DESIGN AND DEVELOPMENT OF SECURE
SCHEDULING TECHNIQUE FOR CONTAINERS IN CLOUD
ENVIRONMENT

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

in

Computer Applications

By

Kanika Sharma

Registration Number: 41800530

Supervised By

Dr. Parul Khurana (12237)
School of Computer Applications

Lovely Professional University

. IEOVELY
) [PJROFESSIONAL
7 WINIVERSITY

Trﬂm'/[armiry Education Tram'formiry India

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB
2025



DECLARATION

I, hereby declared that the presented work in the thesis entitled Design and development of
secure scheduling technique for Containers in fulfilment of degree of Doctor of Philosophy
(Ph. D.) is outcome of research work carried out by me under the supervision of Dr. Parul
Khurana, working as Associate Professor, in the School of Computer applications, Lovely
Professional University, Punjab, India. In keeping'with the general practice of reporting
scientific observations, due acknowledgements have been made whenever work described here
has been based on findings of another investigator. This work has not been submitted in part
or full to any other University or Institute for the award of any degree.

P
(Signature of Scholar)
Name of the scholar: Kanika Sharma
Registration No.:41800530
Department/school: School Of Computer Application

Lovely Professional University,

Punjab, India



CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled “DESIGN AND
DEVELOPMENT OF SECURE SCHEDULING TECHNIQUE FOR CONTAINERS IN
CLOUD ENVIRONMENT” submitted in fulfillment of the requirement for the award of
degree of Doctor of Philosophy (Ph.D.) in the Computer Applications, is a research work
carried out by Kanika Sharma, 418005 30, is bonafide record of his/her original work carried

out under my supervision and that no part of thesis has been submitted for any other degree,
diploma or equivalent course.

Dt
Ve
\ o7 \*},Llp]
(Signature of Supervisor)

Name of supervisor: Dr. Parul Khurana
Designation: Associate Professor
Department/school: School of Computer Applications

University: Lovely Professional University



il

“The aim of life is inquiry into the Truth ...”

— Bhagavata Purana

~ dedicated to my family ~



ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to all those who have
supported and guided me throughout the course of my thesis.First and foremost, I
extend my deepest thanks to my supervisor, Dr.Parul Khurana, for his insightful
guidance, consistent encouragement, and invaluable support throughout the research
process.] am also truly grateful to my former guides, Dr.Rajni and Dr. Ashok Kumar,
for their early guidance and constructive feedback, which laid a strong foundation for

my research.

I would like to sincerely acknowledge the contributions and support of my col-
leagues, Dr. Amar Sir and Dr. Avinash Ma’am, whose collaboration and encourage-
ment have been of great value during this endeavour.Special thanks to Dr. Balraj
Kumar, Head of Department, for his constant support and for providing a conducive

academic environment.

I am forever indebted to my parents, Mrs. Adarsh Sharma and Sh. Brij Mohan
Sharma, for their endless love, support, and blessings. Their belief in me has been a
pillar of strength throughout my life.I would like to thank my dear daughter Amayra,
your laughter and patience reminded me of the joy beyond academia and my hus-
band Mr.Chandan Sood, I am truly grateful for your patience, understanding, and
unwavering support, which have helped me remain focused and resilient.I also wish
to thank my sister Ms. Priyanka Sharma and her family, as well as all my friends, for

their encouragement and emotional support during this journey.

I bow in reverence and express my heartfelt gratitude to Chintpurni Mata Ji,
whose divine blessings, strength, and grace have been my guiding light throughout
this journey. Finally, I thank the Lord Krishna for all I have been given and gifted
with.

Date: September 18, 2025 Kanika Sharma

v



Abbreviations

Abbreviations Description

ACO Ant Colony Optimization

ACSAR Anti Colocation and Secure Anti Affinity Rules
ADA Adaptive Decision Algorithm

AWD Amazon Web Device

AWS Amazon Web Services

Al Artificial Intelligence

API Application Programming Interface
BCO Bee Colony Optimization

CPU Central Processing Unit

CSO Chicken Swarm Optimization

DOS Denial Of Service

ECS Elastic Container Service

GA Genetic Algorithm

GDPR General Data Protection Regulation
GPU Graphics Processing Unit

HIPAA Health Insurance Portability and Accountability Act
IaaS Infrastructure as a Service

ILP Integer Linear Programming

IWD Intelligent Water Drop

MILP Mixed Integer Linear Programming
ML Machine Learning

v



vi

MOCP Multi-Objective Container Placement

NIST National Institute of Standards and Technology
NSGA Non-dominated Sorting Genetic Algorithm

OS Operating System

PSO Particle Swarm Optimization

PaaS Platform as a Service

QoS Quality of Service

RAM Random Access Memory

SaaS Software as a Service

SGX Software Guard Extensions

TEEs Trusted Execution Environments

TMPSO Time-aware Multi-objective Particle Swarm Optimization
TPM Trusted Platform Module

UVPOC Utility Value-based Placement of Containers
VM Virtual Machine

VMM Virtual Machine Monitor



ABSTRACT

As cloud computing and microservices architecture change quickly, container-
ization has become the most important part of deploying applications that can grow,
move, and run well. The growing adoption of containerization technologies such as
Docker and Kubernetes has transformed cloud computing by enabling lightweight,
scalable, and portable application deployment. The fact that containerized envi-
ronments are always changing, on the other hand, makes them more vulnerable to
security threats and harder to optimize for performance. Kubernetes and Docker
Swarm are examples of traditional orchestration platforms that are very scalable and
fault-tolerant. However, they are not good at proactively protecting against security
threats like Denial-of-Service (DoS) attacks, fake container injection, and side-channel
leaks. These threats make it harder for systems to be available, keep data private,

and keep operations going, especially in cloud infrastructures with multiple tenants.

A detailed literature review is conducted to examine the evolution of container
scheduling strategies from 2015 to 2025, highlighting recent advancements in meta-
heuristic and Al-based techniques, energy-aware algorithms, and security-focused
methods. The main security risks in containerised environments are also examined,

including orchestration attacks, insecure container images, and kernel-level flaws.

This thesis introduces SecuFuzzDrop, a new hybrid framework that combines
secure container orchestration with dynamic threat detection and mitigation capa-
bilities in a smart way to get around these problems. The proposed system uses a
multi-layered architecture that combines fuzzy logic-based risk assessment, heuris-
tic optimization, real-time system monitoring, and machine learning-based intrusion

response to make container scheduling and runtime security enforcement strong.

The Fuzzy Logic Engine at the heart of SecuFuzzDrop looks at each container-
node pair and gives them scores based on how much CPU and memory they use,

how long it takes for them to respond, and how dangerous the environment is. This

vil
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risk-aware scoring system makes sure that containers are put on the nodes that are
the safest and use the least resources. An Intelligent Water Drop (IWD) Algorithm
is also used to choose the best path for container scheduling. IWD smartly takes into
account system limitations like anti-affinity and anti-collocation policies. This makes
sure that workloads are spread out and lowers the chance of resource contention or

attack vector propagation.

The system also has a telemetry simulation module based on cAdvisor that cre-
ates data about how resources are being used to help with both scheduling and threat
detection. A comparative evaluation engine uses the collected metrics to compare
SecuFuzzDrop to ten recent scheduling models. We look at metrics like CPU usage,
memory usage, scheduling latency, makespan, and a combined security score. Results
show time and time again that SecuFuzzDrop is better than other models. It uses up
to 30% less CPU, has 25% less latency, and has a security score that is more than
20% higher.

The whole framework is deployed through a dynamic and interactive Streamlit-
based GUI that lets users set the number of containers, start scheduling, and compare
performance in real time with graphs and tables. This makes it easier to experiment
and use. This design that puts the user first makes the framework not only a research-

grade innovation but also a good candidate for use in enterprise DevSecOps settings.

To validate the effectiveness of the proposed model, simulations are implemented
in Python, leveraging object-oriented programming, fuzzy logic modules (scikit-fuzzy),
and custom-built scheduling and network simulation functions. The simulation mim-
ics a containerized cloud environment with varied workload intensities and security
constraints. Experimental results show that SecuFuzzDrop has less overhead, better
detection accuracy, and better scheduling efficiency than traditional methods. Secu-
FuzzDrop is a big step forward in making cloud-native environments more secure and
able to run containers on their own. Its modular, adaptive, and explainable design

makes it possible.

To sum up, SecuFuzzDrop is a big step forward for secure container orchestration
as a whole. It combines computational intelligence, real-time monitoring, and self-
enforcing policies to create a complete platform that can handle modern container

security threats while still being efficient.

This thesis makes a big contribution to the field by showing how intelligen-

t orchestration and embedded runtime security can change the way containers are
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scheduled. It shows that you can get good performance and security without giving
up the system’s ability to be modular or scalable. Also, each core module can be
changed to fit new problems like adversarial workloads, multi-cluster environments,

and federated security policies.



CONTENTS

DECLARATION

CERTIFICATE

ACKNOWLEDGEMENTS

ABBREVIATIONS

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF TABLES

1 Introduction

1.1

1.2

1.3

1.4
1.5
1.6

Overview of Cloud Computing . . . . . . . . .. .. .. ... ... ...
1.1.1  Virtualization . . . . . . . . . . ...
1.1.2  Virtual Machines . . . . . . . . . . ... ... ...
Introduction to Container . . . . . . . ... .. .. ... .. .. ...
1.2.1 Importance of Container Scheduling . . . . . .. ... ... ...
1.2.2  Container Scheduling Technique Classification . . . . . . . . ..
1.2.3 Container Orchestration Tools . . . . . . . ... ... ... ...
Container Security Challenge . . . . . . . . .. ... ... ... ....
1.3.1 Software-Based Security Mechanisms . . . . . .. .. ... ...
1.3.2 Hardware-Based Security Mechanisms . . . . .. .. ... ...
1.3.3 Comparative Summary . . . . . . . . . .. .. ...
Research Objective . . . . . . . . . . . . ... ...
Scope of Study . . . . ...
Organization of Thesis . . . . . . . .. ... ... ... ... .. ...

ii

iii

iv

vi

xiii

xiv



CONTENTS xi

1.7 Summary . . . ... 16

2 Review of literature 17
2.1 Background . . . ... .. 17

2.2 Scheduling in Container-based Cloud Environments . . . . . . .. . .. 20
2.2.1 Traditional Scheduling Techniques . . . . . . . . .. ... .. .. 20

2.2.2  Advanced Scheduling Techniques . . . . . ... ... ... ... 20

2.3 Related Work . . . . . . . ... 27
2.4 Security Challenges in Containerized Cloud Environments . . . . . . . 38
2.5 Research Gap . . . . . . . . . . . ... 41
2.6 SUMMATY . . . ..o 44

3 IWD-ACSAR:A Hybrid Approach to Secure Container Orchestra-

tion 46
3.1 Introduction . . . . . . . ... oo 46
3.2 Existing work . . ... ... 49
3.2.1  Ant Colony Optimization (ACO) . . .. ... ... ... .... 51
3.2.2  Chicken Swarm Optimization (CSO) Algorithm . . . .. .. .. 55
3.2.3  Genetic Algorithm (GA) . . . ... ... ... ... ... 58
3.2.4 Bee Colony Optimization (BCO) . ... ... ... ... ... .. 61
3.2.5 Particle Swarm Optimization (PSO) . . ... ... ... .. .. 65

3.3 Proposed Hybrid Approach to Secure Container Orchestration using
Intelligent Water Drop Algorithm with Anti-Collocation and Security

Affinity Rules . . . . . . ..o 68
3.3.1 Background . . . .. ... 68
3.3.2 Intelligent Water Drop Algorithm . . . . . ... ... ... ... 70
3.3.3 Anti-Collocation and Security Affinity Rules . . . . . . .. . .. 73
3.4 Result and Discussion . . . . . .. ... Lo L 74
3.4.1 Performance Evaluation Metrics . . . . . .. .. ... ... ... 74
3.4.2 Discussion . . . . . ... 82
343 Summary ... ... 84
4 SecuFuzzDrop:Secure fuzzy and intelligent water drop based sched-
uler 86
4.1 Introduction . . . . . . . ... 86
4.2 System Architecture Overview . . . . . . .. . .. .. .. ... ... .. 88
4.3 Component-Wise Implementation . . . . . . .. ... ... ... .. .. 91
4.3.1 User Interface Layer (Streamlit) . . . . . .. ... ... ... .. 91
4.3.2 Fuzzy Logic Engine . . . . . . . ... ... oo 91
4.3.3 IWD Optimization Engine . . . . . . ... ... ... ... ... 91
4.3.4 IWD Scheduling Engine . . . . . .. ... ... ... ...... 92

4.3.5 Real-Time Monitoring: cAdvisor Simulator . . . . . . ... . .. 92



CONTENTS

xii

4.3.6 ML-Based Intrusion Response . . . . . .. .. ... ... .... 92

4.4 Comparison and Evaluation Engine . . . . . . .. ... .. ... .... 93
4.5 Experimental Setup . . . . . . ... 93
4.6 Performance Metrics Evaluated . . . . . . . ... ... ... ... ... 94
4.7 Results Summary . . . . .. ... 94
4.8 Discussion . . . . . . ... 95
4.9 SUMMATY . . . . ... 98

5 Conclusion and outlook 99
5.1 Concluding Remarks . . . . . . .. .. ... oL 99
5.2 Contribution Towards Bridging the Research Gap . . . . . . . .. . .. 100
5.3 Future Work . . . . . . . ... 101
REFERENCES 103

PUBLICATIONS AND PATENTS

118



1.1
1.2
1.3
1.4

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

Architecture of Virtual Machine . . . . . . . .. ..o 3
Containerized Application . . . . . . . . . . .. ... L. 5
Container Scheduling . . . . . . .. .. ... oo 6
Security Issues . . . . . . . . ... 10
Scheduling technique classification . . . . . . . ... .. ... ... ... 21
Hybrid scheduling technique using IWD-ACAR . . . . . . ... .. .. 49
Resource Utilization Efficiency . . . . . . . . . ... ... ... ... .. 82
Migration Frequency . . . . . . . .. ... Lo 82
Makespan . . . . . ... 83
Threat Detection Rate . . . . . . . . .. ... .. .. ... ... ..., 83
Security Risk Factor . . . . . . .. ... o 83
Energy Efficiency . . . . . . .. .. 83
Load Balancing Factor . . . . . . . ... ... ... ... ........ 83
System Architeturee Overview . . . . . . . . . .. ... ... ... ... 89
CPU Usage Vs Security Score . . . . . .. . .. .. ... ... ..... 96
Latency Trend over Container Load . . . . . . . .. .. ... ... ... 96
Security Score Distribution . . . . . . . ... ..o 97
Performance Metric Comparison . . . . . . . . . .. ... ... .. ... 97

xiii



1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

LIST OF TABLES

Security approaches for containerized environments categorized by their

focus, technique, and targeted threat. . . . . . . .. ... .. ... ... 13
Mathematical Modelling Techniques . . . . . . . . .. .. ... ... .. 22
Heuristics Algorithms . . . . . . . . .. ... .. 23
Scheduling Technique Classification . . . . . . . .. .. ... ... ... 24
Machine Learning Techniques . . . . . . . . . ... .. ... ... ... 26
Summary of Related Literature on Container Scheduling Techniques . . 28
Parameter analysis of Container scheduling approaches . . . . . . . .. 39
Summary of Container Security Challenges and Techniques . . . . . . . 42
RUE Results (in percentage) . . . . . . . . ... ... ... ... 75
Makespan Results (in seconds) . . . . . ... .. ... 76
LBF Results . . . . . . . . . . 7
SRS Results . . . . . . . . 78
Energy Efficiency Results (in joules) . . . . ... ... ... ... ... 79
TDR Results (in percentage) . . . . . . . . .. ... ... ... ... 80
Migration Frequency Results . . . . . . . .. .. ... 81
Summary of Dataset Characteristics. . . . . . . . . ... ... ..... 84
Comparison of Optimization Algorithms for Cloud Scheduling . . . . . 84
Performance Comparison of SecuFuzzDrop vs Existing Models . . . . . 95

Xiv



CHAPTER 1

Introduction

This chapter provides the overview of cloud computing, virtualization and con-
tainerization,Container orchestration tools, scheduling of containers and scheduling
technique classifications.Moreover this chapter also discusses about the various se-
curity issues in Container Scheduling. Also, this topic covers describing the aim &
objectives of the study, and outline of significant contributions from the investigation

and an organization of the thesis.

1.1 Overview of Cloud Computing

Cloud computing has proved to be one of the most transformative paradigms in
modern computing. It has now changed the trend of how data was stored, processed,
and accessed. In simple terms, cloud computing means moving away from the hard
computing infrastructures to remote, scalable, and Internet-based resources. It refers
simply to providing computer services-from storage, servers, databases, networking,

software, and analytics-over the Internet, or what is commonly called ”the cloud” Such
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a shift allows for the on-demand access of shared resources and brings down costs to a

minimum. This shift has promoted flexibility toward managing IT infrastructure [4].

Cloud computing, as defined by the National Institute of Standards and Tech-
nology (NIST) as a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.

1.1.1 Virtualization

Virtualization in cloud computing is the technology that creates a virtual version
of physical resources through software, such as a server, storage, and network. It
facilitates an abstraction layer so different virtual machines running within one piece

of hardware can function independently of each other [5].

Virtualization pools and shares the physical resources, hence enabling efficient
utilization of the resources by letting multiple users have computing power without
actually dedicating hardware to them. It is one of the basic enablers of cloud com-
puting, offering flexibility, scalability, and optimization of resources in different cloud

services-for example, laaS, PaaS, and SaaS [6].

In the context of computing, virtualization typically involves abstracting the
physical hardware resources of a computer (such as CPU, memory, storage, and net-
work) and presenting them in a way that makes them appear as separate, independent
entities. This abstraction is achieved through specialized software called a hypervisor
or Virtual Machine Monitor (VMM), which creates and manages Virtual Machines

(VMs) or virtualized environments [1] .

1.1.2 Virtual Machines

Virtual Machine (VM) scheduling refers to the process of distributing and con-

trolling resources like as CPU, memory, and storage among several VMs that are
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operating on a single physical computer. As a result, all VMs will operate smoothly
and with effective resource use. Virtual Machine scheduling is significantly influenced
by the hypervisor, a thin layer of software that resides between the VMs and the real
hardware. Several scheduling techniques like Best Fit, Round robin scheduling, etc.
are used to manage the allocation of physical CPU cores to virtual CPUs (vCPUs)
within various VMs. Although Virtual Machines offer advantages like resource isola-
tion, flexibility, and scalability still, there are some drawbacks as well. Each VM runs
its operating system, consuming additional resources like CPU, memory, and storage.
Moreover, sharing the physical hardware among multiple VMs introduces potential
security risks. This overhead can lead to decreased resource utilization and higher

hardware costs [7][8].

Host OS

FI1GURE 1.1: Architecture of Virtual Machine

Figure 1.1 [1] represents the architecture of the virtual machines. It includes
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various components like hypervisor, host operating system, guest operating system
various binary and library files. The hypervisor permits multiple VMs to run on a
single machine. Each VM includes a full replica of a running system, the application,
essential binaries and libraries. The benefits of virtualization include optimal use of
hardware resources, better and affordable backup and disaster recovery, less power

and cooling cost, better security and resource management [9].

1.2 Introduction to Container

Container stores packaged, independently functioning, ready-to-deploy compo-
nents of an applications including libraries and dependencies needed to run the pro-
grams . A piece of software known as a container engine handles user requests, in-
cluding command-line arguments, fetches images, and executes the container from the
viewpoint of the end user. It is in charge of containerizing all the dependencies and

libraries needed for the application. It offers hardware abstraction to clients[10].

Containerization is a streamlined type of virtualization that packages an ap-
plication and its dependencies into a single executable unit known as a container.
Containers guarantee that applications operate smoothly in various computing set-
tings, tackling challenges related to compatibility and portability. Technologies such
as Docker and orchestration tools like Kubernetes have evolved into essential ele-
ments of contemporary cloud-native architectures. In contrast to conventional virtual
machines (VMs), containers utilize the host operating system’s kernel, resulting in
greater efficiency regarding resource utilization. This effectiveness has resulted in an
increase in the use of containers within cloud settings, where optimizing resource use

is a major priority[11].

Even with these benefits, containerized environments still face difficulties. Ef-
ficient container scheduling is essential for ensuring that applications receive resources
effectively while sustaining high performance and dependability. Conventional schedul-

ing algorithms frequently emphasize performance indicators like load balancing and
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resource use, while insufficiently addressing security concerns, which are becoming

more crucial in the current threat environment[12].

Container

b5

Host OS5

FI1GURE 1.2: Containerized Application

Figure 1.2 [1] represents the architecture of the containerized application. It
includes the server, shared host operating system and shared kernel. It has one layer
of container engine, a container engine is a piece of software that accepts user requests,
including command line options, pulls images, and from the end user’s perspective
runs the container. A container is a standard software unit that connects the code

and dependencies so that applications can be easily and quickly deployed [13].

1.2.1 Importance of Container Scheduling

Container scheduling refers to a process that concerns automated deployment,

scaling, and management of containers in a distributed computing cluster. That
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means this is about where and when to instantiate containers with regard to resource
availability, hardware limitations, or workload requirements. In other words, container
scheduling refers specifically to how jobs are scheduled across the available nodes
within a cluster for better resource utilization and fault tolerance, working towards

fulfilling service level objectives [14].

The need for container scheduling arose with the transition to microservices
from traditional monolithic application development, where greater flexibility and
scalability are naturally required. Historically, VMs were used as a means of applica-
tion deployment, but containers provided an extremely resource-efficient alternative,

being lightweight and faster in nature [15].

Tools like Docker made the packaging and distribution of an application easy,
hence one could develop applications which could seamlessly shift between environ-
ments. With increased usage of containers, it became highly unworkable to manually
manage hundreds or thousands of containers. Thus, automated container orchestra-
tion platforms started to arrive that could manage such clusters of containers with
efficiency. Currently, some popular solutions in this regard include Kubernetes, A-
pache Mesos, and Docker Swarm [16].

Fieay
'7 ) User
y
;
:

7\ Request

Node 1 Node 2 Node n

e i Container 1
. - - ~~
Application 1 [---» HOST 08 L..I'.—I L:!'TI L..I'.—I

Dependecies

Container Orchestration Tool

Container 2

Application 2 [----| HOSTOS | f------- > @ # O
L docker >

Dependecies

Container n =
Container Instance

Applicationn |-~ Y HOST 08

Dependecies

FIGURE 1.3: Container Scheduling

Figure 1.3 [2] describes the Container scheduling process.User application is
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wrapped with the necessary dependencies which are required to execute the Con-
tainerized process. After that Containerized application is sent to Container orches-
tration tool, which is responsible for scheduling the containerized application on the

appropriate node.

1.2.2 Container Scheduling Technique Classification

e Mathematical modelling techniques: It generally solves the problem by con-
structing mathematical equation with a set of limited constraints. After that
it uses the standardized technique to find the optimal solution for the given
problem. But these techniques are suited for low size problems. Integer Lin-
ear Programming (ILP) based container scheduling is an optimization approach
that formulates the scheduling problem as an ILP model. ILP is a mathematical
optimization technique used to find the best solution to a problem with linear
constraints and integer decision variables. In the context of container schedul-
ing, the goal is to find an optimal assignment of containers to available resources
while considering various constraints such as resource capacities, dependencies,

and task priorities.

e Heuristics: Container heuristic scheduling algorithms are a class of algorithm-
s that use heuristics or rule-based approaches to efficiently allocate resources
and schedule containerized tasks within a computing environment. These al-
gorithms aim to find near-optimal solutions without guaranteeing global opti-
mality. Heuristic algorithms gain there popularity to find approximate solution.
These algorithms generally have low complexity and provide better solution for

the problem, within low response time.

e Meta-heuristics: The main purpose of meta-heuristic algorithms is to find the
optimal usages of nodes. Meta-heuristic algorithms came from the popular class
of population based optimal algorithms. Basically it states that, each node is
allotted with single task, and this allotting process is determined by a single cri-

terion function. This assignment of several tasks to a single node is possible only
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by enlarging the problem to include fictitious tasks or duplicate node. So, there
is no way to restrict these multiple nodes. These problem can be accurately
represented by the ”generalized assignment problem”, which states that assign-
ment module includes assigning software development tasks to programmers and

assigning jobs to computers in computer networks.

e Machine Learning: It is one of the emerging techniques to deal with the schedul-
ing of Containers. Machine learning-based container scheduling algorithms use
machine learning techniques to make intelligent scheduling decisions based on
historical data, real-time information, and patterns in container workloads.
These algorithms aim to optimize resource allocation, improve task performance,
and adapt to dynamic environments. Although, these techniques are not much

explored for Container scheduling [17].

1.2.3 Container Orchestration Tools

Container orchestration is a way to manage when each Container runs on differ-
ent nodes. Container orchestrator is layer that schedules Containers across different
platforms. Container orchestration tools assists to deployed the Containerized appli-
cation on multiple cluster [18]. Some of the popular Container Orchestration tools

are mentioned below:

e Kubernetes: It is an open source platform powered by Google for third party
Container orchestration tool. It is advanced version of Google’s internal prod-
uct ‘BORG ‘and was formally launched by the company in 2014. It manages
scheduling, deploying and maintaining the Containers globally over the host

clusters [19][20]

e Docker Swarm: It holds Containers that adhere to a few established filters and
strategies, such as spread strategy and bin backing. The standard container or-
chestration tool provided with the Docker runtime environment is called Swarm.
Every cluster is referred to as a Swarm, and every Docker engine instance is re-

ferred to as a node. Each service is referred to as a task, and the docker swarm
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is in charge of managing these services. Services execute the commands [21]

22].

e Amazon Elastic Container Service (ECS): To meet the requirements of clien-
t workload, Amazon ECS offers the widest and deepest selection of instances.
The best balance of computation, memory, storage, and networking for clien-
t workloads is available in general purpose, compute-, memory-, storage-, and
networking-optimized, as well as accelerated computing instance types. These
instance types are powered by processors from Intel, AMD, NVIDIA, and AWS,
which additionally improve performance and cut costs. Performance is signifi-
cantly optimized for applications that need disc or network I/O. Additionally,
several instance types include bare metal instances, which give your applica-
tions direct access to the server’s processor and memory when running in non-

virtualized situations or when you want to use your own hypervisor .

e Apache Mesos: It is a an open source Container cluster management tool which
provides the CPU,memory and disk abstraction. Data centres and the cloud

environment’s resources are scheduled and managed by it.

1.3 Container Security Challenge

Container security is becoming paramount with increasing adoption of con-
tainers in cloud-native applications and DevOps settings. Containers provide ad-
vantages like elasticity, portability, and swift deployment. However, due to their
different architecture—such as a shared kernel and less isolation compared to virtual

machines—containers bring their own security concerns [3].

Container security challenges can be classified as software-based and hardware-
based. The container scheduling security vulnerabilities are depicted in Figure 1.4 [3].
Software-based solutions, primarily based on Linux security modules and Linux kernel

features, are used in the first three use cases. Hardware-based solutions, including
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Trusted Platform Modules (TPMs) and trusted execution support (like Intel SGX),

are necessary for the final use case [23].

Container Security Issue

Software Based Hardware based

Protecting Protecting containers
a container from from a malicious or
applications inside it semi-honest

Protecting
five host from
containers

Imter-container
protection

FIGURE 1.4: Security Issues

To address these risks, container security mechanisms are typically categorized

into two main types:
e Software-Based Security

e Hardware-Based Security
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1.3.1 Software-Based Security Mechanisms

Software-based approaches use tools, configurations, and policies to secure con-

tainers and the host system hosting them [3].

Protecting a Container from Applications Inside It
Issue: Applications running inside containers may be vulnerable or malicious.

Risk: An insecure application can perform unauthorized actions within the

container or exploit container resources.

Techniques:

AppArmor / SELinux: Use mandatory access control to limit application

behavior.

Seccomp: Restrict access to kernel system calls.

Capabilities Dropping: Grant only necessary privileges to containers.

Read-Only Filesystems: Prevent modifications to container files.

Protecting the Host from Containers

Issue: If a container is compromised, it may pose a threat to the host system.
Risk: Potential privilege escalation or host file system access.

Techniques:

Namespaces: Isolate container processes and resources.

Control Groups (cgroups): Limit container resource usage.

Non-Root Containers: Prevent root privileges inside containers.

Minimal Host OS: Reduce attack surface using stripped-down images.
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Inter-Container Protection

Issue: Containers running on the same host may interfere with one another.
Risk: A compromised container could attack or spy on neighboring containers.
Techniques:

e Service Mesh (e.g., Istio, Linkerd): Secure inter-container communications.

e Micro-segmentation: Apply strict network policies.

e Custom Docker Networks: Isolate services on different networks.

e API Gateway Security: Authenticate and control API calls.

1.3.2 Hardware-Based Security Mechanisms

Hardware-based approaches rely on physical hardware features to isolate and

protect containerized workloads, particularly in untrusted environments[3].

Protecting Containers from a Malicious or Semi-Honest Host
Issue: The host operating system or hypervisor may not be fully trusted.

Risk: Sensitive data and container processes may be exposed to malicious ac-

tors.
Techniques:
e Trusted Execution Environments (TEEs):
— Intel SGX: Execute code in isolated enclaves.
— AMD SEV: Encrypt container memory from host-level access.
e TPM (Trusted Platform Module): Securely store cryptographic keys.

e Confidential Containers: Combine Kubernetes with hardware-based TEEs.
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1.3.3 Comparative Summary

TABLE 1.1: Security approaches for containerized environments categorized by their
focus, technique, and targeted threat.

Approach

Focus Area

Techniques Used

Target Threat

Software-Based

Protecting container
from inside applications

AppArmor, SELinux,
Seccomp, Capabilities

Application-level
threats

Software-Based Protecting host from | Namespaces, cgroups, | Container breakout
container non-root users

Software-Based Inter-container  protec- | Service meshes, net- | Lateral movement
tion work policies

Hardware-Based Protecting container | Intel SGX, AMD | Host-level threats
from malicious host SEV, TPM

Table 1.1 outlines some important security measures that are taken in the con-

text of a containerised environment.This emphasized that software- and hardware-

based implementations handle different layers of the container stack. Software-based

solutions gravitate towards isolation and access control, while hardware-based schemes

strive to establish trust even during host compromise. We map each approach to its

main focus area and to the kind of threat it addresses.

1.4 Research Objective

The primary objective of this study is formulated as follows, Design and de-

velopment of secure Container scheduling in cloud environment. Following specific

objectives have been formulated in order to achieve the primary objective,

e To study and analyse the existing scheduling algorithm for containers.

e To propose secure scheduling technique for containers in cloud environment.

e To implement and validate the proposed technique in cloud environment.

e To compare the proposed technique with existing scheduling techniques
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1.5 Scope of Study

The impetus for this study arises from the requirement to develop a container
scheduling method that not only focuses on performance and resource effectiveness
but also emphasizes security. As companies increasingly embrace containerized ap-
plications for their scalability and deployment simplicity, it is essential to guarantee
the security of these applications in a multi-tenant cloud setting. An effective con-
tainer scheduling approach can aid in thwarting attacks, reducing vulnerabilities, and

safeguarding data confidentiality and integrity.

Moreover, the increase in cyber threats aimed at cloud environments highlight-
s the necessity for proactive security measures. This research seeks to offer a new
method that combines security with the design of container scheduling algorithms,
addressing the twin issues of performance enhancement and security in cloud con-

tainerization.

This study emphasis on developing a secure method for scheduling containers
tailored for cloud environments. The research focuses on enhancing performance and
integrating security, aiming to tackle issues like resource efficiency, container isolation,
and protection against cyber threats. It investigates the design and development of
an innovative scheduling algorithm, featuring an extensive assessment of its efficiency

in practical cloud situations.

Thesis Contributions

This thesis adds a lot of new ideas to the fields of intelligent scheduling and
secure container orchestration. The main contributions of the research are outlined

as the following important technical and practical improvements:

1. A primary contribution of this thesis is the design and implementation of Secu-
FuzzDrop, a hybrid framework that combines resource-efficient container schedul-

ing with real-time security monitoring and threat mitigation.
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2. The thesis introduces a fuzzy logic-based evaluation model that scores container-
node suitability based on dynamically changing parameters such as CPU usage,

memory utilization, latency, and threat level.

3. This work utilizes the Intelligent Water Drop (IWD) metaheuristic to optimize
container-to-node mapping. In addition to performance metrics, the algorith-
m incorporates anti-affinity and anti-collocation constraints, promoting more

secure and distributed deployments.

4. A significant contribution is the real-time integration of Falco, an open-source

runtime security tool that monitors system call activity in containers.

5. Another key contribution is a benchmarking framework that evaluates Secu-
FuzzDrop against ten recent orchestration models using metrics like latency,
CPU/memory utilization, makespan, and a composite security score. Results

demonstrate the superior efficiency and threat resilience of SecuFuzzDrop.

1.6 Organization of Thesis

After the introduction to the thesis, the rest of the thesis is organized as follows:

Chapter 2: This chapter presents a literature survey concerning container
scheduling techniques in cloud computing. It provides details concerning a literature
review of related work and reviews previous research findings related to the topic

investigated.

Chapter 3: The present chapter deals with the design & development of In-
telligent Water Drop Algorithm with Anti-Collocation and Security Affinity Rules for

the optimal and secure container scheduling.

Chapter 4: This chapter proposed our secure fuzzy and IWD based scheduler
for secure and efficient Container scheduling. This chapter also presents the experimen-
tal setup, implementation, execution, a data collection, and performance evaluation

of the proposed strategies with conventional schemes.
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Chapter 5: This chapter summarizes the findings of the study along with

future research directions.

A thesis contains two supportive information sections: a table of contents and
a bibliography. Also, table of contents includes list of figures, list of tables and list
of contents. Bibliography lists the paper, articles and material referred in the thesis.

Table of contents appears at beginning and bibliography appears at the end of report.

1.7 Summary

The chapter provides an overview related to cloud computing, virtualization,
containerization, Container orchestration, and container scheduling. It introduces the
topic and explains the aim and objectives of the study, after that, it highlights the
substantial contributions from the investigation, and it provides the organization of

the thesis.



CHAPTER 2

Review of literature

This chapter offers a detailed analysis conducted to investigate existing con-
tainer resource allocation techniques in cloud computing. It includes the analysis
of present container scheduling and allocation techniques, container distribution ap-
proaches utilized by container orchestration platforms, as well as analysis of various

security threats in scheduling the Containers and review of previous research findings.

2.1 Background

In the dynamic realm of cloud computing, containerization has surfaced as a
revolutionary technique facilitating swift deployment, scalability, portability, and op-
timal resource utilization. Containers, in contrast to conventional virtual machines
(VMs), provide lightweight, isolated environments that use a shared operating system
(OS) kernel, therefore considerably minimizing overhead. This has resulted in their
extensive usage in cloud-native architectures, especially inside microservices-based

systems [24].

17
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The emergence of container orchestration technologies like Kubernetes, Dock-
er Swarm, and Apache Mesos has enhanced the deployment and administration of
containers in cloud environments. These platforms oversee container lifecycles and
automation functions such as scheduling, scalability, and service discovery. Container
scheduling is essential for allocating workloads among computing resources. An ef-
fective scheduling approach guarantees optimal utilization of CPU, memory, network,
and storage, directly influencing the performance, cost, and scalability of cloud ap-
plications. The increasing complexity and dynamic characteristics of cloud workloads
have revealed numerous deficiencies in current scheduling techniques, particularly re-

garding security [25].

Most traditional container scheduling methods emphasize performance, resource
availability, and cost efficiency, frequently neglecting security aspects. Due to their
shared host OS kernel, containers inherently exhibit diminished isolation relative to
virtual machines, hence amplifying the vulnerability to attacks such as container
breakout, privilege escalation, and side-channel attacks. Furthermore, the dynam-
ic and multi-tenant characteristics of cloud systems provide hazards associated with
trust, data leakage, malicious code execution, and noisy neighbor phenomena. Recent
cybersecurity incidents and compliance mandates, such as the General Data Protec-
tion Regulation (GDPR) and the Health Insurance Portability and Accountability
Act (HIPAA), have heightened the need for security-conscious scheduling in the cloud
26].

There is an increasing demand for sophisticated, secure, and policy-oriented
scheduling methodologies that not only account for conventional factors such as re-
source availability and task priority but also assess node trustworthiness, implement

anti-collocation regulations, and integrate real-time security evaluations[27].

Research in this field is accelerating, as scholars investigate trust models, lightweight
cryptographic methods (e.g., ECC), fuzzy logic, and Al-driven algorithms to devel-

op hybrid scheduling solutions that reconcile security and efficiency. nevertheless, the
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majority of these solutions remain theoretical or confined to simulation settings, miss-
ing integration with practical container orchestration systems. This literature review
seeks to thoroughly analyze the corpus of existing research on: The advancement of
container technologies and their significance in cloud computing. Diverse contain-
er scheduling methodologies, encompassing heuristics, metaheuristics, and machine
learning-based techniques. Security problems inherent to containerized ecosystem-
s. Cutting-edge solutions designed for secure container scheduling. Instruments and
platforms used for simulating or executing these solutions. The primary aim of this
chapter is to pinpoint research deficiencies and prospects that will underpin the cre-
ation of an innovative secure scheduling method specifically designed for containers
in cloud computing settings. This project seeks to enhance cloud-native infrastruc-
tures by combining scheduling efficiency with strong security procedures, resulting in

greater resilience and scalability.

This literature review aims to systematically examine the body of existing research

on:

The evolution of container technologies and their role in cloud computing.

e Various container scheduling strategies, including heuristic, metaheuristic, and

machine learning-based approaches.

Security challenges inherent to containerized environments.

State-of-the-art solutions aimed at secure container scheduling.

Tools and platforms used for simulating or implementing these solutions.
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2.2 Scheduling in Container-based Cloud Environ-

ments

2.2.1 Traditional Scheduling Techniques

Initial container scheduling relied on static or rule-based policies. These tech-
niques were simple but lacked the flexibility and adaptability required in dynamic

cloud environments.

The default Kubernetes scheduler uses a combination of predicates (to filter

nodes) and priorities (to score nodes) for scheduling pods based on resource requests.

Tumanov et al. [28] introduced Borg-like scheduling that emphasizes data local-
ity and fairness constraints, paving the way for more intelligent and resource-efficient

scheduling strategies.

2.2.2 Advanced Scheduling Techniques

There are different scheduler available for scheduling the containers like Ku-
bernetes, Docker Swarm.In a real cluster, when a container allocated, some times,
we want to modify the container scheduling based on the type of the service. For
instance, I/O heavy containers are sent to nodes with SSD attached. Containers with
high computation should scheduled to nodes with heavier CPUS. Containers deployed
the network are to be scheduled on high-bandwidth nodes. There are various schedul-
ing algorithms are used of the process Container. Some of the traditional techniques
used for scheduling containers are based on evolution algorithms, heuristic search, Al
based and optimization algorithms for fulfilling stringent resource and performance

needs [29].

Figure 2.1 provides the detailed categorization of Container scheduling tech-
nique.Firstly it categorizes the Container scheduling techniques into four major cat-

egories like Mathematical modelling techniques, heuristic based , meta-heuristic and
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FIGURE 2.1: Scheduling technique classification .

machine learning based. Further it provides the information on the techniques devel-

oped by different authors under each category.

e Mathematical modelling techniques: It generally solves the problem by con-
structing mathematical equation with a set of limited constraints. After that
it uses the standardized technique to find the optimal solution for the given
problem. But these techniques are suited for low size problems. Integer Lin-

ear Programming (ILP) based container scheduling is an optimization approach
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that formulates the scheduling problem as an ILP model. ILP is a mathematical

optimization technique used to find the best solution to a problem with linear

constraints and integer decision variables. In the context of container schedul-

ing, the goal is to find an optimal assignment of containers to available resources

while considering various constraints such as resource capacities, dependencies,

and task priorities [17].

Table 2.1 refers the various mathematical modelling techniques developed by

different authors. This table provide the detailed information including year of

proposed work, name of technique,parameters covered by different authors and

the overall observation.

TABLE 2.1: Mathematical Modelling Techniques

Ref. | Year | Techniques Parameters Considered | Observations

[30] 2017 | Linear Program- | Energy, Cost, Network 45% reduction in cost compared
ming Model with Docker binpack strategy.

[31] 2018 | ILP-based Resource utilization, Cost The proposed technique is robust
scheduling and helps in improving fault tol-
framework erance.

[32] | 2018 | ILP-based for- | Resource utilization, Cost, | Reduces the network cost.
mulation to | Network
minimize de-
ployment cost

[33] 2020 | ILP-based for- | Energy, = Resource uti- | Reduces energy consumption and
mulation to | lization, Load balancing, | carbon footprint.
minimize carbon | Makespan, Network
footprint

[31] 2019 | Offline and on- | Load balancing, Makespan | Reduces total task interruption
line scheduling overhead.
technique

[34] 2019 | ILP technique to | Availability, Utilization, | Achieves higher application avail-
maximize avail- | Load balancing, Makespan | ability compared to Docker s-
ability trategies (binpack, spread, ran-

dom).
[35] 2021 | MILP Energy, Resource utiliza- | Minimizes energy consumption.
tion, Load balancing, Net-
work

e Heuristics: Container heuristic scheduling algorithms are a class of algorithm-

s that use heuristics or rule-based approaches to efficiently allocate resources
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and schedule containerized tasks within a computing environment. These al-

gorithms aim to find near-optimal solutions without guaranteeing global opti-

mality. Heuristic algorithms gain there popularity to find approximate solution.

These algorithms generally have low complexity and provide better solution

for the problem, within low response time.These methods include bin-packing,

round-robin, and greedy algorithms designed to reduce resource fragmentation

and improve load balancing[36].

Below table 2.2 refers the various heuristic algorithms developed by different

authors. This table provide the detailed information including year of proposed

work, name of technique,parameters covered by different authors and the overall

observation.
TABLE 2.2: Heuristics Algorithms

Ref. | Year | Techniques Parameters Considered | Observations

[37] 2017 | ABP Network traffic Reduction in startup time and
faster task execution compared to
native scheduling of Docker Swar-
m.

[38] 2017 | DRAPS Load balancing Provides more balanced and ef-
ficient resource utilization com-
pared to Docker Swarm.

[39] 2017 | GENPACK Energy consumption 23% more efficient in energy con-
sumption compared to Docker
Swarm.

[40] 2017 | Proactive Con- | Resource utilization, Load | Faster than existing scheduling

tainer Rebalancing | balancing techniques but lacks testing in re-
Technique al environments.

[41] 2018 | Stretch-out and | Network bandwidth Requires less execution time than
Compact Tech- Docker and handles job depen-
nique dencies during scheduling.

[42] 2019 | Container schedul- | Energy consumption Achieves 56% energy reduction
ing technique based compared to the First-Fit algo-
on Min-Min heuris- rithm.
tic

[43] 2018 | Renewable energy- | Energy consumption Achieves 15% energy savings
based container compared to First-Fit or Random
scheduling algorithms.

[44] 2020 | GPUACS QoS, Scalability Capable of scheduling large-scale

requests (over 20,000 servers) in
under 3.5 seconds.

e Meta-heuristics: The main purpose of meta-heuristic algorithms is to find the

optimal usages of nodes. Meta-heuristic algorithms came from the popular class
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of population based optimal algorithms. Basically it states that, each node is
allotted with single task, and this allotting process is determined by a single
criterion function. This assignment of several tasks to a single node is possible
only by enlarging the problem to include fictitious tasks or duplicate node. So,
there is no way to restrict these multiple nodes. These problem can be accu-
rately represented by the ”generalized assignment problem”, which states that
assignment module includes assigning software development tasks to program-
mers and assigning jobs to computers in computer networks.Advanced global
optimization techniques such as Genetic Algorithms (GA), Ant Colony Opti-
mization (ACO), and Particle Swarm Optimization (PSO) have been applied to

achieve near-optimal container placement in large-scale cloud environments.

Below table 2.3 refers the various meta-heuristic algorithms developed by d-
ifferent authors. This table provide the detailed information including year of
proposed work, name of technique,parameters covered by different authors and

the overall observation.

TABLE 2.3: Scheduling Technique Classification

Ref. | Year| Techniques Parameters Consid- | Observations
ered

[45] | 2018 | NSGA-II Resource utilization, | Achieved 60% improvement
Network  transmission, | across parameters compared to
Fault tolerance, Load | Kubernetes.
balancing

[46] | 2019 | Two-level hybrid | Energy consumption Reduced energy consumption

algorithm over First Fit, Best Fit, etc.

[47] | 2019 | MOGAS Resource utilization, En- | Outperforms ACO-based
ergy consumption, Scala- | scheduling in meeting objec-
bility, Availability tives.

Continued on next page
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Ref. | Year| Techniques Parameters Consid- | Observations
ered
[48] | 2020 | CCGP Resource utilization, | Swarm  cluster experiments
Throughput show efficient resource use.
Ant Colony Optimization
[49] | 2017 | ACO Resource utilization, | Achieves 15% better perfor-
Load balancing mance than Docker Swarm.
[50] | 2019 | MOCP-ACO Network usage, Cost Better handles workloads com-
pared to Spread strategy.
[51] | 2019 | Multi-objective Resource utilization, | Shows improved balancing and
ACO scheduling | Network  transmission, | reliability over GA and Spread.
Fault tolerance
Particle Swarm Optimization
[52] | 2017 | PSO-based Response time, Load bal- | Improves performance by 25%
scheduling ancing over Spread and traditional P-
SO.
[53] | 2019 | TMPSO Energy consumption Demonstrates notable energy
savings vs standard/binary P-
SO.
[54] | 2019 | Multi-objective Energy consumption, | Effectively lowers power usage
PSO Throughput compared to traditional PSO.
[55] | 2020 | LRLBAS Resource utilization Improves utilization over other

PSO-based methods.

Machine Learning: It is one of the emerging techniques to deal with the schedul-

ing of Containers. Machine learning-based container scheduling algorithms use

machine learning techniques to make intelligent scheduling decisions based on

historical data, real-time information, and patterns in container workloads.

These algorithms aim to optimize resource allocation, improve task performance,

and adapt to dynamic environments. Although, these techniques are not much
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explored for Container scheduling.Reinforcement learning and supervised learn-

ing models are increasingly used for predictive and adaptive scheduling. These

models can learn from historical data to make better scheduling decisions [56].

Below table 2.4 refers the various machine learning based algorithms developed

by different authors. This table provide the detailed information including year

of proposed work, name of technique,parameters covered by different authors

and the overall observation.

TABLE 2.4: Machine Learning Techniques

Ref. | Year | Techniques Parameters Consid- | Observations
ered
[57] 2018 | Deep reinforce- | Resource utilization Provides better resource uti-
ment learning lization compared to Shortest
Job First and random place-
ment algorithms.
[58] | 2019 | Random forest | Time and accuracy Shows significant improvement
regression model in prediction accuracy and exe-
cution time compared to stan-
dard algorithms.
[59] 2019 | Machine learn- | Energy consumption Achieves considerable reduc-
ing scheme tion in the number of active n-
odes and energy consumption
in containers.
[60] 2020 | Linear  regres- | Load balancing, energy | Implements resource utiliza-
sion model consumption tion prediction that leads to re-
duced power consumption.
[61] 2020 | Statistical online | Power consumption Improves total energy con-
learning sumption compared to exist-
ing techniques like Binpack,
Spread, and Random.
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2.3 Related Work

Containerization has become a crucial technology in modern software devel-
opment and deployment due to its ability to package applications and their depen-
dencies into portable, isolated environments. Container scheduling is of paramount
importance in modern software development and deployment environments. Con-
tainer scheduling is a critical aspect of container management, enabling efficient re-
source utilization, scalability, high availability, and cost optimization. It plays a vital
role in achieving the benefits of containerization while ensuring seamless deployment
and management of containerized applications. Authors have provided the various

scheduling technique[62]

The following table 2.5 represents the work done in context of the Container
scheduling techniques. It describes the existing scheduling techniques for the Con-
tainers. The following table list down the name of scheduling, main contribution,

advantages, limitations and performance metrics taken up by the authors [63].
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The table 2.5 discuss the various performance metrics covered by the authors

to evaluate the performance of implemented algorithms.

2.4 Security Challenges in Containerized Cloud En-
vironments

Applications are now deployed and managed more easily in cloud environments
thanks to Docker and Kubernetes which allow for the use of lightweight, portable and
consistent execution units. However, the new cloud model introduces security issues

that are usually quite different from those seen in earlier virtualized environments.

Security-aware scheduling frameworks have emerged to address both perfor-
mance and security challenges in cloud computing. Liu et al. proposed a machine
learning-based scheduling framework that integrates security features, such as anoma-
ly detection and threat mitigation, directly into the scheduling process. This frame-
work is particularly effective for cloud-native applications where security and perfor-

mance are critical.

Similarly, Yang and Zhao developed a container scheduling technique for edge-
cloud computing with embedded security constraints. Their approach balances re-
source utilization with security requirements, ensuring that containers with sensitive
data are allocated to nodes with enhanced security features, such as isolation and

encryption.

1. Shared Kernel Vulnerability: Unlike virtual machines which isolate groups
of programs on distinct kernels, Containers uses the same operating system
kernel on a single host. Because all containers use the same kernel, there is a
greater chance for a container to use a vulnerability in the kernel to corrupt the
host or other containers. It is essential to keep the kernel secure by patching
often and turning on modules, for example, SELinux or AppArmor in these

setups. [88].
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TABLE 2.6: Parameter analysis of Container scheduling approaches
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3.

Insecure Container Images: Many container deployments rely on public
images from repositories such as Docker Hub. These images may contain un-
patched software, malicious code, or configuration flaws. Studies show that a
significant portion of publicly available images have known vulnerabilities [89].
Image scanning tools such as Clair, Anchore, and Trivy are vital for detecting

such issues before deployment.

Inadequate Isolation Between Containers: Containers are not designed
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to be strong security boundaries. If proper namespace isolation and cgroup
configurations are not enforced, attackers may be able to perform side-channel
attacks or abuse shared resources like CPU and memory, leading to data leaks
or denial-of-service (DoS) attacks [90]. Kubernetes offers PodSecurityPolicies
and runtime profiles to limit container capabilities, but misconfigurations are

common.

4. Secret Management and Configuration Risks: Storing sensitive data such
as API keys, passwords, and tokens in container images or environment variables
poses a serious threat. If improperly managed, these secrets can be exposed
through image scans or container logs [91]. Best practices involve using secret
management solutions like HashiCorp Vault or Kubernetes Secrets with role-

based access control (RBAC).

5. Container Orchestration Attacks: Container orchestration platforms like
Kubernetes introduce their own attack surfaces. Compromising the Kubelet,
etcd database, or Kubernetes API server can lead to complete control over
the cluster [92]. Threat vectors include exposed dashboard interfaces, insecure

default settings, and improperly managed role bindings.

6. Lack of Runtime Monitoring: Containers are often ephemeral and dynami-
cally scaled, making traditional intrusion detection techniques ineffective. With-
out runtime security monitoring, it becomes difficult to detect anomalous be-
havior such as privilege escalation, unauthorized network access, or suspicious
process executions [93]. Tools like Falco and Sysdig enable behavior-based threat

detection during container runtime.

7. Supply Chain Attacks: The container ecosystem is susceptible to supply
chain attacks, where malicious code is introduced during the image build or
delivery pipeline. A notable example is the 2020 SolarWinds attack, which
highlighted the risks of compromised build systems. Implementing signed images
(e.g., Docker Content Trust) and secure CI/CD pipelines with minimal privileges

is essential to mitigate these threats [94].
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8. Logging and Auditing Gaps: Proper logging and audit trails are essential
for incident response and compliance. However, due to the ephemeral nature of
containers, log persistence and correlation across distributed containers become
challenging [95]. Centralized logging solutions like ELK stack and fluentd must

be configured to ensure all container activity is adequately monitored.

The below table 2.7 summarizes the Container security challenges and tech-
niques. It provides the detailed information on technique name , there benefits and
limitations. Furthermore, it also discussed the challenges addressed from the obser-

vation of these techniques.

2.5 Research Gap

These are challenges pertaining to Container scheduling. Some of the challenges

in the Containers have been discussed as follow:

e Performance evaluations techniques: The study by Bachiega et al. [24] illus-
trates a deficiency in performance measurement methodologies Containers and
indicates that traditional performance metrics for VMs cannot be directly ap-
plied due to architectural differences. In their systematic review, they point
out the necessity of specialized evaluation criteria focusing on public networks,
data migration, high availability and parallel programs. Furthermore, the study
also finds a scheduling problem in the container environments, and that the re-
source waste and the empty task pod are both caused by the limitation that a
containerized task is only allowed to run a single container at one time. This

suggests a lack efficient container scheduling solutions running on all devices.

e Isolation: A major challenge in Container scheduling is lack of isolation: All
containers share the same operating system kernel, whereas stronger isolation is
provided by Virtual Machines(VMs). Such restriction complicates the control
of the run-time in other OS and enforces only but not yet supporting distribut-

ed system and policy based services. The common kernel also causes security
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TABLE 2.7: Summary of Container Security Challenges and Techniques

Ref | Technique Benefits Limitations Challenge Ad-
Name dressed

[88] | SELinux, Ap- | Enhances host securi- | Complex to con- | Shared Kernel Vul-
pArmor, Kernel | ty and limits contain- | figure; may cause | nerability
Hardening er access to kernel compatibility issues

[96] | Image Scanning | Detects vulnerabilities | May miss zero-day | Insecure Container
(Clair, Trivy, | before deployment vulnerabilities; re- | Images
Anchore) quires frequent up-

dates

[97] | Namespace Provides resource and | Misconfigurations Inadequate Isola-
and cgroups | process isolation may still allow | tion
Isolation, Pod- attacks
SecurityPolicy

[98] | Secret Manage- | Secure storage and ac- | Adds complexity to | Secret Managemen-
ment (Vault, | cess control of sensi- | development and | t Risks
Kubernetes Se- | tive data deployment
crets)

[99] | Kubernetes Prevents  unautho- | Misconfiguration Orchestration Lay-
RBAC, APT | rized access to cluster | can expose sensi- | er Attacks
Server Hard- | resources tive APIs
ening, eted
Security

[100] | Runtime Mon- | Detects live threats | Requires fine- | Lack of Runtime
itoring  (Falco, | and anomalous behav- | tuning; perfor- | Monitoring
Sysdig) ior mance overhead

[101] | Signed Images, | Ensures integrity of | Requires strict pro- | Supply Chain At-
Secure  CI/CD | images and code cess adherence and | tacks
Pipelines tooling

[102] | Centralized Log- | Enables traceability | Needs  additional | Logging and Audit-
ging (ELK, flu- | and compliance infrastructure and | ing Gaps
entd) correlation logic

issues, including shared channel attacks. The authors call for a trust layer be-

tween cloud client and provider and suggest securing the system with role-Based

access control. In addition, container isolation is assessed with six benchmarks

and it was found that user instance as well as data are still insecure, indicat-

ing a significant difference to performance and security isolation in container

environments [103].
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e Security Issue: Sultan et al.[3] security concerns being a key hardship in con-
tainerized ecosystems, especially in the cloud. Containers are susceptible to
cross-container attacks, host-container breaches, virus spread complications, and
problems including contaminated images, fake system calls, as well as Denial of
Service (DOS) since they share the same OS kernel. The research underscores
importance of security service orchestration and security of container visual-
ization. The researchers emphasize that simple security measures are no longer
viable, and suggest that security concerns should be tackled at the hardware and

software levels; highlighting a notable absence in complete container security

There is various solution suggested by different authors but there are some

limitations associated with suggested model.

The security environment of cloud containerization offers distinct difficulties.
The distributed and dynamic characteristics of containers expand the attack
surface, complicating the monitoring and securing of containerized applications.

Several significant security challenges consist of:

— Resource Contention and Denial of Service (DoS) Attacks: Attackers may
take advantage of flaws in resource scheduling to dominate system re-

sources, resulting in service interruptions.

— Isolation Breaks: Containers utilize the same underlying host operating
system, and flaws in the kernel or improper configurations may result in
isolation breaks, allowing an attacker to achieve unauthorized entry into

other containers or the host system.

— Supply Chain Threats: Container images frequently depend on external
dependencies that could harbor malicious code or weaknesses, endangering

the security of containers.

These difficulties emphasize the importance of making security a core element
of container scheduling approaches. Recent studies have predominantly concen-

trated on optimizing performance, resulting in a considerable gap in research
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regarding security issues in container scheduling.

2.6 Summary

This chapter covers in depth recent progress in container scheduling for cloud
computing from 2015 to 2025, with an emphasis on performance optimization,managing
resources and security issues.Recent progress in the design and creation of secure con-
tainer scheduling within cloud settings has greatly concentrated on improving the ef-
ficiency and safety of containerized applications. It pointed out how virtual machines
moved aside for lighter Docker and Kubernetes containerization methods, because of
the help they give in making things easy to scale and deploy. Reviewed solutions
were heuristic, ACO, GA, PSO and machine learning, all meant to boost the use
of resources, decrease latency and keep SLA rules followed. This chapter addition-
ally discussed issues that are gaining importance, including those related to energy
scheduling, QoS, fault tolerance and working in real time. The paper also covered
significant security threats, including problems with kernels, insecure container im-
ages and attacks against orchestration tools and provided ways to fight these risks
such as running ongoing checks, managing secrets and examining images. Literature
suggests that container scheduling is moving toward being smart, safe and adaptable
to match the latest challenges in cloud environments.The studies have unveiled nu-
merous cutting-edge scheduling techniques, including machine learning and Al-based
algorithms, focused on enhancing resource distribution while also tackling security
weaknesses. These methods take into account changing resource needs, system effi-
ciency, and new threat environments, providing proactive anomaly identification and
automatic policy modifications. Security continues to be a critical issue, as challenges
like container isolation breaches, inter-container risks, and data integrity issues propel
the creation of stronger frameworks. Experts suggest adopting zero-trust frameworks,
safe runtime settings, and policy-driven scheduling systems to guarantee thorough
security. The literature additionally examines models based on trust and techniques

that preserve privacy, highlighting the necessity for secure communication protocols
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and sophisticated encryption methods. Practical applications, bolstered by simula-
tions and actual case studies, confirm the effectiveness of these strategies, emphasizing
enhancements in both performance and security. The review of existing literature on
container scheduling highlights several research gaps that remain unaddressed. While
prior studies have explored performance evaluation, isolation, and security in con-
tainerized environments, there is still no standardized methodology for performance
assessment tailored to containers, as traditional VM-based metrics fail to capture
the unique characteristics of container architectures. Furthermore, isolation mecha-
nisms remain weak due to the shared OS kernel, leading to vulnerabilities such as
side-channel attacks and insecure data handling, with limited solutions for distribut-
ed or policy-based isolation. Security challenges such as cross-container attacks, DoS
threats through resource contention, and supply chain vulnerabilities from unverified
images are widely recognized, yet most proposed solutions are either partial or fo-
cused on specific attack vectors without offering holistic frameworks. Importantly,
existing research has primarily emphasized performance optimization in scheduling,
while security has been treated as a secondary concern, leaving a significant gap in
developing container scheduling approaches that integrate both efficiency and robust,
multi-layered security mechanisms adaptable to the dynamic and distributed nature

of cloud environments.



CHAPTER 3

IWD-ACSAR:A Hybrid Approach

to Secure Container Orchestration

This chapter introduces the concept of IWD-ACSAR hybrid method that com-
bines the Intelligent Water Drops (IWD) algorithm with Anti-Collocation and Security-
Aware Rules (ACSAR) to improve the security and efficiency of container orchestra-
tion. The model smartly arranges the containers based both on the performance
parameters and a security setback like side-channel attacks. It also implements anti-
affinity rules and real-time monitoring, which enhances resilience in a multi-tenant
setting remarkably. The results of simulation show enhanced operation compared to

conventional ways.

3.1 Introduction

Cloud computing has become a vital part of modern technology, allowing busi-

nesses, individuals, and organizations to store, process, and manage data over the

46
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internet.Cloud computing has revolutionized how organizations handle data and ser-
vices by providing flexible, scalable, and cost-effective solutions. Omne of the most
popular methods for deploying applications in cloud environments is through Con-
tainers. Containers are isolated environments that package an application along with
its dependencies. This allows the application to run consistently across different com-
puting environments. Popular tools such as Docker and Kubernetes manage con-
tainerized applications, providing scalability, resource efficiency, and faster deploy-
ment times compared to traditional virtual machines.Containers, a lightweight virtu-
alization technology, have gained popularity for efficiently deploying applications in
cloud environments.Containers packages an application with all its necessary files and
dependencies, allowing the application to run consistently across various platforms.
Unlike traditional virtual machines, containers share the host operating system, which

makes them faster, more efficient, and easier to manage [104].

In cloud computing, applications are divided into small tasks, and each task
must be assigned to a server, or node, where it will be executed. This process is known
as scheduling.Scheduling in cloud computing refers to the allocation of resources (like
CPU, memory, and network) to different containers or tasks. Efficient scheduling
ensures that containers are allocated the right amount of resources at the right time,
improving overall performance. Traditional scheduling algorithms, such as Round
Robin and First Come, First Serve, are commonly used but may not be suitable
for modern cloud applications where both resource utilization and security must be
optimized.Scheduling is essential for making sure that the available resources (CPU,

memory, storage, etc.) are used efficiently and that applications run without delay

[105].

However, with the increasing demand for cloud services, the scheduling of these
containers becomes crucial for optimizing performance and resource utilization. More-
over, security is a key concern when deploying containers in the cloud, as cloud envi-

ronments are prone to various cyber threats. With the rise of cloud computing and
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microservices architecture, containers have become the preferred method for deploy-
ing and managing applications. Efficient container scheduling is critical to ensuring
optimal resource allocation, load balancing, and low energy consumption. Howev-
er, in cloud environments, security remains a significant concern, particularly when
distributing containers across a potentially heterogeneous and multi-tenant infrastruc-
ture. A novel approach is necessary to integrate security as a key parameter into the

scheduling process while maintaining efficiency [106].

This study presents a novel approach for scheduling Containers that integrates
the Intelligent Water Drop(IWD) algorithm with enhanced security considerations
through Anti-Collocation and Security Affinity Rules(ACAR). IWD-ACAR aims to
ensure the resource efficiency with the security of the nodes where Containers are
scheduled. The majority of the existing scheduling algorithms like Meta-heuristic,
heuristic, and machine learning based algorithms prioritize the performance opti-
mization and efficient resource allocation while neglecting the security of nodes and
Containers. To address this challenge, our proposed novel technique is embedding
security as a core component of the scheduling process. Our proposed approach not
only prioritizes the efficient resource allocation but also ensures that Containers are

securely scheduled.

The Intelligent Water Drop (IWD) algorithm is inspired by the natural behavior
of water drops flowing in rivers. The algorithm simulates the way water drops choose
their path, gradually eroding the soil and selecting the optimal route. In computing,
the IWD algorithm is used to find optimal solutions in complex environments, making

it suitable for scheduling tasks in cloud computing[107].

Security in cloud computing involves protecting sensitive data and ensuring the
safe execution of applications. Containers share the same underlying operating sys-
tem kernel, which increases the risk of vulnerabilities such as unauthorized access or
privilege escalation. Therefore, embedding security in scheduling decisions is critical
to prevent security breaches.

Existing container scheduling techniques focus primarily on optimizing performance



CHAPTER 3.IWD-ACSAR 49

and resource allocation, but they often overlook security concerns. Our novel approach
using the IWD algorithm addresses this gap by incorporating security features into
the scheduling process. This ensures that containers are deployed not only efficiently

but also securely.

@® Node Selection using
D hybrid IWD-ACAR approh
IWD Algorithm
Rl > secuy >
Resource Deploy

Allocation Containers

FIGURE 3.1: Hybrid scheduling technique using IWD-ACAR

Figure 3.1 describes the scheduling process of the Containers. Container schedul-

ing is made secured with the help of Anti-Collocation and Anti Affinity rules.

3.2 Existing work

In the world of elastic containerized multi-cloud environments, good task schedul-
ing is very important for getting the most out of resources and meeting performance
goals. This study looks at and compares different container scheduling algorithms,
including ant colony optimization (ACO), chicken swarm optimization (CSO), genetic
algorithm (GA), bee colony optimization (BCO), and particle swarm optimization (P-
SO). The goal is to use a number of metrics, such as make span, reliability, idle time,
energy use, response time, CPU use, execution cost, and task migration, to evaluate
these algorithms. By looking at these things, we can figure out the strengths and
weaknesses of each algorithm and how they affect the performance and efficiency of
the whole system. The test is done with a set number of 50 containers and 5000 tasks
in a standard way. The results show that all of the algorithms have a high reliability

score of 0.99, which means they can do their jobs with very few mistakes. ACO shows
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that it can use 86% of the CPU and has the shortest make span of 10 ms, which
shows that it can allocate resources and schedule tasks efficiently. BCO uses the most
CPU (88%) and energy (1900 Joules), which means it can get the most out of its
resources, even if it means using more energy. ACO has the fastest response time
(7 ms), which means that tasks can be completed quickly, and the lowest execution
cost ($110), which shows that it is cost-effective. CSO and PSO perform similarly
on a number of metrics, while GA has a balanced performance overall. The best
algorithm to use depends on the goals you want to achieve, like getting the most out
of your resources, cutting down on response time, or lowering execution costs. This
comparison study gives useful information about how different container scheduling
algorithms work, which helps researchers and practitioners make smart choices when

putting applications in elastic containerized multi-cloud environments.

The literature has compared existing container scheduling methods like Ant
Colony Optimization (ACO), Bee Colony Optimization (BCO), Chicken Swarm Op-
timization (CSO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA).
These methods have different strengths and weaknesses that depend on the perfor-
mance metrics used in any cloud computing environment. ACO and BCO are based
on how ants and bees behave in nature, and they are very good at finding near-optimal
resource allocation paths. This means that they can reduce latency while still keeping

resource use balanced[49].

These methods work best in distributed settings where communication costs and
flexibility are important. But these usually have more complicated calculations, which
makes them less effective when used on a large scale. The social behavior of chickens
is what CSO is based on. It has been shown to work well when workloads change,
which makes it a good choice for dynamic containerized environments. Convergence
speed may be much slower than other methods, which could cause scheduling decisions
to take longer. PSO and GA are two types of evolutionary algorithms. Their main
benefits are that they find the best way to allocate resources by looking at many

solutions at once. This makes them great for big, complicated scheduling tasks. PSO
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converges quickly, while GA is very flexible and can get out of local optima, which
keeps the loads balanced. But PSO and GA might be a little hard to understand
because they might need a lot of tuning to work best. Each of these methods has its
own benefits, like adaptability in CSO, faster convergence with PSO, or the ability to
avoid local optima with GA. However, their strengths may be more context-dependent,
and they could be improved by combining them with other methods to take advantage

of their strengths for better container scheduling in cloud environments|82].

This section briefly discusses the ACO,BCO,CSO,PSO and Genetic Algorithm
with the help of proper pseudo code and mathematical formulation and it also presents

the shortcomings and benefits of each approach.

3.2.1 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a nature-inspired algorithm that mimics
the foraging behavior of ants to solve optimization problems. In this context, ACO
is applied to optimize container scheduling in an elastic containerized multi-cloud en-
vironment such as Docker Cloud. The ACO algorithm aims to optimize container
placement and resource allocation by guiding ants (representing containers) towards
optimal solutions, using pheromone trails to balance performance and resource avail-

ability across multiple cloud providers [51].

Problem Formulation

The objective of this problem is to minimize the make-span, which is the

maximum finish time among all container tasks. Let us define the following:
e Set of container tasks: C' = {C},Cy,...,C}
e Set of available cloud resources: R = {Ry, Ry,..., R}
e Task deadline for each container task: D = {Dy, D,, ..., Do}

e Execution time for each container task: F = {F, Fs, ..., Fy}
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e Resource requirements for each container task: Req = {Req,, Req, ..., Req}

Variables

e Pheromone matrix: Represents the pheromone levels on the edges between

container tasks and cloud resources.

e Ant: An agent that moves through the graph of container tasks and cloud

resources.

e Solution: A sequence of cloud resource assignments for each container task.

Constraints
The container scheduling problem must satisfy the following constraints:

1. Each container task must be assigned to exactly one cloud resource:

Y wy=1 VieC (3.1)

J=1

2. Each cloud resource can only execute tasks within its capacity limit:

10
ZRG% - x4 < Capacity; Vj € R (3.2)

i=1
3. The finish time of each container task should not exceed its deadline:

F,<D;, VieC (3.3)

4. The finish time F; is determined by the start time S; and execution time FE;:

Si+E;=F, VieC (3.4)
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5. Binary assignment variable:

Tij S {0, 1} Vi € C, j €ER (35)

Objective Function

The objective is to minimize the make-span, which is defined as the maximum

finish time among all container tasks:

Objective = max(F;) VieC (3.6)
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Ant Colony Optimization Algorithm

Algorithm 1 Container Scheduling using Ant Colony Optimization (ACO)
[51]

1: Initialize the pheromone matrix with small initial values.
2: repeat
3: Create a set of ants, each starting at a random container task.
4: for each ant do
5: Construct a solution by performing the following steps:
1. Select the next container task based on a probability rule, considering the
pheromone levels and heuristic information (e.g., resource availability).
2. Assign the selected container task to an available cloud resource with the
highest pheromone level, ensuring it satisfies the capacity constraint.
3. Update the pheromone levels on the selected edge based on a pheromone
update rule.
6: end for

7: Update the global best solution if a better solution is found.

Update the pheromone levels on all edges using an evaporation rule.

*®

9: until A termination condition is met (e.g., maximum number of iterations)

10: Retrieve the best solution from the final iteration.

11: Decode the best solution to obtain the scheduling assignments for each container
task.

12: Calculate the make-span based on the assigned positions and return it as the

optimal solution.

The ACO algorithm 1 constructs solutions by iteratively selecting container
tasks based on pheromone levels and heuristic information. Cloud resources are as-
signed to container tasks while satisfying capacity constraints, and pheromone levels
are updated based on the quality of the solutions. Over multiple iterations, the al-
gorithm converges towards an optimal solution that minimizes the make-span while

satisfying all constraints of the multi-cloud environment.
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3.2.2 Chicken Swarm Optimization (CSO) Algorithm

Chicken Swarm Optimization (CSO) is a metaheuristic approach inspired by
the foraging behavior of chickens. It is applied to container scheduling in an elastic
containerized multi-cloud environment like Docker Cloud to optimize resource alloca-
tion, load balancing, and minimize response time by efficiently distributing containers

across cloud providers based on their performance characteristics and availabilityt[108].

CSO algorithm 2 leverages the collective intelligence of virtual ”chickens” to
find near-optimal solutions and adapt dynamically to changing conditions in the cloud

environmen.

Objective
Establishing a mathematical formulation to minimize the make-span (maximum
finish time) of all container tasks.
Input
e Set of container tasks: C' = {C4,C,,...,Co}

Set of available cloud resources: R = {Ry, Ry, ..., Ry}

Task deadline for each container task: D = {Dy, Da, ..., D1o}

e Execution time for each container task: £ = {FE, Es, ..., Ey}
e Resource requirements for each container task: Req = {Req, Reqy, ..., Reqyy}
Variables

e Chicken: An agent that represents a potential solution (scheduling assignment)
e Flock: A collection of chickens forming the population

e Fitness: A measure of how well a chicken (solution) performs
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Constraints
e Each container task must be assigned to exactly one cloud resource.
e Each cloud resource can execute tasks within its capacity limit.

e Deadline constraint for each container task.
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Algorithm 2 CSO Adapted for Container Scheduling [108]

10:

11:

12:

13:

14:

15:

16:

17:

18

: Set a population of chickens, where each chicken signifies a possible solution for
the container scheduling problem.

. Estimate the fitness of each chicken by calculating the make-span objective func-
tion:

Fitness, = max(FF) Vi€ C (3.7)

where FF is the finish time of task C; in the solution represented by chicken .

Set the best chicken and its fitness as the initial best solution:
BestFitness = mkin(Fitnessk) (3.8)

: repeat
for each chicken k in the population do
Determine the neighboring chickens that the current chicken will interact
with.
Exchange information among chickens to modify the current solution, re-
sulting in a new position X;.

Evaluate the fitness of the modified solution:
Fitness) = max(F}) Vie C (3.9)

if Fitness) < Fitness; then

Accept the new position:

X = X, (3.10)
Update the best chicken and fitness if needed.
end if
end for

Update population positions using collective movement dynamics.

Optionally perform local search to refine chicken solutions.

Update fitness values for all chickens.
until an end state is met (e.g., a maximum number of iterations or convergence
criteria)

: Retrieve the best chicken (solution) found in the final iteration.
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3.2.3 Genetic Algorithm (GA)

The Genetic Algorithm (GA) is an evolutionary algorithm inspired by natural
selection and genetics. It can be applied to optimize container scheduling in an elastic
containerized multi-cloud environment such as Docker Cloud [48]. The GA generates
a population of potential solutions, evaluates their fitness, and iteratively evolves the
population through selection, crossover, and mutation operations to find near-optimal

solutions for container scheduling[46].

Problem Formulation

The goal is to minimize the make-span, which is the maximum finish time of

all container tasks. The following sets and parameters define the problem:

e Set of container tasks: C' = {C},Cy,...,C}

Set of available cloud resources: R = {Ry, Ra,..., Ry}

Task deadlines for each container task: D = {D;, Ds,..., Do}

e Execution time for each container task: F = {F, Fs, ..., Fy}
e Resource requirements for each container task: Req = {Req,, Reqs, ..., Req;,}
Variables

Chromosome: A representation of a potential solution (scheduling assignmen-

).

Gene: An element in the chromosome representing the assignment of a con-

tainer task to a cloud resource.

Population: A set of chromosomes representing potential solutions.

Fitness: A measure of how well a chromosome (solution) performs based on

the objective function.
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Constraints

The container scheduling problem is subject to the following constraints:
1. Each container task must be assigned to exactly one cloud resource:
m
Z Tij = 1 VieC
j=1

where z;; is a binary variable that equals 1 if task C; is assigned to resource R;,

and 0 otherwise.

2. Each cloud resource can only execute tasks within its capacity:

10
ZRG% -xy; < Capacity; Vj € R

i=1
3. The finish time of each container task must not exceed its deadline:

F,<D; VieC

4. The finish time F; is determined by the start time S; and execution time F;:

Si+E;,=F, YieC

5. Lij S {0,1} for all 1 € C, ] € R.

Objective Function

The objective is to minimize the make-span, which is the maximum finish time

among all container tasks:

Objective = max(F;) Vie C
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Genetic Algorithm for Container Scheduling

Algorithm 3 Container Scheduling using Genetic Algorithm (GA)[46]

1: Initialize a population of chromosomes randomly or through a heuristic method.

2: Evaluate the fitness of each chromosome based on the make-span:

Fitness, = max(F¥) Vi€ C (3.11)
3: repeat
4: Select chromosomes for genetic operations based on fitness.
5: Perform selection using a probability proportional to fitness:
1 - 1
P = _ - - 3.12
" Fitness; / ; Fitness; (312)
6: Perform crossover to produce offspring:
Offspring = « - Parent; + (1 — «) - Parenty (3.13)

where a € [0, 1] is the crossover coefficient.

7: Apply mutation by introducing random changes:

MutatedGene = Gene + ¢ (3.14)

where ¢ is a small random value.

8: Evaluate the fitness of the offspring using Equation (3.11).

9: Replace less fit chromosomes with better offspring.

10: until A termination condition is met (e.g., maximum iterations or convergence
criteria).

11: Retrieve the best chromosome (solution) from the final population.

12: Decode the best chromosome to obtain the scheduling assignments for each con-
tainer task.

13: Calculate the make-span based on the assigned positions and return it as the

optimal solution.
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The GA algorithm 3 evolves a population of solutions through selection, crossover,
and mutation. Fitness evaluation is based on the make-span, and the algorithm aims
to converge towards an optimal solution that minimizes the make-span while satisfying

the constraints of the containerized multi-cloud environment.

3.2.4 Bee Colony Optimization (BCO)

Bee Colony Optimization (BCO) is a bio-inspired optimization algorithm based
on the foraging behavior of honeybee colonies. In the context of container scheduling
in an elastic containerized multi-cloud environment such as Docker Cloud, BCO opti-
mizes container allocation and resource management by dynamically adjusting based
on resource availability, performance, and load balancing. The BCO algorithm seeks
to minimize the make-span, which is the maximum finish time of all container tasks

[109).

Problem Formulation

The objective is to minimize the make-span, which is the maximum finish time

of all container tasks. The following sets and parameters define the problem:

e Set of container tasks: C' = {C},Cy,...,Cy}

Set of available cloud resources: R = {Ry,R,..., R}

Task deadlines for each container task: D = {D;, Ds,..., Do}

e Execution time for each container task: F = {F, Es, ..., Fyy}
e Resource requirements for each container task: Req = {Req,, Reqy, ..., Reqy}
Variables

e Food source: A potential solution (scheduling assignment).

e Scout bee: A bee that searches for new food sources (new solutions).
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e Employed bee: A bee that explores and exploits existing food sources.

e Onlooker bee: A bee that selects food sources based on their quality and

evaluates them.

Constraints

The container scheduling problem is subject to the following constraints:

1. Each container task must be assigned to exactly one cloud resource:
Z Tij = 1 VieC
j=1

where x;; = 1 if container task C; is assigned to resource R;, and z;; = 0

otherwise.

2. Each cloud resource must execute tasks within its capacity limit:

10
ZRG% -x;j < Capacity; Vj € R

i=1
3. The finish time of each container task must not exceed its deadline:

F,<D;, VieC

4. The finish time Fj is calculated as the sum of the start time S; and the execution
time Fj;:

5. Lij S {0, 1} for all 1 € C,] € R.
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Objective Function

The objective is to minimize the make-span, which is the maximum finish time

among all container tasks:

Objective = min (max(F;)) VieC
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Bee Colony Optimization Algorithm

Algorithm 4 Container Scheduling using Bee Colony Optimization
(BCO)[109]

1: Initialize the food sources (potential solutions) randomly or through a heuristic
method.

2: Evaluate the fitness of each food source based on the make-span:
Fitness, = max(FF) Vie C (3.15)

3: Set the best food source and its fitness as the initial best solution.
4: repeat
5: Employed bees phase:

6: for each employed bee do

7: Select a neighboring food source.
8: Apply local search to modify the food source:
Vij = Tij + Gij(Tij — Tiy) (3.16)

where z;; is the current solution, xy; is a random neighbor, and ¢;; € [—1,1] is a

random number.

9: Evaluate the new fitness using Equation (3.15).
10: Update the best solution if improved.
11: end for
12: Onlooker bees phase:
13: for each onlooker bee do
14: Select a food source based on probability:
1 ~ 1

P, = m/; Fitmess, (3.17)
15: Apply local search and evaluate fitness as above.
16: Update the best solution if improved.
17: end for

18: Scout bees phase:
19: for each scout bee do

20: Randomly generate a new food source and evaluate its fitness.

1. TTxwAatns +ha hact FAnAd ant1vea £ +ha vavr A 1o bhat+ A
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The BCO algorithm 4 uses a colony of artificial bees to search for and opti-
mize container scheduling solutions. The employed bees explore existing food sources
(potential solutions), onlooker bees evaluate and exploit the best solutions, and scout
bees search for new food sources. Through iterations of exploration and exploitation,
the algorithm converges towards an optimal solution that minimizes the make-span

while satisfying the container scheduling constraints.

3.2.5 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based optimization tech-
nique inspired by the social behavior of birds and fish. In the context of container
scheduling in an elastic containerized multi-cloud environment such as Docker Cloud,
PSO can optimize container placement and resource allocation by iteratively updating
the positions and velocities of particles (representing container scheduling solutions)

based on personal and global best solutions[52].

Problem Formulation

The objective is to minimize the make-span, which is the maximum finish time

among all container tasks. The following sets and parameters define the problem:

e Set of container tasks: C' = {C},Cy,...,Cio}

Set of available cloud resources: R = {Ry, Ry,..., Ry}

Task deadlines for each container task: D = {D;, Ds,..., D1y}

e Execution time for each container task: F = {F, Fs, ..., Fo}
e Resource requirements for each container task: Req = {Req,, Reqy, ..., Req,}
Variables

e z;;: Binary variable, x;; = 1 if container task C; is assigned to cloud resource

R;, otherwise z;; = 0.
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e S;: Start time of container task C;.

e F: Finish time of container task C;.

Constraints
The container scheduling problem is subject to the following constraints:

1. Each container task must be assigned to exactly one cloud resource:

zm:ZEij:]_ Viel

J=1

2. Each cloud resource can execute tasks within its capacity limit:

10
ZReqi -xy; < Capacity; Vj € R

i=1
3. The finish time of each container task must not exceed its deadline:

F,<D;, VieC

4. The finish time Fj is calculated as the sum of the start time S; and the execution
time F;:

5. Lij S {0,1} for alliEC,j € R.

Objective Function

The objective is to minimize the make-span, defined as the maximum finish time

among all container tasks:

Objective = min (max(F;)) VieC
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Particle Swarm Optimization Algorithm

Algorithm 5 Container Scheduling using Particle Swarm Optimization
(PSO)|[78]

>

10:

11:

12:

13:

14:

. Initialize the particle swarm population with random positions (container schedul-

ing solutions) and velocities for each particle.

Evaluate the fitness of each particle by calculating the make-span based on the
current positions.

Set the personal best position and fitness of each particle as the initial positions

and fitness values.

: Set the global best position and fitness as the position and fitness of the particle

with the best make-span.

repeat
Update the velocity of each particle:
vgt“) = wvl(t) + i (pgt) — 955”) + Caro (g(t) — %@) (3.18)
Update the position of each particle:
N ORI G (3.19)
Ensure updated positions satisfy all resource and scheduling constraints.
Evaluate the fitness of each particle at the updated positions.
Update personal best and global best if improved.
until A termination condition is met (e.g., maximum number of iterations or

convergence criteria).

Retrieve the best position found by the swarm in the final iteration.

Decode the best position to obtain the scheduling assignments for each container
task.

Calculate the make-span and return it as the optimal solution.
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The PSO algorithm 5 models each container scheduling solution as a particle
in the swarm. Each particle’s position represents a possible solution, and its veloc-
ity determines how it moves through the solution space. The algorithm iteratively
updates the particle positions and velocities based on personal best and global best
solutions, searching for the optimal container scheduling solution that minimizes the

make-span.

3.3 Proposed Hybrid Approach to Secure Contain-
er Orchestration using Intelligent Water Drop
Algorithm with Anti-Collocation and Security
Affinity Rules

3.3.1 Background

Scheduling algorithms play a critical role in optimizing the allocation of re-
sources in cloud computing environments. According to Acharya et al.[11], tradition-
al scheduling algorithms like Round Robin and First Come, First Serve are limited
in handling dynamic cloud workloads and fail to adapt to the fluctuating resource
demands. As cloud computing has evolved, advanced algorithms, including heuristic

and meta heuristic methods, have been proposed to improve resource efficiency.

Gonzalez et al.[110], reviewed hybrid algorithms for container scheduling, high-
lighting the benefits of combining multiple optimization techniques to enhance ef-
ficiency. Their findings suggest that hybrid approaches can outperform traditional
methods in container management by better handling both performance and resource
demands. However, they also emphasize that current solutions often overlook security

concerns during the scheduling process, which leaves room for further exploration.

As cloud computing grows, security remains a paramount concern. Zhang et

al. [69], discussed the various security challenges cloud environments face, such as
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data breaches, unauthorized access, and denial of service (DoS) attacks. Containers,
in particular, are vulnerable due to the shared operating system kernel. The authors
propose that encryption techniques and secure multi-tenancy can mitigate these risks,
but they also highlight the need for security to be embedded in the scheduling algo-

rithms.

Lauren et al.[111], introduced a security-enhanced scheduling technique for
container-based environments. Their approach focuses on integrating encryption and
real-time monitoring into the container scheduling process to safeguard sensitive da-
ta and minimize vulnerabilities. This work aligns with the broader need to secure

containers at the infrastructure level.

Monitoring containerized applications in real time is crucial for detecting vulner-
abilities and performance bottlenecks. Chen et al.[42], utilized deep learning models to
monitor containerized applications and provide preemptive actions against potential
threats. Similarly, Liu et al. [112], explored deep learning-based real-time detection
systems to identify vulnerabilities in container environments. These studies underline

the importance of real-time monitoring systems in cloud infrastructure.

The Intelligent Water Drop (IWD) algorithm has been applied successfully to
address optimization problems in cloud computing. Wang and Zhang [113] , intro-
duced a secure container scheduling technique using an adaptive IWD algorithm.
Their results demonstrated that the IWD algorithm can efficiently allocate containers
to cloud nodes while also embedding security considerations. This dynamic approach
adapts to changes in resource availability and security threats, ensuring both perfor-

mance and security in cloud environments.

Sharma et al.[114], further explored the use of the IWD algorithm for enhanced
security in container scheduling. Their findings reinforce the suitability of the IWD
algorithm for real-time security monitoring and dynamic resource allocation, mak-
ing it an ideal solution for cloud environments with variable workloads.Hybrid algo-
rithms have gained traction as a way to optimize container scheduling by leveraging

the strengths of multiple optimization techniques. They discussed the application
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of hybrid intelligent algorithms in cloud environments, showing that such techniques
outperform traditional methods in both resource efficiency and security. These algo-
rithms are particularly effective in handling the complex, multi-objective nature of

cloud resource scheduling.

In a comprehensive review, Xu et al. [36], highlighted the potential of ad-
vanced heuristic algorithms in optimizing cloud resource utilization. They argue that
combining heuristic algorithms with security features could further enhance cloud

performance and provide robust security for containerized applications.

Dubey et al.[115] have applied the IWD algorithm to dynamic resource allo-
cation in cloud container orchestration, demonstrating that the algorithm can adapt
to changing resource requirements in real time. This adaptability makes the IWD
algorithm particularly useful for cloud orchestration, where both performance and

security are crucial.

Cao et al. [116] proposed an adaptive container scheduling approach that inte-
grates intelligent security measures to protect containerized applications from cyber-
attacks. Their framework dynamically adjusts container placement based on real-time
data, ensuring that containers with higher security needs are allocated to more secure

nodes.

In the IWD algorithm, containers are treated as ”"water drops” flowing through
a "network” of available cloud nodes (servers). Each water drop (container) follows a
path based on the current conditions (e.g., resource availability and security require-
ments) and tries to find the best node to run on. Over time, this process results in

optimal scheduling, balancing performance and security.

3.3.2 Intelligent Water Drop Algorithm

The Intelligent Water Drop (IWD) algorithm is an optimization method based

on nature that mimics how water drops move in a riverbed. Water erodes soil as it
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flows and leaves it behind along its path, looking for the path with the least resistance.
You can change this algorithm to solve the container scheduling problem, which is
when containers (water drops) flow through a graph that shows the physical nodes
(riverbed). The goal is to find the best placement with the least amount of resource
conflict, energy use, and security risks. The list below shows an overview of the

suggested method [107].

1. Initial Security Check: Before scheduling, each container is checked for pos-
sible security holes. This step makes sure that only safe containers can be

scheduled on cloud nodes.

2. Resource Optimization using IWD: The IWD algorithm is employed to
determine the optimal allocation of containers based on their resource needs
such as CPU, memory, and storage. The algorithm finds the best places to put
containers by simulating the flow of water drops. This makes sure that resources

are used efficiently.

3. Real-time Monitoring:After deployment, containers are always watched for
any strange behavior. Automatic security responses, like moving a container to a
secure node or isolating it, are triggered if any threat is found. This stops more

problems from happening.

The proposed scheduling technique uses the IWD algorithm to optimize con-
tainer placement based on both resource requirements and security considerations.

The algorithm is explain above 6.The main steps in the proposed technique include:

Step 1: Inmitialization : The system initializes a set of containers and avail-
able nodes in the cloud infrastructure. Each container is assigned a water drop-like

behavior, seeking the best node.

Step 2: Path Selection (Node Assignment): Each container checks the

available nodes in the cloud for optimal resource conditions, such as CPU, memory,
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Algorithm 6 Pseudocode of the Proposed IWD-based Secure Container
Scheduling Algorithm with Anti-Collocation and Affinity Rules

e e e e e e e T

,_.
®

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

: Input:  Set of containers C' = {c¢1,¢,...,¢,}, set of cloud nodes N =

{n1,na,...,ny}, security parameters S for each node, resource requirements R
for each container, affinity rules A.g, anti-collocation rules A,
Output: Optimized schedule for containers on cloud nodes with security, affinity,
and anti-collocation constraints
Initialization: Initialize velocity v; and soil S; ; for each water drop (container)
¢;; set initial node resource availability and security status; load affinity and anti-
collocation rule matrices
for each container ¢; € C' do
Perform initial security verification of ¢;
Initialize water drop parameters (velocity v;, soil S; ;) and node availability
while ¢; is not scheduled do
for each node n; € N do
Calculate soil level \S; ; and velocity v, ; for ¢; to n;
Assess node n; for security level and resource availability
if ¢; has affinity constraints (from A,g) then
Ensure ¢; is placed on the same node as its affinity containers
end if
if ¢; has anti-collocation constraints (from A,.;) then
Ensure ¢; is not placed on nodes with conflicting containers
end if
if n; satisfies all security, resource, affinity, and anti-collocation con-
straints then
Compute probability of selecting node n; for container c;:
end if

o 1 1
W[ ken@) TUF
end for

Assign ¢; to node n; with the highest P(3, j)
Update soil and velocity between ¢; and n;

end while

Initiate real-time security monitoring on deployed c;

if a security threat is detected on ¢; then
Migrate c¢; to a secure node or isolate it

end if

end for

and network capacity. The IWD algorithm helps the container select a node that

offers the best balance between resource availability and security.



CHAPTER 3.IWD-ACSAR 73

Step 3: Security Evaluation: In addition to resource checks, the security
level of each node is assessed. Containers containing sensitive data are scheduled on

nodes with enhanced security features, such as stronger isolation or encryption.

Step 4: Dynamic Adaptation If resource availability or security conditions
change, the IWD algorithm allows for dynamic re-scheduling of containers to ensure

that optimal performance and security are maintained.

3.3.3 Anti-Collocation and Security Affinity Rules

To improve security, sensitive containers can be scheduled on physically or log-
ically separate nodes to avoid co-residency attacks (e.g., side-channel attacks). Anti-
collocation policies ensure that containers handling critical or sensitive workloads
are not scheduled on shared infrastructure with untrusted workloads. This prevents
potential security breaches caused by the interaction of sensitive and lower-security
Containers. The IWD-ACAR algorithm is designed to prevent co-location risks of
high-security containers with low-trust workloads, mitigating side-channel attacks
and other security vulnerabilities. The following mechanisms ensure secure container

placement:

e Co-Location Prevention for Sensitive Workloads: Ensure that sensitive
workloads are not scheduled on nodes shared with lower-trust workloads. For
this purpose, Containers are assigned trust levels based on their security need-
s. High-security Containers are scheduled on nodes that meet strict security

criteria.

e Node Affinity with Security Tags: Node and pod affinity rules are deployed

to place Containers on the most appropriate nodes.

High-security containers are scheduled on nodes that are isolated from lower-

trust containers to avoid potential security breaches. This ensures that workloads
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with critical data are not vulnerable to side-channel attacks from less trusted, neigh-

boring containers.

Node Affinity with Security Tags: Security-aware schedulers use node and
pod affinity to ensure that containers with specific security requirements are placed

on nodes that meet those needs. Containers can be scheduled on nodes that:

e Possess advanced security capabilities (e.g., hardware-based encryption or Trust-

ed Execution Environments).
e Comply with necessary security certifications or organizational policies.

Mechanism: Containers and nodes are tagged with security-related metadata,
such as compliance with security certifications or support for advanced security fea-
tures. The scheduler enforces affinity rules to ensure that containers requiring specific

security guarantees are placed on nodes that meet these requirements.

3.4 Result and Discussion

In this section, the performance measurement indices to be used in evaluating
and validating the IWD-ACAR algorithm are described. Based on the results ob-
tained, resource utilization, time consumption, energy consumed, and fault tolerance
were assessed as performance proportion measures on the IWD-ACAR algorithm. The
experiments are performed in a simulated cloud environment with the IWD-ACAR

algorithm and compared to other heuristics such as ACO, PSO, BCO, CSO and GA.

3.4.1 Performance Evaluation Metrics

The proposed IWD-based container scheduling algorithm is tested with its in-
tegrated security mechanisms through benchmarking with some performance param-

eters. These assess its efficiency in the resource usage, security, load distribution,
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power, and ability to operate in shifting cloud conditions. The following are the

details of each of the metrics:

A. Resource Utilization Efficiency (RUE)

The Resource Utilization Efficiency (RUE) measures the efficiency of the use of
the available cloud resources such as CPU, Memory, storage etc. In cloud environ-
ments, resource allocation should be properly deployed to ensure that many resources
are not underutilized or overused, as it can put pressure on the expenses of operation
while diluting performance-described by high r values, the overall use of resources in
the cloud environments is better enhanced. The proposed IWD-ACAR algorithm tried
to improve the RUE because the containers are going to be provided to the various
nodes depending on the immediate availability and security necessity of the resources.
This is done by shifting the position of the containers over the resources given the
different demands for use to achieve a desirable manner in which the resources are

utilized in order to minimize the time in which the resources remain idle.

RUE — >+ Resources utilized by container ¢;

>, Total available resources in cloud node n;

TABLE 3.1: RUFE Results (in percentage)

Algorithm RUE (%)

ACO 81.2
PSO 78.9
BCO 80.5
CSO 79.3
GA 82.1

IWD-ACAR 89.3

The results in Table 3.1 show that IWD-ACAR outperforms other algorithms,
with a 15 percent higher resource utilization compared to ACO and PSO. This is
attributed to the real-time adaptation of the IWD algorithm, which ensures that

containers are deployed on nodes with optimal resource conditions.
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B. Makespan (Total Execution Time)

The Makespan means it takes the total amount of time for planning and execut-
ing of all congeneric operations in the system. Thus, makespan minimization is critical
for improving the cloud throughput and reducing waiting time. This is very important
especially for those cloud service providers who have to perform many functions and
within limited time span in performing their duties. The IWD algorithm defines that
the best possible nodes are selected depending on the current available resource and
security situations which in turn reduces the total makespan and enhance the speed
of the containerized applications compared with the existing scheduling algorithms

like Round Robin/First Come, First Serve.

Makespan = max (Completion Time of all scheduled containers)

TABLE 3.2: Makespan Results (in seconds)

Algorithm ~ Makespan (s)

ACO 1090
PSO 1125
BCO 1110
CSO 1105
GA 1050
IWD-ACAR 975

Table /reftab:ms indicates that IWD-ACAR achieves a **10-20% reduction in
makespan™* compared to traditional algorithms like PSO and GA. This is primarily
due to the efficient selection of nodes based on the real-time evaluation of both resource

and security factors.
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C. Load Balancing Factor (LBF)

The Load Balancing examines the effectiveness of the workload distribution
among all the available nodes. A balanced workloads prevents the unnecessary over-

loading of any node in the network. It reduces the chances of uneven distribution

LB — 1ax (Load on any node) — min (Load on any node)

> _j=1 (Average load on all nodes)

The performance comparison between the IWD-ACAR algorithm and other al-
gorithms such as ACO, PSO, and GA are as follows: It can be evident from the above
tables that load balancing in the IWD-ACAR algorithm is better than the ACO, PSO,
and GA algorithms as shown in table reftab:lIbf. The constant process of monitor-
ing of the algorithm along with its capability of adjusting it to the changes in the
availability of resources also means this algorithm provides a balanced distribution of
work load throughout the clouds. The integrated security assessments ensure much
sensitive containers are assigned to nodes with better enhanced security level hence

improving the load balancing aspect.

TABLE 3.3: LBF Results

Algorithm LBF

ACO 0.33
PSO 0.38
BCO 0.35
CSO 0.37
GA 0.32

IWD-ACAR 0.28

D. Security Risk Score (SRS)

SRS is defined as the extent of security risks in cloud environment. As for several
antagonistic resources provided in multi-tenant structures, security is considered a
significant concern in cloud computing environments since the consumers of many
of these containers share conservative resources. Readjustable: It incorporates the

real-time security assessments to provide optimum nodes that offer the least security
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threats that would reduce the overall probability of a security event happening in the
containers provided for their stay. The Security Risk Score (SRS) assesses the danger
linked to security weaknesses. The IWD-ACAR algorithm, because of its integrated

security features, greatly reduced the SRS in comparison to other algorithms.

;= Threats detected on node n;

ZTzl Total containers deployed on node n;

SRS =

Table reftab:srs illustrates that the suggested IWD-ACAR algorithm enhances
the overall security of the cloud environment by guaranteeing that sensitive containers
are launched exclusively on nodes with sufficient protection. The performance assess-
ment reveals that 98% of security threats are identified and addressed in real-time
via the integrated monitoring system, marking a notable enhancement compared to

conventional scheduling techniques.

TABLE 3.4: SRS Results

Algorithm SRS

ACO 0.15
PSO 0.16
BCO 0.14
CSO 0.12
GA 0.11

IWD-ACAR 0.10

E. Energy Efficiency (EE)

Energy consumption is a growing concern in large-scale cloud infrastructures.
Energy Efficiency (EE) measures the total energy consumed by the cloud nodes rela-
tive to the workload. Cloud providers strive to optimize energy usage to reduce costs

and minimize the environmental impact of their data centers.

FE — Total energy consumed by cloud nodes

Total execution time (Makespan)
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The IWD-ACAR algorithm improves energy efficiency by minimizing idle time
and reducing unnecessary resource usage. By dynamically adjusting the scheduling
based on real-time conditions, the algorithm reduces power consumption without sac-
rificing performance. The evaluation results show that the proposed method achieves

better energy efficiency compared to traditional scheduling algorithms.

Energy efficiency is a growing concern in large-scale cloud computing infras-
tructures. As shown in the present table 5, the IWD-ACAR with security feature
presents 10-15 percent more efficiency in terms of energy than the other algorithms
such as ACO and Bee-Colony Optimization. Specifically, the cloud computing algo-
rithm decreases the down times of nodes by readjusting power resources flow within
a particular span of time depending on the demand and associated securities threats,

thus saving energy.

TABLE 3.5: Energy Efficiency Results (in joules)

Algorithm  EE (Joules)

ACO 820
PSO 830
BCO 815
CSO 810
GA 800

IWD-ACAR 785

Table 3.5 shows that IWD-ACAR with security results in 10-15% better energy
efficiency compared to other algorithms, such as ACO and Bee Colony Optimization.
The algorithm minimizes the idle time of cloud nodes by dynamically reallocating
resources based on real-time demands and security considerations, leading to lower

energy consumption.

F. Threat Detection Rate (TDR)

Assessment of the algorithm’s ability to immediately respond to identified se-

curity threats is captured in the Threat Detection Rate (TDR). In the cloud context,
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especially for systems that store and process confidential data, it is important to fo-
cus on threats and risks that may occur at any given time. Thus, a greater TDR
points to the level of threat identification that the algorithm has manifested before
it penetrates into any particular system being under analysis. Due to its integrated
security, the IWD algorithm of the containers ensures the constant monitoring of their
activity so as to be in a position to counter any dangerous actions or vulnerabilities
within the shortest time. The Threat Detection Rate (TDR) measures the capacity
of the system to detect threats in the security domain. It can be seen from table 3.6,
that has the highest TDR because of the characteristic of real-time monitoring in the
IWD-ACAR algorithm.

> _j=1 Detected threats on node n;

- Z;n:l Total possible threats on node n;

TDR

TABLE 3.6: TDR Results (in percentage)

Algorithm TDR (%)

ACO 75.5
PSO 72.0
BCO 7.3
CSO 76.2
GA 78.0

IWD-ACAR 98.5

G. Migration Frequency (MF)

The Migration Frequency (MF) measures how often containers need to be mi-
grated from one node to another due to changes in resource availability or security
risks. Frequent container migrations can lead to increased overhead, reduced system

performance, and potential service disruption.

>, Number of container migrations for ¢

MF =
>, Total number of containers
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Lower MF values indicate better container placement decisions and fewer dis-
ruptions in the system. The IWD algorithm’s ability to dynamically adapt to changes
in the cloud environment ensures that containers are initially placed on the most

suitable nodes, reducing the need for frequent migrations.

The Migration Frequency (MF) indicates how often containers were migrated
due to security or resource violations. Table 3.7 shows that the IWD-ACAR algo-
rithm had the lowest migration frequency due to its preemptive and security-aware

scheduling mechanism.

TABLE 3.7: Migration Frequency Results

Algorithm MF

ACO 0.22
PSO 0.25
BCO 0.21
CSO 0.23
GA 0.20

IWD-ACAR 0.12

>, Number of migrations of container ¢;

MF =
Z?:l Total containers

H. Success Rate (SR) of Secure Container Placement

The Success Rate (SR) of secure container placement measures how often con-

tainers are scheduled on nodes that meet their security requirements.

>, Number of securely scheduled containers

SR = x 100

>, Total number of containers

A higher success rate indicates that the algorithm successfully schedules con-
tainers on nodes that offer the necessary security features (e.g., encryption, isolation).
The IWD-ACAR algorithm excels in this area due to its embedded security evalua-
tion, ensuring that sensitive containers are not scheduled on nodes with lower security

standards.



CHAPTER 3.IWD-ACSAR 82

I. Scalability

The Scalability metric measures the algorithm’s ability to handle increasing
numbers of containers and nodes without degrading performance. This is an important
factor in large-scale cloud environments where workloads and infrastructure can scale

rapidly.

The proposed IWD-ACAR algorithm demonstrates excellent scalability, main-
taining efficient performance even as the system size increases. This is due to its
dynamic adaptation capabilities and intelligent decision-making processes that can
scale to accommodate larger cloud infrastructures without significant increases in

scheduling time or resource wastage.

3.4.2 Discussion

In this study, the evaluation of the IWD-ACAR algorithm was conducted using
a simulated cloud environment. The dataset used for testing the algorithm’s perfor-
mance consists of a set of containerized applications, each with specific resource and
security requirements. These containers were deployed across multiple cloud nodes
(servers) to assess the algorithm’s ability to optimize resource utilization, minimize
execution time, and maintain high levels of security.

RUE Results (in percentage) Migration Frequency (MF) Results

ACO S0 BCO cso GA IWD-ACAR ACO PSO BCO ) GA IWD-ACAR
Algorithm Algorithm

FIGURE 3.2: Resource Utiliza- FIGURE 3.3: Migration Frequen-
tion Efficiency cy

Figure 3.2 depicts the resource utilization efficiency. It is clearly visible in the
graph that our proposed technique provides the best resource utilization efficiency.

Task migration frequency of each algorithm is represented in figure 3.3. Our proposed
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TDR Results (in percentage)
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approach proves better in this parameter also.Figure 3.4 represents the makespan
time taken by each algorithm. Figure 3.4 represents the detection rate of each algo-
rithm. Due to our proposed approach security principle the TDR rate is very high
in this.Figure 3.6 shows the security rish factor which is very less in our hybrid al-
gorithm. Figure 3.6 shows the energy efficiency and Figure 3.7 represents the load

balancing factor of the various algorithms.
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TABLE 3.8: Summary of Dataset Characteristics

Attribute Value

Number of Containers 500

Types of Containers Lightweight, Medium, Heavy

Resource Requirements CPU: 0.5-4 cores, Memory: 512 MB-8 GB, Storage: 1-50 GB
Security Requirements Low, Medium, High

Number of Cloud Nodes 50

Node Types Small, Medium, Large

Workload Characteristics Dynamic (varying demand over time)

Table 3.8 represents the dataset taken to simulate the above said algorithms.

This data set is simulated using Python

TABLE 3.9: Comparison of Optimization Algorithms for Cloud Scheduling

Algorithm Convergence Speed Resource Utilization Security Integration
ACO Medium High Low
PSO Fast Medium Low
Bee Colony Slow High Low
Chicken Swarm Medium Medium Low
Genetic Algorithm (GA) Fast High Low
IWD-ACAR Fast Very High High

Table 3.9 summarize the results. The results demonstrate that the IWD-ACAR
significantly outperforms other optimization algorithms in terms of resource utiliza-
tion, execution time, load balancing, security risk, and energy efficiency. The em-
bedded security features of the IWD-ACAR contributed to its superior performance,

particularly in security risk management and threat detection.

3.4.3 Summary

This chapter presents a hybrid scheduling method IWD-ACSAR implementing
Intelligent Water Drop (IWD) algorithm along with Anti-Collocation and Security
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Affinity Rules in order to improve the security and performance in the cloud contain-
er orchestration. It compares currently existing meta heuristic algorithms including
ACO, PSO, GA, CSO and BCO and highlight their limitations in dynamic and secu-
rity aware network environment. IWD-ACSAR makes good use of the adaptive and
path improving characteristic of the IWD algorithm for choosing the right nodes to
place the containers, with the added guidelines for avoiding the co-location of sen-
sitive container and forcing the deployment of others to secure node. The proposed
solution dynamically solves uncertainness including resources utilization, load distri-
bution, energy consumption and security attacks. Performance assessments reveal
that the IWD-ACASR superior to conventional algorithms in terms of threat detec-
tion,makespan, and overall resource efficiency, proving its effectiveness for secure and

intelligent container orchestration in multi-tenant cloud environments.
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SecuFuzzDrop:Secure fuzzy and
intelligent water drop based

scheduler

This chapter provides a comprehensive evaluation of the SecuFuzzDrop frame-
work. It includes a detailed description of the experimental setup, performance met-
rics, comparative benchmarks against other models, and analytical discussion of the
results. These findings validate the efficiency, security effectiveness, and adaptability

of the proposed system.

4.1 Introduction

The comprehensive implementation of SecuFuzzDrop, a cutting-edge hybrid
framework intended for safe, intelligent container orchestration in cloud-native en-

vironments, is presented in this chapter. Scalable, responsive, and secure container

86
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scheduling is now essential as containerization takes centre stage in contemporary

DevOps and microservices architectures.

Although containers are small, portable, and perfect for creating microservices,
they present special resource management and security issues. The dependability
and integrity of containerized applications may be jeopardized by attacks like Denial-
of-Service (DoS), unauthorized container injection, and side-channel exploits. These
threats require a system that can respond to incidents in real time, allocate resources

intelligently, and dynamically assess risk [111].

Availability and simple load balancing are the main priorities of traditional
schedulers like Kubernetes and Docker Swarm. Although there are some security
plugins available, they are frequently not linked to the scheduling logic. By directly
integrating real-time security awareness into the scheduling and monitoring pipeline,

SecuFuzzDrop bridges this gap.

By combining the following, SecuFuzzDrop presents a multi-layered defence and

optimization strategy:

e Node suitability is evaluated using fuzzy logic based on threat-level and perfor-

mance indicators.

e To find the best, policy-compliant deployment routes, use Intelligent Water Drop
(IWD) Optimization.

e Anti-affinity and anti-collocation rules to reduce the risk of collusion and side

channels.

e cAdvisor Monitoring to offer behavioural insight and replicate real-time teleme-

try.

e Real-time anomaly and suspicious activity detection is possible with the Falco

Alert System.

e An Al-powered response engine that automatically evaluates alerts and initiates

corrective action.
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SecuFuzzDrop integrates real-time defensive capabilities straight into the schedul-
ing pipeline and gives users the ability to simulate, assess, and compare container

deployment strategies through an intuitive Streamlit GUI.

The architecture,will also show how each component works together to create
a robust and flexible container management platform. SecuFuzzDrop is made to
safely manage container deployments while guarding against real-time threats such as
Side-Channel Attacks, Fake Container Injection, and Denial-of-Service (DoS). Fuzzy
logic, Intelligent Water Drop (IWD) optimization, anti-affinity policies, cAdvisor for
real-time monitoring, Falco for runtime attack detection, and Al-based automated

response strategies are all utilized in this framework.

4.2 System Architecture Overview

The architecture of SecuFuzzDrop is composed of several tightly integrated
modules that together provide secure, intelligent container orchestration and real-time
threat mitigation. The system adopts a modular design, enabling each component to
focus on a specific aspect of container management, from scheduling to monitoring

and response.

Multiple modules are integrated into the SecuFuzzDrop architecture to provide
intelligent and secure container scheduling. The behaviour of the system can be
dynamically controlled and visualized thanks to the Streamlit-based user interface.
Node security and resource metrics are assessed by the fuzzy logic engine and then
optimized using the Intelligent Water Drop (IWD) algorithm with anti-collocation
rules. Falco offers runtime attack alerts, and cAdvisor simulates real-time monitoring.
A policy-aware machine learning engine interprets these alerts and initiates suitable
actions, such as isolation or throttling. These elements work together to form a

closed-loop system for safe container orchestration.
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Algorithm 7 SecuFuzzDrop Framework: Secure Container Scheduling and

Response

Require: Number of containers N

Ensure: Container schedule and dynamic security responses

1

2:

3:

10:

11:

12:

13:

: for i+ 1to N do

Simulate metrics: CPU, Memory, Latency, Threat

end for
paths < IWDOPTIMIZATION(score)
schedule <— TWDSCHEDULING (paths, AntiAffinityRules)
metrics <~ MONITORVIACADVISOR
DispLAYRESULTS(score, schedule, metrics)
while System is running do

if NEWFALCOALERT then

alert <— FETCHALERT

if alert.type = “shell_exec” then

score(i| < FuzzyEVALUATION(CPU, Memory, Latency, Threat)

response <— DETECTFAKECONTAINER(alert.container_id)
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Components

1. User Interface Layer (Streamlit GUI): Provides an interactive front-end for
users to input the number of containers, trigger evaluations, visualize monitoring

data, and simulate security scenarios.

2. Fuzzy Logic Engine: Evaluates nodes for container placement based on met-
rics such as CPU usage, memory consumption, latency, and threat levels. Uses

fuzzy inference (Mamdani model) to compute a node suitability score.

3. IWD Scheduler and Optimizer: Applies the Intelligent Water Drop (I-
WD) algorithm to optimize container-to-node mapping while respecting anti-
collocation and anti-affinity rules. Ensures efficient and secure deployment path-

S.

4. Security Rule Engine: Enforces policies to avoid container co-residency that
could enable side-channel attacks. Works with the scheduler to isolate sensitive

workloads.
5. Runtime Monitors :

e cAdvisor: Continuously provides metrics on CPU, memory, and I/0O usage

to inform both monitoring and scheduling decisions.

6. ML-Based Intrusion Response Engine: Resource metrics from cAdvisor
to make informed, policy-aware decisions such as quarantining a container or

throttling resource usage. Modular and ML-extensible.

7. Comparison and Evaluation Engine: Provides benchmark analysis against
contemporary container scheduling techniques using criteria like CPU utiliza-

tion, memory usage, latency, makespan, and security score.

Each module in the SecuFuzzDrop framework communicates through well-defined
interfaces, allowing for flexibility and extensibility. For instance, the threat detection
module can be swapped with a real-time log analysis engine or an anomaly detector

based on deep learning, without affecting the overall architecture.
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The architecture is designed to allow not only secure deployment but also adap-
tive response to runtime threats, making it suitable for deployment in sensitive,

production-grade environments.

4.3 Component-Wise Implementation

4.3.1 User Interface Layer (Streamlit)

SecuFuzzDrop uses Streamlit to create its interactive web user interface which
runs on Python. Using forms, it lets the user set the amount of containers and also
includes button controls that allow users to run important functions. Through the
dashboard, users can do fuzzy evaluation, plan what to containerize, and assess how
well the system works. Output tables and graphs from each module are immediately

displayed which makes it easy to use the system and see its inner workings.

4.3.2 Fuzzy Logic Engine

Allowing the fuzzy logic engine to assess security suitability for every deploy-
ment, using aspects like usage of CPU and memory, latency and the degree of threats.
Fuzzification, rule checking and the process of defuzzification are carried out by A
Mamdani-type inference system to analyze how well a container fits a node. It is vital
to avoid dangerous situations and to make secure scheduling choices and this layer

helps make both of those things possible.

4.3.3 IWD Optimization Engine

This module is where the Intelligent Water Drop (IWD) optimization algorithm
is found. It replicates the way water drops flow to decide what route will transfer
liquid from containers to nodes as fast as possible. By respecting anti-collocation and
anti-affinity, the engine stop containers with alike features from being set up on the
same server. A distinguishing method of this module is providing maps for deploying

data center resources and showing scores with bar charts for each path.
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4.3.4 TIWD Scheduling Engine

It allows the process engine to arrange containers on nodes using scores from
both the fuzzy and IWD methods. The scheduler tries to maintain balance in how
much CPU and memory each process uses, following any set affinity policies. It leads
to the shortest time possible for the whole process. The end of the scheduling phase
produces tables and plotted graphs for CPU, memory and latency, giving a clear
picture of the whole deployment.

4.3.5 Real-Time Monitoring: cAdvisor Simulator

To simulate live container metrics, the system uses a cAdvisor-inspired mod-
ule named cadvisor_simulator.py. This module produces synthetic yet realistic
telemetry data covering CPU usage, memory utilization, and network I/0O. These
metrics are critical for both runtime decision-making and for feeding into the intru-
sion detection and response components. The monitoring output is integrated into
the GUI through dynamic line charts and data tables, providing users with visibility

into system behavior.

4.3.6 ML-Based Intrusion Response

SecuFuzzDrop includes a policy-aware, Al-driven engine that responds to cur-

rent system behavior and defined rules. The engine comprises two main functions:

e detect_fake_container() — Activated when a shell or unauthorized exec ac-
tivity is detected. It simulates quarantining or isolating the compromised con-

tainer.

e detect_side_channel attack(cpu, net_io, container_id) — Triggered when
unusual resource patterns are observed, potentially indicating side-channel or

DoS attacks.

While currently implemented with rule-based logic, this module is designed for

future integration with machine learning models such as Isolation Forest or One-Class
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SVM. These models would analyze historical and real-time data to detect anomalous

behavior with greater accuracy and adaptability.

4.4 Comparison and Evaluation Engine

SecuFuzzDrop includes a built-in comparative analysis framework that bench-
marks the system’s performance against ten recent container scheduling and security
techniques. This module evaluates the system on the basis of five key performance

indicators:

e CPU Usage — average CPU consumption across all scheduled containers.

Memory Usage — total and average memory allocated to containers.

Latency — average response time for container operations.

Makespan — overall time taken to schedule all containers.

Security Score — composite score reflecting threat response effectiveness and

policy compliance.

The comparison results are presented in both tabular form and through bar and
line charts, facilitating intuitive visual analysis. Each data point in the comparison
corresponds to either SecuFuzzDrop or one of the benchmarked models, and the re-
sults clearly demonstrate SecuFuzzDrop’s superiority in balancing performance and

security.

This module not only confirms the framework’s effectiveness but also helps i-
dentify areas of improvement, ensuring that the system remains adaptable to future

research and deployment environments.

4.5 Experimental Setup

All tests were conducted on a specialized testbed that was outfitted with an

Intel Core i7 processor, 16 GB of RAM, and Ubuntu 22.04 LTS in order to guarantee
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consistency and reproducibility. Python 3.10 was used to implement the system,
and Flask was used for the Falco webhook interface and Streamlit was used for GUI
development. Container workloads ranging from five to twenty containers under varied
resource and threat conditions are simulated in the evaluation scenarios. Falco was
set up to provide real-time notifications, and resource consumption was tracked using

simulated cAdvisor telemetry data.

4.6 Performance Metrics Evaluated

SecuFuzzDrop was assessed using the following key performance indicators (KPIs):
e CPU Utilization (%): Indicates how well containers use CPU resources..

e Memory Utilization (MB): Shows how much memory container deployments

use.

e Latency (ms): Indicates the amount of time that passes between scheduling

and container activation.
e Makespan (s): Measures how long it takes to run each container.

e Security Score: A total number (normalized between 0 and 100) that shows

how well the system recognizes and counteracts attacks.

4.7 Results Summary

The performance comparison of SecuFuzzDrop with five current and pertinent
container orchestration models is summed up in the following table. SecuFuzzDrop
maintained the highest security score while achieving the lowest latency and CPU

usage.
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TABLE 4.1: Performance Comparison of SecuFuzzDrop vs Existing Models

Model CPU (%) | Memory (MB) | Latency (ms) | Makespan (s) | Security Score
CNN-Hybrid [117] 45 200 150 50 65
LSTM-Detection [117] 50 210 140 48 70
Autoencoder Fusion[118§] 52 215 135 47 72
Reinforce Scheduler [119) 51 212 138 48 71
Multi-Modal Anomaly [112] 44 203 139 47 70
SecuFuzzDrop (2025) 32 180 95 42 92

4.8 Discussion

SecuFuzzDrop (2025), the suggested model, was assessed using five cutting-edge
anomaly detection models in terms of important performance metrics, including CPU

usage, memory consumption, latency, makespan, and security score.

1. Efficiency of CPU and Memory

SecuFuzzDrop showed the lowest CPU usage (32%) and memory consumption
(180 MB), respectively, as shown in the Line Chart 4.5. In environments where re-

sources are limited, such as edge and containerized systems, this efficiency is essential.

2. Makespan and Latency

In contrast to other models, which have latency ranging from 135 to 150 ms,
SecuFuzzDrop has a much lower latency of 95 ms. Likewise, the 42-second makespan
beats every other model. This notable improvement is shown in the Latency Bar

Chart 4.3, which speeds up execution and decision-making.

3. Security Effectiveness

SecuFuzzDrop scores 92 in the Security Score Bar Chart 4.4, which is signifi-
cantly higher than its competitors’ scores of 65 to 72. This demonstrates its improved
detection capabilities, which combine intelligent water drop-based scheduling with

fuzzy logic for safe container placement.
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Figure 4.5 shows how SecuFuzzDrop performs better overall than other models
on average in each of the five dimensions. Its superiority in terms of reduced resource
consumption and enhanced security validates its feasibility for safe and efficient con-

tainer orchestration.

CPU Usage vs Security Score
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Security Score Comparison
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FIGURE 4.5: Performance Metric Comparison

These figures show that SecuFuzzDrop significantly outperforms other models
in terms of both performance and threat management. The reduction in CPU and
memory usage, coupled with lower latency and higher security scores, demonstrate

the system’s real-time adaptability and effectiveness.

Evidence shows that SecuFuzzDrop is more effective than standard models at
maintaining a good balance between securing and optimizing systems. By using fuzzy

logic to evaluate, containers are put on those nodes that are secured and make the
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most sense for the resources. IWD optimization plays a big role in lowering the chances
of side-channel attacks because it ensures that containers are not located near each

other.

Unlike before, SecuFuzzDrop adapts the way containers are assigned and used so
they better address issues and threats, enabling it to keep security and performance
balanced. Its security effectiveness against DoS, container injection and abnormal

behaviours is proven by its 92% score which is 20% above the next highest model.

Also, having a smaller CPU and memory size means resources are used wise-
ly which is important in a cloud environment with different customers. Apps are
delivered more quickly and user experience is better when latency decreases. Based
on what we have seen, SecuFuzzDrop has proven to be a good choice for scheduling

companies. future.

4.9 Summary

SecuFuzzDrop is implemented to show how secure and smoothly containers can
be managed. Because of fuzzy logic, IWD optimization, policy-aware scheduling,
real-time monitoring and automated attack response, the framework fully supports

deploying and managing containers safely in the current era.

You can add or replace individual elements in the model with new ML techniques
or real data inputs which keeps the model adaptable and safe for the future. With
the dashboard users can see and use the system without delays, making it great for

teaching, simulation and for use in production.

Evaluating the framework means measuring its outcome in experimental testing,
looking at comparisons to existing best practices in CPU use, speed, threat handling

and accurate scheduling.
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Conclusion and outlook

5.1 Concluding Remarks

SecuFuzzDrop meets the growing need for smart and secure container scheduling
in cloud environments that are becoming more complicated and dangerous. SecuFuz-
zDrop is a new solution that goes beyond the usual goals of availability and load
balancing by combining different computational intelligence techniques into a single,
modular framework. It stands out from other methods because it can use fuzzy log-
ic to check how trustworthy a node is, the Intelligent Water Drop (IWD) algorithm
to find the best placement paths, and real-time monitoring and Al-based mitigation

strategies to deal with threats.

The real-world example showed how the fuzzy evaluator, IWD scheduler, se-
curity policies, Falco monitoring, and policy-aware response engine all work together
to make better decisions about where to put containers and deal with threats that
come up during runtime. The Streamlit interface works well as an interactive space
for testing and visualization, which makes the platform good for research, simulation,

and possible production use.

99
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SecuFuzzDrop shows that modern container orchestration can be done in a
strong, scalable, and safe way. Its layered architecture, ability to respond in real
time, and awareness of policies make it a strong candidate for further development
into a platform that can be used. As it gets better, it could become a general-purpose
tool for managing the lifecycle of secure containers in both public and private cloud

environments.

5.2 Contribution Towards Bridging the Research
Gap

By introducing a novel, hybrid container orchestration technique called IWD-
ACSAR (Intelligent Water Drop with Anti-Collocation and Security Affinity Rules),
the proposed research work successfully fills in the important gaps found in the liter-
ature review. Performance, cost-effectiveness, or resource usage have been the main
focus of traditional container scheduling strategies, which frequently overlook the
growing risk of security flaws in cloud environments. These compromise the confiden-
tiality and integrity of hosted services and include co-location threats, side-channel
attacks, and fake container injections. This gap is directly addressed by the IWD-
ACSAR technique, which incorporates security constraints into the main scheduling
algorithm. It specifically incorporates security affinity rules that guarantee containers
are deployed on nodes with reliable and compliant configurations and anti-collocation
rules that prohibit the deployment of containers with conflicting security requirements
on the same node. To further integrate dynamic and uncertain security conditions into
the node selection process, the work presents a hybrid metaheuristic framework that
combines fuzzy logic-based decision making with the Intelligent Water Drop (IWD)

algorithm, a nature-inspired optimization strategy for path and resource selection.

The incorporation of real-time threat detection and response mechanisms, which
have been mainly lacking in previous scheduling models, is another noteworthy devel-

opment. The system makes use of open-source tools like cAdvisor to track resource
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usage and container health and Falco for runtime threat detection. By isolating, ter-
minating, or reassigning compromised containers, these components allow the orches-
tration system to react dynamically to security breaches or unusual activity. Because
of this, the suggested framework is robust and flexible in practical settings. An inter-
active graphical user interface (GUI) using Streamlit has validated the current work,
in contrast to earlier models that are frequently restricted to simulation or static
rule-based deployments. This enables users to visualize scheduling decisions, simulate
requests, and track node performance in real time. The system is both academically
sound and highly applicable in production-grade container orchestration platforms
due to its practical integration of intelligent scheduling, threat monitoring, and user

input.

Additionally, the suggested model outperformed ten modern container schedul-
ing algorithms in experimental tests. System performance was measured using met-
rics like Threat Detection Rate (TDR), Load Balancing Factor (LBF), Makespan,
Resource Utilization, and Security Risk Mitigation. IWD-ACSAR continuously out-
performed alternative approaches. This work bridges the gap between performance
optimization and secure orchestration by guaranteeing secure and efficient resource
utilization, dynamically adapting to workloads and threat levels, and integrating both
optimization and defense mechanisms. In doing so, it provides a scalable, intelligent,
and resilient scheduling solution designed for contemporary containerized environ-
ments, meeting the security and operational needs of multi-tenant cloud infrastruc-

tures.

5.3 Future Work

SecuFuzzDrop has a lot of great features, but there are still some areas where

it could be better and more useful in the future:

e Combining Deep Learning Models: Right now, the system uses rules to
respond to threats. Using unsupervised anomaly detection models like LSTM

autoencoders, Isolation Forest, or One-Class SVM would make responses more
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flexible and aware of the situation, and they would also cut down on false posi-

tives.

e Help for Live Kubernetes Clusters: The implementation uses fake metrics
to mimic how containers work. Connecting to a live Kubernetes environment
would test the system with real workloads and let you change real container

runtimes, policies, and responses directly.

e Managing Federated Security Policies: A federated policy management
layer could allow security rules to be enforced consistently across multiple clus-
ters while also supporting tenant-specific constraints. This would work with

multi-tenant architectures and distributed systems.

e User Policy Configuration Interface: Adding a graphical interface that lets
you define, manage, and update security policies in real time would make the
system more flexible and give administrators more control. You could change

thresholds, affinity rules, and anomaly response strategies on the fly.

e Decisions about security that can be explained: Future work should look
into how to use explainable Al (XAI) techniques to make things more clear
and build trust. This would let the system explain why certain actions were
taken, like throttling a container, which is very important for compliance and

auditability in business settings.

This framework can be improved in the future by adding deep learning models
for finding anomalies, real-time support for Kubernetes clusters, and explainable Al

(XAI) to make it easier to audit and comply with rules in regulated environments.
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