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Abstract 

Landslides are a periodic natural calamity that poses substantial dangers to human lives, 

environment and infrastructure, especially in hilly and densely inhabited locations. 

Developing countries have seen sharp growth in construction. Roads, railway tracks, 

bridges, tunnels and other transportation networks connect remote locations. 

Construction in the morphological area disrupts the ecosystem and creates threats such 

as landslides. Landslides are both natural and man-made disasters that result in 

fatalities. As a developing country, building cannot be halted, and natural factors that 

cause landslides cannot be managed. Accurate landslide prediction is vital for disaster 

preparedness and risk management. Traditional methods for landslide prediction rely 

on ground survey and statistical models, have limitations in term of data availability, 

scalability and accuracy. In a catastrophic emergency, reliable and efficient landslide 

detection can provide logical information to save the life. To meet the requirement of 

relief operations with accuracy and in time, this research proposes an automatic 

landslide detection with satellite images instead of the site visiting process in the 

traditional approach. Convolutional neural networks (CNN) are far more efficient than 

traditional methods for detecting landslides by lowering the time required to identify 

relevant features. A convolutional neural network is used to automatically extract 

information from satellite imagery and enhance the model’s ability to detect early 

indications of landslides.  

This research work explore the application of Convolutional Neural Networks, 

specifically sophisticated CNN backbone networks such as ResNet50, ResNet101, and 

GoogleNet, to detect and predict landslides using satellite images. This study compares 

three CNN architectures ResNet50, ResNet101 and GoogleNet, which were chosen for 

their proven skills in feature extraction and classification tasks. Satellite images provide 

broad coverage of huge and inaccessible areas, delivering timely data that is crucial for 

monitoring high-risk environments. However, the vast and complex nature of satellite 

data requires specialized approaches for finding significant patterns. CNNs have proven 

useful in a variety of image analysis applications due to their capacity to automatically 

learn hierarchical features from big datasets. This research work uses CNNs to discern 

complicated visual patterns indicative of landslides. 
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ResNet50 and ResNet101 are members of the residual networks family, which was 

created to address the vanishing gradient problem and enable the training of deeper 

networks, which is critical for collecting subtle landslide details. GoogleNet, while not 

as deep, has a distinct inception architecture that allows the network to record 

multiscale information in a single layer. Each model is trained with and without 

attention mechanisms to determine how attention layers affect model performance. 

Attention mechanisms, particularly spatial and channel attention, guide the network's 

focus to the most relevant portions of an image, significantly improving model 

interpretability and detection accuracy. The implementation of attention modules into 

CNN models in remote sensing image processing can improve the model’s global 

context modeling and feature detection.  

This work uses a deep learning CNN with attenuation mechanisms and optimization to 

extract landslides from satellite images to automatically identify landslides. The 

proposed method is divided into three steps: Pre-processing of the dataset that is 

an augmentation of labeled datasets; introduce attention module in the decoder to 

suppress feature map noise with three different backbone networks of CNN (ResNet50, 

ResNet101, Google Net) for training and performance evaluation of the proposed 

algorithm on quantitative parameters. The experimental setup includes thorough 

hyperparameter adjustment to optimize each model. Parameters such as learning rate, 

batch size, number of epochs, and weight decay are carefully controlled to avoid 

overfitting and underfitting, ensuring that the model generalizes effectively across data 

samples. Each network's performance is evaluated based on model training and 

validation metrics such as training loss, validation loss, accuracy, F1 score, precision 

and recall. Detailed epoch-wise analysis sheds light on each model's learning dynamics 

and the efficacy of various architectural options. Furthermore, early stopping criteria 

and dropout regularization techniques are utilized to prevent overfitting, while cross-

validation improves model reliability.  

The results show that ResNet-based architectures, notably ResNet101, outperformed 

all other models tested in terms of detection accuracy. The incorporation of attention 

mechanisms further increased performance and ResNet models, showing that these 
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processes assist in focusing the model on critical aspects within each image. The 

attention-augmented ResNet models demonstrated better accuracy and stability in 

identifying landslides, implying that attention plays an important role in improving the 

model's feature recognition capabilities. ResNet 101 obtained 0.9732 accuracy. ResNet 

50 obtained 0.9692 accuracy and GoogleNet claimed 0.9648 accuracy. This indicates 

that the proposed attention module CNN model with ResNet 101 as a backbone network 

has high accuracy, and can be used as an effective landslide detection method to help 

in emergency rescue.  

A comparative investigation of model performance reveals how architectural depth and 

attention layers affect the models' capacity to reliably discriminate landslide from non-

landslide regions. The findings indicate that deeper networks are better suited to 

complex classification tasks such as landslide detection, where nuanced patterns are 

required for reliable predictions. The combined analysis confirms that attention 

mechanisms improve model performance, especially in complex architectures like 

ResNet101 and ResNet50, GoogleNet. 

This study has great pragmatic consequences. The models used in this study have the 

potential to be integrated into early warning systems and disaster management 

frameworks, allowing authorities to monitor landslide-prone areas in near real time and 

make data-driven decisions about resource allocation and evacuation plans. This 

technology, which combines satellite data with deep learning algorithms, may produce 

prediction models that estimate landslide risk based on historical data and ongoing 

landscape changes. This work provides the framework for future research into landslide 

prediction utilizing multi-sensor data fusion. Incorporating other variables, such as 

rainfall, soil moisture, and seismic activity, could improve model accuracy and 

predictive power, allowing for a more comprehensive evaluation of landslide risk. 

This research advances the field of landslide detection and prediction by proving the 

great accuracy with which satellite-based CNN models can identify landslide-prone 

locations. The combination of ResNet50, ResNet101, and GoogleNet architectures, 

together with attention mechanisms, represents a significant step forward in geohazard 

monitoring using deep learning and remote sensing. This work helps to build safer, 

more resilient communities in susceptible places by providing a scalable, accurate, and 
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rapid landslide analysis solution. These findings highlight the potential of deep learning 

and satellite imaging as transformational tools in the field of catastrophe management. 

Key Words : Landslide prediction , deep learning, convolutional neural network, 
remote sensing, satellite imagery.   
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Chapter 1 Introduction 

1.1  Background and History of Landslide 

A landslide is a severe geological phenomenon that can devastate human lives and 

destroy infrastructure anywhere in the world. Landslides occur regularly during the 

rainy season when massive volumes of rock, debris, and dirt slide down a slope as a 

result of natural phenomena and human activity. Landslides, for example, result in 

irreversible damage to both people and infrastructure. In a catastrophic disaster, 

dependable and quick action is essential to save lives. In today's world, protecting 

people and infrastructure against natural disasters such as landslides is critical. As more 

mountain areas become occupied, there is a rise in governmental initiatives to ensure 

the safety of living beings in landslide-prone areas. Landslides can cause significant 

harm to both lives and property [1].  

The Geological Survey of India claims 12.6% of covered land except snow-covered 

areas, is prone to landslides. About 0.32 million sq. km area falls under the Himalayan 

range, which is further categorized into the Northeast Himalaya and the Northwest 

Himalaya. Darjeeling and Sikkim fall under the North East Himalayas and cover 0.18 

million sq. km area prone to landslides. Northwest Himalaya covers Uttarakhand, 

Himachal Pradesh and Jammu and Kashmir, comprising 0.14 million sq. Km. Western 

Ghats cover Tamil Nadu, Kerala, Karnataka, Goa, and Maharashtra, contributing 0.09 

million sq. km and Eastern Ghat contributes 0.01 million sq. km of total landslide-prone 

area. The Himalayan range lies in earthquake Zone IV and V, these areas are susceptible 

to landslides initiated by earthquakes. The estimated loss of infrastructure due to 

landslides is 1 to 2% of the gross national product in most developing countries [2]. 

Estimating and minimizing the damage caused by landslides is a challenging task for 

the government authorities and technical teams in developing countries as 

approximately 80% of the casualties due to landslides are reported from these countries 

[3]. By survey of Building Material and Technology Promotion council (BMPTC) and 

TARU data landslide hazard probability is divided into three categories: Low, Medium 

and High. Landslide Hazard zonation Atlas claims that 8% of entire area of Himachal 

Pradesh is under high risk zone and by revised methodology Expert knowledge 3.2% 
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area is under high risk and AHP indicate 5.65% area is under high risk zone. In 

mountain areas landslides are most dangerous geological hazard [4]. 

According to the International Disaster Database report from 1990 to 2015, landslide 

events are 4.9% of all natural disaster events and 1.3 % of all natural hazard casualties 

during this period. Alone in Asia, 54% of landslide events take place. A total of 55997 

human fatalities in 4862 distinct landslide events during the period 2004 to 2016[5]. 

Significant variations in weather lead unrivaled increase in catastrophic hazards 

worldwide. In Mocoa, Colombia 1 April 2017 a huge mudflow took place due to heavy 

rainfall, causing 300 fatalities and leaving thousands of people homeless [6]. A series 

of landslides in Brazil in 2022 claimed over 100 casualties [7]. In 2021 huge landslide 

blocked the flow of the Chenab river in the Lahul Spiti district of Himachal Pradesh, 

which created a threat of flood in many nearby villages [8]. Heavy rainfall in Kedarnath, 

Uttarakhand from 15 to 17 June 2013 caused numerous landslides, including mudflow 

and caused a high rate of fatalities, approximately 6000 casualties [9]. On 28 July 2021 

massive landslide took place in the Chamba district of Himachal Pradesh, burying 

several villages and killing 14 people [10]. In Himachal Pradesh’s Kothipura district, 

Mandi on 12 August 2017, a debris flow type landslide took place, causing 47 fatalities. 

In 1977, at the same site, a huge landslide took place and was reactivated again on 13 

August 2007. Tension cracks, antecedent rainfall, rock mass, rise in soil moisture and 

increase in seismic activities were various causes. Still, its recurrence chances are 

possible, so continuous monitoring from satellite provides us with information or early 

alarming of the event [11]. Several landslides have occurred in the Kinnaur district of 

Himachal Pradesh, causing several deaths and property loss due to heavy rainfall, 

seismic activities and unplanned construction [12]. 

Using an open dataset available on NASA's data portal, we examined the temporal and 

spatial patterns of landslides in various countries across time. Figure 1.1 presents the 

geographic distribution of landslide events in various countries. The chart shows 

landslide counts, with darker colors indicating countries with more incidents. The 

visualization displays the global regions most affected by landslides, highlighting the 

importance of focused monitoring and mitigation measures. Analyzed data reveals that  
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United State followed United Kingdom, Canada, India and China have had a more 

significant number of landslides. 

 

 
Figure 1.1 Landslide count in different countries 

Figure 1.2 depicts the fatalities due to landslides across various countries using an open 

dataset available on NASA's data portal. In this study, countries are color-coded based 

on the overall number of fatalities caused by landslides from 1915 to 2023. Dark shades 

reflect more fatalities, whereas lighter shades suggest fewer fatalities. Analyzes reveal 

that Colombia has the highest fatality rate followed by India and China. 

 

Figure 1.2 Fatality count in different countries  
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In addition to monitoring landslide occurrences and fatalities, a different study was 

undertaken to identify the primary causes triggering landslides globally. On processing 

open NASA landslide dataset, landslides are classified on the basis of different 

triggering factors like: rainfall, snowfall, construction,  earthquake, freeze-thaw, 

tropical cyclon, mining, flooding, etc.  Figure 1.3 represents a bar chart that displays 

count of landslides triggered by different factors. Rainfall, which is a group of heavy 

rain, monsoon, downpour and continuous rain emerges as the most frequent triggering 

factor of landslides. It is investigated among various triggering elements rainfall 

sources of landslides that resulted in large mortality between 2000 and 2023. Following 

the rainfall is the earthquake, which claimed a large number of fatalities in 2018. Figure 

1.4 also shows that the biggest number of fatalities occurred in 2013 as a result of a 

landslide caused by rain. 

 

Figure 1.3 Landslide triggering factors 
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Figure 1.4 Fatality count due to various landslide triggering factor from year 2003 to 2023 

 

1.2 Different Types of Mass Movement 

Landslides are natural disasters that occur when rock, soil, and a combination of both 

slide down a slope due to gravity. A landslide is the movement of a mass of rock, earth, 

or debris downslope. Mass movement can be grouped under three major categories 

based on the speed and nature of the movement: Slow movement, Rapid movement and 

Landslide [13], shown in Figure 1.5 below.  

 

Figure 1.5 Different types of mass movement based on speed and nature of the movement. 
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1. Slow movement is a movement of earth material that is going to be very slow 

and goes on for years. These are progressive motions of soil or rock down a 

slope that are typically invisible over short periods of time. The migration 

occurs gradually over a lengthy period, frequently taking years to demonstrate 

substantial impacts. Creep and solifluction are two types of slow movement.  

Creep is a form of landslide that involves the slow, steady flow of soil, rock, or 

debris down a slope. This movement is usually negligible in the near term, but 

over time, it can cause significant material displacement. The creep effect is 

caused by gravity and is frequently increased by factors such as repeated freeze-

thaw cycles, changes in soil moisture and the expansion and contraction of 

materials owing to temperature fluctuations. Tile trees, cracks in buildings, bent 

fences and utility poles are a few examples of creep. 

Solifluction is the slow flow of water-saturated soil downslope, which is typical 

in permafrost locations or where the earth is frozen for a portion of the year. 

During the warmer months, the thawed soil progressively travels over the frozen 

layer beneath. 

2. Rapid Movement is a movement of earth material going to be rapidly fast. 

Rapid mass movements happen suddenly and without warning, and they can be 

extremely damaging. These motions often involve loose soil, rocks, and debris 

falling or sliding down slopes due to gravity and are frequently driven by events 

such as excessive rains, earthquakes, or volcanic activity. Rapid movements are 

of three types: Earth flow, Mud Flow, Debris Flow.  

Earth Flow: Massive amounts of fine-grained water-saturated soil flow down 

the slope under the pull of gravity. These flows move quicker than creeps but 

slower than mudflows or debris flows. 

Mud Flow: Mud flow is similar to earth flow, but much bigger in quantity. A 

thick layer of mud, rock, and debris that moves down with the water is 

particularly devastating. Mudflows can be caused by severe rains or volcanic 

activity and they frequently follow existing routes such as rivers or valleys. 

Debris Avalanche: A debris avalanche is a fast-moving and chaotic mass 

movement that, like a snow avalanche, comprises the rapid flow of a mixture of 

soil, and other debris down a steep slope. 
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3. Landslides refer to the downslope movement of rock, soil, or debris. They are 

typically caused by severe rainfall, earthquakes, volcanic activity, or human 

activities that destabilize slopes. The phrase "landslide" is commonly used to 

indicate rapid mass movements, but it can also refer to slower movements. 

Landslide relies on the form of irregularity in rock, the degree of weathering, 

and the steepness of the slope. Landslides can be explained using two terms: 

material and movement. The type of movement specifies the exact internal 

principles of how the landslide mass is displaced such as slide, fall, flow, spread, 

topple. Understanding the many components of a landslide is critical for 

studying the mechanics of slope failure and landslide evolution. Figure 1.6 

depicts the anatomy of a rotational landslide that has converted into an 

earthflow, according to Varnes (1978)[13]. 

 

Figure 1.6 Labels for different parts of the Landslide 

Crown: The topmost area of the landslide, where the original ground surface 

remains visible. Crown breaks are frequently seen on the crown, which form as 

the ground begins to move. 

Main Scrap: The steep, exposed area at the head of the landslide where the 

material has broken away from its original position. This is usually the most 

visible characteristic of a landslide, indicating the point of early breakdown. 
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Head: The head is located at the top of the landslide and contains the primary 

scarp as well as the upper portion of displaced debris. This is where the landslide 

movement starts. 

Flow lines: Arrows or lines indicate the direction of movement inside the 

landslide mass. 

Toe: The lowest point of the landslide is where the dislodged debris comes to 

rest. It's also where the sliding material goes downslope. 

Surface of separation: This is the lowest border of the displaced material, 

separating the landslide from the underlying stable ground. 

Minor Scrap: A tiny break in the surface of the landslide, usually indicating 

additional movement or deformation within the main body of the landslide. 

Main Body: The middle area of the landslide contains the majority of the 

displaced debris. 

1.3  Different types of Landslides 

Different types of landslides are listed below:  

1.3.1 Slide 

Slide type of landslide occurs when a mass of rock, soil, or debris moves downslope 

along a definite surface of rupture, which is typically a rather well-defined slip plane. 

The movement happens when the force of gravity overcomes the material's strength, 

which is commonly caused by saturation with water or other destabilizing forces. A 

slide's move can vary significantly, ranging from very slow (creeping) to rapid, 

contingent upon the steepness of the slope, the characteristics of the material, and 

external triggers. Roads, buildings, and natural areas can sustain serious damage from 

slides, particularly if they happen quickly and involve a lot of material. A number of 

factors, including heavy rain, fast melting snow, earthquakes, volcanic eruptions, and 

human activity that disturbs the slope (such as construction or deforestation), can cause 

slides. There are two types of slides: Rotational slide and Translational Slide. 
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1.3.2 Rotational slide 

Rotational slide is a landslide characterized by an upwardly spoon-shaped rupture 

surface and a slide that goes largely down an axis parallel to the slope contour. The 

displaced material may move nearly vertically downward at its head, leaning backward 

toward the scarp on its upper surface. A slump is a rotating slide that moves on 

numerous parallel, curved surfaces. Rotational slides are frequently caused by water 

saturation or the slope's undercutting and are common in uniform materials like clay or 

soft rock. 

1.3.3 Translational slide 

Translational slide is the mass flows outward, or down and outward, along a relatively 

flat terrain such as a fault line, bedding plane or with weak layers of slope, with little 

rotational movement or rearward tilt. These slides are very common worldwide and 

frequently occur in places with filtered rock formations or slopes that have pre-existing 

fractures. Translational slides may initially be sluggish, causing damage to property or 

lifelines, but in extreme situations, they can accelerate and become life-threatening. 

1.3.4 Fall 

Fall 1is a sudden downhill movement of soil rock and debris from cliffs causing a 

bounce down the slope as falling material strikes with less angle to the lower slope. 

Falling material continues to roll on the slope till terrain is flat. These landslides are 

very rapid and material such as soil, and rock bounce and roll. The velocity depends on 

the slope of cliff as shown in Figure 1.7. Falling rock and material can cause fatalities, 

damage to infrastructure and block the highways. 
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Figure 1.7  Rock Fall 

1.3.5 Flow 

Flow is a mass movement of loose mud, sand, soil, water and debris downward under 

the influence of gravity. The substance acts like a fluid, with individual particles 

moving randomly. Flow rates can vary from sluggish to very fast. Earth flow, mud flow, 

debris flow and creep are different types of flow. Consistency and slope define the slow 

and rapid nature of flow. Flows are commonly triggered by heavy rain, sudden snow 

melt and frequently deployed by other types of landslides that occur on downward 

slopes, are almost saturated, and contain a high proportion of silt and sand-sized 

material. They can carry things as large as buildings along the slope flow or quickly fill 

structures with sediment and organic waste. They can impact the quality of water by 

depositing enormous amounts of silt and debris. Figure 1.8 is a labelled diagram of 

debris flow. 

 

Figure 1.8 Debris flow 
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1.3.6 Spreads 

Spreads are the horizontal movement of big, cohesive masses of material. They 

typically occur on mild slopes or flat terrain and are often caused by the liquefaction of 

weak soils during an earthquake. After specific triggering mechanisms such as 

earthquakes, it can be gradual, moderate, or even quick 

1.3.7 Topple 

Topple is defined as the forward rotation of a mass of soil or rock along a slope around 

a point or axis below the displaced mass's center of gravity as shown in Figure 1.9. 

Toppling can be triggered by gravity acting on the weight of material upslope from the 

displaced mass. Topples can be made of coarse material such as rock, or debris, and 

fine-grained material such as soil. Topples can be both complex and composite. Topple 

can be exceedingly devastating, especially if the fall occurs suddenly and at a high 

velocity. 

 
Figure 1.9 Topple Landslide 

1.3.8 Avalances   

Avalanches are the rapid downslope flow of snow, ice, boulders, or debris. Snow 

avalanches are the most prevalent, although rock and debris avalanches can occur, 

particularly in steep mountain areas. Triggering factors of avalanches are heavy 

snowfall, rapid snowmelt, volcanic earthquakes and earthquakes. 
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Different types of landslides are compared in table 1.1 below on the base of material, 

movement and speed of material  

Table 1.1 Comparision of different landslides 

Type  Material Movement  Speed 

1. Slide Soil, Rock, Debris Coherent movement along a plane Slow to Rapid 

2. Fall Rock, Soil, Debris Bouncing or free fall sudden 

downhill movement 

Very Rapid 

3. Flow Mud, Soil, Debris Erratic, Fluid-like movement, 

downward under the influence of 

gravity 

Slow to rapid 

4. Spread Soil, Debris, 

cohesive masses 

of material 

horizontal movement Slow to rapid 

5. Topples Mass of soil, 

Rock, Debris 

forward rotation Slow, Rapid and 

sudden 

6. Avalan

che 

Debris, snow, ice Rapid downslope flow Very Fast 

 

1.4  Reasons of Landslides 

Landslides are caused by a variety of natural and human-induced events, including 

excessive rainfall, earthquakes, volcanic activity, erosion, and human activities such as 

construction, mining and deforestation. They can vary in size, speed and material 

composition, causing significant damage to people, infrastructure, and the environment. 

The following are some of the main causes of landslides: 

1. Geological elements that lower slope stability, such as loose or weak soil and 

rock pieces, are responsible for landslides. Pre-existing cracks and fractures in 

rock create weakness and lead to landslides. The material is further weakened 

by high pore water pressure in soils and weathering of rocks. 

2. Water related factors, such as heavy rainfall and erosion, can trigger landslides. 

Heavy rain saturates the soil and reduces its strength to hold material, which 

causes slope failure. An increase in groundwater level due to rain or snowmelt 

can erode the base of the slope near rivers can triggering landslides.  
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3. Human activities like roads, dams, building construction, destabilizing the slope 

and creating a risk of landslides. Deforestation, improper irrigation   and 

improper drainage systems also saturate the soil and cause landslides  

4.  Climate change, such as an increased frequency of intense rainfall, sudden 

glacier retreat in mountains leads slope disability and triggers debris flow. 

5. Seismic activity, both natural and human-induced, can trigger landslides by 

causing the ground to shake and destabilize slopes. Natural earthquakes produce 

vibrations that weaken the bond between the particles and create cracks can 

cause landslides. Human activities like large construction, deep drilling and 

mining can cause vibrations, potentially leading to landslides in areas with 

unstable material.  

1.5  Problem Statement  

Landslides are a common and catastrophic natural hazard that mostly affects hilly and 

mountainous areas. They can seriously harm infrastructure, the environment, and result 

in fatalities. There are numerous case studies based on field surveys that are used for 

landslide detection and monitoring. Traditional landslide prediction methods, which 

depend on topographical, geological, and water cycle data, usually struggle with 

accuracy due to the complicated relationships between various components such as 

rainfall, seismic activity, soil composition, and topographical features [5]. All the 

traditional approaches to detecting, classifying and monitoring landslides such as field-

based investigation, topographic and geographical mapping, geo technical methods, 

remote sensing techniques using aerial photos, GIS-based susceptibility mapping, and 

rainfall threshold analysis etc. are reliable but very time-consuming. These methods 

also face challenges in real-time monitoring and large-scale prediction, especially in 

remote areas. Automatic landslide classification, detection and monitoring are possible 

with the advancement in satellite image processing.  

Recent development in satellite imagery and artificial intelligence technologies 

provides large data; nevertheless, analyzing and interpreting this data to effectively 

anticipate landslides is a major difficulty. For analysis of landslide detection aerial 

images have been widely used and provide good accuracy [14]. Data from the Digital 

elevation model perform a key role in the detection and prediction of landslides by 
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giving topographic information. For landslide classification and prediction-number of 

machine learning algorithms were used. Machine learning classification schemes are 

categorized as SVM classifiers, clustering-based classifiers, learning-based classifiers, 

fuzzy classifiers, and Bayesian classifiers [15][16]. These classification machine 

learning algorithms are based on low-level features which result in poor classification 

accuracy [17]. Deep learning is a subset of machine learning that has evidenced its 

efficiency in classification and prediction with satellite images in the past few years. 

Deep learning algorithms, with their ability to study enormous datasets and identify 

patterns, provide an intriguing potential solution to the challenges. Different deep 

learning algorithms integrated with attention mechanisms handle diverse data and 

deliver accurate predictions but time and other factors like soil moisture level, weather 

data, and rainfall patterns remain further research challenges. The goal of this research 

work is to develop an attention-based deep convolutional network with improved 

accuracy. This model focuses on providing help for disaster management in the timely 

prediction of landslides.  

1.6  Motivation  

Landslides pose serious threats to human safety, infrastructure, and the environment, 

especially in mountainous and hilly areas where they occur frequently. Developing 

countries follow a steep increase in construction. Remote areas are connected to roads, 

railway tracks, bridges, tunnels etc. Constructions in the morphological area cause a 

problem in the ecosystem environment and create hazards like landslides. A landslide 

is a natural and manmade disaster that causes loss of life. Being a developing country, 

construction cannot be stopped and natural parameters that trigger landslides cannot be 

controlled. Although traditional prediction techniques are available, their effectiveness 

is limited in real-time surveillance across large inaccessible areas. Recent developments 

in technology, such as satellite imaging, have provided new possibilities to improve 

landslide prediction. The ability to continuously and remotely monitor vast areas has 

created opportunities for more flexible and extensive prediction systems. However, the 

most difficult challenge is to discover how to use this data to make accurate forecasts. 

Deep learning models present a promising path because of their ability to process 

enormous datasets and identify intricate patterns from several sources. However, 
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substantial gaps remain in their application in landslide prediction. This research work 

addresses these gaps by developing a deep learning-based landslide prediction model 

with improved accuracy.   

The primary goal of this research is to develop a deep learning-based model for 

landslide prediction by integrating with an attention mechanism along with satellite 

images. Preprocess the images and create a training and testing landslide dataset with a 

large number of images.  Train the model using landslide and non-landslide datasets 

and compare the model's performance with traditional prediction methods. Then 

evaluate the model’s accuracy, precision, recall and timeliness in predicting landslides. 

The focus will be on improving the reliability of predictions. Ensuring the model’s 

applicability for large-scale landslide-prone regions, including remote or inaccessible 

areas. 

1.7  Organization of Thesis 

The thesis is organized into 5 chapters, each chapter is a critical component of the 

research on developing a deep learning-based landslide prediction model using satellite 

imagery. The arrangement is as follows: 

 

Chapter 1: Introduction 

This chapter presents the research problem in perspective with the history of landslides, 

their effects on society and the causes of various types of landslides. It discusses the 

problems and limitations of traditional landslide prediction approaches and focuses on 

deep learning techniques along with satellite imagery. Problem statements, motivation 

and research objectives are outlined in this chapter.  

 

Chapter 2: Literature Review 

This chapter presents a comprehensive study of previous research in traditional 

approaches as well as latest machine learning, deep learning and remote sensing. 

Research gaps are identified in the survey of present research in relevant fields. This 

Chapter defines the problem statement and objective of the work. 
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Chapter 3: Preprocessing of satellite images 

This chapter explains the Bijie landslide dataset and the pretreatment methods, which 

included radiometric and geometric corrections. It also describes the methodology used 

for satellite picture preparation and presents an algorithm for the proposed task, along 

with preliminary findings and discussions. 

 

Chapter 4: Deep Neural Networks for detection of landslides   

This chapter discusses the architecture of deep learning models, namely, convolutional 

neural networks (CNNs), deep residual networks such as ResNet 50 and ResNet 101, 

GoogleNet, and attention mechanisms (spatial, channel, and self-attention). The results 

of the proposed work are also discussed in this chapter. 

 

Chapter 5:Conclusion and future scope  

The final chapter summarizes the research findings, contributions, and probable future 

directions. 
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Chapter 2 Literature survey, Problem definition and objectives 

This section takes a comprehensive review of different machine-learning, deep learning 

algorithms and methodologies for landslide detection and classification using satellite 

data 

2.1 Machine learning based techniques 

The literature studied reveals that the entire Machine learning algorithm used for 

landslide detection or classification can be divided into four main categories: supervised 

learning-based algorithms, unsupervised learning-based algorithms, Fuzzy 

classification algorithms and combination or hybrid classification algorithms. Hence, 

we have grouped the methodologies and their summaries in four different sub-sections 

as below. 

2.1.1 SVM-based landslide classification techniques  

This subsection summaries all Machine learning techniques under supervised learning-

based algorithms as below:  

Utsav Kumar Malviya et al. [18] used learning-based Extended Local Binary Patterns 

and SVM for the classification of 24 different class satellite images. Two major issues 

with satellite image processing were discovered in this paper: noise is more noticeable 

in satellite images and different satellite images have unique properties. The SVM 

algorithm is used to estimate the noise pattern and Local Binary Pattern used for 

segmentation. In this research, the researcher considers only four different classes of 

pictures for training the framework with three algorithms: Radial Kernel-based Support 

Vector Machine, Linear Kernel base Support Vector Machine, and extended Local 

Binary Patterns. Extended Local Binary Patterns is preferred which correctly classify 

all 24 images. The overall 0.94 accurate result was obtained by the ELBP SVM 

algorithm for satellite image classification. Satellite images have unique features and 

have varieties in texture and quite difficult to propose one strategy for all images. Still, 

work needs to be done to design a more accurate algorithm to give improved results for 

the classification of different classes of satellite images. Only a few images for training 

cannot guarantee better accuracy. The robustness of technique with more dataset is not 

attempted which may be the bottleneck in its applicability.  
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Young Gi Byun et al. [19] proposed a landcover classification multispectral image 

approach based on the Seeded Region Growing (SRG) approach. Efficient image 

segmentation techniques and high-resolution pan-sharpened images were used. The 

modified SRG approach combines the multispectral and gradient information of images 

for homogeneous image regions with accurate and close boundaries. In the noise 

removal process of multispectral images multi-valued anisotropic diffusion method was 

used to collect edge information for extracting seed points local minima. Two datasets 

Quick Bird image and GeoEye-1 were used for experimental results.  At a threshold 

value of 0.5 and mean square spectral error, the proposed algorithm provided the best 

result and has an accuracy of 0.9115 and the kappa coefficient is 0.9670. MSRG can 

use multi-feature information including edge and multi-spectral information. This 

proposed method uses a threshold value for seed selection which cannot provide the 

best result of seed section for every image. The work needs to be done in an area that 

is more efficient in segmentation.  

Chanika Sukawattanavijit et al. [20] developed GA SVM algorithm for the 

classification of multi-frequency images from RADARSAT-2 (RS2), Synthetic 

Aperture Radar (SAR) and Thaichote (THEOS) MS images. SVM classifier was used 

for the classification of land cover. To obtain the best input feature GA was used. 

Function classification accuracy and the number of features in the selected subset were 

used to define the fitness of the function. Two datasets THEOS & LANDSAT8 of MS 

images were used for experiments. To convert the intercorrelated MS band into a set of 

non-correlated components PCA was used. Training sets and testing sets were 

developed by using the ENVI program GA-SVM algorithm was compared with the grid 

search algorithm based on parameter searching.GA-SVM algorithm has 85.02% 

accuracy for THEOS images and 0.95 accuracy with combined RS2 and THEOS 

images. The genetic algorithm along with SVM provides better results as compared to 

grid search but the Genetic algorithm can be computationally intensive and time-

consuming for large datasets. High classification accuracy was achieved with fused 

RS2 and THEOS images and performance might be different with other testing datasets.  

Xin Huang et al. [21] proposed a multi-feature model-based SVM that combines 

multiple spatial and spectral features both for object and pixel levels. Differential 
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morphological profiles Gray-level, co-occurrence matrix and an urban complexity 

index, are three features that were used. Probabilistic fusion, object-based semantics 

and certainty voting three algorithms were proposed to add multiple features. Two 

WorldView-2 datasets and DC Mall dataset were used for training and testing. In DC 

Mall 50 samples were used in the training process and 19332 in testing. For the 

classification of high-resolution imagery data, one optimal feature for different images 

was impossible to select. In the proposed multi-feature, SVM was based on multi 

classifier system that contain a series of spatial and spectral features for high-resolution 

image classification. Newly developed SVM has 0.944 accuracy with GLCM on DC 

Mall dataset. With the Worldview-2 dataset developed SVM has 0.928 accuracy. This 

work is limited to training sets and knowledge base rules for construction. Two datasets 

used in the experimental result used a limited number of datasets for training does not 

provide efficient results. Semantic analysis was used for the post-processing feature 

system and depended on segmentation quality which can reduce the overall 

classification accuracy.  

Dericks P. Shukla et al. [22] discussed the survey of different LSZ map approaches for 

preparing landslide susceptibility zonation maps with support vector machine by 

considering one case study on the area of Garhwal. The datasets were prepared from 

the survey of the India toposheet. To finalize the tectonic map of the selected area, 

Landsat satellite images of 30 m resolution were used. Data is pre-processed with 

ArcGIS software to generate parameters such as soil, aspect ratio, drainages, and 

elevation of the study area. The vector layer of 30x30 m resolution data set was 

converted into Raster data and raster to ASCII format to use Matlab for SVM. To test 

the trained SVM Model Ukhimath river basin data were used which was prepared by 

the geologic survey of India. The trained proximal SVM model to classify more areas 

in landslides susceptible zone have a classification higher accuracy of 0.842 and 

prediction accuracy of 0.8115. Preparing a landslide susceptibility zonation map for an 

area that is sensitive to landslides is most important. The focus of such kind of map 

prepared with a Support vector machine is to identify the landslide-prone areas.  

Kadir Sabanci et al. [23] compared the results of K-Nearest Neighbor Algorithm and 

multilayer perceptron (MLP) for the classification of varied forest types to classify the 
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dataset data mining methods used. A dataset of ASTER satellite images was created 

and the collected images were processed in three parts: Classification, regression, and 

clustering along with association rules.  To train the model, training sets of ASTER 

Satellite images were used to classify the sample images into different classes. A total 

of 524 images were used of which 38% data was used for training and testing  62% data 

was used. The machine learning algorithm MLP yielded a classification accuracy of 

0.9043 and KNN produced 0.8910 accuracy. KNN and MLP have the best classification 

accuracy. In this research training set is only 38 % and by increasing the ratio of a 

training set the result can be further improved. 

2.1.2 Bayesian model based landslide classification techniques  

This subsection area summarizes all Machine learning techniques under Bayesian model-

based algorithms as below. 

Fereidoun A. Mianji et al. [24] proposed a modified supervised classification method in 

which the feature reduction technique combined with Bayesian learning-based 

probabilistic spare kernel method. To increase the distance between the classes, 

hyperspectral data was first transferred to low-dimensionality feature space and 

processed with a multiclass RVM classifier. The proposed method uses a dataset of 

AVIRIS with a resolution of 10nm and wavelength of 0.4 to 2.5micro m images. This 

dataset contains two datasets Indian Pine and San Diego dataset. The experiment was 

performed for both Linear [FLDA+RVM] and nonlinear [GNDA+RVM] and the 

performance of the proposed methods was evaluated on varying trains to test the sample. 

The overall accuracy of Linear FLDA+RVM and GNDA+RVM was 0.9801 and 0.9904 

when the train-to-test sample ratio is 1:30 respectively. Real Hyperspectral data is used 

for verifying the effectiveness of this proposed supervise classification method. The 

result is compared with the SVM algorithm and this proposed method gives better 

performance over SVM. 

Jun Li et al.  [25] investigated an active sampling supervised Bayesian approach with 

active learning for the segmentation of Hyperspectral images. A multinomial logistic 

regression model based on logic regression was used for class posterior probability 

distribution learning Unbiased multilevel logistic prior (MLP)was used to encode 

spatial information and segment the hyperspectral images. Active learning is useful for 
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reducing number of labelled samples. Gaussian RBF kernel is applied for all 

experiments to normalize the input hyperspectral data. The LORSAL algorithm was 

used to learn MLR (multinomial logistic regression). The Multilevel logistic (MLL) 

prior model was adopted for smooth segmentation. The researcher designed an 

algorithm that combines LORSAL, MLL and active learning. To evaluate proposed 

algorithm datasets Indian pines, AVIRIS and ROSIS Pavia were used for experimental 

results. The proposed algorithm yielded 0.8672 accuracy on 3921 labelled sample. 

Overall accuracy Based on experimental results MBT approach gives unbiased 

sampling and better classification. In this paper, the main dominating factor is a limited 

dataset for the algorithm performance evaluation. The result can be modified with more 

training samples. 

Pablo Ruiz et al. [26] proposed a Remote sensing image classification-based method 

for nonparametric and interference paradigms. This approach allows dealing with 

infinite dimension features. For both fine and infinite dimension feature space this 

method is useful. This scheme provides point-wise class prediction and confidence 

interval prediction. This method is efficiently used for supervised and active learning. 

The experimental result of this proposed algorithm was performed over two 

multispectral images for supervised and active learning classification. Landsat images 

of Rome city were acquired for supervised classification and ROSIS images of Pavia 

city were used for active classification. Multispectral and synthetic aperture radar data 

is used to test this algorithm and Hyperspectral images are used for multiclass land 

cover classification. The proposed method has 0.9680 overall accuracy in supervised 

mode. For active learning minimum normalized distance (BAL-3) has 0.9734 accuracy 

and running time is 9s. In the supervised mode, proposed algorithm provides the same 

result as compared to SVM but an improvement is observed in active learning. This 

work can provide pointwise class prediction and confidence intervals. To an extent this 

work can use multitemporal image segmentation for better results. 

Zhaobin Cui et al. [27] suggested a novel classification method for multispectral  (MS) 

images and this approach was based on nonparametric supervised classification. To 

provide a digital vector number of different class statistic distributions were followed. In 

MS image high posterior probability was calculated only when an unknown pixel digital 
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number is the same as this pixel in a training class.  To estimate the maximum posterior 

optimized simulated algorithm was used in the proposed method. Spectral classification 

of the proposed approach yielded 0.8530 accuracy and 0.799 Kappa coefficients for the 

first dataset. Spectral Spatial classification of the proposed approach yielded 0.9478 

accuracy and 0.92 Kappa coefficient for the first dataset. Three datasets of multispectral 

images acquired from the SPOT6 satellite have four bands and each band has a spatial 

resolution of 2m. The proposed Bayesian approach has better results than the traditional 

approach. This approach uses the Gaussian Mixture model for fitting the training dataset 

instead traditional single Gaussian model to provide better results.   

2.1.3 Decision tree based landslide classification techniques 

This subsection area summaries all Machine learning techniques under Decision tree 

based algorithms as below  

Dennis C. Duro et al. [28] explored a multiscale object-based image analysis (MOBIA) 

approach based on an RF classifier for EO imagery. MOBIA can produce more than a 

dozen  variables for classification as compared to the pixel-based approach. The use of 

object features to evaluate information from multispectral bands vegetation index and 

digital elevation model or other input layers is possible with MOBIA. For object-based 

classification, object features are used for calculating individual image objects and 

provide a segmentation process. Maximum likelihood classification (MLC) and K-

nearest neighbor (k-NN) are traditional classification algorithms used for MOBIA 

classification. As compared to modern or parametric algorithms MLC gives poor 

classification results. In nonparametric algorithms, the RF classifier is more faster and 

reliable for MOBIA. Two datasets from SPOT-5 high-resolution geometrics sensors 

and LANDSat-5’s thematic mapper sensor were used for testing and training. For 

multisource, multi-sensor data RF classifier accuracy is 0.90. This approach 

consistently gives 0.85 accuracy with RF algorithm. The data used is of high resolution 

of 10 m and quite complex to collect data for the training process. This algorithm can 

be implemented with more datasets to improve the result.  

Lena Albert et al. [29] introduced a classification approach for land cover and land use 

(LCLU). This classification approach focuses on spatial and semantic context for 
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LCLU classification simultaneously. In land cover land use classification conditional 

random field was applied. Nodes are used as super-pixels in the land cover layer and 

nodes represent the object in the land use layer. An iterative inference procedure was 

introduced to enable inference in high-order Conditional Random Forest (CRF). Aerial 

images were used as input for this proposed classification approach. Two test sets 

located in Germany were used for testing the algorithm and all these pictures were of 

orthophoto with four channels and 0.2m ground sampling distance. The result is 

homogenous for land cover classification and the classification result is improved for 

similar land use. The overall accuracy for the first test set is 0.837 and for the second 

set is 0.825. The size of the super-pixel is very useful for good classification results. As 

compared to the non-contextual classifier proposed approach gives better experimental 

results.  

Javier A. Montoya Zegarra et al. [30] proposed approach is multi-class semantic 

segmentation with class-specific for high-resolution aerial images. This research 

includes prior knowledge about the layout in the CRF model. The first step starts with 

a Pixel-wise prediction of the class likelihood. For better results, the appearance feature 

sampled from the neighborhood of each pixel was considered. From object specifies 

the assumption high-level representation at the level of the object was added. The 

hypothesis was for road segments and buildings. In the classifier stage, all pixels that 

belong to the hypothesis were assigned the same level. Experimental results were 

performed on 1000x1000 pixels file generated from dense matching from Vaihingen 

dataset. This model consists of three steps: The first step is the input of aerial data, then 

passes through a multilevel classifier with good appearance feature extraction and the 

last is the recovery step. In the second step large window of the classifier is used 

because of this building boundaries get blurred and boundaries get mixed even if 

buildings are close enough. Overall 0.8242 accuracy was achieved with experimental 

results. This classifier Accuracy is given by CRF for buildings, roads, grass, tree and 

background. Classifiers give more than 0.80 accuracy but the boundaries of roads and 

buildings were blurred. The proposed approach is useful for urban planning and 

environmental monitoring. The complexity, computational cost, and sensitivity to 

extreme variations of objects are a few disadvantages that can be improved by 

improving datasets.  
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2.1.4 Neural network based landslide classification techniques 

This subsection summaries all Machine learning techniques under Neural Network 

supervised learning based algorithms as below. 

Nur Anis Mahmon et al. [31] surveyed different algorithms which were 

backpropagation and K mean algorithm for the classification of satellite images with 

different classification methodologies. ANN’s classifier approach was compared with 

convolutional classifier techniques which are Maximum Likelihood (ML) and 

unsupervised (ISODATA). To cover the different types of area, present work 

categorized the LU/LC into three different classes. Either output of k means clustering 

image output or ground truth data samples were used as a training set. The training set 

was selected randomly in this research. Accuracy and kappa coefficient were used to 

compare the result of image classification. Overall accuracy is 0.893 and the kappa 

coefficient is 0.820. 

Rachid Sammouda et al. [32] introduced a Hopfield Neural Network for agriculture 

satellite images. Pixel clustering-based segmentation was performed on Satellite 

images which is quite difficult due to poor resolution, poor illumination  and 

environmental conditions. Geo Eye satellite images dataset with 0.5m resolution was 

used for clustering. Hopfield Neural Network is giving good results when using three, 

four and five clusters in terms of classification sensitivity and accuracy. 

Wei Zhao et al. [33] presented a Convolutional Neural Network model for multispectral 

and panchromatic image classification. The model introduced in this paper was a super 

pixel-based multiple local CNN. A very high-resolution multispectral and 

panchromatic images were fused together to achieve results. The introduced CNN 

model was valid for two datasets one was prepared from the DEIMOS-2 satellite for 

Vancouver images and the other was prepared from Quick Bird Satellite for China 

images. Both dataset images were MS remote-sensing and panchromatic images. For 

the segmentation of MS images and to collect superpixel linear clustering algorithm 

was used. Super-pixel multiple region joint representation method was introduced to 

collect all spatial and environmental information of super-pixel. Superpixels were taken 

as basic units. To enhance classification performance of the proposed algorithm that 

combines detailed information and semantic information. The overall accuracy for 
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classification was 0.944 and the kappa coefficient was 0.92. Further, this experiment 

can be extended to semi-supervised and unsupervised deep learning. The processing 

time may increase due to the complexity of the SML-CNN model. This work will be 

more helpful in urban planning, environment monitoring and vegetation. 

2.1.5 Fuzzy logic based landslide classification techniques 

This subsection area summaries all Machine learning techniques under Fuzzy based 

algorithms as below: 

Tao Lei et al. [34] proposed an unsupervised change detection using fuzzy c mean 

clustering for landslide mapping. For VHR remote sensing image change detection 

approach based on image segment was used for landslide mapping. Gaussian pyramid-

based fast fuzzy c mean clustering algorithm is used to get better spatial information 

for landslide regions and for accurate landslide region difference of image structure 

information. Three datasets of biotemporal images of 0.5 m resolution were prepared 

from aerial survey system. The result was compared with existing three algorithms in 

terms of higher accuracy, fewer parameters, and short execution time. The proposed 

CDFFCM model yields 0.79, 0.80, and 0.62 accuracy for three data sets, respectively. 

The proposed approach work on spatial information to achieve better difference images 

and also has better computational time due to Gaussian pyramid method. This algorithm 

also reduces the sensitivity to a threshold for segmentation and requires fewer 

parameters. Post-event images have complex information and still, this algorithm needs 

to be modified for post-event images. More landslide images and ground truth are 

required to improve the accuracy.  

D.G. Stavrakoudis et al. [35] developed a classification approach for VHR multispectral 

images based on a Boosted Genetic Fuzzy Classifier. The classification procedure 

followed two stages, one was fuzzy rule-based, which is followed by the genetic tuning 

stage. The fuzzy rule is useful in local feature selection and it is allowed to select the 

feature by repeating the Boosted Genetic algorithm. The next stage was the tuning stage 

used to improve the classification by using an Evolutionary Algorithm. An IKONOS 

satellite database with 1m spatial resolution was used for experimental results. The 

testing performance of BGFC is 0.8487. The main aim was to increase the overall 
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classification performance of the algorithm and the proposed algorithm was good in 

handling complex multidimensional classification.  

Dinh Sinh Mai et al. [36] presented a method that combines the fuzzy probability theory 

and fuzzy clustering classification algorithm to overcome the disadvantages like low 

accuracy and instability of other satellite image classification algorithms. This proposed 

method initially calculates the number and coordinates of cluster-based Fuzzy 

probability and then for classification applies a fuzzy algorithm. Landsat 7 Satellite 

datasets were used for experimental results. The experimental results show that the 

developed fuzzy clustering algorithm gives a Classification entropy of 0.13 and a kappa 

coefficient of 0.9156 for one dataset and a Classification entropy of 0.14  and a kappa 

coefficient of 0.8599 for the second dataset. This method yields high classification 

accuracy on multispectral satellite images as compared to the various developed 

algorithms. 

Long Thanh Ngo et al. [37] developed an Interval Type 2 C-mean clustering scheme 

for multi-spectral satellite imagery. The dataset for experimental results was taken from 

LANDSAT7 imagery which includes rivers, rocks, fields, jungles planted forests. To 

generate NDVI image of the chosen study area, two channels were used: Near Infrared 

and the other is visible red. NDVI is classified by IT2FCM to define different types of 

land covers. For some undefined pixels, the IT2FCM algorithm can handle uncertainty. 

Further, this algorithm can be implemented with a hyperspectral image for better 

results. 

2.2 Deep learning techniques 

Many literature surveys and comprehensive reviews on deep learning and its 

application applications carried out in number of researches are available [21-29]. This 

research discusses the challenge of high quality datasets, impact of model complexity 

on computational resources and limitations of model interpretability. This subsection 

summaries all Deep learning techniques under hybrid algorithms. 
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2.2.1 CNN-based landslide detection techniques 

Shunping Ji et al. [38] designed an attention module to emphasize the different features 

of a complicated background landslide. The paper was focused on developing an 

accurate and time-efficient inventory based on the recognition of latent landslides. The 

work has been done on high-resolution optical satellite images with a CNN model to 

detect landladies. The attention mechanism which is based on a human visual system 

was developed with a number of landslides with complex backgrounds. Attention 

Mechanism was combined with CNN to boost the result of CNN to extract more 

features from the background of the landslide. Bijie landslide database with 770 images 

was created. Design and attention module which combine spatial and channel attention 

map and known 3D spatial channel attention module (3D SCAM) was designed and 

used in this work. The proposed 3D SCAM was trained with two-thirds of the images 

and results are compared with other attention modules. A few deep learning 

architectures such as VGGNet, ResNet, Inception, and DenseNet were evaluated with 

four attention modules as SE module, BAM Module, CBAM module, 3D SCAM 

module. Experimental result shows that ResNet50 with the proposed 3D SCAM bossed 

CNN provide the best result in all the combination. This research claims 0.977 

accuracy, 0.97 precision. The accuracy is high with the attention module. In this 

attention module model can learn the characteristics of landslides very clearly. 

Silvia Liberata Ullo et al. [39] presented a landslide detection method that uses Mask 

R-CNN with pixel-based segmentation to identify object layouts. ResNet50 and ResNet 

101 was used as the backbone for the proposed method and the result was evaluated 

with accuracy, recall, precision and F1 score. The goal of this research was to detect 

landslides with pertained mask RCNN with a limited data set and Augmentation was 

used on the dataset to increase the volume. The dataset that was used in training and 

testing was created from different resources. Images collected were high-resolution 

digital photographs collected from UAV, search engines. Two data sets A and B were 

created. Data set A contains a total of 160 images. Data set B contains a total 121 

images. Experimental result shows that ResNet101 have better accuracy, recall, 

precision and F1 score over ResNet 50. ResNet 101 yields 0.97 accuracy for dataset A 

and 0.90 accuracy for data set B. RestNet 101 has 1 precision, 0.93 recall, and 0.97 F1 
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score. The main advantage of this research was mask R CNN can provide segmentation 

and detection of landslide at the same time. The result shows that with the higher 

number of training samples accuracy was high.  

Qi Zang et al. [40] undertook a theoretical comparative framework of Artificial intelligence, 

Machine learning, and Deep learning emphasizing their major component and learning 

approaches. Filippo Catani [41]. Discussed the implementation of convolutional neural 

networks (CNNs) for discerning mass movement patterns using transfer learning to 

attain higher classification than existing architectures. Gang Chang et al.  [42] discussed 

the application of deep learning model in landslide recognition. This work emphasizes the 

incorporation of a transformer into ResU-Net to improve context modeling utilization of 

large and different sources of data for better identification. This study shows deep learning 

with InSAR shows promise for early landslide prediction. 

Shun Yang et al. [43] present a semantic segmentation model for automatic landslide 

detection. Three semantic models: U-Net, DeepLab3+ and PSPNet were combined with 

different deep learning models (ResNet50, ResNet 101) to evaluate experimental 

results. Among all combinations, PSPNet with ResNet50 as the backbone network 

yields 0.9118 mIoU. This paper indicates high accuracy in landslide recognition but 

further needs to improve landslide boundary segmentation and dataset. DEM data and 

remote sensing data can be integrated to enhance segmentation accuracy.  

Lui T et al. [44] designed a landslide detection mapping (LDM) model based on residual 

neural networks and Dense convolutional neural networks. ResNet and DenseNet take 

high spectral resolution data and conditioning factors. To create a database two cities 

of the chain were taken as steady objects which is China’s water conservancy project. 

CNN, ResNet and DenseNet were trained with nineteen conditional factors and found 

application in the field of LDM. In all these three algorithms DensNet with remote 

sensing (RS) images yielded the best result. All three trained algorithms claim accuracy 

above 0.95 and densNet with RS images and condition factor claims 0.99 accuracy and 

recall and F1 score for this particular dataset. The learning efficiency of the model was 

enhanced with conditional factor and yielded good results in landslide identification.  

Fu R et al. [45] proposed a study on post-earthquake seismic landslides. To determine 

the size of post-earthquake few images of post-earthquake seismic landslide satellite 
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imagery data were used. The database was created from Post-quake images of 

unmanned air vehicles (UAV) over Wenchuan country of China. The database has an 

average 2000 m altitude and 0.25m spatial resolution with an image size of 5616x3744 

pixels. In pre-processing steps the database images were reduced in size to remove the 

complexity and textual information was added to these seismic landslide images. To 

increase the number of images in the dataset data augmentation was done with image 

rotation and image flip. Mask R CNN framework can scan the image and mark the 

region of a landslide as a target and propose a mask according to the marked region of 

interest.  For identification and prediction of landslides in the real world requires a large 

number of datasets and by using transfer learning this requirement can be reduced. . 

Among three backbone Swis Transformer with Mask R-CNN claims 0.822 accuracy, 

0.9328 precision, 0.8741 recall and 0.9025 F1 score. This model needs to improve the 

accuracy in the identification and prediction of landslides. Accuracy can be enhanced 

with the quality of post-quake landslide images. Instead of using UAV images satellite 

images with high spatial and spectral resolution can be used.    

Ghorbanzadeh O et al. [46] presented a model that fuses object-based image analysis 

(OBIA) with a Fully convolution network. ResUnet as the predominate FCN model was 

trained and tested with the Sentinel-2 database and designed a combination of FCN-

OBIA segmentation and classification using knowledge-based rules. In OBIA image 

difference indices were calculated between pre and post landslide. The data set used 

was created from Sentinel-2 images of Eastern Iburi Japan. The experimental results 

show that ResU-Net yield 50.24 mIOu, 0.7615 precision, 0.6001 recall and 0.6662 F1 

score whereas ResU Net OBIA yields 72.49 mIOu, 0.855 precision, 0.826 recall and 

0.8403 F1 score. In this work, it is observed that the ResU-Net model detects landslides 

correctly but has high false positive results. The result was more accurate and had fewer 

false positives by adding rule-based OBIA for a landslide to train ResU-Net. 
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2.3 Other classification techniques 

This subsection area summaries all Machine learning techniques under hybrid 

algorithms as below:  

Tapas R. Martha et al. [47] presented an algorithm uses spectral, contextual and shape 

information of images for landslide detection. For object-oriented analysis, 

multispectral images were segmented and objects collected from these images were 

used as a classifying unit. The main objective was to correctly identify the landslide 

using OOA. Complex landslides were difficult to segment because of different 

characteristics, like low contrast and overlapping shadows. To identify the false positive 

landslides, shape and morphological information were combined. A landslide is 

categorized by the base material and movement of flow. To identify landslide 

Resources at 1 and LISS IV multispectral data sets were used. For testing the algorithm, 

images of the area in Himalayas in India were selected and test the algorithm with 5.8 

m MS data from Resources at 1 and 2.5 m Cartosat1. 0.764 recognition is possible with 

the proposed algorithm and classification accuracy is 0.691. This algorithm yields more 

efficient and accurate landslide detection by utilizing object-based classification. The 

main challenge in the work is to distinguish landslides from other objects with similar 

spectral properties like soil and water. 

Thomas Blaschke et al. [48] used a semi-automated object-based image analysis 

methodology to detect landslides. Object-based image analysis has gained an important 

role in remote sensing. IRS-ID and SPOT 5 satellite image database were used for the 

detection process. Digital Elevation and gray-level co-occurrence matrices were used 

to collect slope and flow directions. In object-based image analysis, multi multi-

resolution segmentation was applied for selecting the feature and classifying the object. 

The segmented object was processed with their spatial, spectral, and textural 

parameters. The landslide class was defined on the base of its morphological 

characteristics. The inventory database of 109 landslide events was used as proof to 

validate the results and according to rule-based classification, the area above 1600m 

(about 5249.34 ft) with a slope greater than 7% is considered landslide landslide-

affected area. The brightness threshold is set for a database created from IRS-ID and 

SPOT 5 satellite images. The combinations of these parameters indicated that an overall 
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accuracy of 0.9307 was achieved for landslide detection. This method will be useful to 

detect landslides even without proper landslide inventory.  

Sansar Raj Meena [49] used U-Net and machine learning approaches for automatic 

detection of landslides by landslide event-based inventory of triggering events and 

occurrence landslides. The major issue lies in mapping performances among 

interpretations in the event-based inventory. In this research, two datasets: Dataset 1 

from RapidEye satellite imagery and Dataset 2 combine RapidEye and ALOS-

PALSAR. 239 data samples were used to evaluate the model. Experiments were 

performed over a fully convolutional U-Net, Support Vector Machine, K-nearest 

neighbour,  Random Forest. Among all machine learning techniques, U-Net performs 

best result of 76.59%MCC. The performance of the U-Net model further can be 

increased by increasing the sample size for training samples.  

Haojie Wang et al. [50] presented a 11-layer deep convolutional neural network 

(DCNN-11) model for landslide identification using ML& deep learning. Promising 

results from a case study of Hongkong City were achieved on three databases: Recent 

Landslide Database (RecLD), Relict Landslide, Database (RelLD) and Joint Landslide 

Database (JLD). Experimental result reveals that DCNN-11 is very effective model 

among Support Vector Machines, Random Forest  and logistic regression.DCNN-11 

has the highest area accuracy 0.925 with the RecLD database. Further, it is observed 

that the performance of DCNN can be improved by considering the inconsistency in 

terrain, landslide, inaccuracy in the database and the necessity for more complicated 

CNN’s in the future owing to computational restrictions. Soumik Saha et al. [51] also 

investigate landslide susceptibility in the Garhwal Himalaya using machine learning 

models, with Deep learning neural network (DLNN) demonstrating good accuracy. 

Omid Ghorbanzadeh et al. [52] compare Artificial neural networks, Support vector 

machine, and Random forest Convolutional neural network for landslide detection. 

Optical data from the Rapid Eye satellite were used for experimental results. CNNs are 

used for effective feature representation in image recognition and have better accuracy for 

small window size. 

Mahnaz Naemitabar et al. [53] undertook a comparative study on four machine learning 

techniques:  Support vector machine, the boosted regression trees (BRT) model, the 
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Random Forest (RF), and a Logistic Model Tree (LMT) for the identification of 

landslide-prone areas. The SVM and RF yield higher reliability in assessing landslide 

susceptibility, with factors like lithology, slope, and land use identified as crucial. 

Experimental results show that SVM and RF models have AVC  0.86 and 0.89 respectively. 

Jie Dou et al. [54] presented an automatic method for landslide detection. This approach 

combines three different approaches namely Genetic algorithm, object-oriented 

analysis, and case-based reasoning. In object-based analysis, segmentation plays a very 

important role. High resolution of the image provides correct information about the 

landslide and was helpful in the better result of the segmentation process. To obtain the 

object of interest in object-oriented analysis multi-segmentation was preferred on 

collected images. The genetic algorithm was applied for the feature section. 

Geographical features classify and enhance the accuracy with case-based reasoning. 

The case-based reasoning is achieved with different techniques like k nearest neighbor 

etc. In this paper, Quickbird images of 0.6 m spatial resolution were used for image 

segmentation and feature selection. Roadside landslides were more exposed to high 

damage due to landslides and caused difficulties in day-to-day life. SPOT 5 and DEM 

datasets were also used for experimental results. All data were rectified to remove the 

distortion and noise. Object-oriented image analysis gives 0.75 accuracy for the 

detection of landslides and fused Object-oriented image analysis with a case-based 

reasoning and genetic algorithm (GA) yields 0.87 accuracy in the detection of 

landslides. The proposed technique provides benefits over a knowledge-based section 

for the detection of landslides. This technique helps in creating inventory that will be 

helpful for providing specifications for future landslides.  

Tapas R. Martha et al. [55] designed  a new approach to detect landslides using 

bitemporal multispectral images. Multispectral images were used to collect the object 

from post-landslide images. For the analysis of high-resolution images, a tool is 

developed which makes input data in a user-defined grid. Multispectral images were 

collected from the Resourcesat-2 LISS-IV satellite for a defined study area. These two 

datasets have three bands and are useful for object-based change detection techniques 

to recognize landslides. For the detection of landslides 10m DEM from Cartosat1 

satellite data was used. For good quality images auto-rectified Resourcesat-2 LISS-IV 



33 
 

satellite images are further processed to achieve high pixel match. Top atmospheric 

reflectance calculations were performed in the preprocessing step of images to 

overcome weather conditions like sunlight. Pre and post-landslide image reflectance 

differences identify the landslide. Image segmentation was performed with knowledge-

based approach. Object-based change detection was used to detect landslides. The 

developed graphic user interface (GUI) tool provides overall good accuracy in landslide 

detection. Combined spectral and morphometric parameters have 0.89 accuracy in the 

detection of landslides with 10m DEM from Cartosat-1 satellite images. This work can 

further be modified for the shadow of clouds in pre-landslide images. Some landslides 

were not identified due to small clouds over the pre-landslide images. 

Tapas R. Martha et al. [14] presented a comparison of the pixel-based approach and 

object-oriented approach for landslide detection. Very high resolutions of 0.5m 

remotely sensed images were used . An inventory was created with 115 field-based 

landslides fused with 0.5m spatial resolution for comparative analysis. Unsupervised 

classification was used in pixel base classification and images were classified in eleven 

different classes. For non-landslide and landslide pixel binary analysis was used and 

assigned zero and unity for landslide and non-landslide, respectively. In object-oriented 

analysis k mean clustering was used to remove regions based on brightness to detect 

landslides and object properties were used to reduce false positive results. Object-

oriented analysis has 0.965 and Pixel-based unsupervised classification has 0.943 

accuracy. In this paper, further investigation on challenges associated with OOA needs 

to be discussed for improvement.  

 Filippo Vecchiotti et al. [56] presented a semi-automatic image classification technique 

for landslides caused by rainfall. This approach combines pixel-based classification 

with remotely sensed images multi multi-parameters for landslide detection. Vegetation 

change in pre and post-image will identify the landslide event. In the method, 

bitemporal pixel change detection was applied. It was a double classification technique. 

Terra ASTER L2 data sets were used for the defined study area. 110 landslides which 

were recognized accurately with this semiautomatic image classification technique. 

This double classification workflow gives 0.815 producer accuracy coupled with a 

more than acceptable 0.689 accuracy and 0.729 kappa coefficient. With its data set 
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cloud detection was not performed but it can be overcome with SPOT and Sentinel-2 

for a better view of scenes.  

2.4 Findings and research gap 

The primary tendency of this literature survey to observe the performance of 

classification on landslide detection. In this literature survey, the analysis is based on the 

accuracy of the classification, satellite-based datasets used for detection and algorithms 

used for classification. During this study, we found different observations that will be 

helpful for future research directions, concluded in this section. 

2.4.1 Challenges which are discussed 

Numerous researches have been done with semi-automatic classification of landslides 

and a few with automatic detection. The most important stage is the data collection. The 

high-quality image provides a better result for feature extraction. The review concludes 

that two different images are fused to give a better feature selection. Earth-observing 

satellites are two types: active satellites and passive satellites [16]. Satellite data provides 

images and features are extracted based on the following points: 

 Active satellites are microwave remote sensing and have their own source of 

energy. Active satellites have controlled illumination and have the least effect 

of weather.  

 In Active satellite Day and night operations are possible. ESA satellite, Canada 

RadarSet, Indian satellite (RISAT) and Japanese satellite (ALSO) is a type of 

active satellite. ESA’s Sentinel-1 is an active microwave remote sensor and is 

useful in providing data for all types of disasters like floods, earthquakes, and 

landslides.  

 Passive remote sensing is more useful nowadays and does not assign any 

external source of energy. These types of satellites measure either reflected 

radiation from the sun or emitted radiation from the earth. Reflected radiation 

depends on sunlight so it works on the daytime only and suffers various 

illumination conditions like weather play a major role. LANDSAT, SPOT, IRS, 

Cartosat, and IKNOS are some examples of passive satellites.  
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 To image segmentation, compare object-based and pixel-based image 

classification. 

 To classify multispectral images and multi-frequency images. 

2.4.2 Challenges which are not discussed 

There are few challenges which are not discussed: 

 Real-time remote sensing data: Automatic detection of landslide require real-

time data which based on satellite imagery need highly efficient algorithms for 

real-time computation.  

 Limited training data set: Acquiring large-scale data sets for training the model 

in a machine learning algorithm is a challenging task, which can hinder the 

ability of the trained model to detect landslides accurately. 

 Feature extraction:  for automatic detection and classification of landslides, need 

to extract the feature from the database and the feature should be relevant so that 

model can accurately differentiate between landslide and non-landslide images. 

 Environmental factor: landslide depends on various environmental factors like 

rainfall, soil type, topography etc. By considering these parameters machine 

learning model requires a more careful feature selection algorithm. 

2.4.3 Observations 

This research work covers a review of 50 research papers, out of which 70% papers 

used passive sensor-based satellite databases for training and testing, 22% of papers 

used active sensor-based satellite databases while 8% of papers used aerial images for 

experimental results. The different types of satellites used in different research work as 

shown in Figure 2.1 
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Figure 2.1 Classification of images used for Landslide Monitoring 

Analysis carried out on the basis of accuracy shows that an accuracy range between 

95%-100% is obtained in three research papers, 90%-94% is obtained in seven research 

papers, 85%-89% is obtained in seven research papers, 80%-84% is obtained in four 

research papers and below 80% is obtained in two research papers as shown in Figure 

2.2.  

 

Figure 2.2 Classification Accuracy of ML/DL based techniques 

Classification algorithms are categorized into seven different classes. This work 

reviewed fifty research papers, six papers are based on SVM classifier, four papers are 

based on Bayesian classifier, three papers are based on a decision tree classifier, three 

papers are based on neural networks, four papers are based on fuzzy, fourteen papers 

are based on deep leaning technique and the remaining are hybrid algorithms that 

combine different classifier algorithms. Figure 2.3 shows the different algorithm-based 

research papers. 
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Figure 2.3 Number of classifiers and types used in literature review 

2.4.4 Research gap 

A landslide is a real-time event and it is very difficult to create a database with a very 

high number of images. Landslide events depend on a number of factors, like rain, soil 

and weather conditions. Need to design a model with a Convolutional neural network 

(CNN) that takes care of different factors of landslide. Deep neural networks are 

difficult to understand and with a complex architecture of networks, prediction is very 

difficult. CNN architecture has practical applications in image classification, object 

detection, and semantic segmentation [38]. Semantic segmentation with pixel-level 

segmentation provides good results in image segmentation [43]. 

The articles in this study have very effective results in terms of accuracy, precision, 

recall and F1 score for landslide detection. There are few potential research gaps as 

follows: 

 Performance: Accuracy plays the main role in the performance of an automatic 

detection landslide model. Selected literature articles were compared with 

common parameters: accuracy, precision, recall and F1 score. The range of 

accuracy lies between 0.80 to 0.92. Semantic segmentation model PSPNet with 

ResNet50 as backbone achieves the highest mIOU at 91.18% , this can be 
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further improved by exploring false results [43]. The Swis Transformer a 

backbone network with Mask R-CNN claims 0.822 accuracy [45]. 

 Method used: Convolutional neural network architectures such as ResNet50, 

ResNet101, VGG, DensNet, Google Net were used as the backbone with 

different approaches and provide different results. CNN along with spatial 

channel attention mechanism and high-resolution optical images yield high 

accuracy. Need more investigation on the superiority of spatial channel 

attention mechanism [38]. 

 Database: Need is a high-resolution remote sensing image dataset for improving 

accuracy. Models were trained for selected datasets. The Bijie landslide dataset 

was used, but it is limited to 770 images of landslide and nonlandslide images. 

Some dataset was created from images of unmanned air vehicles, which contain 

different images from different sources.  Instead of using UAV images, satellite 

images with high spatial and spectral resolution can be used and will provide 

good results [39]. Training is limited with the dataset is the biggest research 

gap. 

 Different type of landslide has different characteristics. The model based on 

Mask R-CNN with pixel-based segmentation and ResNet at the backbone does 

not specify whether the model tested for different types of landslide. Results are 

only compared in between ResNet 50 and RestNet 101 rather than the other 

potential object detector deep learning architecture [39]. 

2.5  Problem Statement 

Landslides are a severe environmental threat, especially in hilly areas. Leveraging 

satellite data for landslide detection and prediction provides considerable potential, but 

raw satellite data frequently contains discrepancies due to factors such as sensor noise, 

cloud cover, changing atmospheric conditions, and topographical distortions. The goal 

is to create an algorithm for pre-processing landslide data derived from satellite images. 

For automatic detection need to design and develop a novel machine-learning/deep-

learning algorithm and optimize the detection and classification model towards better 

performance. 
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2.6  Objectives 

The objective of this research work is to design an automatic CAD system for Detection 

and Classification of Landslide using Artificial Intelligence Techniques. This research 

work contains the following objectives: 

2 To design an algorithm for pre-processing the landslide data generated by satellite 

data.  

3 To design and develop a novel machine-learning/deep-learning algorithm to 

detection and classify landslide. 

4 To optimize the detection and classification model towards better performance. 
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Chapter 3  Pre-processing of satellite images  

3.1 Bijie landslide dataset 

Deep learning architectures require a large number of images to train the network and 

creating a dataset for landslides from remote sensing images is a difficult task. The Bijie 

landslide dataset is an open-source dataset that was used in this research to train the 

deep learning architecture. Ji et. al  [38] developed the Bijie dataset and the study area 

is over Bijie city of China about 26853 square km area. Due to the fragile nature of soil 

and unstable geological conditions make this area highly prone to landslides. The RGB 

images of 0.8 resolution were captured by the TripleSat satellite over an area located in 

the transitional slope zone from the Tibet Plateau to the eastern hills with altitude ranges 

from 457 to 2900 m. This dataset contains two Groups of images: landslide images and 

non-landslide images. The landslide set of images contains seven hundred seventy 

images and the Non-Landslide set contains two thousand three images. In our 

experiment, 70% images from the Bijie dataset are used for training and 30% of images 

are used for testing the model. The dataset was split in a stratified manner, ensuring that 

both landslide and non-landslide images were included in the training (70%) and testing 

(30%) sets. The training set contains 70% landslide and 70% non-landslide images, 

while the testing set contains 30% landslide and 30% non-landslide images. Figure 3.1 

shows some images of landslides in our training set. 

 

     

      

    

Figure 3.1 Examples of landslide instances from Bijie dataset 
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3.2 Satellite image Pre processing 

The most important task nowadays is to save lives from disasters. During these disasters 

to save human life is a difficult task for the disaster management team. Satellite images 

processed with artificial intelligence algorithms are used to save lives during disasters. 

The contemporary era's remarkable technological advancements make satellite imagery 

a vital resource for geospatial applications. Analyzing high-resolution satellite images 

over time using object recognition and image categorization has proven invaluable in 

areas such as disaster management, agriculture, urban planning, landslide prediction, 

atmospheric prediction, environmental surveillance, mitigating natural catastrophes 

and assessing land-based biodiversity [57]. Remote sensing is a method used by satellite 

imagers to capture data on Earth from orbit. Earth observation satellites are equipped 

with different sensors like LISS3, Worldview, MODIS, Landsat, Sentinel-2, 

VIIRS, AVHRR, etc. detect electromagnetic radiation from Earth's surface. Different 

objects observe and reflect different wavelengths, ranging from radio waves to gamma 

rays. Information is converted into radio waves and transmitted to base computers 

which transmit into 0 and 1 binary code and create images from the received 

information. Sensors are classified into two categories: active and passive sensors. The 

active sensor provides its energy source for illumination and does not depend on 

sunlight. These types of sensors can be used for examining wavelengths that are not 

provided by sunlight, such as microwaves. Synthetic Aperture Radar is an example of 

an active sensor. Passive sensors measure naturally available energy [16]. Satellite 

images are quite complex to analyze and it is very important to develop a reliable and 

accurate system to analyze satellite images. The true difficulty lies in deciphering 

remote sensing data to obtain precise information. Utilizing this data for automatic 

decision-making in detection presents challenges. Raw satellite images have many 

challenges and these challenges arise from the inherent complexities of acquiring and 

interpreting data from space, where a variety of factors can introduce errors, 

inconsistencies and distortions. When using satellite data for prediction and 

classification, the accuracy of any application is reduced by the numerous errors 

included in raw satellite images. The preprocessing stage uses radiometric correction, 

atmospheric correction, dark object subtraction, noise removal, random bad pixels, 
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image enhancement, resizing, augmentation, etc. [58][59]. Understanding these 

obstacles and errors, as well as the need for preprocessing, is critical for obtaining 

accurate and dependable results from satellite image analysis. 

3.2.1 The objective of the work 

The objectives of the work undertaken are as follows 

1. To explore different types of systematic and non-systematic errors in raw satellite 

imagery. 

2. Apply different correction techniques on raw satellite landslide images and discuss 

the results. 

3. To analyse and evaluate the results of the proposed pre-processing. 

3.2.2  Related work 

In the last few years, a number of research studies have taken place with satellite image 

processing to identify, predict, classify, and detect any real-time event [7][9][60][61]. 

Satellite image processing has numerous challenges due to the intrinsic challenges of 

receiving and understanding data from space, where many circumstances might create 

inaccuracies, inconsistencies, and distortions. There are two main errors in raw satellite 

imagery: systematic and non-systematic. Systematic errors in satellite images are 

constant, repeated imperfections caused by several predictable factors relating to the 

satellite sensor, its orbit, and the environment in which it functions. Geometric 

distortion, atmospheric distortion, sensor noise, temporal mismatch and orbital error are 

some systematic errors. Non-systematic errors also called random errors, vary in 

magnitude and in direction within the same image or different images.  Processing of 

satellite images uses Geometric correction, atmospheric correction, radiometric 

correction and image enhancement [58][59]. 

Geometric correction corrects the misleading geographical errors that are present due 

to errors by Earth’s curvature and sensor orientation. James Storey [62] emphasizes the 

significance of geometric correction as an essential pre-processing step for matching 

multi-sensor satellite imagery. The study found misregistration difficulties between 

Landsat-8 and Sentinel-2 imagery, including misalignments of up to 38 m (2σ) due to 
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discrepancies in geometric control references. It is observed that misalignment varies 

geographically, but it remains consistent for specific areas. James Storey [63] explains 

the geometric correction process for Landsat 8 which involves refining the sensor's line-

of-sight model through on-orbit calibration activities. The results show excellent 

geometric performance. Prieto-Amparan et al. [64] compared three radiometric 

correction methods Atmospheric Correction for Flat Terrain 2, Fast Line-of-Sight 

analysis of Spectral Hypercubes and Dark Object subtract 1 for estimating grassland 

biomass using Landsat imagery. The simplest method DOS1, provided the most 

accurate and consistent result [65]. Atmospheric Correction corrects the surface 

features that are distorted due to the effect of atmospheric particles and gases. 

Atmospheric correction transforms at-sensor radiance to surface reflectance using the 

ATREM algorithm. The real-time results were similar to the standard AVIRIS-NG 

ground processing, but much faster [66][67]. Radiometric correction was used to 

convert digital numbers to spectral radiance and reflection. A radiometric correction 

was done on the Landsat image to improve the quality of the satellite image [68][69]. 

Image enhancement is a crucial step in image preprocessing and is used to improve the 

visual quality of an image by emphasizing some specific feature of an image. This 

process makes images more useful and accurate result-oriented for specific tasks like 

feature extraction. Anuj Ashokan et al. [70] provide a comprehensive review of image 

enhancement techniques and categories in two domain methods: spatial and frequency 

and claim that histogram equalization enhances the overall quality of an image. Shilpa 

suresh et al. [71] proposed an algorithm for image enhancement by modifying 

the differential evolution algorithm and combined with the Cuckoo Search. Quality 

speed distribution and proportionality-spaced distribution are two types of distribution 

techniques that were used. Yun B et. al. [72] introduce a saliency enhancement method 

using Fast, Accurate, and Size-Aware to make landslides more prominent in large-scale 

Landsat8 images. 

3.2.3 Methodology For Satellite Image Pre-processing  

Satellite sensors' raw images frequently show distortions and irregularities resulting 

from a variety of causes, including air conditions, absorption, changing scene lighting, 

satellite orbital motion, and geometric aberrations. Errors in satellite imaging can occur 
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from several different causes during the collection, transfer, processing, and 

interpretation of the images. It is essential to comprehend these mistakes and use the 

proper repair methods to obtain accurate analysis and trustworthy outcomes. This is a 

thorough analysis of typical mistakes in remote-sensing satellite images. Different 

errors present in satellite images are shown in Figure 3.2.   

 

Figure 3.2 Satelllite imgery errors 

 Radiometric Error: Pixel values in an image are impacted by radiometric error, 

which is usually caused by changes in sensor sensitivity, atmospheric conditions, or 

problems with equipment calibration. A variety of errors, including noise, banding, 

and atmospheric distortion, can be found in radiometric errors. Noise occurs when 

pixel values randomly vary and are unrelated to the desired object. Bands across the 

photos are caused by uneven sensor performance. Scattering and absorption are the 

causes of atmospheric distortion. To overcome radiometric, a variety of correction 

techniques are employed, including noise filtering, calibration, destriping algorithm, 

and dark object subtraction [73]. 

 Geometric Error: When changes in satellite orbit, sensor geometry, or terrain relief 

affect the spatial relationship between objects in a image, is known as geometric errors. 

Geometric errors come in various forms, including perspective, relation, and terrain 

distortion. Sensor misalignment is the cause of relation inaccuracy. The cause of 

perspective mistakes is the way the angle of the satellite sensor causes things in higher-

elevation areas to seem displaced. Surface feature distortion can result from changes 

in the terrain. Techniques like as georeferencing, orthorectification, and resampling 

are employed to mitigate the impact of geometric inaccuracy. Using ground control 

points, the image is aligned with the coordinate system in georeferencing. Digital 
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elevation models are used in orthorectification procedures. Bilinear covariance and 

nearest neighbor are two resampling techniques that are used to manipulate the image 

with reference coordinates.  

 Atmospheric Errors: These errors are caused by surface features changing in 

appearance due to electromagnetic radiation's interaction with gasses and particles in 

the atmosphere. The image quality is diminished by haze and smog as a result of 

aerosol scattering. Additionally absorption of specific wavelengths by water vapor, 

causes spectral aberrations. Atmospheric errors are corrected using radiative transfer 

models, image-based correction methods like empirical line calibration [66]. 

 Temporal Error: Images taken at different times can exhibit variances due to 

environmental factors such as seasonal changes, vegetation growth, or urban 

development, which can lead to temporal errors. Image normalization helps to 

eliminate variations resulting from acquisition time variances by matching the 

brightness and contrast of several photos to a reference image. 

Change Detection Analysis is also used to overcome temporal error. Rather of trying 

to make direct corrections, temporal errors can be reduced for applications such as 

land cover change by monitoring and analyzing changes. 

 Sensor-specific error: Sensor-specific errors are the results of certain satellite sensors 

producing particular artifacts as a result of their operational parameters and design. 

Dead pixel and lens distortion are an example of sesor specific errors. In order to 

correct for these inaccuracies, post-processing adjustments are employed to rectify 

lens distortion using models based on known sensor characteristics. Image 

interpolation is utilized to fill in the gap left by dead pixels. 

 Cloud cover: Clouds have the ability to mask surface characteristics, making parts of 

satellite imagery useless for analysis. Cloud masking, data fusion and cloud gap filling 

is used to overcome this error. 

 Transmission error: Data corruption or missingness due to errors that happen during 

the transfer of data from the satellite to ground stations is known as transmission 

error. These types of errors can be overcome by using data reconstruction algorithms 

and error correction coding.  
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 Spectral error: Spectral error is errors pertaining to the way a sensor records light at 

various wavelengths, which could lead to an erroneous depiction of surface details. A 

band alignment algorithm is used to overcome these errors. 

Raw satellite data is complex and needs pre-processing to remove the errors. 

Preprocessing is an important step in satellite image analysis since it prepares the raw 

data for later processing and interpretation. The primary goals of preprocessing are to 

rectify distortions, improve image quality, and prepare data for geographic 

analytics. Remotely sensed digital images are composed of pixels and have a digital 

number (DN). Each pixel has intensity and address value. Pixel is square and these 

squares represent an aerial average of the ground. Given the imaging geometry and 

satellite orbit parameter, the row and column indices of each pixel on the ground must 

yield its exact graphical location. The resolution of an image plays a very important 

role in image analysis. Satellite images have five types of resolution:1.Spatial 

resolution, 2 Spectral resolution, 3. Temporal resolution, 4. Radiometric resolution, 

5.Geometric resolution.  Once an image is acquired the spatial resolution is frozen. Raw 

images captured by satellite sensors often exhibit distortions and inconsistencies caused 

by various factors, such as atmospheric conditions, absorption, varying scene 

illumination, satellite orbital motion, and geometric distortions. Systematic and non-

systematic error present in satellite images degrades the result in image anlysis. 

Preprocessing is necessary since raw satellite data has inherent problems and limits.  To 

produce an accurate depiction of the actual image, distorted or damaged image data 

must be corrected using different rectification processes. For accurate and insightful 

analysis, especially in areas like land-use planning, disaster relief, and environmental 

monitoring, satellite picture defects must be corrected. The kind of error, the properties 

of the sensor, and the intended use all influence the correction technique selection. To 

provide accurate, dependable findings, it is frequently essential to combine many 

techniques, such as atmospheric correction with geometric and radiometric corrections. 

To eliminate inaccuracies, pre-processing is necessary for the complex raw satellite 

data. Since preprocessing sets up the raw data for further processing and interpretation. 

Resolving distortions, enhancing image quality, and getting data ready for geospatial 

analytics are the main objectives of preprocessing. Preparing imagery from satellites 
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for analysis requires a certain level of preprocessing. In order to make the raw data from 

the satellite sensors more appropriate for later interpretation and modeling, it entails 

improving and correcting it. Different preprocessing techniques are shown in Figure 

3.3.   

 

Figure 3.3 Rectification Processes 

Radiometric correction: Pixel intensity and radiometric correction are 

connected. Variations in pixel intensity values are brought on by sensor defects, 

variations in the sensor's sensitivity, or external circumstances like the illumination 

during the picture capture. It adjusts the sensor's digital numbers (DNs) to take into 

account its special characteristics, such as sensitivity and potential deterioration over 

time. eliminates the influence of the atmosphere and guarantees that, regardless of 

atmospheric circumstances, the data more accurately depicts the surface reflectance or 

radiance. Raw satellite photos contain a variety of radiometric aberrations, such as 

banding, line loss, dropout of a line or column, random poor pixels, and stripe noise etc 

[74].  

Geometric correction: Earth curvature, sensor viewpoint, and satellite motion all 

cause distortion in raw satellite data that is corrected by geometric correction. 

Geometric correction seeks to ensure that the satellite image accurately represents the 

forms and geographic locations of features on the Earth's surface, allowing for precise 

spatial analysis and mapping [75]. Among the geometric correction algorithms are 
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ground control points, nearest neighbor, bilinear interpolation, and mathematical 

transformation resampling. 

Atmospheric correction: The effects of the atmosphere, such as light absorption, path 

radiation, and scattering, are removed from the raw satellite photos using atmospheric 

correction.  Various techniques are employed for atmospheric correction, including Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes, and Atmospheric and 

Topographic Correction (ATCOR) [64]. 

3.2.4  Radiometric correction and Geometric correction 

From the study area select one raw satellite image and perform geometric radiometric 

and atmospheric correction. A digital number (DN) represents the brightness value of 

each pixel in a satellite image, which is obtained from reflected or emitted energy. It is 

the sensor's raw digital output that is utilized to adjust radiometric and atmospheric 

data. All preprocessing stages rely on DN values, which are the raw data output by 

satellite sensors. They are used to quantify physical parameters like radiance and 

reflectance using radiometric correction, allowing for accurate analysis. These values 

are significant for several remote sensing applications, including land cover 

classification, change detection, and thematic mapping, as they allow quantitative 

interpretation of surface properties. Initially set constants Multiplicative rescaling 

factor, additive rescaling factor and sun elevation. Then define the coordinate reference 

system for radiometric correction. Extract the digital number value of the image and 

calculate transformation parameters. Rejoin DN  band to target coordinate reference 

system. Then apply atmospheric correction. Atmospheric correction modifies the DN 

and this DN is converted into Top of Atmospheric (TOP) reflectance using radiometric 

correction.  

DN is converted into Top of Atmospheric is done using  linear transformation equation 

as shown below : 

Lλ = Gain × DN + Offset                               ------------------------------(1) 

Where: 

 Lλ is the TOA radiance (in W/m2/sr/μm) 
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 Gain and Offset are radiometric calibration coefficients specific to the satellite 

sensor (usually provided in metadata) 

 DN is the raw digital number value of a pixel 

This process adjusts for sensor calibration and translates raw DN into radiance units, 

suitable for further atmospheric correction and surface reflectance analysis. 

Figure 3.4 shows the processed image. Figure (a) shows Geometrically corrected image 

and Figure (b) shows Radiometrically and Atmospherically corrected image. Figure 3.5 

shows the histogram result of the pre-processed image. Table 2  shows the parameters 

of the processed image. 

 

                  (a) Geometrically corrected image                                 (b)Radiometrically and Atmospherically   
corrected image 

Figure 3.4 Geometrically Radiometrically and Atmospherically corrected image 
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                          (a) : Histograms of  DN values                                (b): Histograms of TOA Reflectance 

Figure 3.5 Histograms of TOA Reflectance and Histograms of  DN values   

 

Table 3.1 Pre-processed image parameters 

Geometrically Corrected 

Image (DN) 

Min: 0, Max: 65455 

Mean: 10654.471086060137 

Std Dev: 12895.613843682024 

Corrected Image (TOA 

Reflectance) 

Min: 0, Max: 255 

Mean: 49.59613890229188 

Std Dev: 71.85929504994736 

 

3.2.5 Algorithm of Proposed Work  

The preprocessing workflow contains several steps including radiometric correction, 

dark object subtraction, random bad pixel and Gaussian smoothing. The flow diagram 

of the proposed work is shown in Figure 3.6.  



51 
 

 

Figure 3.6 Flow Diagram of Proposed Pre-Process algorithm for Satellite images  

 

Algorithm of Proposed Work  

Step 1: Download the satellite image for the study area. And input the satellite image 

file. 

Step 2: Set Radiometric Parameters: Sun elevation, additive rescaling, Multiplicative 

rescaling  correction  

Step3: Read the digital number (DN) value. 

Step 4: Perform atmospheric correction using Dark object subtraction (DOS)- identify 

minimum DN value and subtract dark object value from DN. 

Step 5 : Perform radiometric correction – convert atmospherically corrected DN to Top 

of atmospheric (TOA). Scale TOA reflected value for visualization.  

      Reflectance = DN x Multiplicative rescaling factor     -------------------------------(2) 

Step 6: Apply a Median filter to correct bad random pixels. 

Step 7: Gaussian filter is used to smoothing of image. 

Step 8: In normalization, image is clipped to range [0,1] and scale the clipped 

reflectance to [0,255] 

Step 9: Display the result using a Histogram 



52 
 

Step 10: Convert DN to quantitative Metrics  to compute : Peek Signal to Noise Ratio 

(PSNR), Root Mean Square error ,Mean absolute error and Structural Similarity Index.  

PSNR= 10 log10 (
(ெ௔௫௜௠௨௠ ௣௜௫௘௟ ௩௔௟௨௘)ଶ

ெௌா
)                  ------------------------------(3) 

RMSE = ( 
ଵ

ே
∑ (𝐷𝑁 𝑖𝑛 8𝑏𝑖𝑡 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)ଶே 

௜ୀଵ ) ½    ------------------(4) 

3.2.6 Results and discussion  

In this experiment, we perform satellite images processing to improve the quality of the 

image and prepare dataset for landside analysis. This proposed preposcessing workflow 

contain few key steps: bad pixel correction, radiometric correction, darkobject 

subtraction, normalization, gaussian smoothing, resizing and augmentation.The result 

of this experiment is evaluated based on histogram comparison and qualitative metrics.  

First step start with reading the Digital number of satellite image from study area. We 

set the radiometric correction constants: sun elevation, additive rescaling factor and 

multiplicative rescaling factor. To reduce the impact or atmospheric scattering, apply 

Dark object subtraction, find the minimum value of digital number band and subtract 

from all the present pixel in the band to correct the band. Now, this corrected band DN 

number is converted to top-of-atmosphere reflectance. 

To correct random bad pixel, a median filter is applied atmospheric reflectance image. 

To reduce noise gaussian smoothing was applied. The resulting images are scaled in 

the range [0, 255]. 

Figure 3.7 (a)  and (b) shows original DN image and shows proposed pre-processing 

algorithm processed image. Figure 3.8 shows histogram analysis of pixel distribution 

original image and processed image.  
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                             (a): Original                     (b)Proposed pre processing algorithm processed image 

 

Figure 3.8 Histogram analysis of pixel distribution original image and processed image. 

Table 3.2 sumarrize the quantitative analysis of proposed alogirthm. Processed  image 

have Mean value 52.05141 , standard deviation 71.41093. To check the effect of pre 

processed image  we calculate quantitative materic : mean absolute error is 82.42, 

RMSE is 7.188, SSIM is 0.87 and Peak signal to noise ratio is 19.4512.  

 

 

Figure 3.7 Pre-Processed  satellite image 
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Table 3.2 Proposed algorithm Pre-processed image parameters 

 

The preprocessed proposed algorithm effectively normalizes raw satellite images, 

enhances its quality, reduces noise and removes radiometric errors, as shown in the 

result in terms of PSNR. The pre-processed image has mean and standard deviation 

values significantly lower than the original DN satellite image which indicates the 

normalized process was successful. In the original image mean pixel is 11166.08175 and 

the standard deviation is 12991.40667. Images processed only with radiometric and geometric 

correction have a mean of 49.59613 and the standard deviation is 71.85929. Satellite images 

processed with the proposed algorithm have a mean of 52.05141 and a standard deviation of 

71.41093. This indicates a uniform distribution of pixel value and will help use this data in the 

training of artificial intelligence models with deep learning for the prediction of landslide 

events.  

3.3 Preprocessing in database 

Preprocessing is an essential step in deep learning, ensuring that raw data is processed 

into an appropriate format for model training. The quality of the preprocessing can have 

a substantial impact on the model's performance, training time, and capacity to 

generalize to new data. Here, we explore various preprocessing approaches typically 

employed in deep learning, with a special focus on their applications in landslide 

prediction. Deep learning models require large number of data  and sensitive to the 

quality and format of their input data. Raw data frequently contains inconsistency,  

noise, which may distrupt the learning process. Preprocessing help to resolve these 

challenges by increasing data diversity through augmentation, normalizing the data 

distribution, reducing dimensionality for more effective calculation. Proper 
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preprocessing allows for faster convergence during training, greater model 

generalization and higher overall performance. 

3.3.1 Preprocessing techniques  

1. Data Augmentation  

Data augmentation artificially improves the diversity of the training dataset by adding 

random transformations such as rotation, flip, translation, and scaling. This reduces 

overfitting while increasing the model's capacity to generalize to fresh data. 

Augmentation is very effective when there is a limited amount of data. Different 

augmentation techniques as color jitter, rezise, random flip, random horizontal can be 

applied to dataset to increase number of images in dataset [43]. Augmentation was 

important because the supplied dataset would be small which could have resulted in 

overfitting. 

 ColorJitter : The use of ColorJitter augmentation increased the model's robustness 

by mimicking various real-world circumstances. This simple augmentation strategy 

exposed the model to images of variable brightness levels, allowing it to generalize 

more effectively to previously unknown data taken under various lighting 

situations. Outdoor footage, such as satellite pictures, frequently features a variety 

of lighting conditions. By modifying images with brightness variations, the model 

can be trained to be more resilient to lighting shifts. This ensures that the model 

does not rely on unique lighting conditions to detect landslides, increasing its 

generalizability. Color jitter transformation randomly adjusts the image's brightness 

by up to 20%. ColorJitter is a strong enhancement tool that can change contrast, 

saturation, and hue. Figure 3.9 shows the input image and brightness transformation 

5 times, generating 5 augmented images. Each transformed image will have a 

slightly different brightness.  
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(a) original image 

 

Figure 3.9 Brightness Transformation of image 

 Rotation: Rotation is a crucial transformation for landslide images since 

landslides can occur in a variety of orientations. To imitate diverse viewpoints, 

we used random rotations within a different angle range. This was accomplished 

with the Rotate function from the Albumentations library, a powerful tool for 

picture augmentation in deep learning pipelines. To create numerous augmented 

images, we performed the rotation transformation to each image five times. This 

technique generated five new versions of the original image, each rotated at a 

different random angle. The inclusion of rotation augmentation is predicted to 

increase the model's generalization by making it more invariant to diverse 

landslide orientations observed in test data. Figure 3.10 shows the original 

image alongside five rotated images with + 500 generated through 

augmentation. When applying rotation as a data augmentation technique, 

choosing an appropriate rotation limit can significantly impact the diversity of 

the dataset and improve the model's ability to generalize. 
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(a) original image 

 

 

Figure 3.10 Original image alongside five rotated images  

 Horizontal Flip : Horizontal flipping is a transformation that reverses an image 

along its vertical axis. For landslide imagery, this technique simulates 

circumstances where satellite imaging or ground-level photography may catch 

landslides from different camera angles. Introducing this type of variation 

allows the model to become less sensitive to the precise orientation of features 

in the images, boosting the model's robustness and generalizability to new data 

sets. Argumentation is a useful tool for enhancing images in computer vision 

applications, with transformations like rotation, cropping, scaling, and 

flipping. In our augmentation pipeline, we used a random horizontal flip with a 

50% probability. This means that each image has a 50% probability of being 

flipped, therefore both the original and inverted versions of the landslide are 

used in the training process. The horizontal flip augmentation added variation 

to the training dataset by increasing the variability of image orientations. This 

led in increased model generalization, allowing the model to perform better on 

previously unknown test data, especially when images were given from various 

perspectives. Figure 3.11 shows an example of an original image and its 

horizontally flipped version. 
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                (a) original image 

 
Figure 3.11 Horizontally flipped version of Original image 

 Resize: The resizing step ensured that all of the images in the dataset were 

compatible with the deep learning model's input layer, which requires a fixed 

input size. Resizing photos to 150 x 150 pixels reduces computational cost, 

allowing for faster training while keeping sufficient quality to detect landslide-

related features. By standardizing the input dimensions, the model was able to 

focus on learning important patterns throughout the dataset without being 

impacted by image size or resolution differences. This preprocessing step made 

the training process more efficient, allowing the model to converge 

faster. Figure 3.12 displays the original landslide image and the scaled image, 

with the original image shrunk to 150 by 150 pixels. As observed, the image's 

fundamental qualities are preserved, ensuring that resizing does not compromise 

the essential attributes required for model training. 

 

Figure 3.12 Original and resized image 
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3.3.2  Principal Component analysis (PCA) and variants 

PCA is a popular dimensionality reduction preprocessing technique that converts high-

dimensional data into a smaller collection of components that represent the majority of 

the variance  [76] [77]. It converts the input data into a set of linearly uncorrelated 

variables called as principal components, which are sorted by the amount of variance 

they extract from the original dataset. This method works exceptionally well when 

dealing with high-dimensional data, where redundancy and multicollinearity can 

degrade model performance. This is especially effective for large datasets, as fewer 

features can greatly reduce the model's computational complexity. In deep learning, 

PCA is frequently used to eliminate duplicate information from image data and 

compress it while retaining critical features. This can help reduce the training time of 

convolutional neural networks (CNNs) while preserving essential patterns in images 

[78]. Kernel PCA is a non-linear data version that uses a kernel function to map input 

data into a higher-dimensional space, allowing for the capture of more complicated 

patterns. 

In landslide detection research, PCA is used to minimize the dimensionality of image 

data. Given that high-resolution satellite images frequently contain a significant number 

of correlated features (e.g., pixel intensities across different bands), PCA enabled to 

minimize data complexity while keeping the most relevant elements required for 

categorization. Dimensionality reduction proved critical in speeding up the training of 

deep learning models like ResNet and GoogleNet while preserving important visual 

information. 

PCA has various variations that address specific constraints of the traditional PCA 

method. These versions provide greater flexibility and efficiency with high-

dimensional or non-linear data. Kernel PCA is one variant of PCA is non linear 

extension of PCA that allows for non-linear dimensionality reduction using kernel 

functions [79]. Common Kernel functions are Gaussian (RBF) kernel, Polynomial 

kernel, and Sigmoid kernel.  
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                           Table 3.3 Compare the result of PCA and Kernel PCA for different images. 

 Mean Square 

Error for PCA  

Structure 

Similarity Index 

for PCA 

Mean Square 

Error for Kernel 

PCA  

Structure 

Similarity Index 

for Kernel PCA 

Sample 1 30.97 0.97 0.43 0.99 

Sample 2 27.40 0.97 0.48 0.99 

Sample 3 19.17 0.98 0.46 0.99 

Sample 4 19.13 0.98 0.49 0.99 

Sample 5 12.02 0.98 0.49 0.99 

Sample 6 17.17 0.98 0.49 0.99 

Sample 7 37.18 0.93 0.47 0.99 

Sample 8 15.38 0.98 0.49 0.99 

Sample 9 21.76 0.99 0.51 0.99 

Sample10 14.70 0.99 0.49 0.99 

 

Kernel PCA uses the RBF kernel, which maps data into a high-dimensional space 

where nonlinear patterns are captured more effectively. As a result, it preserves 

image structures, textures, and edges more faithfully than linear PCA, leading to 

consistently high SSIM values. 

3.3.3 Algorithm of Proposed Work  

The preprocessing workflow contains several steps including Data cleaning, color jitter, 

random rotational, random horizontal, resize and feature and dimensionality reduction. 

Figure 3.13 presents a flow diagram of the proposed work. 
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Figure 3.13 Proposed Preprocessing  

Algorithm of Preprocessing of Dataset 

Step1: Upload the dataset. Load images and labels from the dataset. 

Step 2: Clean the dataset by removing the duplicate images in the dataset to avoid 

redundancy. 

Step3: Define Augmentation techniques: Color Jitter, rotation, horizontal flip and 

resize. Set brightness of 0.2, maximum rotaion is 5 degree in clockwise and 

anticlockwise direction, flip the image horizontally with 50% probability and resize 

image to 150x150. Append the augmented images to the training set. 

Step 4: Normalize pixel values , scale pixel values to the range [0, 1]. 

Step 5 : Flatten the images for Principal component analysis. 

Step 6 : Apply Kernel Principal Component Analysis. Choose a kernel function RBF 

for the Kernel PCA. Initialize Kernel PCA with the desired number of components and 

the selected kernel function. Fit Kernel PCA on the combined matrix of flattened 

images. Transform the combined matrix to reduce dimensionality based on Kernel 

PCA. 

    K(x,y)  exp (- || x-y||2 / 2σ 2    )     -------------------------------(5) 

Where  || x-y||2 is squared Euclidean distance between the two feature vectors. 

                σ  is the variance and our hyperparameter. 

Step 7: Split the dataset into training and testing datasets. 
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3.4 Conclusion 

The preprocessing techniques applied to raw satellite images include radiometric, 

geometric, atmospheric corrections, noise removal, normalization and filtering, etc. 

towards improving the quality of the image for further processing. In this work, we 

studied and interpreted different types of errors present in raw satellite images of 

landslide events and their impact on the accuracy of further landslide detection tasks. 

A strong preprocessing algorithm containing radiometric, geometric, and atmospheric 

corrections is then applied to improve the quality of satellite images. The results of 

preprocessing yielded in the experimental work are promising and the performance of 

the techniques is evaluated using quantitative analysis parameters such as PSNR, RMS, 

and SSIM. Further, these preprocessed images can be used in training and testing data 

sets of deep learning and machine learning models. Good-quality images can help to 

improve the training of the artificial model and helpful in the prediction of atmospheric 

conditions, and disasters like earthquakes, landslides and floods. 

Integrating data augmentation and Kernel Principal Component Analysis (PCA) into 

the preprocessing workflow provides considerable advantages for increasing model 

performance in tasks such as image classification using Convolutional Neural 

Networks.  Data augmentation adds diversity to the training set by producing versions 

of the original dataset using techniques such as rotation, scaling, and flipping. This 

allows the model to generalize better to new data, lowering the likelihood of overfitting. 

These strategies combine to generate a more robust model that can reliably predict 

classes in complex datasets, eventually leading to enhanced performance of deep 

learning models. Kernel PCA reduces the dataset's dimensionality while keeping its 

fundamental properties. This not only accelerates the training process, but also helps to 

alleviate the curse of dimensionality, making the model more efficient and effective. 

Kernel PCA can help filter out noise and less significant features by reducing 

dimensionality, resulting in a cleaner dataset for better training and model accuracy.The 

combination of data augmentation with Kernel PCA in the preprocessing step 

considerably increases the quality and efficacy of the dataset used for training. 
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Chapter 4  Deep Neural Network for Detection of Landslide  

Convolutional Neural Networks have transformed the field of computer vision, with 

exceptional results in picture classification, object recognition, and segmentation 

applications. Convolutional Neural Networks have emerged as a strong and crucial tool 

in the field of deep learning, particularly for applications like image processing and 

computer vision. Inspired by the structure and function of the human visual system, 

CNNs are meant to automatically and adaptively learn spatial hierarchies of 

characteristics from input images. CNNs' capacity to extract useful characteristics at 

many levels of abstraction has allowed them to achieve cutting-edge performance in a 

number of applications, including object detection, image classification, medical image 

analysis and facial recognition. 

4.1 Architecture of Convolution Neural Network    

A convolutional Neural Network is a feed-forward deep neural network that contains 

three layers: input layer, hidden layer and output layer. CNN uses images as input and, 

through iterative training, automatically modifies the network's parameters based on 

the discrepancy between the network's output and the provided ground truth.CNN is 

used in computer vision which is a branch of Artificial intelligence. The basic 

architecture of CNN has multiple layers except for input and output, this network 

contains a convolutional Layer, Pooling Layer, and Dense layer as shown in Figure 4.1. 

CNN architecture have two main parts: feature extractor and classifier. Feature 

extractor also known as encoder has convolution layer, activation layer and pooling 

layer. Classifier also know as a decoder have fully connected or dense layer [80], [81]. 
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Figure 4.1 Basic CNN Architecture 

1. Input Layer: The input layer receives the image as input and passes it to the 

next layer.  

2. The Convolutional layer: The Convolutional layer is core of CNN and the 

majority of computation occur in the CNN’s core convolutional layer. CNNs 

are built on convolutional layers, which perform convolution on the input 

image. This layer requires a few components: input data, a filter, and a feature 

map. Each convolution process uses a filter or kernel to slide across the input 

image, conducting element-wise multiplications and adding the results to 

create a feature map. The convolutional layer applies a set of filters to the input 

image to extract the features such as edges, shapes and texture. The filter size 

is generally a 3x3 matrix applied to the image and dot product of input pixels 

and the filter is fed into the output array is known as a feature map. This 

procedure enables the network to identify local patterns like edges, textures, 

and forms. Multiple filters can be used to capture different features, resulting 

in a diverse set of feature maps that reflect various characteristics of the input 

data. Different filters like sobel filter is used to detect edges and the average 

filter is used for enhancement.  
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3. Activation Function : A linear convolutional layer followed by nonlinear 

activation function f. Activation functions can be binary, sigmoid, and 

Rectified linear unit (ReLu ) functions. The Rectified Linear Unit (ReLU) is 

one of the most popular activation functions due to its simplicity and 

effectiveness. It enables the model to learn complicated patterns by 

representing non-linear correlations between features. 

   Output feature map = f (input x weights + bias)    -----------------------(6) 

 

Where f is the activation function. Figure 4.2 shows the output feature map 

obtained by pixel-by-pixel scan of input image with the filter of size ( n x n x c) 

where c is a number of channels. The output is processed by numerous 

convolutional layers, and activation functions are given to the next pooling layer. 

The pooling layer follows the convolution and ReLU activation functions. 

 

 

 

    

          ReLu    

 

 

   Input (5x5xC)                 Filter (3x3xC)              convolutional input           Activation output  

                                                           (3x3xC) 

Figure 4.2 The Convolution layer function in CNN 
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4. Pooling Layer : Pooling layers are used to minimize the spatial dimensions of 

feature maps while still keeping the most important information. It is the 

process to downsampling and reducing the size of the matrix and increase the 

computational speed. It is used to select the prominent features from the output 

image. This layer consists of a filter with a defined stride size that moves 

across the feature map area. Maximal and average are two common pooling 

operations. The maximum value is stored in feature maps with the maximal 

pooling operation, while the average value is stored in feature maps with the 

average operation as shown in Figure 4.3. Max pooling, which selects the 

highest value from a given window, is widely employed. This downsampling 

strategy not only reduces computing cost, but it also helps to avoid overfitting 

by introducing translation invariance. Which type of pooling is used depends 

on the type of information required. The flatter function converts the multi-

dimensional matrix into a single-dimension vector. This vector is then 

provided to the fully connected layer shown in Figure 4.4.   

 

                                                            
Figure 4.3Two Pooling operations with pooling window 2x2. 

 

 
Figure 4.4 Flattening operation  

5. Fully Connected Layer: At the network's end, fully connected layers use the 

features learned from previous levels to produce predictions. These layers 

connect every neuron in the previous layer with every neuron in the current 
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layer, eventually leading to an output layer that computes the final 

categorization scores. 

Since the topic of artificial intelligence has grown, CNNs continue to play an important 

role in the creation of intelligent systems capable of comprehending and interpreting 

visual data. Their architecture, inspired by biological systems, allows them to acquire 

hierarchical representations, making them important for sophisticated visual 

identification tasks. 

4.2  Deep Learning 

Deep learning is a specialized subset of machine learning that utilizes neural networks 

with multiple layers—often referred to as deep neural networks—to model complex 

patterns in data. Traditional machine learning methods are simple and typically depend 

on manual feature extraction whereas in deep learning feature extraction is an automatic 

process that allows the network to learn directly from raw data. In this system, lower 

network layers collect basic data from images, such as edges and textures, while higher 

layers combine these features to capture more abstract ideas, such as shapes or 

individual objects. This ability to learn progressively complicated representations 

makes deep learning especially useful for applications where feature engineering is 

difficult or impossible [82]. 

Deep learning has drawn tremendous amounts of attention for its exceptional ability to 

handle unstructured data like pictures, audio recordings, and text. One of its key 

advantages is its ability to handle large amounts of data efficiently. As big data has 

become more widely available, deep learning models have demonstrated the capacity 

to significantly increase their performance by using enormous datasets. Additionally, 

in the field of computer vision, deep learning models have outperformed standard 

algorithms in image categorization tasks, identifying complicated patterns with more 

accuracy. CNN models have revolutionized object identification and picture 

segmentation in computer vision, enabling precise real-time applications in industries 

such as autonomous driving and monitoring. Another significant benefit of deep 

learning is its adaptability and scalability. Deep learning models can be easily 

customized to perform a variety of tasks by fine-tuning pre-trained networks on specific 
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datasets. This adaptability enables practitioners to use current models to achieve high 

performance in a variety of areas, including healthcare where deep learning aids in 

disease diagnosis from medical images, finance, where it improves fraud detection 

systems and  disaster management where it save life and property by prediction and 

detection of disasters. Deep learning stands out for its capacity to automatically learn 

rich representations from data, particularly unstructured data, while delivering higher 

performance across a variety of tasks. Its adaptability and effectiveness make it an 

essential framework for the improvement of modern artificial intelligence [83]. 

4.2.1 Deep Residual Network 

Deep learning models have significantly advanced in recent years, enabling the building 

of deep neural networks with multiple layers. Deep neural networks have several hidden 

layers and are difficult to train. Training deep models can be difficult as the number of 

layers in a neural network rises. Residual Networks, or ResNets, are a type of deep 

neural network that tackled these most significant difficulties in deep learning. Deep 

networks are harder to train because of vanishing gradient problems. Deeper networks 

survived worse than shallower networks, not because of overfitting, but due to 

optimization challenges. As networks traveled deeper, the gradients of the loss function 

decreased, making it impossible to propagate error back to earlier layers—this is known 

as the vanishing gradient problem. The Residue Network is used to avoid the vanishing 

gradient problem that happens while employing backpropagation to update the weights. 

The residual block is shown in Figure 4.5 below, input is represented by X, Output I is 

represented by Y, F(x) is output after the operation function of two convolution layers. 

These blocks incorporate a shortcut pathway, effectively functioning as an identity 

function, thereby indirectly bypassing the training process for one or more layers. A 

residual network adds input directly to the calculated value or loss function and tries to 

make the loss function equal to zero, so that input must be equal to output. Feedforward 

neural networks with "shortcut connections" can implement Y= F(x) + x . Residual 

Networks are deeper neural networks but are easy to train and easy to optimize. This 

network provides highly accurate results [84], [85] 
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Figure 4.5 Skip Connection on ResNet 

There are two types of residual blocks in ResNet: Identity block and convolutional 

block. 

Identity Block: In this block, the input and output dimensions remain unchanged, and 

the shortcut connection adds the input to the output without any modification. 

Convolutional Block: If the dimensions of the input and output differ due to 

downsampling, the shortcut connection uses a convolution operation to match the 

dimensions before adding the input to the output. 

Bottleneck : The bottleneck design is an important aspect of deeper ResNet structures. 

It optimizes the architecture by lowering computational costs while retaining excellent 

performance. The word "bottleneck" alludes to the architecture's method of reducing 

and then expanding the dimensionality in each residual block, which makes the network 

more efficient while maintaining its capacity to learn rich, complicated representations. 

Each residual block in the bottleneck design consists of three layers of convolutions: 

1x1 convolution layer for Dimensionality Reduction, 3x3 Convolution for Feature 

Extraction, 1x1 Convolution for Dimensionality Restoration. As shoen in Figure 4.6 

1. 1x1 convolution: The first layer in the bottleneck block is a 1x1 convolution, 

which minimizes the number of channels and thereby compresses the data. This 

lowers the computational cost by reducing the amount of feature maps that must 

be processed in subsequent layers. 

2. 3x3 Convolution: Following dimensionality reduction, the second layer is a 3x3 

convolution, which performs the fundamental feature extraction operation. This 

layer gathers spatial information while reducing computing overhead by acting 

on compressed feature maps. 
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3. 1x1 convolution :A second 1x1 convolution layer is used to restore the original 

number of channels. This ensures that the network's depth and width are 

retained while taking use of the efficiency gained during the intermediate steps. 

 

Figure 4.6 Bottleneck Residual 

Residual Networks introduced different architectures with varied depths. The 

deeper variants, such as ResNet-50 and beyond, use bottleneck layers to lower the 

computational cost of deeper networks while preserving performance. 

Benefits of Residual network  

1. Correction of the Vanishing Gradient Problem:ResNet's skip connections 

enable gradients to flow directly through the network's layers, avoiding the 

vanishing gradient problem that affects deep networks. This leads to more 

reliable training with very deep architectures. 

2. Scalability and Flexibility: ResNet architectures  have been able to scale much 

deeper than was previously possible with conventional deep networks. Because 

ResNet can train networks with more than 100 or even 1,000 layers, it is a very 

adaptable model for a wide range of applications 

3. Easy Optimization: Instead of forcing the network to learn the full 

transformation between layers, ResNet simplifies the learning process by 

asking the model to focus on learning the residuals. This leads to more efficient 

training and quicker convergence. 

4. Better Generalization: Residual learning improves both training performance 

and the model's ability to generalize to new inputs. Networks with residual 

connections achieve improved test performance across many applications. Skip 

connections simplify optimization and reduce overfitting, allowing the model 
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to focus on learning key residuals and boosting generalization to real-world 

problems. 

5. Enhanced Accuracy: Residual learning has dramatically increased accuracy 

in different applications with ResNet models setting new standards. It permits 

the capture of both low- and high-level characteristics, which improves 

precision in a variety of computer vision tasks. Beyond vision, residual 

connections have been modified for speech recognition and natural language 

processing, improving performance in a variety of applications. 

ResNet has different architectures and ResNet101 and ResNet50 are used in this study 

along with Inception GooglNet 

4.2.2  Architecture of ResNet 50  

ResNet50 is a deep convolutional neural network with 50 layers that incorporates the 

main concept of residual blocks with skip connections. These skip connections allow 

the model to learn residual functions rather than entire transformations, making it easier 

to train the network even with multiple layers. ResNet50 comprises of 16 residual 

blocks, each with three convolutional layers. The residual blocks use skip connections, 

which bypass one or more levels and connect a block's input to its output immediately. 

ResNet50 comprises of 16 residual blocks, each with three convolutional layers. The 

residual blocks use skip connections, which bypass one or more levels and connect a 

block's input to its output immediately. These connections are critical for reducing the 

vanishing gradient problem, which arises in very deep networks when gradients 

decrease as they propagate back through several layers during training. These skip 

connections allow gradients to flow more easily, resulting in smoother and more 

efficient deep network training. 

ResNet50 consists of 50 weight layers, including convolutional, pooling, and fully 

connected layers. The piled remnant blocks, on the other hand, represent a significant 

architectural innovation. These deep layers enable the network to extract high-level 

information that are required for more difficult tasks like picture categorization and 

object detection. 
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ResNet 50  designs differ only in terms of the number of layers. Figure 4.7  shows 

ResNet 50  architecture [86][87]. Different layers perform different roles, and the 

machine can learn from data and extract information that is useful in categorization. 

Convolutional layers extract features from an input image using a succession of 

convolutional filters. Batch normalization used before the activation function helps to 

improve generalization, Faster convergence  and Regularization. The activation 

function is an excellent approach to create nonlinearity in the output of a neuron. 

ReLU(x)=max(x,0) where x is input,  is a piecewise linear function, making it 

computationally efficient to compute and differentiate while avoiding the vanishing 

gradient problem. Maximum polling is used to keep the essential information and 

reduce the dimensions of feature maps that are generated from the first convolution 

layer. It overcomes the overfitting issue, computational cost and reduces the noise. 

There are two blocks in ResNet: identity block and convolution block. An identity block 

or skip connection maintains the same dimensions of the input and output image. The 

convolutional or projection block is used when the dimensions to input and output are 

different as shown in Figure 4.8. ResNet50 has 3 layers in second convolution layer, 

and 4 layers in the third convolution layer. In fourth convolution layer have 6 layers in 

ResNet 50. Networks have  3 layers of filter size 512, 512, 2048 followed by average 

pooling layer. Average pooling takes average value of specified area and reduce the 

size of image. Flattening uses a flatter function to convert matrix in to single dimension 

vector whose output is fed to fully connected layer also named as dense layer. Each 

neuron in a fully connected layer receives input from all neurons in the preceding layer 

. Fully connected layer are often employed as the last layers in a neural network and 

make the final predictions. The output is then calculated as a weighted sum of its inputs, 

followed by an activation function shown in equation (7) 

Y (out)= Ծ (∑Xi Wi+bi) -------------------------------------(7) 

Where Ծ  is activation function, Y is the output of the neuron, X is the input neuron, W 

is the weight vector and b is Bias  
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Figure 4.7 ResNet 50 Architecture 

 

 

Figure 4.8 Skip and convolution connection 

4.2.3 Architecture of ResNet 101  

ResNet 50 and ResNet 101 designs differ only in terms of the number of layers. 

ResNet101 expands ResNet50's design by 101 layers, allowing it to learn more 

complicated data representations. ResNet101, like ResNet50, combines residual blocks 

with skip connections to provide efficient training and avoid the vanishing gradient 

problem. However, it has 33 residual blocks instead of 16, therefore it is substantially 

deeper. This increased depth allows ResNet101 to extract more detailed and 

hierarchical features from the data, potentially improving performance on applications 
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requiring finer-grained feature identification, such as picture classification at high 

resolutions or object detection in congested environments. ResNet101's additional 

layers allow it to capture more complex patterns and relationships in the data. This is 

particularly useful for large datasets or highly detailed tasks.Figure 4.9 shows ResNet 

101 architecture [86][87].  

Both ResNet50 and ResNet 101 has 3 layers in second convolution layer, and 4 layers 

in the third convolution layer. In fourth convolution layer have 6 layers in ResNet 50 

and  23 layers in ResNet 101. Both networks have  3 layers of filter size 512, 512, 2048 

followed by average pooling layer.  

 

Figure 4.9 ResNet 101 architecture 

4.3 GoogleNet 

GoogleNet, developed as part of the Inception architecture, revolutionized deep 

learning by delivering a computationally efficient and powerful network structure. 

GoogleNet, unlike typical convolutional neural networks (CNNs) that rely on 

sequential layers, employs a new Inception module that enables the network to perform 

convolutions of varying filter sizes in parallel. GoogleNet's primary breakthrough is its 

capacity to execute feature extraction with improved computational efficiency, 

allowing for the training of deep networks without requiring excessive resources. 

GoogleNet has 22 layers, which is substantially deeper than previous systems. Despite 
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its complexity, GoogleNet is more computationally efficient thanks to the creative 

utilization of Inception modules [88] [89]. Rather than using completely linked layers , 

GoogleNet uses global average pooling at the final layer. Global average pooling 

substitutes fully linked layers, which typically introduce a high number of parameters, 

lowering the danger of overfitting. This pooling method averages the spatial dimensions 

of the feature maps, acting as a regularizer and increasing the model's robustness, 

particularly when working with larger datasets. 

The Inception module, which is at the center of GoogleNet, presents a new approach of 

stacking layers. Rather than applying the same convolution to the whole network, the 

Inception module runs convolutions with filters of varying sizes in parallel.Each 

inception module has 1x1 convolution, 3x3 convolution, 5x5 convolution as shown in 

Figure 4.10 

 

1. 1x1 convolution: This layer performs dimensionality reduction, which helps to 

save computational costs by lowering the number of channels before performing 

larger convolutions. It catches fine-grained characteristics. 

2. 3x3 convolution: This filter is intended to capture medium-sized spatial 

patterns while maintaining a balance between spatial resolution and 

computational cost. 

3. 5×5 convolution: The 5x5 filter extracts broader features over a larger receptive 

field, helping the network capture more complex and wider spatial patterns. 

4. 3×3 max pooling : Pooling activities are performed concurrently to provide 

more context while reducing geographical dimensions. 
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Figure 4.10 GoogleNet Inception Module 

4.4   Attention Mechanism  

Deep learning models have made considerable advances in image processing, but some 

issues remain, such as detecting meaningful characteristics from large images. The 

attention mechanism, modeled after human visual perception, provides a strong 

solution by allowing models to focus on the most informative aspects of a picture. 

Attention mechanisms improve the model's ability to process visual data by altering the 

relevance of different regions or characteristics.The attention mechanism utilized in 

CNN focuses on specific parts of the input in the input feature map and dominates other 

regions in the background, improving the performance of CNN in prediction. Various 

types of attention model are spatial attention, channel attention, self-attention, and 

multi-scale attention.[90]. To introduce an effective attention module for classification 

and prediction convolution layer, activation function, pooling layer and fully connected 

layers are combined in different ways. Convolution block attention module has two 

sub-modules: Spatial attention module, the Channel Module. The input image is in 3D 

matrix(w x h x c) where w and h are the width and height of the feature map respectively 

and c is the total number of channels. C is decided by the total number of filters used in 

that layer. 
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4.4.1 Spatial Attention 

Spatial attention focuses on important regions that is useful for the task of classification. 

Spatial attention is concerned with where the model should concentrate inside an image, 

emphasizing crucial spatial regions that contribute the most to the prediction. This 

method is very beneficial in applications like image segmentation and object 

recognition, which need the model to recognize specific regions of interest, such as 

objects or edges. Spatial attention in satellite imagery used for landslide detection 

assists the model in prioritizing areas of instability or movement, hence improving the 

detection of high-risk zones. 

The architecture of Spatial Attention includes the production of an attention map that 

focuses on the most relevant spatial regions of a feature map. It is designed to help a 

neural network attention to the most significant sections of an image while ignoring 

less informative regions. It is designed to help a neural network attention to the most 

significant sections of an image while ignoring less informative regions [91]. 

Spatial Attention architecture as shown in the Figure 4.11 have three layers: input 

feature map, pooling, and convolution. 

1. Input Feature Map 

The spatial attention module operates on the feature map generated by a CNN's 

convolutional layer.Input of the spatial attention module is a feature map  X ∈ 

RC x H x W    where C is number of  channel, H, W is height and width  of feature 

map.  

2. Pooling 

Two types of pooling operations are performed in this step: max pooling and 

average pooling. Max pooling captures the most significant features in each 

spatial region across all channels. Average Pooling measures the average 

feature value at each spatial location across all channels. 

Xmaxpooling    = MaxPool(X)                  ----------------------------(8) 

Xaveragepooling  = AveragePool(X) ----------------------------(9) 

3. Concatenation 

The results of the max pooling and average pooling processes are then 

concatenated along the channel axis to form a combined feature representation 

that captures both the maximum and average context. The combined feature 
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map subsequently passes through a convolution layer to produce the spatial 

attention map. 

X concatenate =  Concat(Xmaxpooling,   Xaveragepooling  )      ----------(10) 

X spatialattention = σ (Conv 7x7  (X concatenate ))           ----------(11) 

Where σ is sigmoidal activation function,  Conv 7x7   is convolution operator 

with kernel  7x7. 

X spatialattention = σ (Conv 7x7 (Xmaxpooling,   Xaveragepooling ))    ---------(12) 

4. Fully Connected layer 

Combined output is applied to convolution layer.  This layer generates a mask 

between 0&1  with  sigmoid function and a single filter. The batch norm layer 

is used to normalize the output of convolution  

 

 
Figure 4.11Architecture of spatial attention 

4.4.2 Channel Attention 

Channel attention is a technique used to concentrate attention on the most significant 

information across many channels.In terms of channel attention, the network learns to 

prioritize some feature channels over others. This helps the model to prioritize channels 

containing more relevant information. Channel attention map by taking advantage of 

the features' inter-channel relationships. Every channel in a feature map functions as a 

feature detector; its attention is directed towards determining "what" is significant in 

relation to the input image. This is accomplished by first performing a global pooling 

operation, then applying two fully connected layers (or convolutional layers) and a 
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sigmoid activation function. Number of neuron in MLP is decided by reduction ratio. 

MLP output is the provided to sigmoid layer [92]. A channel attention map was created 

by leveraging feature relationships across channels. In Channel attention weights are 

assigned to each channel, enhancing those channels that contribute to learning and 

improving overall model performance [93]. 

 

Channel Attention Module 

Channel Attention architecture as shown in the Figure 4.12 has three layers: input 

feature map, Globalpooling and convolution.  

1. Input Feature Map 

The input to a channel attention mechanism is a feature map as X ∈ RC x H x W    , 

where C is number of  channel, H, W is height and width of feature map.  

2. Global Pooling 

To summarize the information from each channel, a global pooling procedure 

across spatial dimensions is used. To extract global information from each 

channel, two types of pooling are : Global Average Pooling (GAP), Global 

Max Pooling(GMP).Global Average Pooling  computes the average value for 

each channel over all spatial positions. Global Max Pooling selects the 

maximum value across all spatial positions for each channel. Both GAP and 

GMP reduce the spatial dimension of the feature map to two Cx1 vector. 

Resulting in a descriptor Y ∈ RC  where C is number of  channel. 

Y= GlobalPooling(x)=(AvgPool(X)+(MaxPool(X)) --------(13) 

3. Fully Connected layer  

Following global pooling, the two vectors are passed through shared completely 

connected layers, producing a weight for each channel. This descriptor is then 

sent through two fully connected layers with a nonlinear activation (ReLU), to 

introduce nonlinearity. This stage generates a collection of channel weights, 

with each channel assigned a different priority score. The fully connected layers' 

outputs are then sent through a sigmoid activation function, producing a weight 

value between 0 and 1 for each channel. 
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ML (Z) =  σ  (MLP(Relu(GlobalPooling(x))) 

ML (Z) =  σ  (MLP( ReLu((AvgPool(X)+(MaxPool(X)))) 

ML (Z) =  σ  (MLP( ReLu(AvgPool(X)+ReLu(MaxPool(X))) 

ML (Z) =  σ (W2(Relu(W1 (Xc 
avg )  + W2(Relu(W1 (Xc 

max )))         ----------(14) 

 
 

 

Figure 4.12 The architecture of Channel Attention 

4.4.3 Squeeze-and-Excitation (SE) Blocks 

 SE blocks are a prominent method of integrating attention with convolutional 

networks. These blocks use channel attention, which "squeezes" global information and 

"excites" important feature channels by dynamically scaling them based on their 

relevance [92]. This SE block is categorized in three parts: Squeeze, Computation, 

Excitation as shown in Figure 4.13. 

 Squeeze : Global average pooling is applied to the CNN layer's output feature 

map. This effectively takes the average value of all activations in the spatial 

dimension (H x W), resulting in one activation per channel. This produces a 

vector of shape (1 x 1 x C). 

 Computation: The previous operation's vector is sent through two fully 

connected layers in succession. This achieves the goal of fully capturing 

channel-wise dependencies derived from the spatial mappings. After the first 

FC layer, a ReLU activation is applied, followed by a sigmoid activation after 

the second. The report also mentions a reduction ratio, which means that the 
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intermediate output of the first FC layer has a reduced dimension. The end result 

of this phase is also shaped (1 x 1 x C). 

 Excitation: The computing step's output is utilized to create a weight 

modulation vector for each channel.  

 

 
Figure 4.13 Architecture of Squeeze-and-Excitation (SE) 

4.4.4 Self-Attention 

Self-attention techniques, as employed in Transformer models, can also be applied to 

convolutional networks. Self-attention enables the network to represent links between 

various parts of the image by computing attention ratings across spatial locations or 

channels [94] [95]. This method can be used in deeper layers of ResNet and GoogleNet 

to record long-range dependencies within an image, allowing the network to handle 

more difficult tasks like object detection and semantic segmentation. 

4.5 Proposed work 

In this research work we have explored open source Biji’s landslide database for 

landslide detection method using deep learning network with ResNet50, ResNet 101, 

GoogleNet and Attention module.  Landslide detection flowchart consist: data 

preprocessing (augmentation and resizing of images) , data-based labelling for training 

and testing(Lnadslide and non landslide), training backbone networks (ResNet50, 

ResNet 101, GoogleNet), training and testing attention module, evaluate the result and 

optimize the result.  
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Figure 4.14 Proposed Flow diagram 

Algorithm  

 

Step 1: Create a database from satellite images.  

Collect satellite images of landslide events and non-landslide events .  

Step 2: Preprocessing  

To increase the diversity of the images perform Augmentation and principal component 

analysis on collected images  Resize the image to match symmetry.  

Step 3 : Create database: Divide input data in to two class Landsldie and non 

landslide. 
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 Training dataset (Landslide and Non landslide ): Landslide(X train) is a set of 

images for training. 

 Testing data set (Landslide and Non landslide ): Landslide (X test) is a set of 

images for testing. 

 

Step 4: Build deep learning model  

 Define a CNN architecture with convolution layer, pooling layer and fully 

connected layer . 

 Use the activation function as ReLU. 

 Use a dropout layer for regularization  

 Select loss function  

 Select an optimizer like Adam and learning rate. 

 Use a series combination of channel and spatial attention mechanism. 

 Take different backbone network : ResNet 50, ResNet101, GoogleNet, 

Attention Model. 

Step 5: Compile the Model 

 Compile the model with selected parameters like an optimizer, loss function and 

evaluation parameters . 

Step 6: Train the Model 

 Input the images training dataset (landslide and non landslide ) 

 Select the batch size and epoch. 

 Train the model with the different batch size and epochs to minimize loss. 

 Select the number of Epoch based on convergence. 

Step 7 : Evaluate the model  

 Evaluate the model for test database. 

 Calculate accuracy, F1 score and precision.  

 Analysis the result for better performance. 

Step 8: Improve the model 

 If the result is not good then need to adjust the hyperparameters, backbone 

Architectures and transfer learning. 
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Step 9: Predication landslide  

 Use a trained model to predict a landslide and non-landslide image that is not in 

the database. 

 

4.5.1 Placement of Attention Module 

Attention Module can be arranged in different ways in any CNN network. Individual 

or a combination of attention modules can be placed in a residue block in the residual 

network or after inception block in googleNet. The attention module can be placed in 

the last residue block to refine the hidden layer or can be placed in the output of 

the residue network to refine the output map in the Residual network.  

Channel and Spatial module can be arranged in three submodules: Sequential channel 

spatial module, sequential spatial channel module, paraller spatial and channel module.  

In our proposed work we place a sequential combination of channel spatial modules in 

the hidden layer of the residue network and after Inception block in googleNet. It 

refines the hidden layer for better results. 

4.6 Experimental setup 

4.6.1 Evaluation parameter 

In proposed deep learning classification algorithms confusion matrix is used to evaluate 

the result. To evaluate the result we select four common metrics which are precision, 

recall, accuracy and F1-score. The confusion matrix presents a table as shown in Table 

4.1 where T predicts the true value, and F predicts False value. P and N represent 

positive and negative type of prediction. To classify the result TP(True Positive), TN 

(True Negative), FN(False Negative), FP(False Positive) are used . 

Table 4.1 Confusion matrix to classify landslide 

Actual Value Predicted Positive Predicted Negative 

Ground Positive TP TN 

Ground Negative FP FN 
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Precision count the fraction of genuine positive prediction of landslide among all 

instances predicted as positive by the model, as shown in equation (15) 

 

Precision = 
୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ

୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣା୊ୟ୪ୱ  ୮୭ୱ୧୲୧୴ୣ 
  ----------------- (15) 

 

Recall assesses the model's ability to properly identify all positive instances 

among all actual positive instances, as shown in equation (15) 

 

    Recall = 
୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ

୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣା୊ୟ୪ୱୣ ୒ୣ୥ୟ୲୧୴ୣ 
                  ------------------ (16) 

 

F1 score combines both precision and recall into a single value and can better 

explain the result of classification. F1 score is calculated as the harmonic mean 

of precision and recall , as shown in equation (15) 

 

                          F1-score = 2 𝑋
୔୰ୣୡ୧ୱ୧୭୬ ଡ଼ ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡ  
 = 2 X  

୘୔

ଶ ଡ଼ ୘୔ା୊୔ା୊୒
      -------- (17) 

Accuracy is basic matric used to evaluate the overall performance of 

classification. It measures the proportion of truly classified instances among all 

instances in the classification dataset. 

 

Accuracy = 
୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣା୘୰  ୒ୣ୥ୟ୲୧୴ୣ

୘୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୧୬ୱ୲ୟ୬ୡୣୱ 
   = 

୘୔ା୘୒

୘୔ା୘୒ା୊୔ା୊  
          --------(18) 

4.6.2   Computational Complexity  

In the experimental setup, the computational complexity of Convolutional Neural 

Networks (CNNs) is an important parameter that affects both the training and testing 

processes. Assessing computational complexity confirms that the models used are 

efficient, scalable, and appropriate for the given hardware resources. This 

computational complexity is based on the following important factors: 

 Floating point operations (FLOPS): The number of floating-point operations 

required for a single forward transit through the network is a common measure 

of computational cost. FLOPs measure the number of operations performed 
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during convolutions, activations, pooling, and fully linked layers. Higher 

FLOPs typically indicate a more computationally intensive model, which might 

influence processing performance and resource requirements. 

FLOPS for Convolution layer = 2(Cin x Cout x H x W x Kh xKw )  --- (19) 

Where  Cin, Cout  : Number of input and output channel,  

             H,W: Height and width of the output feature map 

             Kh xKw  : Height and width of the convolution kernel. 

 

         FLOPS for Fully Connected Layer = 2 (Input size x output size)   ----(20) 

 Number of Parameters: The total number of trainable parameters in a CNN 

reflects the model's size and memory requirements. Networks with a higher 

parameter count require large storage memory and typically require longer 

training times. This study compares the parameter efficiency of various 

architectures to understand their scalability and computational burden. 

 Inference Time: Inference time is the time required for the model to process a 

single input sample and make a prediction. It is especially important in real-time 

applications, where minimal latency is required. Efficient models with shorter 

inference times are chosen for scenarios with stringent timing constraints. 

 Input Size: Larger input dimensions increase the number of computations 

because convolutions are done on all pixels. 

 Number of Layers: Deeper designs include more layers and thus more 

operations, which increases computing needs. 

4.6.3  Hyperparameters 

 Learning Rate: The initial learning rate was chosen to guarantee that the model 

takes tiny, controlled steps towards minimizing the loss function. A learning 

rate scheduler was used to gradually reduce the learning rate between epochs. 

The learning rate was near to zero, therefore the model converged to an optimal 

solution without overshooting. 

 Batch Size: The batch size of 64 and 32 were chosen to strike a compromise 

between memory utilization and training stability. For large datasets, greater 

batch sizes aid in faster convergence but demand more memory. 
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 Epoch: The number of epochs was chosen to balance computational costs and 

model performance. Training for additional epochs can improve performance, 

but it also increases the risk of overfitting, therefore early-ending conditions 

could be investigated in future studies. 

 Weight Decay: A weight decay was employed to regularize the model, 

preventing the weights from growing too big and thereby improving 

generalization on the validation dataset. 

 Gradient Clipping: Gradient clipping with threshold value was used to keep 

gradients from inflating, which could cause instability during training, 

particularly when employing sophisticated models such as ResNet. 

 Optimizer: The Adam optimizer was chosen because of its ability to 

dynamically modify learning rates during training, resulting in faster 

convergence than stochastic gradient descent (SGD). 

 

4.6.4 Training and Validation 

 Dataset splitting : Dataset was split in two training and testing datasets. No test 

data was used in training dataset  as the aim was to optimize the models during 

the training process. 

 Overfitting Prevention  

 Dropout: To prevent overfitting, a dropout layer was utilized during 

training, with half of the activations set to zero at random. 

 Data Augmentation: To improve the generality of the models and 

simulate differences in real-world circumstances, the augmentations 

such as : color jitter, resize, random horizontal, random rotation were 

applied. 

 PCA and Kernel PCA: These strategies were tested for dimensionality 

reduction to improve model performance by removing redundancy in 

features. 
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4.6.5 Hardware setup 

Device : The experiments were carried out on a desktop computer (DESKTOP-

35FIQ2R) outfitted with an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz. This 

8-core CPU provided ample computational capability for the data preparation and 

model training requirements. 

RAM : 32 GB of RAM was allotted to handle huge batch processing and real-time 

data augmentations without creating memory constraints. 

DISK : The dataset and models were kept on a 1 TB SSD, which allowed for fast 

read/write performance while loading data batches and model checkpoints. 

The DESKTOP-35FIQ2R enabled the training of the model in a realistic timescale, 

while the RAM and SSD configuration ensured smooth data handling during 

training, particularly for big datasets and real-time augmentations. 

4.7 Experimental Result Analysis of Google Net 

For landslide detection and prediction initial stage is data collection. We consider the 

Bijie dataset for experimental results. This set of images contains two classes of data 

one is landslide and the other is non-landslide. Google Collaboratory is used for Python 

code. We began our study by assessing the performance of GoogleNet, a popular 

convolutional neural network design, for landslide detection. The model was trained on 

a dataset of landslide and non-landslide images. First, we apply GoogleNet as 

the backbone in the proposed model and then also assess the performance of 

the proposed model with and without a series combination of attention mechanism. The 

performance was evaluated using a variety of hyperparameter combinations which 

includes: 

 Learning rate= 0.00001 to 0.00005 

 Epoch= 3 to 9 

 Batch Size = 32 and 64 

 Weight Decay=  1e-4 

 Optimizer = Adam 
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These decisions were made based on preliminary testing, which revealed that a 

moderate learning rate and a reasonably high batch size were optimal for balancing 

computing efficiency with model convergence. 

4.7.1 GoogleNet Experimental result without Attention Mechanism 

During the training process, the model was evaluated using two critical metrics: training 

loss and validation loss. In addition, the Validation Accuracy was recorded to determine 

the model's capacity to generalize to previously unseen data. 

Initially, we considered batch size 64, learning rate 0.00005, and epoch 9 for 

GoogleNet. Table 4.2 presents the training and validation outcomes from the 9 epochs. 

The training loss, validation loss, and validation accuracy all consistently improve as 

the number of epochs increases. 

Table 4.2 Training and validation outcomes from the 9 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.6953 0.6760 0.6501 

2 0.00004 0.6787 0.6563 0.7132 

3 0.00005 0.6471 0.6008 0.8047 

4 0.00004 0.5978 0.5491 0.8990 

5 0.00004 0.5440 0.5128 0.8979 

6 0.00002 0.4851 0.4881 0.9040 

7 0.00001 0.4767 0.4772 0.8934 

8 0.00000 0.4506 0.4741 0.9062 

9 0.00000 0.4479 0.4751 0.9062 

 

With reference to the accuracy progression, the accuracy begins at 0.6501 in the first 

epoch and improves significantly over the following few epochs, reaching 0.8990 by 

the fourth epoch. After epoch 4, the accuracy varies slightly but stays close to 0.90, 

with very minor improvements between epochs 5 and 9. This indicates that the model 

has converged and no longer learns meaningfully from the data.The model's final 

accuracy of 0.9062 for epochs 8 and 9 indicates that it is performing consistently and 

is unlikely to benefit from additional epochs. This implies that the model successfully 
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learned the underlying patterns in the data during the early phases of training. Change 

in accuracy with respect to epoch is shown in Figure 4.15(a) 

   

                    (a) Accuracy vs. epoch                                     (b) Losses vs. epoch  

             Figure 4.15 Performance visualization of GoogleNet architecture  without attention for epoch 9 

Figure 4.15(b) presents the losses throughout nine epochs. The training loss steadily 

declines, as does the validation loss, until about the 5th epoch, when both losses 

plateau. Training loss starts at 0.6953 and gradually decreases with increasing epoch 

and at epoch 9 it is 0.4479. Validation loss is 0.6760 at epoch 1 and gradually decreases 

with increasing epochs and at epoch 9 it is 0.4751. After the 5th epoch, both training 

and validation losses plateau. This shows that the model has learned the majority of the 

data's patterns, and more training yields declining returns. After this point, more 

training epochs are unlikely to appreciably enhance the model. 

Overfitting happens when a model performs well in training but poorly in validation. 

This usually results in high accuracy on the training set but poor generalization to the 

validation or test set. Underfitting happens when a model fails to capture the underlying 

patterns in the data, resulting in significant training and validation losses and low 

accuracy. 

According to the loss curve, the model exhibits no evidence of overfitting or 

underfitting, and the hyperparameters selected (learning rate 0.00005, batch size 64, 9 

epochs, Adam optimizer) enable efficient training. However, the model's performance 

plateaus after the fifth epoch, implying that early halting could be used in future training 
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sessions to save needless computation and cut training time while maintaining 

accuracy. 

We now consider epoch 5, batch size 64 and learning rate 0.00005, for GoogleNet. 

Table 4.3 presents the training and validation outcomes from the 5 epochs. 

Table 4.3Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00004 0.6958 0.6849 0.5938 

2 0.00005 0.6391 0.5848 0.8195 

3 0.00003 0.5470 0.4924 0.9184 

4 0.00001 0.4707 0.4698 0.9324 

5 0.00000 0.4558 0.4740 0.9330 

 

The accuracy increased from 0.5938 in 1st epoch to 0.9330  in last epoch. The steep 

increase from epoch 1 to epoch 3 indicates that the model quickly learned to classify 

the validation set more accurately. The accuracy plateaued between epochs 4 and 5, 

suggesting that the model may have attained its peak performance under the current 

configuration. Change in accuracy with respect to epoch is shown in Figure 4.16(a)  

The training loss decreased consistently with each epoch, demonstrating that the model 

was successfully learning from the data. The validation loss initially showed a 

decreasing trend, indicating that the model's performance increased on the validation 

set until epoch 4. However, a minor increase in validation loss at epoch 5 indicates that 

the model may have begun to overfit slightly, as validation loss increased while training 

loss decreased. Figure 4.16(b) represents the losses throughout five epochs. 
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                              (a) Accuracy vs. epoch                            (b) Losses vs epoch 

Figure 4.16 Performance visualization of GoogleNet architecture  without attention for epoch 5 

Although the model performed well, with a validation accuracy of more than 0.93 at 

the end of training, the minor rise in validation loss after epoch 4 indicates a risk of 

overfitting. This could mean that the model is learning to fit the training data too 

closely, limiting its capacity to generalize. 

We change the hyperparameters for fine tunning, increase the learning rate 0.0001,  

epoch 9 and batch size 64. Table 4.4 presents the training and validation outcomes from 

the 9 epochs. 

Table 4.4 Training and validation outcomes from the 9 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00003 0.6916 0.6918 0.4710 

2 0.00008 0.6708 0.6520 0.6378 

3 0.00010 0.5911 0.5367 0.8270 

4 0.00009 0.4896 0.4502 0.9224 

5 0.00007 0.4410 0.4177 0.9403 

6 0.00005 0.4063 0.4083 0.9414 

7 0.00002 0.3689 0.4052 0.9453 

8 0.00001 0.4006 0.4096 0.9336 

9 0.00000 0.3652 0.4081 0.9453 

 
The Validation Accuracy improved significantly during the training process, starting at 

0.4710 in epoch 1 and reaching a high accuracy of 0.9453 in epochs 7 and 9 as shown 

in Figure 4.17(a). The sharp improvement between epochs 1 and 4 indicates that the 
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model learned efficiently during the early phases of training. Beyond epoch 7, the 

validation accuracy plateaued, indicating that the model has probably converged. 

The Training Loss dropped continuously during the epochs, from 0.6916 in epoch 1 to 

0.3652 in epoch 9, but afdter epoch 6 these is fluctuation in traianing loss. Training loss 

drop at epoch 7 and increase in epoch 8.  The Validation Loss declined consistently, 

with only slight changes after epoch 6. The lowest validation loss achieved was 0.4052 

in epoch 7. The decreasing loss values indicate that the model learned to match the data 

effectively, although the tiny oscillations in the validation loss at later epochs may 

indicate that the model was achieving peak performance. Figure 4.17(b) shows the  

losses throughout nine epochs. 

 

(a) Accuracy vs. epoch                                  (b) Losses vs epoch 

Figure 4.17 Performance visualization of GoogleNet architecture  without attention for epoch 9 

Despite a general downward tendency early in the training loss, the training loss 

increased at epoch 8 (0.4006) and fluctuated between epochs 6 to epoch 9. Although 

the training loss grew, the validation accuracy continued to improve, peaking at 0.9453 

at epoch 9. This shows that the model was still able to generalize effectively to the 

validation set. A minor rise in training loss as validation accuracy improves may suggest 

that the model is overfitting to specific features of the training data. After epoch 6, the 

model may have begun to memorize specific patterns in the training data that are 

ineffective for generalization. This can result in higher losses without a corresponding 

fall in validation accuracy. 
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The increase in training loss after epoch 6 could indicate a few potential points of 

concern. We reduce the batch size from 64 to 32 and train model for different learning 

rate and epochs.  

Now we consider the Learning rate 0.00005, batch size 32 and epoch 4.Table 4.5 

presents the training and validation outcomes from the 4 epochs. 

Table 4.5Training and validation outcomes from the 4 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00005 0.6813 0.6580 0.6301 

2 0.00004 0.6188 0.5504 0.8469 

3 0.00001 0.5329 0.5019 0.8948 

4 0.00000 0.5000 0.4966 0.8999 

 

The model's validation accuracy improves dramatically throughout training. Starting at 

0.6301 in epoch 1, accuracy gradually rises to 0.8999 by epoch 4. The significant 

increase in validation accuracy between epochs 1 and 2 indicates that the model quickly 

learns key patterns in the dataset. Change in accuracy with respect to epoch is shown 

in Figure 4.18(a) 

The training loss begins at 0.6813 in epoch 1 and rapidly drops to 0.5000 in epoch 4. 

This constant drop in training loss suggests that the model is learning from the data and 

capturing relevant features. The validation loss decreases from 0.6580 in epoch 1 to 

0.4966 at epoch 4. The validation loss follows the same declining pattern as the training 

loss, this indicates that the model applies well to fresh data. Figure 4.18(b) shows the  

losses throughout four epochs. 
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(a) Accuracy vs. epoch                                               (b)  Losses vs epoch 

Figure 4.18 Performance visualization of GoogleNet architecture  without attention for epoch 4 

The close alignment of training and validation losses shows that the model is not 

overfitting. The validation loss stabilizes in the last two epochs, indicating that the 

model has reached a nearly optimal solution. 

4.7.2 GoogleNet Experimental Result with Attention Mechanism 

In our proposed model, we use a series combination of channel attention and spatial 

attention in the inception block. Initially, the training was carried out across 9 epochs 

with a learning rate of 0.0001and batch size 64, for the proposed GoogleNet. Table 4.6 

presents the training and validation outcomes from the 9 epochs. 

Table 4.6Training and validation outcomes from the 9 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00003 0.6959 0.6973 0.4280 

2 0.00008 0.6660 0.6560 0.6161 

3 0.00010 0.5956 0.5591 0.7812 

4 0.00009 0.4767 0.4573 0.8968 

5 0.00007 0.4334 0.4074 0.9481 

6 0.00005 0.4180 0.3941 0.9648 

7 0.00002 0.4019 0.4002 0.9336 

8 0.00001 0.3972 0.3989 0.9492 

9 0.00000 0.3894 0.3895 0.9648 
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The model's validation accuracy increases dramatically, from 0.4280 in epoch 1 to 

0.9648 in epoch 9 as shown in Figure 4.19(a).  The model is expected to develop quickly 

in the early epochs as it collects essential properties from the training dataset. The 

highest validation accuracy is attained at epoch 6, with a value of 0.9648, which remains 

constant until the final epoch. After epoch 5, there are modest swings in accuracy, 

indicating that the model may have hit peak performance with the current settings. 

The training and validation losses reduce gradually and consistently during the training 

procedure as shown in Figure 4.19(b).  At epoch 1, the training loss is 0.6959, and the 

validation loss is somewhat greater at 0.6973. However, as training advances, both 

losses considerably decrease, with values of 0.3894 (training) and 0.3895 (validation) 

by epoch 9. Around epoch 6, there is a little rise in training loss while validation loss 

decreases. However, this is not a strong evidence of overfitting. 

 

(a) Accuracy vs epoch                    (b) Losses vs epochs 

Figure 4.19 Performance visualization of GoogleNet architecture  with attention for epoch 9 

The modest drop after epoch 5 could indicate slight overfitting, but overall accuracy 

remains excellent. This implies that, while the model is doing well, it may benefit from 

modifying hyperparameters such as the learning rate, batch size and epochs, approaches 

to reduce overfitting tendencies in further experiments. 

The training was carried out across 9 epochs with a learning rate of 0.0001. The results 

show a constant improvement in the training and validation performance. We now 

consider epoch 9, batch size 32 and learning rate 0.00005, for the proposed GoogleNet. 

Table 4.7 presents the training and validation outcomes from the 9 epochs. 
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Table 4.7 Training and validation outcomes from the 9 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.7223 0.7200 0.4727 

2 0.00004 0.6707 0.6240 0.6669 

3 0.00005 0.5270 0.4826 0.8320 

4 0.00004 0.4038 0.4074 0.8477 

5 0.00004 0.3297 0.3320 0.8555 

6 0.00002 0.2559 0.2905 0.8873 

7 0.00001 0.2681 0.2667 0.9129 

8 0.00000 0.2530 0.2610 0.9129 

9 0.00000 0.2576 0.2643 0.9258 

 
The validation accuracy increased from 0.4727 in the first epoch to 0. 9258 in epoch 9. 

This increase indicates that the model's predictions improved over time, particularly 

after epoch 5, when it passed the 0.85 threshold. Change in accuracy with respect to 

epoch is shown in Figure 4.20(a) 

The training loss began at 0.7223 in epoch 1 and decreased dramatically to 0.2576 in 

epoch 9. This continuous drop indicates that the model was successfully minimizing 

loss and learning patterns from the training data. The validation loss decreased 

significantly from 0.7200 in epoch 1 to 0.2643 by epoch 9, indicating the model's 

improved ability to generalize well on the validation data. Lower validation loss, 

particularly after epoch 6, indicates high generalization. Figure 4.20(b) shows the  

Training and validation loss throughout nine epochs. 
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                            (a) Accuracy vs epoch                                         (b) Losses vs epochs 

Figure 4.20 Performance visualization of GoogleNet architecture with attention for epoch 9 

The progressive modification in learning rate has a good effect on the model's training 

dynamics. The model achieved an acceptable accuracy of 0.8555 by epoch 5 and 

improved further to 0.9258 by epoch 9. The Adam optimizer with a batch size of 32 

and the gradual adaptation of the learning rate allowed for consistent training without 

evidence of overfitting. 

Now we consider Batch size 32, learning rate 0.0005 and 7 epochs to train the proposed 

model with googleNet as backbone. Table 4.8 presents the training and validation 

outcomes from the 7 epochs. 

Table 4.8 presents the training and validation outcomes from the 7 epochs. 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.6901 0.6758 0.5179 

2 0.00005 0.6581 0.6011 0.8960 

3 0.00005 0.5718 0.5101 0.8999 

4 0.00003 0.4885 0.4666 0.8935 

5 0.00002 0.4498 0.4364 0.9369 

6 0.00000 0.4202 0.4323 0.9413 

7 0.00000 0.4248 0.4301 0.9592 

 

The validation accuracy increased significantly, from 0.5179 at epoch 1 to 0.9592 at 

epoch 7. This significant rise in accuracy shows that the model is generalizing 
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effectively to previously unseen validation data, with performance steadily rising as 

training progressed as the Figure 4.21(a) 

Both training and validation loss reduce steadily over time. The training loss started at 

0.6901 in the first epoch and gradually decreased to 0.4248 by epoch seven. Similarly, 

the validation loss decreased from 0.6758 to 0.4301 from epoch one to epoch seven. 

This suggests that the model is boosting its learning capacity while avoiding overfitting 

or considerable underfitting. Figure 4.21(b) shows losses throughout seven epochs. 

 

(a) Accuracy vs epoch          (b)  Losses vs epoch 

Figure 4.21 Performance visualization of GoogleNet architecture  with attention for epoch 7 

Overall, the model has good learning ability and performance. The decrease in training 

and validation loss, combined with the constant increase in validation accuracy, 

demonstrates that the hyperparameters: learning rate, batch size, and optimizer, are 

properly set. The results imply that the model is neither overfitting nor underfitting, as 

it retains good accuracy while minimizing losses. 

4.7.3 Performance of GoogleNet 

During the experiment we conducted, it is observed that, GoogleNet without attention 

performed reasonably well; however, with a consistent decrease in both training and 

validation losses. Although accuracy values improved across epochs, they did not reach 

the levels seen when attention mechanisms were implemented. The model's learning 

was consistent, although there were times when the validation loss plateaued, indicating 

that the model may have struggled to grasp intricate spatial dependencies in the data. 
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When attention mechanisms were introduced, the model demonstrated a faster 

reduction in both training and validation loss. This improvement can be due to attention 

mechanisms, which assist the model in focusing on the most relevant elements of the 

input data. As a result, the model improves its generalization capabilities, resulting in 

increased validation accuracy and lower loss. 

A comparative result of both with attention or without attention GoogleNet is shown in 

table 4.9 

 

Table 4.9 Comparative result of GoogleNet with or without attention mechanism  

Sr. No With or 

without 

attention 

Learning 

rate 

Number 

of Epoch 

Training 

Loss 

Validation 

Loss 

Accuracy 

1 No 0.00005 9 0.4479 0.4781 0.9062 

2 No 0.00005 5 0.4558 0.4740 0.9330 

3 No 0.0001 9 0.3652 0.4081 0.9453 

4 No 0.00005 4 0.5000 0.4966 0.8990 

5 Yes 0.0001 9 0.3894 0.3895 0.9648 

6 Yes 0.00005 9 0.2576 0.2643 0.9258 

7. Yes 0.00005 7 0.4248 0.4301 0.9592 

 

The addition of a series combination of channel and spatial attention mechanisms 

considerably enhanced GoogleNet's performance in terms of both accuracy and loss. 

The computational complexity is measured in terms of total floating point operations 

(FLOPS). The computational complexity of GoogleNet is  52712300. The improved 

models were able to generalize better to validation data while avoiding overfitting and 

underfitting, suggesting that attention mechanisms offer significant advantages when 

working with complex geographical information.  

4.8  Result Analysis of ResNet 101 

Now we continue our study by assessing the performance of ResNet 101, a popular 

convolutional neural network design, for landslide detection. The model was trained on 

a dataset of landslide and non-landslide images. Initially we use ResNet101 as 

the backbone network in the proposed model and then also assess the performance of 
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the proposed model with and without a series combination of attention mechanism. The 

performance was evaluated using a variety of hyperparameter combinations 

 Learning rate= 0.00001 to 0.00005 

 Epoch= 3 to 9 

 Batch Size = 32 and 64 

 Weight Decay=  1e-4 

 Optimizer = Adam 

These decisions were made based on preliminary testing, which revealed that a 

moderate learning rate and a reasonably high batch size were optimal for balancing 

computing efficiency with model convergence. 

4.8.1  ResNet 101 Experimental Result without AttentionMechanism 

During the training process, the model was evaluated using training loss and validation 

loss. In addition, the Validation Accuracy was recorded to determine the model's 

capacity to generalize to previously unseen data. 

Initially, we considered batch size 64, learning rate 0.00005, and epoch 7 for 

ResNet101.Table 4.10 presents the training and validation outcomes from the 7 epochs. 

The training loss, validation loss, and validation accuracy all consistently improve as 

the number of epochs increases. 

 

Table 4:10 Training and validation outcomes from the 7 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.6883 0.6834 0.4799 

2 0.00005 0.5971 0.5411 0.8108 

3 0.00005 0.4236 0.4010 0.9676 

4 0.00003 0.3520 0.3598 0.9676 

5 0.00002 0.3561 0.3651 0.9648 

6 0.00000 0.3567 0.3678 0.9609 

7 0.00000 0.3598 0.3768 0.9492 
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The validation accuracy improved significantly, starting at 0.4799 and rising to 0.9676 

by the third epoch. This increase indicates that the model was successfully learning to 

classify or predict unknown data.The accuracy stabilized around 0.9648 to 0.9676 

during the middle epochs (4th and 5th), indicating the model reached a good level of 

generalization. In the later epochs 6th and 7th, validation accuracy decreased slightly, 

reaching 0.9492 by the end. This reduction, together with the increasing validation 

loss,shows possible overfitting, in which the model's performance on unseen data 

deteriorated marginally despite continuing training. Figure 4.22(a) shows accuracy 

curve with respect to epoch. 

The training loss reduced consistently in the early stages, beginning at 0.6883 and 

reaching a low of 0.3520 by the 4th epoch. This pattern suggests that the model learnt 

well and minimized error on the training data.Similarly, the validation loss decreased 

significantly from 0.6834 in the initial stage to 0.3598 in the fourth epoch. This 

consistent decrease in both training and validation losses indicates that the model 

generalized well to the validation data, with no obvious symptoms of overfitting or 

underfitting. Starting with the 5th epoch, the validation loss began to climb slightly, 

whereas the training loss remained modest. By the last epoch, the validation loss had 

increased to 0.3768, indicating the possibility of overfitting, in which the model was 

slightly overtuned to the training data patterns. Figure 4.22(b) present training and 

validation losses 

 

(a) Accuracy vs epoch                (b) Losses vs epoch 

Figure 4.22 Performance visualization of ResNet101 architecture  without attention for epoch 7 
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Overall, the model displayed effective learning and generalization from the early to 

middle epochs. However, the increased validation loss and a minor decline in accuracy 

near the conclusion indicate early indicators of overfitting. These findings suggest that 

future training iterations should explore using early stopping or regularization 

procedures to maintain high performance and avoid overfitting. 

Now we change a number of epochs to 5 and the learning rate 0.00005 with batch size 

32. Table 4.11 presents the training and validation outcomes from the 5 epochs 

Table 4:11Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00004 0.6842 0.6237 0.6741 

2 0.00005 0.4928 0.3872 0.9362 

3 0.00003 0.3868 0.3694 0.9541 

4 0.00001 0.3703 0.3668 0.9585 

5 0.00000 0.3431 0.3642 0.9585 

 

Validation accuracy increased significantly from 0.6741 in the 1st epoch to 0.9362 in 

the 2nd epoch. This shows that the model was able to learn and adapt fast, as evidenced 

by its good performance on validation data early in training. The accuracy increased 

further, reaching 0.9541 in the 3rd  epoch before stabilizing at 0.9585 in the 4th  and 5th  

epochs. This stability shows that the model's generalization skills were intact, resulting 

in consistent and accurate predictions across the validation dataset.Figure 4.23(a) 

present accuracy with respect to epoch 

The training loss decreased consistently over the epochs, starting at 0.6842 in the 1st 

epoch and dropping to 0.3431 by the 5th epoch. This reduction suggests that the model 

was gradually learning to minimize errors on the training dataset. The validation loss 

fell significantly from 0.6237 in the 1st epoch to 0.3668 in the 4th  epoch. This downward 

trend, combined with the decrease in training loss, indicates that the model successfully 

generalized to the validation dataset throughout the early and middle epochs. By the 5th 

epoch, the validation loss was 0.3642, which was slightly lower than the previous 

epoch. This stabilization indicates that the model has attained a near-optimal level of 
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performance without further significant improvements.Figure 4.23(b) present training 

and validation losses. 

 

(a) Accuracy vs. epoch                                              (b)  Losses vs epoch 

Figure 4.23 Performance visualization of ResNet101 architecture  without attention for epoch 5 

The training loss gradually declines from 0.6842 to 0.3431, and the validation loss 

follows a similar downward pattern. The rapid improvement in validation accuracy 

from 0.6741 to over 0. 9362 by the 2nd  epoch and its stabilization at around 0.9585, 

indicate that the model efficiently learned the patterns from the data without 

underfitting. The stability of the validation loss from 0.3694 to 0.3642 across the last 

epochs and the consistently high validation accuracy indicate that the model generalizes 

well, without showing a trend of memorizing the training data at the expense of 

performance on unseen data. The use of a gradually reducing learning rate helped the 

model to converge effectively.The lack of substantial variations in validation metrics 

indicates that the model did not show evidence of overfitting, and future training could 

use similar tactics for optimal performance. 

Now we change  number of epochs to 3 and the learning rate of 0.00005 with batch 

size 32. Table 4.12 presents the training and validation outcomes from the 3 epochs 

Table 4:12 Training and validation outcomes from the 3 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00005 0.6431 0.5452 0.8119 

2 0.00002 0.4427 0.4217 0.9062 

3 0.00000 0.3872 0.3887 0.9413 
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 Initially, the model had a somewhat high training loss of 0.6431 and a validation loss 

of 0.5452, with a validation accuracy of 0.8119. This shows that the model was still 

learning how to identify patterns in the data.The training loss dropped further to 0.3872, 

while the validation loss decreased marginally to 0.3887. The validation accuracy 

increased to 0.9413. The continuous decrease in both losses as accuracy increases 

implies that the model is learning efficiently and generalizing successfully. Figure 

4.24(a) show accuracy with respect to epochs and Figure 4.24(b) shows the  Training 

and validation loss throughout three epochs. 

 

 

(a)  Accuracy vs epoch                                     (b)   Losses vs epoch 

Figure 4.24 Performance visualization of ResNet101 architecture  without attention for epoch 3 

The training findings show that effective learning occurs over all three epochs. Both 

training and validation losses dropped, but validation accuracy climbed from 0.8119 to 

0.9413, indicating a constant improvement in the model's performance. The decrease 

in both losses with no substantial divergence indicates that the model has not yet 

overfitted the training data. Consistent gains in validation accuracy show that the model 

learns and generalizes well. 

4.8.2 ResNet 101 Experimental Result with Attention Mechanism 

In our proposed model we use a series combination of channel attention and spatial 

attention in the Residue block. Initially, we start with batch size 32, a learning rate 

of 0.00005 for epoch 9. Table shows the training and validation outcomes from the 9 

epochs. Table 4.13 presents the training and validation outcomes from the 9 epochs. 
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Table 4:13 Training and validation outcomes from the 9 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.3672 0.3767 0.9413 

2 0.00004 0.3519 0.3930 0.9145 

3 0.00005 0.3623 0.3895 0.9286 

4 0.00004 0.3575 0.3560 0.9598 

5 0.00004 0.3458 0.3687 0.9509 

6 0.00002 0.3424 0.3546 0.9643 

7 0.00001 0.3323 0.3618 0.9554 

8 0.00000 0.3197 0.3385 0.9777 

9 0.00000 0.3198 0.3476 0.9732 

 

The model begins with a high validation accuracy of 0.9413, demonstrating great initial 

learning capabilities in epoch 1. A slight decrease to 0.9145 in epoch 2 suggests 

possible overfitting or noisy data, but it recovers to 0.9286 in epoch 3. From epoch 4 

onward, the model steadily improves, reaching a peak accuracy of 0.9777 in epoch 8 

before dropping to 0.9732 in epoch 9. This shows a robust learning process, with minor 

improvements even in later epochs. Figure 4.25(a) shows accuracy with respect to 

epoch. 

The training loss decreases from 0.3672 to around 0.3519, with modest variability at 

epoch 3. Validation loss behaves similarly, initially falling but then slightly increasing 

in epochs 2 and 3, indicating some instability. After epoch three, both training and 

validation losses stabilize and gradually improve. By the last epoch, the training loss is 

0.3197, while the validation loss is 0.3476, showing effective learning without severe 

overfitting. shows the  Training and validation loss throughout nine epochs. Figure 

4.25(b) shows the  Training and validation loss throughout nine epochs. 
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(a) Accuracy vs epoch               (b) Losses vs epoch 

Figure 4.25 Performance visualization of ResNet101 architecture  with attention for epoch 9 

The modest change in validation accuracy between epochs 2 and 3 suggests that the 

model encountered tough patterns in the data but reacted well. The overall trend 

indicates effective generalization, which is critical for consistent performance on 

unknown data. 

From epochs 1 to 3, the training loss decreases, while the validation loss increases 

slightly from 0.3767 to 0.3930 in epoch 2 and 0.3895 in epoch 3. This could indicate 

that the model is beginning to overfit, as it performs well on the training set but 

struggles significantly on the validation set. After epoch 4, both training and validation 

losses normalize, and validation accuracy stays consistently high ,more than 0.95. This 

shows that the model can generalize effectively, maybe due to changes in the learning 

rate and other regularization strategies. There is no strong evidence of underfitting 

,Since the validation accuracy starts at 0.9413 in the first epoch and improves further, 

it indicates that the model is learning efficiently and is not underfitting.  

To mitigate overfitting we change the hyperparameters , Now we set the Learning rate 

to 0.0005 batch size 64  and epoch 5.Table 4.14 presents the training and validation 

outcomes from the 5 epochs. 
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Table 4:14 Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00004 0.6775 0.6652 0.7048 

2 0.00005 0.5702 0.4595 0.7208 

3 0.00003 0.4176 0.3807 0.9531 

4 0.00001 0.3824 0.3653 0.9570 

5 0.00000 0.3478 0.3695 0.9609 

 

In epoch 1 the training loss is large is 0.6775 , as is the validation loss is 0.6652, 

indicating initial underfitting. The validation accuracy is low 0.7048, indicating that the 

model has not yet learned patterns efficiently.The training and validation losses 

decrease significantly between Epochs 1 and 3 . The validation accuracy increases 

dramatically from 0.7208 to 0.9531 at Epoch 3, shows that the model is starting to 

generalize effectively after few changes. The learning rate adjustment is  beneficial in 

directing the model to improved performance, lowering losses, and increasing 

accuracy. Figure 4.26(a) shows accuracy with respect to epoch. And Figure 4.26(b) 

shows the  Training and validation loss throughout nine epochs. 

 

                          (a) Accuracy vs. epoch                             (b) Losses vs epoch 

Figure 4.26 Performance visualization of ResNet101 architecture  with attention for epoch 5 

 

Now we set the Learning rate to 0.0001 batch size 32  and epoch 5 and analys the result 

of model. Table 4.15 presents the training and validation outcomes from the 5 epochs. 
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Table 4:15 Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00007 0.6512 0.4907 0.9177 

2 0.00010 0.4050 0.3491 0.9624 

3 0.00006 0.3494 0.3823 0.9636 

4 0.00002 0.3670 0.3495 0.9643 

5 0.00000 0.3552 0.3409 0.9770 

The validation accuracy improves dramatically, starting at 0.9177 and rising to 0.9770 

after the last learning rate adjustment. This shows that the learning rate tweaks 

improved the model's accuracy, allowing for more effective optimization. The steady 

accuracy of 0.96 suggests stable performance, with a peak of 0.9770 indicating strong 

generalization ability. Figure 4.27(a) shows accuracy with respect to epoch. 

The statistics reveal a significant reduction in both training and validation losses from 

the beginning, indicating excellent model training. The training loss decreases from 

0.6512 to around 0.3552. Although the training loss fluctuated slightly at epoch 3, it 

generally trended downward, indicating that the model is still learning successfully. 

The validation loss exhibits a pattern of small variations before decreasing at the 

conclusion, indicating successful generalization. Figure 4.27(b) shows the  Training 

and validation loss throughout five epochs. 

 

(a) Accuracy vs. Epoch                                          (b) Losses vs epoch 

Figure 4.27 Performance visualization of ResNet101 architecture  with attention for epoch 5 
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The training loss starts high at 0.6512 and steadily lowers, as does the validation loss. 

There is no evident sign of overfitting, as the validation accuracy stays good and even 

increases near the end. The training and validation losses are generally near to each 

other, with no significant differences, showing that the model generalizes effectively to 

new data. Minor changes in validation loss in epochs 2 to 3, do not indicate significant 

overfitting. Instead, these could represent expected fluctuations during training. 

4.8.3  Performance of ResNet101 

The models without attention attained a maximum accuracy of 0.9585 over five epochs, 

with validation losses ranging from 0.3642 to 0.3887. The training losses showed small 

oscillations, indicating steady learning. However, the validation loss for the model 

trained for three epochs was slightly larger than the others, indicating that performance 

is unstable with fewer epochs. This mismatch may highlight the risk of overfitting, as 

evidenced by the three-epoch model's lower accuracy of 0.9413, which may not have 

properly captured the underlying data patterns. 

The models that included attention processes performed better overall. After five 

epochs, the best-performing model had 0.9770 accuracy with a validation loss of 

0.3409. Notably, the validation loss fell consistently across all epochs, demonstrating 

that the attention modules helped the model focus on critical features for landslide 

identification. The model trained for nine epochs also performed well, with an accuracy 

of 0.9732, highlighting the value of attention in improving model robustness. 

As comparative result of both with attention or without attention, ResNet101 is shown 

in the table 4.16 

Table 4:16  comparative result of ResNet101 with attention or without attention 

Sr. No With or 

without 

attention 

Learning 

rate 

Number 

of 

Epochs 

Training 

Loss 

Validation 

Loss 

Accuracy 

1 No 0.00005 7 0.3598 0.3768 0.9492 

2 No 0.00005 5 0.3431 0.3642 0.9585 

3 No 0.00005 3 0.3872 0.3887 0.9413 

4 Yes 0.00005 9 0.3198 0.3476 0.9732 
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5 Yes 0.00005 5 0.3478 0.3695 0.9609 

6 Yes 0.0001 5 0.3552 0.3409 0.9770 

 

The results clearly demonstrate that introducing attention mechanisms to ResNet101 

improves its learning capacities and performance in landslide detection tasks. The 

computation complexity is assessed in terms of total FLOPS. The computational 

complexity of ResNet101 is 51653608. Attention mechanisms are a crucial addition to 

the model, allowing it to focus on essential spatial elements and improve overall 

resilience. 

4.9  Result Analysis of ResNet 50 

We now proceed with our investigation by evaluating ResNet50, a well-known 

convolutional neural network architecture to performance identification of landslide 

identification. The model was trained on a dataset of landslide and non-landslide 

images. Initially, we use ResNet50 as the backbone network in the proposed model and 

then also assess the performance of the proposed model with and without a series 

combination of attention mechanism. The performance was evaluated using a variety 

of hyperparameter combinations 

 Learning rate= 0.00001 to 0.00005 

 Epoch= 3 to 9 

 Batch Size = 32 , 64,256 

 Weight Decay=  1e-4 

 Optimizer = Adam 

These decisions were made based on preliminary testing, which revealed that a 

moderate learning rate and a reasonably high batch size were optimal for balancing 

computing efficiency with model convergence. 

Initally we consider Batch size 32 , learning rate 0.00005 and epoch 7 and analys the 

result of model. 
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4.9.1 ResNet 50 Experimental Result without Attention Mechanism 

During the training process, the model was evaluated using training loss and validation 

loss. In addition, the Validation Accuracy was recorded to determine the model's 

capacity to generalize to previously unseen data. 

Initially, we considered batch size 64, learning rate 0.00005, and epoch 7 for 

ResNet50.Table 4.17 presents the training and validation outcomes from the 7 epochs. 

Table 4:17Training and validation outcomes from the 7 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.6757 0.6275 0.6710 

2 0.00005 0.5002 0.5944 0.9338 

3 0.00005 0.3675 0.3684 0.9504 

4 0.00003 0.3411 0.3871 0.9338 

5 0.00002 0.3325 0.3696 0.9485 

6 0.00000 0.3315 0.3931 0.9228 

7 0.00000 0.3364 0.3815 0.9320 

 

Training loss consistently decreases from 0.6757 in epoch 1 to 0.3325 in epoch 5. 

However, it grows slightly from epoch 6th to 7th. Validation loss drops dramatically 

from 0.6275 to 0.3684 by epoch 3 but then increases in epochs 4, 6, and 7. This 

inconsistency may imply modest overfitting, in which the model's performance on the 

validation set does not improve consistently. Validation accuracy begins at 0.6710 in 

1st epoch, peaks at 0.9504 in 3rd   epoch, and then dipping to 0.9338 before settling 

around 0.9320 in 7th epoch. Epoch 3 has the best performance 0.9504 accuracy as well 

as the lowest validation loss 0.3684. However, the variations in later epochs indicate 

that the model is struggling to maintain stability, which could be related to overfitting. 

Figure 4.28(a) shows accuracy with respect to epochs and Figure 4.28(b) presents 

training and validation loss. 
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(a)  Accuracy vs. epoch                                    (b)  Training and validation losses 

Figure 4.28 Performance visualization of ResNet50 architecture  without attention for epoch 7 

The results show an early period of effective learning in which the model rapidly 

improves, peaking at epoch 3 with a validation accuracy of 0.9504 and the lowest 

validation loss (0.3684). However, succeeding epochs exhibit swings in validation 

performance, including higher loss and slightly worse accuracy. This signals possible 

overfitting, in which the model begins to acquire patterns specific to the training data 

rather than generalizable features. 

Now we consider batch size 32, a learning rate of 0.00002 and epoch 5. Table 4.18 

presents the training and validation loss for epoch7. 

Table 4:18 Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00001 0.6856 0.6614 0.6224 

2 0.00002 0.5861 0.4904 0.9037 

3 0.00001 0.4360 0.4089 0.9592 

4 0.00000 0.3878 0.4087 0.9330 

5 0.00000 0.3780 0.4426 0.9107 

The validation accuracy improved sharply, from 1st to 3rd epoch from 0.6224 to 0.9592, 

indicating effective learning and generalization. Validation accuracy peaked at 0.9592 

in 3rd epoch , began to decline , falling to 0.9107 in 5th epoch. This shows that the model 

may be overfitting, as it continues to improve on the training data while failing to 

generalize on the validation set. Figure 4.29(a) presents accuracy with respect to 

epochs. 
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The model demonstrated a strong pattern of progress in the early epochs. Training loss 

fell dramatically from 0.6856 in 1st epoch to 0.4360 in 3rd epoch. Validation loss also 

dropped, from 0.6614 in epoch 1 to 0.4089 by epoch 3. The model's performance did 

not improve regularly from the 3rd epoch onwards. Although training loss decreased 

marginally, validation loss started to fluctuate, rising from 0.4087 in epoch 4 to 0.4426 

in epoch 5. Figure 4.29(b) present the training and validation losses. 

 

(a)  Accuracy vs epoch                (b) Training and validation losses 

Figure 4.29 Performance visualization of ResNet50 architecture  without attention for epoch 5 

The model's performance analysis shows effective initial learning, with a peak 

validation accuracy of 0.9592 at epoch 3. However, the subsequent decrease in 

validation performance indicates overfitting. Future experiments should aim to validate 

these approaches to achieve more consistent and reliable model performance by fine-

tuning the hyperparameters.  

Then we consider Batch size 64, the learning rate of 0.00005 and epoch 5. Table 4.19 

presents the training and validation outcomes from the 5 epochs. 

Table 4:19 Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00004 0.6551 0.5726 0.8508 

2 0.00005 0.4445 0.3880 0.9449 

3 0.00003 0.3608 0.3858 0.9265 

4 0.00001 0.3451 0.3835 0.9228 

5 0.00000 0.3494 0.3608 0.9577 

Validation accuracy continuously rises from 0.8508 to 0.9577, indicating an 

improvement in the model's capacity to generalize to new data. 
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At epoch 5, the model has the highest validation accuracy (0.9577) and the lowest 

validation loss (0.3608), indicating that it has reached a well-balanced state between 

learning and generalization. The Figure 4.30(b) shows accuracy with respect to epoch.  

The training loss steadily drops from 0.6551 to 0.3494, indicating that the model is 

picking up new information efficiently. Validation loss begins at 0.5726 and gradually 

drops to 0.3608, with a little increase between epochs 3 and 4. This implies slight 

variations, but the overall tendency is lower, indicating better generality. The Figure 

4.30(a) shows the  Training and validation loss throughout nine epochs 

 

                 (a) Accuracy vs epoch                                       (b)  Losses vs epoch 

Figure 4.30 Performance visualization of ResNet50 architecture  without attention for epoch5 

 

The model's training and validation performance improved consistently across epochs. 

The gradual reduction in the learning rate played a crucial role in fine-tuning the model, 

leading to a significant decrease in training and validation loss and a steady increase in 

validation accuracy. Starting with an initial accuracy of 0.8508, the model improved to 

a high accuracy of 0.9577 by epoch 5, which coincided with the lowest validation loss 

observed. The slight fluctuation in validation loss around epochs 3 and 4 could be a 

sign of the model encountering slight overfitting, but it is mitigated as the learning rate 

decreases further. Since the final validation loss and accuracy are both optimal at epoch 

5, it suggests that the model was able to overcome this potential overfitting and learned 

to generalize better. 
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4.9.2  ResNet 50 Experimental Result with AttentionMechanism 

In our proposed model we use a series combination of channel attention and spatial 

attention in the inception block.Then we consider Batch size 64, the learning rate of 

0.00005 and epoch 7. Table 4.20 presents the training and validation outcomes from 

the 7 epochs. 

Table 4:20 Training and validation outcomes from the 7 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00002 0.6556 0.5451 0.8110 

2 0.00004 0.5502 0.4812 0.9348 

3 0.00005 0.4271 0.3364 0.9387 

4 0.00003 0.3511 0.3210 0.9485 

5 0.00001 0.3401 0.3241 0.9450 

6 0.00000 0.3215 0.3159 0.9671 

7 0.00000 0.3047 0.2891 0.9671 

 

Validation accuracy improves from 0. 8110 in epoch 1 to 0.9671 in epoch 7, indicating 

a considerable improvement in the model's performance on previously unknown data. 

The accuracy stabilizes at 0.9671 in both epochs 6 and 7, equal to the lowest validation 

loss, demonstrating that the model is well-optimized. Figure 4.31(a) presents accuracy 

with respect to epochs. 

Training loss steadily falls from 0.6556 in epoch 1 to 0.3047 in epoch 7, indicating 

efficient learning over the epochs. Validation loss has the same decreasing trend, 

beginning at 0.5451 in epoch 1 and falling to 0.2891 by epoch 7. Figure 4.31(b) shows 

training and validation loss. 



117 
 

 

(a) Accuracy vs. epoch                 (b)  Losses vs epoch 

Figure 4.31 Performance visualization of ResNet50 architecture  with attention for epoch 7 

The training results show a well-optimized model with strategic use of learning rate 

modifications, resulting in increased performance over epochs. Starting with a lesser 

accuracy of 0.8110, the model promptly improved to a high accuracy of 0.9671 by 

epoch 6, and maintained this level in the subsequent epochs. This improvement is 

supported by a consistent decrease in both training and validation losses, indicating that 

the model was successfully trained to generalize without overfitting. 

Then we consider Batch size 32, the learning rate of 0.00002 and epoch 5. Table 4.21 

presents the training and validation outcomes from the 5 epochs. 

Table 4:21 Training and validation outcomes from the 5 epochs 

Epoch Learning Rate Training Loss Validity Loss Validity Accuracy 

1 0.00001 0.6860 0.6087 0.8516 

2 0.00002 0.4878 0.4578 0.9107 

3 0.00001 0.4085 0.3985 0.9187 

4 0.00000 0.3678 0.3380 0.9330 

5 0.00000 0.3280 0.3020 0.9692 

 

Validation accuracy increases from 0. 8516 to 0.9692, indicating better generalization 

and performance on unknown data. The maximum accuracy 0.9692 at epoch 5 

correlates to the lowest validation loss 0.3020, indicating robust model performance. 

Training loss gradually falls from 0.6860 to 0.3280, suggesting that the model learns 

effectively over epochs. Validation loss follows a similar pattern, beginning at 0.6087 
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and decreasing to 0.3020, indicating a constant improvement in the model's capacity to 

generalize. The consistent drop in validation loss, particularly in later epochs, indicates 

that the model is not overfitting and is learning well. Figure 4.32(a) and Figure 4.32(b)  

shows accuracy and losses. 

 

(a) Accuracy vs. epoch        (b) Losses vs epoch 

Figure 4.32 Performance visualization of ResNet50 architecture  with attention for epoch 5 

 

The results show a well-tuned training process in which changes in the learning rate 

successfully directed the model to an optimal state. Beginning with a validation 

accuracy of 0.8516, the model reached a peak accuracy of 0.9692 by epoch 5, with a 

consistent reduction in validation loss. This improvement indicates that the model was 

able to train well without overfitting, as evidenced by a gradual decline in the learning 

rate, particularly in the last epochs. The last epoch's performance reveals the model's 

strong generalization capacity, with low loss and excellent accuracy. 

4.9.3 Performance of ResNet50 

Models without attention mechanisms, although capable of learning effectively, may 

overfit to the training data. The larger validation losses indicate that, while the models 

are highly accurate, they may struggle with generalization, resulting in performance 

decreases when exposed to new, previously unseen data. This pattern highlights the 

possible need for further regularization strategies, such as dropout or data 

augmentation, to reduce overfitting in subsequent tests. 
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The models trained with attention mechanism showed consistent and strong 

improvement in all important measures. The attention mechanism helped the models 

focus more effectively on relevant features, resulting in improved learning and 

generalization. 

As comparative result of both with attention or without attention, ResNet50 is shown 

in the table 4.22 

Table 4.22 comparative result of ResNet50 with attention or without attention module  

Sr. No With or 

without 

attention 

Learning 

rate 

Number 

of Epoch 

Training 

Loss 

Validation 

Loss 

Accuracy 

1 No 0.00005 7 0.3364 0.3815 0.9504 

2 No 0.00002 5 0.3780 0.4426 0.9592 

3 No 0.00005 5 0.3494 0.3608 0.9577 

4 Yes 0.00005 7 0.3041 0.2891 0.9671 

5 Yes 0.00002 5 0.3280 0.3020 0.9692 

 

The comparison clearly shows that attention mechanisms enhance the performance of 

deep learning models, leading to lower training and validation losses and higher 

validation accuracy. The computation complexity is assessed in terms of total FLOPS. 

The computational complexity of ResNet50 is 55647616. Models without attention 

mechanisms, while still capable of achieving high accuracy, showed less stability and 

a tendency to overfit. Integrating attention mechanisms appears to help the model focus 

on essential features, resulting in more reliable and generalized performance. 

4.10 Discussion  

A comparison of GoogleNet, ResNet 101, and ResNet 50 models, both with and without 

attention methods, provides some key insights into their performance in landslide 

detection. Each model was tested using key measures like as accuracy, training and 

validation loss, F1 score, precision, and recall to better understand their strengths and 

the impact of attention mechanisms.Table4.23  present the comparative result of  

GoogleNet, ResNet 101, and ResNet 50 models. 
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Table 4:23 Comparative result of  trained Model 

Model Attention 

Mechanism 

Learning 

Rate 

Training 

Loss 

Validity 

Loss 

Accuracy F1 

Score 

Precision Recall 

GoogelNet No 0.0001 0.3652 0.4081 0.9453 0.9361 0.9435 0.9363 

GoogelNet Yes 0.0001 0.3894 0.3895 0.9648 0.9590 0.9610 0.9590 

ResNet101 No 0.00005 0.3431 0.3642 0.9585 0.9590 0.9591 0.9590 

ResNet101 Yes 0.00005 0.3198 0.3476 0.9732 0.9584 0.9427 0.9509 

ResNet50 No 0.00002 0.3789 0.4426 0.9592 0.9083 0.9230 0.9090 

ResNet50 Yes 0.00002 0.3280 0.3020 0.9692 0.9576 0.9600 0.9576 

 

 Model Comparison and Performance Evaluation 

ResNet101 with the Attention mechanism achieved the maximum accuracy 0.9732 and 

performed well across all measures. Its capacity to perform complex feature extraction 

tasks makes it suitable for detecting landslides, particularly when high accuracy is 

required. However, this paradigm necessitated additional computational resources, 

which could be a disadvantage for real-time or resource-limited applications. 

GoogleNet showed significant improvement when attention was applied, with accuracy 

rising to 0.9648. The model's lightweight architecture makes it a feasible option in 

situations where speed and cheap computing costs are more important than peak 

accuracy. ResNet50 with Attention, despite having a slightly lower accuracy of 0.9692 

than ResNet101, this model had a balanced performance in precision of 0.9600 and 

recall of 0.9576 with a validation loss of 0.3020. ResNet50 with attention is also a good 

choice due to its high accuracy, minimal validation loss, and balanced metrics, 

especially when computational efficiency and generalization are important concerns. 
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 Impact of Attention Mechanism 

Attention mechanism have consistently positively impacted the performance of all 

three models. The accuracy of each model is improved with an attention mechanism. 

ResNet101 achieves 0.9732 accuracy indicating that this model focuses on relevant 

features which leads to accurate prediction. Provide better generalization by reducing 

validation loss in all three models which minimizes overfitting and performs well on 

unseen data. These results show that attention mechanisms can significantly improve 

feature extraction, which is required for reliably detecting complicated patterns in 

landslide imagery. 

The trained model is also compared with the existing models which are trained with 

the same and datasets. Table 4.24 shows the comparative result.   

Table 4.24 Comparative results of the proposed model and existing models. 

Model DataSet Recall Precision F1 Score Accuracy 

Proposed ResNet 50 Bijie Landslide 

Dataset 

0.9576 0.9600 0.9576 0.9692 

Proposed ResNet 

101 

Bijie Landslide 

Dataset 

0.9509 0.9427 0.9584 0.9732 

Proposed 

GoogleNet 

Bijie Landslide 

Dataset 

0.9590 0.9610 0.9590 0.9648 

REF[45] 

ResNet50+Mask R-

CNN 

UAV dataset 0.8032 0.8615 0.8313 0.7391 

REF[43] 

ResNet101+Mask R-

CNN 

UAV dataset 0.8392 0.8955 0.8664 0.7643 

REF[39] 

ResNet101-RCNN 

UAV dataset 0.87 0.93 0.90 0.90 
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REF [96] 

TransferU Net with 

CBAM 

Bijie Landslide 

Dataset 

0.8823 0.8724 0.8773 0.8791 

REF [82] 

TransferU Net with 

CBAM 

Iburi dataset 0.8170 0.7709 0.7933 0.8023 

 

The combined analysis confirms that attention mechanisms improve model 

performance, especially in complex architectures like ResNet101 and ResNet50, 

GoogleNet.Future research could explore experimentation with different types of 

attention mechanisms to see if further improvements can be made. 
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Chapter 5  Conclusion and Future Scope 

In this research work, we proposed deep learning based model for the automatic 

detection of landslide with three different CNN backbone models. This study describes 

an innovative and comprehensive technique to landslide identification and prediction 

that combines satellite data with sophisticated convolutional neural network (CNN) 

architectures, notably ResNet50, ResNet101, and GoogleNet. This study highlights the 

potential of remote sensing data to provide reliable, scalable landslide monitoring 

solutions by using high-resolution satellite images and CNNs' deep feature extraction 

capabilities. The findings reveal that ResNet-based models, ResNet101, outperform in 

landslide detection tasks, especially when supplemented with spatial and channel 

attention methods. These attention layers enable the models to prioritize crucial 

portions of images, resulting in higher detection accuracy and interpretability. 

The purpose of this research work is to design an automatic CAD system for detecting 

and classifying landslide using Artificial Intelligence Techniques. This research  

provided the following contributions:  

 Preprocessing is a critical step in deep learning that converts raw data into an 

acceptable format for model training. The quality of the preprocessing can 

significantly affect the model's performance, training time, and ability to 

generalize to new data. To process the images and increase the number of 

images for deep learning training and testing of the model we apply data 

augmentation methodologies, dimensionality reduction using PCA and its 

variants, and rigorous model evaluation to provide the groundwork for 

constructing more accurate and adaptive landslide monitoring systems. 

 In this research work, a deep-learning algorithm with an attention mechanism is 

proposed to detect and classify landslides. Train the proposed model with 

a training set by using ResNet 101, ResNet 50 and GooglNet. Prestained model,  

used to evaluate the experimental results based on training loss, validation loss, 

precision, recall, F1 score and accuracy in landslide prediction. According to 

experimental results, ResNet 101 obtains 0.9427 precision, 0.9509 recall, 

0.9584 F1 score and 0.9732 accuracy. ResNet 50 obtains 0.9600 precision, 

0.9576 recall, 0.9576 F1 score and 0.9692 accuracy.GoogleNet obtains 0.9610 
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precision, 0.9590 recall, 0.9590 F1 score and 0.9648 accuracy. These 

experimental results indicates that  the proposed attention module CNN model 

with ResNet 101 as a backbone network has high accuracy, and can be used as 

an effective landslide detection method to help in emergency rescue.  

 In next step, adjust the hyperparameters to optimize each model. Parameters 

such as learning rate, batch size and number of epochs are carefully adjusted to 

prevent overfitting and underfitting, ensuring that the model generalizes well 

across data samples. Each network's performance is measured using model 

training and validation parameters such as training loss, validation loss, 

accuracy, F1 score, precision, and recall. A detailed epoch-by-epoch study 

reveals the learning dynamics of each model as well as the usefulness of  

alternative architectural solutions. Furthermore, early stopping criteria and 

dropout regularization techniques are used to prevent overfitting. 

A comparative analysis of model performance indicates that architectural depth and 

attention layers influence the models' ability to reliably distinguish landslide from non-

landslide regions. The findings suggest that deeper networks are better suited to 

challenging classification tasks like landslide detection, which require detailed patterns 

for accurate predictions. The combined analysis reveals that attention mechanisms 

boost model performance, especially in complicated designs like ResNet101, 

ResNet50, and GoogleNet. These approaches and findings show that incorporating 

satellite-based deep learning models into early warning systems has the potential to 

revolutionize landslide risk management by allowing for prompt and data-driven 

mitigation decisions. 

5.1 Future Scope 

The societal contribution of automatic landslide detection stems from its ability to save 

lives by providing early warnings and allowing for prompt evacuations in disaster-

prone locations. It promotes catastrophe preparedness through effective resource 

allocation and community knowledge, resulting in safer living conditions. It contributes 

to regional stability by preserving important infrastructure and minimizing economic 

damage. The technology also helps to preserve ecosystems by identifying high-risk 

zones and minimizing environmental damage. Governments can use these tools to 
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create more effective land use and disaster management policies. This work of landslide 

detection is critical for improving public safety, lowering hazards, and boosting long-

term development. 

Building on the study's findings, numerous areas present intriguing possibilities for 

future research to improve landslide detection and prediction systems. Future research 

can improve and expand the capabilities of CNN-based landslide models by building 

on the current technique and incorporating additional data sources, methods, and 

technology.There are a few limitations in this work. To alleviate the restrictions future 

research could combine satellite image processing with meteorological data and 

provide more accurate understanding of landslide detection and prediction.  

 

1. This research focuses on visual features from satellite imagery. Images used in 

this work provide extensive and precise spatial coverage but it does not 

directly incorporate crucial environmental characteristics and parameters 

such as soil moisture, precipitation, and seismic activity which have a 

substantial impact on landslide susceptibility. Soil moisture has an impact 

on soil stability and has valuable insights into landslides but can not be 

detected only through image analysis. The image-based analysis is also not 

able to detect precipitation and seismic activity as they change over time 

and space. Hence, these environmental parameters are not incorporated in 

the proposed model. However, the accuracy of the proposed technique can 

increase substantially if these parameters are incorporated into the feature 

vector. 

2. Implementing trained models in real-time monitoring systems could provide 

continuous landslide surveillance. Deploying these models on operational 

platforms such as Geographic Information Systems (GIS) and connecting them 

to IoT devices in high-risk areas will give authorities with fast alerts and 

actionable insights, shortening emergency response times. 

3. The satellite imagery is a strong tool, cross-validating model predictions using 

ground truth data and field studies may improve the model's robustness and 

reliability in real-world scenarios.  
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