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Abstract

Landslides are a periodic natural calamity that poses substantial dangers to human lives,
environment and infrastructure, especially in hilly and densely inhabited locations.
Developing countries have seen sharp growth in construction. Roads, railway tracks,
bridges, tunnels and other transportation networks connect remote locations.
Construction in the morphological area disrupts the ecosystem and creates threats such
as landslides. Landslides are both natural and man-made disasters that result in
fatalities. As a developing country, building cannot be halted, and natural factors that
cause landslides cannot be managed. Accurate landslide prediction is vital for disaster
preparedness and risk management. Traditional methods for landslide prediction rely
on ground survey and statistical models, have limitations in term of data availability,
scalability and accuracy. In a catastrophic emergency, reliable and efficient landslide
detection can provide logical information to save the life. To meet the requirement of
relief operations with accuracy and in time, this research proposes an automatic
landslide detection with satellite images instead of the site visiting process in the
traditional approach. Convolutional neural networks (CNN) are far more efficient than
traditional methods for detecting landslides by lowering the time required to identify
relevant features. A convolutional neural network is used to automatically extract
information from satellite imagery and enhance the model’s ability to detect early

indications of landslides.

This research work explore the application of Convolutional Neural Networks,
specifically sophisticated CNN backbone networks such as ResNet50, ResNet101, and
GoogleNet, to detect and predict landslides using satellite images. This study compares
three CNN architectures ResNet50, ResNet101 and GoogleNet, which were chosen for
their proven skills in feature extraction and classification tasks. Satellite images provide
broad coverage of huge and inaccessible areas, delivering timely data that is crucial for
monitoring high-risk environments. However, the vast and complex nature of satellite
data requires specialized approaches for finding significant patterns. CNNs have proven
useful in a variety of image analysis applications due to their capacity to automatically
learn hierarchical features from big datasets. This research work uses CNNs to discern

complicated visual patterns indicative of landslides.
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ResNet50 and ResNet101 are members of the residual networks family, which was
created to address the vanishing gradient problem and enable the training of deeper
networks, which is critical for collecting subtle landslide details. GoogleNet, while not
as deep, has a distinct inception architecture that allows the network to record
multiscale information in a single layer. Each model is trained with and without
attention mechanisms to determine how attention layers affect model performance.
Attention mechanisms, particularly spatial and channel attention, guide the network's
focus to the most relevant portions of an image, significantly improving model
interpretability and detection accuracy. The implementation of attention modules into
CNN models in remote sensing image processing can improve the model’s global

context modeling and feature detection.

This work uses a deep learning CNN with attenuation mechanisms and optimization to
extract landslides from satellite images to automatically identify landslides. The
proposed method is divided into three steps: Pre-processing of the dataset that is
an augmentation of labeled datasets; introduce attention module in the decoder to
suppress feature map noise with three different backbone networks of CNN (ResNet50,
ResNet101, Google Net) for training and performance evaluation of the proposed
algorithm on quantitative parameters. The experimental setup includes thorough
hyperparameter adjustment to optimize each model. Parameters such as learning rate,
batch size, number of epochs, and weight decay are carefully controlled to avoid
overfitting and underfitting, ensuring that the model generalizes effectively across data
samples. Each network's performance is evaluated based on model training and
validation metrics such as training loss, validation loss, accuracy, F1 score, precision
and recall. Detailed epoch-wise analysis sheds light on each model's learning dynamics
and the efficacy of various architectural options. Furthermore, early stopping criteria
and dropout regularization techniques are utilized to prevent overfitting, while cross-

validation improves model reliability.

The results show that ResNet-based architectures, notably ResNetl101, outperformed
all other models tested in terms of detection accuracy. The incorporation of attention

mechanisms further increased performance and ResNet models, showing that these
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processes assist in focusing the model on critical aspects within each image. The
attention-augmented ResNet models demonstrated better accuracy and stability in
identifying landslides, implying that attention plays an important role in improving the
model's feature recognition capabilities. ResNet 101 obtained 0.9732 accuracy. ResNet
50 obtained 0.9692 accuracy and GoogleNet claimed 0.9648 accuracy. This indicates
that the proposed attention module CNN model with ResNet 101 as a backbone network
has high accuracy, and can be used as an effective landslide detection method to help

in emergency rescue.

A comparative investigation of model performance reveals how architectural depth and
attention layers affect the models' capacity to reliably discriminate landslide from non-
landslide regions. The findings indicate that deeper networks are better suited to
complex classification tasks such as landslide detection, where nuanced patterns are
required for reliable predictions. The combined analysis confirms that attention
mechanisms improve model performance, especially in complex architectures like

ResNet101 and ResNet50, GoogleNet.

This study has great pragmatic consequences. The models used in this study have the
potential to be integrated into early warning systems and disaster management
frameworks, allowing authorities to monitor landslide-prone areas in near real time and
make data-driven decisions about resource allocation and evacuation plans. This
technology, which combines satellite data with deep learning algorithms, may produce
prediction models that estimate landslide risk based on historical data and ongoing
landscape changes. This work provides the framework for future research into landslide
prediction utilizing multi-sensor data fusion. Incorporating other variables, such as
rainfall, soil moisture, and seismic activity, could improve model accuracy and

predictive power, allowing for a more comprehensive evaluation of landslide risk.

This research advances the field of landslide detection and prediction by proving the
great accuracy with which satellite-based CNN models can identify landslide-prone
locations. The combination of ResNet50, ResNet101, and GoogleNet architectures,
together with attention mechanisms, represents a significant step forward in geohazard
monitoring using deep learning and remote sensing. This work helps to build safer,

more resilient communities in susceptible places by providing a scalable, accurate, and
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rapid landslide analysis solution. These findings highlight the potential of deep learning

and satellite imaging as transformational tools in the field of catastrophe management.

Key Words : Landslide prediction , deep learning, convolutional neural network,
remote sensing, satellite imagery.
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Chapter 1 Introduction

1.1 Background and History of Landslide

A landslide is a severe geological phenomenon that can devastate human lives and
destroy infrastructure anywhere in the world. Landslides occur regularly during the
rainy season when massive volumes of rock, debris, and dirt slide down a slope as a
result of natural phenomena and human activity. Landslides, for example, result in
irreversible damage to both people and infrastructure. In a catastrophic disaster,
dependable and quick action is essential to save lives. In today's world, protecting
people and infrastructure against natural disasters such as landslides is critical. As more
mountain areas become occupied, there is a rise in governmental initiatives to ensure
the safety of living beings in landslide-prone areas. Landslides can cause significant

harm to both lives and property [1].

The Geological Survey of India claims 12.6% of covered land except snow-covered
areas, is prone to landslides. About 0.32 million sq. km area falls under the Himalayan
range, which is further categorized into the Northeast Himalaya and the Northwest
Himalaya. Darjeeling and Sikkim fall under the North East Himalayas and cover 0.18
million sq. km area prone to landslides. Northwest Himalaya covers Uttarakhand,
Himachal Pradesh and Jammu and Kashmir, comprising 0.14 million sq. Km. Western
Ghats cover Tamil Nadu, Kerala, Karnataka, Goa, and Maharashtra, contributing 0.09
million sq. km and Eastern Ghat contributes 0.01 million sq. km of total landslide-prone
area. The Himalayan range lies in earthquake Zone IV and V, these areas are susceptible
to landslides initiated by earthquakes. The estimated loss of infrastructure due to
landslides is 1 to 2% of the gross national product in most developing countries [2].
Estimating and minimizing the damage caused by landslides is a challenging task for
the government authorities and technical teams in developing countries as
approximately 80% of the casualties due to landslides are reported from these countries
[3]. By survey of Building Material and Technology Promotion council (BMPTC) and
TARU data landslide hazard probability is divided into three categories: Low, Medium
and High. Landslide Hazard zonation Atlas claims that 8% of entire area of Himachal

Pradesh is under high risk zone and by revised methodology Expert knowledge 3.2%



area is under high risk and AHP indicate 5.65% area is under high risk zone. In

mountain areas landslides are most dangerous geological hazard [4].

According to the International Disaster Database report from 1990 to 2015, landslide
events are 4.9% of all natural disaster events and 1.3 % of all natural hazard casualties
during this period. Alone in Asia, 54% of landslide events take place. A total of 55997
human fatalities in 4862 distinct landslide events during the period 2004 to 2016[5].
Significant variations in weather lead unrivaled increase in catastrophic hazards
worldwide. In Mocoa, Colombia 1 April 2017 a huge mudflow took place due to heavy
rainfall, causing 300 fatalities and leaving thousands of people homeless [6]. A series
of landslides in Brazil in 2022 claimed over 100 casualties [7]. In 2021 huge landslide
blocked the flow of the Chenab river in the Lahul Spiti district of Himachal Pradesh,
which created a threat of flood in many nearby villages [8]. Heavy rainfall in Kedarnath,
Uttarakhand from 15 to 17 June 2013 caused numerous landslides, including mudflow
and caused a high rate of fatalities, approximately 6000 casualties [9]. On 28 July 2021
massive landslide took place in the Chamba district of Himachal Pradesh, burying
several villages and killing 14 people [10]. In Himachal Pradesh’s Kothipura district,
Mandi on 12 August 2017, a debris flow type landslide took place, causing 47 fatalities.
In 1977, at the same site, a huge landslide took place and was reactivated again on 13
August 2007. Tension cracks, antecedent rainfall, rock mass, rise in soil moisture and
increase in seismic activities were various causes. Still, its recurrence chances are
possible, so continuous monitoring from satellite provides us with information or early
alarming of the event [11]. Several landslides have occurred in the Kinnaur district of
Himachal Pradesh, causing several deaths and property loss due to heavy rainfall,

seismic activities and unplanned construction [12].

Using an open dataset available on NASA's data portal, we examined the temporal and
spatial patterns of landslides in various countries across time. Figure 1.1 presents the
geographic distribution of landslide events in various countries. The chart shows
landslide counts, with darker colors indicating countries with more incidents. The
visualization displays the global regions most affected by landslides, highlighting the

importance of focused monitoring and mitigation measures. Analyzed data reveals that



United State followed United Kingdom, Canada, India and China have had a more

significant number of landslides.
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Figure 1.1 Landslide count in different countries
Figure 1.2 depicts the fatalities due to landslides across various countries using an open
dataset available on NASA's data portal. In this study, countries are color-coded based
on the overall number of fatalities caused by landslides from 1915 to 2023. Dark shades
reflect more fatalities, whereas lighter shades suggest fewer fatalities. Analyzes reveal
that Colombia has the highest fatality rate followed by India and China.
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Figure 1.2 Fatality count in different countries



In addition to monitoring landslide occurrences and fatalities, a different study was
undertaken to identify the primary causes triggering landslides globally. On processing
open NASA landslide dataset, landslides are classified on the basis of different
triggering factors like: rainfall, snowfall, construction, earthquake, freeze-thaw,
tropical cyclon, mining, flooding, etc. Figure 1.3 represents a bar chart that displays
count of landslides triggered by different factors. Rainfall, which is a group of heavy
rain, monsoon, downpour and continuous rain emerges as the most frequent triggering
factor of landslides. It is investigated among various triggering elements rainfall
sources of landslides that resulted in large mortality between 2000 and 2023. Following
the rainfall is the earthquake, which claimed a large number of fatalities in 2018. Figure
1.4 also shows that the biggest number of fatalities occurred in 2013 as a result of a

landslide caused by rain.
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Figure 1.3 Landslide triggering factors



Fatality count due to various landslide triggering factor from year 2000 to 2023
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Figure 1.4 Fatality count due to various landslide triggering factor from year 2003 to 2023

1.2 Different Types of Mass Movement

Landslides are natural disasters that occur when rock, soil, and a combination of both
slide down a slope due to gravity. A landslide is the movement of a mass of rock, earth,
or debris downslope. Mass movement can be grouped under three major categories
based on the speed and nature of the movement: Slow movement, Rapid movement and

Landslide [13], shown in Figure 1.5 below.
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Figure 1.5 Different types of mass movement based on speed and nature of the movement.



1. Slow movement is a movement of earth material that is going to be very slow

and goes on for years. These are progressive motions of soil or rock down a
slope that are typically invisible over short periods of time. The migration
occurs gradually over a lengthy period, frequently taking years to demonstrate
substantial impacts. Creep and solifluction are two types of slow movement.
Creep is a form of landslide that involves the slow, steady flow of soil, rock, or
debris down a slope. This movement is usually negligible in the near term, but
over time, it can cause significant material displacement. The creep effect is
caused by gravity and is frequently increased by factors such as repeated freeze-
thaw cycles, changes in soil moisture and the expansion and contraction of
materials owing to temperature fluctuations. Tile trees, cracks in buildings, bent
fences and utility poles are a few examples of creep.
Solifluction is the slow flow of water-saturated soil downslope, which is typical
in permafrost locations or where the earth is frozen for a portion of the year.
During the warmer months, the thawed soil progressively travels over the frozen
layer beneath.

2. Rapid Movement is a movement of earth material going to be rapidly fast.
Rapid mass movements happen suddenly and without warning, and they can be
extremely damaging. These motions often involve loose soil, rocks, and debris
falling or sliding down slopes due to gravity and are frequently driven by events
such as excessive rains, earthquakes, or volcanic activity. Rapid movements are
of three types: Earth flow, Mud Flow, Debris Flow.

Earth Flow: Massive amounts of fine-grained water-saturated soil flow down
the slope under the pull of gravity. These flows move quicker than creeps but
slower than mudflows or debris flows.

Mud Flow: Mud flow is similar to earth flow, but much bigger in quantity. A
thick layer of mud, rock, and debris that moves down with the water is
particularly devastating. Mudflows can be caused by severe rains or volcanic
activity and they frequently follow existing routes such as rivers or valleys.
Debris Avalanche: A debris avalanche is a fast-moving and chaotic mass
movement that, like a snow avalanche, comprises the rapid flow of a mixture of

soil, and other debris down a steep slope.



3. Landslides refer to the downslope movement of rock, soil, or debris. They are
typically caused by severe rainfall, earthquakes, volcanic activity, or human
activities that destabilize slopes. The phrase "landslide" is commonly used to
indicate rapid mass movements, but it can also refer to slower movements.
Landslide relies on the form of irregularity in rock, the degree of weathering,
and the steepness of the slope. Landslides can be explained using two terms:
material and movement. The type of movement specifies the exact internal
principles of how the landslide mass is displaced such as slide, fall, flow, spread,
topple. Understanding the many components of a landslide is critical for
studying the mechanics of slope failure and landslide evolution. Figure 1.6
depicts the anatomy of a rotational landslide that has converted into an

earthflow, according to Varnes (1978)[13].
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Figure 1.6 Labels for different parts of the Landslide

Crown: The topmost area of the landslide, where the original ground surface
remains visible. Crown breaks are frequently seen on the crown, which form as
the ground begins to move.

Main Scrap: The steep, exposed area at the head of the landslide where the
material has broken away from its original position. This is usually the most

visible characteristic of a landslide, indicating the point of early breakdown.



Head: The head is located at the top of the landslide and contains the primary
scarp as well as the upper portion of displaced debris. This is where the landslide
movement starts.

Flow lines: Arrows or lines indicate the direction of movement inside the
landslide mass.

Toe: The lowest point of the landslide is where the dislodged debris comes to
rest. It's also where the sliding material goes downslope.

Surface of separation: This is the lowest border of the displaced material,
separating the landslide from the underlying stable ground.

Minor Scrap: A tiny break in the surface of the landslide, usually indicating
additional movement or deformation within the main body of the landslide.
Main Body: The middle area of the landslide contains the majority of the
displaced debris.

1.3 Different types of Landslides

Different types of landslides are listed below:

1.3.1 Slide

Slide type of landslide occurs when a mass of rock, soil, or debris moves downslope
along a definite surface of rupture, which is typically a rather well-defined slip plane.
The movement happens when the force of gravity overcomes the material's strength,
which is commonly caused by saturation with water or other destabilizing forces. A
slide's move can vary significantly, ranging from very slow (creeping) to rapid,
contingent upon the steepness of the slope, the characteristics of the material, and
external triggers. Roads, buildings, and natural areas can sustain serious damage from
slides, particularly if they happen quickly and involve a lot of material. A number of
factors, including heavy rain, fast melting snow, earthquakes, volcanic eruptions, and
human activity that disturbs the slope (such as construction or deforestation), can cause

slides. There are two types of slides: Rotational slide and Translational Slide.



1.3.2 Rotational slide

Rotational slide is a landslide characterized by an upwardly spoon-shaped rupture
surface and a slide that goes largely down an axis parallel to the slope contour. The
displaced material may move nearly vertically downward at its head, leaning backward
toward the scarp on its upper surface. A slump is a rotating slide that moves on
numerous parallel, curved surfaces. Rotational slides are frequently caused by water
saturation or the slope's undercutting and are common in uniform materials like clay or

soft rock.

1.3.3 Translational slide

Translational slide is the mass flows outward, or down and outward, along a relatively
flat terrain such as a fault line, bedding plane or with weak layers of slope, with little
rotational movement or rearward tilt. These slides are very common worldwide and
frequently occur in places with filtered rock formations or slopes that have pre-existing
fractures. Translational slides may initially be sluggish, causing damage to property or

lifelines, but in extreme situations, they can accelerate and become life-threatening.

1.3.4 Fall

Fall 1is a sudden downhill movement of soil rock and debris from cliffs causing a
bounce down the slope as falling material strikes with less angle to the lower slope.
Falling material continues to roll on the slope till terrain is flat. These landslides are
very rapid and material such as soil, and rock bounce and roll. The velocity depends on
the slope of cliff as shown in Figure 1.7. Falling rock and material can cause fatalities,

damage to infrastructure and block the highways.



Source

Rock fall

Figure 1.7 Rock Fall

1.3.5 Flow

Flow is a mass movement of loose mud, sand, soil, water and debris downward under
the influence of gravity. The substance acts like a fluid, with individual particles
moving randomly. Flow rates can vary from sluggish to very fast. Earth flow, mud flow,
debris flow and creep are different types of flow. Consistency and slope define the slow
and rapid nature of flow. Flows are commonly triggered by heavy rain, sudden snow
melt and frequently deployed by other types of landslides that occur on downward
slopes, are almost saturated, and contain a high proportion of silt and sand-sized
material. They can carry things as large as buildings along the slope flow or quickly fill
structures with sediment and organic waste. They can impact the quality of water by
depositing enormous amounts of silt and debris. Figure 1.8 is a labelled diagram of

debris flow.

Area

Flow Track

Debris deposit
Bedrock

Figure 1.8 Debris flow
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1.3.6 Spreads

Spreads are the horizontal movement of big, cohesive masses of material. They
typically occur on mild slopes or flat terrain and are often caused by the liquefaction of
weak soils during an earthquake. After specific triggering mechanisms such as

earthquakes, it can be gradual, moderate, or even quick
1.3.7 Topple

Topple is defined as the forward rotation of a mass of soil or rock along a slope around
a point or axis below the displaced mass's center of gravity as shown in Figure 1.9.
Toppling can be triggered by gravity acting on the weight of material upslope from the
displaced mass. Topples can be made of coarse material such as rock, or debris, and
fine-grained material such as soil. Topples can be both complex and composite. Topple
can be exceedingly devastating, especially if the fall occurs suddenly and at a high

velocity.

Figure 1.9 Topple Landslide

1.3.8 Avalances

Avalanches are the rapid downslope flow of snow, ice, boulders, or debris. Snow
avalanches are the most prevalent, although rock and debris avalanches can occur,
particularly in steep mountain areas. Triggering factors of avalanches are heavy

snowfall, rapid snowmelt, volcanic earthquakes and earthquakes.
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Different types of landslides are compared in table 1.1 below on the base of material,

movement and speed of material

Type
1.

2

3.

4.

Table 1.1 Comparision of different landslides

Material
Slide
Fall

Soil, Rock, Debris
Rock, Soil, Debris

Flow Mud, Soil, Debris

Spread [N Debris,
cohesive masses
of material

SN IS Mass  of  soil,

6. Avalan

Rock, Debris
Debris, snow, ice

che

1.4 Reasons of Landslides

Movement

Coherent movement along a plane

fall sudden Very Rapid

Bouncing or free
downhill movement

Erratic,  Fluid-like

Speed
Slow to Rapid

movement, Slow to rapid

downward under the influence of

gravity

horizontal movement

forward rotation

Rapid downslope flow

Slow to rapid

Slow, Rapid and
sudden

Very Fast

Landslides are caused by a variety of natural and human-induced events, including

excessive rainfall, earthquakes, volcanic activity, erosion, and human activities such as

construction, mining and deforestation. They can vary in size, speed and material

composition, causing significant damage to people, infrastructure, and the environment.

The following are some of the main causes of landslides:

1.

12

Geological elements that lower slope stability, such as loose or weak soil and
rock pieces, are responsible for landslides. Pre-existing cracks and fractures in
rock create weakness and lead to landslides. The material is further weakened
by high pore water pressure in soils and weathering of rocks.

Water related factors, such as heavy rainfall and erosion, can trigger landslides.
Heavy rain saturates the soil and reduces its strength to hold material, which
causes slope failure. An increase in groundwater level due to rain or snowmelt

can erode the base of the slope near rivers can triggering landslides.



3. Human activities like roads, dams, building construction, destabilizing the slope
and creating a risk of landslides. Deforestation, improper irrigation  and
improper drainage systems also saturate the soil and cause landslides

4. Climate change, such as an increased frequency of intense rainfall, sudden
glacier retreat in mountains leads slope disability and triggers debris flow.

5. Seismic activity, both natural and human-induced, can trigger landslides by
causing the ground to shake and destabilize slopes. Natural earthquakes produce
vibrations that weaken the bond between the particles and create cracks can
cause landslides. Human activities like large construction, deep drilling and
mining can cause vibrations, potentially leading to landslides in areas with

unstable material.

1.5 Problem Statement

Landslides are a common and catastrophic natural hazard that mostly affects hilly and
mountainous areas. They can seriously harm infrastructure, the environment, and result
in fatalities. There are numerous case studies based on field surveys that are used for
landslide detection and monitoring. Traditional landslide prediction methods, which
depend on topographical, geological, and water cycle data, usually struggle with
accuracy due to the complicated relationships between various components such as
rainfall, seismic activity, soil composition, and topographical features [5]. All the
traditional approaches to detecting, classifying and monitoring landslides such as field-
based investigation, topographic and geographical mapping, geo technical methods,
remote sensing techniques using aerial photos, GIS-based susceptibility mapping, and
rainfall threshold analysis etc. are reliable but very time-consuming. These methods
also face challenges in real-time monitoring and large-scale prediction, especially in
remote areas. Automatic landslide classification, detection and monitoring are possible
with the advancement in satellite image processing.

Recent development in satellite imagery and artificial intelligence technologies
provides large data; nevertheless, analyzing and interpreting this data to effectively
anticipate landslides is a major difficulty. For analysis of landslide detection aerial
images have been widely used and provide good accuracy [14]. Data from the Digital

elevation model perform a key role in the detection and prediction of landslides by
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giving topographic information. For landslide classification and prediction-number of
machine learning algorithms were used. Machine learning classification schemes are
categorized as SVM classifiers, clustering-based classifiers, learning-based classifiers,
fuzzy classifiers, and Bayesian classifiers [15][16]. These classification machine
learning algorithms are based on low-level features which result in poor classification
accuracy [17]. Deep learning is a subset of machine learning that has evidenced its
efficiency in classification and prediction with satellite images in the past few years.
Deep learning algorithms, with their ability to study enormous datasets and identify
patterns, provide an intriguing potential solution to the challenges. Different deep
learning algorithms integrated with attention mechanisms handle diverse data and
deliver accurate predictions but time and other factors like soil moisture level, weather
data, and rainfall patterns remain further research challenges. The goal of this research
work is to develop an attention-based deep convolutional network with improved
accuracy. This model focuses on providing help for disaster management in the timely

prediction of landslides.

1.6 Motivation

Landslides pose serious threats to human safety, infrastructure, and the environment,
especially in mountainous and hilly areas where they occur frequently. Developing
countries follow a steep increase in construction. Remote areas are connected to roads,
railway tracks, bridges, tunnels etc. Constructions in the morphological area cause a
problem in the ecosystem environment and create hazards like landslides. A landslide
is a natural and manmade disaster that causes loss of life. Being a developing country,
construction cannot be stopped and natural parameters that trigger landslides cannot be
controlled. Although traditional prediction techniques are available, their effectiveness
is limited in real-time surveillance across large inaccessible areas. Recent developments
in technology, such as satellite imaging, have provided new possibilities to improve
landslide prediction. The ability to continuously and remotely monitor vast areas has
created opportunities for more flexible and extensive prediction systems. However, the
most difficult challenge is to discover how to use this data to make accurate forecasts.
Deep learning models present a promising path because of their ability to process

enormous datasets and identify intricate patterns from several sources. However,
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substantial gaps remain in their application in landslide prediction. This research work
addresses these gaps by developing a deep learning-based landslide prediction model

with improved accuracy.

The primary goal of this research is to develop a deep learning-based model for
landslide prediction by integrating with an attention mechanism along with satellite
images. Preprocess the images and create a training and testing landslide dataset with a
large number of images. Train the model using landslide and non-landslide datasets
and compare the model's performance with traditional prediction methods. Then
evaluate the model’s accuracy, precision, recall and timeliness in predicting landslides.
The focus will be on improving the reliability of predictions. Ensuring the model’s
applicability for large-scale landslide-prone regions, including remote or inaccessible

arcas.

1.7 Organization of Thesis

The thesis is organized into 5 chapters, each chapter is a critical component of the
research on developing a deep learning-based landslide prediction model using satellite

imagery. The arrangement is as follows:

Chapter 1: Introduction

This chapter presents the research problem in perspective with the history of landslides,
their effects on society and the causes of various types of landslides. It discusses the
problems and limitations of traditional landslide prediction approaches and focuses on
deep learning techniques along with satellite imagery. Problem statements, motivation

and research objectives are outlined in this chapter.

Chapter 2: Literature Review

This chapter presents a comprehensive study of previous research in traditional
approaches as well as latest machine learning, deep learning and remote sensing.
Research gaps are identified in the survey of present research in relevant fields. This

Chapter defines the problem statement and objective of the work.
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Chapter 3: Preprocessing of satellite images

This chapter explains the Bijie landslide dataset and the pretreatment methods, which
included radiometric and geometric corrections. It also describes the methodology used
for satellite picture preparation and presents an algorithm for the proposed task, along

with preliminary findings and discussions.

Chapter 4: Deep Neural Networks for detection of landslides

This chapter discusses the architecture of deep learning models, namely, convolutional
neural networks (CNNs), deep residual networks such as ResNet 50 and ResNet 101,
GoogleNet, and attention mechanisms (spatial, channel, and self-attention). The results

of the proposed work are also discussed in this chapter.
Chapter 5:Conclusion and future scope

The final chapter summarizes the research findings, contributions, and probable future

directions.

16



Chapter 2 Literature survey, Problem definition and objectives

This section takes a comprehensive review of different machine-learning, deep learning
algorithms and methodologies for landslide detection and classification using satellite

data

2.1 Machine learning based techniques

The literature studied reveals that the entire Machine learning algorithm used for
landslide detection or classification can be divided into four main categories: supervised
learning-based  algorithms, unsupervised learning-based algorithms, Fuzzy
classification algorithms and combination or hybrid classification algorithms. Hence,
we have grouped the methodologies and their summaries in four different sub-sections

as below.

2.1.1 SVM-based landslide classification techniques

This subsection summaries all Machine learning techniques under supervised learning-
based algorithms as below:

Utsav Kumar Malviya et al. [18] used learning-based Extended Local Binary Patterns
and SVM for the classification of 24 different class satellite images. Two major issues
with satellite image processing were discovered in this paper: noise is more noticeable
in satellite images and different satellite images have unique properties. The SVM
algorithm is used to estimate the noise pattern and Local Binary Pattern used for
segmentation. In this research, the researcher considers only four different classes of
pictures for training the framework with three algorithms: Radial Kernel-based Support
Vector Machine, Linear Kernel base Support Vector Machine, and extended Local
Binary Patterns. Extended Local Binary Patterns is preferred which correctly classify
all 24 images. The overall 0.94 accurate result was obtained by the ELBP SVM
algorithm for satellite image classification. Satellite images have unique features and
have varieties in texture and quite difficult to propose one strategy for all images. Still,
work needs to be done to design a more accurate algorithm to give improved results for
the classification of different classes of satellite images. Only a few images for training
cannot guarantee better accuracy. The robustness of technique with more dataset is not

attempted which may be the bottleneck in its applicability.
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Young Gi Byun et al. [19] proposed a landcover classification multispectral image
approach based on the Seeded Region Growing (SRG) approach. Efficient image
segmentation techniques and high-resolution pan-sharpened images were used. The
modified SRG approach combines the multispectral and gradient information of images
for homogeneous image regions with accurate and close boundaries. In the noise
removal process of multispectral images multi-valued anisotropic diffusion method was
used to collect edge information for extracting seed points local minima. Two datasets
Quick Bird image and GeoEye-1 were used for experimental results. At a threshold
value of 0.5 and mean square spectral error, the proposed algorithm provided the best
result and has an accuracy of 0.9115 and the kappa coefficient is 0.9670. MSRG can
use multi-feature information including edge and multi-spectral information. This
proposed method uses a threshold value for seed selection which cannot provide the
best result of seed section for every image. The work needs to be done in an area that

is more efficient in segmentation.

Chanika Sukawattanavijit et al. [20] developed GA SVM algorithm for the
classification of multi-frequency images from RADARSAT-2 (RS2), Synthetic
Aperture Radar (SAR) and Thaichote (THEOS) MS images. SVM classifier was used
for the classification of land cover. To obtain the best input feature GA was used.
Function classification accuracy and the number of features in the selected subset were
used to define the fitness of the function. Two datasets THEOS & LANDSATS of MS
images were used for experiments. To convert the intercorrelated MS band into a set of
non-correlated components PCA was used. Training sets and testing sets were
developed by using the ENVI program GA-SVM algorithm was compared with the grid
search algorithm based on parameter searching. GA-SVM algorithm has 85.02%
accuracy for THEOS images and 0.95 accuracy with combined RS2 and THEOS
images. The genetic algorithm along with SVM provides better results as compared to
grid search but the Genetic algorithm can be computationally intensive and time-
consuming for large datasets. High classification accuracy was achieved with fused

RS2 and THEOS images and performance might be different with other testing datasets.

Xin Huang et al. [21] proposed a multi-feature model-based SVM that combines

multiple spatial and spectral features both for object and pixel levels. Differential

18



morphological profiles Gray-level, co-occurrence matrix and an urban complexity
index, are three features that were used. Probabilistic fusion, object-based semantics
and certainty voting three algorithms were proposed to add multiple features. Two
WorldView-2 datasets and DC Mall dataset were used for training and testing. In DC
Mall 50 samples were used in the training process and 19332 in testing. For the
classification of high-resolution imagery data, one optimal feature for different images
was impossible to select. In the proposed multi-feature, SVM was based on multi
classifier system that contain a series of spatial and spectral features for high-resolution
image classification. Newly developed SVM has 0.944 accuracy with GLCM on DC
Mall dataset. With the Worldview-2 dataset developed SVM has 0.928 accuracy. This
work is limited to training sets and knowledge base rules for construction. Two datasets
used in the experimental result used a limited number of datasets for training does not
provide efficient results. Semantic analysis was used for the post-processing feature
system and depended on segmentation quality which can reduce the overall

classification accuracy.

Dericks P. Shukla et al. [22] discussed the survey of different LSZ map approaches for
preparing landslide susceptibility zonation maps with support vector machine by
considering one case study on the area of Garhwal. The datasets were prepared from
the survey of the India toposheet. To finalize the tectonic map of the selected area,
Landsat satellite images of 30 m resolution were used. Data is pre-processed with
ArcGIS software to generate parameters such as soil, aspect ratio, drainages, and
elevation of the study area. The vector layer of 30x30 m resolution data set was
converted into Raster data and raster to ASCII format to use Matlab for SVM. To test
the trained SVM Model Ukhimath river basin data were used which was prepared by
the geologic survey of India. The trained proximal SVM model to classify more areas
in landslides susceptible zone have a classification higher accuracy of 0.842 and
prediction accuracy of 0.8115. Preparing a landslide susceptibility zonation map for an
area that is sensitive to landslides is most important. The focus of such kind of map

prepared with a Support vector machine is to identify the landslide-prone areas.

Kadir Sabanci et al. [23] compared the results of K-Nearest Neighbor Algorithm and

multilayer perceptron (MLP) for the classification of varied forest types to classify the
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dataset data mining methods used. A dataset of ASTER satellite images was created
and the collected images were processed in three parts: Classification, regression, and
clustering along with association rules. To train the model, training sets of ASTER
Satellite images were used to classify the sample images into different classes. A total
of 524 images were used of which 38% data was used for training and testing 62% data
was used. The machine learning algorithm MLP yielded a classification accuracy of
0.9043 and KNN produced 0.8910 accuracy. KNN and MLP have the best classification
accuracy. In this research training set is only 38 % and by increasing the ratio of a

training set the result can be further improved.

2.1.2 Bayesian model based landslide classification techniques

This subsection area summarizes all Machine learning techniques under Bayesian model-
based algorithms as below.

Fereidoun A. Mianyji et al. [24] proposed a modified supervised classification method in
which the feature reduction technique combined with Bayesian learning-based
probabilistic spare kernel method. To increase the distance between the classes,
hyperspectral data was first transferred to low-dimensionality feature space and
processed with a multiclass RVM classifier. The proposed method uses a dataset of
AVIRIS with a resolution of 10nm and wavelength of 0.4 to 2.5micro m images. This
dataset contains two datasets Indian Pine and San Diego dataset. The experiment was
performed for both Linear [FLDA+RVM] and nonlinear [GNDA+RVM] and the
performance of the proposed methods was evaluated on varying trains to test the sample.
The overall accuracy of Linear FLDA+RVM and GNDA+RVM was 0.9801 and 0.9904
when the train-to-test sample ratio is 1:30 respectively. Real Hyperspectral data is used
for verifying the effectiveness of this proposed supervise classification method. The
result is compared with the SVM algorithm and this proposed method gives better

performance over SVM.

Jun Li et al. [25] investigated an active sampling supervised Bayesian approach with
active learning for the segmentation of Hyperspectral images. A multinomial logistic
regression model based on logic regression was used for class posterior probability
distribution learning Unbiased multilevel logistic prior (MLP)was used to encode

spatial information and segment the hyperspectral images. Active learning is useful for
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reducing number of labelled samples. Gaussian RBF kernel is applied for all
experiments to normalize the input hyperspectral data. The LORSAL algorithm was
used to learn MLR (multinomial logistic regression). The Multilevel logistic (MLL)
prior model was adopted for smooth segmentation. The researcher designed an
algorithm that combines LORSAL, MLL and active learning. To evaluate proposed
algorithm datasets Indian pines, AVIRIS and ROSIS Pavia were used for experimental
results. The proposed algorithm yielded 0.8672 accuracy on 3921 labelled sample.
Overall accuracy Based on experimental results MBT approach gives unbiased
sampling and better classification. In this paper, the main dominating factor is a limited
dataset for the algorithm performance evaluation. The result can be modified with more

training samples.

Pablo Ruiz et al. [26] proposed a Remote sensing image classification-based method
for nonparametric and interference paradigms. This approach allows dealing with
infinite dimension features. For both fine and infinite dimension feature space this
method is useful. This scheme provides point-wise class prediction and confidence
interval prediction. This method is efficiently used for supervised and active learning.
The experimental result of this proposed algorithm was performed over two
multispectral images for supervised and active learning classification. Landsat images
of Rome city were acquired for supervised classification and ROSIS images of Pavia
city were used for active classification. Multispectral and synthetic aperture radar data
is used to test this algorithm and Hyperspectral images are used for multiclass land
cover classification. The proposed method has 0.9680 overall accuracy in supervised
mode. For active learning minimum normalized distance (BAL-3) has 0.9734 accuracy
and running time is 9s. In the supervised mode, proposed algorithm provides the same
result as compared to SVM but an improvement is observed in active learning. This
work can provide pointwise class prediction and confidence intervals. To an extent this

work can use multitemporal image segmentation for better results.

Zhaobin Cui et al. [27] suggested a novel classification method for multispectral (MS)
images and this approach was based on nonparametric supervised classification. To
provide a digital vector number of different class statistic distributions were followed. In

MS image high posterior probability was calculated only when an unknown pixel digital
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number is the same as this pixel in a training class. To estimate the maximum posterior
optimized simulated algorithm was used in the proposed method. Spectral classification
of the proposed approach yielded 0.8530 accuracy and 0.799 Kappa coefficients for the
first dataset. Spectral Spatial classification of the proposed approach yielded 0.9478
accuracy and 0.92 Kappa coefficient for the first dataset. Three datasets of multispectral
images acquired from the SPOT6 satellite have four bands and each band has a spatial
resolution of 2m. The proposed Bayesian approach has better results than the traditional
approach. This approach uses the Gaussian Mixture model for fitting the training dataset

instead traditional single Gaussian model to provide better results.

2.1.3 Decision tree based landslide classification techniques

This subsection area summaries all Machine learning techniques under Decision tree

based algorithms as below

Dennis C. Duro et al. [28] explored a multiscale object-based image analysis (MOBIA)
approach based on an RF classifier for EO imagery. MOBIA can produce more than a
dozen variables for classification as compared to the pixel-based approach. The use of
object features to evaluate information from multispectral bands vegetation index and
digital elevation model or other input layers is possible with MOBIA. For object-based
classification, object features are used for calculating individual image objects and
provide a segmentation process. Maximum likelihood classification (MLC) and K-
nearest neighbor (k-NN) are traditional classification algorithms used for MOBIA
classification. As compared to modern or parametric algorithms MLC gives poor
classification results. In nonparametric algorithms, the RF classifier is more faster and
reliable for MOBIA. Two datasets from SPOT-5 high-resolution geometrics sensors
and LANDSat-5’s thematic mapper sensor were used for testing and training. For
multisource, multi-sensor data RF classifier accuracy is 0.90. This approach
consistently gives 0.85 accuracy with RF algorithm. The data used is of high resolution
of 10 m and quite complex to collect data for the training process. This algorithm can

be implemented with more datasets to improve the result.

Lena Albert et al. [29] introduced a classification approach for land cover and land use

(LCLU). This classification approach focuses on spatial and semantic context for
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LCLU classification simultaneously. In land cover land use classification conditional
random field was applied. Nodes are used as super-pixels in the land cover layer and
nodes represent the object in the land use layer. An iterative inference procedure was
introduced to enable inference in high-order Conditional Random Forest (CRF). Aerial
images were used as input for this proposed classification approach. Two test sets
located in Germany were used for testing the algorithm and all these pictures were of
orthophoto with four channels and 0.2m ground sampling distance. The result is
homogenous for land cover classification and the classification result is improved for
similar land use. The overall accuracy for the first test set is 0.837 and for the second
set is 0.825. The size of the super-pixel is very useful for good classification results. As
compared to the non-contextual classifier proposed approach gives better experimental

results.

Javier A. Montoya Zegarra et al. [30] proposed approach is multi-class semantic
segmentation with class-specific for high-resolution aerial images. This research
includes prior knowledge about the layout in the CRF model. The first step starts with
a Pixel-wise prediction of the class likelihood. For better results, the appearance feature
sampled from the neighborhood of each pixel was considered. From object specifies
the assumption high-level representation at the level of the object was added. The
hypothesis was for road segments and buildings. In the classifier stage, all pixels that
belong to the hypothesis were assigned the same level. Experimental results were
performed on 1000x1000 pixels file generated from dense matching from Vaihingen
dataset. This model consists of three steps: The first step is the input of aerial data, then
passes through a multilevel classifier with good appearance feature extraction and the
last is the recovery step. In the second step large window of the classifier is used
because of this building boundaries get blurred and boundaries get mixed even if
buildings are close enough. Overall 0.8242 accuracy was achieved with experimental
results. This classifier Accuracy is given by CRF for buildings, roads, grass, tree and
background. Classifiers give more than 0.80 accuracy but the boundaries of roads and
buildings were blurred. The proposed approach is useful for urban planning and
environmental monitoring. The complexity, computational cost, and sensitivity to
extreme variations of objects are a few disadvantages that can be improved by

improving datasets.
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2.1.4 Neural network based landslide classification techniques

This subsection summaries all Machine learning techniques under Neural Network

supervised learning based algorithms as below.

Nur Anis Mahmon et al. [31] surveyed different algorithms which were
backpropagation and K mean algorithm for the classification of satellite images with
different classification methodologies. ANN’s classifier approach was compared with
convolutional classifier techniques which are Maximum Likelihood (ML) and
unsupervised (ISODATA). To cover the different types of area, present work
categorized the LU/LC into three different classes. Either output of k means clustering
image output or ground truth data samples were used as a training set. The training set
was selected randomly in this research. Accuracy and kappa coefficient were used to
compare the result of image classification. Overall accuracy is 0.893 and the kappa
coefficient is 0.820.

Rachid Sammouda et al. [32] introduced a Hopfield Neural Network for agriculture
satellite images. Pixel clustering-based segmentation was performed on Satellite
images which is quite difficult due to poor resolution, poor illumination and
environmental conditions. Geo Eye satellite images dataset with 0.5m resolution was
used for clustering. Hopfield Neural Network is giving good results when using three,

four and five clusters in terms of classification sensitivity and accuracy.

Wei Zhao et al. [33] presented a Convolutional Neural Network model for multispectral
and panchromatic image classification. The model introduced in this paper was a super
pixel-based multiple local CNN. A very high-resolution multispectral and
panchromatic images were fused together to achieve results. The introduced CNN
model was valid for two datasets one was prepared from the DEIMOS-2 satellite for
Vancouver images and the other was prepared from Quick Bird Satellite for China
images. Both dataset images were MS remote-sensing and panchromatic images. For
the segmentation of MS images and to collect superpixel linear clustering algorithm
was used. Super-pixel multiple region joint representation method was introduced to
collect all spatial and environmental information of super-pixel. Superpixels were taken
as basic units. To enhance classification performance of the proposed algorithm that

combines detailed information and semantic information. The overall accuracy for

24



classification was 0.944 and the kappa coefficient was 0.92. Further, this experiment
can be extended to semi-supervised and unsupervised deep learning. The processing
time may increase due to the complexity of the SML-CNN model. This work will be

more helpful in urban planning, environment monitoring and vegetation.

2.1.5 Fuzzy logic based landslide classification techniques

This subsection area summaries all Machine learning techniques under Fuzzy based

algorithms as below:

Tao Lei et al. [34] proposed an unsupervised change detection using fuzzy ¢ mean
clustering for landslide mapping. For VHR remote sensing image change detection
approach based on image segment was used for landslide mapping. Gaussian pyramid-
based fast fuzzy ¢ mean clustering algorithm is used to get better spatial information
for landslide regions and for accurate landslide region difference of image structure
information. Three datasets of biotemporal images of 0.5 m resolution were prepared
from aerial survey system. The result was compared with existing three algorithms in
terms of higher accuracy, fewer parameters, and short execution time. The proposed
CDFFCM model yields 0.79, 0.80, and 0.62 accuracy for three data sets, respectively.
The proposed approach work on spatial information to achieve better difference images
and also has better computational time due to Gaussian pyramid method. This algorithm
also reduces the sensitivity to a threshold for segmentation and requires fewer
parameters. Post-event images have complex information and still, this algorithm needs
to be modified for post-event images. More landslide images and ground truth are

required to improve the accuracy.

D.G. Stavrakoudis et al. [35] developed a classification approach for VHR multispectral
images based on a Boosted Genetic Fuzzy Classifier. The classification procedure
followed two stages, one was fuzzy rule-based, which is followed by the genetic tuning
stage. The fuzzy rule is useful in local feature selection and it is allowed to select the
feature by repeating the Boosted Genetic algorithm. The next stage was the tuning stage
used to improve the classification by using an Evolutionary Algorithm. An IKONOS
satellite database with 1m spatial resolution was used for experimental results. The

testing performance of BGFC is 0.8487. The main aim was to increase the overall
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classification performance of the algorithm and the proposed algorithm was good in

handling complex multidimensional classification.

Dinh Sinh Mai et al. [36] presented a method that combines the fuzzy probability theory
and fuzzy clustering classification algorithm to overcome the disadvantages like low
accuracy and instability of other satellite image classification algorithms. This proposed
method initially calculates the number and coordinates of cluster-based Fuzzy
probability and then for classification applies a fuzzy algorithm. Landsat 7 Satellite
datasets were used for experimental results. The experimental results show that the
developed fuzzy clustering algorithm gives a Classification entropy of 0.13 and a kappa
coefficient of 0.9156 for one dataset and a Classification entropy of 0.14 and a kappa
coefficient of 0.8599 for the second dataset. This method yields high classification
accuracy on multispectral satellite images as compared to the various developed

algorithms.

Long Thanh Ngo et al. [37] developed an Interval Type 2 C-mean clustering scheme
for multi-spectral satellite imagery. The dataset for experimental results was taken from
LANDSAT?7 imagery which includes rivers, rocks, fields, jungles planted forests. To
generate NDVI image of the chosen study area, two channels were used: Near Infrared
and the other is visible red. NDVI is classified by IT2FCM to define different types of
land covers. For some undefined pixels, the IT2FCM algorithm can handle uncertainty.
Further, this algorithm can be implemented with a hyperspectral image for better

results.

2.2 Deep learning techniques

Many literature surveys and comprehensive reviews on deep learning and its
application applications carried out in number of researches are available [21-29]. This
research discusses the challenge of high quality datasets, impact of model complexity
on computational resources and limitations of model interpretability. This subsection

summaries all Deep learning techniques under hybrid algorithms.

26



2.2.1 CNN-based landslide detection techniques

Shunping Ji et al. [38] designed an attention module to emphasize the different features
of a complicated background landslide. The paper was focused on developing an
accurate and time-efficient inventory based on the recognition of latent landslides. The
work has been done on high-resolution optical satellite images with a CNN model to
detect landladies. The attention mechanism which is based on a human visual system
was developed with a number of landslides with complex backgrounds. Attention
Mechanism was combined with CNN to boost the result of CNN to extract more
features from the background of the landslide. Bijie landslide database with 770 images
was created. Design and attention module which combine spatial and channel attention
map and known 3D spatial channel attention module (3D SCAM) was designed and
used in this work. The proposed 3D SCAM was trained with two-thirds of the images
and results are compared with other attention modules. A few deep learning
architectures such as VGGNet, ResNet, Inception, and DenseNet were evaluated with
four attention modules as SE module, BAM Module, CBAM module, 3D SCAM
module. Experimental result shows that ResNet50 with the proposed 3D SCAM bossed
CNN provide the best result in all the combination. This research claims 0.977
accuracy, 0.97 precision. The accuracy is high with the attention module. In this

attention module model can learn the characteristics of landslides very clearly.

Silvia Liberata Ullo et al. [39] presented a landslide detection method that uses Mask
R-CNN with pixel-based segmentation to identify object layouts. ResNet50 and ResNet
101 was used as the backbone for the proposed method and the result was evaluated
with accuracy, recall, precision and F1 score. The goal of this research was to detect
landslides with pertained mask RCNN with a limited data set and Augmentation was
used on the dataset to increase the volume. The dataset that was used in training and
testing was created from different resources. Images collected were high-resolution
digital photographs collected from UAYV, search engines. Two data sets A and B were
created. Data set A contains a total of 160 images. Data set B contains a total 121
images. Experimental result shows that ResNetlOl have better accuracy, recall,
precision and F1 score over ResNet 50. ResNet 101 yields 0.97 accuracy for dataset A
and 0.90 accuracy for data set B. RestNet 101 has 1 precision, 0.93 recall, and 0.97 F1
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score. The main advantage of this research was mask R CNN can provide segmentation
and detection of landslide at the same time. The result shows that with the higher

number of training samples accuracy was high.

Qi Zang et al. [40] undertook a theoretical comparative framework of Artificial intelligence,
Machine learning, and Deep learning emphasizing their major component and learning
approaches. Filippo Catani [41]. Discussed the implementation of convolutional neural
networks (CNNs) for discerning mass movement patterns using transfer learning to
attain higher classification than existing architectures. Gang Chang et al. [42] discussed
the application of deep learning model in landslide recognition. This work emphasizes the
incorporation of a transformer into ResU-Net to improve context modeling utilization of
large and different sources of data for better identification. This study shows deep learning

with InSAR shows promise for early landslide prediction.

Shun Yang et al. [43] present a semantic segmentation model for automatic landslide
detection. Three semantic models: U-Net, DeepLab3+ and PSPNet were combined with
different deep learning models (ResNet50, ResNet 101) to evaluate experimental
results. Among all combinations, PSPNet with ResNet50 as the backbone network
yields 0.9118 mloU. This paper indicates high accuracy in landslide recognition but
further needs to improve landslide boundary segmentation and dataset. DEM data and

remote sensing data can be integrated to enhance segmentation accuracy.

Lui T et al. [44] designed a landslide detection mapping (LDM) model based on residual
neural networks and Dense convolutional neural networks. ResNet and DenseNet take
high spectral resolution data and conditioning factors. To create a database two cities
of the chain were taken as steady objects which is China’s water conservancy project.
CNN, ResNet and DenseNet were trained with nineteen conditional factors and found
application in the field of LDM. In all these three algorithms DensNet with remote
sensing (RS) images yielded the best result. All three trained algorithms claim accuracy
above 0.95 and densNet with RS images and condition factor claims 0.99 accuracy and
recall and F1 score for this particular dataset. The learning efficiency of the model was

enhanced with conditional factor and yielded good results in landslide identification.

Fu R et al. [45] proposed a study on post-earthquake seismic landslides. To determine

the size of post-earthquake few images of post-earthquake seismic landslide satellite
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imagery data were used. The database was created from Post-quake images of
unmanned air vehicles (UAV) over Wenchuan country of China. The database has an
average 2000 m altitude and 0.25m spatial resolution with an image size of 5616x3744
pixels. In pre-processing steps the database images were reduced in size to remove the
complexity and textual information was added to these seismic landslide images. To
increase the number of images in the dataset data augmentation was done with image
rotation and image flip. Mask R CNN framework can scan the image and mark the
region of a landslide as a target and propose a mask according to the marked region of
interest. For identification and prediction of landslides in the real world requires a large
number of datasets and by using transfer learning this requirement can be reduced. .
Among three backbone Swis Transformer with Mask R-CNN claims 0.822 accuracy,
0.9328 precision, 0.8741 recall and 0.9025 F1 score. This model needs to improve the
accuracy in the identification and prediction of landslides. Accuracy can be enhanced
with the quality of post-quake landslide images. Instead of using UAV images satellite

images with high spatial and spectral resolution can be used.

Ghorbanzadeh O et al. [46] presented a model that fuses object-based image analysis
(OBIA) with a Fully convolution network. ResUnet as the predominate FCN model was
trained and tested with the Sentinel-2 database and designed a combination of FCN-
OBIA segmentation and classification using knowledge-based rules. In OBIA image
difference indices were calculated between pre and post landslide. The data set used
was created from Sentinel-2 images of Eastern Iburi Japan. The experimental results
show that ResU-Net yield 50.24 mIOu, 0.7615 precision, 0.6001 recall and 0.6662 F1
score whereas ResU Net OBIA yields 72.49 mIOu, 0.855 precision, 0.826 recall and
0.8403 F1 score. In this work, it is observed that the ResU-Net model detects landslides
correctly but has high false positive results. The result was more accurate and had fewer

false positives by adding rule-based OBIA for a landslide to train ResU-Net.
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2.3 Other classification techniques

This subsection area summaries all Machine learning techniques under hybrid

algorithms as below:

Tapas R. Martha et al. [47] presented an algorithm uses spectral, contextual and shape
information of images for landslide detection. For object-oriented analysis,
multispectral images were segmented and objects collected from these images were
used as a classifying unit. The main objective was to correctly identify the landslide
using OOA. Complex landslides were difficult to segment because of different
characteristics, like low contrast and overlapping shadows. To identify the false positive
landslides, shape and morphological information were combined. A landslide is
categorized by the base material and movement of flow. To identify landslide
Resources at 1 and LISS IV multispectral data sets were used. For testing the algorithm,
images of the area in Himalayas in India were selected and test the algorithm with 5.8
m MS data from Resources at 1 and 2.5 m Cartosatl. 0.764 recognition is possible with
the proposed algorithm and classification accuracy is 0.691. This algorithm yields more
efficient and accurate landslide detection by utilizing object-based classification. The
main challenge in the work is to distinguish landslides from other objects with similar

spectral properties like soil and water.

Thomas Blaschke et al. [48] used a semi-automated object-based image analysis
methodology to detect landslides. Object-based image analysis has gained an important
role in remote sensing. IRS-ID and SPOT 5 satellite image database were used for the
detection process. Digital Elevation and gray-level co-occurrence matrices were used
to collect slope and flow directions. In object-based image analysis, multi multi-
resolution segmentation was applied for selecting the feature and classifying the object.
The segmented object was processed with their spatial, spectral, and textural
parameters. The landslide class was defined on the base of its morphological
characteristics. The inventory database of 109 landslide events was used as proof to
validate the results and according to rule-based classification, the area above 1600m
(about 5249.34 ft) with a slope greater than 7% is considered landslide landslide-
affected area. The brightness threshold is set for a database created from IRS-ID and

SPOT 5 satellite images. The combinations of these parameters indicated that an overall
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accuracy of 0.9307 was achieved for landslide detection. This method will be useful to

detect landslides even without proper landslide inventory.

Sansar Raj Meena [49] used U-Net and machine learning approaches for automatic
detection of landslides by landslide event-based inventory of triggering events and
occurrence landslides. The major issue lies in mapping performances among
interpretations in the event-based inventory. In this research, two datasets: Dataset 1
from RapidEye satellite imagery and Dataset 2 combine RapidEye and ALOS-
PALSAR. 239 data samples were used to evaluate the model. Experiments were
performed over a fully convolutional U-Net, Support Vector Machine, K-nearest
neighbour, Random Forest. Among all machine learning techniques, U-Net performs
best result of 76.59%MCC. The performance of the U-Net model further can be

increased by increasing the sample size for training samples.

Haojie Wang et al. [50] presented a 11-layer deep convolutional neural network
(DCNN-11) model for landslide identification using ML& deep learning. Promising
results from a case study of Hongkong City were achieved on three databases: Recent
Landslide Database (RecLD), Relict Landslide, Database (RelLD) and Joint Landslide
Database (JLD). Experimental result reveals that DCNN-11 is very effective model
among Support Vector Machines, Random Forest and logistic regression.DCNN-11
has the highest area accuracy 0.925 with the RecLD database. Further, it is observed
that the performance of DCNN can be improved by considering the inconsistency in
terrain, landslide, inaccuracy in the database and the necessity for more complicated
CNN’s in the future owing to computational restrictions. Soumik Saha et al. [51] also
investigate landslide susceptibility in the Garhwal Himalaya using machine learning
models, with Deep learning neural network (DLNN) demonstrating good accuracy.
Omid Ghorbanzadeh et al. [52] compare Artificial neural networks, Support vector
machine, and Random forest Convolutional neural network for landslide detection.
Optical data from the Rapid Eye satellite were used for experimental results. CNNs are
used for effective feature representation in image recognition and have better accuracy for

small window size.

Mahnaz Naemitabar et al. [53] undertook a comparative study on four machine learning

techniques: Support vector machine, the boosted regression trees (BRT) model, the
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Random Forest (RF), and a Logistic Model Tree (LMT) for the identification of
landslide-prone areas. The SVM and RF yield higher reliability in assessing landslide
susceptibility, with factors like lithology, slope, and land use identified as crucial.

Experimental results show that SVM and RF models have AVC 0.86 and 0.89 respectively.

Jie Dou et al. [54] presented an automatic method for landslide detection. This approach
combines three different approaches namely Genetic algorithm, object-oriented
analysis, and case-based reasoning. In object-based analysis, segmentation plays a very
important role. High resolution of the image provides correct information about the
landslide and was helpful in the better result of the segmentation process. To obtain the
object of interest in object-oriented analysis multi-segmentation was preferred on
collected images. The genetic algorithm was applied for the feature section.
Geographical features classify and enhance the accuracy with case-based reasoning.
The case-based reasoning is achieved with different techniques like k nearest neighbor
etc. In this paper, Quickbird images of 0.6 m spatial resolution were used for image
segmentation and feature selection. Roadside landslides were more exposed to high
damage due to landslides and caused difficulties in day-to-day life. SPOT 5 and DEM
datasets were also used for experimental results. All data were rectified to remove the
distortion and noise. Object-oriented image analysis gives 0.75 accuracy for the
detection of landslides and fused Object-oriented image analysis with a case-based
reasoning and genetic algorithm (GA) yields 0.87 accuracy in the detection of
landslides. The proposed technique provides benefits over a knowledge-based section
for the detection of landslides. This technique helps in creating inventory that will be

helpful for providing specifications for future landslides.

Tapas R. Martha et al. [55] designed a new approach to detect landslides using
bitemporal multispectral images. Multispectral images were used to collect the object
from post-landslide images. For the analysis of high-resolution images, a tool is
developed which makes input data in a user-defined grid. Multispectral images were
collected from the Resourcesat-2 LISS-IV satellite for a defined study area. These two
datasets have three bands and are useful for object-based change detection techniques
to recognize landslides. For the detection of landslides 10m DEM from Cartosatl

satellite data was used. For good quality images auto-rectified Resourcesat-2 LISS-IV
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satellite images are further processed to achieve high pixel match. Top atmospheric
reflectance calculations were performed in the preprocessing step of images to
overcome weather conditions like sunlight. Pre and post-landslide image reflectance
differences identify the landslide. Image segmentation was performed with knowledge-
based approach. Object-based change detection was used to detect landslides. The
developed graphic user interface (GUI) tool provides overall good accuracy in landslide
detection. Combined spectral and morphometric parameters have 0.89 accuracy in the
detection of landslides with 10m DEM from Cartosat-1 satellite images. This work can
further be modified for the shadow of clouds in pre-landslide images. Some landslides

were not identified due to small clouds over the pre-landslide images.

Tapas R. Martha et al. [14] presented a comparison of the pixel-based approach and
object-oriented approach for landslide detection. Very high resolutions of 0.5m
remotely sensed images were used . An inventory was created with 115 field-based
landslides fused with 0.5m spatial resolution for comparative analysis. Unsupervised
classification was used in pixel base classification and images were classified in eleven
different classes. For non-landslide and landslide pixel binary analysis was used and
assigned zero and unity for landslide and non-landslide, respectively. In object-oriented
analysis k mean clustering was used to remove regions based on brightness to detect
landslides and object properties were used to reduce false positive results. Object-
oriented analysis has 0.965 and Pixel-based unsupervised classification has 0.943
accuracy. In this paper, further investigation on challenges associated with OOA needs

to be discussed for improvement.

Filippo Vecchiotti et al. [56] presented a semi-automatic image classification technique
for landslides caused by rainfall. This approach combines pixel-based classification
with remotely sensed images multi multi-parameters for landslide detection. Vegetation
change in pre and post-image will identify the landslide event. In the method,
bitemporal pixel change detection was applied. It was a double classification technique.
Terra ASTER L2 data sets were used for the defined study area. 110 landslides which
were recognized accurately with this semiautomatic image classification technique.
This double classification workflow gives 0.815 producer accuracy coupled with a

more than acceptable 0.689 accuracy and 0.729 kappa coefficient. With its data set
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cloud detection was not performed but it can be overcome with SPOT and Sentinel-2

for a better view of scenes.

2.4 Findings and research gap

The primary tendency of this literature survey to observe the performance of
classification on landslide detection. In this literature survey, the analysis is based on the
accuracy of the classification, satellite-based datasets used for detection and algorithms
used for classification. During this study, we found different observations that will be

helpful for future research directions, concluded in this section.

2.4.1 Challenges which are discussed

Numerous researches have been done with semi-automatic classification of landslides
and a few with automatic detection. The most important stage is the data collection. The
high-quality image provides a better result for feature extraction. The review concludes
that two different images are fused to give a better feature selection. Earth-observing
satellites are two types: active satellites and passive satellites [16]. Satellite data provides

images and features are extracted based on the following points:

e Active satellites are microwave remote sensing and have their own source of
energy. Active satellites have controlled illumination and have the least effect
of weather.

e In Active satellite Day and night operations are possible. ESA satellite, Canada
RadarSet, Indian satellite (RISAT) and Japanese satellite (ALSO) is a type of
active satellite. ESA’s Sentinel-1 is an active microwave remote sensor and is
useful in providing data for all types of disasters like floods, earthquakes, and
landslides.

e Passive remote sensing is more useful nowadays and does not assign any
external source of energy. These types of satellites measure either reflected
radiation from the sun or emitted radiation from the earth. Reflected radiation
depends on sunlight so it works on the daytime only and suffers various
illumination conditions like weather play a major role. LANDSAT, SPOT, IRS,

Cartosat, and IKNOS are some examples of passive satellites.
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2.4.2

To image segmentation, compare object-based and pixel-based image
classification.

To classify multispectral images and multi-frequency images.

Challenges which are not discussed

There are few challenges which are not discussed:

243

Real-time remote sensing data: Automatic detection of landslide require real-
time data which based on satellite imagery need highly efficient algorithms for

real-time computation.

Limited training data set: Acquiring large-scale data sets for training the model
in a machine learning algorithm is a challenging task, which can hinder the

ability of the trained model to detect landslides accurately.

Feature extraction: for automatic detection and classification of landslides, need
to extract the feature from the database and the feature should be relevant so that

model can accurately differentiate between landslide and non-landslide images.

Environmental factor: landslide depends on various environmental factors like
rainfall, soil type, topography etc. By considering these parameters machine

learning model requires a more careful feature selection algorithm.

Observations

This research work covers a review of 50 research papers, out of which 70% papers

used passive sensor-based satellite databases for training and testing, 22% of papers

used active sensor-based satellite databases while 8% of papers used aerial images for

experimental results. The different types of satellites used in different research work as

shown in Figure 2.1
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m Aerial Image = Active Satellite = Passive Satellite

Figure 2.1 Classification of images used for Landslide Monitoring

Analysis carried out on the basis of accuracy shows that an accuracy range between
95%-100% is obtained in three research papers, 90%-94% is obtained in seven research
papers, 85%-89% is obtained in seven research papers, 80%-84% is obtained in four

research papers and below 80% is obtained in two research papers as shown in Figure

X

095-100% ©90-94% [85-89% [@80-84% Obelow 80%

Figure 2.2 Classification Accuracy of ML/DL based techniques

Classification algorithms are categorized into seven different classes. This work
reviewed fifty research papers, six papers are based on SVM classifier, four papers are
based on Bayesian classifier, three papers are based on a decision tree classifier, three
papers are based on neural networks, four papers are based on fuzzy, fourteen papers
are based on deep leaning technique and the remaining are hybrid algorithms that
combine different classifier algorithms. Figure 2.3 shows the different algorithm-based

research papers.
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Figure 2.3 Number of classifiers and types used in literature review
2.4.4 Research gap

A landslide is a real-time event and it is very difficult to create a database with a very
high number of images. Landslide events depend on a number of factors, like rain, soil
and weather conditions. Need to design a model with a Convolutional neural network
(CNN) that takes care of different factors of landslide. Deep neural networks are
difficult to understand and with a complex architecture of networks, prediction is very
difficult. CNN architecture has practical applications in image classification, object
detection, and semantic segmentation [38]. Semantic segmentation with pixel-level

segmentation provides good results in image segmentation [43].

The articles in this study have very effective results in terms of accuracy, precision,
recall and F1 score for landslide detection. There are few potential research gaps as

follows:

e Performance: Accuracy plays the main role in the performance of an automatic
detection landslide model. Selected literature articles were compared with
common parameters: accuracy, precision, recall and F1 score. The range of
accuracy lies between 0.80 to 0.92. Semantic segmentation model PSPNet with

ResNet50 as backbone achieves the highest mIOU at 91.18% , this can be
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further improved by exploring false results [43]. The Swis Transformer a
backbone network with Mask R-CNN claims 0.822 accuracy [45].

Method used: Convolutional neural network architectures such as ResNet50,
ResNet101, VGG, DensNet, Google Net were used as the backbone with
different approaches and provide different results. CNN along with spatial
channel attention mechanism and high-resolution optical images yield high
accuracy. Need more investigation on the superiority of spatial channel
attention mechanism [38].

Database: Need is a high-resolution remote sensing image dataset for improving
accuracy. Models were trained for selected datasets. The Bijie landslide dataset
was used, but it is limited to 770 images of landslide and nonlandslide images.
Some dataset was created from images of unmanned air vehicles, which contain
different images from different sources. Instead of using UAV images, satellite
images with high spatial and spectral resolution can be used and will provide
good results [39]. Training is limited with the dataset is the biggest research
gap.

Different type of landslide has different characteristics. The model based on
Mask R-CNN with pixel-based segmentation and ResNet at the backbone does
not specify whether the model tested for different types of landslide. Results are
only compared in between ResNet 50 and RestNet 101 rather than the other

potential object detector deep learning architecture [39].

2.5 Problem Statement

Landslides are a severe environmental threat, especially in hilly areas. Leveraging

satellite data for landslide detection and prediction provides considerable potential, but

raw satellite data frequently contains discrepancies due to factors such as sensor noise,

cloud cover, changing atmospheric conditions, and topographical distortions. The goal

is to create an algorithm for pre-processing landslide data derived from satellite images.

For automatic detection need to design and develop a novel machine-learning/deep-

learning algorithm and optimize the detection and classification model towards better

performance.
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2.6 Objectives

The objective of this research work is to design an automatic CAD system for Detection
and Classification of Landslide using Artificial Intelligence Techniques. This research

work contains the following objectives:

2 To design an algorithm for pre-processing the landslide data generated by satellite
data.

3 To design and develop a novel machine-learning/deep-learning algorithm to
detection and classify landslide.

4 To optimize the detection and classification model towards better performance.
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Chapter 3 Pre-processing of satellite images

3.1 Bijie landslide dataset

Deep learning architectures require a large number of images to train the network and
creating a dataset for landslides from remote sensing images is a difficult task. The Bijie
landslide dataset is an open-source dataset that was used in this research to train the
deep learning architecture. Ji et. al [38] developed the Bijie dataset and the study area
is over Bijie city of China about 26853 square km area. Due to the fragile nature of soil
and unstable geological conditions make this area highly prone to landslides. The RGB
images of 0.8 resolution were captured by the TripleSat satellite over an area located in
the transitional slope zone from the Tibet Plateau to the eastern hills with altitude ranges
from 457 to 2900 m. This dataset contains two Groups of images: landslide images and
non-landslide images. The landslide set of images contains seven hundred seventy
images and the Non-Landslide set contains two thousand three images. In our
experiment, 70% images from the Bijie dataset are used for training and 30% of images
are used for testing the model. The dataset was split in a stratified manner, ensuring that
both landslide and non-landslide images were included in the training (70%) and testing
(30%) sets. The training set contains 70% landslide and 70% non-landslide images,
while the testing set contains 30% landslide and 30% non-landslide images. Figure 3.1

shows some images of landslides in our training set.

Figure 3.1 Examples of landslide instances from Bijie dataset



3.2 Satellite image Pre processing

The most important task nowadays is to save lives from disasters. During these disasters
to save human life is a difficult task for the disaster management team. Satellite images
processed with artificial intelligence algorithms are used to save lives during disasters.
The contemporary era's remarkable technological advancements make satellite imagery
a vital resource for geospatial applications. Analyzing high-resolution satellite images
over time using object recognition and image categorization has proven invaluable in
areas such as disaster management, agriculture, urban planning, landslide prediction,
atmospheric prediction, environmental surveillance, mitigating natural catastrophes
and assessing land-based biodiversity [57]. Remote sensing is a method used by satellite
imagers to capture data on Earth from orbit. Earth observation satellites are equipped
with different sensors like LISS3, Worldview, MODIS, Landsat, Sentinel-2,
VIIRS, AVHRR, etc. detect electromagnetic radiation from Earth's surface. Different
objects observe and reflect different wavelengths, ranging from radio waves to gamma
rays. Information is converted into radio waves and transmitted to base computers
which transmit into 0 and 1 binary code and create images from the received
information. Sensors are classified into two categories: active and passive sensors. The
active sensor provides its energy source for illumination and does not depend on
sunlight. These types of sensors can be used for examining wavelengths that are not
provided by sunlight, such as microwaves. Synthetic Aperture Radar is an example of
an active sensor. Passive sensors measure naturally available energy [16]. Satellite
images are quite complex to analyze and it is very important to develop a reliable and
accurate system to analyze satellite images. The true difficulty lies in deciphering
remote sensing data to obtain precise information. Utilizing this data for automatic
decision-making in detection presents challenges. Raw satellite images have many
challenges and these challenges arise from the inherent complexities of acquiring and
interpreting data from space, where a variety of factors can introduce errors,
inconsistencies and distortions. When using satellite data for prediction and
classification, the accuracy of any application is reduced by the numerous errors
included in raw satellite images. The preprocessing stage uses radiometric correction,

atmospheric correction, dark object subtraction, noise removal, random bad pixels,
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image enhancement, resizing, augmentation, etc. [58][59]. Understanding these
obstacles and errors, as well as the need for preprocessing, is critical for obtaining

accurate and dependable results from satellite image analysis.

3.2.1 The objective of the work

The objectives of the work undertaken are as follows

1. To explore different types of systematic and non-systematic errors in raw satellite
imagery.

2. Apply different correction techniques on raw satellite landslide images and discuss
the results.

3. To analyse and evaluate the results of the proposed pre-processing.

3.2.2 Related work

In the last few years, a number of research studies have taken place with satellite image
processing to identify, predict, classify, and detect any real-time event [7][9][60][61].
Satellite image processing has numerous challenges due to the intrinsic challenges of
receiving and understanding data from space, where many circumstances might create
inaccuracies, inconsistencies, and distortions. There are two main errors in raw satellite
imagery: systematic and non-systematic. Systematic errors in satellite images are
constant, repeated imperfections caused by several predictable factors relating to the
satellite sensor, its orbit, and the environment in which it functions. Geometric
distortion, atmospheric distortion, sensor noise, temporal mismatch and orbital error are
some systematic errors. Non-systematic errors also called random errors, vary in
magnitude and in direction within the same image or different images. Processing of
satellite images uses Geometric correction, atmospheric correction, radiometric

correction and image enhancement [58][59].

Geometric correction corrects the misleading geographical errors that are present due
to errors by Earth’s curvature and sensor orientation. James Storey [62] emphasizes the
significance of geometric correction as an essential pre-processing step for matching
multi-sensor satellite imagery. The study found misregistration difficulties between

Landsat-8 and Sentinel-2 imagery, including misalignments of up to 38 m (2c5) due to
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discrepancies in geometric control references. It is observed that misalignment varies
geographically, but it remains consistent for specific areas. James Storey [63] explains
the geometric correction process for Landsat 8 which involves refining the sensor's line-
of-sight model through on-orbit calibration activities. The results show excellent
geometric performance. Prieto-Amparan et al. [64] compared three radiometric
correction methods Atmospheric Correction for Flat Terrain 2, Fast Line-of-Sight
analysis of Spectral Hypercubes and Dark Object subtract 1 for estimating grassland
biomass using Landsat imagery. The simplest method DOSI, provided the most
accurate and consistent result [65]. Atmospheric Correction corrects the surface
features that are distorted due to the effect of atmospheric particles and gases.
Atmospheric correction transforms at-sensor radiance to surface reflectance using the
ATREM algorithm. The real-time results were similar to the standard AVIRIS-NG
ground processing, but much faster [66][67]. Radiometric correction was used to
convert digital numbers to spectral radiance and reflection. A radiometric correction
was done on the Landsat image to improve the quality of the satellite image [68][69].
Image enhancement is a crucial step in image preprocessing and is used to improve the
visual quality of an image by emphasizing some specific feature of an image. This
process makes images more useful and accurate result-oriented for specific tasks like
feature extraction. Anuj Ashokan et al. [70] provide a comprehensive review of image
enhancement techniques and categories in two domain methods: spatial and frequency
and claim that histogram equalization enhances the overall quality of an image. Shilpa
suresh et al. [71] proposed an algorithm for image enhancement by modifying
the differential evolution algorithm and combined with the Cuckoo Search. Quality
speed distribution and proportionality-spaced distribution are two types of distribution
techniques that were used. Yun B et. al. [72] introduce a saliency enhancement method
using Fast, Accurate, and Size-Aware to make landslides more prominent in large-scale

Landsat8 images.

3.2.3 Methodology For Satellite Image Pre-processing

Satellite sensors' raw images frequently show distortions and irregularities resulting
from a variety of causes, including air conditions, absorption, changing scene lighting,

satellite orbital motion, and geometric aberrations. Errors in satellite imaging can occur
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from several different causes during the collection, transfer, processing, and
interpretation of the images. It is essential to comprehend these mistakes and use the
proper repair methods to obtain accurate analysis and trustworthy outcomes. This is a
thorough analysis of typical mistakes in remote-sensing satellite images. Different

errors present in satellite images are shown in Figure 3.2.
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Figure 3.2 Satelllite imgery errors

e Radiometric Error: Pixel values in an image are impacted by radiometric error,
which is usually caused by changes in sensor sensitivity, atmospheric conditions, or
problems with equipment calibration. A variety of errors, including noise, banding,
and atmospheric distortion, can be found in radiometric errors. Noise occurs when
pixel values randomly vary and are unrelated to the desired object. Bands across the
photos are caused by uneven sensor performance. Scattering and absorption are the
causes of atmospheric distortion. To overcome radiometric, a variety of correction
techniques are employed, including noise filtering, calibration, destriping algorithm,
and dark object subtraction [73].

e Geometric Error: When changes in satellite orbit, sensor geometry, or terrain relief
affect the spatial relationship between objects in a image, is known as geometric errors.
Geometric errors come in various forms, including perspective, relation, and terrain
distortion. Sensor misalignment is the cause of relation inaccuracy. The cause of
perspective mistakes is the way the angle of the satellite sensor causes things in higher-
elevation areas to seem displaced. Surface feature distortion can result from changes
in the terrain. Techniques like as georeferencing, orthorectification, and resampling
are employed to mitigate the impact of geometric inaccuracy. Using ground control

points, the image is aligned with the coordinate system in georeferencing. Digital
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elevation models are used in orthorectification procedures. Bilinear covariance and
nearest neighbor are two resampling techniques that are used to manipulate the image
with reference coordinates.

Atmospheric Errors: These errors are caused by surface features changing in
appearance due to electromagnetic radiation's interaction with gasses and particles in
the atmosphere. The image quality is diminished by haze and smog as a result of
aerosol scattering. Additionally absorption of specific wavelengths by water vapor,
causes spectral aberrations. Atmospheric errors are corrected using radiative transfer
models, image-based correction methods like empirical line calibration [66].
Temporal Error: Images taken at different times can exhibit variances due to
environmental factors such as seasonal changes, vegetation growth, or urban
development, which can lead to temporal errors. Image normalization helps to
eliminate variations resulting from acquisition time variances by matching the
brightness and contrast of several photos to a reference image.
Change Detection Analysis is also used to overcome temporal error. Rather of trying
to make direct corrections, temporal errors can be reduced for applications such as
land cover change by monitoring and analyzing changes.

Sensor-specific error: Sensor-specific errors are the results of certain satellite sensors
producing particular artifacts as a result of their operational parameters and design.
Dead pixel and lens distortion are an example of sesor specific errors. In order to
correct for these inaccuracies, post-processing adjustments are employed to rectify
lens distortion using models based on known sensor characteristics. Image
interpolation is utilized to fill in the gap left by dead pixels.

Cloud cover: Clouds have the ability to mask surface characteristics, making parts of
satellite imagery useless for analysis. Cloud masking, data fusion and cloud gap filling
is used to overcome this error.

Transmission error: Data corruption or missingness due to errors that happen during
the transfer of data from the satellite to ground stations is known as transmission
error. These types of errors can be overcome by using data reconstruction algorithms

and error correction coding.
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e Spectral error: Spectral error is errors pertaining to the way a sensor records light at
various wavelengths, which could lead to an erroneous depiction of surface details. A

band alignment algorithm is used to overcome these errors.

Raw satellite data is complex and needs pre-processing to remove the errors.
Preprocessing is an important step in satellite image analysis since it prepares the raw
data for later processing and interpretation. The primary goals of preprocessing are to
rectify distortions, improve image quality, and prepare data for geographic
analytics. Remotely sensed digital images are composed of pixels and have a digital
number (DN). Each pixel has intensity and address value. Pixel is square and these
squares represent an aerial average of the ground. Given the imaging geometry and
satellite orbit parameter, the row and column indices of each pixel on the ground must
yield its exact graphical location. The resolution of an image plays a very important
role in image analysis. Satellite images have five types of resolution:1.Spatial
resolution, 2 Spectral resolution, 3. Temporal resolution, 4. Radiometric resolution,
5.Geometric resolution. Once an image is acquired the spatial resolution is frozen. Raw
images captured by satellite sensors often exhibit distortions and inconsistencies caused
by various factors, such as atmospheric conditions, absorption, varying scene
illumination, satellite orbital motion, and geometric distortions. Systematic and non-
systematic error present in satellite images degrades the result in image anlysis.
Preprocessing is necessary since raw satellite data has inherent problems and limits. To
produce an accurate depiction of the actual image, distorted or damaged image data
must be corrected using different rectification processes. For accurate and insightful
analysis, especially in areas like land-use planning, disaster relief, and environmental
monitoring, satellite picture defects must be corrected. The kind of error, the properties
of the sensor, and the intended use all influence the correction technique selection. To
provide accurate, dependable findings, it is frequently essential to combine many
techniques, such as atmospheric correction with geometric and radiometric corrections.
To eliminate inaccuracies, pre-processing is necessary for the complex raw satellite
data. Since preprocessing sets up the raw data for further processing and interpretation.
Resolving distortions, enhancing image quality, and getting data ready for geospatial

analytics are the main objectives of preprocessing. Preparing imagery from satellites
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for analysis requires a certain level of preprocessing. In order to make the raw data from
the satellite sensors more appropriate for later interpretation and modeling, it entails
improving and correcting it. Different preprocessing techniques are shown in Figure

3.3.
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satellite images
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Figure 3.3 Rectification Processes

Radiometric correction: Pixel intensity and radiometric correction are
connected. Variations in pixel intensity values are brought on by sensor defects,
variations in the sensor's sensitivity, or external circumstances like the illumination
during the picture capture. It adjusts the sensor's digital numbers (DNs) to take into
account its special characteristics, such as sensitivity and potential deterioration over
time. eliminates the influence of the atmosphere and guarantees that, regardless of
atmospheric circumstances, the data more accurately depicts the surface reflectance or
radiance. Raw satellite photos contain a variety of radiometric aberrations, such as
banding, line loss, dropout of a line or column, random poor pixels, and stripe noise etc

[74].

Geometric correction: Earth curvature, sensor viewpoint, and satellite motion all
cause distortion in raw satellite data that is corrected by geometric correction.
Geometric correction seeks to ensure that the satellite image accurately represents the
forms and geographic locations of features on the Earth's surface, allowing for precise

spatial analysis and mapping [75]. Among the geometric correction algorithms are
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ground control points, nearest neighbor, bilinear interpolation, and mathematical

transformation resampling.

Atmospheric correction: The effects of the atmosphere, such as light absorption, path
radiation, and scattering, are removed from the raw satellite photos using atmospheric
correction. Various techniques are employed for atmospheric correction, including Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes, and Atmospheric and
Topographic Correction (ATCOR) [64].

3.2.4 Radiometric correction and Geometric correction

From the study area select one raw satellite image and perform geometric radiometric
and atmospheric correction. A digital number (DN) represents the brightness value of
each pixel in a satellite image, which is obtained from reflected or emitted energy. It is
the sensor's raw digital output that is utilized to adjust radiometric and atmospheric
data. All preprocessing stages rely on DN values, which are the raw data output by
satellite sensors. They are used to quantify physical parameters like radiance and
reflectance using radiometric correction, allowing for accurate analysis. These values
are significant for several remote sensing applications, including land cover
classification, change detection, and thematic mapping, as they allow quantitative
interpretation of surface properties. Initially set constants Multiplicative rescaling
factor, additive rescaling factor and sun elevation. Then define the coordinate reference
system for radiometric correction. Extract the digital number value of the image and
calculate transformation parameters. Rejoin DN band to target coordinate reference
system. Then apply atmospheric correction. Atmospheric correction modifies the DN
and this DN is converted into Top of Atmospheric (TOP) reflectance using radiometric

correction.

DN is converted into Top of Atmospheric is done using linear transformation equation

as shown below :

Ly = Gain x DN + Offset -(1)

Where:

o L, is the TOA radiance (in W/m2/sr/um)
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o Gain and Offset are radiometric calibration coefficients specific to the satellite

sensor (usually provided in metadata)
e DN is the raw digital number value of a pixel

This process adjusts for sensor calibration and translates raw DN into radiance units,

suitable for further atmospheric correction and surface reflectance analysis.

Figure 3.4 shows the processed image. Figure (a) shows Geometrically corrected image
and Figure (b) shows Radiometrically and Atmospherically corrected image. Figure 3.5
shows the histogram result of the pre-processed image. Table 2 shows the parameters

of the processed image.

Geometrically Corrected Image (DN) Radiomgtrically & Atmospherically Corrected Image (TOA Reflectance)
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(a) Geometrically corrected image (b)Radiometrically and Atmospherically
corrected image

Figure 3.4 Geometrically Radiometrically and Atmospherically corrected image

49



I {24
~ o
w o

=

[

o
L

Frequency

0.75 A

0.50 A

0.25 A

0.00 —

Histogram of Geometrically Corrected Image (DN) Histogram of Corrected Image (TOA Reflectance)

le7

le7

L

N

%]
L

|y

o

o
1

0

2.0

=
[¢]
L

Frequency

=
(=]
L

0.5 1

10000 20000 30000 40000 50000 60000
Digital Number (DN)

(a) : Histograms of DN values

0.0 - T 7 u T
0 50 100 150 200 250

Reflectance (Scaled)

(b): Histograms of TOA Reflectance
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Table 3.1 Pre-processed image parameters

Geometrically Corrected

Min: 0, Max: 65455

Image (DN)

Mean: 10654.471086060137

Std Dev: 12895.613843682024

Corrected Image (TOA

Min: 0, Max: 255

Reflectance)

Mean: 49.59613890229188

Std Dev: 71.85929504994736

3.2.5 Algorithm of Proposed Work

The preprocessing workflow contains several steps including radiometric correction,

dark object subtraction, random bad pixel and Gaussian smoothing. The flow diagram

of the proposed work is shown in Figure 3.6.
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Figure 3.6 Flow Diagram of Proposed Pre-Process algorithm for Satellite images

Algorithm of Proposed Work

Step 1: Download the satellite image for the study area. And input the satellite image
file.

Step 2: Set Radiometric Parameters: Sun elevation, additive rescaling, Multiplicative

rescaling correction
Step3: Read the digital number (DN) value.

Step 4: Perform atmospheric correction using Dark object subtraction (DOS)- identify

minimum DN value and subtract dark object value from DN.

Step 5 : Perform radiometric correction — convert atmospherically corrected DN to Top

of atmospheric (TOA). Scale TOA reflected value for visualization.

Reflectance = DN x Multiplicative rescaling factor 2)
Step 6: Apply a Median filter to correct bad random pixels.
Step 7: Gaussian filter is used to smoothing of image.

Step 8: In normalization, image is clipped to range [0,1] and scale the clipped

reflectance to [0,255]

Step 9: Display the result using a Histogram
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Step 10: Convert DN to quantitative Metrics to compute : Peek Signal to Noise Ratio

(PSNR), Root Mean Square error ,Mean absolute error and Structural Similarity Index.

(Maximum pixel value)2

PSNR= 10 logio B ) 3)

=(== in 8bit — normalized reflection 7 e 4)
RMSE = (%I, (DN in 8bi lized reflection)?) *

3.2.6 Results and discussion

In this experiment, we perform satellite images processing to improve the quality of the
image and prepare dataset for landside analysis. This proposed preposcessing workflow
contain few key steps: bad pixel correction, radiometric correction, darkobject
subtraction, normalization, gaussian smoothing, resizing and augmentation.The result

of this experiment is evaluated based on histogram comparison and qualitative metrics.

First step start with reading the Digital number of satellite image from study area. We
set the radiometric correction constants: sun elevation, additive rescaling factor and
multiplicative rescaling factor. To reduce the impact or atmospheric scattering, apply
Dark object subtraction, find the minimum value of digital number band and subtract
from all the present pixel in the band to correct the band. Now, this corrected band DN

number is converted to top-of-atmosphere reflectance.

To correct random bad pixel, a median filter is applied atmospheric reflectance image.
To reduce noise gaussian smoothing was applied. The resulting images are scaled in

the range [0, 255].

Figure 3.7 (a) and (b) shows original DN image and shows proposed pre-processing
algorithm processed image. Figure 3.8 shows histogram analysis of pixel distribution

original image and processed image.
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Figure 3.7 Pre-Processed satellite image
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Figure 3.8 Histogram analysis of pixel distribution original image and processed image.

Table 3.2 sumarrize the quantitative analysis of proposed alogirthm. Processed image
have Mean value 52.05141 , standard deviation 71.41093. To check the effect of pre
processed image we calculate quantitative materic : mean absolute error is 82.42,

RMSE is 7.188, SSIM is 0.87 and Peak signal to noise ratio is 19.4512.
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Table 3.2 Proposed algorithm Pre-processed image parameters

Parameters value

DN Min: 0, Max: 255,

Mean: 32.05141686123336,
Std Dev: 71.41093891140993
Mean Abzolute Error (MAE): 22.4215676571131

Foot Mean Square Error (RMSE): T.188411304145282
Structural Similarity Index (S5IM): 0.875150638861635
Peak Signal-to-Noise Fatio (PSNE): 19.45124344207347 dB

The preprocessed proposed algorithm effectively normalizes raw satellite images,
enhances its quality, reduces noise and removes radiometric errors, as shown in the
result in terms of PSNR. The pre-processed image has mean and standard deviation
values significantly lower than the original DN satellite image which indicates the
normalized process was successful. In the original image mean pixel is 11166.08175 and
the standard deviation is 12991.40667. Images processed only with radiometric and geometric
correction have a mean of 49.59613 and the standard deviation is 71.85929. Satellite images
processed with the proposed algorithm have a mean of 52.05141 and a standard deviation of
71.41093. This indicates a uniform distribution of pixel value and will help use this data in the
training of artificial intelligence models with deep learning for the prediction of landslide

events.

3.3 Preprocessing in database

Preprocessing is an essential step in deep learning, ensuring that raw data is processed
into an appropriate format for model training. The quality of the preprocessing can have
a substantial impact on the model's performance, training time, and capacity to
generalize to new data. Here, we explore various preprocessing approaches typically
employed in deep learning, with a special focus on their applications in landslide
prediction. Deep learning models require large number of data and sensitive to the
quality and format of their input data. Raw data frequently contains inconsistency,
noise, which may distrupt the learning process. Preprocessing help to resolve these
challenges by increasing data diversity through augmentation, normalizing the data

distribution, reducing dimensionality for more effective calculation. Proper
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preprocessing allows for faster convergence during training, greater model

generalization and higher overall performance.

3.3.1 Preprocessing techniques
1. Data Augmentation

Data augmentation artificially improves the diversity of the training dataset by adding
random transformations such as rotation, flip, translation, and scaling. This reduces
overfitting while increasing the model's capacity to generalize to fresh data.
Augmentation is very effective when there is a limited amount of data. Different
augmentation techniques as color jitter, rezise, random flip, random horizontal can be
applied to dataset to increase number of images in dataset [43]. Augmentation was
important because the supplied dataset would be small which could have resulted in

overfitting.

o ColorlJitter : The use of ColorJitter augmentation increased the model's robustness
by mimicking various real-world circumstances. This simple augmentation strategy
exposed the model to images of variable brightness levels, allowing it to generalize
more effectively to previously unknown data taken under various lighting
situations. Outdoor footage, such as satellite pictures, frequently features a variety
of lighting conditions. By modifying images with brightness variations, the model
can be trained to be more resilient to lighting shifts. This ensures that the model
does not rely on unique lighting conditions to detect landslides, increasing its
generalizability. Color jitter transformation randomly adjusts the image's brightness
by up to 20%. Colorlitter is a strong enhancement tool that can change contrast,
saturation, and hue. Figure 3.9 shows the input image and brightness transformation
5 times, generating 5 augmented images. Each transformed image will have a

slightly different brightness.
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Figure 3.9 Brightness Transformation of image

Rotation: Rotation is a crucial transformation for landslide images since
landslides can occur in a variety of orientations. To imitate diverse viewpoints,
we used random rotations within a different angle range. This was accomplished
with the Rotate function from the Albumentations library, a powerful tool for
picture augmentation in deep learning pipelines. To create numerous augmented
images, we performed the rotation transformation to each image five times. This
technique generated five new versions of the original image, each rotated at a
different random angle. The inclusion of rotation augmentation is predicted to
increase the model's generalization by making it more invariant to diverse
landslide orientations observed in test data. Figure 3.10 shows the original
image alongside five rotated images with + 50° generated through
augmentation. When applying rotation as a data augmentation technique,
choosing an appropriate rotation limit can significantly impact the diversity of

the dataset and improve the model's ability to generalize.
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(a) original image

Rotated Image 1 Rotated Image 2 Rotated Image 3 Rotated Image 4 Rotated Image 5

Figure 3.10 Original image alongside five rotated images

Horizontal Flip : Horizontal flipping is a transformation that reverses an image
along its vertical axis. For landslide imagery, this technique simulates
circumstances where satellite imaging or ground-level photography may catch
landslides from different camera angles. Introducing this type of variation
allows the model to become less sensitive to the precise orientation of features
in the images, boosting the model's robustness and generalizability to new data
sets. Argumentation is a useful tool for enhancing images in computer vision
applications, with transformations like rotation, cropping, scaling, and
flipping. In our augmentation pipeline, we used a random horizontal flip with a
50% probability. This means that each image has a 50% probability of being
flipped, therefore both the original and inverted versions of the landslide are
used in the training process. The horizontal flip augmentation added variation
to the training dataset by increasing the variability of image orientations. This
led in increased model generalization, allowing the model to perform better on
previously unknown test data, especially when images were given from various
perspectives. Figure 3.11 shows an example of an original image and its

horizontally flipped version.
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(a) original image

Flipped Image 1 Flipped Image 2 Flipped Image 4

Flipped Image 3
:

Flipped Image 5

Figure 3.11 Horizontally flipped version of Original image

Resize: The resizing step ensured that all of the images in the dataset were
compatible with the deep learning model's input layer, which requires a fixed
input size. Resizing photos to 150 x 150 pixels reduces computational cost,
allowing for faster training while keeping sufficient quality to detect landslide-
related features. By standardizing the input dimensions, the model was able to
focus on learning important patterns throughout the dataset without being
impacted by image size or resolution differences. This preprocessing step made
the training process more efficient, allowing the model to converge
faster. Figure 3.12 displays the original landslide image and the scaled image,
with the original image shrunk to 150 by 150 pixels. As observed, the image's
fundamental qualities are preserved, ensuring that resizing does not compromise

the essential attributes required for model training.

Original Image

Resized Image (150x150)

Figure 3.12 Original and resized image
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3.3.2 Principal Component analysis (PCA) and variants

PCA is a popular dimensionality reduction preprocessing technique that converts high-
dimensional data into a smaller collection of components that represent the majority of
the variance [76] [77]. It converts the input data into a set of linearly uncorrelated
variables called as principal components, which are sorted by the amount of variance
they extract from the original dataset. This method works exceptionally well when
dealing with high-dimensional data, where redundancy and multicollinearity can
degrade model performance. This is especially effective for large datasets, as fewer
features can greatly reduce the model's computational complexity. In deep learning,
PCA is frequently used to eliminate duplicate information from image data and
compress it while retaining critical features. This can help reduce the training time of
convolutional neural networks (CNNs) while preserving essential patterns in images
[78]. Kernel PCA is a non-linear data version that uses a kernel function to map input
data into a higher-dimensional space, allowing for the capture of more complicated
patterns.

In landslide detection research, PCA 1is used to minimize the dimensionality of image
data. Given that high-resolution satellite images frequently contain a significant number
of correlated features (e.g., pixel intensities across different bands), PCA enabled to
minimize data complexity while keeping the most relevant elements required for
categorization. Dimensionality reduction proved critical in speeding up the training of
deep learning models like ResNet and GoogleNet while preserving important visual
information.

PCA has various variations that address specific constraints of the traditional PCA
method. These versions provide greater flexibility and efficiency with high-
dimensional or non-linear data. Kernel PCA is one variant of PCA is non linear
extension of PCA that allows for non-linear dimensionality reduction using kernel
functions [79]. Common Kernel functions are Gaussian (RBF) kernel, Polynomial

kernel, and Sigmoid kernel.
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Table 3.3 Compare the result of PCA and Kernel PCA for different images.

Mean Square | Structure Mean  Square | Structure
Error for PCA Similarity Index | Error for Kernel | Similarity Index
for PCA PCA for Kernel PCA
Sample 1 30.97 0.97 0.43 0.99
Sample 2 27.40 0.97 0.48 0.99
Sample 3 19.17 0.98 0.46 0.99
Sample 4 19.13 0.98 0.49 0.99
Sample 5 12.02 0.98 0.49 0.99
Sample 6 17.17 0.98 0.49 0.99
Sample 7 37.18 0.93 0.47 0.99
Sample 8 15.38 0.98 0.49 0.99
Sample 9 21.76 0.99 0.51 0.99
Samplel0 14.70 0.99 0.49 0.99

Kernel PCA uses the RBF kernel, which maps data into a high-dimensional space
where nonlinear patterns are captured more effectively. As a result, it preserves
image structures, textures, and edges more faithfully than linear PCA, leading to

consistently high SSIM values.

3.3.3 Algorithm of Proposed Work

The preprocessing workflow contains several steps including Data cleaning, color jitter,
random rotational, random horizontal, resize and feature and dimensionality reduction.

Figure 3.13 presents a flow diagram of the proposed work.
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Figure 3.13 Proposed Preprocessing

Algorithm of Preprocessing of Dataset
Step1: Upload the dataset. Load images and labels from the dataset.
Step 2: Clean the dataset by removing the duplicate images in the dataset to avoid
redundancy.
Step3: Define Augmentation techniques: Color Jitter, rotation, horizontal flip and
resize. Set brightness of 0.2, maximum rotaion is 5 degree in clockwise and
anticlockwise direction, flip the image horizontally with 50% probability and resize
image to 150x150. Append the augmented images to the training set.
Step 4: Normalize pixel values , scale pixel values to the range [0, 1].
Step 5 : Flatten the images for Principal component analysis.
Step 6 : Apply Kernel Principal Component Analysis. Choose a kernel function RBF
for the Kernel PCA. Initialize Kernel PCA with the desired number of components and
the selected kernel function. Fit Kernel PCA on the combined matrix of flattened
images. Transform the combined matrix to reduce dimensionality based on Kernel
PCA.

K(xy) exp (- || x-yl’ /262 ) 6))

Where || x-y|[* is squared Euclidean distance between the two feature vectors.

o is the variance and our hyperparameter.

Step 7: Split the dataset into training and testing datasets.
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3.4 Conclusion

The preprocessing techniques applied to raw satellite images include radiometric,
geometric, atmospheric corrections, noise removal, normalization and filtering, etc.
towards improving the quality of the image for further processing. In this work, we
studied and interpreted different types of errors present in raw satellite images of
landslide events and their impact on the accuracy of further landslide detection tasks.
A strong preprocessing algorithm containing radiometric, geometric, and atmospheric
corrections is then applied to improve the quality of satellite images. The results of
preprocessing yielded in the experimental work are promising and the performance of
the techniques is evaluated using quantitative analysis parameters such as PSNR, RMS,
and SSIM. Further, these preprocessed images can be used in training and testing data
sets of deep learning and machine learning models. Good-quality images can help to
improve the training of the artificial model and helpful in the prediction of atmospheric
conditions, and disasters like earthquakes, landslides and floods.

Integrating data augmentation and Kernel Principal Component Analysis (PCA) into
the preprocessing workflow provides considerable advantages for increasing model
performance in tasks such as image classification using Convolutional Neural
Networks. Data augmentation adds diversity to the training set by producing versions
of the original dataset using techniques such as rotation, scaling, and flipping. This
allows the model to generalize better to new data, lowering the likelihood of overfitting.
These strategies combine to generate a more robust model that can reliably predict
classes in complex datasets, eventually leading to enhanced performance of deep
learning models. Kernel PCA reduces the dataset's dimensionality while keeping its
fundamental properties. This not only accelerates the training process, but also helps to
alleviate the curse of dimensionality, making the model more efficient and effective.
Kernel PCA can help filter out noise and less significant features by reducing
dimensionality, resulting in a cleaner dataset for better training and model accuracy.The
combination of data augmentation with Kernel PCA in the preprocessing step

considerably increases the quality and efficacy of the dataset used for training.
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Chapter 4 Deep Neural Network for Detection of Landslide

Convolutional Neural Networks have transformed the field of computer vision, with
exceptional results in picture classification, object recognition, and segmentation
applications. Convolutional Neural Networks have emerged as a strong and crucial tool
in the field of deep learning, particularly for applications like image processing and
computer vision. Inspired by the structure and function of the human visual system,
CNNs are meant to automatically and adaptively learn spatial hierarchies of
characteristics from input images. CNNs' capacity to extract useful characteristics at
many levels of abstraction has allowed them to achieve cutting-edge performance in a
number of applications, including object detection, image classification, medical image

analysis and facial recognition.

4.1 Architecture of Convolution Neural Network

A convolutional Neural Network is a feed-forward deep neural network that contains
three layers: input layer, hidden layer and output layer. CNN uses images as input and,
through iterative training, automatically modifies the network's parameters based on
the discrepancy between the network's output and the provided ground truth.CNN is
used in computer vision which is a branch of Artificial intelligence. The basic
architecture of CNN has multiple layers except for input and output, this network
contains a convolutional Layer, Pooling Layer, and Dense layer as shown in Figure 4.1.
CNN architecture have two main parts: feature extractor and classifier. Feature
extractor also known as encoder has convolution layer, activation layer and pooling

layer. Classifier also know as a decoder have fully connected or dense layer [80], [81].
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Figure 4.1 Basic CNN Architecture

Input Layer: The input layer receives the image as input and passes it to the
next layer.

The Convolutional layer: The Convolutional layer is core of CNN and the
majority of computation occur in the CNN’s core convolutional layer. CNNs
are built on convolutional layers, which perform convolution on the input
image. This layer requires a few components: input data, a filter, and a feature
map. Each convolution process uses a filter or kernel to slide across the input
image, conducting element-wise multiplications and adding the results to
create a feature map. The convolutional layer applies a set of filters to the input
image to extract the features such as edges, shapes and texture. The filter size
is generally a 3x3 matrix applied to the image and dot product of input pixels
and the filter is fed into the output array is known as a feature map. This
procedure enables the network to identify local patterns like edges, textures,
and forms. Multiple filters can be used to capture different features, resulting
in a diverse set of feature maps that reflect various characteristics of the input
data. Different filters like sobel filter is used to detect edges and the average

filter is used for enhancement.
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3. Activation Function : A linear convolutional layer followed by nonlinear
activation function f. Activation functions can be binary, sigmoid, and
Rectified linear unit (ReLu ) functions. The Rectified Linear Unit (ReLU) is
one of the most popular activation functions due to its simplicity and
effectiveness. It enables the model to learn complicated patterns by

representing non-linear correlations between features.

Output feature map = f (input x weights + bias) (6)

Where f is the activation function. Figure 4.2 shows the output feature map
obtained by pixel-by-pixel scan of input image with the filter of size (n x n x c)
where ¢ is a number of channels. The output is processed by numerous
convolutional layers, and activation functions are given to the next pooling layer.

The pooling layer follows the convolution and ReLU activation functions.

Activation
Function
Filter (h x h x C) Convolution output Activation output
Input (n x m x C) (nxmxC) (nxmxC)
010[010 i
0(0[0]|O0]|O
07070 0|0 |0 | ReLu [0 o [0
Of1[1]|1]1
oo To Tl —2 |33 333
——
0—0_| 0 0 11 1 EEEE]
000|110
Input (5x5xC) Filter (3x3xC) convolutional input Activation output

(3x3xC)

Figure 4.2 The Convolution layer function in CNN
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4. Pooling Layer : Pooling layers are used to minimize the spatial dimensions of
feature maps while still keeping the most important information. It is the
process to downsampling and reducing the size of the matrix and increase the
computational speed. It is used to select the prominent features from the output
image. This layer consists of a filter with a defined stride size that moves
across the feature map area. Maximal and average are two common pooling
operations. The maximum value is stored in feature maps with the maximal
pooling operation, while the average value is stored in feature maps with the
average operation as shown in Figure 4.3. Max pooling, which selects the
highest value from a given window, is widely employed. This downsampling
strategy not only reduces computing cost, but it also helps to avoid overfitting
by introducing translation invariance. Which type of pooling is used depends
on the type of information required. The flatter function converts the multi-
dimensional matrix into a single-dimension vector. This vector is then

provided to the fully connected layer shown in Figure 4.4.

Figure 4.3Two Pooling operations with pooling window 2x2.

Flattening

\ 4

» Fully Connected layer

o|lo| |

Figure 4.4 Flattening operation

5. Fully Connected Layer: At the network's end, fully connected layers use the
features learned from previous levels to produce predictions. These layers

connect every neuron in the previous layer with every neuron in the current
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layer, eventually leading to an output layer that computes the final

categorization scores.

Since the topic of artificial intelligence has grown, CNNs continue to play an important
role in the creation of intelligent systems capable of comprehending and interpreting
visual data. Their architecture, inspired by biological systems, allows them to acquire
hierarchical representations, making them important for sophisticated visual

identification tasks.

4.2 Deep Learning

Deep learning is a specialized subset of machine learning that utilizes neural networks
with multiple layers—often referred to as deep neural networks—to model complex
patterns in data. Traditional machine learning methods are simple and typically depend
on manual feature extraction whereas in deep learning feature extraction is an automatic
process that allows the network to learn directly from raw data. In this system, lower
network layers collect basic data from images, such as edges and textures, while higher
layers combine these features to capture more abstract ideas, such as shapes or
individual objects. This ability to learn progressively complicated representations
makes deep learning especially useful for applications where feature engineering is

difficult or impossible [82].

Deep learning has drawn tremendous amounts of attention for its exceptional ability to
handle unstructured data like pictures, audio recordings, and text. One of its key
advantages is its ability to handle large amounts of data efficiently. As big data has
become more widely available, deep learning models have demonstrated the capacity
to significantly increase their performance by using enormous datasets. Additionally,
in the field of computer vision, deep learning models have outperformed standard
algorithms in image categorization tasks, identifying complicated patterns with more
accuracy. CNN models have revolutionized object identification and picture
segmentation in computer vision, enabling precise real-time applications in industries
such as autonomous driving and monitoring. Another significant benefit of deep
learning is its adaptability and scalability. Deep learning models can be easily

customized to perform a variety of tasks by fine-tuning pre-trained networks on specific
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datasets. This adaptability enables practitioners to use current models to achieve high
performance in a variety of areas, including healthcare where deep learning aids in
disease diagnosis from medical images, finance, where it improves fraud detection
systems and disaster management where it save life and property by prediction and
detection of disasters. Deep learning stands out for its capacity to automatically learn
rich representations from data, particularly unstructured data, while delivering higher
performance across a variety of tasks. Its adaptability and effectiveness make it an

essential framework for the improvement of modern artificial intelligence [83].

4.2.1 Deep Residual Network

Deep learning models have significantly advanced in recent years, enabling the building
of deep neural networks with multiple layers. Deep neural networks have several hidden
layers and are difficult to train. Training deep models can be difficult as the number of
layers in a neural network rises. Residual Networks, or ResNets, are a type of deep
neural network that tackled these most significant difficulties in deep learning. Deep
networks are harder to train because of vanishing gradient problems. Deeper networks
survived worse than shallower networks, not because of overfitting, but due to
optimization challenges. As networks traveled deeper, the gradients of the loss function
decreased, making it impossible to propagate error back to earlier layers—this is known
as the vanishing gradient problem. The Residue Network is used to avoid the vanishing
gradient problem that happens while employing backpropagation to update the weights.
The residual block is shown in Figure 4.5 below, input is represented by X, Output I is
represented by Y, F(x) is output after the operation function of two convolution layers.
These blocks incorporate a shortcut pathway, effectively functioning as an identity
function, thereby indirectly bypassing the training process for one or more layers. A
residual network adds input directly to the calculated value or loss function and tries to
make the loss function equal to zero, so that input must be equal to output. Feedforward
neural networks with "shortcut connections" can implement Y= F(x) + x . Residual
Networks are deeper neural networks but are easy to train and easy to optimize. This

network provides highly accurate results [84], [85]
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Figure 4.5 Skip Connection on ResNet

There are two types of residual blocks in ResNet: Identity block and convolutional

block.

Identity Block: In this block, the input and output dimensions remain unchanged, and

the shortcut connection adds the input to the output without any modification.

Convolutional Block: If the dimensions of the input and output differ due to
downsampling, the shortcut connection uses a convolution operation to match the

dimensions before adding the input to the output.

Bottleneck : The bottleneck design is an important aspect of deeper ResNet structures.
It optimizes the architecture by lowering computational costs while retaining excellent
performance. The word "bottleneck” alludes to the architecture's method of reducing
and then expanding the dimensionality in each residual block, which makes the network
more efficient while maintaining its capacity to learn rich, complicated representations.
Each residual block in the bottleneck design consists of three layers of convolutions:
Ix1 convolution layer for Dimensionality Reduction, 3x3 Convolution for Feature

Extraction, 1x1 Convolution for Dimensionality Restoration. As shoen in Figure 4.6

1. 1x1 convolution: The first layer in the bottleneck block is a 1x1 convolution,
which minimizes the number of channels and thereby compresses the data. This
lowers the computational cost by reducing the amount of feature maps that must
be processed in subsequent layers.

2. 3x3 Convolution: Following dimensionality reduction, the second layer is a 3x3
convolution, which performs the fundamental feature extraction operation. This
layer gathers spatial information while reducing computing overhead by acting

on compressed feature maps.
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3. 1x1 convolution :A second 1x1 convolution layer is used to restore the original
number of channels. This ensures that the network's depth and width are

retained while taking use of the efficiency gained during the intermediate steps.

Skip
Connection

Input »

1X 1 Cenvolution for 1X 1 Convolution

Dimensionality ~ ——— FJ)L; Cc;;(:{lul;cn ——» Dimensionality |
Reduction SR s Restoration |

Output

Figure 4.6 Bottleneck Residual

Residual Networks introduced different architectures with varied depths. The
deeper variants, such as ResNet-50 and beyond, use bottleneck layers to lower the

computational cost of deeper networks while preserving performance.
Benefits of Residual network

1. Correction of the Vanishing Gradient Problem:ResNet's skip connections
enable gradients to flow directly through the network's layers, avoiding the
vanishing gradient problem that affects deep networks. This leads to more
reliable training with very deep architectures.

2. Scalability and Flexibility: ResNet architectures have been able to scale much
deeper than was previously possible with conventional deep networks. Because
ResNet can train networks with more than 100 or even 1,000 layers, it is a very
adaptable model for a wide range of applications

3. Easy Optimization: Instead of forcing the network to learn the full
transformation between layers, ResNet simplifies the learning process by
asking the model to focus on learning the residuals. This leads to more efficient
training and quicker convergence.

4. Better Generalization: Residual learning improves both training performance
and the model's ability to generalize to new inputs. Networks with residual
connections achieve improved test performance across many applications. Skip

connections simplify optimization and reduce overfitting, allowing the model
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to focus on learning key residuals and boosting generalization to real-world
problems.

5. Enhanced Accuracy: Residual learning has dramatically increased accuracy
in different applications with ResNet models setting new standards. It permits
the capture of both low- and high-level characteristics, which improves
precision in a variety of computer vision tasks. Beyond vision, residual
connections have been modified for speech recognition and natural language

processing, improving performance in a variety of applications.

ResNet has different architectures and ResNet101 and ResNet50 are used in this study
along with Inception GooglNet

4.2.2 Architecture of ResNet 50

ResNet50 is a deep convolutional neural network with 50 layers that incorporates the
main concept of residual blocks with skip connections. These skip connections allow
the model to learn residual functions rather than entire transformations, making it easier
to train the network even with multiple layers. ResNet50 comprises of 16 residual
blocks, each with three convolutional layers. The residual blocks use skip connections,
which bypass one or more levels and connect a block's input to its output immediately.
ResNet50 comprises of 16 residual blocks, each with three convolutional layers. The
residual blocks use skip connections, which bypass one or more levels and connect a
block's input to its output immediately. These connections are critical for reducing the
vanishing gradient problem, which arises in very deep networks when gradients
decrease as they propagate back through several layers during training. These skip
connections allow gradients to flow more easily, resulting in smoother and more

efficient deep network training.

ResNet50 consists of 50 weight layers, including convolutional, pooling, and fully
connected layers. The piled remnant blocks, on the other hand, represent a significant
architectural innovation. These deep layers enable the network to extract high-level
information that are required for more difficult tasks like picture categorization and

object detection.
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ResNet 50 designs differ only in terms of the number of layers. Figure 4.7 shows
ResNet 50 architecture [86][87]. Different layers perform different roles, and the
machine can learn from data and extract information that is useful in categorization.
Convolutional layers extract features from an input image using a succession of
convolutional filters. Batch normalization used before the activation function helps to
improve generalization, Faster convergence and Regularization. The activation
function is an excellent approach to create nonlinearity in the output of a neuron.
ReLU(x)=max(x,0) where x is input, is a piecewise linear function, making it
computationally efficient to compute and differentiate while avoiding the vanishing
gradient problem. Maximum polling is used to keep the essential information and
reduce the dimensions of feature maps that are generated from the first convolution
layer. It overcomes the overfitting issue, computational cost and reduces the noise.
There are two blocks in ResNet: identity block and convolution block. An identity block
or skip connection maintains the same dimensions of the input and output image. The
convolutional or projection block is used when the dimensions to input and output are
different as shown in Figure 4.8. ResNet50 has 3 layers in second convolution layer,
and 4 layers in the third convolution layer. In fourth convolution layer have 6 layers in
ResNet 50. Networks have 3 layers of filter size 512, 512, 2048 followed by average
pooling layer. Average pooling takes average value of specified area and reduce the
size of image. Flattening uses a flatter function to convert matrix in to single dimension
vector whose output is fed to fully connected layer also named as dense layer. Each
neuron in a fully connected layer receives input from all neurons in the preceding layer
. Fully connected layer are often employed as the last layers in a neural network and
make the final predictions. The output is then calculated as a weighted sum of'its inputs,

followed by an activation function shown in equation (7)

Y (out)= 0 (¥ Xi Wi+bi) (7)

Where O is activation function, Y is the output of the neuron, X is the input neuron, W

is the weight vector and b is Bias

72



ResNet 50 Fully connected
Input Pocling |a="9f5 Pooling Flatten Layer Output

Convolutional
?

lmage T 1

i Conv Conv
Maux Pooling
Fitter 343 block | | block

sfride 2 2 !

Average
pooling

Batch
Naormalization
ReluActration
aptimizer

AR

skip L
connection t
=] w s
= = o
T £ E —
- &
x3
x6 x3
x4
Figure 4.7 ResNet 50 Architecture
Skip Convolution Skip
Conneclion connection Connection
Conv Conv Conv. Conv. Conv
| | 1X1.64 1X1.64 1X1.64 1X1,128 1X1,128
3X3.64 X364 | 3X3.64 3X3,128 3X3,128
1X1,256| 1X1,256 1X1,256

1X1,512 1X1512

Figure 4.8 Skip and convolution connection

4.2.3 Architecture of ResNet 101

ResNet 50 and ResNet 101 designs differ only in terms of the number of layers.
ResNet101 expands ResNet50's design by 101 layers, allowing it to learn more
complicated data representations. ResNet101, like ResNet50, combines residual blocks
with skip connections to provide efficient training and avoid the vanishing gradient
problem. However, it has 33 residual blocks instead of 16, therefore it is substantially
deeper. This increased depth allows ResNetl01 to extract more detailed and

hierarchical features from the data, potentially improving performance on applications
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requiring finer-grained feature identification, such as picture classification at high
resolutions or object detection in congested environments. ResNetl01's additional
layers allow it to capture more complex patterns and relationships in the data. This is
particularly useful for large datasets or highly detailed tasks.Figure 4.9 shows ResNet
101 architecture [86][87].

Both ResNet50 and ResNet 101 has 3 layers in second convolution layer, and 4 layers
in the third convolution layer. In fourth convolution layer have 6 layers in ResNet 50
and 23 layers in ResNet 101. Both networks have 3 layers of filter size 512, 512, 2048

followed by average pooling layer.
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Figure 4.9 ResNet 101 architecture
4.3 GoogleNet

GoogleNet, developed as part of the Inception architecture, revolutionized deep
learning by delivering a computationally efficient and powerful network structure.
GoogleNet, unlike typical convolutional neural networks (CNNs) that rely on
sequential layers, employs a new Inception module that enables the network to perform
convolutions of varying filter sizes in parallel. GoogleNet's primary breakthrough is its
capacity to execute feature extraction with improved computational efficiency,
allowing for the training of deep networks without requiring excessive resources.

GoogleNet has 22 layers, which is substantially deeper than previous systems. Despite
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its complexity, GoogleNet is more computationally efficient thanks to the creative
utilization of Inception modules [88] [89]. Rather than using completely linked layers ,
GoogleNet uses global average pooling at the final layer. Global average pooling
substitutes fully linked layers, which typically introduce a high number of parameters,
lowering the danger of overfitting. This pooling method averages the spatial dimensions
of the feature maps, acting as a regularizer and increasing the model's robustness,
particularly when working with larger datasets.

The Inception module, which is at the center of GoogleNet, presents a new approach of
stacking layers. Rather than applying the same convolution to the whole network, the
Inception module runs convolutions with filters of varying sizes in parallel.Each
inception module has 1x1 convolution, 3x3 convolution, 5x5 convolution as shown in

Figure 4.10

1. 1x1 convolution: This layer performs dimensionality reduction, which helps to
save computational costs by lowering the number of channels before performing
larger convolutions. It catches fine-grained characteristics.

2. 3x3 convolution: This filter is intended to capture medium-sized spatial
patterns while maintaining a balance between spatial resolution and
computational cost.

3. 5x5 convolution: The 5x5 filter extracts broader features over a larger receptive
field, helping the network capture more complex and wider spatial patterns.

4. 3x3 max pooling : Pooling activities are performed concurrently to provide

more context while reducing geographical dimensions.
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Figure 4.10 GoogleNet Inception Module
4.4 Attention Mechanism

Deep learning models have made considerable advances in image processing, but some
issues remain, such as detecting meaningful characteristics from large images. The
attention mechanism, modeled after human visual perception, provides a strong
solution by allowing models to focus on the most informative aspects of a picture.
Attention mechanisms improve the model's ability to process visual data by altering the
relevance of different regions or characteristics.The attention mechanism utilized in
CNN focuses on specific parts of the input in the input feature map and dominates other
regions in the background, improving the performance of CNN in prediction. Various
types of attention model are spatial attention, channel attention, self-attention, and
multi-scale attention.[90]. To introduce an effective attention module for classification
and prediction convolution layer, activation function, pooling layer and fully connected
layers are combined in different ways. Convolution block attention module has two
sub-modules: Spatial attention module, the Channel Module. The input image is in 3D
matrix(w x h x ¢) where w and h are the width and height of the feature map respectively
and c is the total number of channels. C is decided by the total number of filters used in

that layer.
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4.4.1 Spatial Attention

Spatial attention focuses on important regions that is useful for the task of classification
Spatial attention is concerned with where the model should concentrate inside an image,
emphasizing crucial spatial regions that contribute the most to the prediction. This
method is very beneficial in applications like image segmentation and object
recognition, which need the model to recognize specific regions of interest, such as
objects or edges. Spatial attention in satellite imagery used for landslide detection
assists the model in prioritizing areas of instability or movement, hence improving the
detection of high-risk zones.
The architecture of Spatial Attention includes the production of an attention map that
focuses on the most relevant spatial regions of a feature map. It is designed to help a
neural network attention to the most significant sections of an image while ignoring
less informative regions. It is designed to help a neural network attention to the most
significant sections of an image while ignoring less informative regions [91]
Spatial Attention architecture as shown in the Figure 4.11 have three layers: input
feature map, pooling, and convolution.
1. Input Feature Map
The spatial attention module operates on the feature map generated by a CNN's
convolutional layer.Input of the spatial attention module is a feature map X €
RCxHXW  ywhere C is number of channel, H, W is height and width of feature
map.
2. Pooling
Two types of pooling operations are performed in this step: max pooling and
average pooling. Max pooling captures the most significant features in each
spatial region across all channels. Average Pooling measures the average
feature value at each spatial location across all channels.

Xmaxpooling = MaxPool(X) (8)

Xaveragepooling = AVCragCPOOI(X) (9)

3. Concatenation
The results of the max pooling and average pooling processes are then
concatenated along the channel axis to form a combined feature representation

that captures both the maximum and average context. The combined feature

77



map subsequently passes through a convolution layer to produce the spatial
attention map.
X concatenate = Concat(Xmaxpooling, Xaveragepooling )~ ========-= (10)
X spatialattention = O (COHV 7x7 (X concatenate )) ---------- (1 1)
Where o is sigmoidal activation function, Conv 757 is convolution operator
with kernel 7x7.
X spatialattention = 0 (Conv 7x7 (Xmaxpooling, Xaveragepooling )) ~ =====-=-- (12)
4. Fully Connected layer
Combined output is applied to convolution layer. This layer generates a mask
between 0&1 with sigmoid function and a single filter. The batch norm layer

is used to normalize the output of convolution

Refined : | Output
Input Conv Spatial afennon e CUI"I\ olution | et
Image module i block | map
apy (=1

input Feature | 'FEE{
Map —_— Ct}n\m ution feature

(hxw X c) Layer map
Channel MaxFool,
Refined Averagepool

Feaiure map

Figure 4.11Architecture of spatial attention

4.4.2 Channel Attention

Channel attention is a technique used to concentrate attention on the most significant

information across many channels.In terms of channel attention, the network learns to

prioritize some feature channels over others. This helps the model to prioritize channels

containing more relevant information. Channel attention map by taking advantage of

the features' inter-channel relationships. Every channel in a feature map functions as a

feature detector; its attention is directed towards determining "what" is significant in

relation to the input image. This is accomplished by first performing a global pooling

operation, then applying two fully connected layers (or convolutional layers) and a

78



sigmoid activation function. Number of neuron in MLP is decided by reduction ratio.

MLP output is the provided to sigmoid layer [92]. A channel attention map was created

by leveraging feature relationships across channels. In Channel attention weights are

assigned to each channel, enhancing those channels that contribute to learning and

improving overall model performance [93].

Channel Attention Module

Channel Attention architecture as shown in the Figure 4.12 has three layers: input

feature map, Globalpooling and convolution.

1.

Input Feature Map

The input to a channel attention mechanism is a feature map as X € R€*HxW

where C is number of channel, H, W is height and width of feature map.
Global Pooling

To summarize the information from each channel, a global pooling procedure
across spatial dimensions is used. To extract global information from each
channel, two types of pooling are : Global Average Pooling (GAP), Global
Max Pooling(GMP).Global Average Pooling computes the average value for
each channel over all spatial positions. Global Max Pooling selects the
maximum value across all spatial positions for each channel. Both GAP and
GMP reduce the spatial dimension of the feature map to two Cxl vector.

Resulting in a descriptor Y € R® where C is number of channel.

Y= GlobalPooling(x)=(AvgPool(X)+(MaxPool(X)) -------- (13)

. Fully Connected layer

Following global pooling, the two vectors are passed through shared completely
connected layers, producing a weight for each channel. This descriptor is then
sent through two fully connected layers with a nonlinear activation (ReLU), to
introduce nonlinearity. This stage generates a collection of channel weights,
with each channel assigned a different priority score. The fully connected layers'
outputs are then sent through a sigmoid activation function, producing a weight

value between 0 and 1 for each channel.
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M. (Z) = o (MLP(Relu(GlobalPooling(x)))
ML (Z) = o (MLP( ReLu((AvgPool(X)+(MaxPool(X))))
ML (Z) = o (MLP( ReLu(AvgPool(X)+ReLu(MaxPool(X)))

ML(Z)= o (WaRelu(Wi (X avg) + Wa(Relu(W1 (X max)))  ===------- (14)
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Figure 4.12 The architecture of Channel Attention

4.4.3 Squeeze-and-Excitation (SE) Blocks

SE blocks are a prominent method of integrating attention with convolutional
networks. These blocks use channel attention, which "squeezes" global information and
"excites" important feature channels by dynamically scaling them based on their
relevance [92]. This SE block is categorized in three parts: Squeeze, Computation,

Excitation as shown in Figure 4.13.

e Squeeze : Global average pooling is applied to the CNN layer's output feature
map. This effectively takes the average value of all activations in the spatial
dimension (H x W), resulting in one activation per channel. This produces a
vector of shape (1 x 1 x C).

e Computation: The previous operation's vector is sent through two fully
connected layers in succession. This achieves the goal of fully capturing
channel-wise dependencies derived from the spatial mappings. After the first
FC layer, a ReLU activation is applied, followed by a sigmoid activation after

the second. The report also mentions a reduction ratio, which means that the
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intermediate output of the first FC layer has a reduced dimension. The end result
of this phase is also shaped (1 x 1 x C).
o [Excitation: The computing step's output is utilized to create a weight

modulation vector for each channel.

Computation

Excifation
1x1xC 1x1xC
Squesze Relu Sigmoidal i

B Denze Dense i Ay Qutput
?Gml;a;gi\;erage ’—»DE—» Layer ¥ Layer > ‘ ‘ ‘ —> | ——> Fearzlap
'79 (FC1) (FC2 (HXWXC)

Feature Map

Figure 4.13 Architecture of Squeeze-and-Excitation (SE)

4.4.4 Self-Attention

Self-attention techniques, as employed in Transformer models, can also be applied to
convolutional networks. Self-attention enables the network to represent links between
various parts of the image by computing attention ratings across spatial locations or
channels [94] [95]. This method can be used in deeper layers of ResNet and GoogleNet
to record long-range dependencies within an image, allowing the network to handle

more difficult tasks like object detection and semantic segmentation.

4.5 Proposed work

In this research work we have explored open source Biji’s landslide database for
landslide detection method using deep learning network with ResNet50, ResNet 101,
GoogleNet and Attention module. Landslide detection flowchart consist: data
preprocessing (augmentation and resizing of images) , data-based labelling for training
and testing(Lnadslide and non landslide), training backbone networks (ResNet50,
ResNet 101, GoogleNet), training and testing attention module, evaluate the result and

optimize the result.
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Figure 4.14 Proposed Flow diagram

Algorithm

Step 1: Create a database from satellite images.

Collect satellite images of landslide events and non-landslide events .

Step 2: Preprocessing

To increase the diversity of the images perform Augmentation and principal component
analysis on collected images Resize the image to match symmetry.

Step 3 : Create database: Divide input data in to two class Landsldie and non
landslide.
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e Training dataset (Landslide and Non landslide ): Landslide(X train) is a set of
images for training.
e Testing data set (Landslide and Non landslide ): Landslide (X test) is a set of

images for testing.

Step 4: Build deep learning model
o Define a CNN architecture with convolution layer, pooling layer and fully
connected layer .
e Use the activation function as ReLU.
e Use a dropout layer for regularization
e Select loss function
e Select an optimizer like Adam and learning rate.
e Use a series combination of channel and spatial attention mechanism.
o Take different backbone network : ResNet 50, ResNetl01, GoogleNet,
Attention Model.
Step 5: Compile the Model
e Compile the model with selected parameters like an optimizer, loss function and
evaluation parameters .
Step 6: Train the Model
e Input the images training dataset (landslide and non landslide )
e Select the batch size and epoch.
e Train the model with the different batch size and epochs to minimize loss.
e Select the number of Epoch based on convergence.
Step 7 : Evaluate the model
e Evaluate the model for test database.
e Calculate accuracy, F1 score and precision.
e Analysis the result for better performance.
Step 8: Improve the model
e If the result is not good then need to adjust the hyperparameters, backbone

Architectures and transfer learning.
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Step 9: Predication landslide
e Use a trained model to predict a landslide and non-landslide image that is not in

the database.

4.5.1 Placement of Attention Module

Attention Module can be arranged in different ways in any CNN network. Individual
or a combination of attention modules can be placed in a residue block in the residual
network or after inception block in googleNet. The attention module can be placed in
the last residue block to refine the hidden layer or can be placed in the output of
the residue network to refine the output map in the Residual network.

Channel and Spatial module can be arranged in three submodules: Sequential channel
spatial module, sequential spatial channel module, paraller spatial and channel module.
In our proposed work we place a sequential combination of channel spatial modules in
the hidden layer of the residue network and after Inception block in googleNet. It

refines the hidden layer for better results.

4.6 Experimental setup

4.6.1 Evaluation parameter

In proposed deep learning classification algorithms confusion matrix is used to evaluate
the result. To evaluate the result we select four common metrics which are precision,
recall, accuracy and F1-score. The confusion matrix presents a table as shown in Table
4.1 where T predicts the true value, and F predicts False value. P and N represent
positive and negative type of prediction. To classify the result TP(True Positive), TN
(True Negative), FN(False Negative), FP(False Positive) are used .

Table 4.1 Confusion matrix to classify landslide

Actual Value Predicted Positive Predicted Negative
Ground Positive TP TN
Ground Negative FP FN
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Precision count the fraction of genuine positive prediction of landslide among all

instances predicted as positive by the model, as shown in equation (15)

True Positive

Precision = — — e (15)
True Positive+Fals positive

Recall assesses the model's ability to properly identify all positive instances

among all actual positive instances, as shown in equation (15)

True Positive

Recal=——————— (16)

True Positive+False Negative

F1 score combines both precision and recall into a single value and can better
explain the result of classification. F1 score is calculated as the harmonic mean

of precision and recall , as shown in equation (15)

Precision X Recall _ TP

Fl-score=2 X — X
Precision+Rec 2 X TP+FP+FN

(17)
Accuracy is basic matric used to evaluate the overall performance of

classification. It measures the proportion of truly classified instances among all

instances in the classification dataset.

True Positive+Tr Negative TP+TN
Total number of instances TP+TN+FP+F

Accuracy = (18)

4.6.2 Computational Complexity

In the experimental setup, the computational complexity of Convolutional Neural

Networks (CNNs) is an important parameter that affects both the training and testing

processes. Assessing computational complexity confirms that the models used are

efficient, scalable, and appropriate for the given hardware resources. This

computational complexity is based on the following important factors:

o Floating point operations (FLOPS): The number of floating-point operations
required for a single forward transit through the network is a common measure

of computational cost. FLOPs measure the number of operations performed
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during convolutions, activations, pooling, and fully linked layers. Higher
FLOPs typically indicate a more computationally intensive model, which might
influence processing performance and resource requirements.

FLOPS for Convolution layer = 2(Cin X Cout x Hx W x K xKyw ) --- (19)
Where Cin, Cour : Number of input and output channel,

H,W: Height and width of the output feature map

Kn xKy : Height and width of the convolution kernel.

FLOPS for Fully Connected Layer = 2 (Input size x output size) ----(20)

e Number of Parameters: The total number of trainable parameters in a CNN
reflects the model's size and memory requirements. Networks with a higher
parameter count require large storage memory and typically require longer
training times. This study compares the parameter efficiency of various
architectures to understand their scalability and computational burden.

e Inference Time: Inference time is the time required for the model to process a
single input sample and make a prediction. It is especially important in real-time
applications, where minimal latency is required. Efficient models with shorter
inference times are chosen for scenarios with stringent timing constraints.

o Input Size: Larger input dimensions increase the number of computations
because convolutions are done on all pixels.

e Number of Layers: Deeper designs include more layers and thus more

operations, which increases computing needs.

4.6.3 Hyperparameters

o Learning Rate: The initial learning rate was chosen to guarantee that the model
takes tiny, controlled steps towards minimizing the loss function. A learning
rate scheduler was used to gradually reduce the learning rate between epochs.
The learning rate was near to zero, therefore the model converged to an optimal
solution without overshooting.

e Batch Size: The batch size of 64 and 32 were chosen to strike a compromise
between memory utilization and training stability. For large datasets, greater

batch sizes aid in faster convergence but demand more memory.
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Epoch: The number of epochs was chosen to balance computational costs and
model performance. Training for additional epochs can improve performance,
but it also increases the risk of overfitting, therefore early-ending conditions
could be investigated in future studies.

Weight Decay: A weight decay was employed to regularize the model,
preventing the weights from growing too big and thereby improving
generalization on the validation dataset.

Gradient Clipping: Gradient clipping with threshold value was used to keep
gradients from inflating, which could cause instability during training,
particularly when employing sophisticated models such as ResNet.

Optimizer: The Adam optimizer was chosen because of its ability to
dynamically modify learning rates during training, resulting in faster

convergence than stochastic gradient descent (SGD).

4.6.4 Training and Validation

Dataset splitting : Dataset was split in two training and testing datasets. No test
data was used in training dataset as the aim was to optimize the models during
the training process.

Overfitting Prevention

e Dropout: To prevent overfitting, a dropout layer was utilized during
training, with half of the activations set to zero at random.

e Data Augmentation: To improve the generality of the models and
simulate differences in real-world circumstances, the augmentations
such as : color jitter, resize, random horizontal, random rotation were
applied.

e PCA and Kernel PCA: These strategies were tested for dimensionality
reduction to improve model performance by removing redundancy in

features.
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4.6.5 Hardware setup

Device : The experiments were carried out on a desktop computer (DESKTOP-
35FIQ2R) outfitted with an Intel(R) Core(TM) 19-9900K CPU @ 3.60 GHz. This
8-core CPU provided ample computational capability for the data preparation and

model training requirements.

RAM : 32 GB of RAM was allotted to handle huge batch processing and real-time

data augmentations without creating memory constraints.

DISK : The dataset and models were kept on a 1 TB SSD, which allowed for fast

read/write performance while loading data batches and model checkpoints.

The DESKTOP-35FIQ2R enabled the training of the model in a realistic timescale,
while the RAM and SSD configuration ensured smooth data handling during

training, particularly for big datasets and real-time augmentations.

4.7 Experimental Result Analysis of Google Net

For landslide detection and prediction initial stage is data collection. We consider the
Bijie dataset for experimental results. This set of images contains two classes of data
one is landslide and the other is non-landslide. Google Collaboratory is used for Python
code. We began our study by assessing the performance of GoogleNet, a popular
convolutional neural network design, for landslide detection. The model was trained on
a dataset of landslide and non-landslide images. First, we apply GoogleNet as
the backbone in the proposed model and then also assess the performance of
the proposed model with and without a series combination of attention mechanism. The
performance was evaluated using a variety of hyperparameter combinations which

includes:

e Learning rate= 0.00001 to 0.00005
e Epoch=3t09

e Batch Size =32 and 64

e Weight Decay= le-4

e Optimizer = Adam
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These decisions were made based on preliminary testing, which revealed that a
moderate learning rate and a reasonably high batch size were optimal for balancing

computing efficiency with model convergence.

4.7.1 GoogleNet Experimental result without Attention Mechanism

During the training process, the model was evaluated using two critical metrics: training
loss and validation loss. In addition, the Validation Accuracy was recorded to determine
the model's capacity to generalize to previously unseen data.

Initially, we considered batch size 64, learning rate 0.00005, and epoch 9 for
GoogleNet. Table 4.2 presents the training and validation outcomes from the 9 epochs.
The training loss, validation loss, and validation accuracy all consistently improve as

the number of epochs increases.

Table 4.2 Training and validation outcomes from the 9 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.6953 0.6760 0.6501
2 0.00004 0.6787 0.6563 0.7132
3 0.00005 0.6471 0.6008 0.8047
4 0.00004 0.5978 0.5491 0.8990
5 0.00004 0.5440 0.5128 0.8979
6 0.00002 0.4851 0.4881 0.9040
7 0.00001 0.4767 0.4772 0.8934
8 0.00000 0.4506 0.4741 0.9062
9 0.00000 0.4479 0.4751 0.9062

With reference to the accuracy progression, the accuracy begins at 0.6501 in the first
epoch and improves significantly over the following few epochs, reaching 0.8990 by
the fourth epoch. After epoch 4, the accuracy varies slightly but stays close to 0.90,
with very minor improvements between epochs 5 and 9. This indicates that the model
has converged and no longer learns meaningfully from the data.The model's final
accuracy of 0.9062 for epochs 8 and 9 indicates that it is performing consistently and

is unlikely to benefit from additional epochs. This implies that the model successfully
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learned the underlying patterns in the data during the early phases of training. Change

in accuracy with respect to epoch is shown in Figure 4.15(a)

Loss vs. No. of epochs
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Figure 4.15 Performance visualization of GoogleNet architecture without attention for epoch 9
Figure 4.15(b) presents the losses throughout nine epochs. The training loss steadily
declines, as does the validation loss, until about the 5th epoch, when both losses
plateau. Training loss starts at 0.6953 and gradually decreases with increasing epoch
and at epoch 9 it is 0.4479. Validation loss is 0.6760 at epoch 1 and gradually decreases
with increasing epochs and at epoch 9 it is 0.4751. After the 5™ epoch, both training
and validation losses plateau. This shows that the model has learned the majority of the
data's patterns, and more training yields declining returns. After this point, more

training epochs are unlikely to appreciably enhance the model.

Overfitting happens when a model performs well in training but poorly in validation.
This usually results in high accuracy on the training set but poor generalization to the
validation or test set. Underfitting happens when a model fails to capture the underlying
patterns in the data, resulting in significant training and validation losses and low

accuracy.

According to the loss curve, the model exhibits no evidence of overfitting or
underfitting, and the hyperparameters selected (learning rate 0.00005, batch size 64, 9
epochs, Adam optimizer) enable efficient training. However, the model's performance

plateaus after the fifth epoch, implying that early halting could be used in future training
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sessions to save needless computation and cut training time while maintaining

accuracy.

We now consider epoch 5, batch size 64 and learning rate 0.00005, for GoogleNet.

Table 4.3 presents the training and validation outcomes from the 5 epochs.

Table 4.3Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00004 0.6958 0.6849 0.5938
2 0.00005 0.6391 0.5848 0.8195
3 0.00003 0.5470 0.4924 0.9184
4 0.00001 0.4707 0.4698 0.9324
5 0.00000 0.4558 0.4740 0.9330

The accuracy increased from 0.5938 in 1% epoch to 0.9330 in last epoch. The steep
increase from epoch 1 to epoch 3 indicates that the model quickly learned to classify
the validation set more accurately. The accuracy plateaued between epochs 4 and 5,
suggesting that the model may have attained its peak performance under the current

configuration. Change in accuracy with respect to epoch is shown in Figure 4.16(a)

The training loss decreased consistently with each epoch, demonstrating that the model
was successfully learning from the data. The validation loss initially showed a
decreasing trend, indicating that the model's performance increased on the validation
set until epoch 4. However, a minor increase in validation loss at epoch 5 indicates that
the model may have begun to overfit slightly, as validation loss increased while training

loss decreased. Figure 4.16(b) represents the losses throughout five epochs.
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Figure 4.16 Performance visualization of GoogleNet architecture without attention for epoch 5

Although the model performed well, with a validation accuracy of more than 0.93 at
the end of training, the minor rise in validation loss after epoch 4 indicates a risk of

overfitting. This could mean that the model is learning to fit the training data too

closely, limiting its capacity to generalize.

We change the hyperparameters for fine tunning, increase the learning rate 0.0001,

epoch 9 and batch size 64. Table 4.4 presents the training and validation outcomes from

the 9 epochs.

Table 4.4 Training and validation outcomes from the 9 epochs

Epoch | Learning Rate | Training Loss | Validity Loss | Validity Accuracy
1 0.00003 0.6916 0.6918 0.4710
2 0.00008 0.6708 0.6520 0.6378
3 0.00010 0.5911 0.5367 0.8270
4 0.00009 0.4896 0.4502 0.9224
5 0.00007 0.4410 0.4177 0.9403
6 0.00005 0.4063 0.4083 0.9414
7 0.00002 0.3689 0.4052 0.9453
8 0.00001 0.4006 0.4096 0.9336
9 0.00000 0.3652 0.4081 0.9453

The Validation Accuracy improved significantly during the training process, starting at
0.4710 in epoch 1 and reaching a high accuracy of 0.9453 in epochs 7 and 9 as shown
in Figure 4.17(a). The sharp improvement between epochs 1 and 4 indicates that the
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model learned efficiently during the early phases of training. Beyond epoch 7, the
validation accuracy plateaued, indicating that the model has probably converged.

The Training Loss dropped continuously during the epochs, from 0.6916 in epoch 1 to
0.3652 in epoch 9, but afdter epoch 6 these is fluctuation in traianing loss. Training loss
drop at epoch 7 and increase in epoch 8. The Validation Loss declined consistently,
with only slight changes after epoch 6. The lowest validation loss achieved was 0.4052
in epoch 7. The decreasing loss values indicate that the model learned to match the data
effectively, although the tiny oscillations in the validation loss at later epochs may
indicate that the model was achieving peak performance. Figure 4.17(b) shows the

losses throughout nine epochs.
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Figure 4.17 Performance visualization of GoogleNet architecture without attention for epoch 9

Despite a general downward tendency early in the training loss, the training loss
increased at epoch 8 (0.4006) and fluctuated between epochs 6 to epoch 9. Although
the training loss grew, the validation accuracy continued to improve, peaking at 0.9453
at epoch 9. This shows that the model was still able to generalize effectively to the
validation set. A minor rise in training loss as validation accuracy improves may suggest
that the model is overfitting to specific features of the training data. After epoch 6, the
model may have begun to memorize specific patterns in the training data that are
ineffective for generalization. This can result in higher losses without a corresponding

fall in validation accuracy.
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The increase in training loss after epoch 6 could indicate a few potential points of
concern. We reduce the batch size from 64 to 32 and train model for different learning

rate and epochs.

Now we consider the Learning rate 0.00005, batch size 32 and epoch 4.Table 4.5

presents the training and validation outcomes from the 4 epochs.

Table 4.5Training and validation outcomes from the 4 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00005 0.6813 0.6580 0.6301
2 0.00004 0.6188 0.5504 0.8469
3 0.00001 0.5329 0.5019 0.8948
4 0.00000 0.5000 0.4966 0.8999

The model's validation accuracy improves dramatically throughout training. Starting at
0.6301 in epoch 1, accuracy gradually rises to 0.8999 by epoch 4. The significant
increase in validation accuracy between epochs 1 and 2 indicates that the model quickly
learns key patterns in the dataset. Change in accuracy with respect to epoch is shown

in Figure 4.18(a)

The training loss begins at 0.6813 in epoch 1 and rapidly drops to 0.5000 in epoch 4.
This constant drop in training loss suggests that the model is learning from the data and
capturing relevant features. The validation loss decreases from 0.6580 in epoch 1 to
0.4966 at epoch 4. The validation loss follows the same declining pattern as the training
loss, this indicates that the model applies well to fresh data. Figure 4.18(b) shows the

losses throughout four epochs.
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Figure 4.18 Performance visualization of GoogleNet architecture without attention for epoch 4

The close alignment of training and validation losses shows that the model is not
overfitting. The validation loss stabilizes in the last two epochs, indicating that the

model has reached a nearly optimal solution.

4.7.2 GoogleNet Experimental Result with Attention Mechanism

In our proposed model, we use a series combination of channel attention and spatial
attention in the inception block. Initially, the training was carried out across 9 epochs
with a learning rate of 0.0001and batch size 64, for the proposed GoogleNet. Table 4.6

presents the training and validation outcomes from the 9 epochs.

Table 4.6 Training and validation outcomes from the 9 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00003 0.6959 0.6973 0.4280
2 0.00008 0.6660 0.6560 0.6161
3 0.00010 0.5956 0.5591 0.7812
4 0.00009 0.4767 0.4573 0.8968
5 0.00007 0.4334 0.4074 0.9481
6 0.00005 0.4180 0.3941 0.9648
7 0.00002 0.4019 0.4002 0.9336
8 0.00001 0.3972 0.3989 0.9492
9 0.00000 0.3894 0.3895 0.9648
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The model's validation accuracy increases dramatically, from 0.4280 in epoch 1 to
0.9648 in epoch 9 as shown in Figure 4.19(a). The model is expected to develop quickly
in the early epochs as it collects essential properties from the training dataset. The
highest validation accuracy is attained at epoch 6, with a value of 0.9648, which remains
constant until the final epoch. After epoch 5, there are modest swings in accuracy,

indicating that the model may have hit peak performance with the current settings.

The training and validation losses reduce gradually and consistently during the training
procedure as shown in Figure 4.19(b). At epoch 1, the training loss is 0.6959, and the
validation loss is somewhat greater at 0.6973. However, as training advances, both
losses considerably decrease, with values of 0.3894 (training) and 0.3895 (validation)
by epoch 9. Around epoch 6, there is a little rise in training loss while validation loss

decreases. However, this is not a strong evidence of overfitting.
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Figure 4.19 Performance visualization of GoogleNet architecture with attention for epoch 9

The modest drop after epoch 5 could indicate slight overfitting, but overall accuracy
remains excellent. This implies that, while the model is doing well, it may benefit from
modifying hyperparameters such as the learning rate, batch size and epochs, approaches

to reduce overfitting tendencies in further experiments.

The training was carried out across 9 epochs with a learning rate of 0.0001. The results
show a constant improvement in the training and validation performance. We now
consider epoch 9, batch size 32 and learning rate 0.00005, for the proposed GoogleNet.

Table 4.7 presents the training and validation outcomes from the 9 epochs.
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Table 4.7 Training and validation outcomes from the 9 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.7223 0.7200 0.4727
2 0.00004 0.6707 0.6240 0.6669
3 0.00005 0.5270 0.4826 0.8320
4 0.00004 0.4038 0.4074 0.8477
5 0.00004 0.3297 0.3320 0.8555
6 0.00002 0.2559 0.2905 0.8873
7 0.00001 0.2681 0.2667 0.9129
8 0.00000 0.2530 0.2610 0.9129
9 0.00000 0.2576 0.2643 0.9258

The validation accuracy increased from 0.4727 in the first epoch to 0. 9258 in epoch 9.
This increase indicates that the model's predictions improved over time, particularly

after epoch 5, when it passed the 0.85 threshold. Change in accuracy with respect to

epoch is shown in Figure 4.20(a)

The training loss began at 0.7223 in epoch 1 and decreased dramatically to 0.2576 in
epoch 9. This continuous drop indicates that the model was successfully minimizing
loss and learning patterns from the training data. The validation loss decreased
significantly from 0.7200 in epoch 1 to 0.2643 by epoch 9, indicating the model's
improved ability to generalize well on the validation data. Lower validation loss,

particularly after epoch 6, indicates high generalization. Figure 4.20(b) shows the

Training and validation loss throughout nine epochs.
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Figure 4.20 Performance visualization of GoogleNet architecture with attention for epoch 9

The progressive modification in learning rate has a good effect on the model's training
dynamics. The model achieved an acceptable accuracy of 0.8555 by epoch 5 and
improved further to 0.9258 by epoch 9. The Adam optimizer with a batch size of 32
and the gradual adaptation of the learning rate allowed for consistent training without
evidence of overfitting.

Now we consider Batch size 32, learning rate 0.0005 and 7 epochs to train the proposed
model with googleNet as backbone. Table 4.8 presents the training and validation

outcomes from the 7 epochs.

Table 4.8 presents the training and validation outcomes from the 7 epochs.

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.6901 0.6758 0.5179
2 0.00005 0.6581 0.6011 0.8960
3 0.00005 0.5718 0.5101 0.8999
4 0.00003 0.4885 0.4666 0.8935
5 0.00002 0.4498 0.4364 0.9369
6 0.00000 0.4202 0.4323 0.9413
7 0.00000 0.4248 0.4301 0.9592

The validation accuracy increased significantly, from 0.5179 at epoch 1 to 0.9592 at

epoch 7. This significant rise in accuracy shows that the model is generalizing
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effectively to previously unseen validation data, with performance steadily rising as

training progressed as the Figure 4.21(a)

Both training and validation loss reduce steadily over time. The training loss started at
0.6901 in the first epoch and gradually decreased to 0.4248 by epoch seven. Similarly,
the validation loss decreased from 0.6758 to 0.4301 from epoch one to epoch seven.
This suggests that the model is boosting its learning capacity while avoiding overfitting

or considerable underfitting. Figure 4.21(b) shows losses throughout seven epochs.
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Figure 4.21 Performance visualization of GoogleNet architecture with attention for epoch 7
Overall, the model has good learning ability and performance. The decrease in training
and validation loss, combined with the constant increase in validation accuracy,
demonstrates that the hyperparameters: learning rate, batch size, and optimizer, are
properly set. The results imply that the model is neither overfitting nor underfitting, as

it retains good accuracy while minimizing losses.

4.7.3 Performance of GoogleNet

During the experiment we conducted, it is observed that, GoogleNet without attention
performed reasonably well; however, with a consistent decrease in both training and
validation losses. Although accuracy values improved across epochs, they did not reach
the levels seen when attention mechanisms were implemented. The model's learning
was consistent, although there were times when the validation loss plateaued, indicating

that the model may have struggled to grasp intricate spatial dependencies in the data.
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When attention mechanisms were introduced, the model demonstrated a faster
reduction in both training and validation loss. This improvement can be due to attention
mechanisms, which assist the model in focusing on the most relevant elements of the
input data. As a result, the model improves its generalization capabilities, resulting in
increased validation accuracy and lower loss.

A comparative result of both with attention or without attention GoogleNet is shown in

table 4.9

Table 4.9 Comparative result of GoogleNet with or without attention mechanism

Sr. No With or Learning | Number | Training | Validation | Accuracy
without rate of Epoch Loss Loss
attention
1 No 0.00005 9 0.4479 0.4781 0.9062
2 No 0.00005 5 0.4558 0.4740 0.9330
3 No 0.0001 9 0.3652 0.4081 0.9453
4 No 0.00005 4 0.5000 0.4966 0.8990
5 Yes 0.0001 9 0.3894 0.3895 0.9648
6 Yes 0.00005 9 0.2576 0.2643 0.9258
7. Yes 0.00005 7 0.4248 0.4301 0.9592

The addition of a series combination of channel and spatial attention mechanisms
considerably enhanced GoogleNet's performance in terms of both accuracy and loss.
The computational complexity is measured in terms of total floating point operations
(FLOPS). The computational complexity of GoogleNet is 52712300. The improved
models were able to generalize better to validation data while avoiding overfitting and
underfitting, suggesting that attention mechanisms offer significant advantages when

working with complex geographical information.

4.8 Result Analysis of ResNet 101

Now we continue our study by assessing the performance of ResNet 101, a popular
convolutional neural network design, for landslide detection. The model was trained on
a dataset of landslide and non-landslide images. Initially we use ResNetl01 as

the backbone network in the proposed model and then also assess the performance of
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the proposed model with and without a series combination of attention mechanism. The

performance was evaluated using a variety of hyperparameter combinations

e Learning rate=0.00001 to 0.00005
e Epoch=3t09

e Batch Size =32 and 64

e Weight Decay= le-4

e Optimizer = Adam

These decisions were made based on preliminary testing, which revealed that a
moderate learning rate and a reasonably high batch size were optimal for balancing

computing efficiency with model convergence.

4.8.1 ResNet 101 Experimental Result without AttentionMechanism

During the training process, the model was evaluated using training loss and validation
loss. In addition, the Validation Accuracy was recorded to determine the model's
capacity to generalize to previously unseen data.

Initially, we considered batch size 64, learning rate 0.00005, and epoch 7 for
ResNet101.Table 4.10 presents the training and validation outcomes from the 7 epochs.
The training loss, validation loss, and validation accuracy all consistently improve as

the number of epochs increases.

Table 4:10 Training and validation outcomes from the 7 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.6883 0.6834 0.4799
2 0.00005 0.5971 0.5411 0.8108
3 0.00005 0.4236 0.4010 0.9676
4 0.00003 0.3520 0.3598 0.9676
5 0.00002 0.3561 0.3651 0.9648
6 0.00000 0.3567 0.3678 0.9609
7 0.00000 0.3598 0.3768 0.9492
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The validation accuracy improved significantly, starting at 0.4799 and rising to 0.9676
by the third epoch. This increase indicates that the model was successfully learning to
classify or predict unknown data.The accuracy stabilized around 0.9648 to 0.9676
during the middle epochs (4th and 5th), indicating the model reached a good level of
generalization. In the later epochs 6th and 7th, validation accuracy decreased slightly,
reaching 0.9492 by the end. This reduction, together with the increasing validation
loss,shows possible overfitting, in which the model's performance on unseen data
deteriorated marginally despite continuing training. Figure 4.22(a) shows accuracy

curve with respect to epoch.

The training loss reduced consistently in the early stages, beginning at 0.6883 and
reaching a low of 0.3520 by the 4th epoch. This pattern suggests that the model learnt
well and minimized error on the training data.Similarly, the validation loss decreased
significantly from 0.6834 in the initial stage to 0.3598 in the fourth epoch. This
consistent decrease in both training and validation losses indicates that the model
generalized well to the validation data, with no obvious symptoms of overfitting or
underfitting. Starting with the 5th epoch, the validation loss began to climb slightly,
whereas the training loss remained modest. By the last epoch, the validation loss had
increased to 0.3768, indicating the possibility of overfitting, in which the model was
slightly overtuned to the training data patterns. Figure 4.22(b) present training and

validation losses
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Figure 4.22 Performance visualization of ResNet101 architecture without attention for epoch 7
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Overall, the model displayed effective learning and generalization from the early to
middle epochs. However, the increased validation loss and a minor decline in accuracy
near the conclusion indicate early indicators of overfitting. These findings suggest that
future training iterations should explore using early stopping or regularization

procedures to maintain high performance and avoid overfitting.

Now we change a number of epochs to 5 and the learning rate 0.00005 with batch size

32. Table 4.11 presents the training and validation outcomes from the 5 epochs

Table 4:11Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00004 0.6842 0.6237 0.6741
2 0.00005 0.4928 0.3872 0.9362
3 0.00003 0.3868 0.3694 0.9541
4 0.00001 0.3703 0.3668 0.9585
5 0.00000 0.3431 0.3642 0.9585

Validation accuracy increased significantly from 0.6741 in the 1st epoch to 0.9362 in
the 2™ epoch. This shows that the model was able to learn and adapt fast, as evidenced
by its good performance on validation data early in training. The accuracy increased
further, reaching 0.9541 in the 3™ epoch before stabilizing at 0.9585 in the 4™ and 5%
epochs. This stability shows that the model's generalization skills were intact, resulting
in consistent and accurate predictions across the validation dataset.Figure 4.23(a)

present accuracy with respect to epoch

The training loss decreased consistently over the epochs, starting at 0.6842 in the 1%
epoch and dropping to 0.3431 by the 5 epoch. This reduction suggests that the model
was gradually learning to minimize errors on the training dataset. The validation loss
fell significantly from 0.6237 in the 1% epoch to 0.3668 in the 4™ epoch. This downward
trend, combined with the decrease in training loss, indicates that the model successfully
generalized to the validation dataset throughout the early and middle epochs. By the 5
epoch, the validation loss was 0.3642, which was slightly lower than the previous

epoch. This stabilization indicates that the model has attained a near-optimal level of
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performance without further significant improvements.Figure 4.23(b) present training

and validation losses.
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Figure 4.23 Performance visualization of ResNet101 architecture without attention for epoch 5
The training loss gradually declines from 0.6842 to 0.3431, and the validation loss
follows a similar downward pattern. The rapid improvement in validation accuracy
from 0.6741 to over 0. 9362 by the 2™ epoch and its stabilization at around 0.9585,
indicate that the model efficiently learned the patterns from the data without
underfitting. The stability of the validation loss from 0.3694 to 0.3642 across the last
epochs and the consistently high validation accuracy indicate that the model generalizes
well, without showing a trend of memorizing the training data at the expense of
performance on unseen data. The use of a gradually reducing learning rate helped the
model to converge effectively. The lack of substantial variations in validation metrics

indicates that the model did not show evidence of overfitting, and future training could

use similar tactics for optimal performance.

Now we change number of epochs to 3 and the learning rate of 0.00005 with batch

size 32. Table 4.12 presents the training and validation outcomes from the 3 epochs

Table 4:12 Training and validation outcomes from the 3 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00005 0.6431 0.5452 0.8119
2 0.00002 0.4427 0.4217 0.9062
3 0.00000 0.3872 0.3887 0.9413
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Initially, the model had a somewhat high training loss of 0.6431 and a validation loss
0f 0.5452, with a validation accuracy of 0.8119. This shows that the model was still
learning how to identify patterns in the data.The training loss dropped further to 0.3872,
while the validation loss decreased marginally to 0.3887. The validation accuracy
increased to 0.9413. The continuous decrease in both losses as accuracy increases
implies that the model is learning efficiently and generalizing successfully. Figure
4.24(a) show accuracy with respect to epochs and Figure 4.24(b) shows the Training

and validation loss throughout three epochs.
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Figure 4.24 Performance visualization of ResNet101 architecture without attention for epoch 3
The training findings show that effective learning occurs over all three epochs. Both
training and validation losses dropped, but validation accuracy climbed from 0.8119 to
0.9413, indicating a constant improvement in the model's performance. The decrease
in both losses with no substantial divergence indicates that the model has not yet
overfitted the training data. Consistent gains in validation accuracy show that the model

learns and generalizes well.

4.8.2 ResNet 101 Experimental Result with Attention Mechanism

In our proposed model we use a series combination of channel attention and spatial
attention in the Residue block. Initially, we start with batch size 32, a learning rate
of 0.00005 for epoch 9. Table shows the training and validation outcomes from the 9

epochs. Table 4.13 presents the training and validation outcomes from the 9 epochs.
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Table 4:13 Training and validation outcomes from the 9 epochs

Epoch | Learning Rate | Training Loss | Validity Loss | Validity Accuracy
1 0.00002 0.3672 0.3767 0.9413
2 0.00004 0.3519 0.3930 0.9145
3 0.00005 0.3623 0.3895 0.9286
4 0.00004 0.3575 0.3560 0.9598
5 0.00004 0.3458 0.3687 0.9509
6 0.00002 0.3424 0.3546 0.9643
7 0.00001 0.3323 0.3618 0.9554
8 0.00000 0.3197 0.3385 0.9777
9 0.00000 0.3198 0.3476 0.9732

The model begins with a high validation accuracy of 0.9413, demonstrating great initial
learning capabilities in epoch 1. A slight decrease to 0.9145 in epoch 2 suggests
possible overfitting or noisy data, but it recovers to 0.9286 in epoch 3. From epoch 4
onward, the model steadily improves, reaching a peak accuracy of 0.9777 in epoch 8
before dropping to 0.9732 in epoch 9. This shows a robust learning process, with minor
improvements even in later epochs. Figure 4.25(a) shows accuracy with respect to

epoch.

The training loss decreases from 0.3672 to around 0.3519, with modest variability at
epoch 3. Validation loss behaves similarly, initially falling but then slightly increasing
in epochs 2 and 3, indicating some instability. After epoch three, both training and
validation losses stabilize and gradually improve. By the last epoch, the training loss is
0.3197, while the validation loss is 0.3476, showing effective learning without severe
overfitting. shows the Training and validation loss throughout nine epochs. Figure

4.25(b) shows the Training and validation loss throughout nine epochs.
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Figure 4.25 Performance visualization of ResNet101 architecture with attention for epoch 9
The modest change in validation accuracy between epochs 2 and 3 suggests that the
model encountered tough patterns in the data but reacted well. The overall trend
indicates effective generalization, which is critical for consistent performance on

unknown data.

From epochs 1 to 3, the training loss decreases, while the validation loss increases
slightly from 0.3767 to 0.3930 in epoch 2 and 0.3895 in epoch 3. This could indicate
that the model is beginning to overfit, as it performs well on the training set but
struggles significantly on the validation set. After epoch 4, both training and validation
losses normalize, and validation accuracy stays consistently high ,more than 0.95. This
shows that the model can generalize effectively, maybe due to changes in the learning
rate and other regularization strategies. There is no strong evidence of underfitting
,Since the validation accuracy starts at 0.9413 in the first epoch and improves further,

it indicates that the model is learning efficiently and is not underfitting.

To mitigate overfitting we change the hyperparameters , Now we set the Learning rate
to 0.0005 batch size 64 and epoch 5.Table 4.14 presents the training and validation

outcomes from the 5 epochs.
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Table 4:14 Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00004 0.6775 0.6652 0.7048
2 0.00005 0.5702 0.4595 0.7208
3 0.00003 0.4176 0.3807 0.9531
4 0.00001 0.3824 0.3653 0.9570
5 0.00000 0.3478 0.3695 0.9609

In epoch 1 the training loss is large is 0.6775 , as is the validation loss is 0.6652,
indicating initial underfitting. The validation accuracy is low 0.7048, indicating that the
model has not yet learned patterns efficiently.The training and validation losses
decrease significantly between Epochs 1 and 3 . The validation accuracy increases
dramatically from 0.7208 to 0.9531 at Epoch 3, shows that the model is starting to
generalize effectively after few changes. The learning rate adjustment is beneficial in
directing the model to improved performance, lowering losses, and increasing
accuracy. Figure 4.26(a) shows accuracy with respect to epoch. And Figure 4.26(b)

shows the Training and validation loss throughout nine epochs.
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Figure 4.26 Performance visualization of ResNet101 architecture with attention for epoch 5

Now we set the Learning rate to 0.0001 batch size 32 and epoch 5 and analys the result

of model. Table 4.15 presents the training and validation outcomes from the 5 epochs.
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Table 4:15 Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00007 0.6512 0.4907 0.9177
2 0.00010 0.4050 0.3491 0.9624
3 0.00006 0.3494 0.3823 0.9636
4 0.00002 0.3670 0.3495 0.9643
5 0.00000 0.3552 0.3409 0.9770

The validation accuracy improves dramatically, starting at 0.9177 and rising to 0.9770
after the last learning rate adjustment. This shows that the learning rate tweaks
improved the model's accuracy, allowing for more effective optimization. The steady
accuracy of 0.96 suggests stable performance, with a peak of 0.9770 indicating strong

generalization ability. Figure 4.27(a) shows accuracy with respect to epoch.

The statistics reveal a significant reduction in both training and validation losses from
the beginning, indicating excellent model training. The training loss decreases from
0.6512 to around 0.3552. Although the training loss fluctuated slightly at epoch 3, it
generally trended downward, indicating that the model is still learning successfully.
The validation loss exhibits a pattern of small variations before decreasing at the
conclusion, indicating successful generalization. Figure 4.27(b) shows the Training

and validation loss throughout five epochs.

Accuracy vs. No. of epochs

Loss vs. No. of epochs

0.65 == Training
0974 —>— Validation

Accuracy

0 1 3 H . 00 05 10 15 20 25 30 35 40
epoch epoch

(a) Accuracy vs. Epoch (b) Losses vs epoch

Figure 4.27 Performance visualization of ResNet101 architecture with attention for epoch 5
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The training loss starts high at 0.6512 and steadily lowers, as does the validation loss.
There is no evident sign of overfitting, as the validation accuracy stays good and even
increases near the end. The training and validation losses are generally near to each
other, with no significant differences, showing that the model generalizes effectively to
new data. Minor changes in validation loss in epochs 2 to 3, do not indicate significant

overfitting. Instead, these could represent expected fluctuations during training.

4.8.3 Performance of ResNet101

The models without attention attained a maximum accuracy of 0.9585 over five epochs,
with validation losses ranging from 0.3642 to 0.3887. The training losses showed small
oscillations, indicating steady learning. However, the validation loss for the model
trained for three epochs was slightly larger than the others, indicating that performance
is unstable with fewer epochs. This mismatch may highlight the risk of overfitting, as
evidenced by the three-epoch model's lower accuracy of 0.9413, which may not have

properly captured the underlying data patterns.

The models that included attention processes performed better overall. After five
epochs, the best-performing model had 0.9770 accuracy with a validation loss of
0.3409. Notably, the validation loss fell consistently across all epochs, demonstrating
that the attention modules helped the model focus on critical features for landslide
identification. The model trained for nine epochs also performed well, with an accuracy

0f 0.9732, highlighting the value of attention in improving model robustness.

As comparative result of both with attention or without attention, ResNet101 is shown

in the table 4.16

Table 4:16 comparative result of ResNet101 with attention or without attention

Sr. No With or Learning | Number | Training | Validation | Accuracy
without rate of Loss Loss
attention Epochs
1 No 0.00005 7 0.3598 0.3768 0.9492
2 No 0.00005 5 0.3431 0.3642 0.9585
3 No 0.00005 3 0.3872 0.3887 0.9413
4 Yes 0.00005 9 0.3198 0.3476 0.9732
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5 Yes 0.00005 5 0.3478 0.3695 0.9609
6 Yes 0.0001 5 0.3552 0.3409 0.9770

The results clearly demonstrate that introducing attention mechanisms to ResNet101
improves its learning capacities and performance in landslide detection tasks. The
computation complexity is assessed in terms of total FLOPS. The computational
complexity of ResNet101 is 51653608. Attention mechanisms are a crucial addition to
the model, allowing it to focus on essential spatial elements and improve overall

resilience.

4.9 Result Analysis of ResNet 50

We now proceed with our investigation by evaluating ResNet50, a well-known
convolutional neural network architecture to performance identification of landslide
identification. The model was trained on a dataset of landslide and non-landslide
images. Initially, we use ResNet50 as the backbone network in the proposed model and
then also assess the performance of the proposed model with and without a series
combination of attention mechanism. The performance was evaluated using a variety

of hyperparameter combinations

e Learning rate=0.00001 to 0.00005
e Epoch=3t09

e Batch Size =32, 64,256

e Weight Decay= le-4

e Optimizer = Adam

These decisions were made based on preliminary testing, which revealed that a
moderate learning rate and a reasonably high batch size were optimal for balancing
computing efficiency with model convergence.

Initally we consider Batch size 32 , learning rate 0.00005 and epoch 7 and analys the

result of model.
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4.9.1 ResNet 50 Experimental Result without Attention Mechanism

During the training process, the model was evaluated using training loss and validation
loss. In addition, the Validation Accuracy was recorded to determine the model's
capacity to generalize to previously unseen data.

Initially, we considered batch size 64, learning rate 0.00005, and epoch 7 for

ResNet50.Table 4.17 presents the training and validation outcomes from the 7 epochs.

Table 4:17Training and validation outcomes from the 7 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.6757 0.6275 0.6710
2 0.00005 0.5002 0.5944 0.9338
3 0.00005 0.3675 0.3684 0.9504
4 0.00003 0.3411 0.3871 0.9338
5 0.00002 0.3325 0.3696 0.9485
6 0.00000 0.3315 0.3931 0.9228
7 0.00000 0.3364 0.3815 0.9320

Training loss consistently decreases from 0.6757 in epoch 1 to 0.3325 in epoch 5.
However, it grows slightly from epoch 6™ to 7". Validation loss drops dramatically
from 0.6275 to 0.3684 by epoch 3 but then increases in epochs 4, 6, and 7. This
inconsistency may imply modest overfitting, in which the model's performance on the
validation set does not improve consistently. Validation accuracy begins at 0.6710 in
1t epoch, peaks at 0.9504 in 3™ epoch, and then dipping to 0.9338 before settling
around 0.9320 in 7 epoch. Epoch 3 has the best performance 0.9504 accuracy as well
as the lowest validation loss 0.3684. However, the variations in later epochs indicate
that the model is struggling to maintain stability, which could be related to overfitting.
Figure 4.28(a) shows accuracy with respect to epochs and Figure 4.28(b) presents

training and validation loss.
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Figure 4.28 Performance visualization of ResNet50 architecture without attention for epoch 7
The results show an early period of effective learning in which the model rapidly
improves, peaking at epoch 3 with a validation accuracy of 0.9504 and the lowest
validation loss (0.3684). However, succeeding epochs exhibit swings in validation
performance, including higher loss and slightly worse accuracy. This signals possible
overfitting, in which the model begins to acquire patterns specific to the training data

rather than generalizable features.

Now we consider batch size 32, a learning rate of 0.00002 and epoch 5. Table 4.18

presents the training and validation loss for epoch7.

Table 4:18 Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00001 0.6856 0.6614 0.6224
2 0.00002 0.5861 0.4904 0.9037
3 0.00001 0.4360 0.4089 0.9592
4 0.00000 0.3878 0.4087 0.9330
5 0.00000 0.3780 0.4426 0.9107

The validation accuracy improved sharply, from 1% to 3™ epoch from 0.6224 to 0.9592,
indicating effective learning and generalization. Validation accuracy peaked at 0.9592
in 3" epoch , began to decline , falling to 0.9107 in 5 epoch. This shows that the model
may be overfitting, as it continues to improve on the training data while failing to
generalize on the validation set. Figure 4.29(a) presents accuracy with respect to

epochs.
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The model demonstrated a strong pattern of progress in the early epochs. Training loss
fell dramatically from 0.6856 in 1% epoch to 0.4360 in 3™ epoch. Validation loss also
dropped, from 0.6614 in epoch 1 to 0.4089 by epoch 3. The model's performance did
not improve regularly from the 3™ epoch onwards. Although training loss decreased
marginally, validation loss started to fluctuate, rising from 0.4087 in epoch 4 to 0.4426

in epoch 5. Figure 4.29(b) present the training and validation losses.

Accuracy vs. No. of epochs Loss vs. No. of epochs

—< Training

—— Validation

loss.

0.0 0.5 10 15 20 25 3.0 35 4.0 0.0 0.5 1.0 15 2.0 2.5 30 35 4.0
epoch epoch

(a) Accuracy vs epoch (b) Training and validation losses
Figure 4.29 Performance visualization of ResNet50 architecture without attention for epoch 5
The model's performance analysis shows effective initial learning, with a peak
validation accuracy of 0.9592 at epoch 3. However, the subsequent decrease in
validation performance indicates overfitting. Future experiments should aim to validate
these approaches to achieve more consistent and reliable model performance by fine-

tuning the hyperparameters.

Then we consider Batch size 64, the learning rate of 0.00005 and epoch 5. Table 4.19

presents the training and validation outcomes from the 5 epochs.

Table 4:19 Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00004 0.6551 0.5726 0.8508
2 0.00005 0.4445 0.3880 0.9449
3 0.00003 0.3608 0.3858 0.9265
4 0.00001 0.3451 0.3835 0.9228
5 0.00000 0.3494 0.3608 0.9577

Validation accuracy continuously rises from 0.8508 to 0.9577, indicating an

improvement in the model's capacity to generalize to new data.
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At epoch 5, the model has the highest validation accuracy (0.9577) and the lowest
validation loss (0.3608), indicating that it has reached a well-balanced state between

learning and generalization. The Figure 4.30(b) shows accuracy with respect to epoch.

The training loss steadily drops from 0.6551 to 0.3494, indicating that the model is
picking up new information efficiently. Validation loss begins at 0.5726 and gradually
drops to 0.3608, with a little increase between epochs 3 and 4. This implies slight
variations, but the overall tendency is lower, indicating better generality. The Figure

4.30(a) shows the Training and validation loss throughout nine epochs

Accuracy vs. No. of epochs Loss vs. No. of epochs

065 — Training
—e validation

Accuracy

0.0 0.5 10 15 2.0 2.5 3.0 a5 4.0 0.0 0.5 10 15 20 25 30 35 4.0
epoch epoch

(a) Accuracy vs epoch (b) Losses vs epoch

Figure 4.30 Performance visualization of ResNet50 architecture without attention for epoch5

The model's training and validation performance improved consistently across epochs.
The gradual reduction in the learning rate played a crucial role in fine-tuning the model,
leading to a significant decrease in training and validation loss and a steady increase in
validation accuracy. Starting with an initial accuracy of 0.8508, the model improved to
a high accuracy of 0.9577 by epoch 5, which coincided with the lowest validation loss
observed. The slight fluctuation in validation loss around epochs 3 and 4 could be a
sign of the model encountering slight overfitting, but it is mitigated as the learning rate
decreases further. Since the final validation loss and accuracy are both optimal at epoch
5, it suggests that the model was able to overcome this potential overfitting and learned

to generalize better.
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4.9.2 ResNet 50 Experimental Result with AttentionMechanism

In our proposed model we use a series combination of channel attention and spatial
attention in the inception block.Then we consider Batch size 64, the learning rate of
0.00005 and epoch 7. Table 4.20 presents the training and validation outcomes from

the 7 epochs.

Table 4:20 Training and validation outcomes from the 7 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00002 0.6556 0.5451 0.8110
2 0.00004 0.5502 0.4812 0.9348
3 0.00005 0.4271 0.3364 0.9387
4 0.00003 0.3511 0.3210 0.9485
5 0.00001 0.3401 0.3241 0.9450
6 0.00000 0.3215 0.3159 0.9671
7 0.00000 0.3047 0.2891 0.9671

Validation accuracy improves from 0. 8110 in epoch 1 to 0.9671 in epoch 7, indicating
a considerable improvement in the model's performance on previously unknown data.
The accuracy stabilizes at 0.9671 in both epochs 6 and 7, equal to the lowest validation
loss, demonstrating that the model is well-optimized. Figure 4.31(a) presents accuracy

with respect to epochs.

Training loss steadily falls from 0.6556 in epoch 1 to 0.3047 in epoch 7, indicating
efficient learning over the epochs. Validation loss has the same decreasing trend,
beginning at 0.5451 in epoch 1 and falling to 0.2891 by epoch 7. Figure 4.31(b) shows

training and validation loss.
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Figure 4.31 Performance visualization of ResNet50 architecture with attention for epoch 7
The training results show a well-optimized model with strategic use of learning rate
modifications, resulting in increased performance over epochs. Starting with a lesser
accuracy of 0.8110, the model promptly improved to a high accuracy of 0.9671 by
epoch 6, and maintained this level in the subsequent epochs. This improvement is
supported by a consistent decrease in both training and validation losses, indicating that

the model was successfully trained to generalize without overfitting.

Then we consider Batch size 32, the learning rate of 0.00002 and epoch 5. Table 4.21

presents the training and validation outcomes from the 5 epochs.

Table 4:21 Training and validation outcomes from the 5 epochs

Epoch | Learning Rate | Training Loss | Validity Loss Validity Accuracy
1 0.00001 0.6860 0.6087 0.8516
2 0.00002 0.4878 0.4578 0.9107
3 0.00001 0.4085 0.3985 0.9187
4 0.00000 0.3678 0.3380 0.9330
5 0.00000 0.3280 0.3020 0.9692

Validation accuracy increases from 0. 8516 to 0.9692, indicating better generalization
and performance on unknown data. The maximum accuracy 0.9692 at epoch 5

correlates to the lowest validation loss 0.3020, indicating robust model performance.

Training loss gradually falls from 0.6860 to 0.3280, suggesting that the model learns

effectively over epochs. Validation loss follows a similar pattern, beginning at 0.6087
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and decreasing to 0.3020, indicating a constant improvement in the model's capacity to
generalize. The consistent drop in validation loss, particularly in later epochs, indicates
that the model is not overfitting and is learning well. Figure 4.32(a) and Figure 4.32(b)

shows accuracy and losses.

Accuracy vs. No. of epochs Loss vs. No. of Epochs

—= Training Loss
=~ Validation Loss

0.94

0.92
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0.90

epoch Epoch

(a) Accuracy vs. epoch (b) Losses vs epoch

Figure 4.32 Performance visualization of ResNet50 architecture with attention for epoch 5

The results show a well-tuned training process in which changes in the learning rate
successfully directed the model to an optimal state. Beginning with a validation
accuracy of 0.8516, the model reached a peak accuracy of 0.9692 by epoch 5, with a
consistent reduction in validation loss. This improvement indicates that the model was
able to train well without overfitting, as evidenced by a gradual decline in the learning
rate, particularly in the last epochs. The last epoch's performance reveals the model's

strong generalization capacity, with low loss and excellent accuracy.

4.9.3 Performance of ResNet50

Models without attention mechanisms, although capable of learning effectively, may
overfit to the training data. The larger validation losses indicate that, while the models
are highly accurate, they may struggle with generalization, resulting in performance
decreases when exposed to new, previously unseen data. This pattern highlights the
possible need for further regularization strategies, such as dropout or data

augmentation, to reduce overfitting in subsequent tests.
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The models trained with attention mechanism showed consistent and strong
improvement in all important measures. The attention mechanism helped the models
focus more effectively on relevant features, resulting in improved learning and
generalization.

As comparative result of both with attention or without attention, ResNet50 is shown

in the table 4.22

Table 4.22 comparative result of ResNet50 with attention or without attention module

Sr. No With or Learning | Number | Training | Validation | Accuracy
without rate of Epoch Loss Loss
attention
1 No 0.00005 7 0.3364 0.3815 0.9504
2 No 0.00002 5 0.3780 0.4426 0.9592
3 No 0.00005 5 0.3494 0.3608 0.9577
4 Yes 0.00005 7 0.3041 0.2891 0.9671
5 Yes 0.00002 5 0.3280 0.3020 0.9692

The comparison clearly shows that attention mechanisms enhance the performance of
deep learning models, leading to lower training and validation losses and higher
validation accuracy. The computation complexity is assessed in terms of total FLOPS.
The computational complexity of ResNet50 is 55647616. Models without attention
mechanisms, while still capable of achieving high accuracy, showed less stability and
a tendency to overfit. Integrating attention mechanisms appears to help the model focus

on essential features, resulting in more reliable and generalized performance.

4.10 Discussion

A comparison of GoogleNet, ResNet 101, and ResNet 50 models, both with and without
attention methods, provides some key insights into their performance in landslide
detection. Each model was tested using key measures like as accuracy, training and
validation loss, F1 score, precision, and recall to better understand their strengths and
the impact of attention mechanisms.Table4.23 present the comparative result of

GoogleNet, ResNet 101, and ResNet 50 models.
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Table 4:23 Comparative result of trained Model

Model Attention | Learning | Training | Validity | Accuracy F1 Precision | Recall
Mechanism Rate Loss Loss Score

GoogelNet No 0.0001 0.3652 0.4081 0.9453 | 0.9361 | 0.9435 | 0.9363
GoogelNet Yes 0.0001 0.3894 0.3895 0.9648 | 0.9590 | 0.9610 | 0.9590
ResNet101 No 0.00005 0.3431 0.3642 0.9585 | 0.9590 | 0.9591 | 0.9590
ResNet101 Yes 0.00005 0.3198 0.3476 0.9732 | 0.9584 | 0.9427 | 0.9509
ResNet50 No 0.00002 0.3789 0.4426 0.9592 | 0.9083 | 0.9230 | 0.9090
ResNet50 Yes 0.00002 0.3280 0.3020 0.9692 | 0.9576 | 0.9600 | 0.9576

e Model Comparison and Performance Evaluation

ResNet101 with the Attention mechanism achieved the maximum accuracy 0.9732 and
performed well across all measures. Its capacity to perform complex feature extraction
tasks makes it suitable for detecting landslides, particularly when high accuracy is
required. However, this paradigm necessitated additional computational resources,
which could be a disadvantage for real-time or resource-limited applications.
GoogleNet showed significant improvement when attention was applied, with accuracy
rising to 0.9648. The model's lightweight architecture makes it a feasible option in
situations where speed and cheap computing costs are more important than peak
accuracy. ResNet50 with Attention, despite having a slightly lower accuracy of 0.9692
than ResNet101, this model had a balanced performance in precision of 0.9600 and
recall of 0.9576 with a validation loss of 0.3020. ResNet50 with attention is also a good
choice due to its high accuracy, minimal validation loss, and balanced metrics,

especially when computational efficiency and generalization are important concerns.
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e Impact of Attention Mechanism

Attention mechanism have consistently positively impacted the performance of all
three models. The accuracy of each model is improved with an attention mechanism.
ResNet101 achieves 0.9732 accuracy indicating that this model focuses on relevant
features which leads to accurate prediction. Provide better generalization by reducing
validation loss in all three models which minimizes overfitting and performs well on
unseen data. These results show that attention mechanisms can significantly improve
feature extraction, which is required for reliably detecting complicated patterns in
landslide imagery.

The trained model is also compared with the existing models which are trained with

the same and datasets. Table 4.24 shows the comparative result.

Table 4.24 Comparative results of the proposed model and existing models.

Model DataSet Recall Precision F1 Score  Accuracy
Proposed ResNet 50  Bijie Landslide 0.9576 0.9600 0.9576 0.9692
Dataset
Proposed ResNet Bijie Landslide 0.9509 0.9427 0.9584 0.9732
101 Dataset
Proposed Bijie Landslide 0.9590 0.9610 0.9590 0.9648
GoogleNet Dataset
REF[45] UAV dataset 0.8032 0.8615 0.8313 0.7391
ResNet50+Mask R-
CNN
REF[43] UAV dataset 0.8392 0.8955 0.8664 0.7643
ResNet101+Mask R-
CNN
REF[39] UAYV dataset 0.87 0.93 0.90 0.90

ResNet101-RCNN
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REF [96] Bijie Landslide 0.8823 0.8724 0.8773 0.8791

. Dataset
TransferU Net with
CBAM
REF [82] Iburi dataset 0.8170 0.7709 0.7933 0.8023
TransferU Net with
CBAM

The combined analysis confirms that attention mechanisms improve model
performance, especially in complex architectures like ResNetl0l and ResNet50,
GoogleNet.Future research could explore experimentation with different types of

attention mechanisms to see if further improvements can be made.
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Chapter 5 Conclusion and Future Scope

In this research work, we proposed deep learning based model for the automatic
detection of landslide with three different CNN backbone models. This study describes
an innovative and comprehensive technique to landslide identification and prediction
that combines satellite data with sophisticated convolutional neural network (CNN)
architectures, notably ResNet50, ResNet101, and GoogleNet. This study highlights the
potential of remote sensing data to provide reliable, scalable landslide monitoring
solutions by using high-resolution satellite images and CNNs' deep feature extraction
capabilities. The findings reveal that ResNet-based models, ResNet101, outperform in
landslide detection tasks, especially when supplemented with spatial and channel
attention methods. These attention layers enable the models to prioritize crucial

portions of images, resulting in higher detection accuracy and interpretability.

The purpose of this research work is to design an automatic CAD system for detecting
and classifying landslide using Artificial Intelligence Techniques. This research

provided the following contributions:

e Preprocessing is a critical step in deep learning that converts raw data into an
acceptable format for model training. The quality of the preprocessing can
significantly affect the model's performance, training time, and ability to
generalize to new data. To process the images and increase the number of
images for deep learning training and testing of the model we apply data
augmentation methodologies, dimensionality reduction using PCA and its
variants, and rigorous model evaluation to provide the groundwork for
constructing more accurate and adaptive landslide monitoring systems.

o In this research work, a deep-learning algorithm with an attention mechanism is
proposed to detect and classify landslides. Train the proposed model with
a training set by using ResNet 101, ResNet 50 and GooglINet. Prestained model,
used to evaluate the experimental results based on training loss, validation loss,
precision, recall, F1 score and accuracy in landslide prediction. According to
experimental results, ResNet 101 obtains 0.9427 precision, 0.9509 recall,
0.9584 F1 score and 0.9732 accuracy. ResNet 50 obtains 0.9600 precision,
0.9576 recall, 0.9576 F1 score and 0.9692 accuracy.GoogleNet obtains 0.9610
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precision, 0.9590 recall, 0.9590 F1 score and 0.9648 accuracy. These
experimental results indicates that the proposed attention module CNN model
with ResNet 101 as a backbone network has high accuracy, and can be used as
an effective landslide detection method to help in emergency rescue.

e In next step, adjust the hyperparameters to optimize each model. Parameters
such as learning rate, batch size and number of epochs are carefully adjusted to
prevent overfitting and underfitting, ensuring that the model generalizes well
across data samples. Each network's performance is measured using model
training and validation parameters such as training loss, validation loss,
accuracy, F1 score, precision, and recall. A detailed epoch-by-epoch study
reveals the learning dynamics of each model as well as the usefulness of
alternative architectural solutions. Furthermore, early stopping criteria and
dropout regularization techniques are used to prevent overfitting.

A comparative analysis of model performance indicates that architectural depth and
attention layers influence the models' ability to reliably distinguish landslide from non-
landslide regions. The findings suggest that deeper networks are better suited to
challenging classification tasks like landslide detection, which require detailed patterns
for accurate predictions. The combined analysis reveals that attention mechanisms
boost model performance, especially in complicated designs like ResNetl101,
ResNet50, and GoogleNet. These approaches and findings show that incorporating
satellite-based deep learning models into early warning systems has the potential to
revolutionize landslide risk management by allowing for prompt and data-driven

mitigation decisions.

5.1 Future Scope

The societal contribution of automatic landslide detection stems from its ability to save
lives by providing early warnings and allowing for prompt evacuations in disaster-
prone locations. It promotes catastrophe preparedness through effective resource
allocation and community knowledge, resulting in safer living conditions. It contributes
to regional stability by preserving important infrastructure and minimizing economic
damage. The technology also helps to preserve ecosystems by identifying high-risk

zones and minimizing environmental damage. Governments can use these tools to
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create more effective land use and disaster management policies. This work of landslide
detection is critical for improving public safety, lowering hazards, and boosting long-

term development.

Building on the study's findings, numerous areas present intriguing possibilities for
future research to improve landslide detection and prediction systems. Future research
can improve and expand the capabilities of CNN-based landslide models by building
on the current technique and incorporating additional data sources, methods, and
technology.There are a few limitations in this work. To alleviate the restrictions future
research could combine satellite image processing with meteorological data and

provide more accurate understanding of landslide detection and prediction.

1. This research focuses on visual features from satellite imagery. Images used in
this work provide extensive and precise spatial coverage but it does not
directly incorporate crucial environmental characteristics and parameters
such as soil moisture, precipitation, and seismic activity which have a
substantial impact on landslide susceptibility. Soil moisture has an impact
on soil stability and has valuable insights into landslides but can not be
detected only through image analysis. The image-based analysis is also not
able to detect precipitation and seismic activity as they change over time
and space. Hence, these environmental parameters are not incorporated in
the proposed model. However, the accuracy of the proposed technique can
increase substantially if these parameters are incorporated into the feature
vector.

2. Implementing trained models in real-time monitoring systems could provide
continuous landslide surveillance. Deploying these models on operational
platforms such as Geographic Information Systems (GIS) and connecting them
to IoT devices in high-risk areas will give authorities with fast alerts and
actionable insights, shortening emergency response times.

3. The satellite imagery is a strong tool, cross-validating model predictions using
ground truth data and field studies may improve the model's robustness and

reliability in real-world scenarios.
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