161 + 46.8699 x carbon + 644.164 x nitrogen + 13.503 x temperature + 49.1228 x carbon 

x nitrogen + -0.25 x carbon x temperature + -8.77193 x nitrogen x temperature + -7.45556 x 

carbon^2 + -1831.02 x nitrogen^2 + -0.174306 x temperature^2 

The final equation represents the mathematical model developed through Response Surface 

Methodology (RSM) to predict PHA production based on Carbon, Nitrogen, and Temperature 

interaction. It includes linear terms (Carbon, Nitrogen, Temperature), interaction terms 

(Carbon x Nitrogen, Carbon x Temperature, Nitrogen x Temperature), and quadratic terms 

(Carbon², Nitrogen², Temperature²). The positive coefficients for Carbon and Nitrogen suggest 

their substantial contribution to PHA production, while negative quadratic terms indicate 

diminishing returns at higher levels. The interaction effects help capture the combined 

influence of factors, making this model helpful in optimizing conditions for maximum PHA 

yield as shown in table 6.30. 

6.8.2.3 Point prediction values 

 
Table 6.30: Point predicted value of each factor by RSM 
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Factor Name Level Low Level High Level Std. Dev. Coding 

A Carbon 2.50 1.0000 4.00 0.0000 Actual 

B Nitrogen 0.1050 0.0100 0.2000 0.0000 Actual 

C Temperature 34.00 28.00 40.00 0.0000 Actual 

 

 

6.8.3 For isolate 13: Escherichia fergusonii ATCC 35469 MK 

 
Table 6.31: Presents the experimental and predicted PHA values 

 

 

 

Run 

Factor 1 

 

A: Carbon 

% 

Factor 2 

 

B: Nitrogen 

% 

Factor 3 

 

C: Temperature 

Celsius 

 

Actual Value 

PHA mg/20ml 

Predicted Value 

PHA mg/20ml 

1 1 0.105 28 62.00 66.75 

2 2.5 0.01 40 81.00 83.87 

3 2.5 0.105 34 107.00 105.80 

4 1 0.105 40 66.00 69.50 

5 4 0.105 40 101.00 96.25 

6 2.5 0.105 34 109.00 105.80 

7 4 0.01 34 80.00 81.87 

8 1 0.01 34 64.00 57.62 

9 2.5 0.105 34 106.00 105.80 

10 4 0.105 28 99.00 95.50 
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11 1 0.2 34 72.00 70.12 

12 2.5 0.01 28 71.00 72.62 

13 2.5 0.2 28 101.00 98.12 

14 2.5 0.105 34 104.00 105.80 

15 4 0.2 34 95.00 101.37 

16 2.5 0.2 40 92.00 90.37 

17 2.5 0.105 34 103.00 105.80 

 

 

 

Figure 6.23: Representing the slight difference between actual and predicted values 

 

The actual vs. predicted data for Polyhydroxyalkanoate (PHA) production using Response 

Surface Methodology (RSM) reveals a strong correlation as shown in figure 6.23, as 
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demonstrated by the proximity of data points to the diagonal line in the plot. The color coding 

reflects the PHA yield, with blue representing lower yields and red representing higher yields. 

The model captures the interactions between Carbon percentage (A), Nitrogen percentage (B), 

and Temperature (C) to predict PHA production effectively. 

For instance, at Carbon 2.5%, Nitrogen 0.105%, and Temperature 34°C, the actual PHA yield 

was 107 mg/20mL , closely predicted at 105.80 mg/20mL . Similarly, for another run at 2.5% 

Carbon and Nitrogen levels of 0.01%, with a Temperature of 40°C, the actual yield of 81 

mg/20mL was closely estimated at 83.87 mg/20mL as shown in table 6.31. The few deviations 

between predicted and actual values, such as the lower predicted value (57.62 mg/20mL ) for 

an actual yield of 64 mg/20mL , are relatively minor and indicate the robustness of the model 

(Saranya et al., 2021). 

Table 6.32: ANOVA and fit statistics for selected Quadratic model 

 

ANOVA for Quadratic model 

 

Source Sum of Squares df Mean Square F-value p-value  

Model 5068.07 9 563.12 46.90 < 0.0001 significant 

A-carbon 1275.13 1 1275.13 106.20 < 0.0001  

B-nitrogen 528.13 1 528.13 43.98 0.0003  

C-temperature 24.50 1 24.50 2.04 0.1962  

AB 16.00 1 16.00 1.33 0.2862  

AC 42.25 1 42.25 3.52 0.1028  

BC 110.25 1 110.25 9.18 0.0191  

A² 1425.52 1 1425.52 118.72 < 0.0001  

B² 998.57 1 998.57 83.16 < 0.0001  

C² 352.52 1 352.52 29.36 0.0010  
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Residual 84.05 7 12.01    

Lack of Fit 21.25 3 7.08 0.4512 0.7304 not significant 

Pure Error 62.80 4 15.70    

Cor Total 5152.12 16     

 

 

Std. Dev. 3.47 R² 0.9837 

Mean 90.59 Adjusted R² 0.9627 

C.V. % 3.83 Predicted R² 0.9150 

  Adeq Precision 19.7732 

 

 

The F-value of 46.90 for the model suggests it is statistically significant, indicating a very low 

probability (0.01%) that such a high value could occur by chance due to noise.The significance 

of model terms is indicated by P-values: terms with P-values under 0.05, such as A, B, BC, A², 

B², and C², are significant. Conversely, terms with P-values above 0.10 may not be significant, 

and reducing these terms could potentially enhance the model's performance. 

The Lack of Fit F-value of 0.45 is not significant, with a 73.04% probability that such a value 

could arise from noise. This implies that the model's lack of fit is acceptable, as shown in Table 

10.The coherence between the Predicted R² of 0.9150 and the Adjusted R² of 0.9627 is good, 

as the difference is less than 0.2. This consistency suggests that the model reliably predicts the 

data.The Adequate Precision ratio of 19.773, being above 4, indicates a strong signal-to-noise 

ratio. This confirms that the model is robust enough for navigating the design space effectively. 

6.8.3.1 Model graphical representation 
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(6.24A)  (6.24B 

 

(6.24C)  (6.24D) 
 

 

(6.24E)  (6.24F) 

 

Figure 6.22: Contour and 3D surface plot graphs showing the interaction between each-other 

 

The contour and 3D surface plots (A–F) depict the effects of Carbon, Nitrogen, and 

Temperature on PHB production as shown in figure 6.24(A-F), with the highest PHB yield 

observed when Carbon is around 3.5%, Nitrogen is between 0.13% and 0.15%, and 

Temperature is set at 37°C. The red regions in the plots represent the optimal zones for 

maximum PHB production. 

• Plots A and B: These graphs highlight the interaction between Carbon and Nitrogen 

with Temperature fixed at 37°C. The highest PHB production is centered around 3.5% 

Carbon and Nitrogen levels between 0.13% and 0.15%, as indicated by the red zone in 
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the contour plot (A). The 3D surface plot (B) further emphasizes this peak, showing a 

distinct rise in PHB yield at these factor levels. 

• Plots C and D illustrate the interaction between Carbon and Temperature with Nitrogen 

fixed at 0.105%. The contour plot (C) shows that the maximum PHB production is 

observed when Carbon is close to 3.5%, and the Temperature is at 37°C, which is also 

confirmed by the peak in the 3D surface plot (D). 

• Plots E and F focus on the interaction between Nitrogen and Temperature with Carbon 

fixed at 3.48%. The highest PHB yield is achieved when Nitrogen levels are between 

0.13% and 0.15%, and the Temperature is at 37°C, as depicted by the red regions in the 

contour plot (E) and the 3D surface plot (F). 

These results, as visualized through the RSM-generated plots, demonstrate that the optimal 

conditions for maximizing PHB production are achieved with Carbon at 3.5%, Nitrogen 

between 0.13% and 0.15%, and Temperature at 37°C. 

6.8.3.2 Final Equation: 

 

-267.422 + 45.7383 * carbon + 613.74 * nitrogen + 15.6097 * temperature + 12.2807 * carbon 

* nitrogen + -0.0555556 * carbon * temperature + -8.33333 * nitrogen * temperature + - 

7.17778 * carbon^2 + -1318.56 * nitrogen^2 + -0.2125 * temperature^2 

This final equation represents the predictive model developed through Response Surface 

Methodology (RSM) for optimizing PHB production. The linear terms for Carbon, Nitrogen, 

and Temperature show their direct positive influence on PHB yield, with Nitrogen having the 

most substantial effect. The interaction terms (Carbon × Nitrogen, Carbon × Temperature, 

Nitrogen × Temperature) highlight the complex interdependencies between these factors. The 

quadratic terms are negative, indicating diminishing returns at higher levels, suggesting 

excessive amounts of Carbon, Nitrogen, or Temperature reduce production efficiency. 

Balancing these factors, this model helps predict optimal conditions to maximize PHB 

production as shown in table 33. 

Point predicted Factors 

 
Table 6.33: Point predicted value of each factor by RSM 
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Factor 

 

Name 

 

Level 

 

Low Level 

 

High Level 

 

Std. Dev. 

 

Coding 

 

A 

 

carbon 

 

3.48 

 

1.0000 

 

4.00 

 

0.0000 

 

Actual 

 

B 

 

nitrogen 

 

0.1506 

 

0.0100 

 

0.2000 

 

0.0000 

 

Actual 

 
C 

 
temperature 

 
37.00 

 
28.00 

 
40.00 

 
0.0000 

 
Actual 

 

 

 

 

 

 

 

6.8.4 Isolate: Pseudomonas fluorescence MTCC1749 

 

Table 6.34: Presents the experimental and predicted PHA values 

 

 

Runs 

Factor 1 

A: Carbon 

(%) 

Factor 2 

 

B: Nitrogen 

(%) 

Factor 3 

 

C: Temperature 

(°C) 

 

Actual Value 

PHB mg/20ml 

 

Predicted Value 

PHB mg/20ml 

1 1 0.105 28 65.00 67.62 

2 2.5 0.01 40 79.00 83.62 

3 2.5 0.105 34 125.00 126.60 

4 1 0.105 40 77.00 77.12 

5 4 0.105 40 93.00 90.37 
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6 2.5 0.105 34 134.00 126.60 

7 4 0.01 34 69.00 67.00 

8 1 0.01 34 62.00 57.25 

9 2.5 0.105 34 119.00 126.60 

10 4 0.105 28 91.00 90.87 

11 1 0.2 34 68.00 70.00 

12 2.5 0.01 28 71.00 73.12 

13 2.5 0.2 28 105.00 100.37 

14 2.5 0.105 34 124.00 126.60 

15 4 0.2 34 92.00 96.75 

16 2.5 0.2 40 101.00 98.87 

17 2.5 0.105 34 131.00 126.60 

 

 

The close alignment between predicted and actual values as shown in figure 6.25 determines 

the model's accuracy and reliability. When significant deviations occur, it suggests a need for 

further refinement or investigation. In Figure, the data from 17 runs involving three factors 

align along a straight line, indicating accuracy and the absence of outliers. This alignment 

underscores the reliability of the data, suggesting that the model's predictions align closely with 

actual outcomes, a vital aspect in scientific analyses and experimental accuracy. 
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Figure 6.25: Representing the slight difference between actual and predicted values 

 

The model results, accurately representing the predicted and actual values of PHB, show that 

the results from 17 runs of RSM closely approximate a straight line. 

The actual vs. predicted data for Polyhydroxybutyrate (PHB) production using Response 

Surface Methodology (RSM) demonstrates a strong correlation, as evidenced by the close 

alignment of the data points to the diagonal line in the plot. The color-coded points, ranging 

from blue (lower PHB yield) to red (higher PHB yield), indicate the range of PHB production 

across different runs, with actual values well-predicted by the model. 

For example, in run 3, with 2.5% Carbon, 0.105% Nitrogen, and a Temperature of 34°C, the 

actual PHB yield was 125 mg/20mL , while the predicted value was 126.60 mg/20ml as shown 

in table 6.34, demonstrating the model’s high accuracy. Similarly, in run 16, with 2.5% Carbon, 

0.2% Nitrogen, and a Temperature of 40°C, the actual PHB yield was 101 mg/20ml, and the 

predicted yield was 98.87 mg/20ml, further validating the model's robustness. 
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Despite a few minor deviations, such as in run eight, where the actual value was 62 mg/20ml 

and the predicted value was 57.25 mg/20ml, the overall fit between predicted and actual values 

remains highly reliable. These minor discrepancies are within an acceptable range and may be 

attributed to experimental variability. The RSM model effectively captures the interactions 

between the factors (Carbon, Nitrogen, and Temperature), allowing for accurate prediction and 

optimization of PHB production. Similar studies have validated the utility of RSM in 

optimizing bioprocesses by providing reliable predictive models (Saranya et al., 2021). 

Table 6.35: ANOVA and fit statistics for selected Quadratic model 

 

Source Model Sum of Squares  

df 
Mean Square 

F- 

value 

p- 

value 

 

A-carbon 9584.29 9 1064.92 28.68 0.0001 significant 

B-nitrogen 666.13 1 666.13 17.94 0.0039  

C-temperature 903.13 1 903.13 24.32 0.0017  

AB 40.50 1 40.50 1.09 0.3311  

AC 72.25 1 72.25 1.95 0.2057  

BC 25.00 1 25.00 0.6732 0.4390  

A² 36.00 1 36.00 0.9694 0.3576  

B² 3961.92 1 3961.92 106.69 < 0.0001  

C² 2261.39 1 2261.39 60.90 0.0001  

Residual 876.13 1 876.13 23.59 0.0018  

Lack of Fit 259.95 7 37.14    

Pure Error 118.75 3 39.58 1.12 0.4397 not significant 

Cor Total 141.20 4 35.30    
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 9844.24 16  

Std. Dev. 6.09 R² 0.9736 

Mean 94.47 Adjusted R² 0.9396 

C.V. % 6.45 Predicted R² 0.7846 

  Adeq Precision 14.8380 

 

 

The Model F-value of 28.68 indicates the model's significance, with only a 0.01% chance of 

such a result occurring by chance. Model terms A, B, A², B², and C² are significant (p-values 

< 0.0500), highlighting their importance. Values above 0.1000 suggest insignificance as shown 

in table 6.35. A Lack of Fit F-value at 1.12 implies its non-significance compared to pure error, 

aligning with a 43.97% chance due to noise. A non-significant lack of fit is favorable, indicating 

a well-fitted model, as shown in table 8. 

The Predicted R² of 0.7846 shows good agreement with the Adjusted R² of 0.9396, differing 

by less than 0.2. Adeq Precision, measuring the signal-to-noise ratio, stands at 14.838, well 

above the desirable 4, affirming a strong signal, as shown in figure 9. This model is reliable for 

exploring the design space effectively 

6.8.4.1 Model graphical representation: 

 

The circular contour lines indicate a significant interaction effect between carbon and nitrogen 

at a temperature of 34° Celsius, suggesting that their combination has a nonlinear impact on 

the response. In 3D graphs, curved lines represent the response surface as shown in figure 3, 

showcasing how the response variable changes concerning two input factors. The curvature 

indicates the presence of quadratic or higher-order effects. A concave or convex shape indicates 

a nonlinear relationship between the factors and the response variable. In figure 26 at a constant 

temperature of 34 degrees Celsius, increasing the nitrogen percentage from 0.01 to 0.2 initially 

boosts PHB production until it peaks around 0.12. Beyond 0.12 up to 0.2, there is a decrease 

in PHB yield. 

Similarly, increasing carbon content from 1 to 4% leads to an increase in PHB yield until 

around 2.5%, after which there is a decline. Figure 3B demonstrates a consistent trend at a 
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constant 0.105% nitrogen level: increasing carbon enhances PHB yield up to around 2.5%, but 

further increments to 4% result in reduced yield. Simultaneously, at carbon 2.5 in Figure 3C, 

the temperature rises from 28 to 40 degrees Celsius, and the PHB yield increases until it reaches 

34 degrees Celsius, after which it declines. Figure 7C displays analogous interactions between 

nitrogen and temperature, depicted by circular contours and curved lines in the 3-D graph. 

Upon analyzing this dataset, Response Surface Methodology (RSM) offers a precise point 

prediction value. This prediction allows researchers to pinpoint the optimal conditions for 

experiments to achieve maximum PHB yield. RSM's accuracy in predicting these conditions is 

crucial for optimizing the production process based on eq. 

 

 

 

 

 

 

(26A) (26B) 
 

(26C) (26D) 
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(26E) (26F) 

 

Figure 6.24: Contour and 3D surface plot graphs showing the interaction between each-other 

 

The 3D surface and contour plots (A–F) present the interaction between Carbon, Nitrogen, and 

Temperature on PHB production as shown in figure 6.26(A-F), as optimized through Response 

Surface Methodology (RSM). These plots reveal the areas where PHB yield is maximized, with 

the highest production indicated by the red zones on the plots. 

• Plots A and B: These graphs show the interaction between Carbon percentage (X1) 

and Nitrogen percentage (X2) at a fixed temperature of 34°C. The optimal range for 

PHB production appears between 1.8% and 2.0% Carbon and 0.10% to 0.11% 

Nitrogen. The red zone in the contour plot (B) indicates the highest yield within these 

ranges, further confirmed by the peak in the 3D plot (A). 

• Plots C and D: These plots illustrate the interaction between Carbon and Temperature, 

with Nitrogen fixed at 0.105%. The red zone in the contour plot (D) suggests maximum 

PHB production when the Carbon percentage is between 1.8% and 2.0% and the 

Temperature is around 31°C. The 3D plot (C) further demonstrates the highest yield 

within this range, reinforcing the optimal condition for PHB production. 

• Plots E and F: These graphs focus on the interaction between Nitrogen percentage and 

Temperature while keeping Carbon fixed at 2.5%. The optimal Nitrogen range for high 

PHB production is from 0.10% to 0.11%, with a Temperature of 31°C. The 3D surface 

plot (E) and the contour plot (F) clearly show the highest PHB yield in this parameter 

space. 

These results suggest that the ideal conditions for maximizing PHB production occur at carbon 

concentrations between 1.8% and 2.0%, nitrogen concentrations between 0.10% and 0.11%, 

and a temperature of 31°C. 
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6.8.4.2 Final equation 

 

-524.395 + 80.5629 * carbon + 755.48 * nitrogen + 28.8693 * temperature + 29.8246 * carbon 

* nitrogen + -0.277778 * carbon * temperature + -5.26316 * nitrogen * temperature + -13.6333 

* carbon2 + -2567.87 * nitrogen2 + -0.400694 * temperature2. 

 

This equation illustrates a response surface model (RSM) depicting the relationship among the 

response variables. (e.g., a yield or process outcome) and three key factors: carbon, nitrogen, 

and temperature. Each term reflects the linear, interaction, and quadratic effects of these 

variables on the response. Linear coefficients (80.5629, 755.48, 28.8693) indicate how each 

factor individually influences the outcome. Interaction terms (carbon * nitrogen, carbon * 

temperature, nitrogen * temperature) capture combined effects between pairs, while quadratic 

terms (carbon², nitrogen², temperature²) show how changes at higher levels impact the 

response. RSM enables optimizing conditions by evaluating both individual and combined 

effects on the target outcome shown in table 6.36. 

6.8.4.3 Point prediction values 

 
Table 6.36: Point predicted value of each factor by RSM 

 

Factor Name Level Low Level High Level Std. Dev. Coding 

A carbon 1.94 1.0000 4.00 0.0000 Actual 

B nitrogen 0.1050 0.0100 0.2000 0.0000 Actual 

C temperature 31.12 28.00 40.00 0.0000 Actual 

 

 

Scale-up production and extraction of PHA by a selected bacterial strain using a combination 

of wastewater and Hydrolysed wood waste as a substrate. 

6.9 Final Production 
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Figure 6.27: Flow chart representation of process for final production 

 

The process of Polyhydroxybutyrate (PHB) production using microbial fermentation can be 

visualized through a step-by-step series of four stages, each represented by an image in the 

flow chart shown in figure 6.27. 

First Image: The production process begins with a fermentor loaded with 2 liters of substrate 

media containing all the necessary nutrients (carbon, nitrogen sources, and trace elements). 

The substrate is incubated at a controlled temperature (34°C) for 72 hours to allow bacterial 

isolates to grow and accumulate PHB within their cells. 

Second Image: During this phase, the bacterial isolates consume the nutrients in the media to 

grow and produce PHB. As the fermentation progresses, the bacteria metabolize the carbon 

sources and store PHB as intracellular granules. This stage signifies the active consumption 

of media by the bacteria, leading to PHB accumulation. 

Third Image: After the incubation period, the fermented media is subjected to centrifugation. 

This process separates the bacterial cells from the supernatant. The bacterial cells are then 

lysed, breaking open the cells to release the stored PHB. The resulting PHB is in a crude 

form, ready for further extraction. 
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Fourth Image: To purify the PHB, chloroform is added to the centrifuged pellets. The 

chloroform dissolves the PHB, which is then precipitated and dried to form a raw PHB film. 

This final step results in the formation of transparent PHB films, which can later be processed 

into bioplastic products. 

All the isolates final production has been discussed in details further: 

 

6.9.1 For Isolate 3: Klebsiella sp. strain MK3 

 

Using Response Surface Methodology (RSM), the optimal conditions for the production of 

Polyhydroxybutyrate (PHB) by Klebsiella sp. Mk3 were identified. The ideal carbon 

concentration was determined to be 1.7% (17 g/L), nitrogen concentration 0.1% (1 g/L), and 

the incubation temperature was set at 37°C. For a 2000 mL substrate, the medium was prepared 

by mixing 944 mL of hydrolyzed wood waste water with 1056 mL of distilled water. The 

hydrolyzed wood waste contained approximately 36 mg/mL of sugar content, determined by 

the DNS test standard graph. To this solution, 4 g of ammonium chloride was added as the 

nitrogen source. 

The medium was inoculated with the microbial isolate and incubated at 37°C for 72 hours. 

After the incubation period, the culture was centrifuged to separate the cells from the 

supernatant. The cells were then processed for PHB extraction. After adjusting for a larger 

volume, the final yield of PHB obtained was approximately 8742.5 mg per 2000 mL of the 

medium, equivalent to 4.37 mg/mL. 

6.9.2 For Isolate 5: Klebsiella pneumoniae strain DSM 30104 (MK2023) 

 

Using RSM, the optimal conditions for the production of PHB by Klebsiella pneumoniae strain 

DSM 30104 (MK2023) were predicted with a carbon concentration of 2.5% (25 g/L), nitrogen 

concentration 0.1% (1 g/L), and an incubation temperature of 34°C. For the preparation of a 

2000 mL substrate, the medium was composed of 1388 mL of hydrolyzed wood waste water 

blended with 612 mL of distilled water. The hydrolyzed wood waste contained approximately 

36 mg/mL of sugar content. The medium was supplemented with 4 g of ammonium chloride 

as a nitrogen source. 

The mixture was inoculated with the specific microbial isolate and incubated at a controlled 

temperature of 34°C for 72 hours. After incubation, the microbial culture was centrifuged to 

separate the cellular biomass from the liquid supernatant. The isolated cells were processed to 
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extract PHB, yielding approximately 10,491 mg of PHB per 2000 mL of medium, equivalent 

to 5.24 mg/mL. 

6.9.3 For Isolate 13: Escherichia fergusonii MK 

 

RSM was employed to predict the optimal conditions for PHB production by Escherichia 

fergusonii MK. The ideal carbon concentration was identified as 3.48% (35 g/L), nitrogen 

concentration 0.15% (1.5 g/L), and the incubation temperature set at 37°C. The medium for a 

2000 mL substrate was prepared by mixing 1944 mL of hydrolyzed wood waste water with 56 

mL of distilled water, containing approximately 36 mg/mL of sugar content. To this solution, 

6 g of ammonium chloride was added as the nitrogen source. 

The medium was inoculated with Escherichia fergusonii MK and incubated for 72 hours at a 

controlled temperature of 37°C. After incubation, the microbial culture was subjected to 

centrifugation to separate the cells from the supernatant. The cells were then processed for PHB 

extraction, yielding approximately 11,906 mg of PHB per 2000 mL of medium, equivalent to 

5.9 mg/mL, making it the highest yield among the isolates. 

 

6.9.4 For Isolate: Pseudomonas fluorescens MTCC 1749 

 

Using RSM, the optimal conditions for the production of PHB by Pseudomonas fluorescens 

MTCC 1749 were determined to include a carbon concentration of 1.9% (19 g/L), nitrogen 

concentration 0.1% (1 g/L), and an incubation temperature of 30°C. For the preparation of a 

2000 mL substrate, the medium was prepared by mixing 1056 mL of hydrolyzed wood waste 

water with 944 mL of distilled water. The hydrolyzed wood waste contained approximately 36 

mg/mL of sugar content, as determined by the DNS test. To this mixture, 4 g of ammonium 

chloride was added as the nitrogen source. 

The medium was inoculated with Pseudomonas fluorescence MTCC1749 and incubated at 

30°C for 72 hours. After incubation, the culture was centrifuged to separate the cells from the 

supernatant. The cells were processed for PHB extraction, resulting in a final PHB yield of 

approximately 10,823 mg per 2000 mL of medium, equivalent to 5.41 mg/mL shown in figure 

6.28, 6.29. 

Table 6.37: Final production result for each isolate 

 

Bacterial Isolate Total PHB (g) PHB mg/ml 
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Klebsiella sp. strain MK3 8.7 4.37 

Klebsiella pneumoniae strain 

DSM 30104 (MK2023) 

 

10.4 

 

5.24 

Escherichia fergusonii ATCC 

35469 MK 

 

11.9 

 

5.9 

Pseudomonas fluorescence 

MTCC1749 

 

10.8 

 

5.41 

 

 

 

Figure 6.28: Graphical representation of total PHB produced by each isolate in grams 

 

 

Figure 6.29: Graphical representation of PHB produced in mg/ml by each isolate in grams 
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The charts above compare the PHB production of four microbial isolates using a 2000 mL 

substrate. 

 

▪ Total PHB Production: The bar chart illustrates the total PHB yield for each isolate. E. 

fergusonii ATCC 35469 exhibited the highest production, reaching approximately 11,900 

mg, while Klebsiella sp. strain MK3 produced the least, with around 8,700 mg. P. 

fluorescence MTCC1749 and Klebsiella pneumoniae strain DSM 30104 (MK2023) 

showed intermediate yields at 10,800 mg and 10,400 mg, respectively. 

▪ PHB Production per mL: The second chart shows the PHB yield per mL of the medium. 

Again, E. fergusonii ATCC 35469 outperformed the other isolates, with 5.9 mg/mL. 

Klebsiella sp. strain MK3 had the lowest yield per mL, with 4.37 mg/mL, while the other 

isolates displayed production levels of 5.24 mg/mL for Klebsiella pneumoniae strain DSM 

30104 (MK2023) and 5.41 mg/mL for P. fluorescence MTCC1749. 

 

These comparisons emphasize that while Escherichia fergusonii MK produced the highest 

overall yield, the efficiency of production per mL also aligns with its higher performance 

compared to the other isolates. 

6.10 PHA Characterization 

 

6.10.1 UV-Vis spectrophotometry at 235 nm 

 

The UV spectroscopy results you provided show the absorbance spectra of 

Polyhydroxyalkanoates (PHA) compared to the standard crotonic acid. These results are 

significant in identifying and characterizing the presence of Polyhydroxybutyrate (PHB), a key 

type of PHA, by comparing it to the known crotonic acid standards. Here are the key aspects 

of these results: 

6.10.1.1 Peak Observations: 

 

• Crotonic Acid Peak: The black line in each graph represents the absorbance spectrum 

of standard crotonic acid. A distinct peak is seen at 235 nm, which is characteristic of 

crotonic acid. 

• PHA (PHB) Peak: The colored lines (orange, blue, red, and purple) represent the PHA 

extracted from different bacterial strains. These lines also show a peak at 235 nm, 

which suggests the presence of PHB in the PHA sample. 
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6.10.1.2 Explanation of Peaks at 235 nm 

 

The absorbance peak observed at 235 nm for both crotonic acid and PHB is primarily due 

to the presence of the conjugated double bonds in the molecular structure. In the case of 

PHB, this absorbance arises when the polymer is subjected to acid digestion, where PHB 

degrades into crotonic acid, which has a UV absorbance maximum at 235 nm due to its 

double bond in the conjugated system (Law & Slepecky, 1961). This similarity in peaks is 

crucial for confirming the presence of PHB, as crotonic acid is a known degradation product 

of PHB during polymer breakdown shown in figure 6.30-6.33. 

The slight variations in peak intensities between the bacterial strains and the crotonic acid 

standard could be due to differences in the yield or purity of PHB extracted from the 

different strains. For example, Klebsiella sp. MK3 and Klebsiella pneumoniae MK2023 

display slightly lower peaks than the crotonic acid standard, possibly due to variations in 

the efficiency of PHA production or extraction methods. 

 

 

 

 
Figure 6.30: UV spectroscopy analysis of PHA (orange line) and crotonic acid (black line) 
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Figure 6.31: UV spectroscopy analysis of PHA (blue line) and crotonic acid (black line) 

 

 

 

 

 

Figure 6.32: UV spectroscopy analysis of PHA (red line) and crotonic acid (Black line) 
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Figure 6.33: UV spectroscopy analysis of PHA (purple e line) and crotonic acid (Black line) 

 

6.10.2 Fourier Transform Infrared FTIR 

 

The Fourier Transform Infrared (FTIR) spectroscopy results for the polyhydroxybutyrate 

(PHB) produced by the four bacterial isolates—Klebsiella sp. strain M3 and Klebsiella 

pneumoniae strain DSM 30104 (MK2023), Escherichia fergusonii ATCC 35469 MK, and 

Pseudomonas fluorescence MTCC1749—reveal characteristic absorption bands that confirm 

the presence of PHB. 

Across all spectra, several key peaks are observed: 

 

• Carbonyl Group (C=O) Stretching at ~1720 cm⁻¹: A strong absorption peak around 

1720–1740 cm⁻¹ is indicative of the ester carbonyl stretching vibration in PHB. This 

peak is a hallmark of the polyester backbone of PHB and is consistently seen in 

microbial PHB samples (Kourmentza et al., 2017). 

• Aliphatic C–H Stretching between 2850–3000 cm⁻¹: Peaks in this region correspond 

to the stretching vibrations of methyl (–CH₃) and methylene (–CH₂–) groups. These are 

characteristic of the aliphatic side chains present in PHB (Shah et al., 2014). 
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• C–H Bending at ~1450 cm⁻¹: The bending vibrations of the –CH₂– groups appear 

around 1450–1470 cm⁻¹, confirming the methylene units in the polymer chain 

(Bonartsev et al., 2019). 

• C–O Stretching at ~1270 cm⁻¹: This peak represents the C–O stretching vibrations of 

the ester bond in PHB, further confirming the polyester structure (Chen et al., 2016). 

• C–O–C Stretching between 1050–1100 cm⁻¹: Absorptions in this region are 

associated with the C–O–C stretching of the ester linkage, characteristic of PHB 

polymers (Valappil et al., 2007). 

By discussing these peaks collectively, we avoid redundancy and highlight that all four isolates 

produced PHB with similar structural features. The minor variations in peak intensities and 

exact wavenumbers among the spectra can be attributed to differences in polymer chain length, 

crystallinity, and purity of the PHB samples extracted from each bacterial strain. 

These findings are consistent with previous studies where PHB extracted from different 

bacterial species showed similar FTIR spectra. For instance, Bonartsev et al. (2019) reported 

comparable FTIR results for PHB produced by Azotobacter chroococcum, and Kourmentza et 

al. (2017) observed similar spectral patterns in PHB synthesized by various microbial isolates. 

The confirmation of PHB production by these bacterial strains underscores their potential for 

bioplastic production, contributing to sustainable materials development. Utilizing waste 

substrates, such as hydrolyzed wood waste water in this case, further enhances the 

environmental benefits by valorizing waste streams (Keshavarz & Roy, 2010). 
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Figure 6.34: FTIR Analysis of extracted product from Klebsiella sp. MK3 

 

 

 

 

 

Figure 6.35: FTIR Analysis of extracted product From Klebsiella pneumoniae MK2023 
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Figure 6.36: FTIR Analysis of extracted product from Escherichia fergusonii MK 

 

 

 

 

 

 

Figure 6.37 FTIR Analysis of extracted product from Pseudomonas fluorescens MTCC 1749 
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6.10.3 FTIR for standard PHB 

 

 
Figure 6.38: FTIR spectrum of standard polyhydroxybutyrate (PHB). 

 

The characteristic peaks include a strong absorption band around 1724 cm⁻¹, corresponding to 

the C=O (ester carbonyl) stretching, and peaks near 2938 cm⁻¹ for C-H stretching. Additional 

bands in the 1300-1000 cm⁻¹ range represent C-O-C and C-O stretching, confirming the 

polymeric ester structure of PHB. 

Table 6.38: FTIR spectral comparison of standard polyhydroxybutyrate (PHB) with PHB extracted from different 

bacterial isolates. 

 

Peaks 

(cm⁻¹) 

Standard 

PHB 

Klebsiella 

sp. MK3 

Klebsiella 

pneumoniae 

MK2023 

Escherichia 

fergusonii 

MK 

Pseudomonas 

fluorescens 

MTCC 1749 

Functional 

Groups 

~2954- 

2938 

Present 2938 2920 2954 2954 C-H 

stretching 

(aliphatic, 



152  

      methyl and 

methylene) 

~1724- 

1714 

Present 1724 1714 1714 1713 C=O 

stretching 

(ester 

carbonyl) 

~1465- 

1455 

Present 1461 - - 1455 CH₂ bending 

(methylene) 

~1280- 

1260 

Present 1270 1267 1265 1266 C-O 

stretching 

(ester bond) 

~1180- 

1100 

Present 1106 1015 1101 1102 C-O-C 

stretching 

(ester 

linkage) 

~1050- 

1015 

Present 1018 1015 1081 1017 C-O 

stretching 

(ester bond) 

~727-725 Present 725 727 727 727 CH bending 

 

 

Key Observations 

 

1. Presence of PHB-Specific Peaks: 

 

o The C=O ester carbonyl peak (~1724-1714 cm⁻¹), a key marker for PHB, is 

observed in all isolates. 

o C-H stretching (2938-2954 cm⁻¹) and C-O stretching (1106-1101 cm⁻¹) confirm 

the polymeric nature of PHB in all spectra. 

2. Peak Shifts and Intensity Variations: 

 

o Klebsiella pneumoniae MK2023 shows a slight shift in C=O (1714 cm⁻¹), which 

could indicate polymer modifications or differences in PHB crystallinity. 
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o Escherichia fergusonii MK and Pseudomonas fluorescens MTCC 1749 display 

stronger C-H and C=O stretching peaks, indicating a higher concentration or 

better polymerization of PHB. 

3. Differences from Standard PHB: 

 

o All isolates exhibit characteristic PHB peaks, but the shifts and intensity 

variations suggest strain-specific differences in PHB composition or potential 

copolymer formation (e.g., PHB-co-PHV). 

 

 

6.10.4 Nuclear Magnetic Resonance (NMR) 

 

6.10.4.1 Sample: Klebsiella sp. MK3 

 

 
Figure 6.39 (A): 1H-NMR spectrum of the PHB extracted using chloroform 
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Figure 6.39 (B): 13C-NMR spectrum of the PHB extracted using chloroform 

 

6.10.4.2 Sample: Klebsiella pneumoniae MK2023 
 

 

 

 

 
Figure 6.40 (A): 1H-NMR spectrum of the PHB extracted using chloroform 
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Figure 6.41: 13C-NMR spectrum of the PHB extracted using chloroform 

 

 

 

 

6.10.4.3 Sample: Escherichia fergusonii MK 
 

 

 
Figure 6.42: 1H-NMR spectrum of the PHB extracted using chloroform 
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Figure 6.43: 13C-NMR spectrum of the PHB extracted using chloroform 

 

6.10.4.4 Sample: Pseudomonas fluorescens MTCC 1749 
 

 

 
Figure 6.44: 1H-NMR spectrum of the PHB extracted using chloroform 
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Figure 6.45: 13C-NMR spectrum of the PHB extracted using chloroform 

 

The NMR spectra results for PHB (polyhydroxybutyrate) extracted from Klebsiella 

pneumoniae strain DSM 30104 (MK2023), Klebsiella OR362761, Escherichia fergusonii MK, 

and Pseudomonas fluorescens reveal characteristic peaks that confirm the presence of PHB. In 

the proton NMR (1H-NMR) spectra, the most significant peaks are observed in the regions 

associated with the polymer backbone of PHB. A multiple at around 5.2 ppm corresponds to 

the methine proton (-CH), which is linked to the ester group in PHB. This peak is a key 

indicator of the polymer structure. Peaks in the region of 1.2-1.3 ppm represent the methyl 

groups (-CH3) of the polymer side chains, and a doublet at around 2.5 ppm represents the 

methylene protons (-CH2) connected to the carbonyl group. 

In the carbon-13 NMR (13C-NMR) spectra, peaks around 169-173 ppm correspond to the ester 

carbonyl carbon (-C=O), which is a defining feature of the PHB structure. Peaks at 67-69 ppm 

are associated with the methylene carbon adjacent to the ester group (-CH2), while peaks at 

20-22 ppm represent the methyl groups as shown in figure 6.39-6.42. These consistent 

chemical shifts across all isolates provide strong evidence of successful PHB extraction and 

purification. 
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The spectra clearly indicate that all the bacterial isolates—Klebsiella pneumoniae strain DSM 

30104 (MK2023), Klebsiella OR362761, Escherichia fergusonii MK, and Pseudomonas 

fluorescens—are capable of producing PHB with similar structural characteristics. The slight 

variations in peak intensities and chemical shifts reflect the polymer yield differences but not 

the core PHB structure. These findings align with previous studies that have established NMR 

as a reliable method for PHB characterization (Verlinden et al., 2007; Sudesh et al., 2000). 

6.10.4.5 For PHB pellets 
 

 

 
Figure 6.46: 1H-NMR spectrum of the PHB extracted using chloroform 
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Figure 6.47 13C-NMR spectrum of the PHB extracted using chloroform 

 

For the proton spectra (¹H-NMR) of the extracted PHB samples, the peaks around 5.2 ppm 

correspond to the methine group (-CH) of the PHB monomer unit, while the peaks between 2.4 

and 1.2 ppm can be attributed to the methylene (-CH₂) and methyl (-CH₃) groups, respectively. 

These characteristic peaks are indicative of the presence of PHB in the extracted samples. 

Similarly, the carbon spectra (¹³C-NMR) show peaks around 169-170 ppm (carbonyl carbon), 

67-68 ppm (methine carbon), and 39-40 ppm (methylene carbon), all of which correspond to 

the PHB structure. These peaks are consistent across all isolates, confirming that PHB was 

successfully synthesized and extracted as shown in figure 6.46-6.47. 

Comparing the NMR results from the extracted PHB with those of the pure PHB pellets, we 

see that the major peaks are well-aligned in both the proton and carbon spectra, suggesting that 

the extracted PHB is chemically similar to the standard. However, minor shifts in chemical 

shifts or peak intensities could be attributed to the slight impurities present in the extracted 

samples or the processing method, which may not be as refined as the commercial pure PHB 

production. 
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These NMR spectra confirm that the PHB obtained from bacterial isolates is structurally 

comparable to the commercially available pure PHB, validating the microbial process used for 

PHB production. The findings are consistent with those reported by Khanna and Srivastava 

(2005) and Chen (2010), which confirm the efficacy of bacterial fermentation in PHB 

production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.10.5 GC-MS 

 

6.10.5.1 Sample: Klebsiella sp. MK3 

 



161  

 

 

Figure 6.48: Chromatogram and peak report of Klebsiella sp. MK3 

 

 

 

 

6.10.5.2 Sample: Klebsiella pneumoniae MK2023 



162  

 

 

Figure 6.49: Chromatogram and peak report of Klebsiella pneumoniae strain DSM 30104 (MK2023) 

 

 

 

 

 

 

6.10.5.3 Sample: Escherichia fergusonii MK 
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Figure 6.50: Chromatogram and peak report of Escherichia fergusonii MK 

 

Sample 6.10.5.4 Pseudomonas fluorescens MTCC 1749 



164  

 

 

Figure 6.51 Chromatogram and peak report of Pseudomonas fluorescens MTCC 1749 

 

The Gas Chromatography-Mass Spectrometry (GC-MS) results for the four bacterial isolates— 

Klebsiella sp. strain Mk3, Klebsiella pneumoniae strain DSM 30104 (MK2023) , Escherichia 

fergusonii MK, and Pseudomonas fluorescens MTCC 1749—show evidence of 

polyhydroxybutyrate (PHB) production. The peaks and retention times (R.Time) correspond 

to various compounds related to PHB. Notable peaks such as Hexadecanoic acid, 2,4-Di-tert- 

butylphenol, and Methyl tetradecanoate found across the samples support the identification of 

PHB. 
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For Klebsiella sp. strain M3, significant peaks at 18.828 min and 24.654 min represent 

Hexadecanoic acid and Methyl tetradecanoate, both recognized as PHB-related compounds 

(Singh et al., 2017). Similar peaks for Hexadecanoic acid and Methyl tetradecanoate are present 

in Klebsiella OR362761, further indicating PHB synthesis (Feng et al., 2018). Escherichia 

fergusonii MK shows the presence of 2,4-Di-tert-butylphenol and Hexadecanoic acid, which 

are critical indicators of PHB (Reddy et al., 2016). Pseudomonas fluorescens also shows strong 

peaks for 2,4-Di-tert-butylphenol, confirming PHB production (Mumtaz et al., 2019) as shown 

in figure 6.48-6.51. 

These results are consistent with previous research on bacterial PHB production, with retention 

times and corresponding compound identifications matching established profiles for PHB 

biosynthesis pathways. 

6.10.6 Biophysical properties of PHA 

 

The tensile strength of polyhydroxybutyrate (PHB) has been reported in the range of 30–40 

MPa, with an average value of approximately 36 MPa (Reddy et al., 2003). This value is 

significantly higher than that of low-density polyethylene (LDPE), which typically falls 

between 8–17 MPa, and is comparable to high-density polyethylene (HDPE), which ranges 

from 20–37 MPa (Holmes, 1985). The high tensile strength of PHB can be attributed to its high 

degree of crystallinity (50–80%), which enhances mechanical properties but also leads to 

increased brittleness (Sudesh et al., 2000). Compared to polyethylene, PHB forms a more rigid 

and less flexible structure, limiting its stretchability but making it suitable for applications 

requiring structural integrity, such as biodegradable packaging and medical implants (Chen & 

Patel, 2012). This mechanical strength, combined with its biodegradability, makes PHB a 

promising eco-friendly alternative to conventional petroleum-based plastics. 
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Plastics have long been valued for their versatility, durability, and cost-effectiveness, 

but their environmental impact has become an alarming global issue. The persistence of plastics 

in landfills and oceans has caused significant ecological disruption, particularly through 

microplastic accumulation in ecosystems and the potential infiltration into food chains, posing 

risks to human health and biodiversity. With growing environmental concerns, the need for 

sustainable alternatives to conventional plastics is critical. Among the most promising solutions 

is Polyhydroxyalkanoates (PHA), a biodegradable biopolymer produced by various 

microorganisms. PHAs are naturally synthesized by bacteria as intracellular energy reserves 

and offer an eco-friendly alternative to petroleum-based plastics due to their biodegradability 

and comparable material properties. However, the production of PHA on a commercial scale 

has been hampered by high production costs, particularly the expense of carbon sources 

required during microbial fermentation. Addressing this challenge, researchers have sought to 

utilize low-cost and sustainable feedstocks, such as wood waste and wastewater, for PHA 

production. 

In this study, hydrolyzed wood waste was investigated as a sustainable substrate for the 

production of PHA, specifically polyhydroxybutyrate (PHB), a subclass of PHA known for its 

desirable plastic-like properties. Wood waste, an abundant byproduct from forestry and 

industrial processes, is a rich source of cellulose and hemicellulose, which can be hydrolyzed 

into fermentable sugars. These sugars serve as a cost-effective carbon source for microbial 

PHA production, thus significantly reducing the overall cost of bioplastic manufacturing. 

Wastewater, which contains diverse microbial populations, was explored as a source for 

isolating PHA-producing bacteria. Samples were collected from various waste streams in 

Jalandhar, India, including industrial wastewater and sewage, as these environments are likely 

to harbor bacteria capable of utilizing diverse substrates, such as those derived from hydrolyzed 

wood waste, for PHA synthesis. 

To screen for PHA-producing bacteria, Nile Blue staining and Sudan Black staining techniques 

were used to identify bacterial colonies capable of accumulating PHA granules. These 

screening methods are widely recognized for their efficiency in detecting intracellular PHA in 

bacterial cells. Bacterial isolates that tested positive for PHA production were subsequently 

cultured in minimal salt medium (MSM) to evaluate their ability to synthesize PHB. The most 

promising isolates were identified using 16S rRNA sequencing, which revealed that the best 

PHA producers were Klebsiella sp. strain MK3, Klebsiella pneumoniae strain DSM 30104 

(MK2023), and Escherichia fergusonii MK ATCC 35469. 
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These identified isolates were then used for PHB production using hydrolyzed wood waste as 

the sole carbon source. The bacterial fermentation process was carefully monitored to assess 

the efficiency of each isolate in converting wood waste into PHB. The results demonstrated 

that Escherichia fergusonii ATCC 35469 MK was the most efficient PHB producer, achieving 

a total PHB production of approximately 11,900 mg with a yield of 5.9 mg/mL of culture 

medium. In comparison, Klebsiella sp. strain MK3 produced the lowest amount of PHB, with 

a total yield of 8,700 mg and 4.37 mg/mL. Other isolates, including Klebsiella pneumoniae 

strain DSM 30104 (MK2023) and Pseudomonas fluorescens MTCC 1749, showed 

intermediate yields of 10,400 mg and 10,800 mg, respectively, with per mL yields of 5.24 

mg/mL and 5.41 mg/mL. 

To confirm the identity and composition of the produced PHA, several analytical techniques 

were employed. UV-Vis spectroscopy was utilized to detect the characteristic PHB peak at 235 

nm, corresponding to crotonic acid, a degradation product of PHB. Further confirmation was 

obtained through Fourier-transform infrared (FTIR) spectroscopy, which identified key 

functional groups such as carbonyl and ester bonds, characteristic of PHB. Additionally, gas 

chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) 

spectroscopy were performed, which further validated the chemical structure of the biopolymer 

as PHB. These techniques conclusively demonstrated that the PHA produced by the isolates 

was PHB, confirming the successful synthesis of this biodegradable plastic. 

Future research should aim to enhance the efficiency and scalability of PHA production using 

waste-derived substrates. One important direction is the optimization of fermentation 

parameters through statistical models like Response Surface Methodology (RSM), which can 

help maximize PHB yield while minimizing resource input. Additionally, integrating mixed 

microbial cultures could improve substrate conversion efficiency and broaden the range of 

usable feedstocks. Advanced molecular techniques, such as metabolic engineering and 

CRISPR-based genome editing, may be employed to enhance the PHA biosynthetic 

capabilities of promising strains like Escherichia fergusonii ATCC 35469 MK. Investigating 

continuous or semi-continuous fermentation processes would support large-scale production 

while maintaining consistency and reducing production time. Future work should also 

evaluate the economic and environmental feasibility of the process through life cycle 

assessment (LCA). Exploring a wider range of lignocellulosic and agro-industrial wastes 

could further lower costs and promote waste valorization. Moreover, the blending of PHB 

with other biodegradable polymers could be explored to improve material properties for use 
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in diverse applications such as food packaging, agriculture, and medical devices. Overall, this 

study lays the groundwork for environmentally sustainable and economically viable 

bioplastic production, and future advancements could contribute significantly to reducing 

dependence on petroleum-based plastics. 

In summary, this study highlights the successful utilization of hydrolyzed wood waste as a cost- 

effective and sustainable substrate for PHA production. The bacterial isolates identified from 

wastewater streams in Jalandhar, particularly Escherichia fergusonii ATCC 35469 MK, 

demonstrated significant potential for large-scale PHB production. Among the tested isolates, 

E. fergusonii outperformed the others in terms of both total PHB yield and yield per mL of 

culture medium, making it the most promising candidate for industrial-scale bioplastic 

production. The use of hydrolyzed wood waste, combined with efficient PHA-producing 

bacteria, offers a promising route toward reducing the costs associated with bioplastic 

manufacturing while addressing the pressing environmental issues posed by conventional 

plastics. This approach not only provides a viable alternative to traditional plastics but also 

contributes to waste management by valorizing wood waste, making it a dual-purpose solution 

to two major environmental challenges: plastic pollution and wood waste disposal. 
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