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ABSTRACT 

Electric power plays a crucial role in the economy and development of any country. 

To ensure sustainable economic growth, it is essential to have the appropriate 

infrastructure in place. The power sector significantly contributes to a country's 

development, as electricity is fundamental to modern societies. Electricity can be 

generated from various sources, including traditional ones like thermal, nuclear, 

hydroelectric, and oil and gas-based plants, as well as from modern sources such as 

solar, tidal, geothermal, and wind energy. In India, the demand for electricity is rapidly 

changing, requiring a substantial increase in power generation capacity to meet the 

growing needs. 

COVID-19 has a large impact on humans and nature and changes electricity 

consumption among the nations. Individuals have been observed to staying home and 

many organizations have suspended or scaled back operations due to the pandemic. 

It is important to analyse the power demand and the impact on the power grid during 

this pandemic. Such analysis allows energy companies to prepare for future adverse 

events and pandemics. Many policy makers have set targets for renewable 

energy generation and analysing electricity demand can help 

improve contingency planning in the event of future pandemics or adverse 

impacts. The ever-increasing appetite for electricity has led practitioners to look 

for alternative energy options, which are becoming more prevalent. Global warming, 

habitat destruction and deteriorating air-quality require a comprehensive action plan.  

A major challenge in the design and management of power systems is the Unit 

Commitment (UC) problem. This problem involves determining the optimal schedule 

for power-generating units to meet energy demands at the lowest cost while adhering 

to various operational and security constraints. The problem becomes more complex 

with the integration of oxygen concentrator, electrolyser, and renewable energy 

sources (RES) due to the intermittent and unpredictable nature of renewable energy. 

The aim of the current study is to explore innovative solutions to the UC problem, 

taking into account the impacts of Oxygen Concentrator (OC), Electrolyser (EL) and 

the variability of renewable energy sources during COVID-19. The study introduces 

novel methodologies that fuse optimization algorithms, combining local and global 

search strategies to enhance the exploration and exploitation of the search space. This 

hybrid approach improves the effectiveness of solving the UC problem. 

The introduction of the dissertation outlines the UC problem and its importance in 

modern power sectors. It also reviews the fundamentals of optimization techniques 

and renewable energy sources. The study proposes hybrid methods that blend meta-

heuristic and classical optimization algorithms to address the UC problem effectively. 

A significant section of the research explains the various optimization methodologies 

employed, providing justifications and detailed descriptions of each approach. It 

includes a review of impact of COVID-19 on power system and impact of OC, EL, 
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which are crucial in solving the UC problem. This section also includes a 

comprehensive literature review of various optimization techniques, highlighting the 

limitations of current methods and emphasizing that no single optimizer is suitable for 

all types of optimization problems. This underscores the need to explore new 

variations of metaheuristic algorithms. 

The research goes on to present novel hybrid metaheuristic optimization methods 

inspired by behaviour of Beluga Whales, as well as various chaotic maps. Techniques 

like Levy flight are employed to enhance the exploitation capabilities of these 

optimizers. Specifically, chaotic map strategies are applied to Beluga Whale 

optimizers, resulting in enhanced performance when combined with chaotic and Levy 

flight. The effectiveness of these hybrid optimizers, chaotic beluga whale optimization 

algorithm (CBWO), is evaluated through hypothesis testing. 

Further, the dissertation provides an overview of the exploitation and exploration 

capabilities of the existing Beluga Whale Optimization (BWO). Enhancements using 

chaotic tent functions, Levy flight strategies are implemented to improve the BWO’s 

performance. The improved CBWO optimizer have been successfully tested on 

various benchmark problems, including unimodal, multimodal, and fixed dimension 

challenges, as well as interdisciplinary engineering design problems. These optimizers 

are then applied to solve the UC problem, and their performance is assessed using 

standard test systems with thermal generating units across small, medium, and large 

power sectors. 

The proposed algorithms were evaluated on systems with 10, 20, and 40 generators, 

demonstrating superior performance compared to existing methods. The CBWO 

optimizer consistently outperformed other algorithms, as shown by comparative 

analysis. The next chapter explores the application of the hybrid CBWO to solve the 

UC problem considering the impacts of COVID-19 and OC, EL with renewable 

energy sources (wind). Tests on systems with 10, 20, and 40 units revealed that the 

CBWO optimizer performed better than both traditional and newer heuristic, meta-

heuristic, and evolutionary search algorithms, achieving the lowest fuel costs. 

Statistical analysis of the proposed algorithms was conducted using metrics such as 

standard deviation, median value, best fitness, average fitness, and worst fitness. 

Hypothesis testing was supported by the t-test and the Wilcoxon rank-sum test. 

Additionally, computation times were tracked to assess the computational complexity 

of the methods. 

The final chapter summarizes the significant contributions of the study and provides 

suggestions for further improving security constraints in power systems. It compares 

the effectiveness of the proposed optimizer against other competitive algorithms in 

solving the UC problem with OC, EL and RES. The study concludes with 

recommendations for future research directions, offering insights for new researchers 

in the field. 
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Chapter-1 

INTRODUCTION 

 

1.1 INTRODUCTION 

The contemporary world is heavily reliant on a reliable and efficient power 

infrastructure for its survival. This complex web of interacting system components like 

generation, transmission, distribution and consumption that forms a large part of the 

great machine that powers our household lighting, heating and air conditioning along 

with thousands of other people on earth. Electricity become necessary for all country 

to meet the demand for its industry and commercial needs. 

 The power generation in India is produced by thermal power plants, which 

emanate a lot of pollutants and have an enormous impact on the environment. 

Apparently, it is infeasible because we know that coal as an energy source has a limited 

supply and will eventually become completely mined. This is why the demand for 

thermal power plants accompanied by other energy sources as hydro, nuclear, solar 

and wind power becomes a necessity. 

 It is very difficult to create a balance between the production of electric power 

and the environment these days since every nation promotes industrialization, which 

has a negative impact on the environment. The greatest option is to produce electricity 

that is highly reliable, reasonably priced, and perhaps less harmful to the environment. 

The planning of electric power production systems, regulation, and cost-effective 

operation are the three most important concerns facing the electric power sector. 

Therefore, the ideal timing of producing units is crucial when weighing the costs and 

benefits of power economics. Determining an acceptable timeframe for operating the 

unit status, commonly termed to as unit commitment, is therefore expected.  

 Unit commitment, or the coordination of power plants, looks to be a financially 

ideal alternative for the generating station as it makes operational cost lesser and better 

reliability. In addition to defining the ON/OFF conditions, this problem often calls for 

figuring out the hourly thermal output power, which is sometimes referred to as 
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economic load dispatch, and satisfying a sizable number of operational constraints and 

devices while minimizing fuel costs.   

1.2   RENEWABLE ENERGY AND POWER SYSTEM 

Worldwide, it is one of the fastest growing energy transition pathways. Renewable 

energy will the key that humanity needs in order to fulfil our need of seeking and 

saving. The daily production of electricity and increasing demands, wind energy 

showing stochastic behavior in modern power networks. This problem is worsened 

when a high wind velocity forces the grid to turn off its generation. The use of solar 

and wind energy is the overarching theme for an energy system that awaits us in the 

years ahead. The intermittent and unpredictable nature of these renewable resources 

creates serious difficulties for users and the economical functioning of electricity 

networks as well. 

 The Indian government announced that state-owned energy distribution 

companies would not be required to pay for the power they had purchased for a period 

of three months, despite the fact that the country's energy needs will increase over the 

coming years and that the power sector faces noteworthy price barriers. In addition, 

the government eliminated late payment penalties, lowered the payment security to 

50% for future power purchases, and made sure that power would not be cut off 

continuously during COVID-19 outbreaks. In an effort to demonstrate unity and 

patriotism against the COVID-19 pandemic, the entire domestic sector shut down for 

nine minutes on April 5, 2020, at 9:00 PM. As a consequence, the grid load was 

reduced by 32,000 megawatts, meaning that India's residential lighting consumption 

is around 32 gigawatts, with a 10% error margin.  

 The increasing need for electricity has prompted practitioners to investigate 

alternative energy sources, which are gaining popularity. An extensive action plan is 

required in response to habitat loss, air quality deterioration, and global warming. 

There has to be more work done in this specific sector. The purpose of the proposed 

study, which is motivated by these research challenges, is to develop a hybrid meta-

heuristic research approach that solves the unit commitment problem of the integrated 

electric power system while considering renewable energy sources. 
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1.3  UNIT COMMITMENT PROBLEM IN POWER SYSTEM 

The unit commitment (UC) problem is one of the biggest barriers to operating a stable 

and cost-effective electrical power supply. Nowadays the key question is- How can 

power facilities be planned to remain operational at the lowest possible cost to meet 

unpredictable electricity demand? Electricity cannot be effectively stored in vast 

amounts like other commodities can. This implies that output and consumption must 

always coincide. Considering the many features and expenses involved in turning on 

and off electricity plants. The objective is to minimize costs, taking into account fuel 

prices, maintenance and operation costs, and any start up or shut down costs related to 

turning on or off power units. The UC solution must ensure that there is enough power 

producing potential to fulfil the anticipated need for energy for the span of the 

scheduling period. 

 Many methods like Mixed Integer Linear Programming (MILP), Dynamic 

Programming (DP), and meta-heuristics, can be used to solve the UC problem. UC 

problem divided into smaller phases and considering all potential unit states 

(ON/OFF), dynamic programming used to optimize the units. The bottommost 

possible cost of all probable earlier stages, including the fuel cost and start-up cost—

of moving from prior states to the present one, can be used to get the lowest feasible 

cost of running the system at a given point. 

 MILP is a generally used method for tackling the UC problem in power 

systems. This tactic articulates the problem as a mathematical model that represents 

both the real-valued output power of each generating unit and their on/off status during 

specific time periods through linear equations, integrating both binary and continuous 

variables. Where 1 considered to be operational and 0 implies offline. 

 The meta-heuristics are useful optimization techniques inspired by natural 

developments such as simulated annealing or genetic algorithms. These tactics are 

particularly suited to solving complex problems like UC, where traditional methods, 

such as DP or MILP, can become computationally arduous for large-scale systems. 

Meta-heuristics provide an operative toolkit for solving the UC problem in power 

systems, exclusively for larger systems. They may not always guarantee the optimal 
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solution but they are capable of producing high-quality results that meet the demands 

of power system operations. 

 The UC problem is a critical challenge in safeguarding the efficient and reliable 

operation of power systems. As electricity production is expensive, UC helps to 

categorize the most economical combination of power plants to run at a given time. 

To keep the grid stable, generation and consumption must always be equal. 

Throughout the planning process, UC makes sure there is sufficient power plant 

capacity available and planned to fulfil the anticipated demand for energy. Constraints 

such as minimum uptime and spinning reserve criteria are added into UC to ensure 

stable power output and the ability to respond to unforeseen swings in demand or 

unexpected power disruptions.  

 The requirement and supply predictions for the following day are the 

foundation for electricity market functions. System operators use UC technologies to 

ascertain the real dispatch schedule for power plants once market demand is known. 

This means specifying the power output and ON/OFF status of each unit for each time 

cycle all over the scheduling period. 

 Due to their erratic and fluctuating character, renewable energy sources like 

solar and wind are becoming more and more prevalent, which makes power system 

management more challenging. In order to guarantee dependable grid operation with 

renewable energy, UC systems are being modified to include probabilistic techniques 

that take into consideration anticipated uncertainties in renewable power.  

1.4    COVID-19 PANDEMIC IN INDIA AND WORLD 

The new corona virus SARS-CoV-2, which gave birth to COVID-19, arose in late 

2019 and fast spread around the world, having a significant detrimental effect on 

economy, society, and public health. In December 2019, Wuhan, China, reported the 

first cases of COVID-19. The virus is likely to have begun in bats and transmitted to 

humans in a Wuhan seafood market, probably via an intermediate animal host [1]. 

Through international travel, it swiftly crossed borders and caused epidemics in many 

countries. The virus's high contagiousness and potential to propagate among 
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asymptomatic individuals enabled for its speedy dissemination, which led to a global 

health disaster [2]. 

  On or around November 16, 2019, Wuhan, People's Republic of China, 

observed the first human incidences of COVID-19. On January 21, 2020, the first 

human case of COVID-19 was reported in the United States., World Health 

Organization (WHO) declared the COVID-19 outbreak as a Public Health Emergency 

of International apprehension on 30-January 2020 and by 11-March 2020, they 

declared as a global pandemic [3]. The pandemic postured significant challenges to 

healthcare systems around the countries. COVID-19 spreads through respiratory 

droplets, causing a wide range of symptoms from mild respiratory illness to severe 

pneumonia and acute respiratory distress syndrome. The maximum risk of illness and 

death was observed in defenseless groups, such as the elder people and individuals 

having pre-existing health conditions [4]. 

 To control the pandemic, governments implemented various approaches 

including lockdowns, social distancing measures, mask mandates, mass testing, and 

contact tracing. Vaccination plays a crucial impact to control the virus's spread and 

reducing the severity of infections [5]. The impact of pandemic was also seen on 

economy that leads to significant job losses, business closures, and interrupt to global 

supply chains. Government put restrictions on movement and lockdown imposed that 

reduced spending, lowered industrial output, and sharply decreased international trade. 

Due to the lockdown, small businesses, hotels and tourism sectors, were especially 

affected, and faced closures and financial difficulties [6]. 

 Whilst macroeconomic policies and economic relief initiatives were putting in 

operation by governments to mitigate the impact on the economy, the pandemic's long-

term repercussions are still getting encountered. The most powerful economies 

confronted the dilemma of increased unemployment and high inflation due to 

inefficiencies and overspending on treating and rehabilitating COVID-19 victims and 

their families [7]. The effects of COVID-19 on human health are the main cause of 

worry. Aside from cattle, pigs, and poultry, other affected agricultural industries 

include dairy, grains and oilseeds, fruits and veggies [8]. 
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1.5 IMPACT OF COVID-19 PANDEMIC IN POWER SYSTEM 

The COVID-19 epidemic has fundamentally affected global energy systems and 

electric power grids, resulting in many complex problems requiring careful 

consideration and long-term strategic planning. This work clarifies many significant 

results and observations on the influence of the epidemic on grid operations, energy 

infrastructure, and the general energy environment. Apart from reducing the need for 

electricity, the epidemic shifted load from large cities to outlying areas and from the 

business and manufacturing industries to the financial sector. Frequency variations and 

load forecasting errors significantly increased during lockdowns [9]. 

 The production of power has decreased overall in tandem with demand and 

coal-fired generation bearing the brunt of this decline. Although curtailment rates have 

also risen, the percentage of renewable production has grown. Major markets have 

seen a sharp decline in the price of power, with European countries seeing the largest 

global price fall. Numerous utilities and coal-fired power plants have had financial 

difficulties. Long-term investments in the electrical industry and the upcoming switch 

to renewable energy sources are anticipated to be substantially unaffected, 

notwithstanding the suspension of the majority of investment projects [10].  

 The worldwide energy systems have been considerably impacted by the 

COVID-19 epidemic. The use of social distancing protocols and varying degrees of 

regulatory restrictions aimed at curbing the transmission of the highly infectious virus 

has led to significant decreases in commercial and industrial operations. As such, these 

listed activities directly affect the subsequent drop in the global usage of energy. 

Furthermore, at the most limited periods, it was rather evident that decreased activity 

related to transportation improved air quality and greenhouse gas emissions [11]. 

 The impact of the epidemic on residential energy consumption varies 

significantly across months, seasons, and consumer activities in day hours that causes 

variations in loads. We found that 36.3% of consumers' profile patterns had a 

substantial shift from pre- to post-COVID-19 during the spring season. Conversely, 

after the pandemic, the profile pattern of 63.7% of clients showed a little shift, and 

daily demand increased significantly from 16.3% to 29.1% [12]. There was a 

noticeable change in the use of hot water and power in the middle of the day during 
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the most severe phase of the lockdown. If we define the hours of 9 AM to 5 PM as the 

"middle of the day," power consumption jumped 46% in April. This is quite shocking 

given a 103% increase in hot water usage [13].  

 In Canada, Ontario, there is 14% decrease in demand throughout April, almost 

1267 GW. Weekends showed the largest daily declines in demand, with an average of 

18% per day and a maximum fall of 25%. For the month of April, savings of $131,844 

were achieved [14]. Due to the interruption in the demand, the accuracy of the load 

forecasting tool decreased in Canada. More functional method was therefore required 

to control the load volatility. This city has the highest penetration of renewable energy 

ever because to the lower demand amid the COVID-19 shutdown. The lowered 

demand and higher amount of renewable energy changed the producing mix 

significantly [15]. 

 Ottawa, the capital city of Canada, is a vibrant and diverse metropolis located 

in the province of Ontario. With a rich history, stunning architecture, and a thriving 

cultural scene, Ottawa offers a unique blend of natural beauty, national landmarks, and 

a high quality of life. As the capital city of Canada, Ottawa has a significant electricity 

consumption profile. The city's electricity demand is influenced by various factors, 

including residential, commercial, and industrial sectors. Residential consumption 

accounts for a substantial portion of the electricity demand, driven by heating and 

cooling needs, lighting, appliances, and other household activities. The commercial 

sector includes office buildings, retail establishments, and institutions, while the 

industrial sector encompasses manufacturing, data centers and other energy-intensive 

activities. 

 To achieve the evaluation of energy consumption in Ottawa, the required data 

is driven from the record of the Independent Electricity System Operator (IESO) of 

Ontario Canada. Demand data was collected from 24rd March to 22st April 2019 and 

similar time periods of 2020 and 2021. 

 Fig. 1.1 shows the average demand comparison between before COVID-19 

period (2019), Strict lockdown during COVID-19 (2020) and partial lockdown during 

COVID-19 (2021) period of the Ottawa region. A decrement in average demand is 

seen during COVID-19 pandemic because of the lockdown that took place in 2020 in 
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Ottawa and also the shifting of electricity demand from industrial to residential load. 

Average demand reduced by approx. 110MW in 2020 and approx.105MW in 2021 as 

compared to 2019. During partial lockdown, electricity consumption shows a mixed 

type of demand response. 

 

Fig. 1.1: Average Demand Comparison of Ottawa (Canada) in 

MW. 

On 11th of March 2020, first confirm case of COVID-19 was recorded in city but there 

is no community spread evidence. On 16th March, all municipal facility in Ottawa city 

was closed. On 24th March, Ottawa mayor declare a state emergency due to the spread 

of COVID-19 and city confirmed its first death due to COVID-19. All non-essential 

businesses were shut-down while grocery stores and pharmacies were allowed to stay 

open. They put restrictions on restaurants and bars, only delivery and takeout order 

allowed. That’s why on 24th March or Day 1, shows less power consumption as 

compare to similar day in 2019. On 1st April, travel restriction with nearby states were 

imposed. 

 From 10 March to 15th of March 2021, COVID-19 cases were increased at a 

rate of 25% and government declared red zones in city. Movie theater were closed, 

limitations on gathering, only 5 people allowed to gather inside and 25 outdoor. 

Restaurants allowed only 10 people inside, limited people in gyms and no team sport 
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allowed. Fig 1.1 Shows less power consumption during partial lockdown as compared 

to 2020 up to day 5. On 1st April, some pharmacies were allowed to vaccinate the 

adults over age of 55. During this time, people start to move outside, commercial 

electricity consumption increased. On 8th April, state declared stay at home order to 

people. From day 18, electricity consumption was reduced as compare to the 2020 [16-

19]. 

1.6   OUTLINES OF DISSERTATION 

 This dissertation mainly investigates the problems of uncertainty in demand during 

COVID-19 and UC problem in contemporary power systems. The study is looked into 

the optimization and challenges of UC in the modern power grids. More specifically, 

it analyses how an oxygen concentrator and electrolyzer would affect the UC problem 

during COVID and considers the uncertainty of renewable energy sources (RES) by 

using a metaheuristic optimizer. Their aim is to physically operate at minimum cost 

while maintaining reliability, electricity demand-response, and other physical 

constraints over time. For the UC problem, Chaotic Beluga Whale Optimization 

(CBWO) algorithms appropriately evaluated and tested. Further CBWO is tested on 

various scenarios comprising small, medium and large test systems to find out best 

results. 

The thesis is organized as follows: 

Chapter 1 presents the impact of the COVID-19 pandemic on power system. It 

presents the UC problem in the power system, discussing its relevance in the current 

power sector. It also explores the incorporation of UC with OC, EL, and RES. The 

chapter suggests the importance of UC problem during COVID-19 pandemic and need 

of OC, EL and RES.  

Chapter 2 presents the methodologies of various optimization techniques. It reviews 

the different algorithms used to address UC problem and observes some of the testing 

benchmarks for solving the UC problem. Additionally, the chapter offers a thorough 

review of the literature on OC, EL and RES. 

Chapter 3 illustrates a new metaheuristic optimization method, CBWO. The 

effectiveness of this hybrid optimizer is evaluated through various test systems and 
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hypothesis testing. The chapter converses the advance of CBWO to enhance 

exploration and exploitation across the entire search space. This hybrid algorithms 

have been successfully tested on various benchmark functions, including 

multidisciplinary engineering design problems. 

Chapter 4 presents the efficacy and legitimacy of the proposed CBWO optimization 

techniques in addressing the UC problem. The hybrid optimization method was 

evaluated using a standard test system, incorporating thermal generating units. The 

results for UC problem and scheduling for units-10, 20, and 40 presented and 

indicating that the proposed optimizer surpasses existing optimizers in solving 

continuous, discrete, and non-linear optimization challenges. 

Chapter 5 illustrates a consistent solution to the UC problem, taking into wind power 

as renewable energy source during lockdown and pre lockdown for both weekends and 

weekdays. A brief impact of OC and EL on the power system is presented. The 

optimizers were applied to systems with 10, 20, and 40 generating units, achieving 

cost-effective scheduling. Simulation results indicate that the CBWO optimizer 

outperforms other heuristic, metaheuristic, and evolutionary search methods in 

reducing costs. The study also analyses cost variations, including best, average, and 

worst-case scenarios, along with std and median values. Various hypothesis tests, such 

as the Wilcoxon rank-sum test and t-test, were directed to evaluate the results. The 

chapter concludes by brief the practical applications and contributions of CBWO in 

the UC problem. 

1.7     CONCLUSION 

This chapter plays a decisive role in the thesis, providing a comprehensive overview 

of the research conducted. It presents a broad summary of the various chapters, briefly 

highlighting each and accentuating the significance of the research. In addition, the 

chapter delves into the current state of unit commitment issues, offering various views 

and solutions within the field. The research in this thesis contributes to existing 

knowledge by introducing a novel approach to addressing this problem. 

 The chapter also acquaint with the thesis by offering background information 

on the research. It establishes the foundation for the research problem, delineation the 
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objectives and methodology used in the study. The structure is projected to offer a 

clear understanding of the research problem, its importance, and the overall scope of 

the study. 
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Chapter- 2 

LITERATURE REVIEW

2.1 INTRODUCTION 

In order to minimise the cost of generation while meeting electricity demand and 

adhering to various technical constraints, the unit commitment problem (UCP), which 

is an essential element of power system functioning, seeks to arrange the on or off 

states and power outputs of generating units over a specified period of time (usually a 

day or week). The UCP has been the subject of considerable study in the last several 

decades due of its intricacy. The amount of research being done in the subject of 

optimisation is growing quickly. Diverse new approaches or strategies for distinct 

optimisation are becoming more prevalent. Research is moving quickly to create 

hybrid combinations of optimisation algorithms that can survive the shortcomings of 

the current approaches. 

This chapter reviews the research on the effects of COVID-19 on power systems and 

the various optimisation techniques that may be used to effectively address unit 

commitment issues. The complexity of the UCP-related problems grew with the use 

of renewable energy sources. The decisions and distribution of power scheduling are 

more crucial factors in reducing fuel expenses. 

2.2  LITERATURE REVIEW 

Research projects often use several optimisation techniques in the broad field of power 

system optimisation. The goal of the study is to find sophisticated optimisation 

techniques to address various issues. A lot of study is being done to find novel 

approaches and to develop modified, hybrid, and chaotic methods to increase the 

effectiveness of current procedures in solving problems.   

This section of the work includes the study of the impact of COVID-19 

pandemic on power system and also in the field of unit commitment problems with the 

influence of renewable energy sources i.e., wind power, as well as the synchronization 

of conventional plants with RES. This section of the work includes the study of the 

impact of COVID-19 pandemic on power system and also in the field of unit  
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commitment problems with the influence of renewable energy sources i.e., wind 

power, as well as the synchronization of conventional plants with RES. In the 

following sub-sections, a short review of several academic papers in the concerned 

area using various methodologies has been discussed. This section has been divided 

into the following subsection for a comprehensive literature review.  

(i) A Comprehensive review on the impact of COVID-19 on power system 

(ii) A Comprehensive Review on Optimization Algorithm 

(iii) A Comprehensive Review on Unit Commitment Problem by considering 

renewable energy sources 

2.2.1 A Comprehensive Review on the Impact of COVID-19 on Power 

System 

In the Australian state Victoria, reported overall electrical demand profile, as the mean 

half-hourly power demand is lowered by 23.94 MW due to COVID-19, whereas in 

lockdowns particularly, an average half-hourly demand decrease by 210.55 MW. With 

a root mean square error of 136.44 and an overall average error of 100.38, the 

suggested regression model can estimate demand during lockdown times from the test 

set more accurately than any other forecasting approach that is thought to be a 

benchmark [21]. 

 A thorough analysis of COVID 19's implications on sustainable development 

objectives is provided in an integrated approach to assessing energy and water 

availability, providing insights into how COVID-19 has affected the water-energy 

relationship. In 2020, there was a 5% global decline in the energy use. COVID-19 

hindered manufacturing, trade, and transportation. The overabundance of supplies 

caused the oil market to crash in April 2020 [22].  

 Global energy systems and electric power grids have been significantly 

impacted by the COVID-19 pandemic, which has created a number of complicated 

issues that need for careful thinking and long-term strategic planning. Several 

important findings and observations on the pandemic's impact on energy 

infrastructure, grid operations, and the overall energy landscape have been clarified by 

this study.  
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 In addition to lowering the demand for power, the pandemic also caused a shift 

in load from big cities to outlying communities and from the commercial and industrial 

sectors to the private sector. Frequency variances and load forecasting mistakes 

significantly increased during lockdowns [23]. 

 The production of power has decreased overall in tandem with demand, with 

coal-fired generation bearing the brunt of this decline. Although curtailment rates have 

also risen, the percentage of renewable production has grown. Major markets have 

seen a sharp decline in the price of power, with European countries seeing the largest 

global price fall. Numerous utilities and coal-fired power plants have had financial 

difficulties. The majority of investment projects have been put on hold, while long-

term investments in the electrical industry and the eventual switch to renewable energy 

sources should go mostly unaffected [24]. 

 The worldwide energy systems have been considerably impacted by the 

COVID-19 epidemic. The use of social distancing protocols and varying degrees of 

regulatory restrictions aimed at curbing the transmission of the highly infectious virus 

has led to significant decreases in commercial and industrial operations. Consequently, 

these aforementioned actions have had a direct impact on the following decline in the 

world's energy consumption. Additionally, at the most restricted times, improvements 

in air quality and greenhouse gas emissions as a result of less transportation-related 

activities were clearly noticeable [25]. 

 The impact of the epidemic on residential energy consumption varies 

significantly across months, seasons, and day types because to weather-related 

variations conditioning loads, daylight hours, and consumer activity [26].   

 The accuracy of the load forecasting tool decreased in Saskatchewan, Canada 

as a result of the interruption in the demand for energy. As a result, more operational 

reserve was needed to manage the load unpredictability. Because of the reduced 

demand during the COVID-19 business shutdown, this city had the greatest 

penetration of renewable energy ever [27]. The generating mix saw significant changes 
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as a consequence of the reduced demand and increased percentage of renewable 

energy. Compared to a comparable time in 2019, CO2 emissions significantly 

decreased between March and September of 2020 [28]. 

 Widespread job losses, company closures, and disruptions to worldwide supply 

networks were among the many negative economic effects of the epidemic. Lockdown 

policies and mobility limitations resulted in lower consumer spending, lower industrial 

production, and a steep drop in international commerce [29].  

 Particularly heavily impacted small enterprises, the hotel industry, and the 

tourism industry, which all experienced closures and financial difficulty. Although 

monetary policies and fiscal stimulus programs were put in place by governments to 

lessen the effects on the economy, the pandemic's long-term effects are still being felt.  

 Most developed countries confronted the dilemma of increased unemployment 

and high inflation due to inefficiencies and overspending on treating and rehabilitating 

COVID-19 victims and their families. Workers in the agro-food supply chain are as, 

if not more, vulnerable to catching the virus than anybody else due to the disease's lack 

of discrimination. Other agricultural industries affected by these changes comprise 

dairy, fruits and vegetables, pigs, poultry, cattle, cereals and oilseeds [30]. 

 

Table 2.1: Impact of COVID-19 and change in load demand in different countries. 

Countries 
Estimated Change in 

Load Demand (%) 
Impact of COVID-19 

Reference 

United States -10% to -15% 

Significant economic 

downturn, strain on healthcare 

system, high death toll 

[31] 

India 

Varied: -5% to +5% 

(residential increase, 

commercial decrease) 

Devastation of healthcare 

system, economic hardship, 

social unrest 

[32] 

Brazil -15% to -20% 

Overwhelmed hospitals, severe 

economic recession, travel 

restrictions 

[33] 

Italy 
-20% to -25% during 

lockdowns 

Early lockdown helped control 

spread, but resurgence caused 

strain 

[34] 

France -10% to -15% 

Lockdowns and travel 

restrictions slowed spread, but 

economic impact significant 

[35] 
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Spain -25% to -30% 

High number of cases early on, 

tourism industry heavily 

impacted 

[36] 

Germany -5% to -10% 

Stringent social distancing 

measures helped control 

spread 

[37] 

United 

Kingdom 
-15% to -20% 

Multiple lockdowns throughout 

the pandemic, significant strain 

on NHS 

[38] 

South Africa 

Varied: -10% to +5% 

(residential increase, 

commercial decrease) 

Early emergence of new 

variant, significant economic 

impact 

[39] 

Mexico -10% to -15% 
High death toll, overwhelmed 

hospitals in some regions 

[40] 

Russia 
-5% to -10% (limited 

data) 

Initial downplaying of severity, 

later surges in cases 

[41] 

Indonesia 

Varied: -10% to +5% 

(residential increase, 

commercial decrease) 

Island nation faced challenges 

in containing spread 

[42] 

Japan -5% to -10% 
Relatively low death toll 

compared to population size 

[43] 

South Korea 
-5% to -10%, with quick 

recovery 

Aggressive testing and tracing 

program yielded success 

[44] 

 

Table 2.2: Impact of COVID-19 on different aspects 

Country Social Economy Environment 
Load Demand 

Profile 

United 

States 

Lockdowns, 

travel 

restrictions, 

social unrest 

Significant 

downturn, high 

unemployment 

Temporary air quality 

improvement, 

increased waste from 

PPE 

Decreased due to 

lockdowns and 

business 

closures 

India 

Stringent 

lockdowns 

caused social 

disruption 

Severe economic 

hardship, job 

losses 

Limited data, 

potential for 

temporary air quality 

improvement 

Mixed impact: 

residential 

increase, 

commercial 

decrease 

Italy 

Strict social 

distancing 

measures 

Early lockdown 

helped control 

spread, later 

economic 

struggles 

Temporary air quality 

improvement, 

increased waste from 

PPE 

Significant 

decrease during 

lockdowns 

Brazil 

Lockdowns and 

travel 

restrictions 

Deep recession, 

high poverty 

rates 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Decreased due to 

lockdowns and 

economic 

slowdown 
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Germany 

Stringent social 

distancing 

measures 

Relatively stable 

compared to 

others 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Moderate 

decrease, some 

sectors less 

impacted 

France 

Social isolation, 

strain on 

healthcare 

system 

Lockdowns and 

restrictions 

impacted 

businesses 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Decrease due to 

lockdowns and 

business 

closures 

Spain 

Lockdowns and 

travel 

restrictions 

Tourism industry 

heavily 

impacted, high 

unemployment 

Temporary air quality 

improvement, 

increased waste from 

PPE 

Significant 

decrease due to 

lockdowns and 

tourism collapse 

South 

Africa 

Lockdowns and 

travel 

restrictions 

Economic 

downturn, job 

losses 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Mixed impact: 

decreased 

commercial 

demand, 

increased 

residential 

demand 

United 

Kingdom 

Social isolation, 

increased 

mental health 

issues 

Multiple 

lockdowns, 

strain on 

healthcare 

system 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Decrease during 

lockdowns, 

impacting 

commercial and 

industrial sectors 

Mexico 

Lockdowns and 

travel 

restrictions 

Economic 

slowdown, job 

losses 

Limited data, 

potential for 

temporary air quality 

improvement in some 

areas 

Moderate 

decrease, with 

pockets of more 

significant 

decrease due to 

lockdowns 
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Table 2.3: Comparison of pre COVID and during COVID period 

on different parameters 

Parameter Before COVID-19 During COVID-19 (Estimated Change) 

Social 

Relatively high social 

interaction 

Social distancing events, lockdowns 

(decrease in interaction) 

Strong focus on in-person 

activities 

Increased use of technology for 

communication and work (shift) 

Relatively low mental 

health concerns 

Increased mental health concerns 

(potential increase) 

Economy 

 Steady economic growth Recession, job losses (decrease) 

Low unemployment rate Increased unemployment rate (increase) 

Strong emphasis on 

international trade 

Disruptions in global supply chains 

(potential decrease in trade) 

Environment 

Moderate air pollution 

levels 

Temporary air quality improvement in 

some areas (decrease by -5% to -10%) 

 Focus on sustainability 

initiatives 

Increased waste generation from PPE 

(potential increase) 

Investment in renewable 

energy 

Potential for continued investment 

(positive/neutral) 

Load Demand 

 Steady increase in demand 
Moderate decrease in demand (-5% to -

10%) 

 Seasonal fluctuations in 

demand 

Potential for increased fluctuations due 

to changes in work/life patterns 

 

 2.2.2 A Comprehensive Review on Optimization Algorithm 

The field of optimization is enormous and regularly sprouting. Researchers are 

working hard in advancement of new techniques and algorithms to resolve 

innumerable problems more competently. In this particular field, exploring different 

approaches and combining them to address the limitations of contemporary methods. 

In this part of research, recent algorithms are examined with their findings and research 

gaps. 
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Table 2.4: Literature review on the metaheuristic optimization 

algorithms 

Algorithm Findings / Test System Conclusion/ Research gaps Ref. 

Harmony Search 

Algorithm 

Effective at solving 

engineering optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[45] 

Artificial Bee Colony 

Effective at solving real-

world optimization 

problems, outperforms 

other algorithms 

Need for more efficient 

update mechanisms, 

sensitivity to parameter 

settings. 

[46] 

Cuckoo Search 

Algorithm 

Effective at solving 

complex optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[47] 

Bat Algorithm 

Effective at solving 

continuous optimization 

problems with noisy 

objective functions 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings 

[48] 

Firefly Algorithm 

High efficiency and 

flexibility, able to solve 

complex optimization 

problems 

Need for better search 

strategy, parameter 

tuning. 

[49] 

Artificial Bee Colony 

Algorithm 

Effective at solving 

continuous optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[50] 

Krill Herd Algorithm 

Effective at solving real-

world optimization 

problems, outperforms 

other algorithms 

Need for more efficient 

update mechanisms, 

sensitivity to parameter 

settings. 

[51] 

Flower Pollination 

Algorithm 

Effective at solving 

continuous optimization 

problems with non-linear 

constraints 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[52] 

Grey Wolf Optimizer 

Outperforms other 

optimization algorithms in 

accuracy and efficiency 

Lack of diversity in 

population, sensitivity to 

parameter settings. 

[53] 

Teaching-Learning-

Based Optimization 

Algorithm 

Effective at solving a 

variety of optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[54] 

Moth-Flame 

Optimization 

Algorithm 

Outperforms other 

optimization algorithms in 

accuracy and efficiency 

Need for more efficient 

update mechanisms, 

sensitivity to parameter 

settings. 

[55] 

Whale Optimization 

Algorithm 

Effective at solving 

complex optimization 

problems, outperforms 

other algorithms 

Need for more efficient 

update mechanisms, 

sensitivity to parameter 

settings. 

[56] 
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Grasshopper 

Optimization 

Algorithm 

Effective at solving real-

world optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[57] 

Biogeography-Based 

Optimization 

Effective at solving real-

world optimization 

problems 

Need for efficient update 

mechanisms, sensitivity 

to parameter settings. 

[58] 

Arithmetic 

Optimization 

Algorithm (AOA) 

Engineering design 

problem. 

Arithmetic Operator for 

Exploration and 

Exploitation 

[59] 

Modified Bald Eagle 

Search Algorithm 

(MBES) 

Standard 10-unit system 

Handles uncertainties in 

renewables and flexible 

loads effectively. 

[63] 

Enhanced Grey Wolf 

Optimizer (GWO) for 

Ramp Constraints 

Various systems 

  Efficiently handles 

generator ramp rate 

limitations. 

[64] 

Novel Chaotic Bat 

Algorithm (CBA) 
IEEE 30-bus system 

Considers valve-point 

effects on generator 

efficiency, achieving 

good solution quality. 

[65] 

Novel Multi-

Objective Bee Colony 

Optimization (BO) 

IEEE 30-bus system 
Balances cost and carbon 

emissions for UC. 
[66] 

Novel Chaotic Krill 

Herd Algorithm 

(CKHA) 

IEEE 30-bus system 

Achieves good balance 

between objectives in 

multi-objective UC with 

ramp constraints. 

[67] 

Hybrid Grey Wolf 

Optimizer (GWO)  
Various systems 

Considers emissions and 

cost in multi-objective 

UC. 

[68] 

Enhanced Artificial 

Bee Colony 

Algorithm (ABC) for 

DR & Reserve 

Various systems 

Incorporates demand 

response and spinning 

reserve requirements. 

[69] 

Novel Chaotic Whale 

Optimization 

Algorithm (CWOA) 

Various systems 
Demonstrates promising 

results for solving UC. 
[70] 
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2.2.3 A Comprehensive Review on Unit Commitment Problem 

A novel approach regarding renewable energy producers was created by Maghsudlu 

S. et al. to address the scheduling issue in unit commitment. The Cuckoo search 

algorithm is a meta heuristic method that uses a high rate of convergence to solve the 

UC issue [71]. To investigate the effects of Plug-in Electric Vehicle (PEV) scheduling, 

an IEEE 10-unit system is used. In order to handle UC problems, which include mixed 

integer problems in optimisation coupled with PEVs, Zhile Yang et al. used a hybrid 

metaheuristic approach [72]. 

 To determine the influence of the transfer function, which is used for binary 

optimisation to solve the integrated issue based on UC and PEVs, a 10-unit power 

system with 50,000 PEVs is taken into account. In a dynamic form of power pricing 

market, Pengcheng You et al. spoke about a novel cooperative technique for Electric 

Vehicles (EV) charging using smart charging stations. For the scheduling issue, MILP 

is developed to capture the characteristics of batteries, including charging and 

discharging. The MILP is proposed to be solved by a novel method that makes use of 

dual and Bender's decomposition [73]. 

 

  Table 2.5: Literature review on the Unit Commitment Problem 

Ref. Paper Title Test System Summary Conclusion 

[74] 

Effect of modelling 

choices in the unit 

commitment problem 

N/A 

(Theoretical 

Analysis) 

This paper analyzes how 

different modeling 

decisions, such as generator 

ramp rates or reserve 

requirements, can affect 

UC solutions. 

Investigates how 

modeling choices in 

power system 

representation can 

influence UC results. 

[75] 
CO2 Emission-

Constrained Short-

Term Unit 

Commitment Problem 

Using Shuffled Frog 

Leaping Algorithm 

IEEE 39-

bus system 

This paper introduces a 

novel optimization 

technique (SFLA) for UC 

that considers both 

economic and 

environmental objectives. 

The proposed Shuffled 

Frog Leaping Algorithm 

(SFLA) effectively 

minimizes operating 

costs and CO2 emissions 

for UC. 

[76] 

Stochastic Unit 

Commitment Study in 

a Power System with 

Flexible Load in 

Presence of High 

Standard 

10-unit 

system 

This paper proposes an 

optimization method using 

a modified Bald Eagle 

Search Algorithm (MBES) 

to address uncertainties 

associated with renewable 

Modified Bald Eagle 

Search Algorithm 

(MBES) effectively 

handles uncertainties in 

renewable generation 

and flexible loads. 
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Penetration 

Renewable Farms 

energy sources and flexible 

loads. 

[77] 

An Intelligent 

Algorithm for Solving 

Unit Commitments 

Based on Deep 

Reinforcement 

Learning 

Simulation 

examples 

This work explores using 

Deep Reinforcement 

Learning, a form of 

artificial intelligence, to 

solve the UC problem, 

potentially leading to more 

efficient solutions. 

Proposes a Deep 

Reinforcement Learning 

(DRL) based approach 

for UC, achieving 

promising results. 

[78] 

A Multi-Stage Unit 

Commitment with 

Demand Response 

and Renewable 

Energy Sources 

Considering 

Uncertainty 

IEEE 118-

bus system 

This research introduces a 

multi-stage UC approach 

that incorporates factors 

like demand response 

programs, renewable 

energy sources, and 

uncertainties for better 

decision-making. 

Proposes a multi-stage 

UC method considering 

demand response, 

renewables, and 

uncertainties, achieving 

good performance. 

[79] 
A novel intelligent 

global harmony 

search algorithm 

based on improved 

search stability 

strategy 

 

IEEE 30-

bus system 

This research proposes a 

novel optimization method 

(CHSA) that incorporates 

valve-point effects, 

improving the accuracy of 

UC models. 

Introduces a Chaotic 

Harmony Search 

Algorithm (CHSA) for 

UC, considering valve-

point effects and 

achieving good solution 

quality. 

[80] 

A Novel Chaotic Bat 

Algorithm for Solving 

the Unit Commitment 

Problem with Valve 

Point Effects 

IEEE 30-

bus system 

This research introduces a 

novel optimization 

technique (CBA) that 

considers the non-linear 

effects of valve points on 

generator efficiency in UC. 

Proposes a Chaotic Bat 

Algorithm (CBA) for 

UC considering valve-

point effects on 

generator efficiency. 

[81] 
A Distributionally 

Robust Unit 

Commitment Model 

with Photovoltaic 

Uncertainty 

IEEE 24-

bus system 

This paper presents a UC 

model that considers 

uncertainties in solar power 

generation in a statistically 

robust way. 

Introduces a 

distributionally robust 

UC model for handling 

photovoltaic power 

uncertainty. 

[82] 
Customized Benders 

Decomposition for 

Unit Commitment 

Integrated Generation 

Expansion Planning 

 

Garver 6-

bus system 

This paper proposes a 

method for UC that can 

handle the additional 

complexity of optimizing 

transmission line switching 

decisions. 

Develops a Benders 

decomposition approach 

for UC that incorporates 

the complexity of 

transmission line 

switching decisions. 

[83] 
Integration of smart 

grid technologies in 

stochastic multi-

objective unit 

commitment: An 

Modified 

IEEE 30-

bus system 

This work explores UC in 

smart grids with pumped 

hydro storage and electric 

vehicles, considering their 

charging/discharging 

Presents a UC strategy 

for smart grids with 

pumped hydro storage 

and electric vehicles, 
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economic emission 

analysis 
 

patterns and energy storage 

capabilities. 

accounting for their 

unique characteristics. 

[84] 
An 

economic/emission 

dispatch based on a 

new multi-objective 

artificial bee colony 

optimization 

algorithm and NSGA-

II 
 

IEEE 30-

bus system 

This research proposes a 

novel optimization method 

that simultaneously 

minimizes generation cost. 

Introduces a multi-

objective Bee Colony 

Optimization (BO) 

algorithm for UC, 

balancing cost and 

carbon emissions. 

 

2.2.4 Unit Commitment Problem with Renewable Energy- A Comprehensive 

Review 

The reliable and efficient operation of an electric power system hinges on a complex 

decision-making process known as the unit commitment problem. This critical task 

involves scheduling the operation of individual generating units within the system over 

a specific time horizon, typically a day or a week. The goal is to meet the ever-

fluctuating electricity demand while minimizing the overall cost of generation. 

Electricity cannot be efficiently stored in large quantities. This necessitates real-time 

matching of generation with demand. UC considers various types of power plants, each 

with its own characteristics [85]. Nuclear and coal plants, for instance, are better suited 

for baseload generation due to their high start-up costs and slow response times. 

Conversely, natural gas and hydro plants offer more flexibility and can be ramped up 

or down quickly to meet peak demand periods [86]. 

 Solving the UC problem involves complex optimization techniques that 

consider these constraints while minimizing the total generation cost. This cost 

typically includes fuel costs for fossil-fuel plants, variable operating and maintenance 

costs, and start-up costs associated with turning units on and off.  
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 The increasing penetration of renewable energy sources like wind and solar adds 

another layer of complexity to UC. These renewable sources are variable and non-

dispatchable, meaning their output depends on weather conditions and cannot be 

readily adjusted to meet demand. This necessitates incorporating forecasting models 

into the UC process to account for the variability of renewable generation [87]. 

 Research into UC continues to evolve to address these new challenges. New 

approaches explore integrating renewable energy sources, accommodating the 

growing demand for distributed generation, and ensuring system resilience in the face 

of extreme weather events. In conclusion, the unit commitment problem plays a vital 

role in ensuring the efficient and reliable operation of electric power systems [88].  

 This plan emphases on handling energy in a virtual power plant (VPP) made 

up of wind farms, energy storage, and programs that inspire customers to regulate their 

energy use. This VPP runs at the transmission level and works organized with other 

VPPs to buy and sell energy and reserves. The goal is to make the VPP's revenues as 

close to its operating costs as possible. The system considers factors like power plant 

accessibility, reserve necessities, and the VPP's specific requirements. It also accounts 

for uncertainties in things like energy demand, market prices, and wind power 

production. [89]. 

 To successfully accomplish power systems with erratic renewable energy 

sources like wind and solar, tools called stochastic unit commitment and economic 

dispatch are crucial. These tools help minimize the cost of producing electricity while 

considering the uncertainty in RES. An innovative technique has been developed to 

more precisely envisage the cost of electricity production. This technique is knowingly 

better than existing approaches, particularly on days with unanticipated weather 

conditions [90]. 

 To competently accomplish power systems with a lot of RES, a new method 

using deep reinforcement learning has been developed. This technique helps 

scheduling of power plants more swiftly and efficiently. To account for the uncertainty 

in wind power, a system is used that pretends how changes in wind power distress the 

overall power system [91]. 
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 The anticipated technique is a multi-stage stochastic Mixed Integer Linear 

Program with binary recourse that optimizes the day-ahead UC of both predictable and 

virtual power plants. By associating the UC strategies of three diverse power plant 

types—natural gas-fired combined cycle, combined heat and power (CHP) with 

thermal storage, and a virtual power plant that fit in a mutual cycle with battery storage 

and photovoltaic fields. This optimization tactic can increase the returns of 

conventional power plants by up to 13.58%. It helps to create a viable and effective 

operational schedule for both CHP and virtual power plants [92]. 

 To reinforce the flexibility of transmission systems with offshore wind farms 

ahead of approaching typhoons, a proactive UC strategy is presented. An exceptional 

set-up tree is developed to evaluate the uncertain effects of typhoons on offshore wind 

farms, transmission lines, and inclusive system circumstances, incorporating both 

inertia support from the wind farms and the unpredictability of system conditions [93].  

 It's imperative to account for the uncertainty of wind power in monthly 

forecast. To address this, a three-step watchlist approach is proposed to rapidly identify 

latent power flow constraints that may be encumbered during monthly UC. This tactic 

comprises of three key lists: a risk list, a concern list, and an interest list. A shift factor 

system is used to recognize potential overloads caused by the redispatch progression, 

helping to manage the effect of significant wind power uncertainties. [94]. 

 To address the rising demand for electricity considering environmental 

apprehensions, a system is anticipated that efficiently integrates RES with 

conventional power sources and plug-in electric vehicles to meet energy consumption 

requirements [95]. As the power grid enlarges, the high computational costs and long 

processing times present noteworthy challenges for effective scheduling in UCP. To 

tackle these subjects, a reinforcement learning technique is presented, which suggests 

strong supervisory abilities and time-saving performance, making it perfect for 

handling the computational complications related with UCPs [96].  
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2.2.5 Literature Review of Oxygen Concentrator and Electrolyser 

To produce oxygen more efficiently, use less energy, and provide better care for 

patients, oxygen concentrator operation must be optimised for changing load needs. A 

simulation model of a Pressure Swing Adsorption (PSA) oxygen concentrator is 

presented and suggests a demand-based control approach that modifies cycle duration 

and pressure, among other operational parameters, in response to the oxygen demand 

in real time. It uses less energy and guarantees an adequate supply of oxygen at times 

of high demand [97]. 

 A PSA oxygen concentrator's experimental setup and simulation model are 

presented and create a model-predictive control strategy that predicts oxygen use and 

adjusts oxygen output in line with it. Compared with conventional techniques it 

basically consumes less energy [98].  Simulation model of PSA oxygen concentrator 

that uses a buttressing learning system to find the superlative control techniques based 

on demand data from the past and present. It makes available with an adaptive and 

nifty method for controlling OC with varying load profiles [99]. 

 A battery storage unit is incorporated with PSA OC that used to investigate- 

how demand-responsive management and battery storage can be used to maximise the 

energy efficiency and lessen dependency on the grid. This system provides a feasible 

option for homecare applications, enhancing energy saving and a stable flow of oxygen 

[100]. A PSA type oxygen concentrator connected with the system and elaborate a 

hybrid control approach that optimises operation to save energy costs by taking into 

account both oxygen demand and grid restrictions for power system stability [101]. 

 In a hospital context, the practical use of a demand-responsive control system, 

design and execution of a workable control system for allocating many oxygen 

concentrators according to patient demand that provide insightful information for 

using load control techniques in practical healthcare settings [102]. A combined model 

of a PSA oxygen concentrator and power grid is presented and create a control plan 

that takes demand changes and grid power fluctuations into account while adjusting 

operational settings to minimise energy use. They provide a multi-factor method for 

maximising grid stability and energy efficiency in the operation of oxygen 

concentrators [103]. 
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 A demand-based control system for a PSA oxygen concentrator is shown in a 

simulation model and influence of demand-based control techniques on oxygen 

concentrator problem detection and diagnostic procedures is examined in this research. 

They emphasise how crucial it is to modify defect detection algorithms to take load 

management's dynamic oxygen concentrator functioning into consideration [104]. A 

user-centric system with real-time feedback on energy and oxygen use is presented 

and create an easy-to-use system that enables patients to modify oxygen flow rates in 

response to current demand, therefore encouraging user awareness and energy 

economy [105]. 

 A simulation model of an oxygen concentrator network in a smart hospital 

context is presented and create a multi-objective optimisation strategy that strikes a 

compromise between energy use, the price of producing oxygen, and the degree to 

which oxygen supply meets patient needs. They provide a viable method of controlling 

oxygen concentrators in intricate medical settings with various demand points [106].  

 A model of a hospital network with several oxygen concentrators and patients 

is presented and provide a comprehensive approach to managing oxygen concentrators 

in smart hospitals, taking into account a variety of optimisation objectives, and they 

also propose a multi-objective optimisation framework that balances energy 

consumption, oxygen supply reliability, and patient comfort under varying demand 

patterns [107]. 

 A real-world dataset from a hospital context is presented in order to train 

machine learning models for the prediction of oxygen demand. They create a machine 

learning method based on patient data and historical data to forecast trends in oxygen 

consumption. They increase demand forecasting accuracy, which results in oxygen 

concentrator load control techniques that are more successful. These developments 

help to maximise oxygen production, save energy use, and provide a steady supply of 

oxygen for patients, especially during peak demand [108]. 
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 For cost-effective hydrogen generation, grid stability, and efficient hydrogen 

production, electrolyser operation must be optimised for fluctuating hydrogen demand. 

A hybrid model of a power grid with renewable energy sources and a proton exchange 

membrane electrolyser is presented in order to minimise operating costs and maximise 

hydrogen production at times when renewable energy is cheap, they build an 

optimisation algorithm that schedules electrolyser operation based on dynamic 

electricity prices and renewable energy availability [109]. 

 A power grid model that incorporates electrolysers, other power producing 

units, and renewable energy sources is presented. They use a stochastic model-

predictive control strategy that optimises unit commitment (scheduling power 

generating units) and electrolyser operation for dependable and economical grid 

behaviour while taking into account the uncertainty involved with renewable energy 

production [110].  

 A model of an electrolyser connected with the hydrogen market and power grid 

is presented. Demand-response programs, which allow electrolysers to modify their 

operations in response to dynamic hydrogen price signals, provide grid operators and 

hydrogen producers with an adaptable way to control electrolyser operation for 

financial gain [111]. 

 A microgrid model with integrated battery storage, electrolysers, and 

renewable energy sources (PV) is presented. They provide a complete method for 

managing distributed energy resources and hydrogen generation in microgrids by 

developing an integrated energy management system that optimises energy flows 

within the microgrid while taking fluctuations in hydrogen demand into account [112].  

 A hybrid microgrid model of electrolyser with solar and wind power, hydrogen 

storage, and multiple loads that provide a feasible method for optimising microgrid 

operation with H2 production and storage abilities for peak load and grid support. They 

optimise the microgrid's operation to save energy expenditures while taking H2 

demand-response possibilities into consideration [113]. 
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 A power grid and electrolyser integrated model is presented and provide a 

multi-objective optimisation strategy that considers both the economic feasibility and 

the influence on the grid when balancing the expenses of producing hydrogen with 

metrics for grid stability (frequency, voltage). They also provide a trade-off analysis 

for optimising the operation of electrolysers [114].  

 A PEM electrolyser model with an integrated deterioration model is presented 

and provide a scheduling strategy that takes into account how different load profiles 

affect the electrolyzer's deterioration over time and presents a novel method for 

maximising hydrogen generation while reducing the electrolyzer's long-term 

degradation [115]. 

 A model of electrolysers, battery storage, and power grid that provide a method 

for using electrolysers for grid stability while controlling hydrogen production, and 

they provide an optimisation algorithm that schedules electrolyser operation and 

battery utilisation for grid support services including peak shaving and frequency 

management [116].  

 A model of an electrolyser integrated into the electrical grid is presented in 

order to account for uncertainties and estimate hydrogen demand, they use a machine 

learning methodology. They also provide a method for adjusting electrolyser operation 

to dynamic demand patterns and grid circumstances [117]. 

 A multi-agent simulation model of a network of electrolysers taking part in a 

hydrogen marketplace is presented and provide a scalable method for controlling a 

network of electrolysers in a decentralised hydrogen market environment, and they 

create a decentralised multi-agent reinforcement learning methodology for individual 

electrolysers to optimise their operation based on local information and market signals 

[118]. 
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2.3 SCOPE OF RESEARCH  

The Unit Commitment Problem (UCP) remains a critical research area due to the 

growing complexity of power systems, especially with the integration of renewable 

energy sources, fluctuating demand patterns, and evolving market dynamics. This 

research aims to develop an efficient and robust meta-heuristic optimization algorithm 

to address large-scale UCP with enhanced accuracy, speed, and adaptability under 

uncertain conditions, such as those observed during the COVID-19 pandemic.  

A comprehensive review of existing algorithms including SA, GA, PSO, HS, 

EP, DE, ABC, BFA, GSA, WOA, BA, and various hybrid methods reveals limitations 

such as premature convergence, computational inefficiency, and reduced accuracy in 

handling multi-objective and constrained problems. While several hybrid approaches 

have improved convergence and solution quality, challenges remain in optimizing UC 

for large-scale systems with renewable integration and demand uncertainty. The 

proposed research will focus on: 

• Developing an improved hybrid meta-heuristic algorithm to enhance 

convergence speed and global search capability. 

• Addressing the shortcomings of existing algorithms by balancing exploration 

and exploitation. 

• Modelling UCP under realistic conditions including load uncertainty, 

renewable energy variability, and operational constraints. 

• Evaluating the algorithm’s performance on standard test systems and during 

low-demand scenarios like COVID-19. 

This research aims to contribute a more scalable and adaptive UC solution for modern 

and future power systems. 
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2.4 RESEARCH OBJECTIVES 

The proposed research aims to develop an efficient meta-heuristic algorithm for a 

reliable, cost-effective unit commitment solution considering electricity demand 

during COVID-19. The objectives are outlined below: 

 

(i). To study and analyse the impact of COVID-19 on the load profile of realistic power 

system. 

(ii). To solve unit commitment problem of Thermal Power System considering impact 

of COVID-19 and power demand of oxygen concentrator and electrolyser. 

(iii). To evaluate the cost-effective solution of the integrated unit commitment problem 

considering the effect of COVID-19 diseases and renewable energy sources. 

 

2.5  CONCLUSION 

In conclusion, the Unit Commitment problem is essential for efficient and reliable 

power system operation by scheduling generation to meet demand at minimal cost. 

While UC focuses on dependable and economical scheduling, it does not fully address 

demand variations. During COVID-19, grid management relied more on demand-side 

programs and renewable integration to balance demand and reduce fossil fuel use. 

Continuous improvements in UC models and technology integration are vital for future 

flexible and reliable generation planning. In the upcoming chapters, the impact of 

Covid-19 on Unit commitment problem has been studied and analysed considering the 

load demand of the electrolyser and oxygen concentrator. 
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Chapter-3 

METHODOLOGIES 

 

3.1 INTRODUCTION 

 The bedrock of modern-day economies is electricity. It powers industries, companies, light 

houses, and facilitates communication networks, among other aspects of economic activity. 

In order to operate equipment and industrial processes efficiently, which increases 

productivity and economic output, it is necessary to have access to inexpensive and reliable 

power. Having access to electricity, promotes company development and establishment, 

generating employment and boosting the economy. Long-term economic expansion is 

fuelled by electricity, which also supports the research and development that propels 

technical improvements. Essential services like lighting, communication, and refrigeration 

are made possible by electricity, which raises living standards and may even promote 

economic involvement. 

  Demand for power is heavily influenced by economic activities. Power usage is 

influenced by consumer purchasing patterns, industrial activity levels, and seasonal 

fluctuations. For both homes and companies, the price of power is a significant 

consideration. The cost of electricity production and transmission may be impacted by 

changes in fuel prices, infrastructure expenditures, and regulatory regulations. These 

factors can also have an influence on consumer spending and corporate operating expenses. 

Large sums of money are needed to build and maintain the infrastructure of the electrical 

grid. The amount of money invested in networks for the production, transmission, and 

distribution of electricity is mostly determined by political and economic factors. 

  The primary obstacle is figuring out how to best combine affordable energy with a 

dependable power source. While there may be demand for power prices to drop during 

economic downturns, maintaining system security and stability is crucial. There are 
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advantages and disadvantages to the growing use of renewable energy sources like solar 

and wind power. These sources may have an influence on economic concerns since they 

are often fluctuating and need integration measures to ensure grid stability. Smart grids 

incorporate cutting-edge technology into the electrical system for communication, control, 

and monitoring. In the long term, this may reduce total costs and optimise resource 

allocation while enhancing efficiency. 

  The scheduling of electricity production from several sources (renewables and 

fossil fuels) to meet predicted demand at the lowest feasible cost is the goal of the 

optimisation issue. UCP solutions take into account variables such as fuel prices, initial 

investment costs, and power plant efficiency. Demand-Side Management (DSM) programs 

encourage customers to shift or cut down on their power consumption during times of high 

demand. By doing this, system costs are reduced overall and costly expenditures in extra 

generating capacity are avoided. Power companies may compete in the electrical market 

for the right to sell energy, which might result in more cost-effective production and 

resource allocation.  

3.2 OPTIMIZATION PROBLEM 

 Economic growth and progress are largely dependent on electrical power. A strong and 

efficiently run electricity grid is necessary for a healthy economy. We can guarantee a 

sustainable and safe energy future by investing in smart grid technology, integrating 

renewable energy sources effectively, and striking a balance between economic concerns 

and dependability. Optimisation challenges are an effective way to identify the best feasible 

solutions in a variety of fields and make data-driven judgements. Optimisation methods 

will become more crucial in solving complicated issues in a variety of industries as research 

into algorithm development and processing capacity grow [119]. 

  Several types of optimisation issues include integer programming, nonlinear 

optimisation, and linear optimisation. The objective function and restrictions in linear 

optimisation are linear functions of the decision variables. Techniques such as the simplex 
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algorithm are often used to address these issues in an effective manner. The objective 

function or constraints in non-linear optimisation have non-linear interactions with the 

choice variables. These issues may be harder to resolve and can call for specific methods. 

Decision variables in integer programming are limited to integer values, or whole integers. 

This kind of issue comes up when allocating resources or scheduling work in situations 

where partial answers don't make sense. 

  Iterative procedures that draw inspiration from human behaviour or natural 

processes are known as heuristics and meta-heuristics. They are useful for solving 

complicated issues, particularly when determining the precise best solution proves to be 

challenging. Particle swarm optimisation, genetic algorithms, and simulated annealing are 

a few examples. Given its efficiency and possibility for optimum outcomes, a heuristic 

might be a viable option for a well-defined issue with easily accessible domain knowledge. 

Because of its adaptability and capacity to identify solutions even in the absence of 

comprehensive issue-specific information, a meta-heuristic may be a preferable choice 

when faced with a complicated problem that has little structure or expertise [120]. 

3.3 OPTIMIZATION METHODOLOGIES 

 When faced with optimisation difficulties, our goal is to find the optimal solution based on 

a given set of criteria. Finding the greatest answer inside a constrained neighbourhood 

rather than necessarily the best solution across the search space is the focus of local 

optimisation issues. The collection of all potential answers to the given issue is represented 

by the search space. Every solution is given a value, and the objective is to identify the 

maximum and minimum value depending on the problem. The collection of solutions in 

the search space that are deemed "close" to a certain answer is referred to as the 

neighbourhood. A local optimum is a solution that, in terms of the objective function, is 

better than all of its neighbours inside the search space. That may not be the greatest option 

available worldwide, however. 
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  Several popular methods for local search include "hill climbing," which begins with 

a starting point and repeatedly advances to a better neighbour (a higher or lower objective 

function value, depending on the issue of minimisation or maximisation), until no better 

neighbours are found. In local optima, it may get trapped. Inspired by the annealing 

process, Simulated Annealing permits "bad" movements to sometimes break out of local 

optima and broaden the search area. For complicated issues with several local optima, it is 

helpful. By generating a population of potential solutions, using crossover and mutation 

operators, and choosing the "fittest" answers for the next generation, genetic algorithms are 

able to replicate biological behaviour. Avoiding local optima and generating a variety of 

options might be helpful [121]. 

  Problems involving global optimisation seek the optimal answer across the search 

space, not only in a small area. Depending on the particular situation, this "best solution" 

either maximises or minimises the objective function. Locating the globally optimum 

solution may be much more difficult than local optimisation, particularly for complicated 

issues. Since there are many local optima in non-convex search spaces, it is challenging to 

ensure that suboptimal regions are avoided and the optimum solution is found. Extensive 

exploration of problems involving several variables may be computationally costly due to 

their large search areas. 

  Hybrid strategies take use of the advantages of many optimisation methods to more 

successfully address the UCP. A hybrid technique that combines heuristics and meta-

heuristics may provide superior results. A heuristic may offer a solid starting answer, while 

a meta-heuristic may enhance it even more. Finding effective solutions while preserving 

computing efficiency may be possible by combining machine learning or meta-heuristic 

approaches with more conventional approaches like mixed-integer linear programming 

[122]. More investigation is required into successful hybrid strategies catered to the unique 

difficulties faced by UC.   
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3.4 PROPOSED OPTIMIZATION METHODOLOGY 

 3.4.1 Chaotic Beluga Whale Optimization 

 The Chaotic Beluga Whale Optimization (CBWO) algorithm mimics the characteristics of 

beluga whales throughout the optimization process, including swimming, hunting, and 

falling. Like other meta-heuristics, CBWO having essential stages, exploration and 

exploitation. During the exploration phase, beluga whales are scattered at random, which 

ensures that the design area is fully covered [123]. The intake phase facilitates localized 

neighbourhood searching within the design space. Within a search agent model, beluga 

whales possess the ability to navigate the search space through adjustments to their location 

vectors. 

  This unique combination of exploration, exploitation, and dynamic posture 

adjustments, inspired by the fascinating behaviors of beluga whales, endows CBWO with 

the capability to efficiently explore and optimize complex solution spaces in various real-

world applications [124]. 

  The matrix of position (M) of search agents is modelled as: 
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where d stands for the dimension of design variables and n is the beluga whale population 

size. The associated fitness values i.e., for every beluga whale are kept as follows: meF
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 Here, (the balance factor) is: 

                                                                      max(1 / 2 )f o i iB B T T= −
                                             (3.3) 

 Here, is the maximum number of iterations, fluctuates between 0 

and 1, and it determines the BWO algorithms’ transitions from exploration to exploitation.  

is the most recent iteration. The search phase begins when the balance factor is, 0.5fB   

and the exploitation phase begins when 0.5fB  . The range of variable decreases 

from (0, 1) to (0, 0.5). 

 3.4.2 Exploration Phase  

 The beluga whale's swimming pattern, which is being considered the exploration of 

CBWO, shows that they can interact socially in a variety of various positions. Here, 1

,

T

i jA +

is the new location for the ith beluga whale on the jth dimension, (j= 1, 2, …, d) is 

termed as a new position. 
, 1

T

r PA  and 
,

T

i PjA  is the latest position for the ith and rth (a randomly 

picked beluga whale). The locations are modified as follows: 
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 Here “r1 and r2 are arbitrary values between (0, 1). 
2cos(2 )r  and 

2sin(2 )r are the mean of 

the mirrored beluga whale. The revised location shows, dependent on the factor given by 
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odd and even numbers. Two random numbers, r1 and r2 are employed in the search phase 

to enhance the random operators”. 

 3.4.3 Phase of Exploitation 

 This phase was influenced by how beluga whale feeds. They may move together, and hunt 

together based on their location. To choose the ideal choice, beluga whale exchange 

information regarding their position. A Levy flying method is incorporated to the CBWO 

exploitation step to enhance convergence and new position is given as follows: 

                                                     
1

3 4 1. .( )T T T T T

i best i f r iA r A r A C L A A+ = − + −
                                       (3.6) 

 Here, T

iA  and T

rA  are the positions for the ith and rth beluga whale. 1T

iA +  is new location, 

T

bestA  is the strongest spot for beluga whales and r3 & r4 are random numbers between 0-1.  

                     
1 4 max2 (1 / )i iC r T T= −   is the random jump power which stands for the strength of 

Levy flight (Lf). Lf and σ is calculated by equation 3.7 and 3.8 below. 
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 Where β = default constant; β=1.5; u, v are random values. 

 3.4.4 Optimizer for Local Space 

 Local optimization is a technique used to find good, but not necessarily perfect, solutions 

to problems. It works by iteratively improving a solution until a stopping criterion is met. 

Here's a breakdown of local optimization and its algorithms. We have a mathematical 

function or objective function that assigns a score to each possible solution. Our goal is to 

find the input value that minimize or maximize this score. This process starts by pick a 

random starting point or solution in the search space and look at nearby solutions 
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(neighbours) of the current solution. Now, move to a neighbouring solution with a better 

score (lower for minimization, higher for maximization) and keep iterating steps 2 and 3 

until we reach a stopping criterion, no better neighbours exist (stuck at local optima), a 

certain number of iterations are completed and the change in score falls below a threshold. 

  Local optimization algorithms can get trapped in local optima. These are points 

where the score is better than surrounding neighbours, but not necessarily the best globally 

(global optimum). Imagine a ball rolling downhill in a hilly landscape - it might get stuck 

in a valley instead of reaching the lowest point. Gradient descent is a popular algorithm 

that uses the derivative of the objective function to determine the direction of improvement 

(steeper downhill). Hill climbing, a simpler version that only considers the score difference 

between the current solution and its neighbours. Local optimization is a good choice when 

finding the absolute best solution isn't critical, and the search space is vast. It's often faster 

than searching the entire space for a perfect solution. Local optima can lead to suboptimal 

solutions. The quality of the result depends on the initial guess. 

 3.4.5 Chaotic Map 

 Chaotic maps offer a promising approach to enhancing the performance of local search 

optimization algorithms. They can help the algorithm explore the search space more 

effectively and potentially find better solutions. Chaotic maps are interesting mathematical 

tools that have been applied in optimization algorithms to address some of the challenges 

faced by traditional local search methods. Local search algorithms can get stuck in local 

optima, leading to suboptimal solutions. Imagine searching a hilly landscape and getting 

trapped in a valley instead of reaching the lowest point [125].  

  Chaotic maps are mathematical functions that exhibit seemingly random behaviour 

despite being deterministic (meaning they follow a specific rule). These maps can generate 

sequences of numbers that appear random but have specific properties, like good coverage 

within a defined range. Traditional local search algorithms often use random starting 

points. Chaotic maps can be used to generate these starting points, ensuring a more even 
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distribution across the search space. This helps the algorithm explore a wider area and 

avoid getting stuck in local optima from the beginning. 

  During the search process, chaotic maps can be used to introduce random-like 

perturbations to the current solution. This helps the algorithm escape local optima by 

nudging it out of valleys and potentially towards better regions of the search space. By 

using chaotic maps, the algorithm can explore a wider range of solutions and potentially 

avoid getting stuck in local optima. Chaotic maps can help maintain diversity in the 

population of solutions considered by the algorithm, preventing premature convergence to 

suboptimal solutions. 

 

Fig. 3.1: Chaotic Map strategies 

 Fig. 3.1 shows chaotic map which includes a number of local optimization methods. 

Selecting an appropriate chaotic map with suitable properties is crucial for effective 

optimization. The way the chaotic map is integrated into the optimization algorithm (e.g., 

how much perturbation to introduce) might require some tuning for optimal performance. 
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3.4.6 Whale Fall  

 Polar bears, killer whales, and humans provide risks to beluga whales. By their intelligence, 

most beluga whales can avoid threats by sharing information within them. However, a few 

beluga whales died and plunged to the bottom of the sea. Numerous animals get food 

through the phenomenon known as "whale fall”. 

  To simulate small changes and forecast the manner of a whale's fall at each 

iteration, we choose the chance of a whale dropping from a group unit as a qualitative 

parameter. These beluga whales could have moved, or they might have taken asylum in a 

deeper body of water after being hurt by others. To keep steady population size, the updated 

sites are dependent on the beluga whales’ habitat and scope of the whale’s fall. The 

mathematical formulation is as follows: 

                                                 

1

5 6 7

T T T

i r i r r r stepA r A r A r A+ = − +
                                                          (3.9)  

  Where, 1T

iA +  is new location, 
5rr , 

6rr  & 
7rr  are any numbers between (0, 1), 

is the whale fall's step size, determined as follows:  

                                                2 max( ) exp( / )step ib ib i iA u l C T T= − −
                                                    (3.10)  

  Here, is the step coefficient of whale drop probability and population size, 

calculated by- 2 2 fC W n=  . Where, 
ibu  and 

ibl  are the upper and lower limits of the 

variables. The whale falling ( fW ) is calculated by: 

             max0.1 0.05 /f i iW T T= −
                                                                  (3.11) 

  The risk of a whale falling is reduced from 0.1 in the initial iteration and 0.05 in the 

final, showing that the danger posed by beluga whales lowers as they get closer to their 

food source throughout the optimization process.  

 

 

2C

stepA
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 3.4.7 The PSEUDO Code of Proposed CBWO  

Fig.3.2: PSEUDO Code of CBWO 

Input: Algorithm parameters (population size, maximum iteration) 

Output: The best solution 

Pseudo Code- 

Initialize population and fitness value, obtain best solution 

While Ti=Timax 

Calculate Wf and Bf 

For each Ai 

If Bf>0.5                                        (Exploration phase) 

Generate Pj and choose Ar randomly 

Update new position 

Else if Bf<0.5                                  (Exploitation phase) 

Apply Chaotic strategy and evaluate levy flight function 

Update latest position 

End if 

Check new position and find fitness value 

End for 

For each Ai 

If Bf= Wf                                                                   (Fall phase) 

Update C2 and calculate Astep 

Update new position 

Check new position and find fitness value 

End if 

End for 

To find current best solution P* 

Timax=Ti+1 

End While 
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Fig. 3.3: Flowchart for CBWO 
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3.5 TEST SYSTEMS 

 The proposed CBWO method incorporates with the circular chaotic map to enhance its 

optimization capabilities. The distinct characteristics of the popular test functions, 

including their range, ideal value, and objective fitness within a specific parameter space 

and dimension (fmin) set them apart. The Uni-modal (UM) functions equations from F1 to 

F7 are presented in Table 3.1. The test benchmark functions corresponding to CEC 2005, 

for multi modal (MM) functions (F8 to F13) & (F14 to F23) are fixed dimension (FD) 

functions shown in Tables 3.2 and 3.3, respectively.  

Table-3.1: Uni-modal Benchmark Functions 

Functions Dimensions Range 
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Table-3.2: Multi Modal Benchmark Functions  

Functions Dim Range 
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Table-3.3: Fixed Dimensions Benchmark Functions 

Functions Dim Range 
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2

14 1 6

1

1 1
( ) 5

500 ( )
bc

a aca

F S
c S b

−

=

=

 
 = +
 + − 




 2 

[65.536,65.5

36] 

2
2

11 2
15 21

3 4

( )
( ) a a a

aa
a a

S r r
F S p

r r



 =

 +
= − 

+ + 
  

4 [-5,5] 

2 4 6 2 4

16 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
F S S S S S S S S= − + + − +  

2 [-5,5] 

2 2

17 2 1 1 12

5.1 5 1
( ) ( 6) 10(1 )cos 10

4 8
F S S S S S

  
= − + − + − +  

2 [-5,5] 

2 2 2

18 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( ) [1 ( 1) (19 14 3 14 6 3 )] [30

(2 3 ) (18 32 12 48 36 27 )]

F S S S S S S S S S

S S S S S S S S

= + + + − + − + +  +

−  − + + − +
 

2 [-2,2] 

4 3 2

19 1 1
( ) exp( ( ) )a ac a aca c

F S d S S q
= =

= − − −   3 [1,3] 

4 6 2

20 1 1
( ) exp( ( ) )a ac a aca c

F S d S S q
= =

= − − −   6 [0,1] 

5 1

21 1
( ) [( )( ) ]T

a a aa
F S S p S p d −

=
= − − − +  4 [0,10] 

7 1

22 1
( ) [( )( ) ]T

a a aa
F S S p S p d −

=
= − − − +  4 [0,10] 

10 1

23 1
( ) [( )( ) ]T

a a aa
F S S p S p d −

=
= − − − +  4 [0,10] 
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3.6 RESULTS AND DISCUSSION 

 This section summarizes the findings from testing the suggested approach against 23 

frequently used benchmark functions. The simulation was done using MATLAB 2018a on 

a Windows 11 equipped with an Intel(R) Core (TM) i5-10300H CPU operating at 

2.50GHz. To characterize the performance of the benchmark functions, tests measures 

done on mean, worst, best, median, and standard deviation by conducting 1000 iterations 

and 30 trial tests. These outcomes are then compared with other existing algorithms for the 

purpose of comprehensive analysis. 

3.6.1 Testing Results of Unimodal Functions 

 The algorithms’ capability to approach the origin determines how to trace the ideal place. 

There may be possibilities to be trapped far or close and characterized in the form of 

exploration and exploitation throughout the search procedure by numerous means. The uni-

modal benchmark function's statistical analysis is displayed in Table 3.4 and 3.5. Table 3.6 

displays the CBWO simulation time for UM benchmark functions. 
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Fig.3.4: 3D View of Unimodal (F1-F7) Benchmark Functions 
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 The results for benchmark UM functions implementing the Chaotic Beluga Whale 

Optimization technique are shown in Table 3.4. The table shows numerous statistical 

parameters characterizing the results from CBWO runs for each benchmark function (F1 

to F7), including the std, which reflects the dispersion of values around the mean, and the 

Mean that provides the average value of the data received. The best and worst solutions 

discovered throughout the optimization process are shown in the best and worst columns, 

respectively. 

Table-3.4: Test results for Unimodal Benchmark Functions using CBWO 

Function  

No. 
Mean Std Best Worst Median 

Wilcoxon  

rank sum  

test  

(p-Value) 

Wilcoxon  

rank sum  

test  

(h-Value) 

t-test  

(p-Value) 

F1 0 0 0 0 0 - 0 - 

F2 0 0 0 0 0 1.21E-12 1 0 

F3 0 0 0 0 0 - 0 - 

F4 0 0 0 0 0 1.21E-12 1 0 

F5 1.72E-12 6.31E-12 9.07E-17 3.33E-11 9.91E-15 0.001597 1 0.378396 

F6 3.53E-27 9.43E-27 3.32E-30 3.93E-26 1.1E-28 0.077272 0 0.435751 

F7 4.95E-05 6.04E-05 3.14E-07 0.000269 3.8E-05 0.019112 1 0.339088 

 

 The results of statistical analyses used to determine the significance of the algorithm. The 

Wilcoxon rank sum test (p-Value) reflects the chance of noticing the observed outcomes if 

there were no differences between CBWO and the comparable approaches. The Wilcoxon 

rank sum test (h-Value) denotes hypothesis test's outcome, 1 indicating a significant 

difference and 0 indicating no significant difference. Similarly, the t-test (p-value) provides 
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insight into the probability of observing the results if there were no differences between 

CBWO and the compared methods. 

  Upon analysing the Table-3.4 and 3.5, it is evident that CBWO demonstrates highly 

competitive performance across the unimodal benchmark functions. The exceptionally low 

mean, standard deviation, and best values show that CBWO often produces optimum or 

almost optimal solutions. Furthermore, the statistical tests indicate that CBWO 

significantly outperforms other techniques for some benchmark functions (e.g., F2, F4, F5 

and F7) as indicated by the h-value of 1 and small p-values in Wilcoxon rank sum and t-

tests. However, for functions F1, F3 and F6, CBWO's performance is still competitive, 

although the statistical tests show less significant differences. 

  The Table-3.5 presents a summary of results obtained from conducting 30 trials of 

the “Chaotic Beluga Whale Optimization (CBWO) algorithm on UM benchmark functions 

(F1 to F7). The table shows statistical data for each function, including minimum and 

maximum values, means, medians, first quartiles (25th percentile), second quartiles (50th 

percentile), third quartiles (75th percentile), semi-interquartile deviation, number of 

outliers, and standard deviation. These findings give useful insights into the efficacy and 

unpredictability of CBWO when applied to diverse benchmark functions. 
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Table-3.5: Statistical Analysis of Results for Unimodal Benchmark Functions 

Function  

No. 

No. of  

trials 

Minimum 

value 

Maximum 

value 

Mean 

Value 
Median 

First 

quartile 

(25th 

Percentile) 

Second 

Quartile 

(50th 

Percentile) 

Third 

quartile 

(75th 

Percentile) 

Semi 

Interquartile 

Deviation 

Number 

of  

outliers 

Std 

F1 30 0 0 0 0 - 0 - - 0 0 

F2 30 0 0 0 0 - 0 - - 0 0 

F3 30 0 0 0 0 - 0 - - 0 0 

F4 30 0 0 0 0 - 0 - - 0 0 

F5 30 9.07E-17 3.33E-11 1.72E-12 9.91E-15 8.92E-16 9.91E-15 5.6E-14 2.76E-14 4 6.31E-12 

F6 30 3.32E-30 3.93E-26 3.53E-27 1.1E-28 2.01E-29 1.1E-28 5.98E-28 2.89E-28 5 9.43E-27 

F7 30 3.14E-07 0.000269 4.95E-05 3.8E-05 8.14E-06 3.8E-05 5.06E-05 2.12E-05 2 6.04E-05 
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Table-3.6: Computational Time for Unimodal Benchmark Functions 

Using CBWO 

Function No. Best Time (Sec) Worst Time (Sec) Average Time (Sec.) 

F1 3.13E-01 8.44E-01 3.46E-01 

F2 2.34E-01 5.63E-01 2.93E-01 

F3 4.69E-01 5.94E-01 5.08E-01 

F4 2.34E-01 3.59E-01 2.44E-01 

F5 2.66E-01 3.28E-01 2.74E-01 

F6 2.34E-01 2.81E-01 2.41E-01 

F7 3.44E-01 3.91E-01 3.60E-01 

 

 The outcomes are shown in Table 3.7, in terms of std and mean deviation with various meta 

heuristic search algorithms including Aquila Optimization (AO), Grey Wolf Optimization 

(GWO), Marine Predator Algorithm (MPA), Harris Hawk Optimization (HHO), 

Arithmetic Optimization Algorithm (AOA), Hunger Game Search (HGS), Moth Fame 

Optimizer (MFO), Multi Verse Optimizer (MVO), Ant Lion Optimizer (ALO), Sine-

Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), Wolf Optimization Algorithm 

(WOA), Beluga Whale Optimization (BWO), and CBWO with 1000 iterations and 30 test 

runs used to assess this method. 
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Table-3.7: Comparison of Results for Unimodal Benchmark Functions 

Algorithms Parameters 
F1 F2 F3 F4 F5 F6 F7 

AO 

 [127] 

AVG 1.90E-212 8.04E-102 2.03E-201 8.31E-100 9.74E-04 6.31E-05 4.69E-05 

SD 0.0E+00 4.35E-101 0.0E+00 3.37E-99 1.66E-03 0.00015 3.94E-05 

GWO  

[128] 

AVG 2.53E-70 4.36E-41 0.0E+00 1.61E-19 1.51E-17 2.64E+01 2.92E-01 

SD 3.95E-70 3.94E-41 0.0E+00 5.60E-19 1.81E-17 7.05E-01 2.47E-01 

MPA 

 [129] 

AVG 5.54E-50 5.75E-28 1.14E-12 2.58E-19 2.34E+01 1.70E-09 6.79E-04 

SD 7.76E-50 7.37E-28 2.99E-12 1.89E-19 5.09E-01 6.72E-10 4.10E-04 

HHO  

[130] 

AVG 2.6E-193 1.9E-101 0.0E+00 2.30E-166 8.46E-98 1.11E-03 1.05E-05 

SD 3.8E-192 7.6E-101 0.0E+00 1.20E-164 4.43E-97 1.25E-03 2.17E-05 

AOA  

[131] 

AVG 1.47E-28 0.0E+00 0.0E+00 2.94E-03 1.99E-02 2.79E+01 2.42E+00 

SD 8.03E-28 0.0E+00 0.0E+00 1.07E-02 2.07E-01 4.75E-01 2.14E-01 

HGS 

 [132] 

AVG 0.0E+00 4.80E-116 1.54E-152 2.32E-132 1.52E+01 8.72E-07 6.46E-04 

SD 0.0E+00 0.0E+00 8.45E-152 1.27E-131 1.18E+01 1.16E-06 9.46E-04 

MFO 

 [133] 

AVG 2.00E+03 3.37E+01 2.49E+04 6.44E+01 5.35E+06 1.66E+03 4.62E+00 

SD 4.07E+03 2.03E+01 1.41E+04 8.69E+00 2.03E+07 5.28E+03 1.31E+01 

MVO 

 [134] 

AVG 3.19E-01 3.89E-01 4.81E+01 1.08E+00 4.08E+02 3.24E-01 2.09E-02 

SD 1.13E-01 1.39E-01 2.18E+01 3.11E-01 6.15E+02 9.73E-02 9.58E-03 

ALO 

 [135] 

AVG 1.05E-05 2.87E+01 1.29E+03 1.22E+01 2.99E+02 1.20E-05 1.04E-01 

SD 7.83E-06 4.21E+01 5.96E+02 3.59E+00 4.31E+02 1.10E-05 3.43E-02 

SCA 

 [136] 

AVG 1.53E-02 1.15E-05 3.27E+03 2.04E+01 5.33E+02 4.55E+00 2.44E-02 

SD 3.01E-02 2.75E-05 2.94E+03 1.10E+01 1.92E+03 3.57E-01 2.07E-02 

SMA 

 [137] 

AVG 0.0E+0 5.67E-188 0.0E+0 5.63E-195 1.99E+00 1.24E-03     9.89E-05 

SD 0.0E+0 0.0E+0 0.0E+0 0.0E+0 6.81E+0 6.18E-04     1.00E-04 

WOA AVG 0.0E+0 0.0E+0 0.0E+0 0.0E+0 6.81E+0 6.18E-04 1.01E-04 
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 [138] SD 2.28E-152 1.59E-103 1.06E+04 2.99E+01 5.74E-01 1.11E-01 1.15E-03 

BWO 

 [123] 

AVG 0.0E+00 3.01E-261 0.0E+00 2.20E-252 1.09E-11 2.01E-27 6.36E-05 

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.57E-11 3.54E-27 4.44E-05 

CBWO 

AVG 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.72E-12 3.53E-27 4.95E-05 

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.31E-12 9.43E-27 6.04E-05 
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Fig.3.5: Comparison Graph of CBWO with other Algorithms for Unimodal Functions (F1- F7) 
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 The UM test results (F1-F7) demonstrate the usefulness of the method by highlighting 

various improvements in convergence when employing CBWO. Fig. 3.6 shows the box 

plot comparison of BWO with their chaotic versions for F1- F7. Fig. 3.5 shows the standard 

benchmark functions and the comparison of CBWO with various meta-heuristic algorithms 

for all UM functions.  

  Overall, the test results affirm CBWO's effectiveness and competitiveness in 

solving uni-modal benchmark functions, showcasing its potential as a reliable and efficient 

optimization algorithm. Further investigations may be necessary to explore CBWO's 

performance on other types of benchmark functions and other applications. 
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   Fig.3.6: Boxplot figures for Unimodal Function of Various 

Chaotic Versions of BWO. 

 3.6.2 Testing of MM Test Functions 

 The suggested Chaotic Beluga Whale Optimization algorithm is rigorously evaluated for 

multi-modal test functions through 1000 iterations and 30 trial runs. The outcomes of the 

Multimodal test functions and simulation time are presented in Table 3.8 and Table 3.9, 

along with statistical analysis for benchmark functions. Table 3.10 compares the 

effectiveness of CBWO with various algorithms, including AO, GWO, MPA, HHO, AOA, 

HGS, MFO, MVO, ALO, SCA, SMA, WOA and BWO. CBWO exhibits higher 

convergence rates, with fewer peak spots in the results for MM functions F8 to F13, 

highlighting the method's efficiency. Box-plot trial runs of the MM benchmark functions 

are evaluated to alternative approaches, confirming the superior performance of CBWO. 

The comprehensive analysis underscores the effectiveness and potential of CBWO in 

tackling multi-modal optimization challenges across various domains. 
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 Fig.3.7: 3D view of Multimodal (F8-F13) Benchmark Functions 

 The relevance of the Chaotic Beluga Whale Optimization findings for MM benchmark 

functions (F8 to F13) is shown in Tables 3.8-3.9. In each function, the standard deviation 

which reflects the distribution of values around the mean, is represented by the Std., and 

the mean value of the results represented by the Mean. The best and worst solutions 

discovered throughout the optimization process are shown in the Best and Worst columns, 

respectively in Table 3.8. 

  To assess the importance of CBWO, the Table 3.8 also contains the results of the 

Wilcoxon rank sum test and the t-test. It denotes the hypothesis test's outcome, with 0 

indicating no significant difference and 1 indicating a significant difference. 
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Table-3.8: Test Results of Multimodal Benchmark Functions 

Function No. Mean Std Best Worst Median 

Wilcoxon 

rank sum test 

(p-value) 

Wilcoxon 

rank sum test 

(h-value) 

t- test (p-

value) 

F8 -12569.5 1.85E-12 -12569.5 -12569.5 -12569.5 - 0 - 

F9 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 - 0 - 

F10 8.88E-16 0.0E+00 8.80E-16 8.80E-16 8.80E-16 - 0 - 

F11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 - 0 - 

F12 9.18E-24 4.82E-23 3.82E-28 2.65E-22 7.67E-26 0.137323 0 0.359807 

F13 3.75E-24 1.06E-23 2.75E-28 4.6E-23 1.42E-25 0.864994 0 0.996838 
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Table-3.9: Statistical Analysis of Results for Multimodal Benchmark Functions using CBWO 

Function 

 No. 

No. 

 of 

trials 

Minimum 

value 

Maximum 

value 

Mean  

Value 
Median 

First 

quartile 

(25th 

Percentile) 

Second 

Quartile 

(50th 

Percentile) 

Third 

quartile 

(75th 

Percentile) 

Semi 

Interquartile 

Deviation 

Number 

of 

outliers 

Standard 

Deviation 

F8 30 -12569.5 -12569.5 -12569.5 -12569.5 - -12569.5 - - 0 1.85E-12 

F9 30 0.0E+00 0.0E+00 0.0E+00 0.0E+00  - 0.0E+00  -  - 0.0E+00 0.0E+00 

F10 30 8.8E-16 8.8E-16 8.8E-16 8.8E-16  - 8.8E-16  -  - 0.0E+00 0.0E+00 

F11 30 0.0E+00 0.0E+00 0.0E+00 0.0E+00  - 0.0E+00  -  - 0.0E+00 0.0E+00 

F12 30 3.82E-28 2.65E-22 9.18E-24 7.67E-26 1.95E-26 7.67E-26 3.82E-25 1.81E-25 3 4.82E-23 

F13 30 2.75E-28 4.6E-23 3.75E-24 1.42E-25 2.29E-26 1.42E-25 4.88E-25 2.32E-25 5 1.06E-23 
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 Table-3.10: Computational time for Multi-modal benchmark functions using 

      CBWO 

Function No. Best Time (Sec) 
Average Time 

(Sec.) 

Worst Time 

(Sec) 

F8 2.50E-01 2.70E-01 2.97E-01 

F9 2.34E-01 2.52E-01 2.66E-01 

F10 2.34E-01 2.53E-01 2.66E-01 

F11 2.66E-01 2.81E-01 3.44E-01 

F12 5.78E-01 6.86E-01 1.39E+00 

F13 5.78E-01 6.17E-01 7.19E-01 

 

 The findings show that CBWO routinely produces outcomes for multi-modal benchmark 

functions that are very effective. CBWO achieves optimum or close to perfect outcomes 

for functions F8, F9, F10, and F11, as shown by the exceptionally low mean, standard 

deviation, and best values. The statistical tests further support the significance of CBWO's 

results, with p-values suggesting the obtained outcomes are highly relevant and reliable. 

However, for functions F12 and F13, the statistical tests show less significant differences, 

implying that CBWO performs competitively, though with some variability in comparison 

to alternative approaches. 

  In conclusion, the Table 3.11 demonstrates the robustness and significance of 

CBWO in tackling multi-modal benchmark functions, affirming its potential as an effective 

and reliable optimization algorithm for complex real-world problems.



64 

 

Table-3.11: Comparison of Results for Multi-Modal Benchmark Problems 

Algorithms P F8 F9 F10 F11 F12 F13 

AO [127] 

AVG 1.90E-212 8.04E-102 2.03E-201 8.31E-100 9.74E-04 6.31E-05 

SD 0.0E+00 4.35E-101 0.0E+00 3.37E-99 1.66E-03 0.00015 

GWO [128] 

AVG 2.53E-70 4.36E-41 0.0E+00 1.61E-19 1.51E-17 2.64E+01 

SD 3.95E-70 3.94E-41 0.0E+00 5.60E-19 1.81E-17 7.05E-01 

MPA [129] 

AVG 5.54E-50 5.75E-28 1.14E-12 2.58E-19 2.34E+01 1.70E-09 

SD 7.76E-50 7.37E-28 2.99E-12 1.89E-19 5.09E-01 6.72E-10 

HHO [130] 

AVG 2.6E-193 1.9E-101 0.0E+00 2.30E-166 8.46E-98 1.11E-03 

SD 3.8E-192 7.6E-101 0.0E+00 1.20E-164 4.43E-97 1.25E-03 

AOA [131] 

AVG 1.47E-28 0.0E+00 0.0E+00 2.94E-03 1.99E-02 2.79E+01 

SD 8.03E-28 0.0E+00 0.0E+00 1.07E-02 2.07E-01 4.75E-01 

HGS [132] 

AVG 0.0E+00 4.80E-116 1.54E-152 2.32E-132 1.52E+01 8.72E-07 

SD 0.0E+00 0.0E+00 8.45E-152 1.27E-131 1.18E+01 1.16E-06 

MFO [133] 

AVG 2.00E+03 3.37E+01 2.49E+04 6.44E+01 5.35E+06 1.66E+03 

SD 4.07E+03 2.03E+01 1.41E+04 8.69E+00 2.03E+07 5.28E+03 

MVO [134] 

AVG 3.19E-01 3.89E-01 4.81E+01 1.08E+00 4.08E+02 3.24E-01 

SD 1.13E-01 1.39E-01 2.18E+01 3.11E-01 6.15E+02 9.73E-02 

ALO [135] 

AVG 1.05E-05 2.87E+01 1.29E+03 1.22E+01 2.99E+02 1.20E-05 

SD 7.83E-06 4.21E+01 5.96E+02 3.59E+00 4.31E+02 1.10E-05 
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SCA [136] 

AVG 1.53E-02 1.15E-05 3.27E+03 2.04E+01 5.33E+02 4.55E+00 

SD 3.01E-02 2.75E-05 2.94E+03 1.10E+01 1.92E+03 3.57E-01 

SMA [137] 

AVG 0.0E+0 5.67E-188 0.0E+0 5.63E-195 1.99E+00 1.24E-03 

SD 0.0E+0 0.0E+0 0.0E+0 0.0E+0 6.81E+0 6.18E-04 

WOA [138] 

AVG 0.0E+0 0.0E+0 0.0E+0 0.0E+0 6.81E+0 6.18E-04 

SD 2.28E-152 1.59E-103 1.06E+04 2.99E+01 5.74E-01 1.11E-01 

BWO [123] AVG 0.0E+00 3.01E-261 0.0E+00 2.20E-252 1.09E-11 2.01E-27 

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.57E-11 3.54E-27 

CBWO 

AVG 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.72E-12 3.53E-27 

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.31E-12 9.43E-27 
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 Fig.3.8: Comparison of convergence of CBWO with other 

algorithms for Multimodal functions (F8-F13)  

 The results for multimodal CBWO are shown in terms of std and mean deviation with other 

algorithms including AO, GWO, MPA, HHO, AOA, HGS, MFO, MVO, ALO, SCA, 

SMA, WOA and BWO. To evaluate the comparison results, number of iterations set to 

1000 and 30 test runs. The MM test results (F8-F13) demonstrate the usefulness of the 
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method by highlighting various improvements in convergence when employing CBWO. 

Fig. 3.9 (f8-f13) shows the box plot comparison of BWO with their chaotic versions, Fig. 

3.8 shows the convergence graph and the comparison of CBWO with various metaheuristic 

algorithm for all the MM functions. 
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 Fig.3.9: Boxplot for Various Chaotic Versions of CBWO. 

 

3.6.3 Testing of Fixed Dimension Benchmark Functions 

 CBWO is thoroughly evaluated for FM functions (F14 to F23) with 30 trials & 1,000 

iterations. The results for FD functions and numerical analysis for FD functions are 

presented in Table 3.12 and Table 3.13, respectively. Additionally, Table 3.14 compares 

the simulation time for FD Benchmark Problems using CBWO. Convergence results for 

FM functions compares with AO, GWO, MPA, HHO, AOA, HGS, MFO, MVO, ALO, 

SCA, SMA, WOA and BWO, in terms of std & mean in Table 3.15 and 3.16. Notably, the 

suggested circular chaotic BWO consistently demonstrates superior convergence 

outcomes, as evidenced by the comparison of convergence curves. 

  Overall, the comprehensive analysis highlights the effectiveness and efficiency of 

CBWO in solving FM functions and FD Benchmark Problems. The presented results and 

comparisons reinforce CBWO's potential as a competitive and promising optimization 

algorithm for addressing a wide range of complex optimization challenges. 
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Fig.3.10: 3D view of Fixed benchmark functions 
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Table-3.12: Test results for fixed dimensions benchmark problems using 

CBWO 

Function Mean Std Best Worst Median 

Wilcoxon 

rank 

sum test 

(p-

value) 

Wilcoxon 

rank 

sum test 

(h-

value) 

t-test (p-

value) 

F14 1.387087 2.131098 0.988004 12.67051 0.988004 0.00232 1 0.325582 

F15 0.000391 0.000104 0.000317 0.000829 0.000365 0.000284 1 0.005703 

F16 -1.03126 0.000375 -1.03159 -1.0301 -1.03142 5.19E-07 1 9.42E-05 

F17 0.399869 0.002187 0.397892 0.408654 0.399388 0.662735 0 0.662748 

F18 3.365409 0.367306 3.005133 4.290632 3.232937 0.05012 0 0.017677 

F19 -3.86122 0.001618 -3.86267 -3.8541 -3.86173 0.000318 1 0.002648 

F20 -3.30795 0.006881 -3.31826 -3.29077 -3.30916 0.662735 0 0.883057 

F21 -10.1532 7.46E-06 -10.1532 -10.1532 -10.1532 3.09E-06 1 0.024276 

F22 -10.4029 1.13E-05 -10.4029 -10.4029 -10.4029 7.66E-05 1 0.020185 

F23 -10.5364 8.55E-06 -10.5364 -10.5364 -10.5364 2.32E-06 1 3.63E-05 
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  Table-3.13: Statistical analysis of results for fixed dimensions benchmark problems using CBWO 

Function 

No.  

of  

trials 

Minimum 

value 

Maximu

m value 

Mea

n 

Valu

e 

Media

n 

First 

quartile 

(25th 

Percentile

) 

Second 

quartile 

(50th 

Percentile

) 

Third 

quartile 

(75th 

Percentile

) 

Semi 

Interquartil

e Deviation 

Numbe

r of 

outlier

s 

Standar

d 

Deviatio

n 

F14 30 0.998004 12.67051 1.387 0.9980 0.998004 0.998004 0.998004 7.37E-12 4 2.13109 

F15 30 0.000317 0.000829 0.0033 0.0003 0.000332 0.000365 0.000384 2.58E-05 3 0.00010 

F16 30 -1.03159 -1.0301 -1.031 -1.0314 -1.03152 -1.03142 -1.03116 0.00018 2 0.00037 

F17 30 0.397892 0.408654 0.398 0.3993 0.398513 0.399388 0.400289 0.000888 2 0.00218 

F18 30 3.005133 4.290632 3.365 3.2329 3.067337 3.232937 3.628263 0.280463 0 0.36730 

F19 30 -3.86267 -3.8541 -3.861 -3.8617 -3.86209 -3.86173 -3.8609 0.000597 1 0.00161 

F20 30 -3.31826 -3.29077 -3.307 -3.3091 -3.31312 -3.30916 -3.30312 0.004999 0 0.006881 

F21 30 -10.1532 -10.1532 -10.15 -10.153 -10.1532 -10.1532 -10.1532 8.56E-07 5 7.46E-06 

F22 30 -10.4029 -10.4029 -10.40 -10.402 -10.4029 -10.4029 -10.4029 3.06E-06 2 1.13E-05 

F23 30 -10.5364 -10.5364 -10.53 -10.536 -10.5364 -10.5364 -10.5364 5.91E-06 0 8.55E-06 
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Table-3.14: Computational time for Fixed Modal benchmark functions 

using CBWO 

Function No. Best Time (Sec) Average Time (Sec.) Worst Time Sec) 

F15 1.56E-01 1.76E-01 3.91E-01 

F16 1.42E-01 1.58E-01 2.66E-01 

F17 1.42E-01 1.45E-01 2.03E-01 

F18 1.25E-01 1.44E-01 1.56E-01 

F19 1.55E-01 1.72E-01 1.88E-01 

F20 1.73E-01 1.82E-01 1.88E-01 

F21 3.12E-01 3.28E-01 3.44E-01 

F22 3.76E-01 3.98E-01 4.38E-01 

F23 4.69E-01 4.94E-01 5.16E-01 
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Fig.3.11: Comparison graphs for Fixed modal functions (F14-F18) 
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Table-3.15: Comparison of results for FD benchmark problems (F14-F19) 

Algorithms Parameters F14 F15 F16 F17 F18 F19 

AO [127] 

AVG 1.49E+0 4.38E-04 -1.04E+0 3.99E-01 3.01E+0 -3.87E+0 

SD 8.14E-01 9.60E-05 1.79E-04 1.08E-04 1.41E-02 2.59E-03 

GWO 

[128] 

AVG 1.36E-14 1.68E-03 0.0E+0 2.58E-02 3.40E-01 2.45E+0 

SD 2.41E-15 4.46E-03 4.65E-17 1.25E-02 1.47E-01 2.99E+0 

MPA 

[129] 

AVG 9.99E-01 3.06E-04 -1.04E+0 3.99E-01 3.0E+0 -3.87E+0 

SD 5.83E-17 2.65E-19 6.38E-16 0.0E+0 1.31E-15 2.72E-15 

HHO 

[130] 

AVG 8.88E-16 0.0E+0 -1.0E+0 9.26E-07 1.15E-05 9.98E-01 

SD 0.0E+0 0.0E+0 0.0E+0 1.53E-06 1.30E-05 0.0E+0 

AOA 

[131] 

AVG 8.88E-16 7.38E-02 0.0E+0 3.11E-01 2.77E+0 8.64E+0 

SD 0.0E+0 4.24E-02 4.13E-08 4.58E-02 9.80E-02 4.41E+0 

HGS 

[132] 

AVG 1.65E+0 6.45E-04 -1.04E+0 3.99E-01 3.0E+0 -3.87E+0 

SD 2.48E+0 2.24E-04 5.14E-16 0.0E+0 2.16E-15 2.41E-15 

MFO 

[133] 

AVG 8.70E+07 1.34E+10 5.20E+02 6.23E+02 1.30E+03 1.43E+03 

SD 1.37E+08 7.69E+09 1.73E-01 2.71E+0 1.03E+0 2.07E+01 

MVO 

[134] 

AVG 1.49E+07 5.67E+05 5.21E+02 6.14E+02 1.30E+03 1.40E+03 

SD 6.24E+06 2.10E+05 1.03E-01 3.44E+0 1.15E-01 4.03E-01 

ALO 

[135] 

AVG 1.26E+07 1.26E+04 5.21E+02 6.26E+02 1.30E+03 1.40E+03 

SD 5.18E+06 9.06E+03 9.39E-02 3.62E+0 1.01E-01 4.76E-02 

SCA 

[136] 

AVG 4.26E+08 2.69E+10 5.21E+02 6.37E+02 1.30E+03 1.47E+03 

SD 9.72E-01 4.18E-04 2.66E-05 1.35E-03 1.59E-05 3.17E-03 

SMA 

[137] 

AVG 9.99E-01 5.19E-04 -1.04E+0 3.99E-01 3.0E+0 -3.85E+0 

SD 1.17E+08 5.43E+09 5.35E-02 2.24E+0 3.74E-01 1.55E+01 

AVG 1.54E-13 2.56E-04 2.77E-11 2.52E-08 2.05E-12 7.14E-08 
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WOA 

[138] 

SD 

6.93E+07 1.09E+09 1.20E-01 2.89E+0 2.61E-01 6.26E+0 

BWO 

[123] 

AVG 9.99E-01 3.37E-04 -1.04E+0 4.00E-01 3.97E+0 -3.87E+0 

SD 8.63E-11 3.80E-05 9.26E-05 3.06E-03 1.18E+0 2.43E-03 

CBWO 

AVG 1.39E+0 3.91E-04 -1.02E+0 4.00E-01 3.37E+0 -3.86E+0 

SD 2.13E+0 1.04E-04 3.75E-04 2.19E-03 3.67E-01 1.62E-03 
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Fig.3.12: Convergence curve for Fixed modal functions (F19-F23) 

 

Table-3.16: Comparison of results for FD benchmark problems (F20-F23) 

Algorithms Parameters F20 F21 F22 F23 

AO [127] 

AVG -3.18 -1.02E+01 -1.04E+01 -1.05E+01 

SD 9.42E-02 1.17E-02 1.78E-02 2.68E-02 

GWO [128] 

AVG 4.38E-03 -1.03E+00 -9.62E+00 -1.02E+01 

SD 8.13E-03 2.31E-09 1.64E+00 9.70E-01 

MPA [129] 

AVG -3.32 -1.03E+01 -1.03E+01 -1.06E+01 

SD 1.05E-15 5.96E-15 0.00E+00 1.58E-15 

HHO [130] 

AVG 3.51E-04 -1.03E+00 -5.39E+00 -5.44E+00 

SD 1.68E-04 2.48E-13 1.27E+00 1.35E+00 

AOA [131] 

AVG 1.86E-02 -1.03E+00 -4.34E+00 -4.40E+00 

SD 3.13E-02 5.27E-08 1.19E+00 1.04E+00 

HGS [132] 

AVG -3.28E+00 -1.03E+01 -1.03E+01 -1.02E+01 

SD 7.29E-02 5.68E-15 1.19E-15 1.37E+00 

MFO [133] 

AVG 2.09E+05 1.61E+03 3.69E+06 3.01E+07 

SD 4.17E+05 5.36E-01 5.22E+06 1.15E+08 
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MVO [134] 

AVG 1.51E+03 1.61E+03 6.48E+05 1.11E+04 

SD 3.70E+00 5.27E-01 4.23E+05 7.88E+03 

ALO [135] 

AVG 1.52E+03 1.62E+03 1.23E+06 3.77E+03 

SD 4.83E+00 5.73E-01 9.02E+05 1.98E+03 

SCA [136] 

AVG 1.69E+04 1.61E+03 1.48E+07 2.77E+08 

SD 3.25E-01 2.49E+00 2.18E+00 1.78E+00 

SMA [137] 

AVG -3.24E+0 -1.03E+01 -1.05E+01 -1.04E+01 

SD 1.35E+04 2.42E-01 7.20E+06 1.77E+08 

WOA [138] 

SD 5.55E-02 1.09E-04 9.00E-05 9.75E-05 

SD 1.22E+02 4.63E-01 1.56E+07 2.99E+05 

BWO [123] 

AVG -3.31E+0 -1.03E+01 -1.05E+01 -1.04E+01 

SD 8.29E-03 3.78E-07 3.57E-06 1.29E-06 

CBWO 

AVG -3.31E -1.02E+01 -1.03E+01 -1.04E+01 

SD 6.88E-03 7.46E-06 1.13E-05 8.55E-06 
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 Fig.3.13: Boxplot of various chaotic versions of CBWO for Fixed 

Modal Functions. 

 

3.7 MULTI-DISCIPLINARY ENGINEERING BENCHMARK PROBLEMS 

 There are 11 different design issues covered in this section including “3-rod truss problem, 

speed reducer problem, pressure vessel design, compression spring design, rolling element 

problem, welded beam design, Belleville spring problem, gear train design, multi-disc 

clutch brake problem, cantilever beam design and I-beam designs” [127], shown in Table 

3.17.  

  All engineering design problems are highlighted, including their best, mean, std and 

p-value comparisons are displayed in Table-3.18. From EF1 to EF11 design challenges are 

all run via 1000 iterations and 30 test runs to confirm the usefulness of CBWO. To support 

the validity of test findings for each design challenge, a comparison with existing 

optimization methodologies is also included. 
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Table-3.17: Abbreviations of Engineering Design Problems 

Engineering 

Functions 

Design Problem 

EF1 Three Truss Bar Problem 

EF2 Pressure Vessel Problem 

EF3 Speed Reducer Problem 

EF4 Tension/Compression Spring Design Problem 

EF5 Rolling Element Bearing 

EF6 Welded Beam Problem 

EF7 Multiple Disk Clutch Brake 

EF8 Gear Train Design Problem 

EF9 Cantilever Beam Design 

EF10 Belleville Spring 

EF11 I Beam Design 
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Table-3.18: Test results for Engineering Design Problems 

Problem Mean Best value Worst value Std Median 

Wilcoxon  

rank 

sum test 

(p- value) 

EF1 264.3468 263.9673 265.1561 0.327547 264.2663 0.340288 

EF2 8085.476 6781.794 9216.884 647.5301 8037.506 0.000655 

EF3 3101.192 3054.445 3214.915 39.15153 3090.442 0.02266 

EF4 0.013153 0.012773 0.013483 0.000165 0.013196 0.024157 

EF5 -72222.8 -80855.4 -64667 4897.792 -71867 0.200949 

EF6 2.352601 1.933092 2.751438 0.231188 2.385073 0.061452 

EF7 0.428177 0.397574 0.483591 0.019828 0.427697 0.079782 

EF8 1.04E-10 4.73E-15 1.18E-09 2.69E-10 1.88E-11  0.3871 

EF9 1.315083 1.308106 1.321584 0.003948 1.314907 0.166866 

EF10 2.13313 1.992514 3.500604 0.266401 2.059073 0.446419 

EF11 0.00663 0.006626 0.006636 3.13E-06 0.006629 0.200949 

 

 3.7.1 EF1-Three Truss Bar design problem 

 The commonly used engineering optimization problem i.e., "three-bar truss design 

problem" aims to reduce overall weight while fulfilling stress, deflection, and buckling 

limitations [246]. A three-bar truss is in Fig. 3.14. The challenge of design problem is to 

determine the cross-sectional areas of the bars that minimize the overall weight of the truss 

while fulfilling the limitations.  

 

1 2[ , ]a a a= ;                                                                                   (3.12) 
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1 2( ) (2 2 )f a a a l= +  ;                                                                                                                                                                                              ((3.13) 

1 2

2

1 1 2

2
1( ) * 0

2 2

a a
t a P

a a a


+
= − 

+
                                                                 (3.14) 

2

1 1 2

2( ) * 0
2 2

a
t a P

a a a
= − 

+
;                                                                                                                                                  (3.15) 

2 1

1
3( ) * 0

2
t a P

a a
= − 

 +
;                                                                      (3.16) 

 

 

 

 

 

 

Fig. 3.14: Three Truss Bar Design 

 

Fig. 3.15: Convergence curve for Three Truss Bar design 
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Table-3.19: Comparison of optimal values for variables for three truss bar 

engineering problem 

Algorithm 
Optimal Values for Variables 

Optimal Weight 
a1 a2 

CBWO 0.780837 0.431131 263.9673 

BWO [123] 0.788 0.410585 263.9385 

ALO [135] 0.788712 0.408143 263.8958 

AO [127] 0.789996 0.405413 267.6096 

AOA [131] 0.785811 0.416714 263.9323 

GWO [128] 0.788735 0.408079 263.896 

HGS [132] 0.784879 0.425632 264.5604 

HHO [130] 0.788403 0.409018 263.8959 

MFO [133] 0.78851 0.408716 263.8959 

MPA [129] 0.788686 0.408217 263.8958 

MVO [134] 0.788696 0.408191 263.896 

SCA [136] 0.793484 0.39498 263.9291 

SMA [137] 0.827677 0.320319 266.1342 

WOA [138] 0.791563 0.400141 263.9019 

 

 CBWO's outcomes are contrasted with other optimization techniques as shown in Table 

3.19. The convergence graph is shown in Fig. 3.15. It can be shown that the recommended 

approach significantly enhances the goal of cost minimization as CBWO performs better 

than many algorithms.  
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 3.7.2 EF2—Pressure Vessel Problem 

 The cylindrical pressure vessel is designed with a low cost in mind and to ensure that they 

are safe. The CBWO is used to save costs. Here the design factors are “inner radius, the 

width of the head, the length of vessel and thickness of the shell [246]. Mathematical 

equations for this problem are shown below. 

1 2 3 4[ ]s s s s s=                                                                               (3.17) 

Subject to- 

2 2 2

1 3 4 2 3 1 4 1 3 0.6224 1.7781 3.1661 19.( 84)f s s s s s s s s s s= + + + ;                (3.18)  

1 31   0.0193 0( )g s s s= − +                                                                            (3.19) 

3 32  0.00954 0( )g s s s= +  ;                                                                          (3.20) 

2 3

3 4 3

4
3   1296000 0

3
( )g s s s s = − − +  ;                                               (3.21) 

44   2) 40 0(g s s= −                                                                                       (3.22) 

Variable Range 

1 2 3 40 99,  0  99,  10  200,  10  200s s s s        ; 

 

 

 

 

 

 

Fig. 3.16: Pressure Vessel Design 
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 Fig. 3.17 shows the comparison graph of CBWO algorithm comparing to other existing 

algorithms. Table-3.20 illustrates the outcomes for optimum cost of pressure vessel design 

problem. It has been shown that CBWO provides cost-effective solutions of this design 

problems with better outcomes. 

Table-3.20: Test Results for Pressure Vessel Design Problem 

Algorithm 
Optimal Values for Variables 

Optimal value 
S1 S2 S3 S4 

CBWO 0.963579 0.51402 47.5895 121.8275 6781.794 

BWO [123] 0.797683 0.434399 40.89814 193.9196 6136.484 

ALO [135] 0.780632 0.385867 40.44723 198.235 5889.646 

AO [127] 0.812393 0.403669 42.05761 182.0953 6073.207 

AOA [131] 1.095769 0.931294 43.66253 164.2997 9714.165 

GWO [128] 0.779219 0.385298 40.3661 199.4898 5891.493 

HGS [132] 0.778169 0.384649 40.31962 200 5885.333 

HHO [130] 0.789315 0.415304 40.72659 194.4112 6001.457 

MFO [133] 0.778169 0.384649 40.31962 200 5885.333 

MPA [129] 0.778169 0.384649 40.31962 200 5885.333 

MVO [134] 0.798845 0.396439 41.27375 187.6398 5953.131 

SCA [136] 0.802069 0.424988 40.37142 200 6185.009 

SMA [137] 0.780631 0.385866 40.44719 198.2316 5889.555 

WOA [138] 0.986644 0.486999 50.32605 95.77928 6420.357 
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Fig.3.17: Convergence curve for Pressure Vessel Problem 

 3.7.3 EF3—Speed Reducer Design Problem 

 An engineering optimization problem known as a speed reducer design, aims to create a 

speed reducer that satisfies some specifications. Typically, the objective of an optimization 

challenge is to curtail the speed reducer's weight while meeting the required standards. The 

restraints of the optimization problem typically include the speed reduction ratio, the 

maximum torque, the maximum speed, and the strength and stiffness requirements of the 

speed reducer components [246]. 

2 2 2

1 2 3 3 1 6 7

3 3 2 2

6 7 4 6 5 7

 0.7854 3.3333 14.9334 4( ) ( ) ( )

( ) ( )

3.0934  1.508  

7.4777  0.7854

i i i i i i i

i i i i i i

f

x

x x x x x x

x x x x

x x

x

= + − − +

+ + + +
(3.23) 

Subject to: 

2

1 2 3

27
1  1 0( )

i i i

s
x x

x
x

= −  ;                                                            (3.24) 

2 2

1 2 3

397.5
2  1 0( )

i i i

s
x x x

x = −  ;                                                                          (3.25) 
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3

4

4

2 3 6

1.93
3  1 0( ) i

i i i

x
s

x x
x

x
= −  ;                                                                            (3.26) 

3

5

4

2 3 7

1.93
4  1 0( ) i

i i i

x
s

x x
x

x
= −  ;                                                                            (3.27) 

2 64

3

6 2 3

7451
5  ( )  16.9 10 1 0

110
( ) i

i i i

x
s

x
x

x x
= +  −  ;                               (3.28) 

2 65

3

7 2 3

7451
6  ( )  157.9 10 1 0

85
( ) i

i i i

x
s

x
x

x x
= +  −  ;                              (3.29) 

2 37  1 0
4

(
0

) i is x
x x

= −  ;
2

1

( )
5

8  1 0i

i

x

x
xs = −                                               (3.30) 

1

2

9  1 0(
12

) i

i

x
s

x
x = −  ;                                                                                  (3.31) 

6

2

1.5 1.9
10  1 0( )

12

i

i

x
s

x
x

+
= −  ;                                                                        (3.32) 

7

5

1.1 1.9
11  ( 1 0) i

i

x
s

x
x

+
= −                                                                            (3.33) 

Where,

1 2 3 4 5 6 72.6 3.6,  0.7 0.8,  17 28,  7.3 8.3,  7.8 8.3,  2.9 3.9 5 5.5.i i i i i i ix x x x x x and x               
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Fig.3.19: Comparison Curve for Speed Reducer Design Engineering 

Problem 

 Table 3.21 presents results for optimal values of variables for this problem and Fig. 3.19 

demonstrates the graphical comparison of CBWO with other algorithms. The comparison 

study demonstrates that the suggested approach can manage the speed reducer problem 

precisely. 

 

 

 

Fig. 3.18: Speed Reducer Design 
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Table-3.21: Comparison of Results of Speed Reducer Problem with different algorithm 

Algorithm Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 
Optimal  

Value 

CBWO 3.522 0.7 17 7.3 8.090 3.396 5.334 3054.445 

BWO [123] 3.556 0.7 17 7.3 8.202 3.368 5.292 3035.78 

ALO [135] 3.5 0.7 17 7.333 7.797 3.350 5.286 2996.607 

AO [127] 3.518 0.7 17 7.3 8.139 3.383 5.300 3028.545 

AOA [131] 3.6 0.7 17 8.3 8.003 3.491 5.300 3096.035 

GWO [128] 3.504 0.7 17 7.479 7.793 3.350 5.287 3000.194 

HGS [132] 3.5 0.7 17 7.3 7.715 3.350 5.286 2994.471 

HHO [130] 3.519 0.7 17 7.776 7.880 3.424 5.286 3029.515 

MFO [133] 3.5 0.7 17 7.3 7.715 3.350 5.286 2994.471 

MPA [129] 3.5 0.7 17 7.3 7.715 3.350 5.286 2994.471 

MVO [134] 3.505 0.7 17 7.3 8.082 3.353 5.286 3005.693 

SCA [136] 3.6 0.7 17 8.3 7.863 3.395 5.314 3075.251 

SMA [137] 3.5 0.7 17 7.300 7.715 3.350 5.286 2994.472 

WOA [138] 3.5 0.7 17 7.710 7.718 3.470 5.289 3031.756 
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 3.7.4 EF4—Compression Spring Design 

 The aim of this optimization problem is typically to “minimize the weight of the spring 

while satisfying the specified requirements including variables like, wire diameter (y2), 

active coils (y3), and coil diameter (y1)” [126]. Equations 3.34-3.39 provides mathematical 

formulation for this problem. The indicated approach is applied to address the problem of 

the model and the outcomes are demonstrated in Table-3.22.  

1 2 3[ ]y y y y=                                                                                  (3.34) 

Subject to- 

2

3 2 1 ( 2)) ,(f y y y y= +                                                                                    (3.35) 

3

2 3

4

1

1( ) 1 0,
71785

y y
g y

y
= −                                                                               (3.36) 

2

2 1 2

3 4 2

2 1 1 1

4 1
2( ) 0,

12566( ) 5108

y y y
g y

y y y y

−
= + 

−
                                           (3.37) 

1

2

2 3

140.45
3( ) 1 0

y
g y

y y
= −  ;                                                                              (3.38) 

1 24( ) 1 0,
1.5

y y
g y

+
= −                                                                                    (3.39) 

Range - 

1 2 30.005 2.00,  0.25 1.30,  2.00 15.0;y y y       
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Fig.3.20: Compression Spring Design 

 

Fig.3.21: Comparison Curve for Compression Spring Design 

 Table 3.22 shows the optimal values of compression spring design problem. CBWO has 

shown better results as compared to BWO and superiority over BWO. Graph in Fig. 3.21 

shows the better performance. The data makes it abundantly evident that the CBWO 

approach is more effective for lowering the spring weight. 
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Table 3.22: Optimal values of variables Comparison for Compression 

Spring Design Problem 

Algorithm 

Optimal Values for Variables 

Optimum Weight y1 y2 y3 

CBWO 0.05 0.31710 14.11225 0.012773 

BWO [123] 0.05 0.31642 14.20957 0.012823 

ALO [135] 0.05171 0.35723 11.25862 0.012665 

AO [127] 0.05 0.31717 15 0.01348 

AOA [131] 0.05 0.31044 15 0.013194 

GWO [128] 0.05203 0.36508 10.81694 0.012671 

HGS [132] 0.05 0.31742 14.02777 0.012719 

HHO [130] 0.05403 0.41586 8.509928 0.012762 

MFO [133] 0.05232 0.37215 10.43834 0.012672 

MPA [129] 0.05168 0.35669 11.2903 0.012665 

MVO [134] 0.05 0.31144 14.85402 0.013123 

SCA [136] 0.05216 0.36781 10.72499 0.012735 

SMA [137] 0.05218 0.36877 10.61588 0.01267 

WOA [138] 0.05168 0.35651 11.30103 0.012665 
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3.7.5 EF5—Rolling Element Bearing Design 

 The “main objective is to enhance the dynamic load-carrying capacity of the rolling bearing 

element” [126], as indicated in Fig. 3.22. There are ten primary parameters that affect how 

much more weight a bearing can support. The ball's size, diameter pitch, number, outer 

curvature coefficient, and inner curvature coefficient are among these crucial variables. 

This design constraint is indirectly affected by the other five factors. Equations 3.40-3.48 

are used to formulate the design challenge mathematically. 

Maximize 

2 3 1.8

D c BC f N D= ; 25.4 D mm ; 

2 3 1.43.647 c BCD f N DIM= ;  25.4 if DIM mm                                     (3.40) 

Subject to- 

0

1

1  1; 1 0

(

( ) (

 )

)

2 BS

dm

a x N a x
D

sin
D



−

= − +  ;                                                 (3.41) 

(2  ( ) )2 0
dmBS D o ia x D K D d= − −                                                                 (3.42) 

)3  0( ( )
dmD o ia x K D d= −  ;                                                                           (3.43) 

4 0(  ) W BSa x B D= −  ; 5  0.5 0( ) ( )dm o ia x D D d= − +  ;                     (3.44) 

( ) ( )6   0.5 0( )o ia x re D d= + +                                                                    (3.45) 

)7  0.5  0( ) ( o dm BS BSa x D D D D= − − −  ;                                              (3.46)  

8  0 1( ) .5 5Ia x f=  ;                                                                                     (3.47) 

09  0) 515( .a x f=  ; 160,  90, 30,o i WD d B= = = ; 0 11.033rI r= =    (3.48) 

0.5 0.6 ,( ) ( )o i dm o iD d D D d+   +  
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 0.15 0.( ) ( )45 ,  4 50o i BS o i iD d D D d N−   −   ;
00.515 0.6If Andf   

 Table 3.23 indicates the optimal values of ten variables and comparison of CBWO 

algorithm with other algorithms for this problem. The graph in Fig. 3.23 shows the better 

performance of CBWO. By the findings shown in Table 3.23, it is evident that many 

suggested techniques outperform CBWO and other methods in terms of results. 

 

Fig.3.22: Rolling element bearing design 

 

 Fig.3.23: Comparison Curve for Rolling element bearing design 
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 Table 3.23: Optimal values of variables comparisons for rolling element bearing design problem 

Algorithm r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Optimum fitness 

CBWO 125 20.74179 11.0199 0.515 0.52615 0.44616 0.614068 0.310981 0.09935 0.6 -80855.4 

BWO [123] 125 20.40766 11.23485 0.515 0.515 0.4 0.6 0.3 0.03078 0.6 -79573 

ALO [135] 125.6774 21.4233 10.99752 0.515 0.515 0.400769 0.612504 0.300291 0.02097 0.60121 -85519.3 

AO [127] 126.1492 21.11806 11.14601 0.515 0.515 0.475854 0.690572 0.3 0.09308 0.61536 -84133.8 

AOA [131] 125 20.88604 11.09918 0.515 0.515 0.5 0.6 0.3 0.08956 0.6 -82250.2 

GWO [128] 125.5831 21.41807 10.98599 0.515 0.515 0.485991 0.679063 0.300585 0.02975 0.68514 -85420.4 

HGS [132] 125.7614 21.39915 11.01341 0.515 0.515 0.4 0.7 0.3 0.02 0.6008 -85433.2 

HHO [130] 126.164 21.14675 11.14294 0.515 0.515 0.4 0.608508 0.3 0.06087 0.6 -84321.2 

MFO [133] 125.7227 21.4233 11.00116 0.515 0.515 0.5 0.7 0.3 0.1 0.6 -85539.2 

MPA [129] 125.7227 21.4233 11.00116 0.515 0.515 0.451156 0.7 0.3 0.06095 0.66790 -85539.2 

MVO [134] 125.5827 21.41663 10.99113 0.515 0.51509 0.499575 0.631751 0.301605 0.05878 0.64813 -85437 

SCA [136] 125 21.31616 10.5404 0.515 0.515 0.5 0.7 0.3 0.07308 0.60027 -82384.8 

SMA [137] 125.7227 21.4233 11.00116 0.515 0.515 0.426265 0.662564 0.3 0.02000 0.64356 -85539.2 

WOA [138] 125 21.29643 10.99108 0.515 0.515 0.450239 0.6752 0.3 0.02797 0.6 -84578.3 
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3.7.6 EF6—Welded Beam Design 

 When creating a welded beam, separate portions are fused together using molten metal. 

The goal is to reduce the total expense of beam by optimising four design variables while 

taking seven restraints into consideration. The precondition variables are shown by 

equations 3.49-3.57, are used to build the mathematical equations. Results of CBWO along 

with other algorithms are shown in Table 3.24. 

1 2 3 4[ ]y y y y y=                                                                                  (3.49) 

Subject to- 

2

1 2 3 4 2 1.10471 0.04811 (14.0 )( )f y y y y y y= + + ;                                           (3.50) 

,( ) ( )1   0maxiw y y = −                                                                                (3.51) 

,( ) ( )2   0maxiw y y = −  ;                                                                           (3.52) 

,( ) ( )3   0maxiw y y = −  ;                                                                            (3.53) 

1 4( )4  0,w y y y= −                                                                                       (3.54) 

)5  0,( ) (oi oCw y P P y= −                                                                                 (3.55) 

16  0.125  0,( )w y y= −                                                                                  (3.56) 

2

1 3 4 27  1.10471 0.04811  14.0   5.0 0( ) ( )w y y y y y= + + −                              (3.57) 

1 2 3 40.1 2 ,  0.1 10 ,  0.3 10 ,  0.1 2i i i iy y y y         

6000 ,  14 ; 0.25 ,  30 16 , 12 106 ; 13600 , 3000oi i mi i i mi maxiP lb L in in E psi G psi psi ps  = = = =  =  = =  
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Fig.3.24: Welded beam design 

  

Fig.3.25: Comparison Curve for Welded beam design 

 

Table 3.24 shows the results for optimal values of variables for welded beam design 

problem and Fig. 3.25 demonstrates the graphical comparison of CBWO with other 

algorithms. The comparison study demonstrates that the suggested method can 

manage the beam layout problem precisely. 
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Table-3.24: Optimal values of variables comparisons for welded beam 

design problem 

Algorithm 

Optimal Values for Variables 

Optimal Cost y1 y2 y3 y4 

CBWO 0.191269 4.250316 8.553507 0.234524 1.933092 

BWO [123] 0.20368 3.676839 9.034169 0.212743 1.803006 

ALO [135] 0.205696 3.47119 9.036665 0.205729 1.724901 

AO [127] 0.198582 4.123495 9.056711 0.205736 1.804277 

AOA [131] 0.175126 4.043722 10 0.201432 1.885602 

GWO [128] 0.205459 3.479894 9.036697 0.205749 1.725869 

HGS [132] 0.205594 3.473418 9.036603 0.205731 1.725041 

HHO [130] 0.196586 3.720833 9.016502 0.206649 1.747365 

MFO [133] 0.205729 3.470505 9.036624 0.20573 1.724853 

MPA [129] 0.20573 3.470489 9.036624 0.20573 1.724852 

MVO [134] 0.20457 3.502387 9.035384 0.205794 1.72763 

SCA [136] 0.215266 3.323734 9.009207 0.215736 1.790037 

SMA [137] 0.205657 3.47207 9.036621 0.205731 1.724959 

WOA [138] 0.205668 3.453472 9.084588 0.214627 1.798598 
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3.7.7 EF7–Multidisc Clutch Brake Design  

 Weight reduction is the key concern of this engineering problem. Its five parameters for 

design are thickness of the discs (Dh), actuation force (Aac), number of friction surfaces 

(Nf), inner surface radius (Sin), and outer surface radius (Fo) as shown in Table 3.25. 

Equations 3.58-3.65, provides a mathematical formulation for the multi-clutch design 

problem. The test result of the suggested strategy is contrasted with BWO and other 

optimization techniques in Table 3.25. 

2 2( , , , ) ( )( 1)in O f h h O in ff S F N D D F S N = − +  

SUBJECT TO 

60 80;inS  − 90 110;OF  − 1,  1.5,..3;Dh  

600,  610,...1000;Aac  

2,3.....9Nf  ; 

1  0O inb F S S= − −                                                                                    (3.58) 

2  1 0( )( )MAX fb L hN D = − + +  ;                                                              (3.59) 

3 0Mb PM PM= −  ;                                                                                 (3.60) 

4 0M M iSRb PM Y PM Y= +                                                                          (3.61) 

max5 0iSR iSRb Y Y= −  ;                                                                                   (3.62) 

max6 0ib t t= −  ;                                                                                           (3.63)  

7 0ih fb DC DC= −  ;                                                                                   (3.64) 

8 0b t=  ;                                                                                                     (3.65) 
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Fig.3.26: Multidisc Clutch Brake Design 

 

 

Fig.3.27: Comparison Curve for Multidisc Clutch Brake Design 
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Table-3.25: Optimal values of variables comparisons for multidisc clutch 

brake design problem 

Algorithm 

Fitness Variables 

Optimum fitness 

Sin Fo Dh Aac Nf 

CBWO 69.62604 90 1.5 1000 2.325857 0.397574 

BWO [123] 69.79399 90 1.5 1000 2.317957 0.393774 

ALO [135] 70 90 1.5 999.9967 2.31279 0.389654 

AO [127] 70.021 90.06064 1.5 986.0942 2.353029 0.395371 

AOA [131] 80 100.7027 1.5 1000 2.151428 0.433347 

GWO [128] 69.99452 90.00115 1.5 1000 2.313668 0.389876 

HGS [132] 70 90 1.5 1000 2.312782 0.389653 

HHO [130] 70 90 1.5 1000 2.312782 0.389653 

MFO [133] 70 90 1.5 1000 2.312782 0.389653 

MPA [129] 70 90 1.5 1000 2.312782 0.389653 

MVO [134] 70.00995 90.01318 1.5 1000 2.31283 0.389778 

SCA [136] 69.85038 90 1.5 998.429 2.344048 0.395903 

SMA [137] 70 90 1.5 1000 2.312782 0.389653 

WOA [138] 70 90 1.5 1000 2.313163 0.389698 

 Fig. 3.27 shows the graph of CBWO algorithm comparing with other algorithms with good 

results. This algorithm is successfully tested on multidisc clutch design problem and in 

terms of cost reduction, it has been found that CBWO provides good fitness result 

compared to many approaches. 
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3.7.8 EF8–Gear Train Design 

 The four variables X1, X2, X3 and X4 as shown in Fig. 3.28, are reformed in this manner to 

reduce the scalar value & teeth ratio of gear. The conclusion making factors in the 

designing process are the teeth on each gear. Optimal fitness of CBWO is displayed in 

Table 3.26 with other techniques. 

23 2

1 4

1
 ( ) ( )

6.931

X X
minf X

X X
= − ;                                                                       (3.66) 

1 2 3 4, , , (12,13,14,. . .;60)X X X X  ; 

 

 

 

 

 

 

Fig.3.28: Gear Train Design 

 

Fig.3.29: Comparison Curve for Gear Train Design 
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Table-3.26: Optimal values of variables comparisons for Gear Train Design Problem 

Algorithm 

Optimal values for variables 

Optimum fitness X1 X2 X3 X4 

CBWO 60 12 12.27647 17.01763 4.73E-15 

BWO [123] 59.64362 12 34.99424 48.79865 4.05E-13 

ALO [135] 58.6288 18.7589 12.20889 27.07509 1.04E-24 

AO [127] 38.42165 18.0097 13.18271 42.82844 4.96E-15 

AOA [131] 49.07108 13.5169 30.0277 57.32648 2.34E-11 

GWO [128] 50.23362 21.2618 14.64286 42.95643 2.31E-15 

HGS [132] 58.87301 12 39.48296 55.77899 0.00E+00 

HHO [130] 42.21988 12.6996 12.13988 25.3096 0.00E+00 

MFO [133] 54.88092 39.5909 12 60 0.00E+00 

MPA [129] 53.4367 16.4855 12.39301 26.49939 2.45E-25 

MVO [134] 30.41918 12 15.3206 41.88952 2.42E-17 

SCA [136] 16.63427 12 12 60 1.37E-12 

SMA [137] 42.91135 14.4677 25.42703 59.4185 1.05E-17 

WOA [138] 53.7102 18.8394 16.98302 41.28789 0.00E+00 

  

CBWO has better fitness value as compared to BWO and many other algorithms. It shows 

the superiority on its own existing algorithm, in Table 3.26. Fig. 3.29 represents the graph 

of different algorithm and through which we can conclude that CBWO is performing better 

than many algorithms. 
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3.7.9 EF9-Cantilever Beam Design 

 The primary aim of this practical engineering challenge is to reduce the weight of beam, 

shown in Fig. 3.30, there are five components in a beam design: c1, c2, c3, c4 and c5. The 

reduction of the beam's weight is the primary objective. Equation 3.67 serve as a 

mathematical representation of the design challenge. The mathematical formulas are shown 

as follows: 

1 2 3 4 5 (c)  0.0624( )minf c c c c c= + + + +                                                 (3.67) 

Subject to- 

3 3 3 3 3

1 2 3 4 5

61 37 19 7 1
 (C) 1 0.01 100 1,. . .,5;ig c I

c c c c c
= + + + + −     =  

 

 

Fig.3.30: Cantilever Beam Design 
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Fig.3.31: Comparison Curve for Cantilever Beam Design 

Table-3.27: Optimal values of variables comparisons for cantilever beam 

design problem 

Algorithm 

Optimal Values for Variables 
Optimum 

fitness C1 C2 C3 C4 C5 

CBWO 5.941881 4.93132 4.69530 3.36233 2.08629 1.303206 

BWO [123] 6.011113 4.95908 4.34004 3.52864 2.15335 1.306555 

ALO [135] 5.973264 4.88864 4.46159 3.47396 2.14215 1.303258 

AO [127] 5.881347 4.89506 4.58927 3.43316 2.14958 1.303982 

AOA [131] 5.78101 4.25323 5.54423 4.18866 2.19305 1.366802 

GWO [128] 5.994714 4.87588 4.45657 3.47585 2.13630 1.303263 

HGS [132] 5.969143 4.87667 4.45288 3.50730 2.13369 1.303287 

HHO [130] 6.036109 4.91469 4.33450 3.51546 2.14904 1.303916 

MFO [133] 5.940784 4.88629 4.47497 3.52688 2.11267 1.303406 

MPA [129] 5.978223 4.87618 4.46609 3.47947 2.13914 1.303251 

MVO [134] 5.98289 4.88035 4.44198 3.49232 2.14332 1.30336 
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SCA [136] 5.891091 5.71550 4.49117 3.53819 1.74234 1.330586 

SMA [137] 5.982236 4.87529 4.46152 3.49080 2.12950 1.303267 

WOA [138] 6.445122 4.80433 3.95376 3.65742 2.33860 1.319441 

 

 According to the Table-3.27, the suggested approach effectively decreases the beam's 

weight in comparison to AO, GWO, MPA, HHO, AOA, HGS, MFO, MVO, ALO, SCA, 

SMA, WOA, BWO. Optimum fitness value of CBWO is 1.303206 which is better than 

other algorithms. It is approx. 0.3% more efficient as compared to its older version. 

 

3.7.10 EF10—Belleville Spring Design  

 The primary concern of Belleville spring design problem is to minimizing total weight 

while meeting different limitations. This approach calls for the optimization of four 

different types of suggested variables, including outer diameter, internal diameter, spring 

height, spring width as shown in Table 3.28. Through equation 3.68-3.74, the formulations 

for spring design are explained. Comparison result analysis is displayed in Table 3.28 for 

precision of CBWO. 

 2 2 0.0 (707) )5( E If x DIM DIM t= −  

 Subject to- 

 
max max

2

4
1  [ ( ) ] 0

(1 )
)

2
( H

E

P
S x G S t

DIM

 
 

 
= − − + 

−
               (3.68) 

 3max

2

4
2  [( )( ) ] 0

)
( )

(1 2
H H MAX

E

P
S x S S t t P

DIM




 
= − − + − 

−

; (3.69) 

 
1 max3  ; 3 0( ) ( )S x S x = −                                                                   (3.70) 

 4 0(  ) hS x H S t= − −  ;                                                                           (3.71) 
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 5 0(  ) MAX ES x DIM DIM= −  ;                                                           (3.72) 

 6 0(  ) E IS x DIM DIM= −                                                                   (3.73) 

 .( )7  0 3 0h

E I

S
S x

DIM DIM
= − 

−
;                                                  (3.74) 

216
( )o

o

J

lnJ J




−
= ;

16
( 1)o

o o

J

lnJ lnJ




−
= − ;

16
( )

2

o

o

J

lnJ




−
= ;

5400MAXP lb= ; 

m30 06 ; 0.2 ; 0.3, 200 , 2 ,  12.01 , , ,( )E
o o o M o o i i i H

I

DIM
P e psi in G Kpsi H in DIM in J f a a a S t

DIM
  = = = = = = = = =   

 

 

 

 

 

Fig.3.32: Belleville Spring Design 

 

Fig.3.33: Comparison Curve for Belleville Spring Design 
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  Table-3.28 and Fig. 3.33 show the comparative results and graph of Belleville spring design 

problem [128]. After comparing the results, optimum result for CBWO algorithm is 

1.992514 while its previous version has more value than this hence it is more superior. 

GWO, HHO, MFO, MVO and WOA show better outcomes than CBWO, but overall 

CBWO has quite better results than many algorithms. 

Table-3.28: Optimal values of variables comparisons for Belleville Spring 

design problem 

Algorithm 

Optimal Values for Variables Optimum 

 fitness DIME DIMI SH t 

CBWO 12.01 10.02118 0.204593 0.2 1.992514 

BWO [123] 12.01 10.00927 0.205341 0.201113 2.010677 

ALO [135] 11.6945 9.630444 0.204714 0.2 2.002786 

AO [127] 12.01 4.894993 0.412249 0.2 11.02113 

AOA [131] 11.09203 8.736349 0.210299 0.2 2.183329 

GWO [128] 12.00815 10.02713 0.204217 0.2 1.981422 

HGS [132] 11.26173 5.188406 0.2 0.408047 4.441218 

HHO [130] 12.00597 10.02522 0.204154 0.200021 1.980164 

MFO [133] 12.01 10.03047 0.204143 0.2 1.979675 

MPA [129] 12.01 10.03047 0.204143 0.2 1.979675 

MVO [134] 12.00336 10.02043 0.20433 0.2 1.98339 

SCA [136] 12.01 9.964089 0.208537 0.2 2.083804 

SMA [137] 12.01 9.730961 0.2 0.2 8.54E+20 

WOA [138] 12.00776 10.02763 0.204151 0.2 1.979905 
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3.7.11 EF11- I-Shaped Beam Design (IBD) 

 To reduce the weight of beam is main objective of this optimization problem while meeting 

the constraints. The optimal position trajectory begins with exploration, followed by a 

phase of exploitation to locate the answer in the practicable area. 

3 3
23 2 4 1 4

4 2 4

500
 

( 2 )
2 ( )

12 6

minf X
s s s s s

bs s s

=
−

+ + −

                            (3.75) 

Subject To-      

1 3 3 2 41( ) 2 ( 2 ) 300g X s s s s s= + −  ;                                                              (3.76) 

4 3

2 1

3 2 2 3

3 2 4 1 3 4 2 2 4 2 4 3 3 1

18 *10 15 *10
2( ) 56

( 2 ) 2 (4 3 ( 2 )) ( 2 ) 2

s s
g X

s s s s s s s s s s s s s s
= + 

− + + − − +
; 

(3.77) 

Range- 
1 2 3 410 50;10 80;0.9 5;0 :9 5s s s s         

 

Fig.3.34: I-Shaped Beam Design 
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Fig.3.35: Comparison Curve for I-Shaped Beam Design 

 

 Table-3.29: Optimal values of variables comparisons for I-shape 

Beam Design Problem 

Algorithm s1 s2 s3 s4 Optimum fitness 

CBWO 50 80 1.764391 5 0.006626 

BWO [123] 50 80 1.763632 5 0.006626 

ALO [135] 50 80 1.764706 5 0.006626 

AO [127] 50 80 1.764186 5 0.006626 

AOA [131] 50 80 1.764092 5 0.006626 

GWO [128] 50 80 1.764705 5 0.006626 

HGS [132] 50 80 1.764706 5 0.006626 

HHO [130] 50 80 1.764706 5 0.006626 

MFO [133] 50 80 1.764706 5 0.006626 

MPA [129] 50 80 1.764706 5 0.006626 

MVO [134] 50 80 1.764703 5 0.006626 

SCA [136] 50 80 1.764497 5 0.006626 

SMA [137] 50 80 1.764706 5 0.006626 

WOA [138] 50 80 1.764706 5 0.006626 
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 Table 3.29 shows the optimum results for I-shaped beam engineering design problem. Here 

the variables s1, s2, s3, s4 are basically the dimensions of I-shaped beam as shown in Fig. 

3.34 respectively. Optimum results of all algorithms are same i.e., 0.006626, that proves 

the validity of CBWO algorithm which is tested here successfully with good results. 

 

3.8 CONCLUSION 

 Through comparative analysis, CBWO is pitted against basic BWO and several other well-

known algorithms, including AO, GWO, MPA, HHO, AOA, HGS, MFO, MVO, ALO, 

SCA, SMA, and WOA. The experimental findings reveal that CBWO exhibits improved 

convergence for the majority of benchmark functions, indicating its efficacy in achieving 

positive and convergent outcomes. 

  Furthermore, the research explores the application of CBWO to address eleven 

conventional engineering problems. The performance of CBWO is compared against 

various algorithms, as described in this chapter. The results demonstrate that CBWO 

outperforms most of the algorithms on these real-world tasks, showcasing its potential as a 

reliable solution for problems with uncertain search spaces. 

  The proposed Chaotic Beluga Whale Optimization (CBWO) algorithm offers a 

promising and trustworthy alternative for solving diverse optimization problems. Its ability 

to achieve enhanced convergence and superior performance on both benchmark functions 

and real-world engineering challenges makes it a compelling choice for various practical 

applications. The research findings affirm CBWO's potential as an effective optimization 

tool for addressing complex and challenging optimization problems in diverse domains. 
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Chapter-4 

 

PRE-COVID UNIT COMMITMENT PROBLEM 

-------------------------------------------------------------------------------------- 

4.1 INTRODUCTION 

 The UC problem in electric power networks prioritised generation schedule optimisation 

for a more stable environment, before to the disruptive pandemic of COVID-19. Prior to 

COVID, the main goal of UC was to maintain system stability while reducing generating 

costs. There was more regularity in the demand patterns, with distinct peak and off-peak 

times. Power system operators were able to estimate demand by using known models 

because of this predictability. The generating mix was dominated by fossil fuel-based 

generators, which are renowned for their baseload efficiency. Another important factor was 

nuclear power facilities, which had a large capacity and cheap marginal costs. In order to 

fulfil the majority of demand, the UC problem concentrated on effectively scheduling these 

baseload facilities, with natural gas plants serving as peaking units to manage surges [139]. 

  Even in the case of pre-COVID, UC had considerable difficulties, power plants' 

ramp rate constraints made it difficult for them to swiftly alter production, therefore careful 

planning was required to prevent shortages or surpluses. Limitations on transmission 

capacity made UC even more complex since it required consideration of how to distribute 

produced electricity to various locations. Furthermore, it was essential to provide an 

enough reserve capacity in order to manage unforeseen disruptions or abrupt surges in 

demand. 

  Traditional power sources dominated the energy landscape prior to the COVID-19 

pandemic, but renewable energy sources like solar and wind were progressively gaining 

ground. But their sporadic nature posed a further difficulty for UC because of their 

uncontrollable production, advanced forecasting models have to be created in order to 
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successfully incorporate these renewables. Additionally, studies looked at ways to schedule 

dispatchable generators to make up for any possible deficits from wind power in order to 

account for the unpredictability of renewables within the UC framework [140]. 

 4.2 UNIT COMMITMENT PROBLEM 

 An electric power system's ability to operate dependably and efficiently depends on a 

difficult decision-making process called the unit commitment problem. This crucial 

activity is planning the system's individual producing units' operations for a certain period 

of time, usually a day or a week. The objective is to minimise the total cost of generating 

while satisfying the constantly changing demand for power. Large amounts of electricity 

cannot be stored effectively. This means that generation and demand must be matched in 

real time. UC takes into account many kinds of power plants, each having unique features. 

For example, baseload production is best served by nuclear and coal facilities because of 

their long reaction times and high start-up costs. On the other hand, hydropower and natural 

gas facilities are more adaptable and can swiftly ramp up or down to meet times of peak 

demand. 

  Complex optimisation strategies that take these limits into account while 

minimising the overall generating cost are required to solve the UC challenge. For fossil 

fuel facilities, this cost usually consists of fuel expenses, variable operating and 

maintenance costs, and start-up costs related to turning on and off units. UC becomes much 

more difficult when renewable energy sources like solar and wind power become more 

widely used. The production of these renewable energy sources is weather-dependent and 

non-dispatchable, meaning it is difficult to rapidly alter to meet demand. Because of this, 

forecasting models must be included in the UC process in order to take renewable 

generation fluctuation into consideration [141]. 

  In order to tackle these novel obstacles, UC research keeps changing. Incorporating 

renewable energy sources, meeting the increasing need for dispersed generation, and 

maintaining system resilience in the face of catastrophic weather occurrences are all being 
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addressed by innovative strategies. Finally, it should be noted that the UCP is essential to 

maintaining the effective and dependable functioning of electric power systems. 

  At transmission level, energy management of a Virtual Power Plant (VPP) 

including a wind farm, energy storage systems, and a demand response program is realised, 

considering the cooperation between VPPs in day-ahead energy and reserve markets. The 

suggested method includes a noteworthy goal of trying to get VPP income as near to the 

producing units' operating costs as feasible. The suggested VPP restrictions, up and down 

reserve needs, and the network-constrained unit commitment model are applied to the goal 

function. This approach accounts for the unpredictability of wind farm power production, 

day-ahead market energy and standby prices, system and VPP demands. 

  The most useful techniques for managing uncertainty in renewable forecasting for 

power system operation and planning such that the total estimated output cost is minimised 

across the planning horizon are stochastic unit commitment and economic dispatch. It is 

almost impossible to model the vast majority of distinct scenarios using uncertain 

renewable resources, like solar and wind, in real time, which is necessary for an accurate 

estimation of the predicted production cost. The overall context envisages the expected cost 

62.5% more accurately than the current state-of-the-art, on unforeseen days throughout the 

entire year, by decoupling the production cost estimation from the unit commitment and 

economic dispatch optimisation problems under uncertainty without compromising on the 

fidelity of the solutions [142]. 

  The Deep Reinforcement Learning (DRL)-based UC model that is also being 

proposed addresses the pressing requirement to solve the UC issue in a computationally 

efficient way under large penetrations of renewable energy. Applying the model-free DRL 

framework's offline training results in high UC optimisation efficiency and significantly 

reduces the computing time required to find UC solutions. The state-disturbed approach is 

used to create a system disturbance environment impacted by real wind power output 

variations in order to cope with the unpredictability of wind power [143]. 
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  A multi-stage stochastic Mixed Integer Linear Program with binary recourse is used 

to optimise power plants' and virtual power plants' daily unit commitment. The proposed 

stochastic optimisation approach allows to increase the revenues of the conventional power 

plant by up to 13.58% and, for the combined heat and power and virtual power plant case, 

it permits finding a feasible and competent operational scheduling [144]. 

  A proactive unit commitment program is suggested to improve the robustness of 

gearbox systems with offshore wind farms before to the onset of typhoons. In order to 

quantify the unpredictable effects of typhoons on transmission lines, offshore wind farms, 

and system states—where the random system state and offshore wind farm inertia support 

one other, a unique scenario is developed. When planning monthly schedules, it is 

important to take wind power's volatility into account. To facilitate the quick screening of 

overloaded power flow limitations in monthly unit commitment, a three-step watchlist 

creation strategy that is, a list of risk, a list of worry, and a list of interest, is presented. 

Significantly, in order to avoid the consequences of significant wind uncertainties, the shift 

factor approach is used to screen for possible overloaded restrictions resulting from the 

redispatch procedure [145]. 

  A system in which renewable power generation is effectively integrated with 

conventional and plug-electric vehicles to meet the demand for power utilisation has been 

proposed in order to meet this rising demand while simultaneously taking care of the 

environment. Time-efficient scheduling in unit commitment problems will face significant 

hurdles due to the growing power grid and prohibitive computational costs and time. A 

time-saving and robust inference reinforcement learning strategy is presented to address 

the computationally costly problems in solving UCPs [146]. 
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 4.3 PROBLEM FORMULATION 

 The foundation of a dependable and effective electric power system is the unit commitment 

problem. It entails figuring out the best timetable for power plants for a certain period of 

time, usually a day or a week. In order to reduce the total cost of generation, this schedule 

details which generating units should be committed to and for how long [119].  

  To achieve this objective, however, a number of technical and financial 

considerations must be carefully taken into account, which creates a challenging 

optimisation challenge. Reducing the overall cost of generating is the main goal of UC. 

Fuel expenses for fossil fuel-based power plants, variable operating and maintenance costs, 

and start-up costs related to turning ON and OFF producing units are usually included in 

this cost [120]. 

 4.3.1 Operating Cost  

 It is mathematically a quadratic, non-smooth and non-convex equation of fuel cost of each 

committed generator at hth hour and can be represented as below: 

2

, , , , ,( 1)(a P +b P +c ) U (1 ); 1,....., ; 1,.....g g h g g h g g h g h g hFC SUC U U g NG h H−=  +   − = =             (4.1) 

 where, FC is the cost associated with the gth generating unit at hth hour and ag, bg and cg are 

its Fuel and Operational Cost Coefficients, Ugh and U(h-1)g is the Committed Status of the 

gth unit at hth hour and (h-1)th hour respectively, SUC is the Start-Up Cost of gth unit at hth 

hour. 

  Combined Cost (FC), for all the Generating Units (NG) at a particular hour h can be 

obtained as the sum total of all the individual units’ costs. 

  2

, , , , ,( 1)

g=1

 [(a P +b P +c ) U (1 )]; 1,... ; 1,....
NG

g g h g g h g g h g h g hFC SUC U U g NG h H−=  +   − = =    (4.2) 

 Now, the total Fuel Cost FC over the given time horizon is the double summation of the 

costs incurred for all the generators for all the time periods considered. It can be 

mathematically represented as:  
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 2

, , , , ,( 1)

1 h=1

 [(a P +b P +c ) U (1 )]; 1,.... ; 1,.....
NG H

g g h g g h g g h g h g h

g

FC SUC U U g NG h H−

=

=  +   − = =  (4.3) 

 Start-up cost is warmth-dependent. Start-up cost is that cost which occurs while bringing 

the thermal generating unit online. It is expressed in terms of the time (in hours) for which 

the unit has been shut down. On the other hand, shut down cost is a fixed amount for each 

shutting unit. Mathematically, Start-Up Cost (SUC) can be expressed as:  

;  for MDT ( )
        ( ;  h=1,2,3....H)

;   for ( )             

ON

g g g g g

gh ON

g g g g

HSC MDT CSH MDT
SUC g NG

CSC MDT MDT CSH

   +
= 

 +

                     (4.4) 

  where, CSCg and HSCg are Cold Startup and Hot Start-Up Cost of gth unit respectively and 

MDT is the Minimum Down Time of gth unit, OFF

ghT  is duration for which the thermal gth 

unit has been continuously off until hour h. CSHg is the Cold Start Hour of gth unit.  

  The start-up cost for a unit depends on its downtime. If it is longer than the related 

MDT plus its predefined CSH, CSC is needed to operate it. Else if the gth unit down time 

is shorter than the mentioned duration, HSC is needed to operate it. The Various Constraints 

linked with unit commitment problem are explained below.  

 4.3.2 Maximum and Minimum Operating Limits of Generators 

  Every unit has its own maximum/minimum power level of generation, beyond and below 

which it cannot generate. 

  min max ; 1,....., ; 1,......,NG

g gh gP P P g NG h H  = =                                                              (4.5) 

 4.3.3 Power Balance Constraints  

 The load balance or system power balance constraint requires that the sum of generation 

of all the committed units at hth hour must be greater than or equal to the demand Dh at a 

particular hour ‘h’. 

 ∑ 𝑃𝑔ℎ𝑈𝑔ℎ = 𝑃ℎ
𝐷𝑒𝑚𝑎𝑛𝑑

𝑁𝐺

𝑔=1
; 𝑔 = 1, . . . . . 𝑁𝐺; ℎ = 1, . . . . . . , 𝐻                                                     (4.6) 
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  Above eqn. (4.6) does not contain power loss in the system. If hourly power loss is 

considered, then eqn. (4.7) can be modified as: 

  
1

NG
Demand Loss

gh gh h h

g

P U P P
=

= +                                                                                            (4.7) 

 The power outputs of the gth generating units at a particular time period have to satisfy the 

power balance constraint and operating limit constraints.  

 4.3.4 Power Balance Constraint considering RES (Wind Power) 

 This constraint involves ensuring that the total power generated by all committed 

generating units at a particular time h (hour) is greater than or equal to the power demand 

for that same time period. Eqn. (4.9) outlines the power balance constraint that applied 

when RES considered in the system. 

∑ 𝑃𝑔ℎ𝑈𝑔ℎ + 𝑃ℎ
𝑅𝐸𝑆 = 𝑃ℎ

𝐷𝑒𝑚𝑎𝑛𝑑
𝑁𝐺

𝑔=1
+ 𝑃ℎ

𝐿𝑜𝑠𝑠, 𝑔 = 1, . . . . . 𝑁𝐺; ℎ = 1, . . . . . . , 𝐻                   (4.8) 

 4.3.5 Spinning Reserve Constraints  

 Considering the important aspect of reliability, there is a provision of excess capacity of 

generation which is required to act instantly when there is a failure of already running unit 

or sudden increase in load demand. This excess capacity of generation is known as 

Spinning Reserve and mathematically given as: 

  Re

1

; 1,..... ; 1,......
NG

Demand serve

gh gh h h

g

P U P P g NG h H
=

 + = =                                               (4.9) 

 4.3.6 Spinning Reserve Constraints Considering RES 

 Spinning reserve while considering the impact of COVID-19 and RES- 

∑ 𝑃𝑔ℎ𝑈𝑔ℎ + 𝑃ℎ
𝑅𝐸𝑆 ≥ 𝑃ℎ

𝐷𝑒𝑚𝑎𝑛𝑑
𝑁𝐺

𝑔=1
+ 𝑃ℎ

Re𝑠𝑒𝑟𝑣𝑒 , 𝑔 = 1, . . . . . 𝑁𝐺; ℎ = 1, . . . . . . , 𝐻        (4.10) 
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 4.3.7 Thermal Constraints  

 A thermal generation unit needs to undergo gradual temperature changes and thus it takes 

some period of time to bring a thermal unit online. Also, the operation of a thermal unit is 

manually controlled. So, a crew is required to perform the operation and maintenance of 

any thermal unit. This leads to many restrictions on the operation of thermal unit and thus 

it gives rise to many constraints.  

 

 4.3.8 Minimum-up Time Constraint  

 Once a unit is started up, it cannot be shut-down before a minimum up-time period is met 

and mathematically expressed as:  

 T ; 1,..... ; 1,........ON

gh gMUT g NG h H = =                                                                       (4.11) 

 where, ON

ghT  is duration for which gth unit is continuously ON (in hrs) and MUTg is its 

Minimum Up Time (in hrs).  

 4.3.9 Minimum-Down Time Constraint  

 Once a unit is shut down, it could not be started-up before a minimum down-time period 

is met and mathematically expressed as:  

  T ; 1,...... ; 1,........OFF

gh gMDT g NG h H = =                                                                  (4.12) 

 where, TOFF

gh
 is duration for which gth unit is continuously OFF (in hrs) and MDTg is its 

Minimum Down Time (in hrs).  

 4.3.10 Crew Constraints  

 If a plant consists of two or more units, they could not be turned on at the same time since 

there are not enough crewmembers to attend all the units while starting up. 
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 4.3.11 Initial Operating Status of Generating Units  

 The initial operating status of every unit must take the last day’s previous schedule into 

account, so that every unit satisfies it’s minimum up or down time. 

 

4.4 SOLUTIONS METHODOLOGY FOR UNIT COMMITMENT PROBLEM  

  The UC problem has been examined by taking into account the physical limitations and 

system of thermal power units. This research employs hybrid versions of CBWO to address 

the unit commitment problem in power systems. Both stochastic and heuristic approaches 

are utilized to handle various operational and physical constraints associated with the unit 

commitment problem.  

  The developments for managing system constraints in UCP, including spinning 

reserve constraint, minimum-up and minimum-down time constraints, and deactivation of 

surplus power generating units, are outlined in sections 4.4.1, 4.4.2, and 4.4.3, respectively. 

The proposed hybrid optimization techniques for solving the unit commitment problem are 

discussed in the subsequent sections. 

 4.4.1 Repairing for Spinning Reserve Constraints  

 To meet the reserve capacity requirements for various power unit types, the minimum 

operational and non-operational periods of each power unit, along with their respective 

durations, have been considered.  
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 The reserve constraints must be addressed according to the specified PSEUDO code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1- PSEUDO code for Spinning Reserve Constraint 

 

 

 

 

 

 

Step 1: Arrange the power generators in decreasing order 

based  on their maximum capacity to generate power. 

Step 2: for g=0 to NG, if ghU =0 then ghU =1, 

 Else if 
,

off

g h gT MDT  

 Then 
, , 1 1on on

g h g hT T − +   

Step 3: Check the newly generated power output of the units 

 for validation. 

Step 4: if Re

1

NG
demand serve

gh gh h h

g

P U P P
=

 + , if the condition is not 

 met then proceed to step 2 otherwise end the 

 algorithm. 

Step 5. If 
,

off

g h gT MDT  then do 
, 1off

g hl h T= − +  and set ghU

 =1. 

Step 6: Calculate 
, , 1 1l on

g h g hT T −= +  and 
, 0off

g hT =  

Step 7: if l>h, check the power output of generator to ensure 

 its  accuracy for Re

1

NG
demand serve

gh gh h h

g

P U P P
=

 +   

Else increase the value of h by 1 and go back to step 

5. 
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 4.4.2 Repairing for Minimum Up and Down Time Constraints  

 Repairing for minimum up time and down time constraints of different thermal units can 

be done by following process- 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2: PSEUDO Code for Minimum Up and Down Time Constraints 

 

 

 

 

 

 

For h=1 to H 

For g=1 to NG do g=1 

If ghU =1 do , 1g hU − =0, if 
,

off

g h gT MDT , do ghU =0 

Else ghU =1 

End  

End 

If , 1g hU − =1, else if ghU =0 if 
,

off

g h gT MDT do ghU =1 

Else ghU =0 

If g=NG then stop or else do g=1 and follow the steps 

Else  

End 

End. 
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 4.4.3 Decommitment of the Excessive Generating Units 

 Surplus thermal units must be taken offline. All thermal generating units need to meet the 

requirements for load demand and spinning reserve. The system takes into account the 

minimum down and up times for each unit, as well as the duration of power unit OFF/ON 

periods. The algorithm allows for constraint adjustments as necessary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.3- PSEUDO code for Decommitment of the Excessive Generating Units. 

 

For h=1 to H 

For g=1 to NG 

 Do u=h(NG+1-g) and calculate generating power 

 If ghU =1 then , 1g hU − =0 

 If 
Re

max

demand serve

g h hP P P P−  +  then 

 If ,

off

g h gT MDT , 
, 0on

g hT = then  

  Do ghU =0 and 
, 0on

g hT =  

If h==1 then 

 Do , , 1 1off off

g h g hT T −= +  

Else  

Do , , 1 1off off

g h g hT T −= +  

End  

Else  

 Continue: 

End 

Else 

 Break; 

End 

End 

End. 
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 4.4.4 Chaotic Beluga Whale Optimization Algorithm  

 The chaotic algorithm for unit commitment is created by combining the circle chaotic 

function with BWO's general operators. The process begins by utilizing the matching 

chaotic function to generate a random solution across the entire population. The subsequent 

steps in the recommended CBWO algorithm are outlined as follows. 

 

 

Fig. 4.4: Algorithm for CBWO
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 Subsequently, the optimal solution is evaluated against the BWO algorithm's outcome. In 

the proposed method, a chaotic search is employed to optimize a vector of units for 

commitment, with the aim of reducing overall costs. The procedure for solution of unit 

commitment using CBWO algorithm is explained below: 

 Step1. Enter UCP parameters and Initialize individuals in the population using equation 

(3.4 and 3.5) as described below:  

 To solve single area unit commitment problem, each individual is defined as unit’s 

ON/OFF status modelled as 1/0, respectively. An individual represents the unit 

commitment schedule over the time horizon. The ON/OFF schedule of the units is stored 

as an integer-matrix, shown below, which is mathematically defined as:  

 

 

 

 

Where, is ON/OFF status of unit g at hour h (i.e., =1/0 for ON/OFF) 

 Step-2: Generating units are prioritized according to their maximum generation capacity 

in descending order.  

 Step-3: Status of individual units is modified in the population to satisfy the spinning 

reserve constraints as mentioned in section-4.4.1.  

 Step-4: Individual units in the population are repaired for minimum up/down time 

violations as per section-4.4.2.  

 Step-5: De-commit the excessive units in the population as per section-4.4.3 to reduce 

excessive spinning reserve due to minimum up/down time repairing.  

 Step-6: Unit commitment problem is then solved and fuel cost is calculated for each hour.  
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 Step-7: Calculate Start-up cost for each hour using equation (4.4) and overall generation 

cost using equation (4.3).  

 Step-8: Apply CBWO algorithm and perform exploration, exploitation and whale fall 

using equations (3.4), (3.5), (3.6) and (3.9) to generate updated target vector 1T

iA + .   

 Step-9: Verify for constraints violations using section-4.4.1, 4.4.2 and 4.4.3.  

 Step-10: Replace worst vector with new vector 1T

iA + . 

 Step-11: Apply levy flight using equation (3.7) and update the position. 

 Step-12: If iteration counter= maximum iteration then go to step 14.  

 Step-13: If iteration counter maximum iteration, increase iteration by one and go back to 

step 3 and repeat.  

 Step-14: Stop and obtain the optimal solution of unit commitment problem from the 

individual position in the population that generated the least total generation cost. 

 4.4.5 Mathematical Modelling of Wind Uncertainties 

 Almost all ordinary activities need electrical energy to work suitably. The primary factor 

used by the power sectors to generate immense volumes of electricity is fossil fuels. Even 

though producing energy from fossil fuels is easier, the release of carbon emissions has 

unfavourable impacts on the environment. It becomes vigorous to pay close attention to the 

use of these non-conventional sources of energy in order to safeguard their elongated 

persistence, since the process of consuming energy if left unrestricted may lead to a rapid 

consumption of fossil fuels and sooner or later lead to their diminution [157]. 

 The involvement of renewable energy sources has somewhat abridged the need for fossil 

fuels to meet load demand. The two main renewable energy sources that contribute to 

global energy production are solar and wind. The nature of wind energy is stochastic; its 

direction and speed alter over time. A variety of statistical methods, including the gamma 

function and the Weibull probability distribution function, may be used to trigger this 
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indefinite stochastic characteristic. It is essential to comprehend how much energy is 

generated by various turbines at various speeds at which wind turbines operate at their rated 

speed [158].  

  Mathematical formulation   

 We know,   

31

2
P Av=                                                                                                     (4.13) 

 Equation (4.13) provides the wind power generated by a wind turbine at its rated Wind 

Velocity, or "v”. The German scientist Albert Betz studied it in 1919. This threshold 

became known as the Power Coefficient (CPmax). Merely 59% of the energy in the wind 

can be captured at any one time. Similarly, wind turbines cannot operate at full capacity. 

The operating wind speed of the turbine determines the power coefficient. It is established 

that the optimal power coefficient falls between 0.35 and 0.45, even with the best-designed 

turbines. When several factors are considered, such the gearbox, bearings, generators, and 

so on, only roughly 10–30% of the wind’s power can be converted into useable energy. 

The actual extractable power from the wind is therefore given by equation (4.14)  

  31
.

2
pP Av C=                                                                                                  (4.14) 

  Wind turbine power output varies according to the cube of the rated speed. 

However, this is only relevant within a certain speed range. In fact, there isn't enough torque 

to turn the turbine at a low wind speed. The cut-in-speed is the wind speed at which the 

rotor begins to revolve. There is no production of electricity below cut-in speed. Usually, 

the cut-in speed is between 3 and 4 m/s. On the other side, because to mechanical 

limitations, the rotor is unable to generate significant power in severe winds. As a result, 

the greatest speed at which power may be generated safely is known as the "cut out-speed." 

Usually, the cut-out speed is around 25 m/s. Lastly, the maximum amount of power that 
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may be generated as output power is likewise limited by electrical generators. Thus, the 

power is restricted to a fixed value beyond a given wind speed.  

  The Weibull distribution function is the most often used and developed in 1951 by 

Swedish researcher Waloddi Weibull. It is a variable distribution function that depends on 

the value of the shape parameter. For the evaluation of wind energy some functions are 

given below-  
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 ( 0) ( ) [1 ( )]r w in outP P cdf v cdf v= = + −                                                               (4.17) 

 0;. [1 exp exp

k k

in out
w r

v v
P P

 

      
= = − − + −      

         

                                          (4.18) 

 1 1

( ) exp
( )

k

w w
in in

wr wrin
w

wr

LP LP
v v

P Pklv
pdf P

P   

       
 + +     
      =  −   
           

                           (4.19) 

 In the present research, Shape factor=2, Scale factor = 7, Cut-in Speed= 3 m/s, Cut-out 

speed = 15 m/s, Rated speed = 11-15 m/s are taken into consideration [158].  

  4.5 TEST SYSTEM 

 The UCP was successfully solved by considering the limitations of power generation units 

and various system sizes, including small, medium, and large-scale systems. The UCP was 

solved for different system sizes, namely standard 10-generating unit systems, 20-
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generating unit systems, 40-generating unit systems. This part also discusses the attributes 

of power units with cost coefficient parameters. 

 4.5.1 Generation system for 10 Units 

 The parameters of the 10-generating unit system utilized in the experiment are displayed 

in Table-4.1. These specifications encompass the system's maximum and minimum Power 

Generation Limits (Pmax and Pmin), Fuel Coefficient Constraints, up and down time 

constraints, expenses for hot and cold start, the unit's cold start hour, and the system's initial 

status.  

  Table-4.2 illustrates the load demand of the test system. The system underwent 

evaluation using a 24-hour load demand pattern, with varying spinning reserve capacity of 

10%. For the analysis of the proposed system, the standard IEEE 10-unit, 39-bus test 

system with 24 hours of data has been taken into consideration for the study. 

Table 4.1.: Characteristics of the 10-Generating Unit System [158] 

Generating units 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

Parameter Units 

𝑃𝑔
𝑚𝑎𝑥 MW 455 455 130 130 162 80 85 55 55 55 

𝑃𝑔
𝑚𝑖𝑛 MW 150 150 20 20 25 20 25 10 10 10 

𝑎𝑔 $/hour 1000 970 700 680 450 370 480 660 665 670 

𝑏𝑔 $/MWh 16.19 17.2 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79 

𝑐𝑔 $/MWh2 

(10-3) 
0.05 0.03 0.2 0.21 0.4 0.71 0.08 0.41 0.22 0.17 

𝑀𝑈𝑇𝑔 hours 8 8 5 5 6 3 3 1 1 1 

𝑀𝐷𝑇𝑔 hours 8 8 5 5 6 3 3 1 1 1 

𝐻𝑆𝐶𝑔 $ 4500 5000 550 560 900 170 260 30 30 30 

𝐶𝑆𝐶𝑔 $ 9000 10000 1100 1120 1800 340 520 60 60 60 

𝐶𝑆𝐻𝑔 hours 5 5 4 4 4 2 2 0 0 0 

𝐼𝑁𝑆𝑔 - 8 8 -5 -5 -6 -3 -3 -1 -1 -1 
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        Table 4.2: Power demand for a system consisting of 10 generating units [158]. 

Power 

Demand 

(MW) 

Time: Hours 

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 

700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500 

h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 

1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800 

 

  4.5.2 Generation system for 20 and 40 Units 

 To obtain the 20-unit test system, 10-unit system was duplicated and also load demand was 

doubled. For the 40-unit test system, 10-unit system was quadrupled and accordingly load 

demand was made 4-times. The problem data of 10-unit test system were scaled 

appropriately for the problem with 20 and 40-units test system. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: Load Demand Curve for 10, 20, 40- unit system 
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           4.6 RESULT AND DISCUSSION 

 The CBWO is a novel hybrid algorithm that combines chaotic maps with beluga whale 

optimization techniques. CBWO is a population-based algorithm that does not rely on 

gradients, which makes it suitable for a wide range of optimization problems. To determine 

the effectiveness of the proposed techniques for UCP, standard test systems of 10, 20, and 

40 generating units were employed. The performance of the proposed algorithms was 

evaluated using MATLAB 2018a software on a 64-bit version of Windows 11 Home Basic, 

with a CPU operating at 2.10 GHz, 8 GB of RAM, and an Intel® CoreTM i5-2310M 

processor.  

 4.6.1 System of Ten Generating Units  

 The effectiveness of proposed algorithm CBWO is tested and used to get the optimal result 

for UC problem considering the several constraints. This part of theses is basically 

illustrating the optimal results for 10 generating units and scheduling of units. Table 4.3 

illustrates the scheduling of units for 10 units during weekend period of pre COVID-19. 

Table 4.4 illustrates the scheduling of different units during weekday period of pre 

COVID-19. Table 4.5 illustrates the scheduling of units for 10 units during weekend period 

of pre COVID-19 with wind power. Table 4.6 also illustrates the scheduling of different 

units during weekday period of pre COVID-19 with wind power. 

   Table 4.7 display the fuel cost for 10 units during weekend period of pre COVID-

19. Table 4.8 display the fuel cost of different units during weekday period of pre COVID-

19. Table 4.9 display the fuel cost for 10 units during weekend period of pre COVID-19 

with wind power. Table 4.10 display the fuel cost of different units during weekday period 

of pre COVID-19 with wind power. 
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Table 4.3: Scheduling a 10-unit system with the help of the CBWO algorithm for UCP 

during Pre-COVID (For weekend); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC FC 

h1 455 363 0 0 0 0 0 10 0 0 560 16661.66 

h2 455 359 0 0 0 0 0 0 0 0 0 15672.12 

h3 455 361 0 0 0 0 0 0 0 0 1330 15707.08 

h4 455 358 0 0 0 0 0 0 0 0 550 15654.63 

h5 455 372 0 0 0 0 0 0 0 0 0 15899.44 

h6 455 402 0 0 25 0 0 0 0 0 0 17369.43 

h7 455 453 0 0 25 0 0 0 0 0 0 18263.2 

h8 455 388 0 130 25 0 0 0 0 0 0 19985.02 

h9 455 404 0 130 25 0 0 0 0 0 260 20265.11 

h10 455 437 0 130 25 0 0 0 0 0 60 20843.29 

h11 455 425 0 130 25 0 0 0 0 0 0 20632.96 

h12 455 418 0 130 25 0 0 0 0 0 30 20510.31 

h13 455 322 130 130 0 0 0 0 0 0 0 20778.14 

h14 455 340 130 130 0 0 0 0 0 0 0 21092.52 

h15 455 329 130 130 0 0 0 0 0 0 900 20900.38 

h16 455 341 130 130 0 0 0 0 0 0 0 21109.99 

h17 455 365 130 130 0 20 0 0 0 0 260 22347.53 

h18 455 376 130 130 0 20 0 0 0 0 340 22539.92 

h19 455 455 0 130 89 20 0 0 0 0 0 23266.83 

h20 455 455 0 130 79 20 0 0 0 0 0 23063.15 

h21 455 455 0 130 48 0 0 0 0 0 550 21618.73 

h22 455 424 0 130 25 0 0 0 0 0 60 20615.44 

h23 455 455 0 0 53 0 0 0 0 0 0 18858.58 

h24 455 411 0 0 25 0 0 0 0 0 0 17527.04 
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Table 4.4: Scheduling a 10-unit system with the help of the CBWO algorithm for UCP 

during Pre-COVID (For weekday); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC FC 

h1 455 384 0 0 25 0 0 0 0 0 900 17054.36 

h2 455 406 0 0 25 0 0 0 0 0 0 17439.47 

h3 455 411 0 0 25 0 0 0 0 0 0 17527.04 

h4 455 436 0 0 25 0 0 0 0 0 0 17965.1 

h5 455 351 130 0 25 0 0 0 0 0 560 19369.06 

h6 455 455 130 0 47 0 0 0 0 0 0 21629.79 

h7 455 397 130 130 25 0 0 0 0 0 1100 23034.35 

h8 455 337 130 130 25 0 0 0 0 0 0 21985.09 

h9 455 312 130 130 0 0 0 0 0 0 0 20603.58 

h10 455 402 0 130 0 20 0 0 0 0 0 20103.15 

h11 455 391 0 130 0 20 0 0 0 0 0 19910.58 

h12 455 401 0 130 0 20 0 0 0 0 340 20085.64 

h13 455 401 0 130 0 20 0 0 0 0 0 20085.64 

h14 455 387 0 130 0 20 0 0 0 0 0 19840.58 

h15 455 385 0 130 25 0 0 0 0 0 0 19932.52 

h16 455 438 0 130 25 0 0 0 0 0 900 20860.82 

h17 455 358 130 130 25 0 0 0 0 0 550 22352.08 

h18 455 368 130 130 25 0 0 0 0 0 0 22526.93 

h19 455 403 130 130 25 0 0 0 0 0 0 23139.4 

h20 455 439 130 130 25 0 0 0 0 0 690 23770.15 

h21 455 378 130 130 25 0 0 0 0 0 0 22701.84 

h22 455 426 0 130 25 0 0 0 0 0 0 20650.49 

h23 455 360 0 130 0 0 0 0 0 0 0 18550.26 

h24 455 304 0 130 0 0 0 0 0 0 0 17572.17 
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Table 4.5: Scheduling a 10-unit system with the help of the CBWO algorithm for UCP 

during Pre-COVID with Wind Power Uncertainty (For weekend); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC FC 

h1 455 196 0 0 0 0 0 0 0 0 0 12830.69 

h2 455 188 0 0 0 0 0 0 0 0 0 12691.66 

h3 455 203 0 0 0 0 0 0 0 0 0 12952.38 

h4 455 213 0 0 0 0 0 0 0 0 0 13126.27 

h5 455 230 0 0 0 0 0 0 0 0 0 13422.02 

h6 455 290 0 0 0 0 0 0 0 0 0 14467.29 

h7 455 358 0 0 0 0 0 0 0 0 0 15654.63 

h8 455 304 0 130 0 0 0 0 0 0 1120 17572.17 

h9 455 313 0 130 0 0 0 0 0 0 0 17729.23 

h10 455 346 0 130 0 0 0 0 0 0 0 18305.55 

h11 455 333 0 130 0 0 0 0 0 0 0 18078.44 

h12 455 328 0 130 0 0 0 0 0 0 0 17991.11 

h13 455 338 0 130 0 0 0 0 0 0 0 18165.78 

h14 455 351 0 130 0 0 0 10 0 0 1100 19312.55 

h15 455 352 0 130 0 0 0 0 0 0 0 18410.41 

h16 455 360 0 130 0 0 0 0 0 0 0 18550.26 

h17 455 387 0 130 25 0 0 0 0 0 0 19967.52 

h18 455 410.5 0 130 25 0 0 0 0 0 0 20378.94 

h19 455 439.4 0 130 25 0 0 0 0 0 0 20885.36 

h20 455 409 0 130 25 0 0 0 0 0 860 20352.67 

h21 455 455 0 0 51 0 0 0 0 0 0 18818.35 

h22 455 417 0 0 25 0 0 0 0 0 0 17632.14 

h23 455 348 0 0 0 0 0 0 0 0 0 15479.84 

h24 455 261 0 0 0 0 0 0 0 0 0 13961.8 
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Table 4.6: Scheduling a 10-unit system with the help of the CBWO algorithm for UCP 

during Pre-COVID with Wind Power Uncertainty (For weekday); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC FC 

h1 455 232 0 0 0 0 0 0 0 0 0 13456.83 

h2 455 260 0 0 0 0 0 0 0 0 1190 13944.38 

h3 455 278 0 0 0 0 0 0 0 0 1110 14258.06 

h4 455 316 0 0 0 0 0 0 0 0 0 14920.94 

h5 455 364 0 0 0 0 0 0 0 0 0 15759.54 

h6 455 345 0 130 0 20 0 0 0 0 120 19106.13 

h7 455 412 0 130 0 20 0 0 0 0 0 20278.27 

h8 455 363 0 130 0 20 0 0 0 0 0 19420.76 

h9 455 326 0 130 0 0 0 0 0 0 0 17956.19 

h10 455 306 0 130 0 0 0 0 0 0 0 17607.07 

h11 455 294 0 130 0 0 0 0 0 0 170 17397.72 

h12 455 411 0 0 25 0 0 0 0 0 0 17527.04 

h13 455 412 0 0 25 0 0 0 0 0 0 17544.55 

h14 455 403 0 0 25 0 0 0 0 0 120 17386.94 

h15 455 408 0 0 25 0 0 0 0 0 60 17474.49 

h16 455 455 0 0 27 0 0 0 0 0 560 18338.1 

h17 455 385 0 130 25 0 0 0 0 0 900 19932.52 

h18 455 407.5 0 130 25 0 0 0 0 0 0 20326.4 

h19 455 433.4 0 130 25 0 0 0 0 0 0 20780.18 

h20 455 449 0 130 25 0 0 0 0 0 0 21053.7 

h21 455 386 0 130 0 20 0 0 0 0 0 19823.08 

h22 455 424 0 0 0 20 0 0 0 0 0 17627.84 

h23 455 310 0 0 0 20 0 0 0 0 0 15634.26 

h24 455 259 0 0 0 0 0 0 0 0 0 13926.96 
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Table 4.7: Individual fuel cost for Generation of 10 Unit Test System using CBWO for UCP during Pre-COVID (Weekend); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 8465.822 7276.228 0 0 0 0 0 919.613 0 0 560 16661.66 

h2 8465.822 7206.293 0 0 0 0 0 0 0 0 0 15672.12 

h3 8465.822 7241.26 0 0 0 0 0 0 0 0 1330 15707.08 

h4 8465.822 7188.811 0 0 0 0 0 0 0 0 550 15654.63 

h5 8465.822 7433.619 0 0 0 0 0 0 0 0 0 15899.44 

h6 8465.822 7958.617 0 0 944.9875 0 0 0 0 0 0 17369.43 

h7 8465.822 8852.395 0 0 944.9875 0 0 0 0 0 0 18263.2 

h8 8465.822 7713.549 0 2860.659 944.9875 0 0 0 0 0 0 19985.02 

h9 8465.822 7993.637 0 2860.659 944.9875 0 0 0 0 0 260 20265.11 

h10 8465.822 8571.82 0 2860.659 944.9875 0 0 0 0 0 60 20843.29 

h11 8465.822 8361.494 0 2860.659 944.9875 0 0 0 0 0 0 20632.96 

h12 8465.822 8238.844 0 2860.659 944.9875 0 0 0 0 0 30 20510.31 

h13 8465.822 6559.862 2891.8 2860.659 0 0 0 0 0 0 0 20778.14 

h14 8465.822 6874.236 2891.8 2860.659 0 0 0 0 0 0 0 21092.52 

h15 8465.822 6682.095 2891.8 2860.659 0 0 0 0 0 0 900 20900.38 

h16 8465.822 6891.707 2891.8 2860.659 0 0 0 0 0 0 0 21109.99 

h17 8465.822 7311.2 2891.8 2860.659 0 818.048 0 0 0 0 260 22347.53 

h18 8465.822 7503.587 2891.8 2860.659 0 818.048 0 0 0 0 340 22539.92 

h19 8465.822 8887.478 0 2860.659 2234.826 818.048 0 0 0 0 0 23266.83 

h20 8465.822 8887.478 0 2860.659 2031.139 818.048 0 0 0 0 0 23063.15 

h21 8465.822 8887.478 0 2860.659 1404.77 0 0 0 0 0 550 21618.73 

h22 8465.822 8343.971 0 2860.659 944.9875 0 0 0 0 0 60 20615.44 

h23 8465.822 8887.478 0 0 1505.28 0 0 0 0 0 0 18858.58 

h24 8465.822 8116.226 0 0 944.9875 0 0 0 0 0 0 17527.04 
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Table 4.8: Individual fuel cost for Generation of 10 Unit Test System using CBWO for UCP during Pre-COVID (Weekday); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 8465.822 7643.551 0 0 944.9875 0 0 0 0 0 900 17054.36 

h2 8465.822 8028.659 0 0 944.9875 0 0 0 0 0 0 17439.47 

h3 8465.822 8116.226 0 0 944.9875 0 0 0 0 0 0 17527.04 

h4 8465.822 8554.29 0 0 944.9875 0 0 0 0 0 0 17965.1 

h5 8465.822 7066.452 2891.8 0 944.9875 0 0 0 0 0 560 19369.06 

h6 8465.822 8887.478 2891.8 0 1384.692 0 0 0 0 0 0 21629.79 

h7 8465.822 7871.079 2891.8 2860.659 944.9875 0 0 0 0 0 1100 23034.35 

h8 8465.822 6821.826 2891.8 2860.659 944.9875 0 0 0 0 0 0 21985.09 

h9 8465.822 6385.297 2891.8 2860.659 0 0 0 0 0 0 0 20603.58 

h10 8465.822 7958.617 0 2860.659 0 818.048 0 0 0 0 0 20103.15 

h11 8465.822 7766.053 0 2860.659 0 818.048 0 0 0 0 0 19910.58 

h12 8465.822 7941.108 0 2860.659 0 818.048 0 0 0 0 340 20085.64 

h13 8465.822 7941.108 0 2860.659 0 818.048 0 0 0 0 0 20085.64 

h14 8465.822 7696.048 0 2860.659 0 818.048 0 0 0 0 0 19840.58 

h15 8465.822 7661.05 0 2860.659 944.9875 0 0 0 0 0 0 19932.52 

h16 8465.822 8589.352 0 2860.659 944.9875 0 0 0 0 0 900 20860.82 

h17 8465.822 7188.811 2891.8 2860.659 944.9875 0 0 0 0 0 550 22352.08 

h18 8465.822 7363.661 2891.8 2860.659 944.9875 0 0 0 0 0 0 22526.93 

h19 8465.822 7976.127 2891.8 2860.659 944.9875 0 0 0 0 0 0 23139.4 

h20 8465.822 8606.884 2891.8 2860.659 944.9875 0 0 0 0 0 690 23770.15 

h21 8465.822 7538.574 2891.8 2860.659 944.9875 0 0 0 0 0 0 22701.84 

h22 8465.822 8379.018 0 2860.659 944.9875 0 0 0 0 0 0 20650.49 

h23 8465.822 7223.776 0 2860.659 0 0 0 0 0 0 0 18550.26 

h24 8465.822 6245.689 0 2860.659 0 0 0 0 0 0 0 17572.17 
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Table 4.9: Individual fuel cost for Generation of 10 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekend); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 8465.822 4364.869 0 0 0 0 0 0 0 0 0 12830.69 

h2 8465.822 4225.837 0 0 0 0 0 0 0 0 0 12691.66 

h3 8465.822 4486.555 0 0 0 0 0 0 0 0 0 12952.38 

h4 8465.822 4660.444 0 0 0 0 0 0 0 0 0 13126.27 

h5 8465.822 4956.199 0 0 0 0 0 0 0 0 0 13422.02 

h6 8465.822 6001.471 0 0 0 0 0 0 0 0 0 14467.29 

h7 8465.822 7188.811 0 0 0 0 0 0 0 0 0 15654.63 

h8 8465.822 6245.689 0 2860.659 0 0 0 0 0 0 1120 17572.17 

h9 8465.822 6402.75 0 2860.659 0 0 0 0 0 0 0 17729.23 

h10 8465.822 6979.072 0 2860.659 0 0 0 0 0 0 0 18305.55 

h11 8465.822 6751.956 0 2860.659 0 0 0 0 0 0 0 18078.44 

h12 8465.822 6664.631 0 2860.659 0 0 0 0 0 0 0 17991.11 

h13 8465.822 6839.296 0 2860.659 0 0 0 0 0 0 0 18165.78 

h14 8465.822 7066.452 0 2860.659 0 0 0 919.613 0 0 1100 19312.55 

h15 8465.822 7083.93 0 2860.659 0 0 0 0 0 0 0 18410.41 

h16 8465.822 7223.776 0 2860.659 0 0 0 0 0 0 0 18550.26 

h17 8465.822 7696.048 0 2860.659 944.9875 0 0 0 0 0 0 19967.52 

h18 8465.822 8107.468 0 2860.659 944.9875 0 0 0 0 0 0 20378.94 

h19 8465.822 8613.896 0 2860.659 944.9875 0 0 0 0 0 0 20885.36 

h20 8465.822 8081.197 0 2860.659 944.9875 0 0 0 0 0 860 20352.67 

h21 8465.822 8887.478 0 0 1465.052 0 0 0 0 0 0 18818.35 

h22 8465.822 8221.326 0 0 944.9875 0 0 0 0 0 0 17632.14 

h23 8465.822 7014.022 0 0 0 0 0 0 0 0 0 15479.84 

h24 8465.822 5495.978 0 0 0 0 0 0 0 0 0 13961.8 
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Table 4.10: Individual fuel cost for Generation of 10 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekday); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 8465.822 4991.005 0 0 0 0 0 0 0 0 0 13456.83 

h2 8465.822 5478.556 0 0 0 0 0 0 0 0 1190 13944.38 

h3 8465.822 5792.238 0 0 0 0 0 0 0 0 1110 14258.06 

h4 8465.822 6455.115 0 0 0 0 0 0 0 0 0 14920.94 

h5 8465.822 7293.714 0 0 0 0 0 0 0 0 0 15759.54 

h6 8465.822 6961.598 0 2860.659 0 818.048 0 0 0 0 120 19106.13 

h7 8465.822 8133.741 0 2860.659 0 818.048 0 0 0 0 0 20278.27 

h8 8465.822 7276.228 0 2860.659 0 818.048 0 0 0 0 0 19420.76 

h9 8465.822 6629.706 0 2860.659 0 0 0 0 0 0 0 17956.19 

h10 8465.822 6280.587 0 2860.659 0 0 0 0 0 0 0 17607.07 

h11 8465.822 6071.235 0 2860.659 0 0 0 0 0 0 170 17397.72 

h12 8465.822 8116.226 0 0 944.9875 0 0 0 0 0 0 17527.04 

h13 8465.822 8133.741 0 0 944.9875 0 0 0 0 0 0 17544.55 

h14 8465.822 7976.127 0 0 944.9875 0 0 0 0 0 120 17386.94 

h15 8465.822 8063.684 0 0 944.9875 0 0 0 0 0 60 17474.49 

h16 8465.822 8887.478 0 0 984.8014 0 0 0 0 0 560 18338.1 

h17 8465.822 7661.05 0 2860.659 944.9875 0 0 0 0 0 900 19932.52 

h18 8465.822 8054.927 0 2860.659 944.9875 0 0 0 0 0 0 20326.4 

h19 8465.822 8508.713 0 2860.659 944.9875 0 0 0 0 0 0 20780.18 

h20 8465.822 8782.236 0 2860.659 944.9875 0 0 0 0 0 0 21053.7 

h21 8465.822 7678.549 0 2860.659 0 818.048 0 0 0 0 0 19823.08 

h22 8465.822 8343.971 0 0 0 818.048 0 0 0 0 0 17627.84 

h23 8465.822 6350.391 0 0 0 818.048 0 0 0 0 0 15634.26 

h24 8465.822 5461.135 0 0 0 0 0 0 0 0 0 13926.96 
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4.6.2 System of 20 Generating Units 

This part of chapter is basically illustrating the optimal results for 20 generating units and 

scheduling of units by using CBWO algorithm with 100 iteration and 30 trial runs. Table 

4.11 illustrates the scheduling of units for 20 units during weekend period of pre COVID-

19. Table 4.12 illustrates the scheduling of different units during weekday period of pre 

COVID-19. Table 4.13 illustrates the scheduling of units for 20 units during weekend 

period of pre COVID-19 with wind power. Table 4.14 illustrates the scheduling of 

different units during weekday period of pre COVID-19 with wind power. 

  Table 4.15 display the fuel cost for 20 units during weekend period of pre COVID-

19. Table 4.16 display the fuel cost of different units during weekday period of pre 

COVID-19. Table 4.17 display the fuel cost for 20 units during weekend period of pre 

COVID-19 with wind power. Table 4.18 display the fuel cost of different units during 

weekday period of pre COVID-19 with wind power.  
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Table 4.11: Scheduling a 20-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (For weekend); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 455 366 0 0 0 0 0 0 0 0 455 366 0 0 0 0 0 0 0 0 2190 31589.0 

h2 455 351 0 0 0 0 0 0 0 0 455 351 0 0 0 0 0 0 0 0 1620 31064.5 

h3 455 340 0 0 0 0 0 0 0 0 455 340 0 0 0 0 0 0 0 0 0 30680.1 

h4 455 353 0 0 0 0 0 0 0 0 455 353 0 0 0 0 0 0 0 0 550 31134.4 

h5 455 323 0 130 0 0 0 0 0 0 455 323 0 0 0 0 0 0 0 0 580 32946.9 

h6 455 326 130 130 0 0 0 0 0 0 455 326 0 130 0 0 0 0 0 0 0 38804.1 

h7 455 411.5 130 130 25 20 0 0 0 0 455 411. 0 130 0 0 0 0 0 0 0 43557.7 

h8 455 395.5 130 130 25 20 0 0 0 0 455 395.5 0 130 0 0 0 0 0 0 120 42997.4 

h9 455 382.5 130 130 25 20 0 0 0 0 455 382.5 0 130 0 0 0 0 0 0 860 42542.4 

h10 455 344.5 130 0 25 0 0 0 0 0 455 344.5 130 130 0 0 0 0 0 0 0 40426.6 

h11 455 399.5 130 0 25 0 0 0 0 0 455 399.5 130 0 0 0 0 0 0 0 560 39489.9 

h12 455 381.5 130 0 25 0 0 0 0 0 455 381.5 130 0 0 0 0 0 0 0 560 38859.8 

h13 455 351 130 0 0 0 0 0 0 0 455 351 130 0 0 0 0 0 0 0 0 36848.1 

h14 455 398.5 0 0 0 0 0 0 0 0 455 398.5 130 0 25 0 0 0 0 0 0 36563.1 

h15 455 390.5 0 130 0 0 0 0 0 0 455 390.5 0 0 25 0 0 0 0 0 0 36251.8 

h16 455 361.5 0 130 0 0 0 0 0 0 455 361.5 0 130 25 0 0 0 0 0 340 38097.9 

h17 455 408.5 0 130 0 0 0 0 0 0 455 408.5 0 130 25 0 0 0 0 0 1100 39742.8 

h18 455 415.5 0 130 0 20 0 0 0 0 455 415.5 0 130 25 0 0 0 0 0 900 40806.0 

h19 455 384.5 130 130 0 20 0 0 0 0 455 384.5 0 130 25 0 0 0 0 0 0 42612.4 

h20 455 455 130 0 0 20 0 0 0 0 455 455 0 130 52 20 0 0 0 0 900 43580.3 

h21 455 379 130 0 0 0 0 0 0 0 455 379 130 130 0 20 0 0 0 0 0 41506.0 

h22 455 365 130 0 0 0 0 0 0 0 455 365 130 0 0 20 0 0 0 0 0 38155.6 

h23 455 323 130 0 0 0 0 0 0 0 455 323 130 0 0 0 0 0 0 0 1290 35869.8 

h24 455 340 0 0 0 0 0 0 0 0 455 340 130 0 0 0 0 0 0 0 520 33571.9 
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Table 4.12: Scheduling a 20-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (For weekday); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 455 331 0 130 0 0 0 0 0 0 455 331 0 0 0 0 0 0 0 0 2920 33226.3 

h2 455 310 0 130 0 0 0 0 0 0 455 310 0 0 0 0 0 0 0 0 1270 32493.0 

h3 455 300 0 130 0 0 0 0 0 0 455 300 0 0 0 0 0 0 0 0 0 32144.1 

h4 455 296 0 130 0 0 0 0 0 0 455 296 0 0 0 0 0 0 0 0 0 32004.5 

h5 455 305 0 130 0 0 0 0 0 0 455 305 0 0 0 0 0 0 0 0 340 32318.5 

h6 455 306 0 130 0 0 0 0 0 0 455 306 0 130 0 0 0 0 0 0 1160 35214.1 

h7 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 60 37030.5 

h8 455 308 130 130 0 0 0 0 0 0 455 308 130 130 0 0 0 0 0 0 60 41067.5 

h9 455 402.5 130 0 25 0 0 0 0 0 455 402.5 130 130 0 0 0 0 0 0 0 42455.6 

h10 455 437 130 0 25 0 0 0 0 0 455 437 130 130 25 0 0 0 0 0 30 44609.5 

h11 455 455 130 0 27 0 0 0 0 0 455 455 130 130 27 0 0 0 0 0 0 45320.4 

h12 455 455 130 0 46 0 0 0 0 0 455 455 130 130 46 0 0 0 0 0 60 46080.1 

h13 455 451 130 0 25 0 0 0 0 0 455 451 130 130 25 0 0 0 0 0 1740 45100.5 

h14 455 455 130 130 26 0 0 0 0 0 455 455 0 130 26 0 0 0 0 0 350 45249.5 

h15 455 444 130 130 25 0 0 0 0 0 455 444 0 130 25 0 0 0 0 0 0 44823.8 

h16 455 455 130 130 40 0 0 0 0 0 455 455 0 130 40 0 0 0 0 0 230 45808.4 

h17 455 455 130 130 55 20 0 0 0 0 455 455 0 130 55 0 0 0 0 0 60 47228.8 

h18 455 455 130 130 35 20 0 0 0 0 455 455 0 130 35 0 0 0 0 0 670 46426.5 

h19 455 384.5 130 130 25 20 0 0 0 0 455 384.5 130 130 0 0 0 0 0 0 960 45504.2 

h20 455 430 130 0 25 20 25 0 0 0 455 430 130 130 0 0 0 0 0 0 60 45411.1 

h21 455 386 130 0 25 0 25 0 0 0 455 386 130 130 0 0 0 0 0 0 60 43051.9 

h22 455 333 130 0 0 0 25 0 0 0 455 333.5 130 130 0 0 0 0 0 0 170 40271.2 

h23 455 331 130 0 0 0 0 0 0 0 455 331 130 0 0 0 0 0 0 0 0 36149.2 

h24 455 331 130 0 0 0 0 0 0 0 455 331 0 0 0 0 0 0 0 0 1630 33257.4 
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Table 4.13: Scheduling a 20-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(For weekend); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 455 196 0 0 0 0 0 0 0 0 455 196 0 0 0 0 0 0 0 0 2520 25661.38 

h2 455 188 0 0 0 0 0 0 0 0 455 188 0 0 0 0 0 0 0 0 0 25383.32 

h3 455 203 0 0 0 0 0 0 0 0 455 203 0 0 0 0 0 0 0 0 550 25904.75 

h4 455 213 0 0 0 0 0 0 0 0 455 213 0 0 0 0 0 0 0 0 1760 26252.53 

h5 455 230 0 0 0 0 0 0 0 0 455 230 0 0 0 0 0 0 0 0 580 26844.04 

h6 455 290 0 0 0 0 0 0 0 0 455 290 0 0 0 0 0 0 0 0 0 28934.59 

h7 455 358 0 0 0 0 0 0 0 0 455 358 0 0 0 0 0 0 0 0 0 31309.27 

h8 455 304 0 130 0 0 0 0 0 0 455 304 0 130 0 0 0 0 0 0 0 35144.34 

h9 455 313 0 130 0 0 0 0 0 0 455 313 0 130 0 0 0 0 0 0 340 35458.46 

h10 455 346 0 130 0 0 0 0 0 0 455 346 0 130 0 0 0 0 0 0 600 36611.11 

h11 455 333 0 130 0 0 0 0 0 0 455 333 0 130 0 0 0 0 0 0 0 36156.87 

h12 455 328 0 130 0 0 0 0 0 0 455 328 0 130 0 0 0 0 0 0 0 35982.22 

h13 455 338 0 130 0 0 0 0 0 0 455 338 0 130 0 0 0 0 0 0 1100 36331.55 

h14 455 296 0 130 0 0 0 0 0 0 455 296 130 130 0 0 0 0 0 0 560 37757 

h15 455 352 0 130 0 0 0 0 0 0 455 352 130 0 0 0 0 0 0 0 1800 36851.96 

h16 455 412.5 0 0 25 0 0 0 0 0 455 412.5 130 0 0 0 0 0 0 0 1170 37053.43 

h17 455 399.5 130 0 25 0 0 0 0 0 455 399.5 130 0 0 0 0 0 0 0 180 39489.92 

h18 455 410.5 130 0 25 0 0 0 0 0 455 410.5 130 0 25 0 0 0 0 0 0 40820.16 

h19 455 439.4 130 0 25 0 0 0 0 0 455 439.4 130 0 25 0 0 0 0 0 950 41833.01 

h20 455 455 130 0 44 0 0 0 0 0 455 455 0 0 44 0 0 0 0 0 0 40247.41 

h21 455 416 130 0 25 0 0 0 0 0 455 416 0 0 25 0 0 0 0 0 210 38121.03 

h22 455 429.5 0 0 0 0 0 0 0 0 455 429.5 0 0 25 0 0 0 0 0 0 34757.34 

h23 455 433 0 130 0 0 0 0 0 0 0 433 0 130 25 0 0 0 0 0 290 32135.53 

h24 455 0 0 130 0 0 25 0 0 0 0 455 0 130 162 50 25 0 0 0 550 30669.26 
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Table 4.14: Scheduling a 20-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(For weekday); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 455 232 0 0 0 0 0 0 0 0 455 232 0 0 0 0 0 0 0 0 3080 26913.65 

h2 455 260 0 0 0 0 0 0 0 0 455 260 0 0 0 0 0 0 0 0 1800 27888.76 

h3 455 278 0 0 0 0 0 0 0 0 455 278 0 0 0 0 0 0 0 0 0 28516.12 

h4 455 316 0 0 0 0 0 0 0 0 455 316 0 0 0 0 0 0 0 0 120 29841.87 

h5 455 364 0 0 0 0 0 0 0 0 455 364 0 0 0 0 0 0 0 0 0 31519.07 

h6 455 417.5 0 0 25 0 0 0 0 0 455 417.5 0 130 0 0 0 0 0 0 120 37197.46 

h7 455 419.5 0 130 25 0 0 0 0 0 455 419.5 0 130 0 0 0 0 0 0 60 40128.2 

h8 455 370.5 0 130 25 0 0 0 0 0 455 370.5 0 130 0 0 0 0 0 0 0 38412.72 

h9 455 313.5 0 130 25 0 0 0 0 0 455 313.5 0 130 0 0 0 0 0 0 460 36420.9 

h10 455 293.5 0 130 25 0 0 0 0 0 455 293.5 0 130 0 0 0 0 0 0 0 35722.98 

h11 455 346.5 0 130 25 0 0 0 0 0 455 346.5 0 0 0 0 0 0 0 0 1110 34712.91 

h12 455 358.5 0 0 25 0 0 0 0 0 455 358.5 130 0 0 0 0 0 0 0 0 35163.54 

h13 455 362 0 0 0 20 0 0 0 0 455 362 130 0 0 0 0 0 0 0 1650 35158.98 

h14 455 353 0 0 0 20 0 0 0 0 455 353 130 0 0 0 0 0 0 0 0 34844.31 

h15 455 358 0 0 0 20 0 0 0 0 455 358 130 0 0 0 0 0 0 0 560 35019.11 

h16 455 404.5 0 0 0 0 0 0 0 0 455 404.5 130 0 25 0 0 0 0 0 1330 36773.22 

h17 455 397.5 0 130 0 0 0 0 0 0 455 397.5 0 130 25 0 0 0 0 0 120 39357.61 

h18 455 420 0 130 0 0 0 0 0 0 455 420 0 130 25 0 0 0 0 0 0 40145.72 

h19 455 380.9 130 130 0 0 0 0 0 0 455 380.9 0 130 25 0 0 0 0 0 260 41668.37 

h20 455 396.5 130 130 0 0 0 0 0 0 455 396.5 0 130 25 0 0 0 0 0 60 42214.4 

h21 455 328.5 130 130 0 0 0 0 0 0 455 328.5 0 130 25 0 0 0 0 0 1800 39836.48 

h22 455 314 130 130 0 0 0 0 0 0 455 314 0 0 0 0 0 0 0 0 0 35524.51 

h23 455 265 130 0 0 0 0 0 0 0 455 265 0 0 0 0 0 0 0 0 810 30954.78 

h24 455 258 130 0 0 0 0 0 0 0 455 0 130 0 0 0 0 0 0 0 0 28158.96 
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Table 4.15: Individual fuel cost for Generation of 20 Unit Test System using CBWO for UCP during Pre-COVID (Weekend); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 8466 7329 0 0 0 0 0 0 0 0 8466 7329 0 0 0 0 0 0 0 0 2190 31589 

h2 8466 7066 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 1620 31065 

h3 8466 6874 0 0 0 0 0 0 0 0 8466 6874 0 0 0 0 0 0 0 0 0 30680 

h4 8466 7101 0 0 0 0 0 0 0 0 8466 7101 0 0 0 0 0 0 0 0 550 31134 

h5 8466 6577 0 2861 0 0 0 0 0 0 8466 6577 0 0 0 0 0 0 0 0 580 32947 

h6 8466 6630 2892 2861 0 0 0 0 0 0 8466 6630 0 2861 0 0 0 0 0 0 0 38804 

h7 8466 8125 2892 2861 945 818 0 0 0 0 8466 8125 0 2861 0 0 0 0 0 0 0 43558 

h8 8466 7845 2892 2861 945 818 0 0 0 0 8466 7845 0 2861 0 0 0 0 0 0 120 42997 

h9 8466 7617 2892 2861 945 818 0 0 0 0 8466 7617 0 2861 0 0 0 0 0 0 860 42542 

h10 8466 6953 2892 0 945 0 0 0 0 0 8466 6953 2892 2861 0 0 0 0 0 0 0 40427 

h11 8466 7915 2892 0 945 0 0 0 0 0 8466 7915 2892 0 0 0 0 0 0 0 560 39490 

h12 8466 7600 2892 0 945 0 0 0 0 0 8466 7600 2892 0 0 0 0 0 0 0 560 38860 

h13 8466 7066 2892 0 0 0 0 0 0 0 8466 7066 2892 0 0 0 0 0 0 0 0 36848 

h14 8466 7897 0 0 0 0 0 0 0 0 8466 7897 2892 0 945 0 0 0 0 0 0 36563 

h15 8466 7757 0 2861 0 0 0 0 0 0 8466 7757 0 0 945 0 0 0 0 0 0 36252 

h16 8466 7250 0 2861 0 0 0 0 0 0 8466 7250 0 2861 945 0 0 0 0 0 340 38098 

h17 8466 8072 0 2861 0 0 0 0 0 0 8466 8072 0 2861 945 0 0 0 0 0 1100 39743 

h18 8466 8195 0 2861 0 818 0 0 0 0 8466 8195 0 2861 945 0 0 0 0 0 900 40806 

h19 8466 7652 2892 2861 0 818 0 0 0 0 8466 7652 0 2861 945 0 0 0 0 0 0 42612 

h20 8466 8887 2892 0 0 818 0 0 0 0 8466 8887 0 2861 1485 818 0 0 0 0 900 43580 

h21 8466 7556 2892 0 0 0 0 0 0 0 8466 7556 2892 2861 0 818 0 0 0 0 0 41506 

h22 8466 7311 2892 0 0 0 0 0 0 0 8466 7311 2892 0 0 818 0 0 0 0 0 38156 

h23 8466 6577 2892 0 0 0 0 0 0 0 8466 6577 2892 0 0 0 0 0 0 0 1290 35870 

h24 8466 6874 0 0 0 0 0 0 0 0 8466 6874 2892 0 0 0 0 0 0 0 520 33572 
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Table 4.16: Individual fuel cost for Generation of 20 Unit Test System using CBWO for UCP during Pre-COVID (Weekday); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 8466 6717 0 2861 0 0 0 0 0 0 8466 6717 0 0 0 0 0 0 0 0 2920 33226 

h2 8466 6350 0 2861 0 0 0 0 0 0 8466 6350 0 0 0 0 0 0 0 0 1270 32493 

h3 8466 6176 0 2861 0 0 0 0 0 0 8466 6176 0 0 0 0 0 0 0 0 0 32144 

h4 8466 6106 0 2861 0 0 0 0 0 0 8466 6106 0 0 0 0 0 0 0 0 0 32005 

h5 8466 6263 0 2861 0 0 0 0 0 0 8466 6263 0 0 0 0 0 0 0 0 340 32319 

h6 8466 6281 0 2861 0 0 0 0 0 0 8466 6281 0 2861 0 0 0 0 0 0 1160 35214 

h7 8466 7189 0 2861 0 0 0 0 0 0 8466 7189 0 2861 0 0 0 0 0 0 60 37031 

h8 8466 6315 2892 2861 0 0 0 0 0 0 8466 6315 2892 2861 0 0 0 0 0 0 60 41068 

h9 8466 7967 2892 0 945 0 0 0 0 0 8466 7967 2892 2861 0 0 0 0 0 0 0 42456 

h10 8466 8572 2892 0 945 0 0 0 0 0 8466 8572 2892 2861 945 0 0 0 0 0 30 44610 

h11 8466 8887 2892 0 985 0 0 0 0 0 8466 8887 2892 2861 985 0 0 0 0 0 0 45320 

h12 8466 8887 2892 0 1365 0 0 0 0 0 8466 8887 2892 2861 1365 0 0 0 0 0 60 46080 

h13 8466 8817 2892 0 945 0 0 0 0 0 8466 8817 2892 2861 945 0 0 0 0 0 1740 45101 

h14 8466 8887 2892 2861 965 0 0 0 0 0 8466 8887 0 2861 965 0 0 0 0 0 350 45249 

h15 8466 8695 2892 2861 945 0 0 0 0 0 8466 8695 0 2861 945 0 0 0 0 0 0 44824 

h16 8466 8887 2892 2861 1244 0 0 0 0 0 8466 8887 0 2861 1244 0 0 0 0 0 230 45808 

h17 8466 8887 2892 2861 1546 818 0 0 0 0 8466 8887 0 2861 1546 0 0 0 0 0 60 47229 

h18 8466 8887 2892 2861 1144 818 0 0 0 0 8466 8887 0 2861 1144 0 0 0 0 0 670 46427 

h19 8466 7652 2892 2861 945 818 0 0 0 0 8466 7652 2892 2861 0 0 0 0 0 0 960 45504 

h20 8466 8449 2892 0 945 818 1174 0 0 0 8466 8449 2892 2861 0 0 0 0 0 0 60 45411 

h21 8466 7679 2892 0 945 0 1174 0 0 0 8466 7679 2892 2861 0 0 0 0 0 0 60 43052 

h22 8466 6761 2892 0 0 0 1174 0 0 0 8466 6761 2892 2861 0 0 0 0 0 0 170 40271 

h23 8466 6717 2892 0 0 0 0 0 0 0 8466 6717 2892 0 0 0 0 0 0 0 0 36149 

h24 8466 6717 2892 0 0 0 0 0 0 0 8466 6717 0 0 0 0 0 0 0 0 1630 33257 
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Table 4.17: Individual fuel cost for Generation of 20 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekend); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 8466 4365 0 0 0 0 0 0 0 0 8466 4365 0 0 0 0 0 0 0 0 2520 25661 

h2 8466 4226 0 0 0 0 0 0 0 0 8466 4226 0 0 0 0 0 0 0 0 0 25383 

h3 8466 4487 0 0 0 0 0 0 0 0 8466 4487 0 0 0 0 0 0 0 0 550 25905 

h4 8466 4660 0 0 0 0 0 0 0 0 8466 4660 0 0 0 0 0 0 0 0 1760 26253 

h5 8466 4956 0 0 0 0 0 0 0 0 8466 4956 0 0 0 0 0 0 0 0 580 26844 

h6 8466 6001 0 0 0 0 0 0 0 0 8466 6001 0 0 0 0 0 0 0 0 0 28935 

h7 8466 7189 0 0 0 0 0 0 0 0 8466 7189 0 0 0 0 0 0 0 0 0 31309 

h8 8466 6246 0 2861 0 0 0 0 0 0 8466 6246 0 2861 0 0 0 0 0 0 0 35144 

h9 8466 6403 0 2861 0 0 0 0 0 0 8466 6403 0 2861 0 0 0 0 0 0 340 35458 

h10 8466 6979 0 2861 0 0 0 0 0 0 8466 6979 0 2861 0 0 0 0 0 0 600 36611 

h11 8466 6752 0 2861 0 0 0 0 0 0 8466 6752 0 2861 0 0 0 0 0 0 0 36157 

h12 8466 6665 0 2861 0 0 0 0 0 0 8466 6665 0 2861 0 0 0 0 0 0 0 35982 

h13 8466 6839 0 2861 0 0 0 0 0 0 8466 6839 0 2861 0 0 0 0 0 0 1100 36332 

h14 8466 6106 0 2861 0 0 0 0 0 0 8466 6106 2892 2861 0 0 0 0 0 0 560 37757 

h15 8466 7084 0 2861 0 0 0 0 0 0 8466 7084 2892 0 0 0 0 0 0 0 1800 36852 

h16 8466 8142 0 0 945 0 0 0 0 0 8466 8142 2892 0 0 0 0 0 0 0 1170 37053 

h17 8466 7915 2892 0 945 0 0 0 0 0 8466 7915 2892 0 0 0 0 0 0 0 180 39490 

h18 8466 8107 2892 0 945 0 0 0 0 0 8466 8107 2892 0 945 0 0 0 0 0 0 40820 

h19 8466 8614 2892 0 945 0 0 0 0 0 8466 8614 2892 0 945 0 0 0 0 0 950 41833 

h20 8466 8887 2892 0 1325 0 0 0 0 0 8466 8887 0 0 1325 0 0 0 0 0 0 40247 

h21 8466 8204 2892 0 945 0 0 0 0 0 8466 8204 0 0 945 0 0 0 0 0 210 38121 

h22 8466 8440 0 0 0 0 0 0 0 0 8466 8440 0 0 945 0 0 0 0 0 0 34757 

h23 8466 8502 0 2861 0 0 0 0 0 0 0 8502 0 2861 945 0 0 0 0 0 290 32136 

h24 8466 0 0 2861 0 0 1174 0 0 0 0 8887 0 2861 3746 1501 1174 0 0 0 550 30669 
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Table 4.18: Individual fuel cost for Generation of 20 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekday); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 SUC FC 

h1 8466 4991 0 0 0 0 0 0 0 0 8466 4991 0 0 0 0 0 0 0 0 3080 26914 

h2 8466 5479 0 0 0 0 0 0 0 0 8466 5479 0 0 0 0 0 0 0 0 1800 27889 

h3 8466 5792 0 0 0 0 0 0 0 0 8466 5792 0 0 0 0 0 0 0 0 0 28516 

h4 8466 6455 0 0 0 0 0 0 0 0 8466 6455 0 0 0 0 0 0 0 0 120 29842 

h5 8466 7294 0 0 0 0 0 0 0 0 8466 7294 0 0 0 0 0 0 0 0 0 31519 

h6 8466 8230 0 0 945 0 0 0 0 0 8466 8230 0 2861 0 0 0 0 0 0 120 37197 

h7 8466 8265 0 2861 945 0 0 0 0 0 8466 8265 0 2861 0 0 0 0 0 0 60 40128 

h8 8466 7407 0 2861 945 0 0 0 0 0 8466 7407 0 2861 0 0 0 0 0 0 0 38413 

h9 8466 6411 0 2861 945 0 0 0 0 0 8466 6411 0 2861 0 0 0 0 0 0 460 36421 

h10 8466 6063 0 2861 945 0 0 0 0 0 8466 6063 0 2861 0 0 0 0 0 0 0 35723 

h11 8466 6988 0 2861 945 0 0 0 0 0 8466 6988 0 0 0 0 0 0 0 0 1110 34713 

h12 8466 7198 0 0 945 0 0 0 0 0 8466 7198 2892 0 0 0 0 0 0 0 0 35164 

h13 8466 7259 0 0 0 818 0 0 0 0 8466 7259 2892 0 0 0 0 0 0 0 1650 35159 

h14 8466 7101 0 0 0 818 0 0 0 0 8466 7101 2892 0 0 0 0 0 0 0 0 34844 

h15 8466 7189 0 0 0 818 0 0 0 0 8466 7189 2892 0 0 0 0 0 0 0 560 35019 

h16 8466 8002 0 0 0 0 0 0 0 0 8466 8002 2892 0 945 0 0 0 0 0 1330 36773 

h17 8466 7880 0 2861 0 0 0 0 0 0 8466 7880 0 2861 945 0 0 0 0 0 120 39358 

h18 8466 8274 0 2861 0 0 0 0 0 0 8466 8274 0 2861 945 0 0 0 0 0 0 40146 

h19 8466 7589 2892 2861 0 0 0 0 0 0 8466 7589 0 2861 945 0 0 0 0 0 260 41668 

h20 8466 7862 2892 2861 0 0 0 0 0 0 8466 7862 0 2861 945 0 0 0 0 0 60 42214 

h21 8466 6673 2892 2861 0 0 0 0 0 0 8466 6673 0 2861 945 0 0 0 0 0 1800 39836 

h22 8466 6420 2892 2861 0 0 0 0 0 0 8466 6420 0 0 0 0 0 0 0 0 0 35525 

h23 8466 5566 2892 0 0 0 0 0 0 0 8466 5566 0 0 0 0 0 0 0 0 810 30955 

h24 8466 5444 2892 0 0 0 0 0 0 0 8466 0 2892 0 0 0 0 0 0 0 0 28159 
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         4.6.3 System of 40 Generating Units 

 This part of chapter is basically illustrating the optimal results for 40 generating units and 

scheduling of units by using CBWO algorithm with 100 iteration and 30 trial runs. Table 

4.19 & 4.20 illustrates the scheduling of units for 40 units during weekend period of pre 

COVID-19. Table 4.21 & 4.22 also illustrates the scheduling of different units during 

weekday period of pre COVID-19. Table 4.23 & 4.24 illustrates the scheduling of units 

for 40 units during weekend period of pre COVID-19 with wind power. Table 4.25 & 4.26 

also illustrates the scheduling of different units during weekday period of pre COVID-19 

with wind power. 

   Table 4.27 & 4.28 display the fuel cost for 40 units during weekend period of pre 

COVID-19. Table 4.29 & 4.30 display the fuel cost of different units during weekday 

period of pre COVID-19. Table 4.31 & 4.32 display the fuel cost for 40 units during 

weekend period of pre COVID-19 with wind power. Table 4.33 & 4.34 display the fuel 

cost of different units during weekday period of pre COVID-19 with wind power.  
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Table 4.19: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (weekend from U1- U20); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 363.5 0 130 0 0 0 0 0 0 455 363.5 0 0 0 0 0 0 0 0 

h2 455 342.5 0 130 0 0 0 0 0 0 455 342.5 0 0 0 0 0 0 0 0 

h3 455 332.5 0 130 0 0 0 0 0 0 455 332.5 0 0 0 0 0 0 0 0 

h4 455 328.5 0 130 0 0 0 0 0 0 455 328.5 0 0 0 0 0 0 0 0 

h5 455 337.5 0 130 0 0 0 0 0 0 455 337.5 0 0 0 0 0 0 0 0 

h6 455 338.5 0 130 0 0 0 0 0 0 455 338.5 0 130 0 0 0 0 0 0 

h7 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 

h8 455 340.5 130 130 0 0 0 0 0 0 455 340.5 130 130 0 0 0 0 0 0 

h9 455 343.75 130 130 25 0 0 0 0 0 455 343.75 130 130 0 0 0 0 0 0 

h10 455 384.5 130 130 25 0 0 0 0 0 455 384.5 130 130 0 0 0 0 0 0 

h11 455 404.5 130 130 25 0 0 0 0 0 455 404.5 130 130 0 0 0 0 0 0 

h12 455 417.25 130 130 25 0 0 0 0 0 455 417.25 130 130 25 0 0 0 0 0 

h13 455 424.75 130 130 25 0 0 0 0 0 455 424.75 130 130 25 0 0 0 0 0 

h14 455 429.75 130 130 25 0 0 0 0 0 455 429.75 130 130 25 0 0 0 0 0 

h15 455 417.75 130 130 25 0 0 0 0 0 455 417.75 130 130 25 0 0 0 0 0 

h16 455 455 130 130 40 0 0 0 0 0 455 455 130 130 40 0 0 0 0 0 

h17 455 455 130 130 60 20 0 0 0 0 455 455 130 130 60 0 0 0 0 0 

h18 455 443.75 130 130 25 20 0 0 0 0 455 443.75 130 130 25 0 0 0 0 0 

h19 455 422 130 130 0 20 0 0 0 0 455 422 130 130 25 0 0 0 0 0 

h20 455 411 130 130 0 20 0 0 0 0 455 411 130 130 0 0 0 0 0 0 

h21 455 395 130 0 0 0 0 0 0 0 455 395 130 0 0 0 0 0 0 0 

h22 455 395 130 0 0 0 0 0 0 0 455 395 130 0 0 0 0 0 0 0 

h23 455 359 0 0 0 0 0 0 0 0 455 359 130 0 0 0 0 0 0 0 

h24 455 383 0 0 0 20 0 0 0 0 455 383 130 0 0 0 0 0 0 0 
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Table 4.20: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (weekend from U21- U40); MW 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 455 363.5 0 0 0 0 0 0 0 0 455 363.5 0 0 0 0 0 0 0 0 5260 65863.8 

h2 455 342.5 0 0 0 0 0 0 0 0 455 342.5 0 0 0 0 0 0 0 0 2360 64395.6 

h3 455 332.5 0 0 0 0 0 0 0 0 455 332.5 0 0 0 0 0 0 0 0 2560 63696.8 

h4 455 328.5 0 0 0 0 0 0 0 0 455 328.5 0 0 0 0 0 0 0 0 30 63417.4 

h5 455 337.5 0 0 0 0 0 0 0 0 455 337.5 0 0 0 0 0 0 0 0 420 64046.1 

h6 455 338.5 0 130 0 0 0 0 0 0 455 338.5 0 0 0 0 0 0 0 0 180 69837.3 

h7 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 350 74061.1 

h8 455 340.5 130 130 0 0 0 0 0 0 455 340.5 0 130 0 0 0 0 0 0 230 81513.2 

h9 455 343.75 130 130 0 0 0 0 0 0 455 343.75 130 130 0 0 0 0 0 0 700 85577.1 

h10 455 384.5 130 130 0 0 0 0 0 0 455 384.5 130 130 25 0 0 0 0 0 320 89372.3 

h11 455 404.5 130 130 0 0 0 0 0 0 455 404.5 130 130 25 0 0 0 0 0 180 90772.6 

h12 455 417.25 130 130 0 0 0 0 0 0 455 417.25 130 130 25 0 0 0 0 0 1040 92610.9 

h13 455 424.75 0 130 0 0 0 0 0 0 455 424.75 130 130 25 0 0 0 0 0 830 90244.7 

h14 455 429.75 0 130 0 0 0 0 0 0 455 429.75 130 130 25 0 0 0 0 0 290 90595.2 

h15 455 417.75 0 130 0 0 0 0 0 0 455 417.75 130 130 25 0 0 0 0 0 1450 89754.1 

h16 455 455 0 130 40 0 0 0 0 0 455 455 0 130 40 0 0 0 0 0 1660 91616.9 

h17 455 455 0 130 60 0 0 0 0 0 455 455 0 130 60 0 0 0 0 0 1830 94042.8 

h18 455 443.75 130 130 25 0 0 0 0 0 455 443.75 0 130 0 0 0 0 0 0 1270 92395.0 

h19 455 422 130 130 25 0 0 0 0 0 455 422 0 130 0 0 0 0 0 0 230 89925.0 

h20 455 411.25 130 130 25 20 0 0 0 0 455 411.25 0 130 0 20 0 0 0 0 170 89862.8 

h21 455 394.75 130 130 25 20 0 0 0 0 455 394.75 130 130 0 20 0 0 0 0 1430 85059.6 

h22 455 394.75 130 0 25 20 0 0 0 0 455 394.75 130 0 0 20 0 0 0 0 470 79338.3 

h23 455 358.5 130 0 0 20 0 0 0 0 455 358.5 130 0 0 0 0 0 0 0 1430 72146.9 

h24 455 0 130 0 0 0 0 0 0 0 455 383 130 0 25 0 0 0 0 0 1420 67179.8 
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Table 4.21: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (weekday from U1- U20); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 340.5 0 130 0 0 0 0 0 0 455 340.5 0 0 0 0 0 0 0 0 

h2 455 326.5 0 130 0 0 0 0 0 0 455 326.5 0 0 0 0 0 0 0 0 

h3 455 328.5 0 130 0 0 0 0 0 0 455 328.5 0 0 0 0 0 0 0 0 

h4 455 325.5 0 130 0 0 0 0 0 0 455 325.5 0 0 0 0 0 0 0 0 

h5 455 339.5 0 130 0 0 0 0 0 0 455 339.5 0 0 0 0 0 0 0 0 

h6 455 362 0 130 0 0 0 0 0 0 455 362 0 130 0 0 0 0 0 0 

h7 455 348 130 130 0 0 0 0 0 0 455 348 0 130 0 0 0 0 0 0 

h8 455 348 130 130 0 0 0 0 0 0 455 348 130 130 0 0 0 0 0 0 

h9 455 331.5 130 130 0 0 0 0 0 0 455 331.5 130 130 0 0 0 0 0 0 

h10 455 332 130 130 0 0 0 0 0 0 455 332 130 130 0 0 0 0 0 0 

h11 455 346.25 130 0 25 0 0 0 0 0 455 346.25 130 130 0 0 0 0 0 0 

h12 455 371.75 0 0 25 0 0 0 0 0 455 371.75 130 130 0 0 0 0 0 0 

h13 455 407 0 0 25 0 0 0 0 0 455 407 0 130 25 0 0 0 0 0 

h14 455 455 0 0 47.5 0 0 0 0 0 455 455 0 0 47.5 0 0 0 0 0 

h15 455 455 0 0 36.5 0 0 0 0 0 455 455 0 0 36.5 0 0 0 0 0 

h16 455 446 0 130 25 0 0 0 0 0 455 446 0 0 25 0 0 0 0 0 

h17 455 455 130 130 27.5 0 0 0 0 0 455 455 0 0 27.5 0 0 0 0 0 

h18 455 442.25 130 130 0 0 0 0 0 0 455 442.25 130 0 25 0 0 0 0 0 

h19 455 416.5 130 130 0 0 0 0 0 0 455 416.5 130 130 0 20 0 0 0 0 

h20 455 402.75 130 130 0 20 0 0 0 0 455 402.75 130 130 0 20 0 0 0 0 

h21 455 390.5 130 130 0 20 0 0 0 0 455 390.5 130 130 0 20 0 0 0 0 

h22 455 374 130 130 0 20 0 0 0 0 455 374 130 130 0 0 0 0 0 0 

h23 455 394.25 0 0 0 0 25 0 0 0 455 394.25 130 130 0 0 0 0 0 0 

h24 455 392.25 0 0 0 0 25 0 0 0 455 392.25 0 130 0 0 0 0 0 0 
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Table 4.22: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID (weekend from U21- U40); MW 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 455 340.5 0 0 0 0 0 0 0 0 455 340.5 0 0 0 0 0 0 0 0 3110 64255.8 

h2 455 326.5 0 0 0 0 0 0 0 0 455 326.5 0 0 0 0 0 0 0 0 3130 63277.6 

h3 455 328.5 0 0 0 0 0 0 0 0 455 328.5 0 0 0 0 0 0 0 0 2280 63417.4 

h4 455 325.5 0 0 0 0 0 0 0 0 455 325.5 0 0 0 0 0 0 0 0 1490 63207.8 

h5 455 339.5 0 0 0 0 0 0 0 0 455 339.5 0 0 0 0 0 0 0 0 610 64185.9 

h6 455 362 0 0 0 0 0 0 0 0 455 362 0 0 0 0 0 0 0 0 120 68619.5 

h7 455 348 0 130 0 0 0 0 0 0 455 348 0 0 0 0 0 0 0 0 0 73393.1 

h8 455 348 130 130 0 0 0 0 0 0 455 348 0 0 0 0 0 0 0 0 320 79176.7 

h9 455 331.5 130 130 0 0 0 0 0 0 455 331.5 0 130 0 0 0 0 0 0 460 80884.3 

h10 455 332 130 130 0 0 0 0 0 0 455 332 130 130 0 0 0 0 0 0 810 83811.0 

h11 455 346.25 130 130 0 0 0 0 0 0 455 346.2 130 130 0 0 0 0 0 0 150 82891.2 

h12 455 371.75 130 130 0 0 0 0 0 0 455 371.7 130 130 0 0 0 0 0 0 670 81782.6 

h13 455 407 130 130 0 0 0 0 0 0 455 407 130 130 0 0 0 0 0 0 1230 82303.5 

h14 455 455 130 0 47.5 0 0 0 0 0 455 455 130 130 47.5 0 0 0 0 0 210 83636.3 

h15 455 455 130 0 36.5 0 0 0 0 0 455 455 130 130 36.5 0 0 0 0 0 2290 82754.8 

h16 455 446 130 0 25 0 0 0 0 0 455 446 130 130 25 0 0 0 0 0 1450 84066.6 

h17 455 455 130 0 27.5 0 0 0 0 0 455 455 130 130 27.5 0 0 0 0 0 290 87788.9 

h18 455 442.25 130 0 25 0 0 0 0 0 455 442.2 130 130 25 0 0 0 0 0 2800 88642.2 

h19 455 416.5 130 130 25 0 0 0 0 0 455 416.5 130 130 25 0 0 0 0 0 1490 92431.4 

h20 455 402.7 130 130 0 20 0 0 0 0 455 402.7 130 130 25 0 0 0 0 0 120 92159.2 

h21 455 390.5 130 130 0 20 0 0 0 0 455 390.5 0 130 0 0 0 0 0 0 1240 87464.6 

h22 455 374 130 130 0 20 0 0 0 0 455 374 0 0 0 0 0 0 0 0 0 82631.1 

h23 455 394.2 0 130 0 20 0 0 0 0 455 394.2 0 0 0 20 0 0 0 0 150 76578.2 

h24 455 392.2 0 0 0 0 0 0 0 0 455 392.2 0 0 0 20 0 0 0 0 1320 69867.7 
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Table 4.23: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(weekend from U1- U20); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 261.33 0 0 0 0 0 0 0 0 455 261.33 0 0 0 0 0 0 0 0 

h2 455 250.66 0 0 0 0 0 0 0 0 455 250.66 0 0 0 0 0 0 0 0 

h3 455 270.66 0 0 0 0 0 0 0 0 455 270.66 0 0 0 0 0 0 0 0 

h4 455 284 0 0 0 0 0 0 0 0 455 284 0 0 0 0 0 0 0 0 

h5 455 306.66 0 0 0 0 0 0 0 0 455 306.66 0 0 0 0 0 0 0 0 

h6 455 343.33 0 130 0 0 0 0 0 0 455 343.33 0 0 0 0 0 0 0 0 

h7 455 304 0 130 0 0 0 0 0 0 455 304 0 130 0 0 0 0 0 0 

h8 455 353.6667 0 130 0 0 0 0 0 0 455 353.6667 0 130 25 0 0 0 0 0 

h9 455 365.6667 0 130 0 0 0 0 0 0 455 365.6667 0 130 25 0 0 0 0 0 

h10 455 307.25 0 130 0 0 0 0 0 0 455 307.25 0 130 25 0 0 0 0 0 

h11 455 326.75 0 0 0 0 0 0 0 0 455 326.75 0 130 25 0 0 0 0 0 

h12 455 386.75 0 0 0 0 0 0 0 0 455 386.75 0 130 25 0 0 0 0 0 

h13 455 396.75 0 0 0 0 0 0 0 0 455 396.75 130 130 25 0 0 0 0 0 

h14 455 387.25 130 0 0 0 0 0 0 0 455 387.25 130 0 25 0 0 0 0 0 

h15 455 378.25 130 0 0 0 0 0 0 0 455 378.25 130 0 25 0 0 0 0 0 

h16 455 360 130 130 0 0 0 0 0 0 455 360 130 0 0 0 0 0 0 0 

h17 455 347 130 130 0 0 0 0 0 0 455 347 130 0 0 0 0 0 0 0 

h18 455 338 130 130 0 0 0 0 0 0 455 338 130 0 0 0 0 0 0 0 

h19 455 334.4 130 130 0 0 0 0 0 0 455 334.4 130 130 0 0 0 0 0 0 

h20 455 336.5 130 130 0 0 0 0 0 0 455 336.5 130 130 0 0 0 0 0 0 

h21 455 343.5 0 130 0 0 0 0 0 0 455 343.5 0 130 0 0 0 0 0 0 

h22 455 364.333 0 130 25 0 0 0 0 0 455 364.33 0 130 0 0 0 0 0 0 

h23 455 369 0 130 25 0 0 0 0 0 455 369 0 130 0 0 0 0 0 0 

h24 455 339.666 0 0 25 0 0 0 0 0 455 339.66 0 0 0 0 0 0 0 0 
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Table 4.24: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(weekend from U21- U40); MW 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 455 261 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 3610 50369 

h2 455 251 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 3460 49811 

h3 455 271 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 1450 50857 

h4 455 284 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 120 51554 

h5 455 307 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 1300 52740 

h6 455 343 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 640 57521 

h7 455 304 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 60 64043 

h8 455 354 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 60 70482 

h9 455 366 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 5670 71111 

h10 455 307 130 130 0 0 0 0 0 0 455 307 0 130 0 0 0 0 0 0 720 74352 

h11 455 327 130 130 0 0 0 0 0 0 455 327 0 130 0 0 0 0 0 0 200 72853 

h12 455 387 130 0 0 0 0 0 0 0 455 387 0 0 0 0 0 0 0 0 1110 71327 

h13 455 397 0 0 0 0 0 0 0 0 455 397 0 0 0 0 0 0 0 0 1900 72028 

h14 455 387 0 0 0 0 0 0 0 0 455 387 130 0 0 0 0 0 0 0 2620 74285 

h15 455 378 0 0 0 0 0 0 0 0 455 378 130 0 0 0 0 0 0 0 350 73655 

h16 455 360 0 0 0 0 0 0 0 0 455 360 130 0 0 0 0 0 0 0 260 74294 

h17 455 347 0 130 0 0 0 0 0 0 455 347 130 130 0 0 0 0 0 0 0 79107 

h18 455 338 130 130 0 0 0 0 0 0 455 338 130 130 0 0 0 0 0 0 430 81370 

h19 455 334 130 130 0 0 0 0 0 0 455 334 130 130 0 0 0 0 0 0 2320 83979 

h20 455 337 130 130 0 0 0 0 0 0 455 337 0 130 0 0 0 0 0 0 180 81234 

h21 455 344 130 130 0 0 0 0 0 0 455 344 0 130 0 0 0 0 0 0 1800 75939 

h22 455 364 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 990 71041 

h23 455 369 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 1070 62673 

h24 455 340 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 2510 55414 
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Table 4.25: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(weekday from U1- U20); MW 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 309.3 0 0 0 0 0 0 0 0 455 309.3 0 0 0 0 0 0 0 0 

h2 455 346.6 0 0 0 0 0 0 0 0 455 346.6 0 0 0 0 0 0 0 0 

h3 455 327.3 0 130 0 0 0 0 0 0 455 327.3 0 0 0 0 0 0 0 0 

h4 455 334.6 0 130 0 0 0 0 0 0 455 334.6 0 130 0 0 0 0 0 0 

h5 455 312 0 130 0 0 0 0 0 0 455 312 0 130 0 0 0 0 0 0 

h6 455 313.3 130 130 0 0 0 0 0 0 455 313.3 130 130 0 0 0 0 0 0 

h7 455 386 130 130 25 0 0 0 0 0 455 386 130 130 25 0 0 0 0 0 

h8 455 364 130 0 25 0 0 0 0 0 455 364 130 130 25 0 0 0 0 0 

h9 455 331.333 130 0 25 0 0 0 0 0 455 331.333 130 0 25 0 0 0 0 0 

h10 455 391.333 130 0 25 0 0 0 0 0 455 391.333 130 0 25 0 0 0 0 0 

h11 455 453.666 130 0 25 0 0 0 0 0 455 453.666 130 0 25 0 0 0 0 0 

h12 455 417.25 0 0 25 0 0 0 0 0 455 417.25 0 0 25 0 0 0 0 0 

h13 455 398.25 0 130 0 0 0 0 0 0 455 398.25 0 0 0 0 0 0 0 0 

h14 455 389.25 0 130 0 0 0 0 0 0 455 389.25 0 0 0 0 0 0 0 0 

h15 455 394.25 0 130 0 0 0 0 0 0 455 394.25 0 0 0 0 0 0 0 0 

h16 455 378.25 0 130 0 0 0 0 0 0 455 378.25 0 130 0 0 0 0 0 0 

h17 455 345 130 130 0 0 0 0 0 0 455 345 130 130 0 0 0 0 0 0 

h18 455 335 130 0 0 0 0 0 0 0 455 335 130 130 0 0 0 0 0 0 

h19 455 354.65 130 0 25 0 0 0 0 0 455 354.65 130 130 0 0 0 0 0 0 

h20 455 370.25 130 0 25 0 0 0 0 0 455 370.25 130 130 0 0 0 0 0 0 

h21 455 367.25 130 0 25 0 0 0 0 0 455 367.25 130 0 0 0 0 0 0 0 

h22 455 372.75 0 0 25 0 0 0 0 0 455 372.75 0 0 0 0 0 0 0 0 

h23 455 345 0 130 25 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 

h24 455 293.66 0 130 25 0 0 0 0 0 455 293.66 0 0 0 0 0 0 0 0 
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Table 4.26: Scheduling a 40-unit system with the help of the CBWO algorithm for UCP during Pre-COVID with Wind Power Uncertainty 

(weekday from U21- U40); MW 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 455 309 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 2730 52880 

h2 455 347 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 2010 54835 

h3 455 327 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 3000 56683 

h4 455 335 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 520 59928 

h5 455 312 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 340 64462 

h6 455 313 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 2230 76099 

h7 455 386 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 180 81799 

h8 455 364 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 0 77784 

h9 455 331 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 0 73210 

h10 455 391 130 0 0 0 0 0 0 0 455 0 130 0 0 0 0 0 0 0 1120 70636 

h11 455 454 0 0 0 0 0 0 0 0 455 0 0 0 25 0 0 0 0 0 1450 69074 

h12 455 417 0 0 0 0 0 0 0 0 455 417 0 0 25 0 0 0 0 0 820 69601 

h13 455 398 0 0 0 0 0 0 0 0 455 398 0 0 25 0 0 0 0 0 3310 69241 

h14 455 389 0 0 0 0 0 0 0 0 455 389 0 0 25 0 0 0 0 0 960 68611 

h15 455 394 0 0 0 0 0 0 0 0 455 394 0 0 25 0 0 0 0 0 1970 68961 

h16 455 378 0 130 0 0 0 0 0 0 455 378 0 0 25 0 0 0 0 0 560 73562 

h17 455 345 130 130 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 520 78967 

h18 455 335 130 130 0 0 0 0 0 0 455 335 130 130 0 0 0 0 0 0 60 81160 

h19 455 355 130 130 0 0 0 0 0 0 455 355 130 130 0 0 0 0 0 0 560 83478 

h20 455 370 130 130 0 0 0 0 0 0 455 370 130 130 0 0 0 0 0 0 1200 84569 

h21 455 367 130 0 0 0 0 0 0 0 455 367 130 130 0 0 0 0 0 0 720 78638 

h22 455 373 0 0 0 0 0 0 0 0 455 373 130 130 0 0 0 0 0 0 1300 70348 

h23 455 345 0 0 0 0 0 0 0 0 455 0 130 0 0 0 0 0 0 0 550 61446 

h24 455 294 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 720 55865 
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Table 4.27: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP During Pre-COVID (Weekend from U1-U20); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 7285 0 2861 0 0 0 0 0 0 8466 7285 0 0 0 0 0 0 0 0 

h2 8466 6918 0 2861 0 0 0 0 0 0 8466 6918 0 0 0 0 0 0 0 0 

h3 8466 6743 0 2861 0 0 0 0 0 0 8466 6743 0 0 0 0 0 0 0 0 

h4 8466 6673 0 2861 0 0 0 0 0 0 8466 6673 0 0 0 0 0 0 0 0 

h5 8466 6831 0 2861 0 0 0 0 0 0 8466 6831 0 0 0 0 0 0 0 0 

h6 8466 6848 0 2861 0 0 0 0 0 0 8466 6848 0 2861 0 0 0 0 0 0 

h7 8466 7189 0 2861 0 0 0 0 0 0 8466 7189 0 2861 0 0 0 0 0 0 

h8 8466 6883 2892 2861 0 0 0 0 0 0 8466 6883 2892 2861 0 0 0 0 0 0 

h9 8466 6940 2892 2861 945 0 0 0 0 0 8466 6940 2892 2861 0 0 0 0 0 0 

h10 8466 7652 2892 2861 945 0 0 0 0 0 8466 7652 2892 2861 0 0 0 0 0 0 

h11 8466 8002 2892 2861 945 0 0 0 0 0 8466 8002 2892 2861 0 0 0 0 0 0 

h12 8466 8226 2892 2861 945 0 0 0 0 0 8466 8226 2892 2861 945 0 0 0 0 0 

h13 8466 8357 2892 2861 945 0 0 0 0 0 8466 8357 2892 2861 945 0 0 0 0 0 

h14 8466 8445 2892 2861 945 0 0 0 0 0 8466 8445 2892 2861 945 0 0 0 0 0 

h15 8466 8234 2892 2861 945 0 0 0 0 0 8466 8234 2892 2861 945 0 0 0 0 0 

h16 8466 8887 2892 2861 1244 0 0 0 0 0 8466 8887 2892 2861 1244 0 0 0 0 0 

h17 8466 8887 2892 2861 1646 818 0 0 0 0 8466 8887 2892 2861 1646 0 0 0 0 0 

h18 8466 8690 2892 2861 945 818 0 0 0 0 8466 8690 2892 2861 945 0 0 0 0 0 

h19 8466 8309 2892 2861 0 818 0 0 0 0 8466 8309 2892 2861 945 0 0 0 0 0 

h20 8466 8121 2892 2861 0 818 0 0 0 0 8466 8121 2892 2861 0 0 0 0 0 0 

h21 8466 7832 2892 0 0 0 0 0 0 0 8466 7832 2892 0 0 0 0 0 0 0 

h22 8466 7832 2892 0 0 0 0 0 0 0 8466 7832 2892 0 0 0 0 0 0 0 

h23 8466 7198 0 0 0 0 0 0 0 0 8466 7198 2892 0 0 0 0 0 0 0 

h24 8466 7626 0 0 0 818 0 0 0 0 8466 7626 2892 0 0 0 0 0 0 0 
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Table 4.28: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID (Weekend from U21-U40); $ 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 8466 7285 0 0 0 0 0 0 0 0 8466 7285 0 0 0 0 0 0 0 0 5260 65864 

h2 8466 6918 0 0 0 0 0 0 0 0 8466 6918 0 0 0 0 0 0 0 0 2360 64396 

h3 8466 6743 0 0 0 0 0 0 0 0 8466 6743 0 0 0 0 0 0 0 0 2560 63697 

h4 8466 6673 0 0 0 0 0 0 0 0 8466 6673 0 0 0 0 0 0 0 0 30 63417 

h5 8466 6831 0 0 0 0 0 0 0 0 8466 6831 0 0 0 0 0 0 0 0 420 64046 

h6 8466 6848 0 2861 0 0 0 0 0 0 8466 6848 0 0 0 0 0 0 0 0 180 69837 

h7 8466 7189 0 2861 0 0 0 0 0 0 8466 7189 0 2861 0 0 0 0 0 0 350 74061 

h8 8466 6883 2892 2861 0 0 0 0 0 0 8466 6883 0 2861 0 0 0 0 0 0 230 81513 

h9 8466 6940 2892 2861 0 0 0 0 0 0 8466 6940 2892 2861 0 0 0 0 0 0 700 85577 

h10 8466 7652 2892 2861 0 0 0 0 0 0 8466 7652 2892 2861 945 0 0 0 0 0 320 89372 

h11 8466 8002 2892 2861 0 0 0 0 0 0 8466 8002 2892 2861 945 0 0 0 0 0 180 90773 

h12 8466 8226 2892 2861 0 0 0 0 0 0 8466 8226 2892 2861 945 0 0 0 0 0 1040 92611 

h13 8466 8357 0 2861 0 0 0 0 0 0 8466 8357 2892 2861 945 0 0 0 0 0 830 90245 

h14 8466 8445 0 2861 0 0 0 0 0 0 8466 8445 2892 2861 945 0 0 0 0 0 290 90595 

h15 8466 8234 0 2861 0 0 0 0 0 0 8466 8234 2892 2861 945 0 0 0 0 0 1450 89754 

h16 8466 8887 0 2861 1244 0 0 0 0 0 8466 8887 0 2861 1244 0 0 0 0 0 1660 91617 

h17 8466 8887 0 2861 1646 0 0 0 0 0 8466 8887 0 2861 1646 0 0 0 0 0 1830 94043 

h18 8466 8690 2892 2861 945 0 0 0 0 0 8466 8690 0 2861 0 0 0 0 0 0 1270 92395 

h19 8466 8309 2892 2861 945 0 0 0 0 0 8466 8309 0 2861 0 0 0 0 0 0 230 89925 

h20 8466 8121 2892 2861 945 818 0 0 0 0 8466 8121 0 2861 0 818 0 0 0 0 170 89863 

h21 8466 7832 2892 2861 945 818 0 0 0 0 8466 7832 2892 2861 0 818 0 0 0 0 1430 85060 

h22 8466 7832 2892 0 945 818 0 0 0 0 8466 7832 2892 0 0 818 0 0 0 0 470 79338 

h23 8466 7198 2892 0 0 818 0 0 0 0 8466 7198 2892 0 0 0 0 0 0 0 1430 72147 

h24 8466 0 2892 0 0 0 0 0 0 0 8466 7626 2892 0 945 0 0 0 0 0 1420 67180 
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Table 4.29: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID (Weekday from U1-U20); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6883 0 2861 0 0 0 0 0 0 8466 6883 0 0 0 0 0 0 0 0 

h2 8466 6638 0 2861 0 0 0 0 0 0 8466 6638 0 0 0 0 0 0 0 0 

h3 8466 6673 0 2861 0 0 0 0 0 0 8466 6673 0 0 0 0 0 0 0 0 

h4 8466 6621 0 2861 0 0 0 0 0 0 8466 6621 0 0 0 0 0 0 0 0 

h5 8466 6866 0 2861 0 0 0 0 0 0 8466 6866 0 0 0 0 0 0 0 0 

h6 8466 7259 0 2861 0 0 0 0 0 0 8466 7259 0 2861 0 0 0 0 0 0 

h7 8466 7014 2892 2861 0 0 0 0 0 0 8466 7014 0 2861 0 0 0 0 0 0 

h8 8466 7014 2892 2861 0 0 0 0 0 0 8466 7014 2892 2861 0 0 0 0 0 0 

h9 8466 6726 2892 2861 0 0 0 0 0 0 8466 6726 2892 2861 0 0 0 0 0 0 

h10 8466 6734 2892 2861 0 0 0 0 0 0 8466 6734 2892 2861 0 0 0 0 0 0 

h11 8466 6983 2892 0 945 0 0 0 0 0 8466 6983 2892 2861 0 0 0 0 0 0 

h12 8466 7429 0 0 945 0 0 0 0 0 8466 7429 2892 2861 0 0 0 0 0 0 

h13 8466 8046 0 0 945 0 0 0 0 0 8466 8046 0 2861 945 0 0 0 0 0 

h14 8466 8887 0 0 1395 0 0 0 0 0 8466 8887 0 0 1395 0 0 0 0 0 

h15 8466 8887 0 0 1174 0 0 0 0 0 8466 8887 0 0 1174 0 0 0 0 0 

h16 8466 8730 0 2861 945 0 0 0 0 0 8466 8730 0 0 945 0 0 0 0 0 

h17 8466 8887 2892 2861 995 0 0 0 0 0 8466 8887 0 0 995 0 0 0 0 0 

h18 8466 8664 2892 2861 0 0 0 0 0 0 8466 8664 2892 0 945 0 0 0 0 0 

h19 8466 8213 2892 2861 0 0 0 0 0 0 8466 8213 2892 2861 0 818 0 0 0 0 

h20 8466 7972 2892 2861 0 818 0 0 0 0 8466 7972 2892 2861 0 818 0 0 0 0 

h21 8466 7757 2892 2861 0 818 0 0 0 0 8466 7757 2892 2861 0 818 0 0 0 0 

h22 8466 7469 2892 2861 0 818 0 0 0 0 8466 7469 2892 2861 0 0 0 0 0 0 

h23 8466 7823 0 0 0 0 1174 0 0 0 8466 7823 2892 2861 0 0 0 0 0 0 

h24 8466 7788 0 0 0 0 1174 0 0 0 8466 7788 0 2861 0 0 0 0 0 0 
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Table 4.30: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID (Weekday from U21-U40); $ 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 8466 6883 0 0 0 0 0 0 0 0 8466 6883 0 0 0 0 0 0 0 0 3110 64256 

h2 8466 6638 0 0 0 0 0 0 0 0 8466 6638 0 0 0 0 0 0 0 0 3130 63278 

h3 8466 6673 0 0 0 0 0 0 0 0 8466 6673 0 0 0 0 0 0 0 0 2280 63417 

h4 8466 6621 0 0 0 0 0 0 0 0 8466 6621 0 0 0 0 0 0 0 0 1490 63208 

h5 8466 6866 0 0 0 0 0 0 0 0 8466 6866 0 0 0 0 0 0 0 0 610 64186 

h6 8466 7259 0 0 0 0 0 0 0 0 8466 7259 0 0 0 0 0 0 0 0 120 68620 

h7 8466 7014 0 2861 0 0 0 0 0 0 8466 7014 0 0 0 0 0 0 0 0 0 73393 

h8 8466 7014 2892 2861 0 0 0 0 0 0 8466 7014 0 0 0 0 0 0 0 0 320 79177 

h9 8466 6726 2892 2861 0 0 0 0 0 0 8466 6726 0 2861 0 0 0 0 0 0 460 80884 

h10 8466 6734 2892 2861 0 0 0 0 0 0 8466 6734 2892 2861 0 0 0 0 0 0 810 83811 

h11 8466 6983 2892 2861 0 0 0 0 0 0 8466 6983 2892 2861 0 0 0 0 0 0 150 82891 

h12 8466 7429 2892 2861 0 0 0 0 0 0 8466 7429 2892 2861 0 0 0 0 0 0 670 81783 

h13 8466 8046 2892 2861 0 0 0 0 0 0 8466 8046 2892 2861 0 0 0 0 0 0 1230 82304 

h14 8466 8887 2892 0 1395 0 0 0 0 0 8466 8887 2892 2861 1395 0 0 0 0 0 210 83636 

h15 8466 8887 2892 0 1174 0 0 0 0 0 8466 8887 2892 2861 1174 0 0 0 0 0 2290 82755 

h16 8466 8730 2892 0 945 0 0 0 0 0 8466 8730 2892 2861 945 0 0 0 0 0 1450 84067 

h17 8466 8887 2892 0 995 0 0 0 0 0 8466 8887 2892 2861 995 0 0 0 0 0 290 87789 

h18 8466 8664 2892 0 945 0 0 0 0 0 8466 8664 2892 2861 945 0 0 0 0 0 2800 88642 

h19 8466 8213 2892 2861 945 0 0 0 0 0 8466 8213 2892 2861 945 0 0 0 0 0 1490 92431 

h20 8466 7972 2892 2861 0 818 0 0 0 0 8466 7972 2892 2861 945 0 0 0 0 0 120 92159 

h21 8466 7757 2892 2861 0 818 0 0 0 0 8466 7757 0 2861 0 0 0 0 0 0 1240 87465 

h22 8466 7469 2892 2861 0 818 0 0 0 0 8466 7469 0 0 0 0 0 0 0 0 0 82631 

h23 8466 7823 0 2861 0 818 0 0 0 0 8466 7823 0 0 0 818 0 0 0 0 150 76578 

h24 8466 7788 0 0 0 0 0 0 0 0 8466 7788 0 0 0 818 0 0 0 0 1320 69868 
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Table 4.31: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekend from U1-U20); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 5502 0 0 0 0 0 0 0 0 8466 5502 0 0 0 0 0 0 0 0 

h2 8466 5316 0 0 0 0 0 0 0 0 8466 5316 0 0 0 0 0 0 0 0 

h3 8466 5664 0 0 0 0 0 0 0 0 8466 5664 0 0 0 0 0 0 0 0 

h4 8466 5897 0 0 0 0 0 0 0 0 8466 5897 0 0 0 0 0 0 0 0 

h5 8466 6292 0 0 0 0 0 0 0 0 8466 6292 0 0 0 0 0 0 0 0 

h6 8466 6932 0 2861 0 0 0 0 0 0 8466 6932 0 0 0 0 0 0 0 0 

h7 8466 6246 0 2861 0 0 0 0 0 0 8466 6246 0 2861 0 0 0 0 0 0 

h8 8466 7113 0 2861 0 0 0 0 0 0 8466 7113 0 2861 945 0 0 0 0 0 

h9 8466 7323 0 2861 0 0 0 0 0 0 8466 7323 0 2861 945 0 0 0 0 0 

h10 8466 6302 0 2861 0 0 0 0 0 0 8466 6302 0 2861 945 0 0 0 0 0 

h11 8466 6643 0 0 0 0 0 0 0 0 8466 6643 0 2861 945 0 0 0 0 0 

h12 8466 7692 0 0 0 0 0 0 0 0 8466 7692 0 2861 945 0 0 0 0 0 

h13 8466 7867 0 0 0 0 0 0 0 0 8466 7867 2892 2861 945 0 0 0 0 0 

h14 8466 7700 2892 0 0 0 0 0 0 0 8466 7700 2892 0 945 0 0 0 0 0 

h15 8466 7543 2892 0 0 0 0 0 0 0 8466 7543 2892 0 945 0 0 0 0 0 

h16 8466 7224 2892 2861 0 0 0 0 0 0 8466 7224 2892 0 0 0 0 0 0 0 

h17 8466 6997 2892 2861 0 0 0 0 0 0 8466 6997 2892 0 0 0 0 0 0 0 

h18 8466 6839 2892 2861 0 0 0 0 0 0 8466 6839 2892 0 0 0 0 0 0 0 

h19 8466 6776 2892 2861 0 0 0 0 0 0 8466 6776 2892 2861 0 0 0 0 0 0 

h20 8466 6813 2892 2861 0 0 0 0 0 0 8466 6813 2892 2861 0 0 0 0 0 0 

h21 8466 6935 0 2861 0 0 0 0 0 0 8466 6935 0 2861 0 0 0 0 0 0 

h22 8466 7300 0 2861 945 0 0 0 0 0 8466 7300 0 2861 0 0 0 0 0 0 

h23 8466 7381 0 2861 945 0 0 0 0 0 8466 7381 0 2861 0 0 0 0 0 0 

h24 8466 6868 0 0 945 0 0 0 0 0 8466 6868 0 0 0 0 0 0 0 0 
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Table 4.32: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekend from U21-U40); $ 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 8466 5502 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 3610 50369 

h2 8466 5316 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 3460 49811 

h3 8466 5664 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 1450 50857 

h4 8466 5897 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 120 51554 

h5 8466 6292 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 1300 52740 

h6 8466 6932 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 640 57521 

h7 8466 6246 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 60 64043 

h8 8466 7113 2892 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 60 70482 

h9 8466 7323 2892 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 5670 71111 

h10 8466 6302 2892 2861 0 0 0 0 0 0 8466 6302 0 2861 0 0 0 0 0 0 720 74352 

h11 8466 6643 2892 2861 0 0 0 0 0 0 8466 6643 0 2861 0 0 0 0 0 0 200 72853 

h12 8466 7692 2892 0 0 0 0 0 0 0 8466 7692 0 0 0 0 0 0 0 0 1110 71327 

h13 8466 7867 0 0 0 0 0 0 0 0 8466 7867 0 0 0 0 0 0 0 0 1900 72028 

h14 8466 7700 0 0 0 0 0 0 0 0 8466 7700 2892 0 0 0 0 0 0 0 2620 74285 

h15 8466 7543 0 0 0 0 0 0 0 0 8466 7543 2892 0 0 0 0 0 0 0 350 73655 

h16 8466 7224 0 0 0 0 0 0 0 0 8466 7224 2892 0 0 0 0 0 0 0 260 74294 

h17 8466 6997 0 2861 0 0 0 0 0 0 8466 6997 2892 2861 0 0 0 0 0 0 0 79107 

h18 8466 6839 2892 2861 0 0 0 0 0 0 8466 6839 2892 2861 0 0 0 0 0 0 430 81370 

h19 8466 6776 2892 2861 0 0 0 0 0 0 8466 6776 2892 2861 0 0 0 0 0 0 2320 83979 

h20 8466 6813 2892 2861 0 0 0 0 0 0 8466 6813 0 2861 0 0 0 0 0 0 180 81234 

h21 8466 6935 2892 2861 0 0 0 0 0 0 8466 6935 0 2861 0 0 0 0 0 0 1800 75939 

h22 8466 7300 2892 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 990 71041 

h23 8466 7381 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 1070 62673 

h24 8466 6868 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 2510 55414 
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Table 4.33: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekday from U1-U20); $ 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6339 0 0 0 0 0 0 0 0 8466 6339 0 0 0 0 0 0 0 0 

h2 8466 6991 0 0 0 0 0 0 0 0 8466 6991 0 0 0 0 0 0 0 0 

h3 8466 6653 0 2861 0 0 0 0 0 0 8466 6653 0 0 0 0 0 0 0 0 

h4 8466 6781 0 2861 0 0 0 0 0 0 8466 6781 0 2861 0 0 0 0 0 0 

h5 8466 6385 0 2861 0 0 0 0 0 0 8466 6385 0 2861 0 0 0 0 0 0 

h6 8466 6409 2892 2861 0 0 0 0 0 0 8466 6409 2892 2861 0 0 0 0 0 0 

h7 8466 7679 2892 2861 945 0 0 0 0 0 8466 7679 2892 2861 945 0 0 0 0 0 

h8 8466 7294 2892 0 945 0 0 0 0 0 8466 7294 2892 2861 945 0 0 0 0 0 

h9 8466 6723 2892 0 945 0 0 0 0 0 8466 6723 2892 0 945 0 0 0 0 0 

h10 8466 7772 2892 0 945 0 0 0 0 0 8466 7772 2892 0 945 0 0 0 0 0 

h11 8466 8864 2892 0 945 0 0 0 0 0 8466 8864 2892 0 945 0 0 0 0 0 

h12 8466 8226 0 0 945 0 0 0 0 0 8466 8226 0 0 945 0 0 0 0 0 

h13 8466 7893 0 2861 0 0 0 0 0 0 8466 7893 0 0 0 0 0 0 0 0 

h14 8466 7735 0 2861 0 0 0 0 0 0 8466 7735 0 0 0 0 0 0 0 0 

h15 8466 7823 0 2861 0 0 0 0 0 0 8466 7823 0 0 0 0 0 0 0 0 

h16 8466 7543 0 2861 0 0 0 0 0 0 8466 7543 0 2861 0 0 0 0 0 0 

h17 8466 6962 2892 2861 0 0 0 0 0 0 8466 6962 2892 2861 0 0 0 0 0 0 

h18 8466 6787 2892 0 0 0 0 0 0 0 8466 6787 2892 2861 0 0 0 0 0 0 

h19 8466 7130 2892 0 945 0 0 0 0 0 8466 7130 2892 2861 0 0 0 0 0 0 

h20 8466 7403 2892 0 945 0 0 0 0 0 8466 7403 2892 2861 0 0 0 0 0 0 

h21 8466 7351 2892 0 945 0 0 0 0 0 8466 7351 2892 0 0 0 0 0 0 0 

h22 8466 7447 0 0 945 0 0 0 0 0 8466 7447 0 0 0 0 0 0 0 0 

h23 8466 6962 0 2861 945 0 0 0 0 0 8466 6962 0 0 0 0 0 0 0 0 

h24 8466 6065 0 2861 945 0 0 0 0 0 8466 6065 0 0 0 0 0 0 0 0 
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Table 4.34: Individual fuel cost for Generation of 40 Unit Test System using CBWO for UCP during Pre-COVID with Wind Power 

Uncertainty (Weekday from U21-U40); $ 

Hour U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 SUC FC 

h1 8466 6339 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 2730 52880 

h2 8466 6991 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 2010 54835 

h3 8466 6653 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 3000 56683 

h4 8466 6781 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 520 59928 

h5 8466 6385 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 340 64462 

h6 8466 6409 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 2230 76099 

h7 8466 7679 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 180 81799 

h8 8466 7294 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 0 77784 

h9 8466 6723 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 0 73210 

h10 8466 7772 2892 0 0 0 0 0 0 0 8466 0 2892 0 0 0 0 0 0 0 1120 70636 

h11 8466 8864 0 0 0 0 0 0 0 0 8466 0 0 0 945 0 0 0 0 0 1450 69074 

h12 8466 8226 0 0 0 0 0 0 0 0 8466 8226 0 0 945 0 0 0 0 0 820 69601 

h13 8466 7893 0 0 0 0 0 0 0 0 8466 7893 0 0 945 0 0 0 0 0 3310 69241 

h14 8466 7735 0 0 0 0 0 0 0 0 8466 7735 0 0 945 0 0 0 0 0 960 68611 

h15 8466 7823 0 0 0 0 0 0 0 0 8466 7823 0 0 945 0 0 0 0 0 1970 68961 

h16 8466 7543 0 2861 0 0 0 0 0 0 8466 7543 0 0 945 0 0 0 0 0 560 73562 

h17 8466 6962 2892 2861 0 0 0 0 0 0 8466 6962 0 0 0 0 0 0 0 0 520 78967 

h18 8466 6787 2892 2861 0 0 0 0 0 0 8466 6787 2892 2861 0 0 0 0 0 0 60 81160 

h19 8466 7130 2892 2861 0 0 0 0 0 0 8466 7130 2892 2861 0 0 0 0 0 0 560 83478 

h20 8466 7403 2892 2861 0 0 0 0 0 0 8466 7403 2892 2861 0 0 0 0 0 0 1200 84569 

h21 8466 7351 2892 0 0 0 0 0 0 0 8466 7351 2892 2861 0 0 0 0 0 0 720 78638 

h22 8466 7447 0 0 0 0 0 0 0 0 8466 7447 2892 2861 0 0 0 0 0 0 1300 70348 

h23 8466 6962 0 0 0 0 0 0 0 0 8466 0 2892 0 0 0 0 0 0 0 550 61446 

h24 8466 6065 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 720 55865 
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Table 4.35: Average Fuel Cost Comparison of 10, 20, 40-unit system during pre-

COVID ($) 

Cases 
10-Unit 20- Unit 40- Unit 

Weekend Weekday Weekend Weekday Weekend Weekday 

Pre-COVID 

(2019) 
476082.5 493730.1 919789.6 984077.7 1963436 1904969 

Pre-COVID 

(2019) with 

Wind Power 

409817 425711.9 828870.5 855434.6 1654870 1708666 

 

 

Fig. 4.6: Fuel cost comparison for 20-unit and 40-unit system. 

 

4.6.4 Comparison of results for 10-unit system with standard load demand 

To check the effectiveness of proposed algorithm CBWO, it is compared with other 

existing algorithms for 10-unit system in table 4.36 and 20- unit system shown in table 

4.37 with standard load demand. The proposed algorithm shows better results as 

compared to other algorithms. 
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Table 4.36: Comparison of results for 10-unit system with 10% SR 

Sr.  

No. 

Methods Total Generation Cost in $ 

Best value Average value Worst Value 

1 Hybrid Continuous Relaxation and 

Genetic Algorithm (CRGA) [203] 
NA 563977 --- 

2 Genetic Based Method [202] NA 623441 --- 

3 Continuous Relaxation and Genetic 

Algorithm (CRGA) [203] 
--- 563977 --- 

4 Integer Coded Genetic Algorithm 

(ICGA) [204] 
--- 566404 --- 

5 Lagrangian Search Genetic Algorithm 

(LSGA) [205] 
609023.69 --- --- 

6 Improved Binary Particle Swarm 

optimization (IBPSO) [206] 
599782 --- --- 

7 New Genetic Algorithm [207] 591715 --- --- 

8 PSO [208] 581450 563977 --- 

9 Binary Particle Swarm Optimization 

with bit Change Mutation (MPSO) [209] 
574905 --- --- 

10 HPSO [210] 574153 --- --- 

11 LCA-PSO [211]  570006 --- --- 

12 Two-Stage Genetic Based Technique 

(TSGA) [212] 
568315 --- --- 

13 Hybrid PSO-SQP [213]  568032.3 --- --- 

14 BCGA [204, 214] 567367 --- --- 

15 SM [215] 566686 566787 567022 

16 Lagrangian Relaxation [215] 566107 566493 566817 

17 GA [215] 565866 567329 571336 

18 Genetic Algorithm (GA) [216] 565852 --- 570032 

19 Enhanced Simulated Annealing (ESA) 

[217] 
565828 565988 566260 

20 Lagrangian Relaxation (LR) [216] 565825 --- --- 

21 Dynamic Programming (DP) [216] 565825 --- --- 

22 Improved Lagrangian Relaxation (ILR) 

[217]  
565823.23 --- --- 

23 LRPSO [217, 218] 565275.2 --- --- 

24 Lagrangian Relaxation and Genetic 

Algorithm (LRGA) [218] 
564800 564800 --- 

25 Evolutionary Programming (EP) [220]  564551 565352 --- 

26 EP [215] 564551 565352 566231 

27 Particle Swarm Optimization (PSO) 

[221] 
564212 565103 565783 

28 Ant Colony Search Algorithm (ACSA) 

[222]  
564049 --- --- 
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29 Hybrid Ant System/Priority List 

(HASP) [223]  
564029 564324 564490 

30 B. SMP [224] 564017.73 564121 564401 

31 Annealing Genetic Algorithm (AGA) 

[225]  
564005 --- --- 

32 Binary Differential Evolution [226] 5,63,997 5,63,997 5,63,997 

33 Social Evolutionary Programming 

(SEP) [227] 
563987 --- --- 

34 Methodological Priority List (MPL) 

[228]  
563977.1 --- --- 

35 Binary PSO [234] 563977 563977 563977 

36 Quantum-Inspired Binary PSO 

(QIBPSO) [235] 
563977 563977 563977 

37 IBPSO [229] 563977 564155 565312 

38 Genetic Algorithm (GA) [215]  563977 564275 5665606 

39 Genetic Algorithm Based on Unit 

Characteristics (UCC-GA) [230] 
563977 --- 565606 

40 Enhanced Adaptive Lagrangian 

Relaxation (EALR) [217] 
563977 --- --- 

41 Local Search Method (LCM) [232]  563977 --- --- 

42 Quantum-Inspired Binary PSO 

(QBPSO) [233]  
563977 --- --- 

43 Extended Priority List (EPL) [236]  563977 --- --- 

44 Muller Method [237] 563977 --- --- 

45 Improved Particle Swarm Optimization 

(IPSO) [238] 
563954 564162 564579 

46 Advanced Fuzzy Controlled Binary 

PSO (AFCBPSO) [239] 
563947 564285 565002 

47 Hybrid PSO (HPSO) [240] 563942.3 564772 565782 

48 Fuzzy Quantum Computation Based 

Thermal Unit Commitment (FQEA) 

[241] 

563942 --- --- 

49 IQEA-UC [242] 563938 563938 563938 

50 Gravitational Search Algorithm [244]  563938 564008 564241 

51 QEA-UC [242] 563938 564012 564711 

52 Particle Swarm-Based- Simulated 

Annealing (PSO-B-SA) [243] 
563938 564115 564985 

53 Advanced Quantum-Inspired 

Evolutionary Algorithm (AQEA) [242] 
563938 --- --- 

54 Hybrid HS-Random Search algorithm 

[245] 
563937.7 563965 563995 

55 CBWO (Proposed Method) 563387.68 
 

              564182.02 
  

 565107.68 
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Table 4.37: Comparison of results for 20-unit system with 10% SR 

Sr. 

No. 

Methods Total Generation Cost in $ 

Best value Average value Worst Value 

1 Binary Particle Swarm 

Optimization with bit Change 

Mutation [209] 

1152966 ... ... 

2 Intelligent Mutation based 

Genetic Algorithm [230] 
1125516 ... 1128790 

3 Improved Particle Swarm 

Optimization OPSO [238] 
1125279 ... 1127643 

4 Improved Binary Particle Swarm 

optimization [206] 
1196029 .. ... 

5 LCA-PSO [211] 1139005 .. ... 

6 Lagrangian Relaxation (LR) [215] 1130660 .. ... 

7 BCGA [214] 1130291 .. ... 

8 DP and Lagrangian Relaxation 

(DPLR) [217] 
1128098 .. ... 

9 Enhanced Simulated Annealing 

(ESA) [217] 
1126254 .. ... 

10 Genetic Algorithm (GA) [215] 1126243 .. 1132059 

11 Particle Swarm Optimization 

(PSO) [221] 
1125983 .. 1131054 

12 Social Evolutionary Programming 

(SEP) [227] 
1125170 .. ... 

13 Hybrid Continuous Relaxation 

and Genetic Algorithm [203] 
.. 1236981 ... 

14 Genetic Based Method [202] .. 1215066 ... 

15 GA [215] 1126243 1200480 ... 

16 New Genetic Algorithm [207] .. 1133786 ... 

17 GA [215] 1128876 1130160 1131565 

18 LR [216] 1128362 1128395 1128444 

19 SM [215] 1128192 1128213 1128403 

20 Enhanced Simulated Annealing 

(ESA) [217] 
1126251 1127955 1129112 

21 Harmony Search [245] .. 1127377 ... 

22 Evolutionary Programming (EP) 

[220] 
1125494 1127257 ... 

23 Integer Coded   Genetic 

Algorithm [204] 
.. 1127244 ... 
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24 BSMP [224] 1124838 1125102 1125283 

25 HS-Random Search Algorithm 

[245] 
1124889 1124913 1124952 

26 Annealing Genetic Algorithm [225] .. 1124651 ... 

27 Lagrangian Relaxation and 

Genetic Algorithm [218] 
.. 1122622 ... 

28 CBWO (Proposed Method) 1123748 1124928 1130559 

 

 The suggested approach, CBWO explore search space more efficiently, so the chances to 

discover improved regions are higher. Rather than a random initialization, chaotic sequences 

may help give a more normal and varied initial distribution of candidate solutions within the 

search area, and hence likelier to begin with a solution near the global optimum. The proposed 

method has more advanced exploitation capability compared to other methods that can find 

the neighborhood of the good solutions. This means once it finds a promising area in the search 

space, it can more effectively and precisely converge to the exact optimal point within that 

region, leading to a slightly better objective value. This could involve a more sophisticated 

local search component or a more accurate convergence criterion. 

 

 4.7 CONCLUSION 

 This chapter shows the foundation of well-understood generation characteristics and 

predictable demand patterns supported the pre-COVID UC problem. The main goal was to 

cost-effectiveness via generation scheduling. The inherent unpredictability problem of 

renewable energy sources that became system more complex, the more flexible and adaptive 

UC solutions needed to develop. This need would be further exacerbated by the unanticipated 

interruptions caused by the COVID-19 epidemic. Incorporating RES with system seems to be 

a wise decision as it decrease fuel cost of system.  

  The demand for more precise and dependable technologies to ensure the best possible 

functioning of energy systems has grown over the last few years due to the increasing presence 

of unpredictable renewable energy sources in the power generating portfolio. 
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Chapter-5 

 

IMPACT OF COVID-19 ON UNIT COMMITMENT PROBLEM 

-------------------------------------------------------------------------------------------- 

5.1 INTRODUCTION 

 The COVID-19 pandemic has significantly altered global energy consumption patterns, 

impacting both individuals and the environment. With many people staying at home and 

numerous businesses either ceasing operations or scaling back, it is essential to assess the 

implications of this shift on electricity demand and the electrical infrastructure. Such 

analyses can equip energy companies to better prepare for future pandemics and other 

adverse events. Policymakers have established targets for renewable energy production, 

and understanding power demand is vital for enhancing readiness against potential future 

crises [159].  

  The growing demand for electricity has prompted a search for alternative energy 

solutions, which are increasingly gaining traction. The challenges posed by climate change, 

habitat loss, and declining air quality necessitate a robust action plan, indicating that further 

efforts are required in this domain. In light of these research challenges, the objective of 

the proposed study is to examine the multifaceted impacts of COVID-19 on power system 

[160]. During the COVID-19 period, there was an increase in residential load associated 

with weekends, while industrial and commercial loads experienced declines. 

Consequently, weekend operational costs and usage rates rose from 2019 to 2020, whereas 

weekly operational expenses decreased [161].  

  The pandemic has reshaped energy sources and has had a profound effect on the 

environment and the broader renewable energy sector. Significant challenges have 

emerged for the renewable energy industry due to the pandemic, including supply chain 

disruptions, market instability, and revenue losses. Additionally, government support has 

diminished as funding has decreased during the COVID crisis [162].  
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5.2 UNIT COMMITMENT PROBLEM DURING COVID-19 

 The UCP and Economic Dispatch optimization problem is a well-researched topic in power 

systems, mainly aimed at decisive the most cost-efficient generator scheduling while 

incorporating additional loads into the system. However, the insertion of OC, EL, and 

Renewable Energy Sources makes the problem more intricate. In this prolonged context, 

the goal is not just to minimize operating costs but also to accommodate the impacts of OC 

and EL, as well as the variability and intermittency of RES. OC and EL introduce new 

dimensions of demand response, while RES contributes clean, renewable energy to the 

mix. 

  The research of Covid effects on power sector operations reveals the disease's direct 

influence on the energy system as well as the requirement of combining issues from both 

a technical and economical aspect [163]. Looked at the indirect consequences that 

eventually have an impact on the challenges linked to growth in the power sector and hence, 

power supply. Research suggests that there was a considerable spike in the demand for 

shelters throughout the pandemic and also the absence of investment in this area. An 

aggressive repeated approach was noted in effect of the pandemic on the world’s Energy 

System and renewables, in order to push up demand and electricity consumption [164].  

  In the best-case scenario, multiple countries attempt to cut their carbon emissions 

and adopt zero-carbon policies, resulting in low-carbon economies. Governments need to 

prepare ready for power production from different sources. Manufacturers have stopped 

down and urban pollution has reduced during the outbreak. In order to execute the 

recommended new renewable energy initiatives, politicians and lawmakers will need to 

approve imminent laws and policy changes. During the COVID-19 pandemic electricity 

usage plummeted by 14%, or roughly 1,267 GW [165].  

  The everyday demand showed a notable reduction throughout the weekend. During 

the week, there was a reported 18% daily drop rate, with a high of 25%. During the 

outbreak, greenhouse gas emissions have substantially fallen. This amounts to 40,000 
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tonnes of carbon dioxide and saves about $131,844. Air movement is the major method 

that the COVID virus spreads, therefore it is vital to figure out the effect of pandemic on 

Air-Conditioning Systems, Ventilation and Heating, [166].  

  This encompasses a number of aeration strategies, such as exhaust systems, shared 

ventilation for a building or numerous rooms, and individual ventilation, which is vital in 

minimising the risk of viral transmission and is prescribed by doctors under particular 

situations [167]. Government and medical groups have set guidelines concerning HVAC 

program and safety during COVID-19 [168].  

  The Consistency of Microgrids in perspective of Demand Response Program 

during pandemic on power and health System, seeks to reduce ENS (Energy Not Supply) 

and upside risk assessment in an islanded microgrid and demand response program 

deployment and examining the influence of Covid-19 [169]. It was shown that rise in covid 

induce the decrease in ENS and increase the leaked energy [170]. The impact on 

greenhouse gas emissions due to COVID-19, the shutdowns during the pandemic that were 

temporary resulted in a significant global decline in greenhouse gas emissions, indicating 

the importance of cutting back on the use of fossil fuels and reducing emissions from 

industries that have a major positive environmental impact [171]. 

   The effect of pandemic on power consumption which reveals that fluctuations in 

the step of imitation have a harmful effect on the quantity of power utilised [172]. In 

addition to decreasing electrical loads, the COVID-19 pandemic's impacts on energy 

networks have led in a shift in load from industry to the private sector and from 

metropolitan districts to suburban areas, which has an influence on the system [173].  

  The overall drop in demand will be matched by a large decline in business demand 

during the lockdown and a surge in household demand. The Covid-19 outbreak is 

undoubtedly going to produce a further noticeable decline in the usage of transit as well as 

a steady, small growth of the demand for private transport. So, by above researches, we 
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conclude that UCP is necessary to address when Covid-19 outbreak changes the energy 

transition. 

5.3 PROBLEM FORMULATION 
 

 In this chapter, following cases are discussed and solved for the unit commitment problem. 

 Case 1: Unit Commitment Problem considering the impact of COVID-19 (During Full 

 lockdown) 

 Case 2: Unit Commitment Problem considering the impact of COVID-19 (During Full 

 lockdown) with RES (Wind) 

 Case 3: Unit Commitment Problem considering the impact of COVID-19 (During Partial 

 lockdown) 

 Case 4: Unit Commitment Problem considering the impact of COVID-19 (During Partial 

 lockdown) with RES (Wind). 

 Case 5: Unit Commitment Problem considering the impact of COVID-19 and load demand   

 of OC. 

 Case 6: Unit Commitment Problem considering the impact of COVID-19 and load demand 

 of EL. 

 Case 7: Unit Commitment Problem considering the impact of COVID-19 and load demand 

 of OC and EL. 

 Case 8: Unit Commitment Problem considering the impact of COVID-19 and load demand 

 of OC, EL with RES (Wind). 

 To successfully address the UCP with the integration of OC, EL, and RES, a range of 

mathematical models and constraints must be considered. These constraints include 

maintaining power balance, adhering to ramping limits, respecting minimum and 

maximum generator output levels, and ensuring voltage and stability requirements are met. 
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 5.3.1 Objective Function of UCP Considering Impact of COVID 

 The main goal of the unit commitment problem is to determine the best schedule for 

running the available power generators in order to minimize the overall cost of generating 

and operating electricity. This cost includes factors such as the price of fuel, as well as the 

costs of starting up and shutting down generators.  

2

, , , , ,( 1)

g=1

 [(a P +b P +c ) U (1 )]; 1,... ; 1,....
NG

g g h g g h g g h g h g hFC SUC U U g NG h H−=  +   − = = (5.1) 

 The above equation is to calculate the fuel cost for gth unit. For power balance, the total 

power generated is equals to the power demand during COVID-19 and losses occur in the 

system. Power balance equation- and can be modified as follow: 

19

1

NG
Covid Loss

gh gh h h

g

P U P P−

=

= +                                                                           (5.2) 

Spinning reserve constraints, the total power generated is always greater than and equal to 

the power consumed and reserve power. Equation for spinning reserve constraints, while 

considering the COVID-19 is described in equation 5.3. 

19 Re

1

NG
Covid serve

gh gh h h

g

P U P P−

=

 +                                                                       (5.3) 

 Here, gh ghP U is the total power generated by gth units for h hour. Re serve

hP , the reserve power 

for the future or any worst case. The SUC can be expressed as:  

;  for MDT ( )
        (g=1,2,..;  h=1,2,3....H)

;   for ( )             

ON

g g g g g

gh ON

g g g g

HSC MDT CSH MDT
SUC

CSC MDT MDT CSH

   +
= 

 +
 (5.4) 

  where, CSCg and HSHg are Cold Startup and Hot Start-Up Cost of gth unit respectively and 

MDTg is the Minimum Down Time of gth unit, OFF

ghT is duration for which the thermal gth 

unit has been continuously off until hour h. 
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 5.3.2 Constraints of UCP during COVID with RES 

 The Unit Commitment Problem Associated with Renewable Energy Sources consists of a 

number of constraints that must be taken into consideration in order to guarantee an energy 

system that is both dependable and effective. One of the essential limitations is the power 

balance condition, which expects that the power supply from all sources should be 

equivalent to the power interest consistently. To ensure that each generating unit and 

transmission line operates within safe and stable parameters, it is also necessary to take 

into consideration the minimum and maximum operating limits. So, power balance and 

spinning reserve equation is- 

19( / )

1

NG
RES Covid FL PL Loss

gh gh h h h

g

P U P P P−

=

+ = +                                                     (5.5) 

 In the power system, maintaining power balance or load balance is the crucial constraint. 

This constraint involves ensuring that the total power generated by all committed 

generating units at a particular time h (hour) is greater than or equal to the power demand 

for that same time period. Equation 5.5 outlines the power balance constraint that applied 

when RES considered in the system. 

 Spinning reserve while considering the impact of COVID-19 and RES- 

19( / ) Re

1

NG
RES Covid FL PL serve

gh gh h h h

g

P U P P P−

=

+  +                                                (5.6) 

 The availability of renewable energy sources, which are affected by the weather and can 

change over time, is another significant constraint. To balance the intermittent nature of 

these sources, this necessitates the use of appropriate storage and demand response 

strategies as well as precise forecasting of RES output. 
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 5.3.3 Power Balance Constraints Considering Load Demand of OC, EL and RES  

 The mathematical formulation for power balance constraint in the presence of oxygen 

concentrator is given by the equation 5.7. 

19

1

NG
Covid OC

gh gh h h

g

P U P P−

=

= +                                                                          (5.7) 

 In the power system, the crucial constraint is maintaining power balance or load balance. 

This constraint involves ensuring that the total power generated by all committed 

generating units at a particular time h is greater than or equal to the power demand for that 

same time period. Equation (5.8) outlines the power balance constraint when electrolyser 

is considered in the system. 

19

1

NG
Covid EL

gh gh h h

g

P U P P−

=

= +                                                                     (5.8) 

 Power balance equation when both oxygen concentrator and electrolyser is used is 

expressed by below equation.  

19

1

NG
Covid OC EL

gh gh h h h

g

P U P P P−

=

= + +                                                                    (5.9) 

 The power system must ensure that the total power generated at a specific hour and the 

power generated from renewable energy sources at the same time period meet the demand 

for electricity. This means that the combined electricity generated by the gth unit at h time 

must also meet the load demand. The power balance constraints considering renewable 

sources is given by equation (5.10). 

  19

1

NG
RES Covid OC EL

gh gh h h h h

g

P U P P P P−

=

+ = + +                                                (5.10) 

 Here, RES

hP  is the Renewable Power at h hour, 19Covid

hP − is the demand of power during 

COVID for h hour while OC

hP  and EL

hP  is the Power Demand from OC and EL for h-hour.  
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 5.3.4 Spinning Reserve Constraints of UCP 

 The mathematical formulation for spinning reserve constraints considering OC and EL is 

given by equation (5.11) 

19 Re

1

NG
Covid serve OC

gh gh h h h

g

P U P P P−

=

 + +                                                            (5.11) 

  19 Re

1

NG
Covid serve EL

gh gh h h h

g

P U P P P−

=

 + +                                                          (5.12) 

 Where, gh ghP U  is the Maximum Power Generation for gth unit, RES

hP is the Renewable 

Power Generation for gth unit, 19Covid

hP −   is the Power Demand during the pandemic, OC

hP   

and EL

hP  is Power Demand of Oxygen Concentrator and Electrolyser respectively. 

 19 Re

1

NG
RES Covid serve OC EL

gh gh h h h h h

g

P U P P P P P−

=

+  + + +                                            (5.13) 

 The spinning reserve constraint for the system combine power demand of OC and EL with 

RES as shown in equation 5.13. 

 5.3.5 Minimum Up and Down Time Constraints for UCP 

 In the UCP process, the minimum up and down time constraint plays a significant role in 

regulating the amount of time that a generating unit must stay on or off before it can be 

turned on or off again. By carefully managing the use of generating units in adherence to 

these constraints, system operators can ensure the provision of dependable and cost-

effective energy to fulfill the expected load, while also promoting the efficient use of 

resources. 

         (g 1,2,..., ;  h 1,2,..., )ON

gh hT MUT G Hour = =                                        (5.14) 

 In this equation, the symbol  ON

ghT  represents the time duration that a unit gth remains 

continuously operational in h hours, while hMUT  refers to the minimum time that a 



180 

 

particular unit must remain active before it can be shut down again, also measured in hours. 

Both of these parameters are relevant to the g units being considered. After a unit has been 

turned off, it cannot be restarted until a certain minimum duration has elapsed, known as 

the "down-time" period. This constraint can be expressed mathematically as follows: 

         (g 1,2,..., ;  h 1,2,..., )OFF

gh hT MDT G Hour = =                                      (5.15) 

 In this context, the variable " OFF

ghT " represents the length of time that the gth unit has been 

continuously inactive in hours. Additionally, the parameter "MDTh" refers to the minimum 

duration of inactivity required for that specific unit, also measured in hours. 

 5.3.6 Crew Constraints for UCP 

 Crew constraints play a crucial role in ensuring the safe and efficient operation and 

maintenance of power systems. They establish a limit on the number of workers that can 

work on power system equipment, ensuring that maintenance and repair tasks are carried 

out effectively while maintaining a reliable power system. Crew constraints are usually 

expressed as a maximum limit on the number of workers assigned to a specific piece of 

equipment or area. 

 5.3.7 Initial Operating Status of Generation Units 

 In order to ensure that every unit meets its minimum up/down time requirements, the initial 

operating status of each unit must consider the previous day's schedule. This means that 

the starting status of each unit is influenced by its previous operating state and the minimum 

duration it must remain in that state before it can transition to another state. By factoring 

in these considerations, the initial operating status of each unit can be determined in a way 

that promotes system reliability and efficiency. 

 5.4 SOLUTION METHODOLOGY FOR UCP 

 The UC problem has been examined by taking into account the physical limitations and 

system of thermal power units. This research employs hybrid versions of CBWO to address 

the unit commitment problem in power systems. Both stochastic and heuristic approaches 
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are utilized to handle various operational and physical constraints associated with the unit 

commitment problem. 

   The developments for managing system constraints in UCP, including spinning 

reserve constraint, minimum-up and minimum-down time constraints, and deactivation of 

surplus power generating units, are outlined in sections 5.4.1, 5.4.2, 5.4.3 and 5.4.4 

respectively. The proposed hybrid optimization techniques for solving the unit 

commitment problem are discussed in the subsequent sections. 

 5.4.1 Repairing for Spinning Reserve Constraints with RES 

 To meet the reserve capacity requirements for various power unit with RES, the minimum 

operational and non-operational periods of each power unit, along with their respective 

durations, have been considered. The reserve constraints must be addressed according to 

following procedure.  
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Fig. 5.1- Algorithm for Spinning Reserve Constraint with RES 

 

 5.4.2 Repairing for Spinning Reserve Constraints with OC, EL and RES 

 To meet the reserve capacity requirements for various power unit when considering OC, 

EL and RES, the minimum operational and non-operational periods of each power unit, 

along with their respective durations, have been considered. The reserve constraints must 

be addressed according to following procedure.  

Step1: Arrange the power generation in a decreasing order based on 

 their maximum capacity to generate power. 

Step 2: If g=1 to G, if ghU =0 then ghU =1, 

 Else if ,

off

g h gT MDT  

 Then , , 1 1on on

g h g hT T − +  and , 0off

g hT =  

Step 3: Check the newly generated power output of the units for 

 validation. 

Step 4: If 19 Re

1

NG
RES Covid serve

gh gh h h h

g

P U P P P−

=

+ = + then break the 

 process. If condition is not met then proceed to step 2, 

 otherwise terminate the algorithm. 

Step 5: If ,

off

g h gT MDT  then do , 1off

g hl h T= − +  and set ghU  =1. 

Step 6: Calculate , , 1 1l on

g h g hT T −= +  and , 0off

g hT =  

Step7: If l h , check the power output 

 19 Re

1

NG
RES Covid serve

gh gh h h h

g

P U P P P−

=

+  + of the generator to 

 ensure its accuracy for RES and then proceed to step 5. 
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Fig. 5.2- Algorithm for Spinning Reserve Constraint with OC, EL and RES 

 

  

 

 

 

Step1: Arrange the power generation in a decreasing order based 

 on their maximum capacity to generate power. 

Step 2: If g=1 to G, if ghU =0 then ghU =1, 

 Else if ,

off

g h gT MDT  

 Then , , 1 1on on

g h g hT T − +  and , 0off

g hT =  

Step 3: Check the newly generated power output of the units for 

 validation. 

Step 4: If 19 Re

1

NG
RES Covid serve OC EL

gh gh h h h h h

g

P U P P P P P−

=

+ = + + +  then 

 break the process. If condition is not met then proceed to 

 step 2, otherwise terminate the algorithm. 

Step 5: If ,

off

g h gT MDT  then do , 1off

g hl h T= − +  and set ghU  =1. 

Step 6: Calculate , , 1 1l on

g h g hT T −= +  and , 0off

g hT =  

Step 7: If l h , check the power output 

 19 Re

1

NG
RES Covid serve OC EL

gh gh h h h h h

g

P U P P P P P−

=

+  + + +  of the 

 generator to ensure its accuracy for OC, EL and RES, then 

 proceed to step 5. 
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 5.4.3 Repairing for Minimum Up and Down Time Constraints  

 Repairing for minimum up time and down time constraints of different thermal units can 

be done by following process- 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3- Algorithm for Minimum Up and Down Time Constraints 

 

Step 1: Arrange the power generation in a decreasing 

order based on their maximum capacity to 

generate power. 

Step 2: for h=1 to H and g=1 to G then set g=1 

Step 3: if ghU =1 then set  1ghU − =1 

Step 4: Check ,

on

g h gT MUT  and set ghU =0 or else set 

ghU =1 

Step 5: if 1ghU − =1, then set ghU =0 

Step 6: if , 1

on

g h gT MUT−   then set ghU =1 and stop if 

loop. 

Step 7: if 1gh MDT T+ −   and , 1

off

g h gT MUT−   then 

set ghU =1 otherwise end if. 

Step 8: if 1gh MDT T+ −   and 
1

0
H

gh

h

U
=

  then set 

ghU =1 and end if or else proceed to step 5. 

Step 9: Modify the time period for both the 

committed and decommitted generation units 

of the gth unit using the equation ,

on

g h gT MUT  

and ,

off

g h gT MUT . 
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 5.4.4 Decommitment of the Excessive Generating Units.  

 Surplus thermal units must be taken offline. All thermal generating units need to meet the 

requirements for load demand and spinning reserve.  

 

  Fig. 5.4: Algorithm for Decommitment of the Excessive Generating Units. 

 

Step 1: Arrange the power generation in a decreasing order 

based on their maximum capacity to generate power. 

Step2: for h=1 to H and g=1 to G, then g=h(G+l-1) and 

find out generated power, '

maxg ghP P U=   or g=1 to 

G, if ghU =0 then ghU =1 else if ,

off

g h gT MDT                                                                                                       

 Then , , 1 1on on

g h g hT T −= +  and , 0off

g hT =  

 1:h H=  

 1:g G=  

 ( 1 )g h G g= + −  

Step 3: Check the newly generated power output of the units 

for validation. 

Step 4: If 19 Re

1

NG
RES Covid serve OC EL

gh gh h h h h h

g

P U P P P P P−

=

+  + + +  

and ,

off

g h gT MDT  then do ghU =0, else terminate the 

algorithm. Or else if ,

on

g hT =1 do ghU =0, else do the 

increment 1 by 1and proceed to step 2. 

Step 5: If  ,

on

g hT =0 then find out , , 1 1off off

g h g hT T −= +  

Step 6: If ghU =1, check the output power. Find out 

19 Re

1

NG
RES Covid serve OC EL

gh gh h h h h h

g

P U P P P P P−

=

+  + + + for 

OC, EL and RES, else OFF the generating unit and 

move to step 4. 
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 The minimum down and up times takes into account in system for each unit, as well as the 

duration of power unit OFF/ON periods. The algorithm allows for constraint adjustments 

as necessary. 

 5.4.5 Chaotic Beluga Whale Optimization Algorithm 

 The optimal solution is evaluated by using the CBWO algorithm. In the proposed method, 

a chaotic search is employed to optimize a vector of units for commitment, with the aim of 

reducing overall costs. The procedure for solution of unit commitment using CBWO 

algorithm is explained below: 

 Step 1: Begin by inputting the Unit Commitment Problem parameters and initializing the 

population of potential solutions. This initialization process for each individual is based on 

equations (3.4) and (3.5). For unit commitment problem, each solution candidate represents 

the on/off status of each generating unit over the defined time period. This status is binary, 

with '1' indicating the unit is online and '0' indicating it is offline. Consequently, a solution 

is structured as an integer matrix representing the on/off schedule of all units across the 

entire time horizon. This matrix can be mathematically represented as: 

  

  

 

 

denotes the on/off state of generating unit g at time period h, ∈{0,1}.  Where 

 Step 2: Arrange the generating units in descending order based on their maximum power 

generation capacity. 

 Step 3: Adjust the on/off status of individual units within the population to ensure that the 

spinning reserve requirements, as outlined in sections 5.4.1 and 5.4.2, are met. 
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 Step 4: Correct any violations of the minimum up-time and minimum down-time 

constraints for the individual units within the population, following the procedures 

described in section 5.4.3. 

 Step 5: Deactivate any surplus units in the population, as detailed in section 5.4.4, to reduce 

excessive spinning reserve that may have resulted from the minimum up/down time 

constraint repairs. 

 Step 6: Solve the unit commitment problem for each hour and calculate the corresponding 

fuel cost. 

 Step 7: Compute the start-up cost for each hour using equation (5.4) and determine the 

total generation cost using equation (5.1). 

 Step 8: Implement the CBWO algorithm. Apply its exploration, exploitation, and whale 

fall phases using equations (3.4), (3.5), (3.6), and (3.9) to generate a new candidate solution 

vector, denoted as 1T

iA + . 

 Step 9: Evaluate the new candidate solution vector 1T

iA +  for any constraint violations, 

referring to the conditions specified in sections 5.4.1, 5.4.2, 5.4.3, and 5.4.4. 

 Step 10: Replace the worst-performing solution vector in the current population with the 

newly generated vector 1T

iA + . 

 Step 11: Apply the Levy flight mechanism using equation (3.7) to update the position of a 

randomly selected solution vector. 

 Step 12: If the current iteration count equals the maximum number of iterations allowed, 

proceed to step 14. 

 Step 13: If the current iteration count is less than the maximum number of iterations, 

increment the iteration counter by one and return to step 3 to continue the optimization 

process. 
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 Step 14: Terminate the algorithm and identify the optimal unit commitment schedule from 

the individual solution within the population that yielded the lowest total generation cost. 

 5.5 TEST SYSTEMS 

 The analysis of the unit commitment problem encompassed different system sizes, 

including standard configurations of 10, 20, and 40 generating units as presented in section 

4.5.1 and 4.5.2.  

  The power generated by a wind turbine is proportional to the cube of its rated wind 

speed, although this relationship holds true only within a specific range of wind speeds as 

expressed in equation 4.13. At lower wind speeds, the turbine lacks sufficient torque to 

operate effectively. The minimum wind speed required for the rotor to begin turning is 

known as the cut-in speed, which generally falls between 3 to 4 m/s. The maximum wind 

speed at which power can be produced safely is termed the cut-out speed, typically around 

25 m/s. This maximum output power, known as rated power, is usually achieved at wind 

speeds ranging from 12 to 17 m/s. 

  The Weibull distribution function developed by Swedish professor Waloddi 

Weibull in 1951 is the most widely used life time distribution in reliability engineering. It 

is a versatile distribution function, based on the value of shape parameter. The probability 

distribution function for the calculation of wind power can be mathematically represented 

in equations 4.15, 4.16, 4.17, 4.18 and 4.19 in section 4.4.5. 

 In table 5.1, technical specification of oxygen concentrator of two models of 

“AirSep” are given. Power consumption of these two models is 350 W and 410 W per 

hour. For this study, we use 40,000 units of each model i.e., 80,000 total. Eighty thousand 

units of oxygen concentrator increase the total demand by 40 MW.  
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  Table 5.1: Oxygen Concentrator Technical Specification; Source-WHO [17] 

Device 

Manufacturer 

 

Min. 

Oxygen 

output 

(LPM) 

Max. 

Oxygen 

output 

(LPM) 

Pressure 

(kPa) 

Electricity 

consumption 

(Watt) 

Units 

Used 

AirSep 

Newlife Elite 

0.125 5 15-60 350 40,000 

AirSep 

Newlife Intensity 

0.125 8 135 410 40,000 

 

Table 5.2 shows the technical specification of a type of electrolyzer in which St-Fe type 

of electrode with an area of 31.5 cm2 is used. This can produce 0.16*10-3 Nm3 of oxygen 

in one hour and 4.24 kW of electricity consumed. In our work, we considered twenty 

thousand of electrolyzer units that increased the load about 84.8 MW. This can give extra 

burden on our power system so it is necessary to study the load demand. 

 Table 5.2: Technical Specification of Electrolyzer [19] 

Electrode 

type and Sp. 

Area (cm2) 

Current, 

(A) 

Current 

density (A/ 

cm2) 

Hydrogen 

production, 

(Nm3/h) 

Oxygen 

production, 

(Nm3/h) 

Electricity 

consumption; 

(kW) 

Units 

Used 

St-Fe; 31.5 0.96 0.03 0.33*10-3 0.16*10-3 4.24 20,000 
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 5.6 RESULTS and DISCUSSIONS 

 The CBWO is a novel hybrid algorithm that combines with chaotic maps. This algorithm 

is designed to address optimization problems by incorporating both exploratory and 

exploitative phases. CBWO is a population-based algorithm that does not rely on gradients, 

which makes it suitable for a wide range of optimization problems. 

The CBWO algorithm is effective in the exploratory phase, where it generates a diverse set 

of solutions using chaotic maps. It also has a strong capability to acclimate from the 

exploratory phase to the exploitative phase, where it refines the solutions using arithmetic 

operations. Overall, CBWO is a powerful optimizer that can be applied to a variety of 

optimization problems. Its skill to cartel chaotic maps with whale optimization techniques 

makes it a capable algorithm that can effectually address complex optimization issue. 

 5.6.1 System of Ten Generating Units 

 The effectiveness of proposed algorithm CBWO is tested and used to get the optimal result 

for UC problem considering the several constraints. This part of theses is basically 

illustrating the optimal results for 10 generating units and scheduling of units. Table 5.3 

illustrates the scheduling and fuel cost for 10 units during weekend period of full lockdown 

(FL) in Covid-19. Table 5.4 illustrates the scheduling and fuel cost of different units during 

weekday period of full lockdown in Covid-19. By analyze the result of weekend and 

weekday, we get almost 1.6% of rise in fuel cost during weekday.  

  Table 5.5 and 5.6 display the optimal scheduling and fuel cost of 10-unit system 

during full lockdown with wind power. Incorporating wind power with the system, a 

decrease of 13.6 % and 14% in fuel cost is seen in weekend and weekday respectively. 

Table 5.7 and 5.8 display the optimal scheduling of units and fuel cost of 10-units during 

partial lockdown (PL) in country. During partial lockdown fuel cost is increased by 3.6% 

and 6% in weekend and weekday respectively as compared to the full lockdown period. 

Table 5.9 and 5.10 shows the scheduling during PL when wind power is incorporating with 
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system. This also shows the increment of 4.7% and 6.8% in weekend and weekday 

respectively.  

  Table 5.11 and 5.12 shows the fuel cost and scheduling of units when oxygen 

concentrator is incorporated. Table 5.13 and 5.14 is also shows the scheduling of units 

when electrolyser is used. Fuel cost is increased by 4.6% and 9.5% by the use of OC and 

EL separately. Table 5.15 and 5.16 display the scheduling when both OC and EL used 

during weekend and weekdays, and fuel cost increased by approximately 15%. 
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Table 5.3: UCP for 10 Unit Test System considering the impact of COVID-19 FL (Weekend) using CBWO  

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 293 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 2010 14520 

h2 455 283 0 0 0 0 0 0 0 0 8466 5879 0 0 0 0 0 0 0 0 0 14345 

h3 455 275 0 0 0 0 0 0 0 0 8466 5740 0 0 0 0 0 0 0 0 0 14206 

h4 455 277 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 0 14241 

h5 455 291 0 0 0 0 0 0 0 0 8466 6019 0 0 0 0 0 0 0 0 0 14485 

h6 455 317 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 0 14938 

h7 455 351 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 0 15532 

h8 455 265 0 130 0 0 0 0 0 0 8466 5566 0 2861 0 0 0 0 0 0 340 16892 

h9 455 321 0 130 0 0 0 0 0 0 8466 6542 0 2861 0 0 0 0 0 0 60 17869 

h10 455 235 130 130 0 0 0 0 0 0 8466 5043 2892 2861 0 0 0 0 0 0 60 19262 

h11 455 286 130 130 0 0 0 0 0 0 8466 5932 2892 2861 0 0 0 0 0 0 0 20150 

h12 455 320 130 130 0 0 0 0 0 0 8466 6525 2892 2861 0 0 0 0 0 0 550 20743 

h13 455 319 130 130 0 0 0 0 0 0 8466 6507 2892 2861 0 0 0 0 0 0 0 20726 

h14 455 313 130 130 0 0 0 0 0 0 8466 6403 2892 2861 0 0 0 0 0 0 0 20621 

h15 455 421 0 130 25 0 0 0 0 0 8466 8291 0 2861 945 0 0 0 0 0 0 20563 

h16 455 449 0 130 25 0 0 0 0 0 8466 8782 0 2861 945 0 0 0 0 0 0 21054 

h17 455 455 0 130 43 0 0 0 0 0 8466 8887 0 2861 1304 0 0 0 0 0 900 21518 

h18 455 440 0 130 25 0 0 0 0 0 8466 8624 0 2861 945 0 0 0 0 0 0 20896 

h19 455 412 0 130 25 0 0 0 0 0 8466 8134 0 2861 945 0 0 0 0 0 0 20405 

h20 455 380 0 130 25 0 0 0 0 0 8466 7574 0 2861 945 0 0 0 0 0 60 19845 

h21 455 455 0 0 39 0 0 0 0 0 8466 8887 0 0 1224 0 0 0 0 0 0 18578 

h22 455 414 0 0 25 0 0 0 0 0 8466 8169 0 0 945 0 0 0 0 0 0 17580 

h23 455 354 0 0 25 0 0 0 0 0 8466 7119 0 0 945 0 0 0 0 0 0 16530 

h24 455 329 0 0 0 0 0 0 0 0 8466 6682 0 0 0 0 0 0 0 0 0 15148 
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Table 5.4: UCP for 10 Unit Test System considering the impact of COVID-19 FL (Weekday) using CBWO  

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 293 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 2010 14520 

h2 455 277 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 0 14241 

h3 455 270 0 0 0 0 0 0 0 0 8466 5653 0 0 0 0 0 0 0 0 0 14119 

h4 455 279 0 0 0 0 0 0 0 0 8466 5810 0 0 0 0 0 0 0 0 0 14275 

h5 455 316 0 0 0 0 0 0 0 0 8466 6455 0 0 0 0 0 0 0 0 0 14921 

h6 455 245 0 130 0 0 0 0 0 0 8466 5217 0 2861 0 0 0 0 0 0 0 16544 

h7 455 298 0 130 0 0 0 0 0 0 8466 6141 0 2861 0 0 0 0 0 0 0 17467 

h8 455 350 0 130 0 0 0 0 0 0 8466 7049 0 2861 0 0 0 0 0 0 0 18375 

h9 455 361 0 130 25 0 0 0 0 0 8466 7241 0 2861 945 0 0 0 0 0 0 19513 

h10 455 367 0 130 25 0 0 0 0 0 8466 7346 0 2861 945 0 0 0 0 0 340 19618 

h11 455 370 0 130 25 0 0 0 0 0 8466 7399 0 2861 945 0 0 0 0 0 0 19670 

h12 455 367 0 130 25 0 0 0 0 0 8466 7346 0 2861 945 0 0 0 0 0 550 19618 

h13 455 375 0 130 25 0 0 0 0 0 8466 7486 0 2861 945 0 0 0 0 0 0 19758 

h14 455 455 0 0 47 0 0 0 0 0 8466 8887 0 0 1385 0 0 0 0 0 0 18738 

h15 455 455 0 0 58 0 0 0 0 0 8466 8887 0 0 1606 0 0 0 0 0 560 18959 

h16 455 405 130 0 25 0 0 0 0 0 8466 8011 2892 0 945 0 0 0 0 0 0 20314 

h17 455 443 130 0 25 0 0 0 0 0 8466 8677 2892 0 945 0 0 0 0 0 0 20980 

h18 455 435 130 0 25 0 0 0 0 0 8466 8537 2892 0 945 0 0 0 0 0 0 20839 

h19 455 455 130 0 36 0 0 0 0 0 8466 8887 2892 0 1164 0 0 0 0 0 900 21409 

h20 455 338 130 130 0 0 0 0 0 0 8466 6839 2892 2861 0 0 0 0 0 0 0 21058 

h21 455 400 0 130 0 0 0 10 0 0 8466 7924 0 2861 0 0 0 920 0 0 0 20170 

h22 455 358 0 130 0 0 0 0 0 0 8466 7189 0 2861 0 0 0 0 0 0 0 18515 

h23 455 294 0 130 0 0 0 0 0 0 8466 6071 0 2861 0 0 0 0 0 0 0 17398 

h24 455 249 0 130 0 0 0 0 0 0 8466 5287 0 2861 0 0 0 0 0 0 0 16613 
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Table 5.5: UCP for 10 Unit Test System considering the impact of COVID-19 FL (Weekend) with Wind Power using CBWO  

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 421 150 0 0 0 0 0 0 0 0 7901 3566 0 0 0 0 0 0 0 0 0 11467 

h2 417 150 0 0 0 0 0 0 0 0 7835 3566 0 0 0 0 0 0 0 0 730 11401 

h3 422 150 0 0 0 0 0 0 0 0 7918 3566 0 0 0 0 0 0 0 0 0 11484 

h4 437 150 0 0 0 0 0 0 0 0 8167 3566 0 0 0 0 0 0 0 0 0 11733 

h5 454 150 0 0 0 0 0 0 0 0 8449 3566 0 0 0 0 0 0 0 0 900 12015 

h6 455 180 0 0 0 0 0 0 0 0 8466 4087 0 0 0 0 0 0 0 0 0 12553 

h7 455 231 0 0 0 0 0 0 0 0 8466 4974 0 0 0 0 0 0 0 0 1100 13439 

h8 455 286 0 0 0 0 0 0 0 0 8466 5932 0 0 0 0 0 0 0 0 520 14398 

h9 455 335 0 0 0 0 0 0 0 0 8466 6787 0 0 0 0 0 0 0 0 0 15253 

h10 455 249 0 130 0 0 0 0 0 0 8466 5287 0 2861 0 0 0 0 0 0 0 16613 

h11 455 299 0 130 0 0 0 0 0 0 8466 6158 0 2861 0 0 0 0 0 0 0 17485 

h12 455 335 0 130 0 0 0 0 0 0 8466 6787 0 2861 0 0 0 0 0 0 120 18113 

h13 455 335 0 130 0 0 0 0 0 0 8466 6787 0 2861 0 0 0 0 0 0 560 18113 

h14 455 334 0 130 0 0 0 0 0 0 8466 6769 0 2861 0 0 0 0 0 0 0 18096 

h15 455 444 0 0 25 0 0 0 0 0 8466 8695 0 0 945 0 0 0 0 0 0 18105 

h16 455 455 0 0 38 0 0 0 0 0 8466 8887 0 0 1204 0 0 0 0 0 0 18558 

h17 455 455 0 0 60 0 0 10 0 0 8466 8887 0 0 1646 0 0 920 0 0 60 19919 

h18 455 455 0 0 49.5 0 0 0 0 0 8466 8887 0 0 1435 0 0 0 0 0 0 18788 

h19 455 442 0 0 25 0 0 0 0 0 8466 8666 0 0 945 0 0 0 0 0 0 18077 

h20 455 390 0 0 25 0 0 0 0 0 8466 7749 0 0 945 0 0 0 0 0 0 17159 

h21 455 367 0 0 0 0 0 0 0 0 8466 7346 0 0 0 0 0 0 0 0 0 15812 

h22 455 302 0 0 0 0 0 0 0 0 8466 6211 0 0 0 0 0 0 0 0 0 14677 

h23 455 219 0 0 0 0 0 0 0 0 8466 4765 0 0 0 0 0 0 0 0 0 13231 

h24 455 154 0 0 0 0 0 0 0 0 8466 3635 0 0 0 0 0 0 0 0 0 12101 
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Table 5.6: UCP for 10 Unit Test System considering the impact of COVID-19 FL (Weekday) with Wind Power using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 421 150 0 0 0 0 0 0 0 0 7901 3566 0 0 0 0 0 0 0 0 0 11467 

h2 411 150 0 0 0 0 0 0 0 0 7735 3566 0 0 0 0 0 0 0 0 0 11301 

h3 417 150 0 0 0 0 0 0 0 0 7835 3566 0 0 0 0 0 0 0 0 1110 11401 

h4 439 150 0 0 0 0 0 0 0 0 8200 3566 0 0 0 0 0 0 0 0 0 11766 

h5 455 174 0 0 0 0 0 0 0 0 8466 3983 0 0 0 0 0 0 0 0 0 12448 

h6 455 238 0 0 0 0 0 0 0 0 8466 5095 0 0 0 0 0 0 0 0 1800 13561 

h7 455 308 0 0 0 0 0 0 0 0 8466 6315 0 0 0 0 0 0 0 0 0 14781 

h8 455 371 0 0 0 0 0 0 0 0 8466 7416 0 0 0 0 0 0 0 0 0 15882 

h9 455 270 0 130 0 0 0 0 0 0 8466 5653 0 2861 0 0 0 0 0 0 0 16979 

h10 455 276 0 130 0 0 0 0 0 0 8466 5757 0 2861 0 0 0 0 0 0 0 17084 

h11 455 278 0 130 0 0 0 0 0 0 8466 5792 0 2861 0 0 0 0 0 0 0 17119 

h12 455 277 0 130 0 0 0 0 0 0 8466 5775 0 2861 0 0 0 0 0 0 60 17101 

h13 455 286 0 130 0 0 0 0 0 0 8466 5932 0 2861 0 0 0 0 0 0 550 17258 

h14 455 368 0 0 25 0 0 0 0 0 8466 7364 0 0 945 0 0 0 0 0 0 16774 

h15 455 381 0 0 25 0 0 0 0 0 8466 7591 0 0 945 0 0 0 0 0 0 17002 

h16 455 424 0 0 25 0 0 0 0 0 8466 8344 0 0 945 0 0 0 0 0 0 17755 

h17 455 455 0 0 40 0 0 0 0 0 8466 8887 0 0 1244 0 0 0 0 0 560 18598 

h18 455 455 0 0 44.5 0 0 0 0 0 8466 8887 0 0 1335 0 0 0 0 0 0 18688 

h19 455 455 0 0 46.4 20 0 0 0 0 8466 8887 0 0 1373 818 0 0 0 0 0 19544 

h20 455 433 0 0 25 20 0 0 0 0 8466 8502 0 0 945 818 0 0 0 0 0 18731 

h21 455 393 0 0 0 20 0 0 0 0 8466 7801 0 0 0 818 0 0 0 0 0 17085 

h22 455 351 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 0 15532 

h23 455 264 0 0 0 0 0 0 0 0 8466 5548 0 0 0 0 0 0 0 0 0 14014 

h24 455 204 0 0 0 0 0 0 0 0 8466 4504 0 0 0 0 0 0 0 0 0 12970 
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Table 5.7: UCP for 10 Unit Test System considering the impact of COVID-19 PL (Weekend) using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 338 0 0 0 0 0 0 0 0 8466 6839 0 0 0 0 0 0 0 0 0 15305 

h2 455 305 0 0 0 0 0 0 0 0 8466 6263 0 0 0 0 0 0 0 0 0 14729 

h3 455 316 0 0 0 0 0 0 0 0 8466 6455 0 0 0 0 0 0 0 0 0 14921 

h4 455 326 0 0 0 0 0 0 0 0 8466 6630 0 0 0 0 0 0 0 0 0 15096 

h5 455 329 0 0 0 0 0 0 0 0 8466 6682 0 0 0 0 0 0 0 0 2010 15148 

h6 455 342 0 0 0 0 0 0 0 0 8466 6909 0 0 0 0 0 0 0 0 0 15375 

h7 455 380 0 0 25 0 0 0 0 0 8466 7574 0 0 945 0 0 0 0 0 520 16984 

h8 455 432 0 0 25 0 0 0 0 0 8466 8484 0 0 945 0 0 0 0 0 60 17895 

h9 455 455 0 0 40 0 0 0 0 0 8466 8887 0 0 1244 0 0 0 0 0 0 18598 

h10 455 393 0 130 25 0 0 0 0 0 8466 7801 0 2861 945 0 0 0 0 0 0 20073 

h11 455 443 0 130 25 0 0 0 0 0 8466 8677 0 2861 945 0 0 0 0 0 0 20948 

h12 455 448 0 130 25 0 0 0 0 0 8466 8765 0 2861 945 0 0 0 0 0 0 21036 

h13 455 451 0 130 25 0 0 0 0 0 8466 8817 0 2861 945 0 0 0 0 0 0 21089 

h14 455 451 0 130 25 0 0 0 0 0 8466 8817 0 2861 945 0 0 0 0 0 320 21089 

h15 455 449 0 130 25 0 0 0 0 0 8466 8782 0 2861 945 0 0 0 0 0 340 21054 

h16 455 455 0 130 42 0 0 0 0 0 8466 8887 0 2861 1284 0 0 0 0 0 0 21498 

h17 455 359 130 130 25 0 0 0 0 0 8466 7206 2892 2861 945 0 0 0 0 0 0 22370 

h18 455 444 130 0 25 0 0 0 0 0 8466 8695 2892 0 945 0 0 0 0 0 0 20997 

h19 455 430 130 0 25 0 0 0 0 0 8466 8449 2892 0 945 0 0 0 0 0 900 20752 

h20 455 407 130 0 25 0 0 0 0 0 8466 8046 2892 0 945 0 0 0 0 0 0 20349 

h21 455 389 130 0 0 0 0 10 0 0 8466 7731 2892 0 0 0 0 920 0 0 0 20008 

h22 455 342 130 0 0 0 0 0 0 0 8466 6909 2892 0 0 0 0 0 0 0 0 18267 

h23 455 273 130 0 0 0 0 0 0 0 8466 5705 2892 0 0 0 0 0 0 0 0 17063 

h24 455 360 0 0 0 0 0 0 0 0 8466 7224 0 0 0 0 0 0 0 0 0 15690 
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Table 5.8: UCP for 10 Unit Test System considering the impact of COVID-19 PL (Weekday) using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 343 0 0 0 0 0 0 0 0 8466 6927 0 0 0 0 0 0 0 0 0 15392 

h2 455 324 0 0 0 0 0 0 0 0 8466 6595 0 0 0 0 0 0 0 0 0 15061 

h3 455 331 0 0 0 0 0 0 0 0 8466 6717 0 0 0 0 0 0 0 0 0 15183 

h4 455 356 0 0 0 0 0 0 0 0 8466 7154 0 0 0 0 0 0 0 0 0 15620 

h5 455 299 0 130 0 0 0 0 0 0 8466 6158 0 2861 0 0 0 0 0 0 560 17485 

h6 455 386 0 130 25 0 0 0 0 0 8466 7679 0 2861 945 0 0 0 0 0 340 19950 

h7 455 455 0 130 49 0 0 0 0 0 8466 8887 0 2861 1425 0 0 0 0 0 1100 21639 

h8 455 455 0 130 51 0 0 0 0 0 8466 8887 0 2861 1465 0 0 0 0 0 0 21679 

h9 455 439 0 130 25 0 0 0 0 0 8466 8607 0 2861 945 0 0 0 0 0 0 20878 

h10 455 455 0 0 83 20 0 0 0 0 8466 8887 0 0 2113 818 0 0 0 0 0 20284 

h11 455 455 0 0 77 20 0 0 0 0 8466 8887 0 0 1990 818 0 0 0 0 1800 20162 

h12 455 455 0 0 56 20 0 0 0 0 8466 8887 0 0 1566 818 0 0 0 0 0 19737 

h13 455 455 0 0 56 0 0 0 0 0 8466 8887 0 0 1566 0 0 0 0 0 0 18919 

h14 455 455 0 0 33 0 0 0 0 0 8466 8887 0 0 1104 0 0 0 0 0 0 18458 

h15 455 455 0 0 36 0 0 0 0 0 8466 8887 0 0 1164 0 0 0 0 0 0 18518 

h16 455 376 130 0 25 0 0 0 0 0 8466 7504 2892 0 945 0 0 0 0 0 560 19806 

h17 455 342 130 130 0 0 0 0 0 0 8466 6909 2892 2861 0 0 0 0 0 0 0 21127 

h18 455 347 130 130 0 0 0 0 0 0 8466 6997 2892 2861 0 0 0 0 0 0 0 21215 

h19 455 358 130 130 0 20 0 0 0 0 8466 7189 2892 2861 0 818 0 0 0 0 860 22225 

h20 455 389 130 130 0 20 0 0 0 0 8466 7731 2892 2861 0 818 0 0 0 0 0 22767 

h21 455 337 130 130 0 20 0 0 0 0 8466 6822 2892 2861 0 818 0 0 0 0 0 21858 

h22 455 282 130 130 0 0 0 0 0 0 8466 5862 2892 2861 0 0 0 0 0 0 0 20080 

h23 455 329 0 130 0 0 0 0 0 0 8466 6682 0 2861 0 0 0 0 0 0 0 18009 

h24 455 282 0 130 0 0 0 0 0 0 8466 5862 0 2861 0 0 0 0 0 0 0 17188 
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Table 5.9: UCP for 10 Unit Test System considering the impact of COVID-19 PL (Weekend) with Wind Power using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 161 0 0 0 0 0 0 0 0 8466 3757 0 0 0 0 0 0 0 0 0 12223 

h2 439 150 0 0 0 0 0 0 0 0 8200 3566 0 0 0 0 0 0 0 0 1450 11766 

h3 455 158 0 0 0 0 0 0 0 0 8466 3705 0 0 0 0 0 0 0 0 0 12171 

h4 455 181 0 0 0 0 0 0 0 0 8466 4104 0 0 0 0 0 0 0 0 0 12570 

h5 455 187 0 0 0 0 0 0 0 0 8466 4208 0 0 0 0 0 0 0 0 0 12674 

h6 455 205 0 0 0 0 0 0 0 0 8466 4521 0 0 0 0 0 0 0 0 1120 12987 

h7 455 285 0 0 0 0 0 0 0 0 8466 5914 0 0 0 0 0 0 0 0 0 14380 

h8 455 348 0 0 0 0 0 0 0 0 8466 7014 0 0 0 0 0 0 0 0 0 15480 

h9 455 354 0 0 25 0 0 0 0 0 8466 7119 0 0 945 0 0 0 0 0 0 16530 

h10 455 407 0 0 25 0 0 0 0 0 8466 8046 0 0 945 0 0 0 0 0 0 17457 

h11 455 455 0 0 26 0 0 0 0 0 8466 8887 0 0 965 0 0 0 0 0 860 18318 

h12 455 455 0 0 33 0 0 0 0 0 8466 8887 0 0 1104 0 0 0 0 0 0 18458 

h13 455 455 0 0 37 0 0 0 0 0 8466 8887 0 0 1184 0 0 0 0 0 0 18538 

h14 455 455 0 0 42 0 0 0 0 0 8466 8887 0 0 1284 0 0 0 0 0 1450 18638 

h15 455 455 0 0 42 0 0 0 0 0 8466 8887 0 0 1284 0 0 0 0 0 0 18638 

h16 455 455 0 0 61 0 0 0 0 0 8466 8887 0 0 1667 0 0 0 0 0 0 19020 

h17 455 386 0 130 25 0 0 0 0 0 8466 7679 0 2861 945 0 0 0 0 0 0 19950 

h18 455 354 0 130 25 0 0 0 0 0 8466 7110 0 2861 945 0 0 0 0 0 0 19382 

h19 455 355 0 130 0 0 0 0 0 0 8466 7143 0 2861 0 0 0 0 0 0 0 18470 

h20 455 312 0 130 0 0 0 0 0 0 8466 6385 0 2861 0 0 0 0 0 0 560 17712 

h21 455 272 0 130 0 0 0 0 0 0 8466 5688 0 2861 0 0 0 0 0 0 0 17014 

h22 455 335 0 0 0 0 0 0 0 0 8466 6787 0 0 0 0 0 0 0 0 0 15253 

h23 455 243 0 0 0 0 0 0 0 0 8466 5182 0 0 0 0 0 0 0 0 0 13648 

h24 455 185 0 0 0 0 0 0 0 0 8466 4174 0 0 0 0 0 0 0 0 550 12640 
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Table 5.10: UCP for 10 Unit Test System considering the impact of COVID-19 PL (Weekday) with Wind Power using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 293 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 2010 14520 

h2 455 283 0 0 0 0 0 0 0 0 8466 5879 0 0 0 0 0 0 0 0 0 14345 

h3 455 275 0 0 0 0 0 0 0 0 8466 5740 0 0 0 0 0 0 0 0 0 14206 

h4 455 277 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 0 14241 

h5 455 291 0 0 0 0 0 0 0 0 8466 6019 0 0 0 0 0 0 0 0 0 14485 

h6 455 317 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 0 14938 

h7 455 351 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 0 15532 

h8 455 265 0 130 0 0 0 0 0 0 8466 5566 0 2861 0 0 0 0 0 0 340 16892 

h9 455 321 0 130 0 0 0 0 0 0 8466 6542 0 2861 0 0 0 0 0 0 60 17869 

h10 455 235 130 130 0 0 0 0 0 0 8466 5043 2892 2861 0 0 0 0 0 0 60 19262 

h11 455 286 130 130 0 0 0 0 0 0 8466 5932 2892 2861 0 0 0 0 0 0 0 20150 

h12 455 320 130 130 0 0 0 0 0 0 8466 6525 2892 2861 0 0 0 0 0 0 550 20743 

h13 455 319 130 130 0 0 0 0 0 0 8466 6507 2892 2861 0 0 0 0 0 0 0 20726 

h14 455 313 130 130 0 0 0 0 0 0 8466 6403 2892 2861 0 0 0 0 0 0 0 20621 

h15 455 421 0 130 25 0 0 0 0 0 8466 8291 0 2861 945 0 0 0 0 0 0 20563 

h16 455 449 0 130 25 0 0 0 0 0 8466 8782 0 2861 945 0 0 0 0 0 0 21054 

h17 455 455 0 130 43 0 0 0 0 0 8466 8887 0 2861 1304 0 0 0 0 0 900 21518 

h18 455 440 0 130 25 0 0 0 0 0 8466 8624 0 2861 945 0 0 0 0 0 0 20896 

h19 455 412 0 130 25 0 0 0 0 0 8466 8134 0 2861 945 0 0 0 0 0 0 20405 

h20 455 380 0 130 25 0 0 0 0 0 8466 7574 0 2861 945 0 0 0 0 0 60 19845 

h21 455 455 0 0 39 0 0 0 0 0 8466 8887 0 0 1224 0 0 0 0 0 0 18578 

h22 455 414 0 0 25 0 0 0 0 0 8466 8169 0 0 945 0 0 0 0 0 0 17580 

h23 455 354 0 0 25 0 0 0 0 0 8466 7119 0 0 945 0 0 0 0 0 0 16530 

h24 455 329 0 0 0 0 0 0 0 0 8466 6682 0 0 0 0 0 0 0 0 0 15148 
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Table 5.11: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekend) with OC demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 333 0 0 0 0 0 0 0 0 8466 6752 0 0 0 0 0 0 0 0 0 15218 

h2 455 323 0 0 0 0 0 0 0 0 8466 6577 0 0 0 0 0 0 0 0 0 15043 

h3 455 315 0 0 0 0 0 0 0 0 8466 6438 0 0 0 0 0 0 0 0 2010 14903 

h4 455 317 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 0 14938 

h5 455 331 0 0 0 0 0 0 0 0 8466 6717 0 0 0 0 0 0 0 0 0 15183 

h6 455 357 0 0 0 0 0 0 0 0 8466 7171 0 0 0 0 0 0 0 0 340 15637 

h7 455 371 0 0 0 20 0 0 0 0 8466 7416 0 0 0 818 0 0 0 0 0 16700 

h8 455 415 0 0 0 20 0 0 0 0 8466 8186 0 0 0 818 0 0 0 0 0 17470 

h9 455 341 0 130 0 20 0 0 0 0 8466 6892 0 2861 0 818 0 0 0 0 0 19036 

h10 455 380 0 130 25 0 0 0 0 0 8466 7574 0 2861 945 0 0 0 0 0 640 19845 

h11 455 431 0 130 25 0 0 0 0 0 8466 8467 0 2861 945 0 0 0 0 0 0 20738 

h12 455 455 0 130 35 0 0 0 0 0 8466 8887 0 2861 1144 0 0 0 0 0 0 21358 

h13 455 455 0 130 34 0 0 0 0 0 8466 8887 0 2861 1124 0 0 0 0 0 170 21338 

h14 455 455 0 130 28 0 0 0 0 0 8466 8887 0 2861 1005 0 0 0 0 0 0 21219 

h15 455 455 0 130 31 0 0 0 0 0 8466 8887 0 2861 1065 0 0 0 0 0 0 21278 

h16 455 364 130 130 0 20 0 0 0 0 8466 7294 2892 2861 0 818 0 0 0 0 120 22330 

h17 455 388 130 130 0 20 0 0 0 0 8466 7714 2892 2861 0 818 0 0 0 0 900 22750 

h18 455 355 130 130 0 20 0 0 0 0 8466 7136 2892 2861 0 818 0 0 0 0 0 22173 

h19 455 347 130 130 0 0 0 0 0 0 8466 6997 2892 2861 0 0 0 0 0 0 0 21215 

h20 455 315 130 130 0 0 0 0 0 0 8466 6438 2892 2861 0 0 0 0 0 0 0 20656 

h21 455 394 130 0 0 0 0 0 0 10 8466 7819 2892 0 0 0 0 0 0 948 170 20124 

h22 455 349 130 0 0 0 0 0 0 0 8466 7031 2892 0 0 0 0 0 0 0 0 18389 

h23 455 409 0 0 0 0 0 10 0 0 8466 8081 0 0 0 0 0 920 0 0 0 17467 

h24 455 369 0 0 0 0 0 0 0 0 8466 7381 0 0 0 0 0 0 0 0 0 15847 
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Table 5.12: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekday) with OC demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 333 0 0 0 0 0 0 0 0 8466 6752 0 0 0 0 0 0 0 0 0 15218 

h2 455 317 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 0 14938 

h3 455 310 0 0 0 0 0 0 0 0 8466 6350 0 0 0 0 0 0 0 0 0 14816 

h4 455 319 0 0 0 0 0 0 0 0 8466 6507 0 0 0 0 0 0 0 0 0 14973 

h5 455 356 0 0 0 0 0 0 0 0 8466 7154 0 0 0 0 0 0 0 0 0 15620 

h6 455 285 0 130 0 0 0 0 0 0 8466 5914 0 2861 0 0 0 0 0 0 1120 17241 

h7 455 338 0 130 0 0 0 0 0 0 8466 6839 0 2861 0 0 0 0 0 0 0 18166 

h8 455 370 0 130 0 20 0 0 0 0 8466 7399 0 2861 0 818 0 0 0 0 1800 19543 

h9 455 406 0 130 0 20 0 0 0 0 8466 8029 0 2861 0 818 0 0 0 0 0 20173 

h10 455 412 0 130 0 20 0 0 0 0 8466 8134 0 2861 0 818 0 0 0 0 0 20278 

h11 455 410 0 130 25 0 0 0 0 0 8466 8099 0 2861 945 0 0 0 0 0 0 20370 

h12 455 407 130 0 25 0 0 0 0 0 8466 8046 2892 0 945 0 0 0 0 0 0 20349 

h13 455 415 130 0 25 0 0 0 0 0 8466 8186 2892 0 945 0 0 0 0 0 0 20489 

h14 455 387 130 0 25 0 0 0 0 0 8466 7696 2892 0 945 0 0 0 0 0 1440 19999 

h15 455 398 130 0 25 0 0 0 0 0 8466 7889 2892 0 945 0 0 0 0 0 0 20191 

h16 455 445 130 0 25 0 0 0 0 0 8466 8712 2892 0 945 0 0 0 0 0 60 21015 

h17 455 353 130 130 25 0 0 0 0 0 8466 7101 2892 2861 945 0 0 0 0 0 0 22265 

h18 455 455 0 130 45 0 0 0 0 0 8466 8887 0 2861 1345 0 0 0 0 0 0 21559 

h19 455 455 0 130 66 0 0 10 0 0 8466 8887 0 2861 1768 0 0 920 0 0 520 22901 

h20 455 455 0 130 43 0 0 10 0 0 8466 8887 0 2861 1304 0 0 920 0 0 0 22438 

h21 455 425 0 130 25 0 0 0 0 0 8466 8361 0 2861 945 0 0 0 0 0 0 20633 

h22 455 373 0 130 25 0 0 0 0 0 8466 7451 0 2861 945 0 0 0 0 0 0 19723 

h23 455 439 0 0 25 0 0 0 0 0 8466 8607 0 0 945 0 0 0 0 0 0 18018 

h24 455 394 0 0 25 0 0 0 0 0 8466 7819 0 0 945 0 0 0 0 0 60 17229 
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Table 5.13: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekend) with EL demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 310 0 0 0 0 0 0 0 0 8466 6350 0 0 0 0 0 0 0 0 0 14816 

h2 455 293 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 0 14520 

h3 455 283 0 0 0 0 0 0 0 0 8466 5879 0 0 0 0 0 0 0 0 0 14345 

h4 455 275 0 0 0 0 0 0 0 0 8466 5740 0 0 0 0 0 0 0 0 1980 14206 

h5 455 277 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 550 14241 

h6 455 291 0 0 0 0 0 0 0 0 8466 6019 0 0 0 0 0 0 0 0 0 14485 

h7 455 317 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 0 14938 

h8 455 351 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 60 15532 

h9 455 265 130 0 0 0 0 0 0 0 8466 5566 2892 0 0 0 0 0 0 0 0 16923 

h10 455 321 130 0 0 0 0 0 0 0 8466 6542 2892 0 0 0 0 0 0 0 0 17900 

h11 455 235 130 130 0 0 0 0 0 0 8466 5043 2892 2861 0 0 0 0 0 0 60 19262 

h12 455 286 130 130 0 0 0 0 0 0 8466 5932 2892 2861 0 0 0 0 0 0 120 20150 

h13 455 320 130 130 0 0 0 0 0 0 8466 6525 2892 2861 0 0 0 0 0 0 0 20743 

h14 455 424 0 130 25 0 0 0 0 0 8466 8344 0 2861 945 0 0 0 0 0 0 20615 

h15 455 418 0 130 25 0 0 0 0 0 8466 8239 0 2861 945 0 0 0 0 0 0 20510 

h16 455 421 0 130 25 0 0 0 0 0 8466 8291 0 2861 945 0 0 0 0 0 400 20563 

h17 455 449 0 130 25 0 0 0 0 0 8466 8782 0 2861 945 0 0 0 0 0 520 21054 

h18 455 455 0 130 43 0 0 0 0 0 8466 8887 0 2861 1304 0 0 0 0 0 0 21518 

h19 455 440 0 130 25 0 0 0 0 0 8466 8624 0 2861 945 0 0 0 0 0 0 20896 

h20 455 412 0 130 25 0 0 0 0 0 8466 8134 0 2861 945 0 0 0 0 0 120 20405 

h21 455 380 0 130 25 0 0 0 0 0 8466 7574 0 2861 945 0 0 0 0 0 0 19845 

h22 455 455 0 0 39 0 0 0 0 0 8466 8887 0 0 1224 0 0 0 0 0 30 18578 

h23 455 419 0 0 0 20 0 0 0 0 8466 8256 0 0 0 818 0 0 0 0 0 17540 

h24 455 359 0 0 0 20 0 0 0 0 8466 7206 0 0 0 818 0 0 0 0 0 16490 
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Table 5.14: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekday) with EL demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 232 0 0 0 0 0 0 0 0 8466 7360 0 0 0 0 0 0 938 0 900 16764 

h2 455 368 0 0 0 0 0 0 10 0 8466 7255 0 0 0 0 0 0 0 0 0 15721 

h3 455 362 0 0 0 0 0 0 0 0 8466 7133 0 0 0 0 0 0 0 0 1370 15599 

h4 455 355 0 0 0 0 0 0 0 0 8466 7290 0 0 0 0 0 0 0 0 0 15756 

h5 455 364 0 0 0 0 0 0 0 0 8466 7500 0 0 945 0 0 0 0 0 0 16911 

h6 455 376 0 0 25 0 0 0 0 0 8466 8533 0 0 945 0 0 0 0 0 60 17944 

h7 455 435 0 0 25 0 0 0 0 0 8466 8887 0 0 1602 0 0 0 0 0 460 18955 

h8 455 455 0 0 57.8 0 0 0 0 0 8466 8095 0 2861 945 0 0 0 0 0 0 20367 

h9 455 410 0 130 25 0 0 0 0 0 8466 8726 0 2861 945 0 0 0 0 0 30 20998 

h10 455 446 0 130 25 0 0 0 0 0 8466 8831 0 2861 945 0 0 0 0 0 60 21103 

h11 455 452 0 130 25 0 0 0 0 0 8466 8884 0 2861 945 0 0 0 0 0 0 21155 

h12 455 455 0 130 25 0 0 0 0 0 8466 8831 0 2861 945 0 0 0 0 0 0 21103 

h13 455 452 0 130 25 0 0 0 0 0 8466 8887 0 2861 1041 0 0 0 0 0 0 21255 

h14 455 455 0 130 29.8 0 0 0 0 0 8466 8481 0 2861 945 0 0 0 0 0 0 20752 

h15 455 432 0 130 25 0 0 0 0 0 8466 8674 0 2861 945 0 0 0 0 0 230 20945 

h16 455 443 0 130 25 0 0 0 0 0 8466 7220 2892 2861 945 0 0 0 0 0 0 22384 

h17 455 360 130 130 25 0 0 0 0 0 8466 7885 2892 2861 945 0 0 0 0 0 60 23048 

h18 455 398 130 130 25 0 0 0 0 0 8466 7745 2892 2861 945 0 0 0 0 0 0 22908 

h19 455 390 130 130 25 0 0 0 0 0 8466 8288 2892 2861 945 0 0 0 0 0 90 23451 

h20 455 421 130 130 25 0 0 0 0 0 8466 7885 2892 2861 945 0 0 0 0 0 520 23048 

h21 455 398 130 130 25 0 0 0 0 0 8466 6871 2892 2861 945 0 0 0 0 0 0 22034 

h22 455 340 130 130 25 0 0 0 0 0 8466 6399 2892 2861 0 0 0 0 0 0 170 20618 

h23 455 313 130 130 0 0 0 0 0 0 8466 7378 2892 0 0 0 0 920 0 0 0 19655 

h24 455 369 130 0 0 0 0 10 0 0 8466 6766 2892 0 0 0 0 0 0 0 60 18124 
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Table 5.15: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekend) with OC and EL demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 398 0 0 0 20 0 0 0 0 8466 7885 0 0 0 818 0 0 0 0 900 17169 

h2 455 388 0 0 0 20 0 0 0 0 8466 7710 0 0 0 818 0 0 0 0 1280 16994 

h3 455 380 0 0 0 20 0 0 0 0 8466 7570 0 0 0 818 0 0 0 0 0 16854 

h4 455 272 130 0 0 0 0 0 0 0 8466 5684 2892 0 0 0 0 0 0 0 0 17042 

h5 455 286 130 0 0 0 0 0 0 0 8466 5928 2892 0 0 0 0 0 0 0 520 17286 

h6 455 312 130 0 0 0 0 0 0 0 8466 6382 2892 0 0 0 0 0 0 0 60 17739 

h7 455 346 130 0 0 0 0 0 0 0 8466 6976 2892 0 0 0 0 0 0 0 0 18333 

h8 455 365 130 0 25 0 0 0 0 0 8466 7308 2892 0 945 0 0 0 0 0 170 19610 

h9 455 421 130 0 25 0 0 0 0 0 8466 8288 2892 0 945 0 0 0 0 0 60 20591 

h10 455 455 130 0 35 0 0 0 0 0 8466 8887 2892 0 1140 0 0 0 0 0 0 21385 

h11 455 386 130 130 25 0 0 0 0 0 8466 7675 2892 2861 945 0 0 0 0 0 260 22838 

h12 455 420 130 130 25 0 0 0 0 0 8466 8270 2892 2861 945 0 0 0 0 0 0 23434 

h13 455 419 130 130 25 0 0 0 0 0 8466 8253 2892 2861 945 0 0 0 0 0 0 23416 

h14 455 413 130 130 25 0 0 0 0 0 8466 8148 2892 2861 945 0 0 0 0 0 0 23311 

h15 455 416 130 130 25 0 0 0 0 0 8466 8200 2892 2861 945 0 0 0 0 0 170 23364 

h16 455 444 130 130 25 0 0 0 0 0 8466 8691 2892 2861 945 0 0 0 0 0 60 23854 

h17 455 455 130 130 38 0 0 0 0 0 8466 8887 2892 2861 1200 0 0 0 0 0 60 24306 

h18 455 435 130 130 25 0 0 0 0 0 8466 8533 2892 2861 945 0 0 0 0 0 0 23697 

h19 455 455 0 130 87 20 0 0 0 0 8466 8887 0 2861 2190 818 0 0 0 0 0 23222 

h20 455 455 0 130 55 20 0 0 0 0 8466 8887 0 2861 1542 818 0 0 0 0 260 22574 

h21 455 444 0 130 25 20 0 0 0 0 8466 8691 0 2861 945 818 0 0 0 0 120 21781 

h22 455 409 0 130 25 0 0 0 0 0 8466 8078 0 2861 945 0 0 0 0 0 60 20349 

h23 455 455 0 0 49 0 0 0 0 0 8466 8887 0 0 1421 0 0 0 0 0 0 18774 

h24 455 429 0 0 25 0 0 0 0 0 8466 8428 0 0 945 0 0 0 0 0 0 17839 
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Table 5.16: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekday) with OC and EL demand using CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 398 0 0 0 20 0 0 0 0 8466 7885 0 0 0 818 0 0 0 0 170 17169 

h2 455 382 0 0 0 20 0 0 0 0 8466 7605 0 0 0 818 0 0 0 0 0 16889 

h3 455 375 0 0 0 20 0 0 0 0 8466 7483 0 0 0 818 0 0 0 0 0 16766 

h4 455 274 0 130 0 0 0 0 0 0 8466 5719 0 2861 0 0 0 0 0 0 550 17046 

h5 455 311 0 130 0 0 0 0 0 0 8466 6364 0 2861 0 0 0 0 0 0 0 17691 

h6 455 345 0 130 25 0 0 0 0 0 8466 6958 0 2861 945 0 0 0 0 0 60 19230 

h7 455 398 0 130 25 0 0 0 0 0 8466 7885 0 2861 945 0 0 0 0 0 1120 20157 

h8 455 450 0 130 25 0 0 0 0 0 8466 8796 0 2861 945 0 0 0 0 0 0 21068 

h9 455 356 130 130 25 0 0 0 0 0 8466 7150 2892 2861 945 0 0 0 0 0 170 22314 

h10 455 455 130 0 42 20 0 0 0 0 8466 8887 2892 0 1280 818 0 0 0 0 0 22344 

h11 455 455 130 0 45 20 0 0 0 0 8466 8887 2892 0 1341 818 0 0 0 0 0 22404 

h12 455 455 130 0 42 20 0 0 0 0 8466 8887 2892 0 1280 818 0 0 0 0 0 22344 

h13 455 455 130 0 50 20 0 0 0 0 8466 8887 2892 0 1441 818 0 0 0 0 1800 22504 

h14 455 455 130 0 42 0 0 0 0 0 8466 8887 2892 0 1280 0 0 0 0 0 0 21526 

h15 455 353 130 130 25 0 0 0 0 0 8466 7098 2892 2861 945 0 0 0 0 0 0 22261 

h16 455 400 130 130 25 0 0 0 0 0 8466 7920 2892 2861 945 0 0 0 0 0 520 23083 

h17 455 438 130 130 25 0 0 0 0 0 8466 8586 2892 2861 945 0 0 0 0 0 170 23749 

h18 455 430 130 130 25 0 0 0 0 0 8466 8446 2892 2861 945 0 0 0 0 0 0 23609 

h19 455 455 130 130 31 0 0 0 0 0 8466 8887 2892 2861 1061 0 0 0 0 0 0 24166 

h20 455 438 130 130 25 0 0 0 0 0 8466 8586 2892 2861 945 0 0 0 0 0 0 23749 

h21 455 380 130 130 25 0 0 0 0 0 8466 7570 2892 2861 945 0 0 0 0 0 0 22733 

h22 455 333 130 130 0 20 0 0 0 0 8466 6748 2892 2861 0 818 0 0 0 0 0 21785 

h23 455 399 0 130 0 20 0 0 0 0 8466 7903 0 2861 0 818 0 0 0 0 0 20047 

h24 455 354 0 130 0 20 0 0 0 0 8466 7115 0 2861 0 818 0 0 0 0 0 19260 
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Table 5.17: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekend) with OC, EL demand and Wind Power using 

CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 241 0 0 0 0 0 0 0 0 8466 5144 0 0 0 0 0 0 0 0 0 13610 

h2 455 237 0 0 0 0 0 0 0 0 8466 5075 0 0 0 0 0 0 0 0 0 13540 

h3 455 242 0 0 0 0 0 0 0 0 8466 5162 0 0 0 0 0 0 0 0 1170 13627 

h4 455 257 0 0 0 0 0 0 0 0 8466 5423 0 0 0 0 0 0 0 0 340 13889 

h5 455 274 0 0 0 0 0 0 0 0 8466 5719 0 0 0 0 0 0 0 0 900 14185 

h6 455 305 0 0 0 0 0 0 0 0 8466 6260 0 0 0 0 0 0 0 0 0 14725 

h7 455 356 0 0 0 0 0 0 0 0 8466 7150 0 0 0 0 0 0 0 0 60 15616 

h8 455 281 0 130 0 0 0 0 0 0 8466 5841 0 2861 0 0 0 0 0 0 0 17168 

h9 455 330 0 130 0 0 0 0 0 0 8466 6696 0 2861 0 0 0 0 0 0 0 18023 

h10 455 244 130 130 0 0 0 0 0 0 8466 5196 2892 2861 0 0 0 0 0 0 0 19415 

h11 455 294 130 130 0 0 0 0 0 0 8466 6068 2892 2861 0 0 0 0 0 0 60 20286 

h12 455 330 130 130 0 0 0 0 0 0 8466 6696 2892 2861 0 0 0 0 0 0 0 20914 

h13 455 330 130 130 0 0 0 0 0 0 8466 6696 2892 2861 0 0 0 0 0 0 550 20914 

h14 455 329 130 130 0 0 0 0 0 0 8466 6679 2892 2861 0 0 0 0 0 0 0 20897 

h15 455 334 130 130 0 0 0 0 0 0 8466 6766 2892 2861 0 0 0 0 0 0 0 20984 

h16 455 455 0 130 33 0 0 0 0 0 8466 8887 0 2861 1100 0 0 0 0 0 60 21314 

h17 455 455 0 130 55 0 0 10 0 0 8466 8887 0 2861 1542 0 0 920 0 0 0 22675 

h18 455 455 0 130 44 0 0 0 0 0 8466 8887 0 2861 1331 0 0 0 0 0 0 21544 

h19 455 437 0 130 25 0 0 0 0 0 8466 8575 0 2861 945 0 0 0 0 0 0 20847 

h20 455 385 0 130 25 0 0 0 0 0 8466 7658 0 2861 945 0 0 0 0 0 60 19929 

h21 455 455 0 0 37 0 0 0 0 0 8466 8887 0 0 1180 0 0 0 0 0 340 18534 

h22 455 402 0 0 25 0 0 0 0 0 8466 7955 0 0 945 0 0 0 0 0 0 17366 

h23 455 344 0 0 0 0 0 0 0 0 8466 6941 0 0 0 0 0 0 0 0 0 15406 

h24 455 279 0 0 0 0 0 0 0 0 8466 5806 0 0 0 0 0 0 0 0 0 14272 
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Table 5.18: UCP for 10 Unit Test System considering the impact of COVID-19 (Weekday) with OC, EL demand and Wind Power using 

CBWO 

Scheduling of 10 units Individual Fuel Cost 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 SUC Hourly FC 

h1 455 241 0 0 0 0 0 0 0 0 8466 5144 0 0 0 0 0 0 0 0 0 13610 

h2 455 231 0 0 0 0 0 0 0 0 8466 4970 0 0 0 0 0 0 0 0 0 13436 

h3 455 237 0 0 0 0 0 0 0 0 8466 5075 0 0 0 0 0 0 0 0 840 13540 

h4 455 259 0 0 0 0 0 0 0 0 8466 5458 0 0 0 0 0 0 0 0 560 13923 

h5 455 299 0 0 0 0 0 0 0 0 8466 6155 0 0 0 0 0 0 0 0 520 14621 

h6 455 363 0 0 0 0 0 0 0 0 8466 7273 0 0 0 0 0 0 0 0 60 15739 

h7 455 303 0 130 0 0 0 0 0 0 8466 6225 0 2861 0 0 0 0 0 0 0 17551 

h8 455 346 0 130 0 20 0 0 0 0 8466 6976 0 2861 0 818 0 0 0 0 0 19120 

h9 455 375 0 130 0 20 0 0 0 0 8466 7483 0 2861 0 818 0 0 0 0 0 19627 

h10 455 381 0 130 0 20 0 0 0 0 8466 7588 0 2861 0 818 0 0 0 0 0 19732 

h11 455 378 0 130 25 0 0 0 0 0 8466 7535 0 2861 945 0 0 0 0 0 0 19807 

h12 455 377 0 130 25 0 0 0 0 0 8466 7518 0 2861 945 0 0 0 0 0 260 19789 

h13 455 386 0 130 25 0 0 0 0 0 8466 7675 0 2861 945 0 0 0 0 0 0 19947 

h14 455 455 0 0 63 0 0 0 0 0 8466 8887 0 0 1703 0 0 0 0 0 0 19056 

h15 455 376 130 0 25 0 0 0 0 0 8466 7500 2892 0 945 0 0 0 0 0 0 19803 

h16 455 419 130 0 25 0 0 0 0 0 8466 8253 2892 0 945 0 0 0 0 0 0 20555 

h17 455 455 130 0 35 0 0 0 0 0 8466 8887 2892 0 1140 0 0 0 0 0 1800 21385 

h18 455 455 130 0 39 0 0 0 0 0 8466 8887 2892 0 1230 0 0 0 0 0 0 21475 

h19 455 361 130 130 25 0 0 0 0 0 8466 7245 2892 2861 945 0 0 0 0 0 60 22408 

h20 455 448 0 130 25 0 0 0 0 0 8466 8761 0 2861 945 0 0 0 0 0 0 21033 

h21 455 383 0 130 25 0 0 0 0 0 8466 7623 0 2861 945 0 0 0 0 0 0 19894 

h22 455 346 0 130 0 0 0 0 0 0 8466 6976 0 2861 0 0 0 0 0 0 0 18302 

h23 455 259 0 130 0 0 0 0 0 0 8466 5458 0 2861 0 0 0 0 0 0 0 16784 

h24 455 329 0 0 0 0 0 0 0 0 8466 6679 0 0 0 0 0 0 0 0 0 15144 
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Table 5.19: Statistical and hypothetical analysis of 10 Generating Unit System using CBWO 

Optimization Algorithm with different cases. (Weekend) 

Test Case Best Mean Worst Std Median p-Value 

UCP during covid-19 

(FL) 
434625.2 436447.5 438755.7 1113.967 436141.2 1.73E-06 

UCP during covid-19 with 

wind power (FL) 
372580.1 376388.8 381316 2615.44 375341.5 1.73E-06 

UCP during covid-19 

(PL) 
450481.9 452159.3 454131.9 894.067 452078.4 1.73E-06 

UCP during covid-19 with 

wind power (PL) 
389680 392330 397880 2041.1 392090 1.73E-06 

UCP with OC demand 455206.6 456685.2 459378.2 817.2608 456642 1.73E-06 

UCP with EL demand 470227 471388.6 472767 605.1999 471217 1.73E-06 

UCP with OC & EL 

demand 
499741.2 501248 503471.5 804.9991 501226.7 1.73E-06 

UCP with OC & EL with 

wind power 
433221.3 435442 440763.2 1531.049 435206.3 1.73E-06 

 

 

Table 5.20: Statistical and hypothetical analysis of 10 Generating Unit System using CBWO 

Optimization Algorithm with different cases. (Weekday) 

Test Case Best Mean Worst Std Median p-value 

UCP during covid-19 (FL) 441990.9 443469.3 445970.9 855.6401 443410.8 1.73E-06 

UCP during covid-19 with 

wind power (FL) 
378921.3 381093.9 385791.3 1315.072 381061.3 1.73E-06 

UCP during covid-19 (PL) 468460.3 469344.7 470772.8 549.4721 469245.3 1.73E-06 

UCP during covid-19 with 

wind power (PL) 
405100 407290 409750 1251.3 407140 1.73E-06 

UCP with OC demand 462563.9 464770.2 468721.6 1339.206 464526.6 1.73E-06 

UCP with EL demand 484606.7 486260.8 487596.7 756.2914 486071.7 1.73E-06 

UCP with OC & EL 

demand 
508451.7 509898 512623.1 789.3267 509800.5 1.73E-06 

UCP with OC & EL with 

wind power 
440382.4 442432.3 444178.4 1036.38 442442.4 1.73E-06 
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 5.6.2 System of 20 Generating Units 

 The effectiveness of proposed algorithm CBWO is tested and used to get the optimal result 

for UC problem considering the several constraints with 100 iteration and 30 trial runs. 

This part of chapter is illustrating the optimal results for 20 generating units and scheduling 

of units, individual cost of each unit. Table 5.21 to 5.44 display the scheduling and fuel 

cost of each 20 units for all different cases. After incorporating wind power in system 

almost 13.4% of fuel cost was decreased during full lockdown and partial lockdown both.  

  Fuel cost is increased by using OC by 4% and 4.5% during weekend and weekday 

respectively and by using EL, cost increased by 9.3% and 9.5% during weekend and 

weekday. When both OC and EL used the fuel cost is increased by 13.5% and 14.2% during 

weekend and weekday respectively. Incorporating wind power is a wise decision and it 

decreased the fuel cost by 12.1% and 12.4% during weekend and weekday respectively 

when both OC and EL used. Table 5.45 and 5.46 display the best, average and worst fuel 

cost of 20-unit system along with STD and median values for all cases. Wilcoxon rank t-

test and p-test analyses is done to show the effectiveness.  
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Table 5.21: Scheduling a 20-unit system considering the impact of COVID-19 FL (Weekend) using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 293 0 0 0 0 0 0 0 0 455 293 0 0 0 0 0 0 0 0 

h2 455 283 0 0 0 0 0 0 0 0 455 283 0 0 0 0 0 0 0 0 

h3 455 275 0 0 0 0 0 0 0 0 455 275 0 0 0 0 0 0 0 0 

h4 455 277 0 0 0 0 0 0 0 0 455 277 0 0 0 0 0 0 0 0 

h5 455 291 0 0 0 0 0 0 0 0 455 291 0 0 0 0 0 0 0 0 

h6 455 317 0 0 0 0 0 0 0 0 455 317 0 0 0 0 0 0 0 0 

h7 455 351 0 0 0 0 0 0 0 0 455 351 0 0 0 0 0 0 0 0 

h8 455 330 0 130 0 0 0 0 0 0 455 330 0 0 0 0 0 0 0 0 

h9 455 321 0 130 0 0 0 0 0 0 455 321 0 130 0 0 0 0 0 0 

h10 455 300 0 130 0 0 0 0 0 0 455 300 130 130 0 0 0 0 0 0 

h11 455 351 0 130 0 0 0 0 0 0 455 351 130 130 0 0 0 0 0 0 

h12 455 320 130 130 0 0 0 0 0 0 455 320 130 130 0 0 0 0 0 0 

h13 455 319 130 130 0 0 0 0 0 0 455 319 130 130 0 0 0 0 0 0 

h14 455 313 130 130 0 0 0 0 0 0 455 313 130 130 0 0 0 0 0 0 

h15 455 423.5 130 0 25 20 0 0 0 0 455 423.5 0 130 0 0 0 0 0 0 

h16 455 439 130 0 25 20 0 0 0 0 455 439 0 130 25 0 0 0 0 0 

h17 455 455 130 0 33 20 0 0 0 0 455 455 0 130 33 0 0 0 0 0 

h18 455 440 130 0 25 0 0 0 0 0 455 440 0 130 25 0 0 0 0 0 

h19 455 455 0 0 47 0 0 0 0 0 455 455 0 130 47 0 0 0 0 0 

h20 455 445 0 0 25 0 0 0 0 0 455 445 0 130 25 0 0 0 0 0 

h21 455 416.5 0 130 0 0 0 0 0 0 455 416.5 0 0 25 0 0 0 0 0 

h22 455 364 0 130 0 20 0 0 0 0 455 364 0 0 0 0 0 0 0 0 

h23 455 304 0 130 0 20 0 0 0 0 455 304 0 0 0 0 0 0 0 0 

h24 455 351.5 130 130 0 20 0 0 0 0 0 351.5 130 0 0 0 0 0 0 0 
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Table 5.22: Individual fuel cost for Generation of 20 Unit Test System considering the impact of COVID-19 FL (Weekday) using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6054 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 

h2 8466 5879 0 0 0 0 0 0 0 0 8466 5879 0 0 0 0 0 0 0 0 

h3 8466 5740 0 0 0 0 0 0 0 0 8466 5740 0 0 0 0 0 0 0 0 

h4 8466 5775 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 

h5 8466 6019 0 0 0 0 0 0 0 0 8466 6019 0 0 0 0 0 0 0 0 

h6 8466 6473 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 

h7 8466 7066 0 0 0 0 0 0 0 0 8466 7066 0 0 0 0 0 0 0 0 

h8 8466 6700 0 2861 0 0 0 0 0 0 8466 6700 0 0 0 0 0 0 0 0 

h9 8466 6542 0 2861 0 0 0 0 0 0 8466 6542 0 2861 0 0 0 0 0 0 

h10 8466 6176 0 2861 0 0 0 0 0 0 8466 6176 2892 2861 0 0 0 0 0 0 

h11 8466 7066 0 2861 0 0 0 0 0 0 8466 7066 2892 2861 0 0 0 0 0 0 

h12 8466 6525 2892 2861 0 0 0 0 0 0 8466 6525 2892 2861 0 0 0 0 0 0 

h13 8466 6507 2892 2861 0 0 0 0 0 0 8466 6507 2892 2861 0 0 0 0 0 0 

h14 8466 6403 2892 2861 0 0 0 0 0 0 8466 6403 2892 2861 0 0 0 0 0 0 

h15 8466 8335 2892 0 945 818 0 0 0 0 8466 8335 0 2861 0 0 0 0 0 0 

h16 8466 8607 2892 0 945 818 0 0 0 0 8466 8607 0 2861 945 0 0 0 0 0 

h17 8466 8887 2892 0 1104 818 0 0 0 0 8466 8887 0 2861 1104 0 0 0 0 0 

h18 8466 8624 2892 0 945 0 0 0 0 0 8466 8624 0 2861 945 0 0 0 0 0 

h19 8466 8887 0 0 1385 0 0 0 0 0 8466 8887 0 2861 1385 0 0 0 0 0 

h20 8466 8712 0 0 945 0 0 0 0 0 8466 8712 0 2861 945 0 0 0 0 0 

h21 8466 8213 0 2861 0 0 0 0 0 0 8466 8213 0 0 945 0 0 0 0 0 

h22 8466 7294 0 2861 0 818 0 0 0 0 8466 7294 0 0 0 0 0 0 0 0 

h23 8466 6246 0 2861 0 818 0 0 0 0 8466 6246 0 0 0 0 0 0 0 0 

h24 8466 7075 2892 2861 0 818 0 0 0 0 0 7075 2892 0 0 0 0 0 0 0 
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Table 5.23: Scheduling a 20-unit system considering the impact of COVID-19 PL (Weekend) using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 293 0 0 0 0 0 0 0 0 455 293 0 0 0 0 0 0 0 0 

h2 455 277 0 0 0 0 0 0 0 0 455 277 0 0 0 0 0 0 0 0 

h3 455 270 0 0 0 0 0 0 0 0 455 270 0 0 0 0 0 0 0 0 

h4 455 279 0 0 0 0 0 0 0 0 455 279 0 0 0 0 0 0 0 0 

h5 455 316 0 0 0 0 0 0 0 0 455 316 0 0 0 0 0 0 0 0 

h6 455 310 0 130 0 0 0 0 0 0 455 310 0 0 0 0 0 0 0 0 

h7 455 363 0 130 0 0 0 0 0 0 455 363 0 0 0 0 0 0 0 0 

h8 455 350 0 130 0 0 0 0 0 0 455 350 0 130 0 0 0 0 0 0 

h9 455 321 130 130 0 0 0 0 0 0 455 321 0 130 0 0 0 0 0 0 

h10 455 327 130 130 0 0 0 0 0 0 455 327 0 130 0 0 0 0 0 0 

h11 455 330 130 0 0 0 0 0 0 0 455 330 130 130 0 0 0 0 0 0 

h12 455 327 130 0 0 0 0 0 0 0 455 327 130 130 0 0 0 0 0 0 

h13 455 387.5 130 0 25 0 0 0 0 0 455 387.5 130 0 0 0 0 0 0 0 

h14 455 359.5 130 0 25 0 0 0 0 0 455 359.5 130 0 0 0 0 0 0 0 

h15 455 370.5 130 0 25 0 0 0 0 0 455 370.5 130 0 0 0 0 0 0 0 

h16 455 352.5 130 130 25 0 0 0 0 0 455 352.5 130 0 0 0 0 0 0 0 

h17 455 390.5 130 130 25 0 0 0 0 0 455 390.5 130 0 0 0 0 0 0 0 

h18 455 382.5 130 130 25 0 0 0 0 0 455 382.5 0 130 0 0 0 0 0 0 

h19 455 413.5 130 130 25 0 0 0 0 0 455 413.5 0 130 0 0 0 0 0 0 

h20 455 390.5 130 130 25 0 0 0 0 0 455 390.5 0 130 0 0 0 0 0 0 

h21 455 345 130 130 0 0 0 0 0 0 455 345 0 130 0 0 0 0 0 0 

h22 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 

h23 455 411.5 0 0 0 0 0 0 0 0 455 411.5 0 0 25 0 0 0 0 0 

h24 455 366.5 0 0 0 0 0 0 0 0 455 366.5 0 0 25 0 0 0 0 0 
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Table 5.24: Individual fuel cost for Generation of 20 Unit Test System considering the impact of COVID-19 PL (Weekday) using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6054 0 0 0 0 0 0 0 0 8466 6054 0 0 0 0 0 0 0 0 

h2 8466 5775 0 0 0 0 0 0 0 0 8466 5775 0 0 0 0 0 0 0 0 

h3 8466 5653 0 0 0 0 0 0 0 0 8466 5653 0 0 0 0 0 0 0 0 

h4 8466 5810 0 0 0 0 0 0 0 0 8466 5810 0 0 0 0 0 0 0 0 

h5 8466 6455 0 0 0 0 0 0 0 0 8466 6455 0 0 0 0 0 0 0 0 

h6 8466 6350 0 2861 0 0 0 0 0 0 8466 6350 0 0 0 0 0 0 0 0 

h7 8466 7276 0 2861 0 0 0 0 0 0 8466 7276 0 0 0 0 0 0 0 0 

h8 8466 7049 0 2861 0 0 0 0 0 0 8466 7049 0 2861 0 0 0 0 0 0 

h9 8466 6542 2892 2861 0 0 0 0 0 0 8466 6542 0 2861 0 0 0 0 0 0 

h10 8466 6647 2892 2861 0 0 0 0 0 0 8466 6647 0 2861 0 0 0 0 0 0 

h11 8466 6700 2892 0 0 0 0 0 0 0 8466 6700 2892 2861 0 0 0 0 0 0 

h12 8466 6647 2892 0 0 0 0 0 0 0 8466 6647 2892 2861 0 0 0 0 0 0 

h13 8466 7705 2892 0 945 0 0 0 0 0 8466 7705 2892 0 0 0 0 0 0 0 

h14 8466 7215 2892 0 945 0 0 0 0 0 8466 7215 2892 0 0 0 0 0 0 0 

h15 8466 7407 2892 0 945 0 0 0 0 0 8466 7407 2892 0 0 0 0 0 0 0 

h16 8466 7093 2892 2861 945 0 0 0 0 0 8466 7093 2892 0 0 0 0 0 0 0 

h17 8466 7757 2892 2861 945 0 0 0 0 0 8466 7757 2892 0 0 0 0 0 0 0 

h18 8466 7617 2892 2861 945 0 0 0 0 0 8466 7617 0 2861 0 0 0 0 0 0 

h19 8466 8160 2892 2861 945 0 0 0 0 0 8466 8160 0 2861 0 0 0 0 0 0 

h20 8466 7757 2892 2861 945 0 0 0 0 0 8466 7757 0 2861 0 0 0 0 0 0 

h21 8466 6962 2892 2861 0 0 0 0 0 0 8466 6962 0 2861 0 0 0 0 0 0 

h22 8466 7189 0 2861 0 0 0 0 0 0 8466 7189 0 2861 0 0 0 0 0 0 

h23 8466 8125 0 0 0 0 0 0 0 0 8466 8125 0 0 945 0 0 0 0 0 

h24 8466 7337 0 0 0 0 0 0 0 0 8466 7337 0 0 945 0 0 0 0 0 
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Table 5.25: Scheduling a 20-unit system considering the impact of COVID-19 (Weekend) with wind power using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 232 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h2 455 224 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h3 455 234 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h4 455 264 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h5 455 298 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h6 455 230 0 130 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h7 455 202 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h8 455 182 0 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 

h9 455 280 0 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 

h10 455 184 0 130 0 0 0 0 0 0 455 184 130 130 0 0 0 0 0 0 

h11 455 299 0 0 0 0 0 0 0 0 455 299 130 130 0 0 0 0 0 0 

h12 455 335 0 0 0 0 0 0 0 0 455 335 130 130 0 0 0 0 0 0 

h13 455 335 130 0 0 0 0 0 0 0 455 335 0 130 0 0 0 0 0 0 

h14 455 334 130 0 0 0 0 0 0 0 455 334 0 130 0 0 0 0 0 0 

h15 455 339 130 0 0 0 0 0 0 0 455 339 0 130 0 0 0 0 0 0 

h16 455 350.5 130 0 25 0 0 0 0 0 455 350.5 0 130 0 0 0 0 0 0 

h17 455 382.5 130 130 25 0 0 0 0 0 455 382.5 0 0 0 0 0 0 0 0 

h18 455 427 0 130 25 0 0 0 0 0 455 427 0 0 0 0 0 0 0 0 

h19 455 389.9 0 130 25 0 0 0 0 0 455 389.9 0 0 0 0 0 0 0 0 

h20 455 337.5 0 130 25 0 0 0 0 0 455 337.5 0 0 0 0 0 0 0 0 

h21 455 289.5 0 130 25 0 0 0 0 0 455 289.5 0 0 0 0 0 0 0 0 

h22 455 302 0 0 0 0 0 0 0 0 455 302 0 0 0 0 0 0 0 0 

h23 455 219 0 0 0 0 0 0 0 0 455 219 0 0 0 0 0 0 0 0 

h24 455 381.5 0 0 0 0 0 0 0 0 0 381.5 0 0 0 0 0 0 0 0 

 

 



215 

 

Table 5.26: Individual fuel cost for 20 Unit system considering the impact of COVID-19 (Weekend) with wind power using CBWO   

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 4991 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h2 8466 4852 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h3 8466 5026 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h4 8466 5548 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h5 8466 6141 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h6 8466 4956 0 2861 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h7 8466 4469 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h8 8466 4122 0 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 

h9 8466 5827 0 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 

h10 8466 4156 0 2861 0 0 0 0 0 0 8466 4156 2892 2861 0 0 0 0 0 0 

h11 8466 6158 0 0 0 0 0 0 0 0 8466 6158 2892 2861 0 0 0 0 0 0 

h12 8466 6787 0 0 0 0 0 0 0 0 8466 6787 2892 2861 0 0 0 0 0 0 

h13 8466 6787 2892 0 0 0 0 0 0 0 8466 6787 0 2861 0 0 0 0 0 0 

h14 8466 6769 2892 0 0 0 0 0 0 0 8466 6769 0 2861 0 0 0 0 0 0 

h15 8466 6857 2892 0 0 0 0 0 0 0 8466 6857 0 2861 0 0 0 0 0 0 

h16 8466 7058 2892 0 945 0 0 0 0 0 8466 7058 0 2861 0 0 0 0 0 0 

h17 8466 7617 2892 2861 945 0 0 0 0 0 8466 7617 0 0 0 0 0 0 0 0 

h18 8466 8397 0 2861 945 0 0 0 0 0 8466 8397 0 0 0 0 0 0 0 0 

h19 8466 7747 0 2861 945 0 0 0 0 0 8466 7747 0 0 0 0 0 0 0 0 

h20 8466 6831 0 2861 945 0 0 0 0 0 8466 6831 0 0 0 0 0 0 0 0 

h21 8466 5993 0 2861 945 0 0 0 0 0 8466 5993 0 0 0 0 0 0 0 0 

h22 8466 6211 0 0 0 0 0 0 0 0 8466 6211 0 0 0 0 0 0 0 0 

h23 8466 4765 0 0 0 0 0 0 0 0 8466 4765 0 0 0 0 0 0 0 0 

h24 8466 7600 0 0 0 0 0 0 0 0 0 7600 0 0 0 0 0 0 0 0 
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Table 5.27: Scheduling a 20-unit system considering the impact of COVID-19 (Weekday) with wind power using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 232 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h2 455 212 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h3 455 224 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h4 455 268 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h5 455 218 0 130 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 

h6 455 216 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h7 455 226 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h8 455 222 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 

h9 455 280 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 

h10 455 211 130 0 0 0 0 0 0 0 455 211 130 130 0 0 0 0 0 0 

h11 455 278 130 0 0 0 0 0 0 0 455 278 130 0 0 0 0 0 0 0 

h12 455 342 0 0 0 0 0 0 0 0 455 342 130 0 0 0 0 0 0 0 

h13 455 403.5 0 0 25 0 0 0 0 0 455 403.5 0 0 0 0 0 0 0 0 

h14 455 380.5 0 0 25 0 0 0 0 0 455 380.5 0 0 0 0 0 0 0 0 

h15 455 393.5 0 0 25 0 0 0 0 0 455 393.5 0 0 0 0 0 0 0 0 

h16 455 371.5 0 130 25 0 0 0 0 0 455 371.5 0 0 0 0 0 0 0 0 

h17 455 417.5 0 130 25 0 0 0 0 0 455 417.5 0 0 0 0 0 0 0 0 

h18 455 422 0 130 25 0 0 0 0 0 455 422 0 0 0 0 0 0 0 0 

h19 455 326.4 130 130 0 0 0 0 0 0 455 326.4 0 130 0 0 0 0 0 0 

h20 455 283 130 130 0 0 0 0 0 0 455 283 0 130 0 0 0 0 0 0 

h21 455 283 130 0 0 0 0 0 0 0 455 283 0 130 0 0 0 0 0 0 

h22 455 0 130 0 0 0 0 0 0 0 455 287 130 130 25 0 0 0 0 0 

h23 455 0 111.709 0 0 0 0 0 0 0 455 150 111.709 129.582 25 0 0 0 0 0 

h24 455 0 0 0 0 20 0 0 0 0 455 0 130 130 108 20 0 0 0 0 
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Table 5.28: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekday) with wind power using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 4991 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h2 8466 4643 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h3 8466 4852 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h4 8466 5618 0 0 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h5 8466 4747 0 2861 0 0 0 0 0 0 8466 0 0 0 0 0 0 0 0 0 

h6 8466 4713 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h7 8466 4887 2892 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h8 8466 4817 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 

h9 8466 5827 2892 2861 0 0 0 0 0 0 8466 0 2892 2861 0 0 0 0 0 0 

h10 8466 4626 2892 0 0 0 0 0 0 0 8466 4626 2892 2861 0 0 0 0 0 0 

h11 8466 5792 2892 0 0 0 0 0 0 0 8466 5792 2892 0 0 0 0 0 0 0 

h12 8466 6909 0 0 0 0 0 0 0 0 8466 6909 2892 0 0 0 0 0 0 0 

h13 8466 7985 0 0 945 0 0 0 0 0 8466 7985 0 0 0 0 0 0 0 0 

h14 8466 7582 0 0 945 0 0 0 0 0 8466 7582 0 0 0 0 0 0 0 0 

h15 8466 7810 0 0 945 0 0 0 0 0 8466 7810 0 0 0 0 0 0 0 0 

h16 8466 7425 0 2861 945 0 0 0 0 0 8466 7425 0 0 0 0 0 0 0 0 

h17 8466 8230 0 2861 945 0 0 0 0 0 8466 8230 0 0 0 0 0 0 0 0 

h18 8466 8309 0 2861 945 0 0 0 0 0 8466 8309 0 0 0 0 0 0 0 0 

h19 8466 6637 2892 2861 0 0 0 0 0 0 8466 6637 0 2861 0 0 0 0 0 0 

h20 8466 5879 2892 2861 0 0 0 0 0 0 8466 5879 0 2861 0 0 0 0 0 0 

h21 8466 5879 2892 0 0 0 0 0 0 0 8466 5879 0 2861 0 0 0 0 0 0 

h22 8466 0 2892 0 0 0 0 0 0 0 8466 5949 2892 2861 945 0 0 0 0 0 

h23 8466 0 2579 0 0 0 0 0 0 0 8466 3566 2579 2854 945 0 0 0 0 0 

h24 8466 0 0 0 0 818 0 0 0 0 8466 0 2892 2861 2624 818 0 0 0 0 
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Table 5.29: Scheduling a 20-unit system considering the impact of COVID-19 (Weekend) with OC demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 333 0 0 0 0 0 0 0 0 455 333 0 0 0 0 0 0 0 0 

h2 455 323 0 0 0 0 0 0 0 0 455 323 0 0 0 0 0 0 0 0 

h3 455 315 0 0 0 0 0 0 0 0 455 315 0 0 0 0 0 0 0 0 

h4 455 317 0 0 0 0 0 0 0 0 455 317 0 0 0 0 0 0 0 0 

h5 455 331 0 0 0 0 0 0 0 0 455 331 0 0 0 0 0 0 0 0 

h6 455 357 0 0 0 0 0 0 0 0 455 357 0 0 0 0 0 0 0 0 

h7 455 326 0 130 0 0 0 0 0 0 455 326 0 0 0 0 0 0 0 0 

h8 455 305 0 130 0 0 0 0 0 0 455 305 0 130 0 0 0 0 0 0 

h9 455 296 130 130 0 0 0 0 0 0 455 296 0 130 0 0 0 0 0 0 

h10 455 340 130 130 0 0 0 0 0 0 455 340 0 130 0 0 0 0 0 0 

h11 455 326 130 130 0 0 0 0 0 0 455 326 130 130 0 0 0 0 0 0 

h12 455 347.5 130 130 25 0 0 0 0 0 455 347.5 130 130 0 0 0 0 0 0 

h13 455 346.5 130 130 25 0 0 0 0 0 455 346.5 130 130 0 0 0 0 0 0 

h14 455 405.5 0 130 25 0 0 0 0 0 455 405.5 130 130 0 0 0 0 0 0 

h15 455 408.5 0 130 25 0 0 0 0 0 455 408.5 130 130 0 0 0 0 0 0 

h16 455 424 0 130 25 0 0 0 0 0 455 424 130 130 25 0 0 0 0 0 

h17 455 448 0 130 25 0 0 0 0 0 455 448 130 130 25 0 0 0 0 0 

h18 455 455 0 0 50 0 0 0 0 0 455 455 130 130 50 0 0 0 0 0 

h19 455 452 130 0 25 0 0 0 0 0 455 452 130 0 25 0 0 0 0 0 

h20 455 420 130 0 25 0 0 0 0 0 455 420 130 0 25 0 0 0 0 0 

h21 455 446.5 130 0 0 20 0 0 0 0 455 446.5 0 0 25 0 0 0 0 0 

h22 455 394 130 0 0 20 0 0 0 0 455 394 0 0 0 20 0 0 0 0 

h23 455 334 130 0 0 20 0 0 0 0 455 334 0 0 0 20 0 0 0 0 

h24 455 359 0 0 0 0 0 0 0 0 455 359 0 0 0 20 0 0 0 0 
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Table 5.30: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekend) with OC demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6752 0 0 0 0 0 0 0 0 8466 6752 0 0 0 0 0 0 0 0 

h2 8466 6577 0 0 0 0 0 0 0 0 8466 6577 0 0 0 0 0 0 0 0 

h3 8466 6438 0 0 0 0 0 0 0 0 8466 6438 0 0 0 0 0 0 0 0 

h4 8466 6473 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 

h5 8466 6717 0 0 0 0 0 0 0 0 8466 6717 0 0 0 0 0 0 0 0 

h6 8466 7171 0 0 0 0 0 0 0 0 8466 7171 0 0 0 0 0 0 0 0 

h7 8466 6630 0 2861 0 0 0 0 0 0 8466 6630 0 0 0 0 0 0 0 0 

h8 8466 6263 0 2861 0 0 0 0 0 0 8466 6263 0 2861 0 0 0 0 0 0 

h9 8466 6106 2892 2861 0 0 0 0 0 0 8466 6106 0 2861 0 0 0 0 0 0 

h10 8466 6874 2892 2861 0 0 0 0 0 0 8466 6874 0 2861 0 0 0 0 0 0 

h11 8466 6630 2892 2861 0 0 0 0 0 0 8466 6630 2892 2861 0 0 0 0 0 0 

h12 8466 7005 2892 2861 945 0 0 0 0 0 8466 7005 2892 2861 0 0 0 0 0 0 

h13 8466 6988 2892 2861 945 0 0 0 0 0 8466 6988 2892 2861 0 0 0 0 0 0 

h14 8466 8020 0 2861 945 0 0 0 0 0 8466 8020 2892 2861 0 0 0 0 0 0 

h15 8466 8072 0 2861 945 0 0 0 0 0 8466 8072 2892 2861 0 0 0 0 0 0 

h16 8466 8344 0 2861 945 0 0 0 0 0 8466 8344 2892 2861 945 0 0 0 0 0 

h17 8466 8765 0 2861 945 0 0 0 0 0 8466 8765 2892 2861 945 0 0 0 0 0 

h18 8466 8887 0 0 1445 0 0 0 0 0 8466 8887 2892 2861 1445 0 0 0 0 0 

h19 8466 8835 2892 0 945 0 0 0 0 0 8466 8835 2892 0 945 0 0 0 0 0 

h20 8466 8274 2892 0 945 0 0 0 0 0 8466 8274 2892 0 945 0 0 0 0 0 

h21 8466 8738 2892 0 0 818 0 0 0 0 8466 8738 0 0 945 0 0 0 0 0 

h22 8466 7819 2892 0 0 818 0 0 0 0 8466 7819 0 0 0 818 0 0 0 0 

h23 8466 6769 2892 0 0 818 0 0 0 0 8466 6769 0 0 0 818 0 0 0 0 

h24 8466 7626 0 0 0 818 0 0 0 0 8466 7626 2892 0 0 0 0 0 0 0 
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Table 5.31: Scheduling a 20-unit system considering the impact of COVID-19 (Weekday) with OC demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 333 0 0 0 0 0 0 0 0 455 333 0 0 0 0 0 0 0 0 

h2 455 317 0 0 0 0 0 0 0 0 455 317 0 0 0 0 0 0 0 0 

h3 455 310 0 0 0 0 0 0 0 0 455 310 0 0 0 0 0 0 0 0 

h4 455 319 0 0 0 0 0 0 0 0 455 319 0 0 0 0 0 0 0 0 

h5 455 356 0 0 0 0 0 0 0 0 455 356 0 0 0 0 0 0 0 0 

h6 455 350 130 0 0 0 0 0 0 0 455 350 0 0 0 0 0 0 0 0 

h7 455 338 130 0 0 0 0 0 0 0 455 338 0 130 0 0 0 0 0 0 

h8 455 325 130 130 0 0 0 0 0 0 455 325 0 130 0 0 0 0 0 0 

h9 455 296 130 130 0 0 0 0 0 0 455 296 130 130 0 0 0 0 0 0 

h10 455 302 130 130 0 0 0 0 0 0 455 302 130 130 0 0 0 0 0 0 

h11 455 270 130 130 25 0 0 0 0 0 455 270 130 130 25 20 0 0 0 0 

h12 455 397 0 130 25 0 0 0 0 0 455 397 130 0 25 20 0 0 0 0 

h13 455 455 0 0 40 0 0 0 0 0 455 455 130 0 40 20 0 0 0 0 

h14 455 452 0 0 25 0 0 0 0 0 455 452 130 0 25 0 0 0 0 0 

h15 455 455 0 0 33 0 0 0 0 0 455 455 130 0 33 0 0 0 0 0 

h16 455 455 0 0 67.5 0 25 0 0 0 455 455 130 0 67.5 0 0 0 0 0 

h17 455 455 0 0 40.5 0 25 0 0 0 455 455 130 130 40.5 0 0 0 0 0 

h18 455 410 130 130 25 0 25 0 0 0 455 410 0 130 0 0 0 0 0 0 

h19 455 433.5 130 130 25 20 0 0 0 0 455 433.5 0 130 0 20 0 0 0 0 

h20 455 410.5 130 130 25 20 0 0 0 0 455 410.5 0 130 0 20 0 0 0 0 

h21 455 365 130 130 0 20 0 0 0 0 455 365 0 130 0 20 0 0 0 0 

h22 455 333 130 130 0 0 0 0 0 0 455 333 0 130 0 0 0 0 0 0 

h23 455 334 0 130 0 0 0 0 0 0 455 334 0 130 0 0 0 0 0 0 

h24 455 406.5 0 0 0 0 0 0 0 0 455 406.5 0 0 25 0 0 0 0 0 
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Table 5.32: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekday) with OC demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6752 0 0 0 0 0 0 0 0 8466 6752 0 0 0 0 0 0 0 0 

h2 8466 6473 0 0 0 0 0 0 0 0 8466 6473 0 0 0 0 0 0 0 0 

h3 8466 6350 0 0 0 0 0 0 0 0 8466 6350 0 0 0 0 0 0 0 0 

h4 8466 6507 0 0 0 0 0 0 0 0 8466 6507 0 0 0 0 0 0 0 0 

h5 8466 7154 0 0 0 0 0 0 0 0 8466 7154 0 0 0 0 0 0 0 0 

h6 8466 7049 2892 0 0 0 0 0 0 0 8466 7049 0 0 0 0 0 0 0 0 

h7 8466 6839 2892 0 0 0 0 0 0 0 8466 6839 0 2861 0 0 0 0 0 0 

h8 8466 6612 2892 2861 0 0 0 0 0 0 8466 6612 0 2861 0 0 0 0 0 0 

h9 8466 6106 2892 2861 0 0 0 0 0 0 8466 6106 2892 2861 0 0 0 0 0 0 

h10 8466 6211 2892 2861 0 0 0 0 0 0 8466 6211 2892 2861 0 0 0 0 0 0 

h11 8466 5653 2892 2861 945 0 0 0 0 0 8466 5653 2892 2861 945 818 0 0 0 0 

h12 8466 7871 0 2861 945 0 0 0 0 0 8466 7871 2892 0 945 818 0 0 0 0 

h13 8466 8887 0 0 1244 0 0 0 0 0 8466 8887 2892 0 1244 818 0 0 0 0 

h14 8466 8835 0 0 945 0 0 0 0 0 8466 8835 2892 0 945 0 0 0 0 0 

h15 8466 8887 0 0 1104 0 0 0 0 0 8466 8887 2892 0 1104 0 0 0 0 0 

h16 8466 8887 0 0 1798 0 1174 0 0 0 8466 8887 2892 0 1798 0 0 0 0 0 

h17 8466 8887 0 0 1254 0 1174 0 0 0 8466 8887 2892 2861 1254 0 0 0 0 0 

h18 8466 8099 2892 2861 945 0 1174 0 0 0 8466 8099 0 2861 0 0 0 0 0 0 

h19 8466 8510 2892 2861 945 818 0 0 0 0 8466 8510 0 2861 0 818 0 0 0 0 

h20 8466 8107 2892 2861 945 818 0 0 0 0 8466 8107 0 2861 0 818 0 0 0 0 

h21 8466 7311 2892 2861 0 818 0 0 0 0 8466 7311 0 2861 0 818 0 0 0 0 

h22 8466 6752 2892 2861 0 0 0 0 0 0 8466 6752 0 2861 0 0 0 0 0 0 

h23 8466 6769 0 2861 0 0 0 0 0 0 8466 6769 0 2861 0 0 0 0 0 0 

h24 8466 8037 0 0 0 0 0 0 0 0 8466 8037 0 0 945 0 0 0 0 0 
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Table 5.33: Scheduling a 20-unit system considering the impact of COVID-19 (Weekend) with EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 312.8 0 130 0 0 0 0 0 0 455 312.8 0 0 0 0 0 0 0 0 

h2 455 302.8 0 130 0 0 0 0 0 0 455 302.8 0 0 0 0 0 0 0 0 

h3 455 294.8 0 130 0 0 0 0 0 0 455 294.8 0 0 0 0 0 0 0 0 

h4 455 296.8 0 130 0 0 0 0 0 0 455 296.8 0 0 0 0 0 0 0 0 

h5 455 310.8 0 130 0 0 0 0 0 0 455 310.8 0 0 0 0 0 0 0 0 

h6 455 336.8 0 130 0 0 0 0 0 0 455 336.8 0 0 0 0 0 0 0 0 

h7 455 305.8 130 0 0 0 0 0 0 0 455 305.8 0 130 0 0 0 0 0 0 

h8 455 349.8 130 0 0 0 0 0 0 0 455 349.8 0 130 0 0 0 0 0 0 

h9 455 340.8 130 0 0 0 0 0 0 0 455 340.8 130 130 0 0 0 0 0 0 

h10 455 372.3 130 0 25 0 0 0 0 0 455 372.3 130 130 0 0 0 0 0 0 

h11 455 410.8 130 0 25 0 0 0 0 0 455 410.8 130 130 25 0 0 0 0 0 

h12 455 444.8 0 130 25 0 0 0 0 0 455 444.8 130 130 25 0 0 0 0 0 

h13 455 433.8 0 130 25 20 0 0 0 0 455 433.8 130 130 25 0 0 0 0 0 

h14 455 427.8 0 130 25 20 0 0 0 0 455 427.8 130 130 25 0 0 0 0 0 

h15 455 430.8 0 130 25 20 0 0 0 0 455 430.8 130 130 25 0 0 0 0 0 

h16 455 455 0 130 38.8 0 0 0 0 0 455 455 130 130 38.8 0 0 0 0 0 

h17 455 427.8 130 130 25 0 0 0 0 0 455 427.8 130 130 25 0 0 0 0 0 

h18 455 407.3 130 130 25 0 0 0 0 0 455 407.3 130 130 0 0 0 0 0 0 

h19 455 434.3 130 0 25 20 0 0 0 0 455 434.3 130 130 0 0 0 0 0 0 

h20 455 402.3 130 0 25 20 0 0 0 0 455 402.3 130 130 0 0 0 0 0 0 

h21 455 373.8 130 0 0 20 0 0 0 0 455 373.8 130 130 0 0 0 0 0 0 

h22 455 328.8 130 0 0 0 0 0 0 0 455 328.8 130 130 0 0 0 0 0 0 

h23 455 388.8 0 0 0 0 0 0 0 0 455 388.8 130 0 0 20 0 0 0 0 

h24 455 338.8 0 130 0 0 0 0 0 0 455 338.8 0 0 0 20 0 0 0 0 
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Table 5.34: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekend) with EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6399 0 2861 0 0 0 0 0 0 8466 6399 0 0 0 0 0 0 0 0 

h2 8466 6225 0 2861 0 0 0 0 0 0 8466 6225 0 0 0 0 0 0 0 0 

h3 8466 6085 0 2861 0 0 0 0 0 0 8466 6085 0 0 0 0 0 0 0 0 

h4 8466 6120 0 2861 0 0 0 0 0 0 8466 6120 0 0 0 0 0 0 0 0 

h5 8466 6364 0 2861 0 0 0 0 0 0 8466 6364 0 0 0 0 0 0 0 0 

h6 8466 6818 0 2861 0 0 0 0 0 0 8466 6818 0 0 0 0 0 0 0 0 

h7 8466 6277 2892 0 0 0 0 0 0 0 8466 6277 0 2861 0 0 0 0 0 0 

h8 8466 7045 2892 0 0 0 0 0 0 0 8466 7045 0 2861 0 0 0 0 0 0 

h9 8466 6888 2892 0 0 0 0 0 0 0 8466 6888 2892 2861 0 0 0 0 0 0 

h10 8466 7439 2892 0 945 0 0 0 0 0 8466 7439 2892 2861 0 0 0 0 0 0 

h11 8466 8113 2892 0 945 0 0 0 0 0 8466 8113 2892 2861 945 0 0 0 0 0 

h12 8466 8709 0 2861 945 0 0 0 0 0 8466 8709 2892 2861 945 0 0 0 0 0 

h13 8466 8516 0 2861 945 818 0 0 0 0 8466 8516 2892 2861 945 0 0 0 0 0 

h14 8466 8411 0 2861 945 818 0 0 0 0 8466 8411 2892 2861 945 0 0 0 0 0 

h15 8466 8463 0 2861 945 818 0 0 0 0 8466 8463 2892 2861 945 0 0 0 0 0 

h16 8466 8887 0 2861 1220 0 0 0 0 0 8466 8887 2892 2861 1220 0 0 0 0 0 

h17 8466 8411 2892 2861 945 0 0 0 0 0 8466 8411 2892 2861 945 0 0 0 0 0 

h18 8466 8051 2892 2861 945 0 0 0 0 0 8466 8051 2892 2861 0 0 0 0 0 0 

h19 8466 8524 2892 0 945 818 0 0 0 0 8466 8524 2892 2861 0 0 0 0 0 0 

h20 8466 7964 2892 0 945 818 0 0 0 0 8466 7964 2892 2861 0 0 0 0 0 0 

h21 8466 7465 2892 0 0 818 0 0 0 0 8466 7465 2892 2861 0 0 0 0 0 0 

h22 8466 6679 2892 0 0 0 0 0 0 0 8466 6679 2892 2861 0 0 0 0 0 0 

h23 8466 7728 0 0 0 0 0 0 0 0 8466 7728 2892 0 0 818 0 0 0 0 

h24 8466 6853 0 2861 0 0 0 0 0 0 8466 6853 0 0 0 818 0 0 0 0 
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Table 5.35: Scheduling a 20-unit system considering the impact of COVID-19 (Weekday) with EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 312.8 0 0 0 0 0 0 0 0 455 312.8 0 130 0 0 0 0 0 0 

h2 455 296.8 0 0 0 0 0 0 0 0 455 296.8 0 130 0 0 0 0 0 0 

h3 455 289.8 0 0 0 0 0 0 0 0 455 289.8 0 130 0 0 0 0 0 0 

h4 455 298.8 0 0 0 0 0 0 0 0 455 298.8 0 130 0 0 0 0 0 0 

h5 455 335.8 0 0 0 0 0 0 0 0 455 335.8 0 130 0 0 0 0 0 0 

h6 455 329.8 0 130 0 0 0 0 0 0 455 329.8 0 130 0 0 0 0 0 0 

h7 455 317.8 130 130 0 0 0 0 0 0 455 317.8 0 130 0 0 0 0 0 0 

h8 455 304.8 130 130 0 0 0 0 0 0 455 304.8 130 130 0 0 0 0 0 0 

h9 455 340.8 130 130 0 0 0 0 0 0 455 340.8 130 130 0 0 0 0 0 0 

h10 455 346.8 130 130 0 0 0 0 0 0 455 346.8 130 130 0 0 0 0 0 0 

h11 455 402.3 130 130 25 0 0 0 0 0 455 402.3 130 0 0 0 0 0 0 0 

h12 455 451.8 130 0 25 0 0 0 0 0 455 451.8 130 0 25 0 0 0 0 0 

h13 455 455 130 0 29.8 0 0 0 0 0 455 455 130 0 29.8 0 0 0 0 0 

h14 455 431.8 130 0 25 0 0 0 0 0 455 431.8 130 0 25 0 0 0 0 0 

h15 455 442.8 130 0 25 0 0 0 0 0 455 442.8 130 0 25 0 0 0 0 0 

h16 455 424.8 130 0 25 0 0 0 0 0 455 424.8 130 130 25 0 0 0 0 0 

h17 455 455 130 130 32.8 0 0 0 0 0 455 455 0 130 32.8 0 0 0 0 0 

h18 455 454.8 130 130 25 0 0 0 0 0 455 454.8 0 130 25 0 0 0 0 0 

h19 455 455 130 130 45.8 20 0 0 0 0 455 455 0 130 45.8 0 0 0 0 0 

h20 455 452.8 130 130 25 20 0 0 0 0 455 452.8 0 130 25 0 0 0 0 0 

h21 455 407.3 130 130 25 20 0 0 0 0 455 407.3 0 130 0 0 0 0 0 0 

h22 455 365.3 0 130 25 0 0 0 0 0 455 365.3 130 130 0 0 0 0 0 0 

h23 455 366.3 0 0 25 0 0 0 0 0 455 366.3 130 130 0 0 0 0 0 0 

h24 455 333.8 0 0 0 0 0 0 0 0 455 333.8 130 130 0 0 0 0 0 0 
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Table 5.36: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekday) with EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 6399 0 0 0 0 0 0 0 0 8466 6399 0 2861 0 0 0 0 0 0 

h2 8466 6120 0 0 0 0 0 0 0 0 8466 6120 0 2861 0 0 0 0 0 0 

h3 8466 5998 0 0 0 0 0 0 0 0 8466 5998 0 2861 0 0 0 0 0 0 

h4 8466 6155 0 0 0 0 0 0 0 0 8466 6155 0 2861 0 0 0 0 0 0 

h5 8466 6801 0 0 0 0 0 0 0 0 8466 6801 0 2861 0 0 0 0 0 0 

h6 8466 6696 0 2861 0 0 0 0 0 0 8466 6696 0 2861 0 0 0 0 0 0 

h7 8466 6487 2892 2861 0 0 0 0 0 0 8466 6487 0 2861 0 0 0 0 0 0 

h8 8466 6260 2892 2861 0 0 0 0 0 0 8466 6260 2892 2861 0 0 0 0 0 0 

h9 8466 6888 2892 2861 0 0 0 0 0 0 8466 6888 2892 2861 0 0 0 0 0 0 

h10 8466 6993 2892 2861 0 0 0 0 0 0 8466 6993 2892 2861 0 0 0 0 0 0 

h11 8466 7964 2892 2861 945 0 0 0 0 0 8466 7964 2892 0 0 0 0 0 0 0 

h12 8466 8831 2892 0 945 0 0 0 0 0 8466 8831 2892 0 945 0 0 0 0 0 

h13 8466 8887 2892 0 1041 0 0 0 0 0 8466 8887 2892 0 1041 0 0 0 0 0 

h14 8466 8481 2892 0 945 0 0 0 0 0 8466 8481 2892 0 945 0 0 0 0 0 

h15 8466 8674 2892 0 945 0 0 0 0 0 8466 8674 2892 0 945 0 0 0 0 0 

h16 8466 8358 2892 0 945 0 0 0 0 0 8466 8358 2892 2861 945 0 0 0 0 0 

h17 8466 8887 2892 2861 1100 0 0 0 0 0 8466 8887 0 2861 1100 0 0 0 0 0 

h18 8466 8884 2892 2861 945 0 0 0 0 0 8466 8884 0 2861 945 0 0 0 0 0 

h19 8466 8887 2892 2861 1361 818 0 0 0 0 8466 8887 0 2861 1361 0 0 0 0 0 

h20 8466 8849 2892 2861 945 818 0 0 0 0 8466 8849 0 2861 945 0 0 0 0 0 

h21 8466 8051 2892 2861 945 818 0 0 0 0 8466 8051 0 2861 0 0 0 0 0 0 

h22 8466 7316 0 2861 945 0 0 0 0 0 8466 7316 2892 2861 0 0 0 0 0 0 

h23 8466 7334 0 0 945 0 0 0 0 0 8466 7334 2892 2861 0 0 0 0 0 0 

h24 8466 6766 0 0 0 0 0 0 0 0 8466 6766 2892 2861 0 0 0 0 0 0 
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Table 5.37: Scheduling a 20-unit system considering the impact of COVID-19 (Weekend) with OC and EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 352.8 0 130 0 0 0 0 0 0 455 352.8 0 0 0 0 0 0 0 0 

h2 455 342.8 0 130 0 0 0 0 0 0 455 342.8 0 0 0 0 0 0 0 0 

h3 455 334.8 0 130 0 0 0 0 0 0 455 334.8 0 0 0 0 0 0 0 0 

h4 455 336.8 0 130 0 0 0 0 0 0 455 336.8 0 0 0 0 0 0 0 0 

h5 455 350.8 0 130 0 0 0 0 0 0 455 350.8 0 0 0 0 0 0 0 0 

h6 455 311.8 130 0 0 0 0 0 0 0 455 311.8 0 130 0 0 0 0 0 0 

h7 455 345.8 130 0 0 0 0 0 0 0 455 345.8 0 130 0 0 0 0 0 0 

h8 455 324.8 130 0 0 0 0 0 0 0 455 324.8 130 130 0 0 0 0 0 0 

h9 455 368.3 130 0 25 0 0 0 0 0 455 368.3 130 130 0 0 0 0 0 0 

h10 455 412.3 130 0 25 0 0 0 0 0 455 412.3 130 130 0 0 0 0 0 0 

h11 455 398.3 130 130 25 0 0 0 0 0 455 398.3 130 130 0 0 0 0 0 0 

h12 455 455 130 130 44.8 0 0 0 0 0 455 455 130 0 44.8 20 0 0 0 0 

h13 455 455 130 130 43.8 0 0 0 0 0 455 455 130 0 43.8 20 0 0 0 0 

h14 455 455 130 130 37.8 0 0 0 0 0 455 455 130 0 37.8 20 0 0 0 0 

h15 455 455 130 130 0 20 25 0 0 0 455 455 130 0 36.6 20 0 0 0 0 

h16 455 455 130 130 0 20 25 0 0 0 455 455 130 0 92.6 20 0 0 0 0 

h17 455 455 130 130 0 20 25 0 0 0 455 455 130 130 30.6 0 0 0 0 0 

h18 455 455 0 130 0 20 25 10 0 0 455 455 130 130 84.6 0 0 0 0 0 

h19 455 455 0 130 0 20 25 0 0 0 455 455 130 130 38.6 0 0 0 0 0 

h20 455 432.3 0 130 0 20 0 0 0 0 455 432.3 130 130 25 20 0 0 0 0 

h21 455 401.3 0 130 25 0 0 0 0 0 455 401.3 130 130 0 20 0 0 0 0 

h22 455 411.3 0 130 25 0 0 0 0 0 455 411.3 130 0 0 20 0 0 0 0 

h23 455 361.3 130 0 25 0 0 0 0 0 455 361.3 130 0 0 0 0 0 0 0 

h24 455 376.3 130 0 25 0 0 0 0 0 455 376.3 0 0 0 0 0 0 0 0 
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Table 5.38: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekend) with OC and EL demand using CBWO  

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 7098 0 2861 0 0 0 0 0 0 8466 7098 0 0 0 0 0 0 0 0 

h2 8466 6923 0 2861 0 0 0 0 0 0 8466 6923 0 0 0 0 0 0 0 0 

h3 8466 6783 0 2861 0 0 0 0 0 0 8466 6783 0 0 0 0 0 0 0 0 

h4 8466 6818 0 2861 0 0 0 0 0 0 8466 6818 0 0 0 0 0 0 0 0 

h5 8466 7063 0 2861 0 0 0 0 0 0 8466 7063 0 0 0 0 0 0 0 0 

h6 8466 6382 2892 0 0 0 0 0 0 0 8466 6382 0 2861 0 0 0 0 0 0 

h7 8466 6976 2892 0 0 0 0 0 0 0 8466 6976 0 2861 0 0 0 0 0 0 

h8 8466 6609 2892 0 0 0 0 0 0 0 8466 6609 2892 2861 0 0 0 0 0 0 

h9 8466 7369 2892 0 945 0 0 0 0 0 8466 7369 2892 2861 0 0 0 0 0 0 

h10 8466 8139 2892 0 945 0 0 0 0 0 8466 8139 2892 2861 0 0 0 0 0 0 

h11 8466 7894 2892 2861 945 0 0 0 0 0 8466 7894 2892 2861 0 0 0 0 0 0 

h12 8466 8887 2892 2861 1341 0 0 0 0 0 8466 8887 2892 0 1341 818 0 0 0 0 

h13 8466 8887 2892 2861 1320 0 0 0 0 0 8466 8887 2892 0 1320 818 0 0 0 0 

h14 8466 8887 2892 2861 1200 0 0 0 0 0 8466 8887 2892 0 1200 818 0 0 0 0 

h15 8466 8887 2892 2861 0 818 1174 0 0 0 8466 8887 2892 0 1176 818 0 0 0 0 

h16 8466 8887 2892 2861 0 818 1174 0 0 0 8466 8887 2892 0 2308 818 0 0 0 0 

h17 8466 8887 2892 2861 0 818 1174 0 0 0 8466 8887 2892 2861 1057 0 0 0 0 0 

h18 8466 8887 0 2861 0 818 1174 920 0 0 8466 8887 2892 2861 2145 0 0 0 0 0 

h19 8466 8887 0 2861 0 818 1174 0 0 0 8466 8887 2892 2861 1216 0 0 0 0 0 

h20 8466 8489 0 2861 0 818 0 0 0 0 8466 8489 2892 2861 945 818 0 0 0 0 

h21 8466 7946 0 2861 945 0 0 0 0 0 8466 7946 2892 2861 0 818 0 0 0 0 

h22 8466 8121 0 2861 945 0 0 0 0 0 8466 8121 2892 0 0 818 0 0 0 0 

h23 8466 7247 2892 0 945 0 0 0 0 0 8466 7247 2892 0 0 0 0 0 0 0 

h24 8466 7509 2892 0 945 0 0 0 0 0 8466 7509 0 0 0 0 0 0 0 0 
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Table 5.39: Scheduling a 20-unit system considering the impact of COVID-19 (Weekday) with OC and EL demand using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 352.8 0 0 0 0 0 0 0 0 455 352.8 0 130 0 0 0 0 0 0 

h2 455 336.8 0 0 0 0 0 0 0 0 455 336.8 0 130 0 0 0 0 0 0 

h3 455 329.8 0 0 0 0 0 0 0 0 455 329.8 0 130 0 0 0 0 0 0 

h4 455 338.8 0 0 0 0 0 0 0 0 455 338.8 0 130 0 0 0 0 0 0 

h5 455 310.8 0 130 0 0 0 0 0 0 455 310.8 0 130 0 0 0 0 0 0 

h6 455 304.8 130 130 0 0 0 0 0 0 455 304.8 0 130 0 0 0 0 0 0 

h7 455 345.3 130 130 0 0 0 0 0 0 455 345.3 0 130 25 0 0 0 0 0 

h8 455 397.3 130 130 0 0 0 0 0 0 455 397.3 130 0 25 0 0 0 0 0 

h9 455 420.8 130 130 25 0 0 0 0 0 455 420.8 130 0 25 0 0 0 0 0 

h10 455 426.8 130 130 25 0 0 0 0 0 455 426.8 130 0 25 0 0 0 0 0 

h11 455 429.8 130 130 25 0 0 0 0 0 455 429.8 130 0 25 0 0 0 0 0 

h12 455 426.8 130 130 25 0 0 0 0 0 455 426.8 130 0 25 0 0 0 0 0 

h13 455 382.3 130 130 25 0 0 0 0 0 455 382.3 130 130 0 0 0 0 0 0 

h14 455 354.3 130 130 25 0 0 0 0 0 455 354.3 130 130 0 0 0 0 0 0 

h15 455 420.3 130 130 25 20 0 0 0 0 455 420.3 0 130 0 0 0 0 0 0 

h16 455 455 130 130 29.6 20 0 0 0 0 455 455 0 130 0 20 0 0 0 0 

h17 455 455 130 130 80.6 20 25 0 0 0 455 455 0 130 0 20 0 0 0 0 

h18 455 455 130 130 64.6 20 25 0 0 0 455 455 0 130 0 20 0 0 0 0 

h19 455 455 130 130 73.3 20 25 0 0 0 455 455 0 130 73.3 0 0 0 0 0 

h20 455 455 0 130 60.3 0 25 0 0 0 455 455 130 130 60.3 0 0 0 0 0 

h21 455 444.8 0 130 25 0 0 0 0 0 455 444.8 130 130 25 0 0 0 0 0 

h22 455 405.3 0 130 0 0 0 0 0 0 455 405.3 130 130 25 0 0 0 0 0 

h23 455 406.3 0 130 0 0 0 0 0 0 455 406.3 130 0 25 0 0 0 0 0 

h24 455 361.3 0 130 0 0 0 0 0 0 455 361.3 130 0 25 0 0 0 0 0 
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Table 5.40: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekday) with OC and EL demand  

using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 7098 0 0 0 0 0 0 0 0 8466 7098 0 2861 0 0 0 0 0 0 

h2 8466 6818 0 0 0 0 0 0 0 0 8466 6818 0 2861 0 0 0 0 0 0 

h3 8466 6696 0 0 0 0 0 0 0 0 8466 6696 0 2861 0 0 0 0 0 0 

h4 8466 6853 0 0 0 0 0 0 0 0 8466 6853 0 2861 0 0 0 0 0 0 

h5 8466 6364 0 2861 0 0 0 0 0 0 8466 6364 0 2861 0 0 0 0 0 0 

h6 8466 6260 2892 2861 0 0 0 0 0 0 8466 6260 0 2861 0 0 0 0 0 0 

h7 8466 6967 2892 2861 0 0 0 0 0 0 8466 6967 0 2861 945 0 0 0 0 0 

h8 8466 7876 2892 2861 0 0 0 0 0 0 8466 7876 2892 0 945 0 0 0 0 0 

h9 8466 8288 2892 2861 945 0 0 0 0 0 8466 8288 2892 0 945 0 0 0 0 0 

h10 8466 8393 2892 2861 945 0 0 0 0 0 8466 8393 2892 0 945 0 0 0 0 0 

h11 8466 8446 2892 2861 945 0 0 0 0 0 8466 8446 2892 0 945 0 0 0 0 0 

h12 8466 8393 2892 2861 945 0 0 0 0 0 8466 8393 2892 0 945 0 0 0 0 0 

h13 8466 7614 2892 2861 945 0 0 0 0 0 8466 7614 2892 2861 0 0 0 0 0 0 

h14 8466 7124 2892 2861 945 0 0 0 0 0 8466 7124 2892 2861 0 0 0 0 0 0 

h15 8466 8279 2892 2861 945 818 0 0 0 0 8466 8279 0 2861 0 0 0 0 0 0 

h16 8466 8887 2892 2861 1037 818 0 0 0 0 8466 8887 0 2861 0 818 0 0 0 0 

h17 8466 8887 2892 2861 2064 818 1174 0 0 0 8466 8887 0 2861 0 818 0 0 0 0 

h18 8466 8887 2892 2861 1739 818 1174 0 0 0 8466 8887 0 2861 0 818 0 0 0 0 

h19 8466 8887 2892 2861 1915 818 1174 0 0 0 8466 8887 0 2861 1915 0 0 0 0 0 

h20 8466 8887 0 2861 1652 0 1174 0 0 0 8466 8887 2892 2861 1652 0 0 0 0 0 

h21 8466 8709 0 2861 945 0 0 0 0 0 8466 8709 2892 2861 945 0 0 0 0 0 

h22 8466 8016 0 2861 0 0 0 0 0 0 8466 8016 2892 2861 945 0 0 0 0 0 

h23 8466 8034 0 2861 0 0 0 0 0 0 8466 8034 2892 0 945 0 0 0 0 0 

h24 8466 7247 0 2861 0 0 0 0 0 0 8466 7247 2892 0 945 0 0 0 0 0 
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Table 5.41: Scheduling a 20-unit system considering the impact of COVID-19 (Weekend) with OC, EL demand and wind power 

 using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 221.6 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h2 455 213.6 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h3 455 223.6 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h4 455 253.6 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h5 455 287.6 0 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 

h6 455 434.6 0 0 0 20 0 0 0 0 455 0 0 130 25 0 0 0 0 0 

h7 455 406.6 130 0 0 20 0 0 0 0 455 0 0 130 25 0 0 0 0 0 

h8 455 455 130 0 0 20 0 0 0 10 455 0 0 130 76.6 0 0 0 0 0 

h9 455 382.3 130 0 0 0 0 0 0 0 455 382.3 0 0 25 0 0 0 0 0 

h10 455 426.3 130 0 0 0 0 0 0 0 455 426.3 0 0 25 0 0 0 0 0 

h11 455 411.3 130 130 0 0 0 0 0 0 455 411.3 0 0 25 0 0 0 0 0 

h12 455 382.3 130 130 25 0 0 0 0 0 455 382.3 130 0 0 0 0 0 0 0 

h13 455 434.8 0 130 25 0 25 0 0 0 455 434.8 130 0 0 0 0 0 0 0 

h14 455 433.8 0 130 25 0 25 0 0 0 455 433.8 130 0 0 0 0 0 0 0 

h15 455 438.8 0 130 25 0 25 0 0 0 455 438.8 130 0 0 0 0 0 0 0 

h16 455 410.3 0 130 25 0 0 0 0 0 455 410.3 130 130 0 0 0 0 0 0 

h17 455 455 0 130 74.6 20 0 0 10 0 455 455 0 130 0 0 25 0 0 0 

h18 455 455 0 0 86.8 20 0 0 0 0 455 455 0 130 86.8 0 25 0 0 0 

h19 455 427.2 130 0 0 20 0 0 0 0 455 427.2 0 130 25 0 25 0 0 0 

h20 455 397.3 130 0 0 0 0 0 0 0 455 397.3 0 130 25 0 0 0 0 0 

h21 455 414.3 130 0 0 0 0 0 0 0 455 414.3 0 0 25 0 0 0 0 0 

h22 455 349.3 130 0 0 0 0 0 0 0 455 349.3 0 0 25 0 0 0 0 0 

h23 455 402.6 130 0 0 0 0 0 0 0 455 0 130 0 25 0 0 0 0 0 

h24 455 297.6 0 130 0 0 0 0 0 0 455 0 130 0 0 0 0 0 0 0 
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Table 5.42: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekend) with OC, EL demand and wind 

power using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 4810 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h2 8466 4671 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h3 8466 4845 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h4 8466 5367 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h5 8466 5960 0 2861 0 0 0 0 0 0 8466 0 0 2861 0 0 0 0 0 0 

h6 8466 8530 0 0 0 818 0 0 0 0 8466 0 0 2861 945 0 0 0 0 0 

h7 8466 8039 2892 0 0 818 0 0 0 0 8466 0 0 2861 945 0 0 0 0 0 

h8 8466 8887 2892 0 0 818 0 0 0 948 8466 0 0 2861 1982 0 0 0 0 0 

h9 8466 7614 2892 0 0 0 0 0 0 0 8466 7614 0 0 945 0 0 0 0 0 

h10 8466 8384 2892 0 0 0 0 0 0 0 8466 8384 0 0 945 0 0 0 0 0 

h11 8466 8121 2892 2861 0 0 0 0 0 0 8466 8121 0 0 945 0 0 0 0 0 

h12 8466 7614 2892 2861 945 0 0 0 0 0 8466 7614 2892 0 0 0 0 0 0 0 

h13 8466 8533 0 2861 945 0 1174 0 0 0 8466 8533 2892 0 0 0 0 0 0 0 

h14 8466 8516 0 2861 945 0 1174 0 0 0 8466 8516 2892 0 0 0 0 0 0 0 

h15 8466 8603 0 2861 945 0 1174 0 0 0 8466 8603 2892 0 0 0 0 0 0 0 

h16 8466 8104 0 2861 945 0 0 0 0 0 8466 8104 2892 2861 0 0 0 0 0 0 

h17 8466 8887 0 2861 1942 818 0 0 938 0 8466 8887 0 2861 0 0 1174 0 0 0 

h18 8466 8887 0 0 2190 818 0 0 0 0 8466 8887 0 2861 2190 0 1174 0 0 0 

h19 8466 8400 2892 0 0 818 0 0 0 0 8466 8400 0 2861 945 0 1174 0 0 0 

h20 8466 7876 2892 0 0 0 0 0 0 0 8466 7876 0 2861 945 0 0 0 0 0 

h21 8466 8174 2892 0 0 0 0 0 0 0 8466 8174 0 0 945 0 0 0 0 0 

h22 8466 7037 2892 0 0 0 0 0 0 0 8466 7037 0 0 945 0 0 0 0 0 

h23 8466 7969 2892 0 0 0 0 0 0 0 8466 0 2892 0 945 0 0 0 0 0 

h24 8466 6134 0 2861 0 0 0 0 0 0 8466 0 2892 0 0 0 0 0 0 0 
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Table 5.43: Scheduling a 20-unit system considering the impact of COVID-19 (Weekday) with OC, EL demand and wind power 

 using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 455 240.8 0 0 0 0 0 0 0 0 455 240.8 0 0 0 0 0 0 0 0 

h2 455 230.8 0 0 0 0 0 0 0 0 455 230.8 0 0 0 0 0 0 0 0 

h3 455 236.8 0 0 0 0 0 0 0 0 455 236.8 0 0 0 0 0 0 0 0 

h4 455 258.8 0 0 0 0 0 0 0 0 455 258.8 0 0 0 0 0 0 0 0 

h5 455 298.8 0 0 0 0 0 0 0 0 455 298.8 0 0 0 0 0 0 0 0 

h6 455 362.8 0 0 0 0 0 0 0 0 455 362.8 0 0 0 0 0 0 0 0 

h7 455 302.8 0 130 0 0 0 0 0 0 455 302.8 0 130 0 0 0 0 0 0 

h8 455 300.8 0 130 0 0 0 0 0 0 455 300.8 130 130 0 0 0 0 0 0 

h9 455 329.8 0 130 0 0 0 0 0 0 455 329.8 130 130 0 0 0 0 0 0 

h10 455 335.8 0 130 0 0 0 0 0 0 455 335.8 130 130 0 0 0 0 0 0 

h11 455 337.8 0 130 0 0 0 0 0 0 455 337.8 130 130 0 0 0 0 0 0 

h12 455 336.8 130 0 0 0 0 0 0 0 455 336.8 130 130 0 0 0 0 0 0 

h13 455 453.3 130 0 25 20 0 0 0 0 455 453.3 0 0 0 0 0 0 0 0 

h14 455 430.3 130 0 25 20 0 0 0 0 455 430.3 0 0 0 0 0 0 0 0 

h15 455 443.3 130 0 25 20 0 0 0 0 455 443.3 0 0 0 0 0 0 0 0 

h16 455 455 130 0 53.8 0 0 0 0 0 455 455 0 0 53.8 0 0 0 0 0 

h17 455 455 130 130 34.8 0 0 0 0 0 455 455 0 0 34.8 0 0 0 0 0 

h18 455 455 0 130 39.3 0 0 0 0 0 455 455 0 130 39.3 0 0 0 0 0 

h19 455 428.7 0 130 0 20 0 0 0 0 455 428.7 130 130 25 0 0 0 0 0 

h20 455 385.3 0 130 0 20 0 0 0 0 455 385.3 130 130 25 0 0 0 0 0 

h21 455 320.3 0 130 0 20 0 0 0 0 455 320.3 130 130 25 0 0 0 0 0 

h22 455 345.8 0 0 0 0 0 0 0 0 455 345.8 130 130 0 0 0 0 0 0 

h23 455 323.8 0 0 0 0 0 0 0 0 455 323.8 130 0 0 0 0 0 0 0 

h24 455 328.8 0 0 0 0 0 0 0 0 455 328.8 0 0 0 0 0 0 0 0 
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Table 5.44: Individual fuel cost of 20 Unit Test System considering the impact of COVID-19 (Weekday) with OC, EL demand and wind 

power using CBWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

h1 8466 5144 0 0 0 0 0 0 0 0 8466 5144 0 0 0 0 0 0 0 0 

h2 8466 4970 0 0 0 0 0 0 0 0 8466 4970 0 0 0 0 0 0 0 0 

h3 8466 5075 0 0 0 0 0 0 0 0 8466 5075 0 0 0 0 0 0 0 0 

h4 8466 5458 0 0 0 0 0 0 0 0 8466 5458 0 0 0 0 0 0 0 0 

h5 8466 6155 0 0 0 0 0 0 0 0 8466 6155 0 0 0 0 0 0 0 0 

h6 8466 7273 0 0 0 0 0 0 0 0 8466 7273 0 0 0 0 0 0 0 0 

h7 8466 6225 0 2861 0 0 0 0 0 0 8466 6225 0 2861 0 0 0 0 0 0 

h8 8466 6190 0 2861 0 0 0 0 0 0 8466 6190 2892 2861 0 0 0 0 0 0 

h9 8466 6696 0 2861 0 0 0 0 0 0 8466 6696 2892 2861 0 0 0 0 0 0 

h10 8466 6801 0 2861 0 0 0 0 0 0 8466 6801 2892 2861 0 0 0 0 0 0 

h11 8466 6836 0 2861 0 0 0 0 0 0 8466 6836 2892 2861 0 0 0 0 0 0 

h12 8466 6818 2892 0 0 0 0 0 0 0 8466 6818 2892 2861 0 0 0 0 0 0 

h13 8466 8858 2892 0 945 818 0 0 0 0 8466 8858 0 0 0 0 0 0 0 0 

h14 8466 8454 2892 0 945 818 0 0 0 0 8466 8454 0 0 0 0 0 0 0 0 

h15 8466 8682 2892 0 945 818 0 0 0 0 8466 8682 0 0 0 0 0 0 0 0 

h16 8466 8887 2892 0 1521 0 0 0 0 0 8466 8887 0 0 1521 0 0 0 0 0 

h17 8466 8887 2892 2861 1140 0 0 0 0 0 8466 8887 0 0 1140 0 0 0 0 0 

h18 8466 8887 0 2861 1230 0 0 0 0 0 8466 8887 0 2861 1230 0 0 0 0 0 

h19 8466 8426 0 2861 0 818 0 0 0 0 8466 8426 2892 2861 945 0 0 0 0 0 

h20 8466 7666 0 2861 0 818 0 0 0 0 8466 7666 2892 2861 945 0 0 0 0 0 

h21 8466 6530 0 2861 0 818 0 0 0 0 8466 6530 2892 2861 945 0 0 0 0 0 

h22 8466 6976 0 0 0 0 0 0 0 0 8466 6976 2892 2861 0 0 0 0 0 0 

h23 8466 6591 0 0 0 0 0 0 0 0 8466 6591 2892 0 0 0 0 0 0 0 

h24 8466 6679 0 0 0 0 0 0 0 0 8466 6679 0 0 0 0 0 0 0 0 
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Table 5.45: Statistical and hypothetical analysis of 20 Generating Unit System using CBWO Optimization Algorithm with different cases. 

(Weekend) 

Test Cases Best Avg Worst Std Median 

Wilcoxon 

Test 
T-Test 

Best  

Time 

Average 

Time 

Worst 

Time 
p-value p-value 

h-

value 

UCP during covid-19 (FL) 873333 886069 897482 5708.9 885479 1.73E-06 2.61E-65 1 0.0156 0.0197 0.0312 

UCP during covid-19 with 

wind power (FL) 
754300 764483 775178 5828.4 765880 1.73E-06 3.44E-63 1 0.0156 0.0192 0.0312 

UCP during covid-19 (PL) 903243 916906 924797 4518.55 917634 1.73E-06 1.1E-68 1 0 0.0234 0.04687 

UCP during covid-19 with 

wind power (PL) 
783124 793674 802184 4998.62 794722 1.73E-06 1.35E-65 1 0 0.0182 0.03125 

UCP with OC demand 912221 923183 931916 5279.12 924672 1.73E-06 8.21E-67 1 0.0156 0.0192 0.0312 

UCP with EL demand 959510 968587 978512 5045.44 969520 1.73E-06 5.49E-68 1 0 0.0166 0.0312 

UCP with OC & EL 

demand 
1001232 1006300 1010937 2441.99 1006034 1.73E-06 1.32E-77 1 0.0156 0.0197 0.0312 

UCP with OC & EL with 

wind power 
875692 883527 894434 5184.3 883703 1.73E-06 1.73E-66 1 0.0156 0.0197 0.0468 
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Table 5.46: Statistical and hypothetical analysis of 20 Generating Unit System using CBWO Optimization Algorithm with different cases. 

(Weekday) 

Test Cases 

 
Best Avg Worst Std Median 

Wilcoxon 

Test 
T-Test 

Best 

Time 

Average 

Time 

Worst 

Time 
p-value p-value 

h-

value 

UCP during covid-19 (FL) 883835 893721 905533 4746.46 894040. 1.73E-06 9.62E-68 1 0.01562 0.0187 0.04687 

UCP during covid-19 with 

wind power (FL) 
764970 774317 783743 5133.49 773890 1.73E-06 5.98E-65 1 0.01562 0.0192 0.04687 

UCP during covid-19 (PL) 934310 939940 944440 2184.9 939960 1.73E-06 3.77E-78 1 0.01562 0.01770 0.03125 

UCP during covid-19 with 

wind power (PL) 
814051 820465 832799 4839.1 819616 1.73E-06 2.01E-66 1 0 0.02083 0.04687 

UCP with OC demand 926675 934107 942618 3839.2 934538 1.73E-06 5.69E-71 1 0.0156 0.0177 0.0468 

UCP with EL demand 971640 978774 985399 3269.3 978401 1.73E-06 1.39E-73 1 0.0156 0.0171 0.0312 

UCP with OC & EL 

demand 
1015190 1020083 1023947 2371.5 1020492 1.73E-06 3.79E-78 1 0.0156 0.0218 0.0312 

UCP with OC & EL with 

wind power 
883014 892926 903306 5530.5 893941 1.73E-06 8.31E-66 1 0.0156 0.0208 0.0312 
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5.6.3 System of 40 Generating Units 

 The effectiveness of proposed algorithm CBWO is tested and used to get the optimal result 

for UC problem considering the several constraints with 100 iteration and 30 trial runs. 

This part of chapter is illustrating the optimal results for 40 generating units and scheduling 

of units, individual cost of each unit. Details of the commitment status, optimal scheduling, 

and individual fuel costs of each of the 40 generating units for thermal unit during full 

lockdown, partial lockdown, OC, EL and Wind are presented in Table 5.47 illustrates the 

statistical and hypothetical analysis of 40 Generating Unit System using CBWO 

optimization algorithms with different cases during weekend. Table 5.48 illustrates the 

statistical and hypothetical analysis of 40 Generating Unit with the help of CBWO 

optimization algorithms with different cases during weekday.  

  Average cost is reduced by 13.7% in full lockdown compared when wind power 

incorporates with it. Cost is increased by 1.2% in full lockdown during weekdays compare 

to weekends. Almost 4.5% and 9.6% cost increment were seen when oxygen concentrator 

and electrolyser used during weekends. Almost 12.5% cost were saved by using wind 

power with thermal system when both OC and EL used. During weekdays, 13.5% fuel cost 

decreased in full lockdown by using wind power generation system. Almost 14% cost 

increased by using OC and EL both and almost 12.8% cost saved by using wind power in 

system.  

  Fig. 5.5 and Fig. 5.6 illustrates the Cost comparison of different cases for 10 units 

using CBWO with wind power and without wind power for weekend and weekday. Fig. 

5.7 illustrates the cost comparison chart for 20-unit system with CBWO with wind power 

and without wind power. Fig. 5.8 illustrates the cost comparison chart for 40-unit system 

with CBWO with wind power and without wind power.  
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Table 5.47: Statistical and hypothetical analysis of 40 Generating Unit System using CBWO Optimization Algorithm with different cases. 

(Weekend) 

Test Cases Best Avg Worst Std Median 

Wilcoxon 

Test 
T-Test 

Best 

Time 

Average 

Time 

Worst 

Time 

Test 

Cases 
p-value p-value 

h-

value 

UCP during covid-19 

(FL) 
1753642 1780523 180339 13581.9 1784863 1.73E-06 3.49E-63 1 0.015625 0.019271 0.03125 1753642 

UCP during covid-19 

with wind power (FL) 
1505390 1536425 155987 15237.7 1535628 1.73E-06 7.06E-60 1 0.01562 0.01927 0.03125 1505390 

UCP during covid-19 

(PL) 
1869317 1897090 1913236 12188.02 1900247 1.73E-06 2.4E-65 1 0 0.022396 0.03125 1869317 

UCP during covid-19 

with wind power (PL) 
1575666 1607335 1622193 11691.05 1609620 1.73E-06 8.79E-64 1 0 0.020833 0.03125 1575666 

UCP with OC demand 1840716 1860673 1876566 8777.61 1862530 1.73E-06 3.1E-69 1 0.015625 0.019792 0.046875 1840716 

UCP with EL demand 1926825 1952584 1972203 11265.6 1956085 1.73E-06 1.06E-66 1 0.015625 0.017188 0.03125 1926825 

UCP with OC & EL 

demand 
2001522 2030799 2048145 12510.19 2034918 1.73E-06 7.11E-66 1 0 0.019271 0.03125 2001522 

UCP with OC & EL with 

wind power 
1744922 1777587 1791533 9967.758 1778788 1.73E-06 4.65E-67 1 0.015625 0.018229 0.03125 1744922 
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Table 5.48: Statistical and hypothetical analysis of 40 Generating Unit System using CBWO Optimization Algorithm with different cases. 

(Weekday) 

Test Cases Best Avg Worst Std Median 

Wilcoxon 

Test 
T-Test 

Best 

Time 

Average 

Time 

Worst 

Time 

Test 

Cases 
p-value p-value 

h-

value 

UCP during covid-19 

(FL) 
1777549 1802677 1821482 12567.35 1805067 1.73E-06 2.57E-64 1 0 0.01718 0.03125 1777549 

UCP during covid-19 

with wind power (FL) 
1535780 1558587 1583216 15020.03 1556344 1.73E-06 3.07E-60 1 0.01562 0.01666 0.04687 1535780 

UCP during covid-19 

(PL) 
1779405 1809281 1835348 12808.43 1812101 1.73E-06 4.01E-64 1 0 0.024479 0.046875 1779405 

UCP during covid-19 

with wind power (PL) 1630100 1661500 1683100 15893 1662300 1.73E-06 2.47E-60 1 0.01562 0.02083 0.03125 1630100 

UCP with OC demand 1845072 1881770 1897116 10478.1 1884439 1.73E-06 3.79E-67 1 0.015625 0.017708 0.046875 1845072 

UCP with EL demand 1954369 1973008 1987422 8928.098 1975312 1.73E-06 9.26E-70 1 0.015625 0.020833 0.03125 1954369 

UCP with OC & EL 

demand 
2026653 2054802 2065297 11029.78 2059415 1.73E-06 1.31E-67 1 0 0.020313 0.03125 2026653 

UCP with OC & EL with 

wind power 
1765382 1791509 1810146 11617.38 1792514 1.73E-06 3.15E-65 1 0.015625 0.021875 0.03125 1765382 
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Fig. 5.5: Cost comparison of different cases for 10 units using CBWO with wind 

power and without wind power during Weekend 

 

 

 
Fig. 5.6: Cost comparison of different cases for 10 units using CBWO with wind 

power and without wind power during Weekday 
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Table 5.49: Average Fuel Cost Comparison of 10, 20, 40-Unit system During COVID with 

OC, EL and Wind Power ($) 

Cases 

10-Unit 20- Unit 40- Unit 

Weekend Weekday Weekend Weekday Weekend Weekday 

COVID During FL 

(2020) 
434625.2 441990.9 873332.6 883835.2 1753642 1777549 

COVID During FL 

(2020) with Wind 

Power 

372580.1 378921.3 754300.3 764970.2 1505390 1535780 

COVID During PL 

(2021) 
450481.9 468460.3 903242.8 934310 1869317 1779405 

COVID During PL 

(2021) with Wind 

Power 

389904.1 405100 783124.2 814050.9 1575666 1630100 

COVID During FL 

(2020) With OC 

Demand 

455206.6 462563.9 912220.5 926675 1840716 1845072 

COVID During FL 

(2020) With EL 

Demand 

484606.7 478301.4 959510.3 971639.9 1926825 1954369 

COVID During FL 

(2020) With OC & EL 

Demand 

499741.2 508451.7 1001232 1015190 2001522 2026653 

COVID During FL 

(2020) With OC, EL 

Demand and Wind 

Power 

433221.3 440382.4 875691.7 883014.4 1744922 1765382 
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  Fig. 5.7: Cost comparison of different cases for 20 units using CBWO with wind 

power and without wind power 

 

 
  Fig. 5.8: Cost comparison of different cases for 40 units using CBWO with wind 

power and without wind power 
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5.6.4 Comparison of results for 10-unit system with standard load demand 

To check the effectiveness of proposed algorithm CBWO, it is compared with other 

existing algorithms for 10-unit system in table 5.50 and 20- unit system shown in table 5.51 

with standard load demand. The proposed algorithm shows better results as compared to 

other algorithms. 

  

 

Table 5.50: Comparison of results for 10-unit system with 10% SR 

Sr.  

No. 

Methods Total Generation Cost in $ 

Best value Average value Worst Value 

1 Hybrid Continuous Relaxation and 

Genetic Algorithm (CRGA) [203] 
NA 563977 --- 

2 Genetic Based Method [202] NA 623441 --- 

3 Continuous Relaxation and Genetic 

Algorithm (CRGA) [203] 
--- 563977 --- 

4 Integer Coded Genetic Algorithm 

(ICGA) [204] 
--- 566404 --- 

5 Lagrangian Search Genetic Algorithm 

(LSGA) [205] 
609023.69 --- --- 

6 Improved Binary Particle Swarm 

optimization (IBPSO) [206] 
599782 --- --- 

7 New Genetic Algorithm [207] 591715 --- --- 

8 PSO [208] 581450 563977 --- 

9 Binary Particle Swarm Optimization 

with bit Change Mutation (MPSO) [209] 
574905 --- --- 

10 HPSO [210] 574153 --- --- 

11 LCA-PSO [211]  570006 --- --- 

12 Two-Stage Genetic Based Technique 

(TSGA) [212] 
568315 --- --- 

13 Hybrid PSO-SQP [213]  568032.3 --- --- 

14 BCGA [204, 214] 567367 --- --- 

15 SM [215] 566686 566787 567022 

16 Lagrangian Relaxation [215] 566107 566493 566817 

17 GA [215] 565866 567329 571336 

18 Genetic Algorithm (GA) [216] 565852 --- 570032 

19 Enhanced Simulated Annealing (ESA) 

[217] 
565828 565988 566260 

20 Lagrangian Relaxation (LR) [216] 565825 --- --- 
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21 Dynamic Programming (DP) [216] 565825 --- --- 

22 Improved Lagrangian Relaxation (ILR) 

[217]  
565823.23 --- --- 

23 LRPSO [217, 218] 565275.2 --- --- 

24 Lagrangian Relaxation and Genetic 

Algorithm (LRGA) [218] 
564800 564800 --- 

25 Evolutionary Programming (EP) [220]  564551 565352 --- 

26 EP [215] 564551 565352 566231 

27 Particle Swarm Optimization (PSO) 

[221] 
564212 565103 565783 

28 Ant Colony Search Algorithm (ACSA) 

[222]  
564049 --- --- 

29 Hybrid Ant System/Priority List 

(HASP) [223]  
564029 564324 564490 

30 B. SMP [224] 564017.73 564121 564401 

31 Annealing Genetic Algorithm (AGA) 

[225]  
564005 --- --- 

32 Binary Differential Evolution [226] 5,63,997 5,63,997 5,63,997 

33 Social Evolutionary Programming 

(SEP) [227] 
563987 --- --- 

34 Methodological Priority List (MPL) 

[228]  
563977.1 --- --- 

35 Binary PSO [234] 563977 563977 563977 

36 Quantum-Inspired Binary PSO 

(QIBPSO) [235] 
563977 563977 563977 

37 IBPSO [229] 563977 564155 565312 

38 Genetic Algorithm (GA) [215]  563977 564275 5665606 

39 Genetic Algorithm Based on Unit 

Characteristics (UCC-GA) [230] 
563977 --- 565606 

40 Enhanced Adaptive Lagrangian 

Relaxation (EALR) [217] 
563977 --- --- 

41 Local Search Method (LCM) [232]  563977 --- --- 

42 Quantum-Inspired Binary PSO 

(QBPSO) [233]  
563977 --- --- 

43 Extended Priority List (EPL) [236]  563977 --- --- 

44 Muller Method [237] 563977 --- --- 

45 Improved Particle Swarm Optimization 

(IPSO) [238] 
563954 564162 564579 

46 Advanced Fuzzy Controlled Binary 

PSO (AFCBPSO) [239] 
563947 564285 565002 

47 Hybrid PSO (HPSO) [240] 563942.3 564772 565782 



244 

 

48 Fuzzy Quantum Computation Based 

Thermal Unit Commitment (FQEA) 

[241] 

563942 --- --- 

49 IQEA-UC [242] 563938 563938 563938 

50 Gravitational Search Algorithm [244]  563938 564008 564241 

51 QEA-UC [242] 563938 564012 564711 

52 Particle Swarm-Based- Simulated 

Annealing (PSO-B-SA) [243] 
563938 564115 564985 

53 Advanced Quantum-Inspired 

Evolutionary Algorithm (AQEA) [242] 
563938 --- --- 

54 Hybrid HS-Random Search algorithm 

[245] 
563937.7 563965 563995 

55 CBWO (Proposed Method) 563387.68 
 

              564182.02 
  

 565107.68 

  

 
   

Table 5.51: Comparison of results for 20-unit system with 10% SR 

Sr. 

No. 

Methods Total Generation Cost in $ 

Best value Average value Worst Value 

1 Binary Particle Swarm 

Optimization with bit Change 

Mutation [209] 

1152966 ... ... 

2 Intelligent Mutation based 

Genetic Algorithm [230] 
1125516 ... 1128790 

3 Improved Particle Swarm 

Optimization OPSO [238] 
1125279 ... 1127643 

4 Improved Binary Particle Swarm 

optimization [206] 
1196029 .. ... 

5 LCA-PSO [211] 1139005 .. ... 

6 Lagrangian Relaxation (LR) [215] 1130660 .. ... 

7 BCGA [214] 1130291 .. ... 

8 DP and Lagrangian Relaxation 

(DPLR) [217] 
1128098 .. ... 

9 Enhanced Simulated Annealing 

(ESA) [217] 
1126254 .. ... 

10 Genetic Algorithm (GA) [215] 1126243 .. 1132059 

11 Particle Swarm Optimization 

(PSO) [221] 
1125983 .. 1131054 

12 Social Evolutionary Programming 

(SEP) [227] 
1125170 .. ... 
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13 Hybrid Continuous Relaxation 

and Genetic Algorithm [203] 
.. 1236981 ... 

14 Genetic Based Method [202] .. 1215066 ... 

15 GA [215] 1126243 1200480 ... 

16 New Genetic Algorithm [207] .. 1133786 ... 

17 GA [215] 1128876 1130160 1131565 

18 LR [216] 1128362 1128395 1128444 

19 SM [215] 1128192 1128213 1128403 

20 Enhanced Simulated Annealing 

(ESA) [217] 
1126251 1127955 1129112 

21 Harmony Search [245] .. 1127377 ... 

22 Evolutionary Programming (EP) 

[220] 
1125494 1127257 ... 

23 Integer Coded   Genetic 

Algorithm [204] 
.. 1127244 ... 

24 BSMP [224] 1124838 1125102 1125283 

25 HS-Random Search Algorithm 

[245] 
1124889 1124913 1124952 

26 Annealing Genetic Algorithm [225] .. 1124651 ... 

27 Lagrangian Relaxation and 

Genetic Algorithm [218] 
.. 1122622 ... 

28 CBWO (Proposed Method) 1123748 1124928 1130559 
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5.7 CONCLUSION 

 In this chapter, the unit commitment problem has been solved using CBWO. For result 

analyses, 10, 20, and 40 generating units, have been scheduled successfully and applied the 

suggested hybrid optimizers to minimize the cost. According to the simulation results, the 

recommended optimizer computes the satisfactory low-cost value with commitment 

scheduling in a realistic amount of time. 

  A powerful optimizer like this can be used to find a solution for modern power 

sector unit commitment. The analysis takes into account the standard deviation and median 

values of the profit variation's best, average, and worst values. The Wilcoxon rank sum 

method and the t-test are for hypothesis testing that can be used to determine the p-value 

and h-value. The best, average, and worst simulation times are analyzed for the 

computational time. The effectiveness of the hybrid CBWO optimization technique to 

solve UC problem with the impact of OC and EL with RES during Covid lockdown days, 

has been successfully presented. The standard test system, which consists of thermal units 

for the small, medium, and large power sectors, has been evaluated.  
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Chapter-6 

 

CONCLUSION AND FUTURE SCOPE 

----------------------------------------------------------------------- 

 6.1 INTRODUCTION 

 This section presents the key findings of the research detailed in this thesis, followed 

by recommendations for future research directions. The study's primary contributions 

include the advancement of optimization-based analysis for solving the Unit 

Commitment Problem incorporating oxygen concentrators, electrolyzers, and 

Renewable Energy Sources, i.e., wind energy. The proposed methodologies were 

evaluated across a diverse range of test systems, spanning small to large-scale 

implementations. To ensure optimal handling of the UCP, a hybrid optimization 

technique was employed. The efficacy of these optimization methods was validated 

using standard benchmark functions and established engineering design challenges. 

Furthermore, the feasibility of the proposed approach was demonstrated through 

rigorous testing on multiple test systems of varying sizes.  

 6.2 SIGNIFICANT CONTRIBUTION 

This research focused on developing a robust and efficient optimization approach to 

solve the Unit Commitment Problem while considering system constraints, operational 

reliability, and the integration of renewable energy sources, particularly wind power. 

The study was motivated by the growing need to improve power system efficiency, 

reduce dependence on costly and environmentally harmful fossil fuels, and manage 

the challenges posed by uncertain renewable generation and varying demand patterns, 

especially during the COVID-19 pandemic.  

To address the complex nature of UCP, which involves non-linearity, non-

convexity, and mixed-integer variables, a novel hybrid algorithm, the Chaotic Beluga 

Whale Optimization algorithm, was proposed. This algorithm integrates chaotic maps 

to enhance the balance between exploration and exploitation phases, improving 

convergence speed and solution accuracy. 
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The problem formulation has been revised to explicitly include wind power 

uncertainty, ensuring that the stochastic nature of renewable generation is accurately 

represented in both the objective function and the constraints. This modification 

strengthens the real-world applicability of the model and aligns with current trends in 

power system operations. 

The effectiveness of the proposed algorithm was thoroughly validated through: 

• Benchmarking on 23 standard test functions, including unimodal, multimodal, and 

fixed-dimension functions. 

• Application to eleven real-world engineering design problems to demonstrate 

broader optimization capabilities. 

• Solving UCP for test systems with 10, 20, and 40 generating units, reflecting both 

medium- and large-scale scenarios. 

The results demonstrate that CBWO consistently delivers lower fuel costs and better 

convergence performance compared to existing metaheuristic algorithms. Its ability to 

handle wind power variability, integrate auxiliary loads (oxygen concentrators, 

electrolysers), and manage generator scheduling under uncertain conditions was also 

validated. Statistical analyses, including best/worst/average values, standard deviation, 

and hypothesis testing (t-test and Wilcoxon rank-sum), further confirmed the 

robustness and reliability of the proposed method. 

In conclusion, the concrete contributions of this research are: 

• A novel hybrid optimization algorithm tailored to UCP under renewable energy 

uncertainty. 

• A refined problem formulation that captures wind power variability and system 

constraints. 

• Successful application of the algorithm to both benchmark and real-world 

problems, confirming its versatility and performance. 

This study contributes to advancing optimization strategies in power system planning 

and provides a promising direction for future research, particularly in integrating 
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additional renewable resources, storage systems, and demand response programs in 

next-generation UCP frameworks. 

 6.3 SUGGESTIONS FOR FUTURE WORK 

 Some potential research studies for future scope based on the proposed work are: 

(i). Analysis of Deregulated Market Effects on Unit Commitment: Future research 

could explore the implications of deregulated market scenarios within the unit 

commitment problem, utilizing the methodologies suggested in this study. 

(ii). Multi-Objective Optimization and Scenario Analysis in Unit Commitment: Further 

investigation could focus on implementing multi-objective optimization techniques 

and analysing various operational scenarios within the unit commitment problem. 

(iii). Extension to Multi-Area Power Systems Unit Commitment: The proposed approach 

can be expanded to address the complexities of the multi-area power systems unit 

commitment problem. This extension would enable the technique to effectively 

manage the intricacies and challenges associated with interconnected power 

systems, offering potential solutions to these persistent issues. 

(iv). Investigation of Advanced Metaheuristic Search Algorithms for Unit Commitment: 

Future research could explore the application of cutting-edge versions of 

metaheuristic search algorithms to enhance the solution of the unit commitment 

problem. 
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