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Abstract

Fixed point theory has long been an important area of research in mathematical
analysis, with applications ranging from mathematical modelling to graph theory,
optimization, approximation theory, and multidisciplinary disciplines such as eco-
nomics and physics. The constructive proofs of fixed point theorems and iterative
approaches for determining the fixed points of self mappings form the foundation
of the theory. Furthermore, the concept of common fixed points is especially im-
portant in the study of problems involving pairs of self mappings, broadening the
theory’s applicability to increasingly complex contexts. The stability of a func-
tional equation is concerned with the existence of an exact solution that is close to
the functional equation’s approximate solution. The study of stability has numer-
ous applications in dynamical systems and control theory, where the sensitivity of
solutions to small changes in initial conditions is of critical importance.

Despite significant progress in fixed point theory, many problems in metric spaces
and its generalized structures remain unexplored. The existing theory do not al-
ways ensure the existence of a fixed point or the stability of solutions to functional
equations. Exploring the relation between fixed points and the stability of func-
tional equations is an interesting area of study offering substantial potential for
future advancements in both theoretical and applied mathematics.

The main objectives of this research are to investigate the stability of generalized
functional equations in abstract spaces, to check the existence and uniqueness
of fixed points of mappings using various contraction principles, and to examine
the existence and uniqueness of common fixed points of self mappings in ab-
stract spaces. The research further aims to introduce a generalized metric space
and analyze the existence and uniqueness of fixed points for different contraction
mappings within this framework. As application, we claim the existence of so-
lution to Fredholm integral equation, initial value problem and operator equation.

In the first chapter, we begin with a brief introduction to the research work along
with some notations and definitions that are used throughout the thesis. The
chapterwise summary of all the subsequent chapters is also given at the end.

In the second chapter, we establish the results on the stability of quadratic and
quartic type functional equations. Some illustrations are presented to demon-
strate the significance of the assumption made in the proved results. Also, the
stability of generalized quartic function equation using a fixed point approach and
a conventional approach in n-BS and non- Archimedean n-BS is discussed.

In the third chapter, we introduce the concept of C∗
AV -mR-MS, which is a gener-

alization of both C∗
AV -m-MS and R-MS. The first section presents the definition

of C∗
AV -mR-MS, along with its intrinsic properties and several illustrative exam-

ples. The second section focuses on the existence and uniqueness of fixed points
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within C∗
AV -mR-MS, using the concept of C∗

AV -mR-contraction mappings. The
results established in this chapter extend and generalize several well-known fixed
point theorems found in the literature. Also, as an application, the existence and
uniqueness of the solution to the operator equation is presented.

In the fourth chapter, we introduce the concept of a generalized distance function,
referred to as the multiplicative m-metric. The first section presents the basic def-
inition and intrinsic properties of the multiplicative m-MS, along with illustrative
examples. The second section discusses various fixed point results for self map-
pings within the framework of multiplicative m-MS, using different contractions.
Illustrative examples are provided to discuss the existence of fixed points for dis-
continuous self mappings. In the third section, common fixed point results for a
pair of self mappings are explored using generalized contraction conditions. An
illustrative example, involving discontinuous self mappings, is discussed, along
with numerical iterations to approximate the common fixed point, supported by
graphical representations. The fourth section presents fixed point and common
fixed point results using a three-point analogue of contraction mappings. Addi-
tionally, as applications, the existence and uniqueness of solutions to the initial
value problem and a system of integral equations are discussed.

In the fifth chapter, we present several common fixed point results for self map-
pings in PMS using the (ϕ, ψ)-Wardowski type contraction. Furthermore, some
fixed point results are proven using generalized cyclic contractions, followed by
illustrative examples. As an application, the existence of a fractal set for the
Hutchinson-Barnsley operator is established using the fixed point results proved
in the chapter. Finally, some iterations for generating fractal sets are presented,
along with the resulting fractals.

In the sixth chapter, we discuss some common fixed point results for self mapping
in b-MS using relation theoretic and α-admissible generalized contractions. As
applications of the proved results, the existence of solution to a class of non-linear
functional integral equation and an operator equation are established.

In the last chapter, we introduce several fixed point results within the framework
of m-MS using contraction mappings. The continuity conditions of self mappings
are not essential in the results proved, unlike those in existing literature. The
chapter discusses examples where well-known contractions in metric spaces do
not guarantee the existence of a fixed point, but their generalizations within m-
MS yield the desired outcome. These examples are validated through graphical
visualizations of contraction mappings, which help in understanding their behav-
ior and highlight the distinctions between metric spaces and m-MS. The main
sections present fixed point and common fixed point results using various con-
tractions. Finally, some numerical iterations for approximating the common fixed
point are provided, accompanied by graphs that visually demonstrate the results.

*******
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Chapter 1

General Introduction

1.1 Introduction

Fixed point theory is a fundamental branch of mathematical analysis that has
numerous applications in mathematical modeling, graph theory, optimization,
approximation theory, and interdisciplinary areas like economics and physics. It
comprises algebraic, topological and geometrical aspects of mathematical analysis.
The theory deals with the existence of atleast one point that remains invariant
under the given transformation. Consider a self mapping Γ defined on a non-
empty set Ω. A point ϱ ∈ Ω is called a fixed point of the self mapping Γ if it
satisfies the condition Γ(ϱ) = ϱ. The existence of a fixed point relies not only on
the behaviour of mapping but also on the algebraic and topological properties of
the domain. A mapping may or may not possess a fixed point within a specified
domain. Moreover, if it has a fixed point, it may not be unique. For example,
consider the mappings Γ1,Γ2,Γ3 : R → R defined as

(i) Γ1(ϱ) = ϱ+ 3;

(ii) Γ2(ϱ) = ϱ
5 ;

(iii) Γ3(ϱ) = ϱ2.

We observe that Γ1 has no fixed point, Γ2 has a unique fixed point ϱ = 0 and Γ3

has multiple fixed points ϱ = 0 and ϱ = 1.
Graphically, the fixed points are the point of intersection of the graphs y = Γ(ϱ)
and y = ϱ (see Figure 1.1).
Fixed point theory deals with the development of novel approaches for proving
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Figure 1.1: Graphical representation of the fixed point

the existence of fixed points. The origins of fixed point theory can be traced to
the method of successive approximation Liouville (1837); Picard (1890), initially
employed to establish the existence of solutions to differential equations. Picard
(1890) introduced the iterative scheme (ϱn+1 = Γϱn, where Γ is a self mapping
defined on a non-empty set Ω and ϱ0 ∈ Ω is the initial point of the scheme) to
approximate the fixed point of the mapping. Brouwer (1912) established the fixed
point result “Every continuous self-map of a closed unit ball centered at the origin
in Rn has a fixed point.” The result is considered as a key contribution to the
theory of fixed points.
Banach (1922) introduced the contraction principle known as the Banach Con-
traction Principle that has become a cornerstone of nonlinear analysis and has
found numerous applications in ensuring the existence of solutions to differential
equations, integral equations, optimization problems, etc.

Theorem 1.1.1. Banach (1922) Consider a complete MS (Ω, d). Then, a map-
ping Γ : Ω → Ω has a unique fixed point if ∃k ∈ [0, 1) s.t.

d(Γϱ,Γϑ) ≤ kd(ϱ, ϑ) ∀ϱ, ϑ ∈ Ω.

The key limitation of the principle was the condition of continuity of the mapping.
It restricts the applicability of contraction in certain scenarios where mappings
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may be discontinuous or defined piecewise. To address this limitation, Kannan
(1968) introduced the generalized contraction condition that ensures the existence
of a fixed point even for discontinuous mappings.

Theorem 1.1.2. Kannan (1968) Consider a complete MS (Ω, d). Then, a map-
ping Γ : Ω → Ω has a unique fixed point if ∃k ∈ [0, 1/2) s.t.

d(Γϱ,Γϑ) ≤ k
(
d(ϱ,Γϱ) + d(ϑ,Γϑ)

)
∀ϱ, ϑ ∈ Ω.

Subsequently, many researchers have independently generalized this contraction
in their own ways (for references, see Edelstein (1962); Rakotch (1962); Ćirić
(1974); Reich (1971); Sehgal (1971); Bianchini (1971); Chatterjea (1972); Zam-
firescu (1972); Wardowski (2012); Wardowski and Dung (2014); Imdad et al.
(2018); Pasupathi et al. (2020); Chanda et al. (2021); Nazir et al. (2021) and
many more.)
Frechet (1906) gave the framework of metric space to explore topology using dis-
tance notion. In a MS, the distance function is well defined and satisfies key prop-
erties such as non-negativity, symmetry, and the triangle inequality. However, in
some scenarios, these characteristics may be relaxed, prompting the establishment
of a more generalized notion. Czerwik (1993) introduced the notion of b-metric
space(b-MS) as an generalization of MS. Matthews (1994), introduced the notion
of partial metric space (PMS), where the self-distance of a point may be non-zero,
offering a new oversight in studying fixed points within various functional spaces.
Asadi et al. (2014) further extended the concept of partial metric spaces by in-
troducing m-metric space (m-MS), offering an even more versatile framework for
the fixed point theory. Some other generalization of metric space can be seen in
Wilson (1931); Karapınar et al. (2013); Ma et al. (2014); Shukla (2014); Gupta
and Gautam (2015); Alsamir et al. (2019); Asim et al. (2019); Jleli and Samet
(2018); Chandok et al. (2019); Khalehoghli et al. (2020); M. Joshi et al. (2021);
Khalil et al. (2021); Malhotra et al. (2022).
Grossman and Katz (1972) contributed significantly to non-Newtonian calculus,
building on Robinson (1966) foundational development of non-standard analysis.
Their work introduced a comprehensive framework based on ultrapowers and hy-
perreals, providing a rigorous structure for non-Newtonian calculus that aligns
with conventional mathematics. Stanley (1999) made significant contributions
to the field of “multiplicative calculus”, also known as the “geometric calculus”.
Bashirov et al. (2008) introduced the notion of a distance function in multiplica-
tive calculus, using multiplicative absolute values, and laid the foundation of a
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multiplicative MS as an alternative to the MS.
Ozavsar and Cevikel (2012) proved some fixed point results using Banach-type,
Kannan-type, and Chhaterjea-type contractions in multiplicative MS. Subsequently,
many researchers have investigated the fixed points of various nonlinear contrac-
tive mappings in multiplicative MS.
Functional equations(FEs) are equations with functions as unknown variables in-
stead of conventional variables. The general FE can be represented as

g(𭟋1,𭟋2, . . . ) = 0,

where 𭟋i are functions of finite variables.
Some illustrations of the FE along with their solutions are given below.

(i) Cauchy- FE, 𭟋(ϱ.ϑ) = 𭟋(ϱ) + 𭟋(ϑ), satisfied by 𭟋(ϱ) = log(ϱ).

(ii) 𭟋(ϱ+ T ) = 𭟋(ϱ), satisfied by periodic function 𭟋 with period T .

(iii) Jensen linear FE, 2𭟋(ϱ+ϑ
2 ) = 𭟋(ϱ) + 𭟋(ϑ), satisfied by 𭟋(ϱ) = ϱ.

(iv) Quadratic FE, 𭟋(ϱ+ϑ)+𭟋(ϱ−ϑ) = 2𭟋(ϱ)+2𭟋(ϑ), satisfied by 𭟋(ϱ) = ϱ2.

The concept of stability of FE was posed by Ulam in 1940, in his talk at the
University of Wisconsin. The open problem was posed as

“Suppose 𭟋(ϱ) satisfies the linear equation approximately. Does there
exist a linear function that approximate 𭟋(ϱ)?”

More precisely the problem is stated as follows
Ulam’s Problem: Let G1 be a group with binary operation ∗1 and G2 be a
metric group with metric d and binary operation ∗2. Does for given ϵ > 0, ∃δ > 0
s.t. if for 𭟋 : G1 → G2

d
(
𭟋(ϱ ∗1 ϑ),𭟋(ϱ) ∗2 𭟋(ϑ)

)
≤ δ,

then ∃ a homomorphism g : G1 → G2 s.t.

d
(
𭟋(ϱ) ∗2 g(ϱ)

)
≤ ϵ ∀ϱ ∈ G1.

Hyers (1941) provided the first solution to the stability problem of Ulam for
δ−linear transformation on Banach spaces. He proved that if 𭟋(ϱ) is a δ-linear
function on BS , then ∃ a unique linear map l(ϱ) that approximates 𭟋(ϱ), i.e.,
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∥𭟋(ϱ) − l(ϱ)∥ ≤ δ. This solution was stated as Ulam-Hyers stability of Cauchy
FE. Since then many researchers proved the stability results for higher order func-
tional equations as well as generalized the Ulam-Hyers stability result for various
functional equations.
Consider Cauchy FE

𭟋(ϱ+ ϑ) = 𭟋(ϱ) + 𭟋(ϑ).

Later, Aoki (1950) proved the same result with unbounded Cauchy difference.
T. M. Rassias (1978), proved the stability result for the Cauchy FE and gave an
affirmative solution to Ulam’s problem. He stated the result as

Theorem 1.1.3. T. M. Rassias (1978) Let E and E ′ be BSs. Let 𭟋 : E → E ′

be a transformation on E s.t. 𭟋(tϱ) is continuous in t for fixed ϱ. If ∃k ≥ 0 and
0 < p < 1 s.t. 𭟋 satisfies the following condition

∥𭟋(ϱ+ ϑ) − 𭟋(ϱ) − 𭟋(ϑ)∥
∥ϱ∥p + ∥ϑ∥p

≤ k ∀ϱ, ϑ ∈ E.

Then, ∃ a linear function ϕ s.t.

∥𭟋(ϱ) − ϕ(ϱ)∥
∥ϱ∥p

≤ 2k
2 − 2p

.

Gajda (1991) proved the result of T. M. Rassias (1978) for p > 1. He also
proved that the stability result is not valid for p = 1. Gavruta (1994) introduced
a generalized Ulam-Hyers-Rassias stability result for an approximately additive
mapping by relaxing the domain of mapping to the Abelian group. He stated the
result as

Theorem 1.1.4. Gavruta (1994) Let (G,+) be an Abelian group and Ω be a BS.
Let ϕ : G×G → [0,∞) be a mapping on G×G s.t.

ϕ(ϱ, ϑ) =
∞∑

k=0
2−kϕ(2kϱ, 2kϑ) < ∞ ∀ ϱ, ϑ ∈ G.

If 𭟋 : G → Ω be a mapping s.t.

∥𭟋(ϱ+ ϑ) − 𭟋(ϱ) − 𭟋(ϑ)∥ ≤ ϕ(ϱ, ϑ) ∀ ϱ, ϑ ∈ G.

Then, ∃ a unique linear mapping T : G → Ω s.t.

∥𭟋(ϱ) − T (ϱ)∥ ≤ 1
2ϕ(ϱ, ϑ) ∀ ϱ ∈ G.

Another generalization of Hyers’ findings was given by J. M. Rassias and Kim
(2009). He stated the results as

5



Theorem 1.1.5. J. M. Rassias and Kim (2009) Let Ω be a N S and Y be a BS.
Let c ≥ 0 and p, q ∈ R s.t. p + q ∈ [0, 1). Consider a mapping 𭟋 : Ω → Y that
satisfies the following

∥𭟋(ϱ+ ϑ) − 𭟋(ϱ) − 𭟋(ϑ)∥ ≤ c∥ϱ∥p∥ϑ∥q ∀ϱ, ϑ ∈ Ω ∼ {0}.

Then, ∃ a linear mapping T : Ω → Y s.t.

∥𭟋(ϱ) − T (ϱ)∥ ≤ c∥ϱ∥p+q

2 − 2p+q
.

Brzdek (2014) extended the result of J. M. Rassias and Kim (2009) by proving
the above stability result for p + q < 0, using fixed point approach in extended
MS and called it as Hyper stability of Cauchy FE. He stated the result as

Theorem 1.1.6. Brzdek (2014) Let Ω be a N S and Y be a BS. Let c ≥ 0 and
p, q be real number s.t. p + q < 0. Consider a mapping 𭟋 : Ω → Y that satisfies
the following

∥𭟋(ϱ+ ϑ) − 𭟋(ϱ) − 𭟋(ϑ)∥ ≤ c∥ϱ∥p∥ϑ∥q ∀ϱ, ϑ ∈ Ω ∼ {0}.

Then, 𭟋 is a linear mapping. i.e.,

𭟋(ϱ+ ϑ) = 𭟋(ϱ) + 𭟋(ϑ) ∀ϱ, ϑ ∈ Ω.

Moghimi and Najati (2022) proved the above result using a new approach and also,
proved some results on hyper stability and super stability result for the Cauchy
FE and Jensen FE on the restricted and unrestricted domains.
Numerous results related to fixed point theory and the stability of functional
equations can be found in various books and monographs, see (Hutchinson (1981);
Istratescu (1981); Dugundji and Granas (1982); M. C. Joshi and Bose (1985);
Zeidler (1986); Geobel and Kirk (1990); Murphy (1990); Rudin (1991); Rosen
(1991); Davidson (1996); Jungck and Rhoades (1998); Agarwal et al. (2001); Kirk
and Khamsi (2001); William and Brailey (2001); Agarwal et al. (2009); Chandok
(2015)), Oltra and Valero (2004); Valero (2005); Romaguera (2009a); Berenguer et
al. (2009); Altun et al. (2010); Altun and Sadarangani (2011); Abbas et al. (2012);
Aydi et al. (2012); Minirani and Mathew (2014); Sintunavarat (2016); Zada and
Sarwar (2019); Petruşel and Petruşel (2019); Altun et al. (2021); Choudhury and
Chakraborty (2022). In the subsequent section, we will outline the definitions and
results that are utilized in the later chapters, followed by a chapterwise summary
in the last section.
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1.2 Notations and Definitions

Throughout the thesis, the symbols R,Z,N have their usual meaning, Ω, Y,X are
non empty sets, R is a binary relation, B is a C∗-algebra with zero element θB
and identity element IB

Definition 1.2.1. Frechet (1906) A mapping d : Ω × Ω → [0,∞) is termed as a
metric if it satisfies :

(i) d(ϱ, ϑ) ≥ 0 and d(ϱ, ϑ) = 0 ⇔ ϱ = ϑ;

(ii) d(ϱ, ϑ) = d(ϑ, ϱ);

(iii) d(ϱ, ϑ) ≤ d(ϱ, ζ) + d(ζ, ϑ),

∀ϱ, ϑ, ζ ∈ Ω. Moreover, (Ω, d) is termed as a Metric Space (MS).

Definition 1.2.2. Rudin (1991) Let X be a VS over the field F. A mapping
∥.∥ : X → [0,∞) is termed as norm if it satisfies :

(i) ∥ϱ∥ ≥ 0 and ∥ϱ∥ = 0 ⇔ ϱ = 0;

(ii) ∥αϱ∥ = |α|∥ϱ∥;

(iii) ∥ϱ+ ϑ∥ ≤ ∥ϱ∥ + ∥ϑ∥,

∀ ϱ, ϑ ∈ X and α ∈ F . Moreover, (X, ∥.∥) is termed as a Normed Space (N S).

Definition 1.2.3. Matthews (1994) A mapping ℘ : Ω × Ω → [0,∞) is termed as
a partial metric if it satisfies :

(i) ℘(ϱ, ϑ) = ℘(ϑ, ϑ) = ℘(ϱ, ϱ) ⇔ ϱ = ϑ;

(ii) ℘(ϱ, ϱ) ≤ ℘(ϱ, ϑ);

(iii) ℘(ϱ, ϑ) = ℘(ϑ, ϱ);

(iv) ℘(ϱ, ϑ) ≤ ℘(ϱ, ζ) + ℘(ζ, ϑ) − ℘(ζ, ζ),

∀ϱ, ϑ, ζ ∈ Ω. Moreover, (Ω, ℘) is termed as a Partial Metric Space (PMS).
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Definition 1.2.4. Matthews (1994); Romaguera (2009b) Let (Ω, ℘) be a PMS
and {ϱℏ} be a sequence in Ω. Then,

(i) (a) {ϱℏ} is convergent if ∃ϱ ∈ Ω s.t. ℘(ϱℏ, ϱ) − ℘(ϱ, ϱ) → 0 as ℏ → ∞;

(b) {ϱℏ} is Cauchy if lim
ℏ,m→∞

℘(ϱℏ, ϱm) exists finitely;

(c) {ϱℏ} is 000-Cauchy if lim
ℏ,m→∞

℘(ϱℏ, ϱm) = 0;

(ii) (Ω, ℘) is complete if every partial Cseq {ϱℏ} is convergent in Ω;

(iii) (Ω, ℘) is 000-complete if for every 0-Cseq {ϱℏ}, ∃ϱ ∈ Ω s.t. lim
ℏ,m→∞

℘(ϱℏ, ϱ) =
℘(ϱ, ϱ) = 0.

Definition 1.2.5. Asadi et al. (2014) A mapping ϖ : Ω × Ω → [0,∞) is termed
as m-metric if it satisfies:

(i) ϖ(ϱ, ϑ) = ϖ(ϑ, ϑ) = ϖ(ϱ, ϱ) ⇔ ϱ = ϑ;

(ii) ϖϱϑ ≤ ϖ(ϱ, ϑ);

(iii) ϖ(ϱ, ϑ) = ϖ(ϑ, ϱ);

(iv) ϖ(ϱ, ϑ) −ϖϱϑ ≤ ϖ(ϱ, ζ) −ϖϱζ +ϖ(ζ, ϑ) −ϖζϑ ,

where ϖϱϑ = min
{
ϖ(ϱ, ϱ), ϖ(ϑ, ϑ)

}
and Mϱϑ = max

{
ϖ(ϱ, ϱ), ϖ(ϑ, ϑ)

}
∀ϱ, ϑ, ζ ∈

Ω. Moreover, (Ω, ϖ) is termed as m-Metric Space(m −MS).

Example 1.2.6. Asadi et al. (2014) Let Ω = R+ ∪ {0} and ϖ(ϱ, ϑ) = ϱ+ ϑ

2 .
Then, (Ω, ϖ) is an m-MS.

Definition 1.2.7. Asadi et al. (2014) A sequence {ϱℏ} ∈ (Ω, ϖ) is c.t.b.

(i) convergent if ∃ϱ ∈ Ω s.t. ϖ(ϱℏ, ϱ) −ϖϱℏϱ → 0 as ℏ → ∞;

(ii) mmm-Cauchy if lim
ℏ,ℓ→∞

ϖ(ϱℏ, ϱℓ) −ϖϱℏϱℓ
and lim

ℏ,ℓ→∞
Mϱℏϱℓ

−ϖϱℏϱℓ
exist finitely.

Moreover, if every m-Cseq {ϱℏ} is convergent in Ω, i.e., ∃ϱ ∈ Ω s.t.

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → 0 and Mϱℏϱ −ϖϱℏϱ → 0 as ℏ → ∞.

Then, (Ω, ϖ) is a complete m-MS.
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Lemma 1.2.8. Asadi et al. (2014) Let {ϱℏ} and {ϑℏ} be two sequences in (Ω, ϖ)
s.t. ϱℏ → ϱ and ϑℏ → ϑ. Then,

lim
ℏ→∞

ϖ(ϱℏ, ϑℏ) −ϖϱℏϑℏ = ϖ(ϱ, ϑ) −ϖϱϑ.

Lemma 1.2.9. Asadi et al. (2014) Let (Ω, ϖ) be a m-MS. Then, ∀ ϱ, ϑ, ζ ∈ Ω,
we have

(i) 0 ≤
∣∣∣Mϱ,ϑ −ϖϱ,ϑ

∣∣∣ =
∣∣ϖ(ϱ, ϱ) −ϖ(ϑ, ϑ)

∣∣ ;
(ii) Mϱ,ϑ +ϖϱ,ϑ = ϖ(ϱ, ϱ) +ϖ(ϑ, ϑ);

(iii) Mϱ,ϑ −ϖϱ,ϑ ≤ Mϱ,ζ −ϖϱ,ζ +Mζ,ϑ −ϖζ,ϑ

Lemma 1.2.10. Asadi et al. (2014) Let (Ω, ϖ) be a m-MS and {ϱℏ} be a sequence
in Ω s.t.

ϖ(ϱℏ+1, ϱℏ) ≤ r. ϖ(ϱℏ, ϱℏ−1) ∀ℏ ∈ N, where r ∈ [0, 1). (1.2.1)

Then,

(i) lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ) = 0;

(ii) lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0;

(iii) lim
ℏ,m→∞

ϖϱℏϱm = 0;

(iv) {ϱℏ} is a m-Cseq.

Definition 1.2.11. Khalehoghli et al. (2020) Let R be a binary relation on Ω
and (Ω, d) be a MS. Then, the triplet (Ω, d,R) is termed as a R-Metric Space
(R-MS).

Definition 1.2.12. Khalehoghli et al. (2020) Let {ϱℏ} is a sequence in (Ω, d,R).
Then, {ϱℏ} is c.t.b. an R-sequence if (ϱℏ, ϱℏ+k) ∈ R, ∀ℏ, k ∈ N.

Definition 1.2.13. Khalehoghli et al. (2020) Let (Ω, d,R) be an R-MS and {ϱℏ}
be an R-sequence in Ω. Then, {ϱℏ} is c.t.b.

(i) R-convergent to ϱ, if ∀ϵ > 0, ∃K ∈ N s.t.

d(ϱℏ, ϱ) ≤ ϵ ∀ℏ ≥ K;
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(ii) R-Cauchy, if ∀ϵ > 0, ∃K ∈ N s.t.

d(ϱℏ, ϱm) ≤ ϵ ∀ℏ,m ≥ K.

Moreover, the triplet (Ω, d,R) is c.t.b. R-complete, if every R-Cseq in (Ω, d,R)
is convergent to some ϱ ∈ Ω.

Definition 1.2.14. Khalehoghli et al. (2020) Let (Ω, d,R) be an R-MS, and Γ
be a self mapping on Ω. Then, Γ is c.t.b. R-continuous at ϱ ∈ Ω if for every
R-sequence {ϱn} that converges to ϱ, the sequence {Γϱn} converges to Γϱ. Ad-
ditionally, Γ is considered as R-continuous on Ω if it is R-continuous at every
point ϱ ∈ Ω.

Definition 1.2.15. Alsamir et al. (2019) Let B be a unital C∗ algebra with unit
IB and zero element θB. A mapping ϖ : Ω × Ω → B+ is termed as C∗-Algebra
Valued m-metric, if it satisfies :

(i) ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) = ϖ(ϑ, ϑ) ⇔ ϱ = ϑ;

(ii) ϖ(ϱ, ϱ) and ϖ(ϑ, ϑ) are comparable;

(iii) ϖϱϑ ⪯ ϖ(ϱ, ϑ), ;

(iv) ϖ(ϱ, ϑ) = ϖ(ϑ, ϱ);

(v) ϖ(ϱ, ϑ) −ϖϱ,ϑ ⪯ ϖ(ϱ, ζ) −ϖϱζ +ϖ(ζ, ϑ) −ϖζϑ,

∀ϱ, ϑ, ζ ∈ Ω, where ϖϱϑ = min
{
ϖ(ϱ, ϱ), ϖ(ϑ, ϑ)

}
. Moreover, (Ω,B,m) is termed

as C∗-Algebra Valued m-Metric Space (C∗-AV-m-MS). The other topological
aspects of the space can be seen in Alsamir et al. (2019).

Remark 1.2.16. Alsamir et al. (2019) Let (Ω,B, ϖ) be a C∗-AV-m-MS. Then,
∀ϱ, ϑ, z ∈ Ω,

(i) θ ⪯ Mϱϑ +ϖϱϑ = ϖ(ϱ, ϱ) +ϖ(ϑ, ϑ);

(ii) θ ⪯ Mϱϑ −ϖϱϑ =
(
ϖ(ϱ, ϱ) −ϖ(ϑ, ϑ)

)
∨
(
ϖ(ϑ, ϑ) −ϖ(ϱ, ϱ)

)
;

(iii) Mϱϑ −ϖϱϑ ⪯ Mϱζ −ϖϱζ +Mζϑ −ϖζϑ,

where ϖϱϑ = min
{
ϖ(ϱ, ϱ), ϖ(ϑ, ϑ)

}
and Mϱϑ = max

{
ϖ(ϱ, ϱ), ϖ(ϑ, ϑ)

}
.
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Definition 1.2.17. Czerwik (1993) A mapping db : Ω × Ω → [0,∞) is termed as
a b-metric, if for some s ≥ 1, it satisfies:

(i) db(ϱ, ϑ) = 0 ⇔ ϱ = ϑ;

(ii) db(ϱ, ϑ) = db(ϑ, ϱ);

(iii) db(ϱ, ϑ) ≤ s(db(ϱ, ζ) + db(ζ, ϑ)),

∀ϱ, ϑ, ζ ∈ Ω. Moreover, (Ω, db) is termed as b-Metric Space(b-MS).

Example 1.2.18. (R, db) is a b-MS with s = 2 and db(ϱ, ϑ) = |ϱ− ϑ|2.

Definition 1.2.19. Czerwik (1993) Let (Ω, db) be a a b-MS and {ϱℏ} be a sequence
in Ω. Then, {ϱℏ} is c.t.b.

(i) convergent if ∃ϱ ∈ Ω s.t. db(ϱℏ, ϱ) → 0 as ℏ → ∞;

(ii) a CseqCseqCseq in Ω if lim
ℏ,m→∞

db(ϱℏ, ϱm) = 0.

Moreover, If every Cseq {ϱℏ} is convergent in Ω. Then, (Ω, db) is complete.

Definition 1.2.20. Alam and Imdad (2015, 2017) Let R be a binary relation on
MS (Ω, d), {ϱℏ} be a sequence in Ω and Γ : Ω → Ω be a mapping. Then,

(i) {ϱℏ} is RRR-preserving if (ϱℏ, ϱℏ+1) ∈ R ∀ℏ ∈ N;

(ii) (Ω, d) is RRR-complete if every R-preserving Cseq in Ω is convergent in Ω;

(iii) R is Γ-closed if for (ϱ, ϑ) ∈ R, we have (Γϱ,Γϑ) ∈ R;

(iv) R is ddd-self-closed if for every R-preserving sequence {ϱℏ} → ϱ, ∃ a sub-
sequence ϱℏk

s.t. [ϱℏk
, ϱ] ∈ R i.e.,

(
(ϱℏk

, ϱ) ∈ R or (ϱ, ϱℏk
) ∈ R

)
;

(v) Γ is RRR-continuous at ϱ ∈ Ω if for every R-preserving sequence {ϱℏ} → ϱ,
we have {Γϱℏ} → Γϱ.

Definition 1.2.21. Zada and Sarwar (2019) Let R be a binary relation on set Ω
and S,Γ : Ω → Ω be self mapings. Then, R is (S,Γ)-regular closed if

(Sϱ,Γϑ) ∈ R and (Γϑ, Sϱ) ∈ R, whenever (ϱ, ϑ) ∈ R.
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Definition 1.2.22. Samet et al. (2012) Let α : Ω × Ω → [0,∞) and Γ : Ω → Ω
be mappings. Then, Γ is ααα-admissible if

α(ϱ, ϑ) ≥ 1 ⇒ α(Γϱ,Γϑ) ≥ 1 ∀ϱ, ϑ ∈ Ω.

Definition 1.2.23. Sintunavarat (2016) Let α : Ω × Ω → [0,∞) and Γ : Ω → Ω
be mappings. Then, Γ is c.t.b. ααα-admissible of type sss if

α(ϱ, ϑ) ≥ s ⇒ α(Γϱ,Γϑ) ≥ s ∀ϱ, ϑ ∈ Ω.

Definition 1.2.24. Let α : Ω×Ω → [0,∞) and S,Γ : Ω → Ω be mappings. Then,
(S,Γ) is c.t.b. generalized ααα-admissible of type s if

α(ϱ, ϑ) ≥ s ⇒ α(Sϱ,Γϑ) ≥ s and α(Γϑ, Sϱ) ≥ s ∀ϱ, ϑ ∈ Ω.

Definition 1.2.25. Samet et al. (2012) Let Ψ be the collection of all functions
ψ : R+ → R+ satisfying:

(i) ψ is monotonically increasing i.e., ψ(z1) ≤ ψ(z2) ⇔ z1 ≤ z2;

(ii) lim
ℏ→∞

ψℏ(z) = 0 ∀z > 0, where ψℏ is the ℏth iteration, i.e., ψ(z) < z ∀z > 0.

Definition 1.2.26. Liu et al. (2016) Let Φ be the collection of all continuous
functions ϕ : R+ → R+ satisfying:

(i) ϕ is monotonically increasing function i.e., ϕ(t1) ≤ ϕ(t2) ⇔ t1 ≤ t2;

(ii) lim
ℏ→∞

ϕ(tℏ) = 0 ⇔ lim
ℏ→∞

tℏ = 0, for any sequence tℏ ∈ (0,∞).

Lemma 1.2.27. Miculescu and Mihail (2017) Let (Ω, db) be a b-MS and {ϱℏ} be
a sequence in Ω. If ∃λ ∈ [0, 1) s.t.

db(ϱℏ+1, ϱℏ) ≤ λdb(ϱℏ, ϱℏ−1) ∀ℏ ∈ N.

Then, {ϱℏ} is a Cseq.

Definition 1.2.28. Stanley (1999) Let g : R → R+ be a positive function. Then,
the multiplicative derivative and integral of g are defined as

d∗ g(ϱ)
dϱ

= g∗(ϱ) = lim
h→0

(
g(ϱ+ h)
g(ϱ)

) 1
h

.

∫ b

a
g(ϱ)dϱ = e

∫ b

a
ln(g(ϱ)) dϱ.
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Theorem 1.2.29. Grossman and Katz (1972) Let f and g are two multiplicative
integral function on [a, b]. Then, we have

(i)
∫ b

a (f(ϱ).g(ϱ))dϱ =
∫ b

a f(ϱ)dϱ.
∫ b

a g(ϱ)dϱ;

(ii)
∫ b

a
f(ϱ)
g(ϱ)

dϱ =
∫ b

a
f(ϱ)dϱ∫ b

a
g(ϱ)dϱ

;

(iii)
∫ b

a ((g(ϱ))ℏ)dϱ = (
∫ b

a g(ϱ)dϱ)ℏ;

(iv)
∣∣∣∫ b

a g(ϱ)dϱ
∣∣∣ ≤

∫ b
a

∣∣g(ϱ)∣∣dϱ.

Definition 1.2.30. Ozavsar and Cevikel (2012) A mapping u : Ω × Ω → [1,∞)
is termed as Multiplicative metric, if it satisfies :

(i) u(ϱ, ϑ) ≥ 1;

(ii) u(ϱ, ϑ) = 1 ⇔ ϱ = ϑ;

(iii) u(ϱ, ϑ) = u(ϑ, ϱ);

(iv) u(ϱ, ϑ) ≤ u(ϱ, ζ).u(ζ, ϑ),

∀ϱ, ϑ, ζ ∈ Ω. Moreover, (Ω, u) is termed as a multiplicative metric space(multiplicative
MS).

Example 1.2.31. Ozavsar and Cevikel (2012) u(ϱ, ϑ) =
∣∣∣∣∣ϱ1

ϑ1

∣∣∣∣∣
∗
.

∣∣∣∣∣ϱ2

ϑ2

∣∣∣∣∣
∗
, where ϱ =

(ϱ1, ϱ2), ϑ = (ϑ1, ϑ2) ∈ R2
+ and |a|∗ =

a, a ≥ 1;
1
a
, a < 1.

is a multiplicative metric on

Ω = R2
+.

Definition 1.2.32. Ozavsar and Cevikel (2012) Let (Ω, u) be a multiplicative MS
and {ϱℏ} be a sequence in Ω. Then, {ϱℏ} is c.t.b.

(i) convergent if u(ϱℏ, ϱ) → 1 as ℏ → ∞;

(ii) Cauchy if u(ϱℏ, ϱm) → 1 as ℏ,m → ∞.

Moreover, if every Cseq {ϱℏ} ∈ Ω converges to some ϱ ∈ Ω, then (Ω, u) is multi-
plicative complete.
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Definition 1.2.33. Ozavsar and Cevikel (2012) A self mapping Γ on (Ω, u) is
c.t.b. multiplicative continuous at ϱ ∈ Ω if for every multiplicative convergent
sequence {ϱℏ} → ϱ implies {Γϱℏ} → Γϱ, i.e.,

u(ϱℏ, ϱ) → 1 implies u(Γϱℏ,Γϱ) → 1.

Γ is c.t.b. multiplicative continuous on Ω, if Γ is multiplicative continuous at
every ϱ ∈ Ω.

Lemma 1.2.34. Ma et al. (2014) Let B be a unital C∗-algebra with unit IB, zero
element θB. Then, we have

(i) if α ∈ B+ with ∥α∥ < 1
2 , then IB − α is invertible and ∥α(IB − α)−1∥ < 1;

(ii) ∀α, β ∈ B+ with α, β ⪰ θB and αβ = βα, then αβ ⪰ θB;

(iii) if α ∈ B′ and β, γ ∈ B where β ⪰ γ ⪰ θB and IB − α ∈ B′
+ is invertible

operator then

(IB − α)−1β ⪰ (IB − α)−1γ,

where B+ = {α ∈ B : α ⪰ θB} and B′ = {α ∈ B : αβ = βα ∀β ∈ B}.

Definition 1.2.35. Ma et al. (2014) Let B be an unital C∗-algebra and A mapping
d : Ω × Ω → B is c.t.b. a C∗-algebra valued-metric, if it satisfies

(i) d(ϱ, ϑ) ⪯ θB, and d(ϱ, ϑ) = θB ⇔ ϱ = ϑ;

(ii) d(ϱ, ϑ) = d(ϑ, ϱ)

(iii) d(ϱ, ϑ) = d(ϱ, ζ) + d(ζ, ϑ),

∀ϑ, ϱ, ζ ∈ Ω. Then, (Ω, d,B) is c.t.b a C∗-algebra valued-metric space (C∗
AV -MS).

Definition 1.2.36. Malhotra et al. (2022) (Ω, d,B,R) is c.t.b. a C∗-algebra valued
R-metric space (C∗

AV -R-MS) if it satisfies:

(i) (Ω, d,B) is a C∗
AV -MS;

(ii) R is a reflexive binary relation on Ω.

Definition 1.2.37. Misiak (1989) Let Ω be a VS with dimension atleast n, for
some n ∈ N. A mapping ∥., . . . , .∥ : Ωn → [0,∞) is termed as an nnn-norm, if it
satisfies :
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(i) ∥ϱ1, ϱ2, . . . , ϱn∥ = 0 ⇔ ϱi and ϱj are linearly independent for 1 ≤ i ̸= j ≤ n;

(ii) ∥ϱ1, ϱ2, . . . , ϱn∥ is invariant under the permutations of ϱ1, ϱ2, . . . , ϱn;

(iii) ∥αϱ1, ϱ2, . . . , ϱn∥ = |α|∥ϱ1, ϱ2, . . . , ϱn∥;

(iv) ∥ϱ1 + ϑ1, ϱ2, . . . , ϱn∥ ≤ ∥ϱ1, ϱ2, . . . , ϱn∥ + ∥ϑ1, ϱ2, . . . , ϱn∥,

∀ϱi ∈ Ω. Moreover, (Ω, ∥., . . . , .∥) is termed as n- N S.

Example 1.2.38. Misiak (1989) Consider Ω = Rn with usual inner product.
Then, ∥., . . . , .∥ : Ωn → [0,∞) defined as ∥ϱ1, ϱ2, . . . , ϱn∥ =

∣∣∣det(ϱij)
∣∣∣, where

det(ϱij) =

∣∣∣∣∣∣∣∣∣∣
ϱ11 ϱ12 . ϱ1n

ϱ21 ϱ22 . ϱ2n

. . . .
ϱn1 ϱn2 . ϱnn

∣∣∣∣∣∣∣∣∣∣
is an n− norm.

Definition 1.2.39. Misiak (1989) Let (Ω, ∥., . . . , .∥) be an n-N S and {ϱn} be a
sequence in Ω. Then, {ϱn} is c.t.b. a Cseq if

lim
k,l→∞

∥ϱk − ϱl, z2, . . . , zn∥ = 0 ∀z2, z3, . . . , zn ∈ Ω.

Definition 1.2.40. Misiak (1989) Let (Ω, ∥., . . . , .∥) be an n-N S and {ϱn} be a
sequence in Ω. Then, {ϱn} is c.t.b. convergent if

lim
k→∞

∥ϱk − ϱ, z2, . . . , zn∥ = 0 ∀z2, z3, . . . , zn ∈ Ω.

Definition 1.2.41. Misiak (1989) (Ω, ∥., . . . , .∥) is c.t.b. an n- BS if every Cseq

in Ω is convergent in Ω.

Lemma 1.2.42. Xu and Rassias (2012) Let (Ω, ∥., . . . , .∥) be an n-N S and {ϱk}
be a convergent sequence in Ω. Then,

lim
k→∞

∥ϱk, z2, z3, . . . , zn∥ =
∥∥∥∥ lim

k→∞
ϱk, z2, z3, . . . , zn

∥∥∥∥ , ∀zi ∈ Ω, where 1 < i ≤ n.

Lemma 1.2.43. Xu and Rassias (2012) Let (Ω, ∥., . . . , .∥) be an n-N S and

∥ϱ, ϑ1, ϑ2, . . . , ϑn−1∥ = 0 ∀ϑi ∈ Ω.

Then, ϱ = 0.
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Theorem 1.2.44. Diaz and Margolis (1968) Consider a generalized complete MS
(Ω, d) and a self mapping Γ : Ω → Ω satisfying:

d(Γϱ,Γϑ) ≤ kd(ϱ, ϑ).

for k ∈ [0, 1), whenever d(ϱ, ϑ) < ∞. Then,
either d(Γn(ϱ),Γn+1(ϱ)) = ∞ or the following assertions holds:

(i) lim
n→∞

Γnϱ = ϱ∗, where ϱ∗ is the fixed point of Γ;

(ii) d(ϱ, ϱ∗) ≤ 1
1 − k

d(ϑ,Γϑ).

Definition 1.2.45. Yang et al. (2015) Let Ω be a VS over a scalar field K with
a non-Archimedean nontrivial valuation | · | and dimΩ ≥ n. Then, a mapping
∥., . . . , .∥ : Ωn → [0,∞) is termed as a non-Archimedean n-norm, if it satisfies
:

(i) ∥ϱ1, ϱ2, . . . , ϱn∥ = 0 ⇔ ϱi and ϱj are linearly independent ∀ 1 ≤ i ̸= j ≤ n;

(ii) ∥ϱ1, ϱ2, . . . , ϱn∥ is invariant under the permutations of ϱ1, ϱ2, . . . , ϱn;

(iii) ∥αϱ1, ϱ2, . . . , ϱn∥ = |α|∥ϱ1, ϱ2, . . . , ϱn∥;

(iv) ∥ϱ1 + ϑ1, ϱ2, . . . , ϱn∥ ≤ max
{
∥ϱ1, ϱ2, . . . , ϱn∥, ∥ϑ1, ϱ2, . . . , ϱn∥

}
,

∀ϱi ∈ Ω. Moreover, (Ω, ∥., . . . , .∥) is termed as non-Archimedean n- N S.

Definition 1.2.46. Yang et al. (2015) Let Ω be a non-Archimedean n- N S and
{ϱℏ} be a sequence in Ω. Then, {ϱℏ} is c.t.b. Cauchy ⇔ {ϱℏ+1 − ϱℏ} → 0, as
ℏ → ∞.

Definition 1.2.47. J. M. Rassias and Kim (2009) Consider a function Φ : Ω →
Y , where Ω and (Y,≤) are closed under addition. Then, Φ is c.t.b.

(i) sub additive if Φ(ϱ+ ϑ) ≤ Φ(ϱ) + Φ(ϑ);

(ii) contractively sub additive if ∃λ ∈ [0, 1) s.t. Φ(ϱ+ ϑ) ≤ λ
(
Φ(ϱ) + Φ(ϑ)

)
;

(iii) expansively super additive if ∃λ ∈ [0, 1) s.t. Φ(ϱ+ ϑ) ≥ 1
λ

(
Φ(ϱ) + Φ(ϑ)

)
,

∀ϱ, ϑ ∈ Ω.
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1.3 Chapterwise Summary

In this section, we provide a brief summary of the results proved in the later chap-
ters of the thesis.
Chapter 2, deals with the results on the stability of quadratic and quartic type
functional equations. Some illustrations are presented to demonstrate the signifi-
cance of the assumption made in proved results. Also, the stability of a generalized
quartic function equation using fixed point approach and conventional approach
in n-BS and non- Archimedean n-BS is discussed.

Chapter 3, introduces the concept of C∗
AV -mR-MS, which is a generalization of

both C∗
AV -m-MS and R-MS. The first section presents the definition of C∗

AV -mR-
MS, along with its intrinsic properties and several illustrative examples. The
second section focuses on the existence and uniqueness of fixed points within
C∗

AV -mR-MS, using the concept of C∗
AV -mR-contraction mappings. The results

established in this chapter extend and generalize several well-known fixed point
theorems found in the literature. Also, as an application the existence and unique-
ness of the solution to the operator equation is presented.

Chapter 4, introduces the concept of a generalized distance function, referred to
as the multiplicative m-metric. The first section presents the basic definition and
intrinsic properties of the multiplicative m-MS, along with illustrative examples.
The second section discusses various fixed point results for self mappings within
the framework of multiplicative m-MS, using different contractions. Illustrative
examples are provided to discuss the existence of fixed points for discontinuous
self mappings. In the third section, common fixed point results for a pair of self
mappings are explored using generalized contraction conditions. An illustrative
example, involving discontinuous self mappings, is discussed, along with numer-
ical iterations to approximate the common fixed point, supported by graphical
representations. The fourth section presents fixed point and common fixed point
results using a three-point analogue of contraction mappings. Additionally, as ap-
plications, the existence and uniqueness of solutions to the initial value problem
and a system of integral equations are discussed.

Chapter 5, presents several common fixed point results for self mappings in PMS
using the (ϕ, ψ)-Wardowski type contraction. Furthermore, some fixed point
results are proven using generalized cyclic contractions, followed by illustrative
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examples. As an application, the existence of a fractal set for the Hutchinson-
Barnsley operator is established using the fixed point results proved in the chapter.
Finally, some iterations for generating fractal sets are presented, along with the
resulting fractals.

Chapter 6, discusses some common fixed point results for self mapping in b-MS us-
ing relation theoretic and α-admissible generalized contractions. As applications
of the proved results the existence of solution to a class of non-linear functional
integral equation and an operator equation are established.

Chapter 7 introduces several fixed point results within the framework of m-MS
using contraction mappings. The continuity conditions of self mappings are not
essential in the results proved, unlike those in existing literature. The chapter
discusses examples where well-known contractions in metric spaces do not guar-
antee the existence of a fixed point, but their generalizations within m-MS yield
the desired outcome. These examples are validated through graphical visualiza-
tions of contraction mappings, which help in understanding their behavior and
highlight the distinctions between metric spaces and m-MS. The main sections
present fixed point and common fixed point results using various contractions.
Finally, some numerical iterations for approximating the common fixed point are
provided, accompanied by graphs that visually demonstrate the results.

*******
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Chapter 2

Some Stability and Hyperstability
Results for Functional Equations

2.1 Introduction

The concept of stability of functional equations(FEs) began with Ulam’s problem,

raised at the University of Wisconsin, which sought to determine when approx-

imate solutions to FEs are close to exact solutions. Hyers provided the first

significant response to this problem, known as Ulam-Hyers stability, which offers

a framework for understanding the conditions under which approximate solutions

to FEs are close to the exact solution.

Following Hyers’ work, numerous generalizations and extensions of this theory

have been developed, expanding its applicability to various functional equations

and contexts, for reference see ( Cholewa (1984); Brzdek and Pietrzyk (2008);

Bahyrycz et al. (2013); Brzdek and Cieplinski (2013); Bahyrycz and Piszczek

(2014); Brzdek (2014); Bahyrycz and Olko (2016); Brzdek et al. (2016); Alessa

et al. (2021); Ciepliński (2021); Bahyrycz and Sikorska (2022); Jeyaraman et al.

(2022); Aderyani et al. (2023); Benzarouala, Brzdek, et al. (2023); Benzarouala,

Brzdęk, and Oubbi (2023); Park and Senasukh (2023); Jin and Lee (2024) and

the referenced cited therein).

The present chapter of the thesis explores some stability results for FEs mainly

quadratic type and quartic type FEs. In the first section, we establish some sta-
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bility results for classical quadratic FE 𭟋(ϱ + ϑ) + 𭟋(ϱ − ϑ) = 2𭟋(ϱ) + 2𭟋(ϑ)

and Jensen type quadratic FE 2𭟋
(

ϱ+ϑ
2

)
+ 2𭟋

(
ϱ−ϑ

2

)
= 𭟋(ϱ) + 𭟋(ϑ) using a well

established approach given by Moghimi and Najati (2022). Additionally, some

hyperstability results for quadratic type FEs along with some instances that illus-

trate the necessity of the assumptions made to establish the stability results on

quadratic type FEs.

In the second section, inspired by the stability results in literature, we present the

stability result for the generalized quartic FE of the form

𭟋(aϱ+ bϑ) + 𭟋(aϱ− bϑ) = 2a2(a2 − b2)𭟋(ϱ) + 2b2(b2 − a2)𭟋(ϑ)

+ a2b2 (𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ)
)
, (2.1.1)

where a, b (a ̸= b) are positive integers. Also, we explore the Ulam-Hyers-Rassias

stability results in n-Banach space using a fixed point technique. Eventually, some

stability results are established using the conventional approach with contractively

and expansively sub additive control functions. At last, the stability results of the

quartic FE in non-Archimedean n-Banach space are established. The results of

this chapter are presented in 1 2.

2.2 Some Results on Stability of Quadratic type
Functional Equations in Banach Space

In this section, we explore some hyperstability results for quadratic type FEs in

the context of BSs.

Theorem 2.2.1. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ ≥ 0 and real numbers p1, p2 and p3 satisfying p1 + p2 + p3 < 0.

Consider that ∀ ϱ ∈ U , ∃ ℏϱ ∈ N s.t. ℏϱ ∈ U ∀ ℏ ≥ ℏϱ. If a function 𭟋 : V → W

1Yadav, K., & Kumar, D. (2024). Some hyperstability results for quadratic type functional
equations. Applied Mathematics E-Notes, 24, 212–227.

2Yadav, K., & Kumar, D. Stability analysis of a generalized quartic functional equation in
n-Banach space, (Communicated).
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defined on V satisfies

∥𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) − 𭟋(ϱ+ ϑ) − 𭟋(ϑ+ ζ) − 𭟋(ζ + ϱ)∥

≤ ϵ∥ϱ∥p1∥ϑ∥p2∥ζ∥p3 , (2.2.1)

∀ϱ, ϑ, ζ ∈ U ,ϱ+ ϑ, ϑ+ ζ, ϱ+ ζ, ϱ+ ϑ+ ζ ∈ U .

Then, 𭟋 is a quadratic type FE satisfying

𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) = 𭟋(ϱ+ ϑ) + 𭟋(ϑ+ ζ) + 𭟋(ζ + ϱ)

∀ϱ, ϑ, ϱ+ ϑ, ϑ+ ζ, ϱ+ ζ, ϱ+ ϑ+ ζ ∈ U .

Proof. It is given that p1 + p2 + p3 < 0. Therefore, without loss of generality, let

p2 + p3 < 0. Let ϱ, ϑ ∈ U with ϱ + ϑ, ϑ + ζ, ζ + ϱ ∈ U . Hence, by the given

hypothesis ∃ a natural number k s.t. ℏϱ, ℏϑ, ℏζ, ℏ(ϱ + ϑ), ℏ(ϑ + ζ), ℏ(ϱ + ζ) and

ℏ(ϱ+ ϑ+ ζ) ∈ U ∀ ℏ ≥ k.

Substituting ϱ = ϱ, ϑ = ℏϱ and ζ = ℏϱ in (2.2.1), we have∥∥∥∥∥𭟋((1+2ℏ)ϱ
)

+𭟋(ϱ)+2𭟋(ℏϱ)−2𭟋
(
(1+ℏ)ϱ

)
−𭟋(2ℏϱ)

∥∥∥∥∥ ≤ ϵℏp2+p3∥ϱ∥p1+p2+p3 .

Similarly, we have∥∥∥∥∥𭟋((1+2ℏ)ζ
)

+𭟋(ζ)+2𭟋(ℏζ)−2𭟋
(
(1+ℏ)ζ

)
−𭟋(2ℏζ)

∥∥∥∥∥ ≤ ϵℏp2+p3∥ζ∥p1+p2+p3 ,

∥∥∥∥∥𭟋((1+2ℏ)ϑ
)

+𭟋(ϑ)+2𭟋(ℏϑ)−2𭟋
(
(1+ℏ)ϑ

)
−𭟋(2ℏϑ)

∥∥∥∥∥ ≤ ϵℏp2+p3∥ϑ∥p1+p2+p3 ,

∥∥∥∥∥𭟋((1 + 2ℏ)(ϱ+ ϑ)
)

+ 𭟋(ϱ+ ϑ) + 2𭟋
(
ℏ(ϱ+ ϑ)

)
− 2𭟋

(
(1 + ℏ)(ϱ+ ϑ)

)
− 𭟋

(
2ℏ(ϱ + ϑ)

)∥∥∥∥∥ ≤ ϵℏp2+p3∥ϱ + ϑ∥p1+p2+p3 ,

∥∥∥∥∥𭟋((1 + 2ℏ)(ϑ+ ζ)
)

+ 𭟋(ϑ+ ζ) + 2𭟋
(
ℏ(ϑ+ ζ)

)
− 2𭟋

(
(1 + ℏ)(ϑ+ ζ)

)
− 𭟋

(
2ℏ(ϑ + ζ)

)∥∥∥∥∥ ≤ ϵℏp2+p3∥ϑ + ζ∥p1+p2+p3 ,
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∥∥∥∥∥𭟋((1 + 2ℏ)(ϱ+ ζ)
)

+ 𭟋(ϱ+ ζ) + 2𭟋
(
ℏ(ϱ+ ζ)

)
− 2𭟋

(
(1 + ℏ)(ϱ+ ζ)

)
− 𭟋

(
2ℏ(ϱ + ζ)

)∥∥∥∥∥ ≤ ϵℏp2+p3∥ϱ + ζ∥p1+p2+p3

and ∥∥∥∥∥𭟋((1+2ℏ)(ϱ+ϑ+ζ)
)
+𭟋(ϱ+ϑ+ζ)+2𭟋

(
ℏ(ϱ+ϑ+ζ)

)
−2𭟋

(
(1+ℏ)(ϱ+ϑ+ζ)

)
− 𭟋

(
2ℏ(ϱ + ϑ + ζ)

)∥∥∥∥∥ ≤ ϵℏp2+p3∥ϱ + ϑ + ζ∥p1+p2+p3 .

Since p2 + p3 < 0, taking limit as ℏ → ∞ in above inequalities, we have

𭟋(ϱ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϱ)

)
+ 𭟋(2ℏϱ) − 𭟋

(
(1 + 2ℏ)ϱ

)
− 2𭟋(ℏϱ)

)
,

𭟋(ϑ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϑ)

)
+ 𭟋(2ℏϑ) − 𭟋

(
(1 + 2ℏ)ϑ

)
− 2𭟋(ℏϑ)

)
,

𭟋(ζ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ζ)

)
+ 𭟋(2ℏζ) − 𭟋

(
(1 + 2ℏ)ζ

)
− 2𭟋(ℏζ)

)
,

𭟋(ϱ+ ϑ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϱ+ ϑ)

)
+ 𭟋

(
2ℏ(ϱ+ ϑ)

)
− 𭟋

(
(1 + 2ℏ)(ϱ + ϑ)

)
− 2𭟋

(
ℏ(ϱ + ϑ)

))
,

𭟋(ϑ+ ζ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϑ+ ζ)

)
+ 𭟋

(
2ℏ(ϑ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϑ + ζ)

)
− 2𭟋

(
ℏ(ϑ + ζ)

))
,

𭟋(ϱ+ ζ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϱ+ ζ)

)
+ 𭟋

(
2ℏ(ϱ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϱ + ζ)

)
− 2𭟋

(
ℏ(ϱ + ζ)

))

and

𭟋(ϱ+ ϑ+ ζ) = lim
ℏ→∞

(
2𭟋
(
(1 + ℏ)(ϱ+ ϑ+ ζ)

)
+ 𭟋

(
2ℏ(ϱ+ ϑ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϱ + ϑ + ζ)

)
− 2𭟋

(
ℏ(ϱ + ϑ + ζ)

))
.
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Now,
∥∥∥∥∥𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) − 𭟋(ϱ+ ϑ) − 𭟋(ϑ+ ζ) − 𭟋(ϱ+ ζ)

∥∥∥∥∥
= lim

ℏ→∞

∥∥∥∥∥
(

2𭟋
(
(1 + ℏ)(ϱ+ ϑ+ ζ)

)
+ 𭟋

(
2ℏ(ϱ+ ϑ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϱ+ ϑ+ ζ)

)
−2𭟋

(
ℏ(ϱ+ ϑ+ ζ)

)))
+
(

2𭟋
(
(1 + ℏ)(ϱ)

)
+ 𭟋(2ℏϱ) − 𭟋

(
(1 + 2ℏ)ϱ

)
− 2𭟋(ℏϱ)

)

+
(

2𭟋
(
(1 + ℏ)(ϑ)

)
+ 𭟋(2ℏϑ) − 𭟋

(
(1 + 2ℏ)ϑ

)
− 2𭟋(ℏϑ)

)

+
(

2𭟋
(
(1 + ℏ)(ζ)

)
+ 𭟋(2ℏζ) − 𭟋

(
(1 + 2ℏ)ζ

)
− 2𭟋(ℏζ)

)

−
(

2𭟋
(
(1 + ℏ)(ϱ+ ϑ)

)
+ 𭟋

(
2ℏ(ϱ+ ϑ)

)
− 𭟋

(
(21 + ℏ)(ϱ+ ϑ)

)
− 2𭟋

(
ℏ(ϱ+ ϑ)

))

−
(

2𭟋
(
(1 + ℏ)(ϑ+ ζ)

)
+ 𭟋

(
2ℏ(ϑ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϑ+ ζ)

)
− 2𭟋

(
ℏ(ϑ+ ζ)

))

−
(

2𭟋
(
(1 + ℏ)(ϱ+ ζ)

)
+ 𭟋

(
2ℏ(ϱ+ ζ)

)
− 𭟋

(
(1 + 2ℏ)(ϱ+ ζ)

)
− 2𭟋

(
ℏ(ϱ+ ζ)

))∥∥∥∥∥
≤ lim

ℏ→∞
2
∥∥∥∥∥𭟋((1 + ℏ)(ϱ+ ϑ+ ζ)

)
+ 𭟋

(
(1 + ℏ)ϱ

)
+ 𭟋

(
(1 + ℏ)ϑ

)
+ 𭟋

(
(1 + ℏ)ζ

)
−𭟋

(
(1 + ℏ)(ϱ+ ϑ)

)
− 𭟋

(
(1 + ℏ)(ϑ+ ζ)

)
− 𭟋

(
(1 + ℏ)(ϱ+ ζ)

)∥∥∥∥∥
+
∥∥∥∥∥𭟋(2ℏ(ϱ+ ϑ+ ζ)

)
+ 𭟋(2ℏϱ) + 𭟋(ℏϑ) + 𭟋(2ℏζ) − 𭟋

(
2ℏ(ϱ+ ϑ)

)
− 𭟋(2ℏ(ϑ+ ζ))

−𭟋
(
2ℏ(ϱ+ ζ)

)∥∥∥∥∥
+
∥∥∥∥∥𭟋((1 + 2ℏ)(ϱ+ ϑ+ ζ)

)
+ 𭟋

(
(1 + 2ℏ)ϱ

)
+ 𭟋

(
(1 + 2ℏ)ϑ

)
+ 𭟋

(
(21 + ℏ)ζ

)
−𭟋

(
(1 + 2ℏ)(ϱ+ ϑ)

)
− 𭟋

(
(1 + 2ℏ)(ϑ+ ζ)

)
−𭟋

(
(1 + 2ℏ)(ϱ+ ζ)

)∥∥∥∥∥+ 2
∥∥∥∥∥𭟋(ℏ(ϱ+ ϑ+ ζ)

)
+ 𭟋(ℏϱ) + 𭟋(ℏϑ) + 𭟋(ℏζ)

−𭟋
(
ℏ(ϱ+ ϑ)

)
− 𭟋

(
ℏ(ϑ+ ζ)

)
− 𭟋

(
ℏ(ϱ+ ζ)

)∥∥∥∥∥
≤ lim

ℏ→∞
ϵ

(
2(1 + ℏ)p1+p2+p3 + (2ℏ)p1+p2+p3 + (1 + 2ℏ)p1+p2+p3 + 2ℏp1+p2+p3

)
.∥ϱ∥p1∥ϑ∥p2∥ζ∥p3

= 0.
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Hence,

𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) = 𭟋(ϱ+ ϑ) + 𭟋(ϑ+ ζ)𭟋(ϱ+ ζ),

∀ϱ, ϑ, ϱ+ ϑ, ϑ+ ζ, ϱ+ ζ, ϱ+ ϑ+ ζ ∈ U .

Remark 2.2.2. The condition p1+p2+p3 < 0 specified in Theorem 2.2.1 is crucial

for the hyperstability result. The example 2.2.3 illustrates that if the criterion

p1 + p2 + p3 < 0 is not met, then the function may not be of quadratic type.

Example 2.2.3. Let 𭟋 : R → R be defined as 𭟋(ϱ) = ϱ3. Then we have

∥∥∥𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) − 𭟋(ϱ+ ϑ) − 𭟋(ϑ+ ζ) − 𭟋(ζ + ϱ)
∥∥∥

=
∣∣∣(ϱ+ ϑ+ ζ)3 + ϱ3 + ϑ3 + ζ3 − (ϱ+ ϑ)3 − (ϑ+ ζ)3 − (ζ + ϱ)3

∣∣∣
= |6ϱϑζ| ≤ 6|ϱ||ϑ||ζ| .

The hypothesis (2.2.1) holds, for p1 = 1, p2 = 1, p3 = 1, ϵ = 6, but 𭟋 is not a

quadratic function.

Theorem 2.2.4. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ ≥ 0 and real numbers p1 and p2 satisfying p1 + p2 < 0. Consider

that ∀ ϱ ∈ U , ∃ ℏϱ ∈ N s.t. ℏϱ ∈ U ∀ ℏ ≥ ℏϱ. If a function 𭟋 : V → W defined

on V satisfies

∥𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ) − 2𭟋(ϱ) − 2𭟋(ϑ)∥ ≤ ϵ∥ϱ∥p1∥ϑ∥p2 , (2.2.2)

∀ϱ, ϑ, ϱ+ ϑ, ϱ− ϑ ∈ U . Then, 𭟋 is quadratic on U, i.e.,

𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ) = 2𭟋(ϱ) + 2𭟋(ϑ),

∀ϱ, ϑ, ϱ+ ϑ, ϱ− ϑ ∈ U .

Proof. The result is analogous to Theorem 2.2.1.

Remark 2.2.5. The condition p1 + p2 < 0 specified in Theorem 2.2.4 is crucial

for the hyperstability result. The example 2.2.6, illustrates that if the criterion

p1 + p2 < 0 is not met, then the function may not be quadratic.
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Example 2.2.6. Let 𭟋 : R → R be defined as 𭟋(ϱ) = ϱ4. Then, we have

∥∥∥∥∥𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ) − 2𭟋(ϱ) − 2𭟋(ϑ)
∥∥∥∥∥ =

∣∣∣(ϱ+ ϑ)4 + (ϱ− ϑ)4 − 2ϱ4 − 2ϑ4
∣∣∣

=
∣∣∣12ϱ2ϑ2

∣∣∣ ≤ 12|ϱ|2|ϑ|2 .

The hypothesis (2.2.2) holds for ϵ = 12 and p1 = p2 = 2, but 𭟋 is not quadratic.

Theorem 2.2.7. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ ≥ 0 and real numbers p1 and p2 satisfying p1 + p2 < 0. Consider

that ∀ ϱ ∈ U , ∃ ℏϱ ∈ N s.t. ℏϱ
2 ∈ U ∀ ℏ ≥ ℏϱ. If a function 𭟋 : V → W defined

on V satisfies∥∥∥∥∥2𭟋
(
ϱ+ ϑ

2

)
+ 2𭟋

(
ϱ− ϑ

2

)
− 𭟋(ϱ) − 𭟋(ϑ)

∥∥∥∥∥ ≤ ϵ∥ϱ∥p1∥ϑ∥p2 , (2.2.3)

∀ϱ, ϑ, ϱ+ϑ
2 , ϱ−ϑ

2 ∈ U . Then, 𭟋 is quadratic of Jensen type on U, i.e.,

2𭟋
(
ϱ+ ϑ

2

)
+ 2𭟋

(
ϱ− ϑ

2

)
= 𭟋(ϱ) + 𭟋(ϑ),

∀ϱ, ϑ, ϱ+ϑ
2 , ϱ−ϑ

2 ∈ U .

Proof. The result is analogous to Theorem 2.2.1.

Remark 2.2.8. The condition p1+p2 < 0 specified in Theorem 2.2.7 is crucial for

the hyperstability result. In Example 2.2.9, we have illustrated that if the criterion

p1 + p2 < 0 is not met, then the function may not be quadratic of Jensen type.

Example 2.2.9. Let 𭟋 : R → R be defined as 𭟋(ϱ) = ϱ4 and let U = [1,∞).

Then, we have

∥∥∥∥∥2𭟋
(
ϱ+ ϑ

2

)
+ 2𭟋

(
ϱ− ϑ

2

)
− 𭟋(ϱ) − 𭟋(ϑ)

∥∥∥∥∥ =
∣∣∣∣∣∣2
(
ϱ+ ϑ

2

)4

+ 2
(
ϱ− ϑ

2

)4

− ϱ4 − ϑ4

∣∣∣∣∣∣
= 3

4
∣∣∣ϱ2 − ϑ2

∣∣∣2 ≤ 3
2
∣∣∣ϱ2
∣∣∣2∣∣∣ϑ2

∣∣∣2
= 3

2 |ϱ|4|ϑ|4 .

The hypothesis (2.2.3) holds for ϵ = 3
2 , and p1 = p2 = 4, but 𭟋 is not quadratic

of Jensen type.
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Theorem 2.2.10. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ ≥ 0 and real numbers p1, p2, p3 and p4 satisfying p1+p2+p3+p4 <

0 . Consider that ∀ϱ ∈ U , ∃ ℏϱ ∈ N s.t. ℏϱ ∈ U ∀ℏ ≥ ℏϱ. If a function 𭟋 : V → W

defined on V satisfies

∥𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) − 𭟋(ϱ+ ϑ) − 𭟋(ϑ+ ζ) − 𭟋(ζ + ϱ)∥

≤ ∥ϱ∥p1∥ϑ∥p2∥ζ∥p3ϵ∥ϱ + ϑ + ζ∥p4 , (2.2.4)

∀ϱ, ϑ, ζ, ϱ+ϑ, ϑ+ζ, ϱ+ζ, ϱ+ϑ+ζ ∈ U . Then, 𭟋 is a quadratic type FE satisfying

𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) = 𭟋(ϱ+ ϑ) + 𭟋(ϑ+ ζ) + 𭟋(ζ + ϱ),

∀ ϱ, ϑ, ζ, ϱ+ ϑ, ϑ+ ζ, ϱ+ ζ, ϱ+ ϑ+ ζ ∈ U .

Proof. The result is analogous to Theorem 2.2.1.

Remark 2.2.11. The condition p1 + p2 + p3 + p4 < 0 specified in Theorem 2.2.10

is crucial for the hyperstability result. The example 2.2.12 illustrates that if the

criterion p1 +p2 +p3 +p4 < 0 is not met, then the function may not be of quadratic

type.

Example 2.2.12. Let 𭟋 : R → R defined as 𭟋(ϱ) = ϱ4. Then, we have

∥∥∥𭟋(ϱ+ ϑ+ ζ) + 𭟋(ϱ) + 𭟋(ϑ) + 𭟋(ζ) − 𭟋(ϱ+ ϑ) − 𭟋(ϑ+ ζ) − 𭟋(ζ + ϱ)
∥∥∥

=
∣∣∣(ϱ+ ϑ+ ζ)4 + ϱ4 + ϑ4 + ζ4 − (ϱ+ ϑ)4 − (ϑ+ ζ)4 − (ϱ+ ζ)4

∣∣∣
=

∣∣∣∣8 (ϱ2yz + xy2ζ + ϱϑζ2
)∣∣∣∣

≤ 8|ϱϑζ||ϱ+ ϑ+ ζ|

≤ 8|ϱ||ϑ||ζ||ϱ+ ϑ+ ζ| .

The hypothesis (2.2.4) holds for p1 = p2 = p3 = p4 = 1&ϵ = 8, but 𭟋 is not a

quadratic function.

Remark 2.2.13. The results proved in Theorem 2.2.1 and Theorem 2.2.10 is

associated to various hyperstability results concerning linear and quadratic FEs
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in the existing literature. For instance, see Proposition 1.10 of Zhang (2015),

Corollary 3.7, Corollary 3.10, Corollary 3.12 of Bahyrycz and Olko (2016).

Theorem 2.2.14. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ, θ ≥ 0 and real numbers p1, p2 and p3 satisfying p1 + p2 + p3 < 0

and p1 + p2 + 2p3 < 0. Consider that ∀ϱ ∈ U , ∃ an ℏϱ ∈ N s.t. ℏϱ ∈ U ∀ ℏ ≥ ℏϱ.

If a function 𭟋 : V → W defined on V satisfies

∥𭟋(ϱ+ϑ)+𭟋(ϱ−ϑ)−2𭟋(ϱ)−2𭟋(ϑ)∥ ≤ ∥ϱ∥p1∥ϑ∥p2(ϵ∥ϱ+ϑ∥p3+θ∥ϱ−ϑ∥p3), (2.2.5)

∀ϱ, ϑ, ϱ+ ϑ, ϱ− ϑ ∈ U , then 𭟋 is quadratic on U, i.e.,

𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ) = 2𭟋(ϱ) + 2𭟋(ϑ) ∀ϱ, ϑ, ϱ+ ϑ, ϱ− ϑ ∈ U.

Proof. The result is analogous to Theorem 2.2.1.

Remark 2.2.15. The conditions p1 + p2 + p3 < 0 and p1 + p2 + 2p3 < 0 specified

in Theorem 2.2.14 are crucial for the hyperstability result. In Example 2.2.16, we

have illustrated that if the criteria (p1 + p2 + p3 < 0 and p1 + p2 + 2p3 < 0) is not

met, then the function may not be quadratic.

Example 2.2.16. Let 𭟋 : R → R be defined as 𭟋(ϱ) = ϱ3 and let U = [1,∞).

Then, we have

∥∥∥𭟋(ϱ+ ϑ) + 𭟋(ϱ− ϑ) − 2𭟋(ϱ) − 2𭟋(ϑ)
∥∥∥ =

∣∣∣(ϱ+ ϑ)3 + (ϱ− ϑ)3 − 2ϱ3 − 2ϑ3
∣∣∣

=
∣∣∣6ϱϑ2 − 2ϑ3

∣∣∣
= 2|ϑ|2|3ϱ− ϑ|

= 2|ϑ|2|3ϱ− ϱ+ ϱ− ϑ|

≤ 2|ϑ|2
(
|2ϱ| +|ϱ− ϑ|

)
≤ |ϱ|1|ϑ|2

(
4|ϱ+ ϑ| + 2|ϱ− ϑ|

)
.

The hypothesis (2.2.5) holds for p1 = 1, p2 = 2, p3 = 1, ϵ = 4&θ = 2, but 𭟋 is not

a quadratic function.
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Remark 2.2.17. The result proved in Theorem 2.2.4 and Theorem 2.2.14 is as-

sociated to various hyperstability results concerning linear and quadratic FEs in

the existing literature. For instance, see Theorem 2 of Brzdek et al. (2016).

Theorem 2.2.18. Let V and W be two N Ss and U ⊂ V − {0} be a non-empty

subset. Choose ϵ, θ ≥ 0 and real numbers p1, p2 and p3 satisfying p1 + p2 + p3 < 0

and p1 + p2 + 2p3 < 0. Consider that ∀ϱ ∈ U , ∃ an ℏϱ ∈ N s.t. ℏϱ ∈ U ∀ℏ ≥ ℏϱ.

If a function 𭟋 : V → W defined on V satisfies∥∥∥∥∥2𭟋
(
ϱ+ ϑ

2

)
+2𭟋

(
ϱ− ϑ

2

)
−𭟋(ϱ)−𭟋(ϑ)

∥∥∥∥∥ ≤ ∥ϱ∥p1∥ϑ∥p2(ϵ∥ϱ+ϑ∥p3 +θ∥ϱ−ϑ∥p3),

(2.2.6)

∀ϱ, ϑ, ϱ+ϑ
2 , ϱ−ϑ

2 ∈ U , then 𭟋 is quadratic of Jensen type on U, i.e.,

2𭟋
(
ϱ+ ϑ

2

)
+ 2𭟋

(
ϱ− ϑ

2

)
= 𭟋(ϱ) + 𭟋(ϑ) ∀ϱ, ϑ, ϱ+ ϑ

2 ,
ϱ− ϑ

2 ∈ U.

Proof. The result is analogues to Theorem 2.2.1.

Remark 2.2.19. The conditions p1 + p2 + p3 < 0 and p1 + p2 + 2p3 < 0 specified

in Theorem 2.2.18 are crucial for the hyperstability result. In Example 2.2.20, we

have illustrated that if the criteria p1 + p2 + p3 < 0 and p1 + p2 + 2p3 < 0 is not

met, then the function may not be quadratic of Jensen type.

Example 2.2.20. Let 𭟋 : R → R be defined as 𭟋(ϱ) = ϱ3, and let U = [1,∞).

Then, we have

∥∥∥∥∥2𭟋
(
ϱ+ ϑ

2

)
+ 2𭟋

(
ϱ− ϑ

3

)
− 𭟋(ϱ) − 𭟋(ϑ)

∥∥∥∥∥ =
∣∣∣∣∣∣2
(
ϱ+ ϑ

2

)3

+ 2
(
ϱ− ϑ

2

)3

− ϱ3 − ϑ3

∣∣∣∣∣∣
=

∣∣∣∣∣14
(
−2ϱ3 + 6ϱϑ2 − 4ϑ3

)∣∣∣∣∣
= 1

2
∣∣∣ϱ3 − 3ϱϑ2 + 2ϑ3

∣∣∣
= 1

2
∣∣∣ϱ3 − ϱϑ2 + 2ϑ3 − 2ϱϑ2

∣∣∣
= 1

2
∣∣∣ϱ(ϱ2 − ϑ2) + 2ϑ(ϱ2 − ϑ2)

∣∣∣
≤ 1

2
∣∣∣ϱ2 − ϑ2

∣∣∣|ϱ+ 2ϑ|

≤ |ϱ|2|ϑ|2
(
2|ϱ+ ϑ| +|ϱ− ϑ|

)
.
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The hypothesis (2.2.6) holds for p1 = 2, p2 = 2, p3 = 1, ϵ = 2,&θ = 1, but 𭟋 is not

a quadratic type Jensen function.

Remark 2.2.21. The result proved in Theorem 2.2.7 and Theorem 2.2.18 is as-

sociated to various hyperstability results concerning linear and quadratic FEs in

the existing literature. For instance, see Corollary 1, Corollary 2 and Corollary

3 of Brzdek et al. (2016), Theorem 2 and Theorem 5 of Bahyrycz and Piszczek

(2014).

Theorem 2.2.22. Let V be a N S over field F and W be a N S over field K. Let

p, q ∈ F − {0} and ϕ : X ×X → [0,∞) be a mapping s.t.

lim
ℏ→∞

ϕ(p−1(1 + ℏ)ϱ,−q−1ℏϱ) = 0, lim
ℏ→∞

ϕ(ℏϱ, ℏϑ) = 0 ∀ϱ, ϑ ∈ V − {0}.

Let P,Q ∈ K and R ∈ W . If 𭟋 : V → W satisfies

∥∥𭟋(pϱ+ qϑ) + 𭟋(pϱ− qϑ) − P𭟋(ϱ) −Q𭟋(ϑ) −R
∥∥ ≤ ϕ(ϱ, ϑ), (2.2.7)

∀ ϱ, ϑ ∈ {ζ ∈ V : ∥ζ∥ ≥ d} for some d > 0, then

𭟋(pϱ+ qϑ) + 𭟋(pϱ− qϑ) = P𭟋(ϱ) +Q𭟋(ϑ) +R ∀ϱ, ϑ ∈ V.

Proof. By substituting ϱ = (1+ℏ)ϱ
p

and ϑ = ℏϱ
q

in (2.2.7), we have

∥∥∥∥𭟋(ϱ) + 𭟋
(
(1 + 2ℏ)ϱ

)
− P𭟋

(
p−1(1 + ℏ)ϱ

)
−Q𭟋

(
−q−1ℏϱ

)
−R

∥∥∥∥
≤ ϕ

(
p−1(1 + ℏ)ϱ,−q−1ℏϱ

)
,

∀ ϱ ∈ V − {0} and ℏ ∈ N, where p−1(1 + ℏ)ϱ, q−1ℏϱ ∈ {ζ ∈ V : ∥ζ∥ ≥ d}.

Taking limit as ℏ → ∞ on both sides, we have

lim
ℏ→∞

∥∥∥∥∥𭟋(ϱ) + 𭟋
(
(1 + 2ℏ)ϱ

)
− P𭟋

(
p−1(1 + ℏ)ϱ

)
−Q𭟋

(
−q−1ℏϱ

)
−R

∥∥∥∥∥
≤ lim

ℏ→∞
ϕ
(
p−1(1 + ℏ)ϱ,−q−1ℏϱ

)
= 0. (2.2.8)

or

𭟋(ϱ) = lim
ℏ→∞

(
P𭟋

(
p−1(1 + ℏ)ϱ

)
+Q𭟋

(
−q−1ℏϱ

)
+R − 𭟋

(
(1 + 2ℏ)ϱ

))
.
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Similarly, we have

𭟋(ϑ) = lim
ℏ→∞

(
P𭟋

(
p−1(1 + ℏ)ϑ

)
+Q𭟋

(
−q−1ℏϑ

)
+R − 𭟋

(
(1 + 2ℏ)ϑ

))
,

𭟋(pϱ+ qϑ) = lim
ℏ→∞

(
P𭟋

(
p−1(1 + ℏ)(pϱ+ qϑ)

)
+ Q𭟋

(
−q−1ℏ(pϱ+ qϑ)

)
+ R − 𭟋

(
(1 + 2ℏ)(pϱ+ qϑ)

))
,

and

𭟋(pϱ− qϑ) = lim
ℏ→∞

(
P𭟋

(
p−1(1 + ℏ)(pϱ− qϑ)

)
+ Q𭟋

(
−q−1ℏ(pϱ− qϑ)

)
+ R − 𭟋

(
(1 + 2ℏ)(pϱ− qϑ)

))
.

Now,

∥∥𭟋(pϱ+ qϑ) + 𭟋(pϱ− qϑ) − P𭟋(ϱ) −Q𭟋(ϑ) −R
∥∥

= lim
ℏ→∞

∥∥∥∥∥
(
P𭟋

(
p−1(1 + ℏ)(pϱ+ qϑ)

)
+Q𭟋

(
−q−1ℏ(pϱ+ qϑ)

)
+R

−𭟋
(
(1 + 2ℏ)(pϱ+ qϑ)

))
+
(
P𭟋

(
p−1(1 + ℏ)(pϱ− qϑ)

)
+Q𭟋

(
−q−1ℏ(pϱ− qϑ)

)
+R − 𭟋

(
(1 + 2ℏ)(pϱ− qϑ)

))

−P
(
P𭟋

(
p−1(1 + ℏ)ϱ

)
+Q𭟋

(
−q−1ℏϱ

)
+R − 𭟋

(
(21 + ℏ)ϱ

))

−Q
(
P𭟋

(
p−1(1 + ℏ)ϑ

)
+Q𭟋

(
−q−1ℏϑ

)
+R − 𭟋

(
(21 + ℏ)ϑ

))
−R

∥∥∥∥∥
≤ lim

k→∞
P

∥∥∥∥∥𭟋 (p−1(1 + ℏ)(pϱ+ qϑ)
)

+ 𭟋
(
p−1(1 + ℏ)(pϱ− qϑ)

)
− P𭟋(p−1(1 + ℏ)ϱ)

−Q𭟋(p−1(1 + ℏ)ϑ) −R

∥∥∥∥∥+Q

∥∥∥∥∥𭟋 (−q−1ℏ(pϱ+ qϑ)
)

+ 𭟋
(
−q−1ℏ(pϱ− qϑ)

)
−P𭟋

(
−q−1ℏϱ

)
−Q𭟋

(
−q−1ℏϑ

)
−R

∥∥∥∥∥+
∥∥∥∥∥𭟋 ((1 + 2ℏ)(pϱ+ qϑ)

)
+𭟋

(
(1 + 2ℏ)(pϱ− qϑ)

)
− P𭟋

(
(1 + 2ℏ)ϱ

)
−Q𭟋

(
(1 + 2ℏ)ϑ

)
−R

∥∥∥∥∥
≤ lim

k→∞

(
Pϕ

(
p−1(1 + ℏ)ϱ, p−1(1 + ℏ)ϑ

)
+Qϕ

(
−q−1ℏϱ,−q−1ℏϑ

)
+

ϕ
(
(1 + 2ℏ)ϱ, (1 + 2ℏ)ϑ

))
= 0.
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Therefore,

𭟋(pϱ+ qϑ) + 𭟋(pϱ− qϑ) = P𭟋(ϱ) +Q𭟋(ϑ) +R ∀ϱ, ϑ ∈ V.

Remark 2.2.23. The result proved in Theorem 2.2.22 is associated to various

hyperstability results concerning linear and quadratic FEs in the existing litera-

ture. For instance, see Theorem 2, Corollary 3 of Piszczek (2014), Theorem 2.1,

Theorem 2.3 of Piszczek (2015), Theorem 2.1 of Phochai and Saejung (2019),

Theorem 2 of Brzdek et al. (2016).

2.3 Stability Analysis of a Generalized Quartic
Functional Equation

In this section, we explore hyperstability results for quartic FE in n-N S using

both conventional as well as fixed point approach.

Remark 2.3.1. Consider two VSs Z and Y over the same field. Assume that the

mapping 𭟋 : Z → Y satisfies (2.1.1). Then, ∀ ϱ, ϑ ∈ Z, we have

(i) On substituting ϱ = ϑ = 0 in (2.1.1), we have 𭟋(0) = 0;

(ii) On substituting ϑ = 0 in (2.1.1), we have 𭟋(aϱ) = a4𭟋(ϱ);

(iii) On substituting ϱ = 0 in (2.1.1), we have 𭟋(−ϑ) = 𭟋(ϑ).

2.3.1 Ulam-Hyers-Rassias Stability in n-Banach Space us-
ing Fixed Point Approach

In this section, we use the fixed point result of Diaz and Margolis (1968) on

generalized MS to examine the stability of the quartic FE (2.1.1) on an n-N S.

Throughout the section, (Z, ∥., .∥Z) represents an n-N S and (Y, ∥., .∥Y ) represents
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an n-BS. Also, let

Ga,b𭟋(ϱ, ϑ) = 𭟋(aϱ+ bϑ)+𭟋(aϱ− bϑ)−2a2(a2 − b2)𭟋(ϱ)−2b2(b2 −a2)𭟋(ϑ)

− a2b2(𭟋(ϱ + ϑ) + 𭟋(ϱ − ϑ)),

∀ ϱ, ϑ ∈ Z and positive integers a and b with a ̸= b represent the quartic FE and

∥ϑ, z∥Y = ∥ϑ, z2, z3, ..., zn∥, where ϑ ∈ Y , z ∈ Y n−1 and Y n denotes Y ×Y ×...×Y ,

n times.

Theorem 2.3.2. Let Z be an n- N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping s.t. 𭟋(0) = 0 and Ξ : Z × Z → [0,∞) satisfying:

Ξ(aϱ, aϑ) ≤ λa4Ξ(ϱ, ϑ), (2.3.1)

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ), (2.3.2)

∀ ϱ, ϑ ∈ Z and z ∈ Y n−1 and λ ∈ [0, 1). Then, ∃ a unique quartic map Θ : Z → Y

satisfying (2.1.1) and

∥∥𭟋(ϱ) − Θ(ϱ), z
∥∥

Y ≤ 1
2a4(1 − λ)Ξ(ϱ, 0), ∀ϱ ∈ Z.

Proof. Consider,

χ = {f : Z → Y |f(0) = 0}.

Let d : χ× χ → [0,∞] be a mapping defined as

d(f, g) = inf{µ ≥ 0 : ∥f(ϱ)−g(ϱ), z∥Y ≤ µΞ(ϱ, 0) ∀ϱ ∈ Z and z ∈ Y n−1}. (2.3.3)

Then, we have

(i) d(f, g) = 0

⇔ inf
{
µ ≥ 0|∥f(ϱ) − g(ϱ), z∥Y ≤ µΞ(ϱ, 0), ∀ϱ ∈ Z and z ∈ Y n−1

}
= 0

⇔ ∥f(ϱ) − g(ϱ), z∥Y = 0, ∀ϱ ∈ Z and z ∈ Y n−1

⇔ f(ϱ) − g(ϱ) = 0, ∀ϱ ∈ Z

⇔ f = g.
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(ii) Symmetric d(f, g) = d(g, f).

(iii) For triangle inequality

∥∥f(ϱ) − g(ϱ), z
∥∥

Y ≤
∥∥f(ϱ) − h(ϱ), z

∥∥
Y +

∥∥h(ϱ) − g(ϱ), z
∥∥

Y

≤ d(f, h)ϕ(ϱ, 0) + d(h, g)ϕ(ϱ, 0)

=
(
d(f, h) + d(h, g)

)
ϕ(ϱ, 0).

Thus,

d(f, g) ≤ d(f, h) + d(h, g).

Hence, (χ, d) is a generalized MS.

Now, consider, a Cseq {fℏ} ⊆ χ i.e. lim
ℏ,l→∞

d(fℏ, fl) = 0. Then, from (2.3.3), we

have

lim
ℏ,l→∞

∥fℏ(ϱ) − fl(ϱ), z∥Y ≤ lim
ℏ,l→∞

d(fℏ, fl)ϕ(ϱ, 0) = 0 ∀z ∈ Y n−1.

This implies {fℏ(ϱ)} is a Cseq in (Y, ∥., .∥Y ).

Since,
(
Y, ∥., .∥Y

)
is an n-BS, therefore ∃ some ϑ ∈ Y s.t. limℏ→∞ fℏ(ϱ) = ϑ. We

define a function f : Z → Y s.t. f(ϱ) = ϑ = lim
ℏ→∞

fℏ(ϱ).

As {fℏ} is a Cseq in (χ, d), therefore for each ϵ > 0 ∃ ℏ0 s.t. d(fℏ, fl) ≤ ϵ, for every

ℏ, l ≥ ℏ0 i.e.,

∥fℏ(ϱ) − fl(ϱ), z∥Y ≤ d(fℏ, fl) Ξ(ϱ, 0) ∀ϱ ∈ Z. (2.3.4)

Taking limit as l → ∞ in (2.3.4), we have

∥fℏ(ϱ) − f(ϱ), z∥Y ≤ ϵΞ(ϱ, 0) ∀ℏ ≥ ℏ0,

or

d(fℏ, f) ≤ ϵ ∀ℏ ≥ ℏ0.

Therefore, {fℏ} → f . Also, f(0) = 0 as fℏ(0) = 0, ∀ ℏ ∈ N . Hence, (χ, d) is

complete.

Define F : χ → χ as

F (𭟋)(ϱ) = 𭟋(aϱ)
a4 .
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Consider,

∥∥Tq(ϱ) − Tg(ϱ), z
∥∥

Y =
∥∥∥∥∥𭟋(aϱ)

a4 − g(aϱ)
a4 , z

∥∥∥∥∥
Y

≤ 1
a4
∥∥𭟋(aϱ) − g(aϱ), z

∥∥
Y

≤ 1
a4d(𭟋, g)Ξ(aϱ, 0)

≤ d(𭟋, g)
a4 λa4Ξ(ϱ, 0)

≤ λd(𭟋, g)Ξ(ϱ, 0),

or

d(Tq, Tg) ≤ λd(𭟋, g) ∀𭟋, g ∈ χ.

Since λ ∈ [0, 1), by Theorem 2.3.3, we have

(i) either d(F ℏ𭟋, F 1+ℏ𭟋) = ∞ ;

(ii) or

(i) lim
ℏ→∞

F ℏ(𭟋) = Θ, where Θ is the fixed point of mapping F .

(ii) d(𭟋,Θ) ≤ 1
1 − λ

d(𭟋, T q).

On substituting ϑ = 0 in (2.3.2), we have
∥∥∥∥∥𭟋(aϱ)

a4 − 𭟋(ϱ), z
∥∥∥∥∥

Y

≤ 1
2a4 Ξ(ϱ, 0). (2.3.5)

On substituting ϱ = aℏϱ in (2.3.5), we have
∥∥∥∥∥𭟋(a1+ℏϱ)

a4 − 𭟋(aℏϱ), z
∥∥∥∥∥

Y

≤ 1
2a4 Ξ(aℏϱ, 0).

To show d(F ℏ𭟋, F 1+ℏ𭟋) < ∞.
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Consider,

∥F 1+ℏ𭟋(ϱ) − F ℏ𭟋(ϱ), z∥Y = 1
a4ℏ

∥∥∥∥∥𭟋(a1+ℏϱ)
a4 − 𭟋(aℏϱ), z

∥∥∥∥∥
Y

≤ 1
a4ℏ

1
2a4 Ξ(aℏϱ, 0)

≤ λ

2a4 Ξ(ϱ, 0),

or

d(F 1+ℏ𭟋, F ℏ𭟋) < λ

2a4 < ∞, where F ℏ𭟋(ϱ) = 𭟋(aℏϱ)
a4ℏ .

Also, ∥∥F (𭟋(ϱ)) − 𭟋(ϱ), z
∥∥

Y =
∥∥∥∥∥𭟋(aϱ)

a4 − 𭟋(ϱ), z
∥∥∥∥∥

Y

≤ 1
2a4 Ξ(ϱ, 0),

or

d(Tq,𭟋) ≤ 1
2a4 .

Therefore, F has a fixed point Θ. Also,

d(𭟋,Θ) ≤ 1
1 − λ

d(𭟋, T q),

implies

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
1 − λ

d(𭟋, T q)Ξ(ϱ, 0) ≤ 1
2a4(1 − λ)Ξ(ϱ, 0).

Now, by replacing ϱ with aℏϱ, ϑ with aℏϑ in (2.3.2) and dividing by a4ℏ, we have
∥∥∥∥∥𭟋(aℏ(aϱ+ bϑ))

a4ℏ + 𭟋(aℏ(aϱ− bϑ))
a4ℏ − 2a2(a2 − b2)𭟋(aℏϱ)

a4ℏ − 2b2(b2 − a2)𭟋(aℏϑ)
a4ℏ

−a2b2
(
𭟋(aℏ(ϱ+ ϑ))

a4ℏ + 𭟋(aℏ(ϱ− ϑ))
a4ℏ

)
, z

∥∥∥∥∥
Y

≤ Ξ(aℏϱ, aℏϑ)
a4ℏ . (2.3.6)

Taking limit as ℏ → ∞ in (2.3.6), we have
∥∥∥∥∥Θ(aϱ+ bϑ) + Θ(aϱ− bϑ) − 2a2(a2 − b2)Θ(ϱ) − 2b2(b2 − a2)Θ(ϑ)

−a2b2(Θ(ϱ+ ϑ) + Θ(ϱ− ϑ)), z
∥∥∥∥∥

Y

≤ lim
ℏ→∞

Ξ(aℏϱ, aℏϑ)
a4ℏ

≤ lim
ℏ→∞

λℏΞ(ϱ, ϑ) = 0.
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Therefore, Θ is a quartic mapping.

Uniqueness: If possible, let Θ′ be another quartic mapping. Then, from Remark

(2.3.1), we have

Θ(aℏϱ) = a4ℏΘ(ϱ) and Θ′(aℏϱ) = a4ℏΘ′(ϱ),

or

Θ(ϱ) = Θ(aℏϱ)
a4ℏ and Θ′(ϱ) = Θ′(aℏϱ)

a4ℏ for ℏ ∈ N.

Consider,

∥∥∥Θ(ϱ) − Θ′(ϱ), z
∥∥∥

Y
=

∥∥∥∥∥Θ(aℏϱ)
a4ℏ − Θ′(a4ℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

=
∥∥∥∥∥Θ(aℏϱ)

a4ℏ − 𭟋(aℏϱ)
a4ℏ + 𭟋(aℏϱ)

a4ℏ − Θ′(aℏϱ)
a4ℏ , z

∥∥∥∥∥
Y

≤ 1
a4ℏ

(∥∥∥Θ(aℏϱ) − 𭟋(aℏϱ), z
∥∥∥

Y
+
∥∥∥Θ′(aℏ)ϱ− 𭟋(aℏϱ), z

∥∥∥
Y

)
≤ 1

a4ℏ
1

(1 − λ)a4 Ξ(aℏϱ, 0)

≤ λℏ

a4(1 − λ)Ξ(ϱ, 0).

Taking limit as ℏ → ∞, we have

∥Θ(ϱ) − Θ′(ϱ), z∥Y = 0, ∀ϱ ∈ Z and z ∈ Y n−1.

Therefore, Θ = Θ′.

2.3.2 Ulam-Hyers-Rassias Stability in n-Banach Space us-
ing Conventional Approach

In this section, to examine the stability of the quartic FE (2.1.1) on n-N S the

conventional approach is implemented.

Theorem 2.3.3. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping s.t. 𭟋(0) = 0. If for a mapping Ξ : Z ×Z → [0,∞), we

have

Ξ̄(ϱ, ϑ) =
∞∑
ℏ=0

1
a4ℏΞ(aℏϱ, aℏϑ) < ∞, (2.3.7)
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∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ), (2.3.8)

∀ ϱ, ϑ ∈ Z and z ∈ Y n−1. Then, ∃ a unique quartic mapping Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2a4 Ξ̄(ϱ, 0), ∀ϱ ∈ Z.

Proof. On substituting ϑ = 0 in (2.3.8), we have

∥2𭟋(aϱ) − 2a4𭟋(ϱ), z∥Y ≤ Ξ(ϱ, 0),

or ∥∥∥∥∥𭟋(aϱ)
a4 − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4 Ξ(ϱ, 0). (2.3.9)

On substituting ϱ = aϱ in (2.3.9), we have∥∥∥∥∥𭟋(a2ϱ)
a4 − 𭟋(aϱ), z

∥∥∥∥∥
Y

≤ 1
2a4 Ξ(aϱ, 0). (2.3.10)

Using (2.3.9) and (2.3.10), we have∥∥∥∥∥𭟋(a2ϱ)
(a4)2 − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4

(
Ξ(ϱ, 0) + 1

a4 Ξ(aϱ, 0)
)
.

On generalizing, we have∥∥∥∥∥𭟋(aℏϱ)
a4ℏ − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4

ℏ−1∑
i=0

Ξ(aiϱ, 0)
a4i

. (2.3.11)

Now, replacing ϱ = aℏϱ in (2.3.9) and dividing by a4ℏ, we have∥∥∥∥∥𭟋(a1+ℏϱ)
a4(ℏ+1) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

≤ 1
2a4

Ξ(aℏϱ, 0)
a4ℏ . (2.3.12)

On taking limit as ℏ → ∞ in (2.3.12) and using (2.3.7), we have

lim
ℏ→∞

∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

= 0, (2.3.13)

i.e.,
{
𭟋(aℏϱ)
a4ℏ

}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is a n-BS, therefore we

can define a mapping Θ : Z → Y s.t. Θ(ϱ) = lim
ℏ→∞

𭟋(aℏϱ)
a4ℏ .

On taking limit as ℏ → ∞ in (2.3.11), we have

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ lim
ℏ→∞

1
2a4

ℏ−1∑
i=0

Ξ(aiϱ)
a4i

= 1
2a4 Ξ̄(ϱ, 0).
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On similar line of Theorem 2.3.2, it can be shown that Θ is a quartic mapping.

Uniqueness: If possible, let Θ′ be an another quartic map.

Then,

∥∥∥Θ(ϱ) − Θ′(ϱ), z
∥∥∥

Y
=

∥∥∥∥∥Θ(aℏϱ)
a4ℏ − Θ′(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

=
∥∥∥∥∥Θ(aℏϱ)

a4ℏ − 𭟋(aℏϱ)
a4ℏ + 𭟋(aℏϱ)

a4ℏ − Θ′(aℏϱ)
a4ℏ , z

∥∥∥∥∥
Y

≤ 1
a4ℏ

(∥∥∥Θ(aℏϱ) − 𭟋(aℏϱ), z
∥∥∥

Y
+
∥∥∥Θ′(aℏ)ϱ− 𭟋(aℏϱ), z

∥∥∥
Y

)
≤ 1

a4(1+ℏ) Ξ̄(aℏϱ, 0)

= 1
a4(1+ℏ)

∞∑
i=0

Ξ(a(i+ℏ)ϱ)
a4i

≤ 1
a4

∞∑
i=0

Ξ(a(i+ℏ)ϱ)
a4(i+ℏ) ,

or ∥∥∥Θ(ϱ) − Θ′(ϱ), z
∥∥∥

Y
≤ 1
a4

∞∑
i=0

Ξ(a(i+ℏ)ϱ)
a4(i+ℏ) . (2.3.14)

Taking limit as ℏ → ∞ in (2.3.14), we have Θ = Θ′.

Theorem 2.3.4. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If ∃ a mapping Ξ : Z × Z → [0,∞) s.t.

Ξ̄(ϱ, ϑ) =
∞∑
ℏ=0

a4ℏΞ
(
ϱ

aℏ
,
ϑ

aℏ

)
< ∞, (2.3.15)

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.16)

Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2a4 Ξ̄(ϱ, 0).

Proof. On substituting ϑ = 0 in (2.3.16), we have

∥𭟋(aϱ) − a4𭟋(ϱ), z∥Y ≤ 1
2Ξ(ϱ, 0). (2.3.17)

On substituting ϱ = ϱ

a
in (2.3.17), we have∥∥∥∥∥𭟋(ϱ) − a4𭟋

(
ϱ

a

)
, z

∥∥∥∥∥
Y

≤ 1
2Ξ

(
ϱ

a
, 0
)
. (2.3.18)
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Again on substituting ϱ = ϱ
a

again in (2.3.18), we have∥∥∥∥∥𭟋
(
ϱ

a

)
− a4𭟋

(
ϱ

a2

)
, z

∥∥∥∥∥
Y

≤ 1
2Ξ

(
ϱ

a2 , 0
)
. (2.3.19)

From (2.3.18) and (2.3.19), we have∥∥∥∥∥𭟋(ϱ) − (a4)2𭟋
(
ϱ

a2

)
, z

∥∥∥∥∥
Y

≤ 1
2

(
Ξ
(
ϱ

a
, 0
)

+ a4Ξ
(
ϱ

a2 , 0
))

. (2.3.20)

On generalizing, we have∥∥∥∥∥𭟋(ϱ) − a4ℏ𭟋
(
ϱ

aℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4

ℏ∑
i=1

a4iΞ
(
ϱ

ai
, 0
)
. (2.3.21)

Now, on substituting ϱ = ϱ

aℏ
in (2.3.18) and multiplying it by a4ℏ, we have

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4a

4(1+ℏ)Ξ
(

ϱ

a1+ℏ , 0
)
. (2.3.22)

On taking limit as ℏ → ∞ in (2.3.22) and using (2.3.15), we have

lim
ℏ→∞

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

= 0, (2.3.23)

i.e.,
{
a4ℏ𭟋

(
ϱ
aℏ

)}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is an n-BS, therefore

we can define a mapping Θ : Z → Y as Θ(ϱ) = lim
ℏ→∞

a4ℏ𭟋( ϱ
aℏ

). The remaining

part of the proof is analogues to Theorem 2.3.3.

Theorem 2.3.5. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a contractively sub additive

mapping Ξ : Z × Z → [0,∞) with contractive constant λ having a−3λ < 1, we

have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.24)

Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2

Ξ(ϱ, 0)
a4 − aλ

.

Proof. On substituting ϑ = 0 in (2.3.24), we have

∥2𭟋(aϱ) − 2a4𭟋(ϱ), z∥Y ≤ Ξ(ϱ, 0),
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or ∥∥∥∥∥𭟋(aϱ)
a4 − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4 Ξ(ϱ, 0). (2.3.25)

Now, on substituting ϱ = aℏϱ in (2.3.25) and dividing it by a4ℏ, we have
∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

≤ 1
2a4

Ξ(aℏϱ, 0)
a4ℏ .

As Ξ is contractively sub additive function i.e., Ξ(aiϱ, 0) ≤ (aλ)iΞ(ϱ, 0).

Therefore,∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

≤ 1
2a4

(aλ)ℏ
a4ℏ Ξ(ϱ, 0) = 1

2a4 (a−3λ)ℏΞ(ϱ, 0). (2.3.26)

On taking limit as ℏ → ∞ in (2.3.26), we have

lim
ℏ→∞

∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

= 0, (2.3.27)

i.e.,
{
𭟋(aℏϱ)
a4ℏ

}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is an n-BS. Therefore,

Θ : Z → Y can be defined as Θ(ϱ) = lim
ℏ→∞

𭟋(aℏϱ)
a4ℏ .

On the outlines of Theorem 2.3.3, we have∥∥∥∥∥𭟋(aℏ)
a4ℏ − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4

−1+ℏ∑
i=0

Ξ(aiϱ, 0)
a4i

. (2.3.28)

As Ξ is a contractively sub additive i.e., Ξ(aiϱ, 0) ≤ (aλ)iΞ(ϱ, 0), therefore

lim
ℏ→∞

∥∥∥∥∥𭟋(aℏ)
a4ℏ − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ lim
ℏ→∞

1
2a4 Ξ(ϱ, 0)

−1+ℏ∑
i=0

(a1−4λ)i

= 1
2

Ξ(ϱ, 0)
a4 − aλ

,

or

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2

Ξ(ϱ, 0)
a4 − aλ

.

The remaining part of the proof is analogues to Theorem 2.3.3.
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Theorem 2.3.6. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a expansively super additive

mapping Ξ : Z × Z → [0,∞) with constant λ having a3λ < 1, we have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.29)

Then, ∃ a unique quartic mapping Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2

Ξ(ϱ, 0)λ
a− a4λ

.

Proof. On substituting ϑ = 0 in (2.3.29), we have

∥𭟋(aϱ) − a4𭟋(ϱ), z∥Y ≤ 1
2Ξ(ϱ, 0). (2.3.30)

Again on substituting ϱ = ϱ

a
in (2.3.30), we have

∥∥∥∥∥𭟋(ϱ) − a4𭟋
(
ϱ

a

)
, z

∥∥∥∥∥
Y

≤ 1
2Ξ

(
ϱ

a
, 0
)
. (2.3.31)

Now, ϱ = ϱ

aℏ
in (2.3.31) and multiplying by a4ℏ, we have

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4a

4(1+ℏ)Ξ
(

ϱ

a1+ℏ , 0
)
.

As Ξ is a expansively super additive, therefore Ξ
(
ϱ

ai
, 0
)

≤
(
λ

a

)i

Ξ(ϱ, 0).

Hence,

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4a

4(1+ℏ)
(
λ

a

)1+ℏ

Ξ(ϱ, 0)

= 1
2a4 (a3λ)1+ℏΞ(ϱ, 0).

On taking limit as ℏ → ∞, we have

lim
ℏ→∞

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

= 0,

i.e.,
{
a4ℏ𭟋

(
ϱ
aℏ

)}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is an n-BS. Therefore,

we can define Θ : Z → Y as Θ(ϱ) = lim
ℏ→∞

a4ℏ𭟋
(
ϱ

aℏ

)
.
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On the outlines of Theorem 2.3.4, we have∥∥∥∥∥𭟋(ϱ) − a4ℏ𭟋
(
ϱ

aℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4

ℏ∑
i=1

a4iΞ
(
ϱ

ai
, 0
)
. (2.3.32)

As Ξ is a expansively super additive i.e., Ξ
(
ϱ

ai
, 0
)

≤
(

λ
a

)i
Ξ(ϱ, 0).

Therefore,

lim
ℏ→∞

∥∥∥∥∥𭟋(ϱ) − a4ℏ𭟋
(
ϱ

aℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4 Ξ(ϱ, 0)

∞∑
i=1

(a3λ)i

= 1
2a4 Ξ(ϱ, 0) a3λ

1 − a3λ

= λ

2(a− a4λ)Ξ(ϱ, 0),

or

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ λ

2(a− a4λ)Ξ(ϱ, 0).

The remaining part of the proof is analogues to Theorem 2.3.4.

2.3.3 Consequences

In this section, we presented the results from the literature that can be deduced

from the results proved in previous section.

Corollary 2.3.7. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a real number p < 4 and positive

real number ϵ, we have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ ϵ(∥ϱ∥p
Z + ∥ϑ∥p

Z)ψ(z) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1, (2.3.33)

where ψ : Y n−1 → [0,∞). Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2a4(1 − λ)ϵ∥ϱ∥

p
Zψ(z).

Proof. The result holds as a consequence of Theorem 2.3.2, using Ξ(ϱ, ϑ) = 0 if

ϱ = 0 or ϑ = 0, and Ξ(ϱ, ϑ) = ϵ(∥ϱ∥p
Z + ∥ϑ∥p

Z)ψ(z), otherwise.
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For ϱ, ϑ ∈ Z, we have

Ξ(aϱ, aϑ) = ϵ(∥aϱ∥p
Z + ∥aϑ∥p

Z)ψ(z)

≤ λa4ϵ(∥ϱ∥p
Z + ∥ϑ∥p

Z)ψ(z)

= λa4Ξ(ϱ, ϑ),

where λ = ap−4 < 1.

Corollary 2.3.8. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for non negative real numbers ϵ, θ, p

and q with p and q < 4, we have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ (ϵ∥ϱ∥p
Z + θ∥ϑ∥q

Z)ψ(z) ∀ϱ, ϑ ∈ Z and z ∈ Zn−1, (2.3.34)

where ψ : Y n−1 → [0,∞). Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ ϵ∥ϱ∥p
Z

2(a4 − ap)ψ(z).

Proof. The result holds as a consequence of Theorem 2.3.3, using Ξ(ϱ, ϑ) =(
ϵ∥ϱ∥p

Z + θ∥ϑ∥q
Z

)
ψ(z).

Corollary 2.3.9. Let Z be an n- N S and Y be an n- BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for non negative real numbers ϵ, θ, p

and q with p and q > 4, we have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ (ϵ∥ϱ∥p
Z + θ∥ϑ∥q

Z)ψ(z) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1, (2.3.35)

where ψ : Y n−1 → [0,∞). Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ ϵ∥ϱ∥p
Z

2(ap − a4)ψ(z).

Proof. The result holds as a consequence of Theorem 2.3.4, using Ξ(ϱ, ϑ) =(
ϵ∥ϱ∥p + θ∥ϑ∥q

)
ψ(z).

Corollary 2.3.10. Let Z be an n-N S and Y be an n-BS over the same field. Let

𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a positive real number ϵ, we have

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ 2ϵ, ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.36)

43



Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ ϵ

2(a4 − 1) .

2.3.4 Ulam-Hyers-Rassias Stability in Non-Archimedean
n-Normed Space

In this section, we presents the results on the stability of FE 2.1.1 in Non-

Archimedean n- N S.

Theorem 2.3.11. Let Z be a non-Archimedean n-N S and Y be a non-Archimedean

n-BS over the same field. Let 𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a

mapping Ξ : Z × Z → [0,∞), we have

lim
ℏ→∞

1
a4ℏΞ(aℏϱ, aℏϑ) = 0, (2.3.37)

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.38)

Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2a4 Ξ̄(ϱ, 0), (2.3.39)

where Ξ̄(ϱ, 0) = max
{

Ξ(aℏϱ, 0)
a4ℏ : i ∈ N

}
.

Proof. On substituting ϑ = 0 in (2.3.38), we have

∥2𭟋(aϱ) − 2a4𭟋(ϱ), z∥Y ≤ Ξ(ϱ, 0),

or ∥∥∥∥∥𭟋(aϱ)
a4 − 𭟋(ϱ), z

∥∥∥∥∥
Y

≤ 1
2a4 Ξ(ϱ, 0). (2.3.40)

Now, on substituting ϱ = aℏϱ in (2.3.40) and dividing by a4ℏ, we have∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

≤ 1
2a4

Ξ(aℏϱ, 0)
a4ℏ . (2.3.41)

On taking limit as ℏ → ∞ in (2.3.41) and using (2.3.37), we have

lim
ℏ→∞

∥∥∥∥∥𭟋(a1+ℏϱ)
a4(1+ℏ) − 𭟋(aℏϱ)

a4ℏ , z

∥∥∥∥∥
Y

= 0, (2.3.42)
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i.e.,
{

𭟋(aℏϱ)
a4ℏ

}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is a non-Archimedean

n-BS. Therefore, we define Θ : Z → Y as Θ(ϱ) = lim
ℏ→∞

𭟋(aℏϱ)
a4ℏ .

Thus,

lim
ℏ→∞

∥∥∥∥∥𭟋(ϱ) − 𭟋(aℏϱ)
a4ℏ , z

∥∥∥∥∥
Y

= lim
ℏ→∞

∥∥∥∥∥∥
−1+ℏ∑
i=0

(
𭟋(ai+1ϱ)
a4(i+1) − 𭟋(aiϱ)

a4i

)
, z

∥∥∥∥∥∥
Y

≤ lim
ℏ→∞

1
2a4 max

{
Ξ(aℏϱ, 0)
a4ℏ : 0 ≤ i < ℏ

}

= 1
2a4 Ξ̄(ϱ, 0),

where Ξ̄(ϱ, 0) = max
{

Ξ(aiϱ, 0)
a4i

: i ∈ N
}

. The remaining part of the proof is

analogues to Theorem 2.3.3.

Theorem 2.3.12. Let Z be a non-Archimedean n-N S and Y be a non-Archimedean

n-BS over the same field. Let 𭟋 : Z → Y be a mapping with 𭟋(0) = 0. If for a

mapping Ξ : Z × Z → [0,∞), we have

lim
ℏ→∞

a4ℏΞ
(
ϱ

aℏ
,
ϑ

aℏ

)
= 0, (2.3.43)

∥Ga,b𭟋(ϱ, ϑ), z∥Y ≤ Ξ(ϱ, ϑ) ∀ϱ, ϑ ∈ Z and z ∈ Y n−1. (2.3.44)

Then, ∃ a unique quartic map Θ : Z → Y s.t.

∥𭟋(ϱ) − Θ(ϱ), z∥Y ≤ 1
2a4 Ξ̄(ϱ, 0), (2.3.45)

where Ξ̄(ϱ, 0) = max
{
a4ℏΞ

(
ϱ

aℏ
, 0
)

} : i ∈ N
}

.

Proof. On substituting ϑ = 0 in (2.3.44), we have

∥𭟋(aϱ) − a4𭟋(ϱ), z∥Y ≤ 1
2Ξ(ϱ, 0). (2.3.46)

On substituting ϱ = ϱ

a
in (2.3.46), we have

∥∥∥∥∥𭟋(ϱ) − a4𭟋
(
ϱ

a

)
, z

∥∥∥∥∥
Y

≤ 1
2Ξ

(
ϱ

a
, 0
)
. (2.3.47)
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Again on substituting ϱ = ϱ

aℏ
in (2.3.47) and multiplying by a4ℏ, we have

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

≤ 1
2a4a

4(1+ℏ)Ξ
(

ϱ

a1+ℏ , 0
)
. (2.3.48)

On taking limit as ℏ → ∞ in (2.3.48) and using (2.3.43), we have

lim
ℏ→∞

∥∥∥∥∥a4ℏ𭟋
(
ϱ

aℏ

)
− a4(1+ℏ)𭟋

(
ϱ

a1+ℏ

)
, z

∥∥∥∥∥
Y

= 0, (2.3.49)

i.e.,
{
a4ℏ𭟋

(
ϱ

aℏ

)}
is a Cseq in (Y, ∥., .∥Y ). Also, as (Y, ∥., .∥Y ) is a non-archimedean

n-BS. Therefore, we can define a map Θ : Z → Y as Θ(ϱ) = lim
ℏ→∞

a4ℏ𭟋
(
ϱ

aℏ

)
.

The remaining part of the proof is analogues to Theorem 2.3.11.

2.4 Conclusion

The chapter presents the stability of quadratic and quartic FEs. The analysis

includes the stability of classical and Jensen-type quadratic FEs using well-known

methods, with a focus on hyperstability and examples that show the importance

of the assumptions in the analysis. The stability of a generalized quartic FE is

also explored, with results obtained in n-BSs using fixed-point techniques and

sub-additive control functions. The discussion also includes non-Archimedean n-

BSs, offering a clear and unified approach to understanding the stability of these

FEs across different mathematical contexts.

*******
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Chapter 3

Some Fixed Point Results in
C∗-Algebra Valued mR-Metric
Space

3.1 Introduction

The aim of this chapter is to address and overcome certain limitations inherent
in Banach’s fixed-point theorem and its recent generalization. To address these
limitations, we introduce the notion of C∗-algebra valued mR-metric space(C∗

AV -
mR-MS) which is a generalization of C∗

AV -m-MS and R-MS . The first section deals
the basic definition and intrinsic properties of C∗

AV -mR-MS, including convergence
of sequences and completeness. In the second section, we generalize some well-
known contraction mappings and prove fixed point theorems on the R-complete
C∗

AV -mR-MS (not necessarily complete in metric sense).
Our findings extend various fixed point results in the literature. Moreover, we
provide examples where Banach-type contractions yield the desired results in this
structure, which is not the case in various generalized metric spaces. Finally, we
utilize our findings to establish the existence and uniqueness of solutions for an
operator equation. The results of this chapter are presented in 1.

1Yadav, K., & Kumar, D. C∗-algebra valued mR-metric space and fixed point results with
application, Asian-European Journal of Mathematics, 2550109.
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3.2 C∗-Algebra Valued mR-Metric Space

In this section, we introduced a new notion of C∗
AV -mR -MS along with the intrinsic

properties and some illustrative examples of this framework.

Definition 3.2.1. (Ω,B,R, ϖ) is c.t.b. a C∗-algebra valued mR-metric space
(C∗

AV -mR-MS) if it satisfies:

(i) (Ω,B, ϖ) is a C∗
AV -m-MS;

(ii) R is a reflexive binary relation on Ω.

Remark 3.2.2. A C∗
AV -mR-MS need not to be an C∗

AV -m-MS. For instance, con-
sider Ω = R and I ∈ B where B = M2(R) with relation defined as (ϱ, ϑ) ∈ R
⇔ ϱ = ϑ or ϱ.ϑ > 0. Then, ϖ(ϱ, ϑ) = max {|ϱ| ,|ϑ|}I is an C∗

AV -mR-metric
but it is not C∗

AV -m-metric. This is because, for ϱ = −2 and ϑ = 2, we have
ϖ(ϱ, ϱ) = ϖ(ϱ, ϑ) = ϖ(ϑ, ϑ) = 2I. But ϱ ̸= ϑ.

Remark 3.2.3. Every C∗
AV -R-MS is C∗

AV -mR-MS. But the converse may not
hold. Consider

Example 3.2.4. Let Ω = [0,∞) and B = M2([0,∞)). Let involution on B be
defined as M∗ = M t ∀M ∈ B, where M t denotes transpose of M and zero element
θB = 02×2. Norm on B is defined as ∥M∥ = max

1≤i,j≤2

∣∣∣mij

∣∣∣, for M = [mij]. Define
ϖ : Ω × Ω → M2([0,∞)) as:

ϖ(ϱ, ϑ) =
ϱ+ϑ

2 0
0 ϱ+ϑ

2

 .
For P = [pij], Q = [qij] ∈ M2([0,∞)), we define P ⪯ Q ⇔ pij ≤ qij, ∀i, j = 1, 2.
One can easily verify that (Ω,B, ϖ) is C∗

AV -m-MS. Let R be a binary relation on
Ω defined as ϱRϑ ⇔ ϱ = ϑ or ϱ.ϑ = 0. Then (Ω,B,R, ϖ) is C∗

AV -mR-MS.

Example 3.2.5. Let Ω = [0,∞) and B = M2([0,∞)). Let involution on B be
defined as M∗ = M t ∀M ∈ B, where M t denotes transpose of M . Norm on B is
defined as ∥M∥ = max

1≤i,j≤2

∣∣∣mij

∣∣∣, for M = [mij]. Define ϖ : Ω×Ω → M2([0,∞)) as:

ϖ(ϱ, ϑ) =
[ϱ+ϑ

2 ]ϱ 0
0 [ϱ+ϑ

2 ]ϱ

 ,where ϱ ≥ 1.

For P = [pij], Q = [qij] ∈ M2([0,∞)), we define P ⪯ Q ⇔ pij ≤ qij, ∀i, j = 1, 2.
Let R be a binary relation on Ω defined as ϱRϑ ⇔ ϱ = ϑ or ϱ.ϑ = 0. Here,
(Ω,B,R, ϖ) is C∗

AV -mR-MS..
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Example 3.2.6. Let Ω be a BS with norm ∥.∥. Let B = M2([0,∞)) and I

denote the identity matrix. Then (Ω,B,R,m) be a C∗
AV -mR-MS, where m-metric

is defined as:

ϖ(ϱ, ϑ) = ∥ϱ− ϑ∥I + min
{
∥ϱ∥, ∥ϑ∥

}
I ∀ϱ, ϑ ∈ Ω,

and R be a reflexive relation defined on Ω.

Example 3.2.7. Let H be a Hilbert space with inner product <,>H and B(H) be
the set of all bounded linear operator on H. Clearly, B(H) with the usual norm
is a BS. Then for a positive operator P consider the metric defined as:

ϖ(Γ1,Γ2) = ∥Γ1 − Γ2∥P + min
{
∥Γ1∥, ∥Γ2∥

}
P,

where ∥.∥ on B(H) defined as ∥Γ∥ = sup
ϱ∈H,ϱ ̸=0

∥Γ(ϱ)∥
∥ϱ∥

. Let relation R on B(H)

be defined as (Γ1,Γ2) ∈ R ⇔
∣∣< Γ1(ϱ), ϱ >H

∣∣ ≤
∣∣< Γ2(ϱ), ϱ >H

∣∣ ∀ϱ ∈ H. Then,
B(H) is a C∗

AV -mR-MS.

Definition 3.2.8. Let (Ω,B,R, ϖ) is C∗
AV -mR-MS. An Rseq in (Ω,B,R, ϖ) is

convergent to some ϱ ∈ Ω, if ∀ϵ > 0, ∃ℏ0 ∈ N s.t. ∥ϖ(ϱℏ, ϱ) −ϖϱℏϱ∥ ≤ ϵ ∀ℏ ≥ ℏ0

i.e.,

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → θB as ℏ → ∞.

Definition 3.2.9. Let (Ω,B,R, ϖ) is C∗
AV -mR-MS . An Rseq in (Ω,B,R, ϖ) is

c.t.b. mR-Cauchy if

lim
ℏ,m→∞

ϖ(ϱℏ, ϱm) −ϖϱℏϱm and lim
ℏ,m→∞

Mϱℏϱm −ϖϱℏϱm exists finitely.

Definition 3.2.10. (Ω,B,R, ϖ) is c.t.b. a R-complete C∗
AV -mR-MS if all mR-

Cseq in (Ω,B,R, ϖ) is convergent in Ω i.e., ∃ϱ ∈ Ω s.t.

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → θB and Mϱℏϱ −ϖϱℏϱ → θB as ℏ → ∞.

Remark 3.2.11. Let (Ω,B,R, ϖ) is C∗
AV -mR-MS . Then

(i) ϖw(ϱ, ϑ) = ϖ(ϱ, ϑ) +Mϱϑ − 2ϖϱϑ;

(ii) ϖs(ϱ, ϑ) =
ϖ(ϱ, ϑ) −ϖϱϑ, if ϱ ̸= ϑ;
θB, if ϱ = ϑ,

are C∗
AV -R-metric and (Ω,B,R,mw) and (Ω,B,R, ϖs) are C∗

AV -R-MSs.

49



Lemma 3.2.12. Let (Ω,B,R, ϖ) be a C∗
AV -mR-MS . Let {ϱℏ} be a sequence in

Ω. Then,

(i) {ϱℏ} is mR-Cauchy in (Ω,B,R, ϖ) ⇔ {ϱℏ} is R-Cauchy in (Ω,B,R,mw);

(ii) (Ω,B,R, ϖ) is complete ⇔ (Ω,B,R,mw) is complete;

(iii) {ϱℏ} is mR-Cauchy in (Ω,B,R, ϖ) ⇔ {ϱℏ} is R-Cauchy in (Ω,B,R, ϖs);

(iv) (Ω,B,R, ϖ) is complete ⇔ (Ω,B,R, ϖs) is complete.

Lemma 3.2.13. Let (Ω,B,R, d) be a C∗
AV -R-MS and a, b ∈ B with a, b ≻ θB.

Then (Ω,B,R, ϖ) is a C∗
AV -mR-MS, where ϖ(ϱ, ϑ) = ad(ϱ, ϑ) + b ∀(ϱ, ϑ) ∈ R.

Definition 3.2.14. Let (Ω,B,R, ϖ) be a C∗
AV -mR-MS . Let Γ : Ω → Ω . Γ is

c.t.b. R-preserving if ∀ϱ, ϑ ∈ Ω, (ϱ, ϑ) ∈ R implies (Γϱ,Γϑ) ∈ R.

Remark 3.2.15. Let (Ω,B,R, ϖ) be a C∗
AV -mR-MS . For ϱ, ϑ, z ∈ Ω, s.t. (ϱ, ϑ) ∈

R, (ϱ, z) ∈ R and (z, ϑ) ∈ R, we have

(i) θB ⪯ Mϱϑ +ϖϱϑ = ϖ(ϱ, ϱ) +ϖ(ϑ, ϑ);

(ii) θB ⪯ Mϱϑ −ϖϱϑ =
(
ϖ(ϱ, ϱ) −ϖ(ϑ, ϑ)

)
∨
(
ϖ(ϑ, ϑ) −ϖ(ϱ, ϱ)

)
;

(iii) Mϱϑ −ϖϱϑ ⪯ Mϱz −ϖϱz +Mzϑ −ϖzϑ.

3.3 Some Fixed Point Results in C∗-Algebra Val-
ued mR-Metric Space

In this section, some fixed point results are established using some well known
contraction mapping in the framework of C∗

AV -mR-MS.

Definition 3.3.1. Let (Ω,B,R, ϖ) be a C∗
AV -mR-MS and Γ : Ω → Ω be a mapping

on Ω. Then Γ is c.t.b. C∗
AV -mR-contraction if ∃ an A ∈ B with ∥A∥ < 1, s.t.

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A, (3.3.1)

∀ϱ, ϑ ∈ Ω, s.t. (ϱ, ϑ) ∈ R.

Theorem 3.3.2. Let (Ω,B,R, ϖ) be an R-complete C∗
AV -mR-MS, and let Γ :

Ω → Ω satisfy:
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(i) Γ is R-preserving;

(ii) ∃ an ϱ0 ∈ Ω s.t. (ϱ0, ϑ) ∈ R, ∀ϑ ∈ Ω;

(iii) Γ is a C∗
AV -mR-contraction.

Then, Γ possesses exactly one fixed point.

Proof. For ϱ0 ∈ Ω satisfying condition (ii), define the iterative sequence {ϱℏ} as
ϱℏ = Γϱℏ−1 ∀ℏ ∈ N.
If ϱℏ = ϱℏ−1 for some ℏ ∈ N. Then Γϱℏ−1 = ϱℏ = ϱℏ−1 implies ϱℏ−1 is a fixed point
of Γ. Hence, the result holds.
Now, assume that ϱℏ ̸= ϱℏ−1 ∀ℏ ∈ N.
As, ϱ0 ∈ Ω satisfying condition (ii) and Γ is R-preserving. Hence,

(ϱ0, ϑ) ∈ R ∀ϑ ∈ Ω ⇒ (ϱ0,Γϱ0) ∈ R

⇒ (ϱ0, ϱ1) ∈ R.

On repeated use of R-preserving property, we have

(ϱℏ, ϱℏ+1) ∈ R.

Also, by assumption (ii), we have

(ϱ0,Γk(ϱ0)) ∈ R, where k ∈ N.

Therefore, using R-preserving property, we can easily prove that {ϱℏ} is an Rseq

i.e., (ϱℏ, ϱℏ+k) ∈ R ∀ℏ, k ∈ N.
Now, using (3.3.1), we have

ϖ(ϱℏ+1, ϱℏ) ⪯ A∗ϖ(ϱℏ, ϱℏ−1)A
⪯ (A∗)2ϖ(ϱℏ−1, ϱℏ−2)A2

...

⪯ (A∗)ℏϖ(ϱ1, ϱ0)Aℏ.

Let ϖ(ϱ1, ϱ0) = β. Then,

ϖ(ϱℏ+1, ϱℏ) ⪯ (A∗)ℏβAℏ = (A∗)ℏβ 1
2 .β

1
2 Aℏ

= [β 1
2 Aℏ]∗.[β 1

2 Aℏ] ⪯ ∥β
1
2 Aℏ∥2IB

⪯ ∥β
1
2 ∥2∥Aℏ∥2IB.
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As ∥A∥ < 1 and ∥Aℏ∥ ≤ ∥A∥ℏ ⇒ ∥Aℏ∥ → 0.
Hence,

lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ) = θB. (3.3.2)

Also, ϖϱℏϱℏ+1 = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)

}
⪯ ϖ(ϱℏ+1, ϱℏ) → θB as ℏ → ∞.

Hence,

lim
ℏ→∞

ϖ(ϱℏ,, ϱℏ) → θB. (3.3.3)

Using (3.3.3), we have

lim
ℏ,m→∞

ϖϱℏϱm = θB. (3.3.4)

For m ≥ ℏ, consider

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ ≤ ϖ(ϱm, ϱm−1) −ϖϱmϱm−1

+ ϖ(ϱm−1, ϱm−2) −ϖϱm−1ϱm−2

... +ϖ(ϱℏ+1, ϱℏ) −ϖϱℏ+1ϱℏ

⪯ ϖ(ϱm, ϱm−1) +ϖ(ϱm−1, ϱm−2)...+ϖ(ϱℏ+1, ϱℏ)
⪯ [A∗]m−1βAm−1 + [A∗]m−2βAm−2 + ...+ [A∗]ℏβAℏ

=
m−1∑
k=ℏ

[A∗]kβAk =
m−1∑
k=ℏ

[β 1
2 Ak]∗.[β 1

2 Ak]

⪯
m−1∑
k=ℏ

∥β
1
2 Ak∥2IB ⪯

m−1∑
k=ℏ

∥β
1
2 ∥2∥Ak∥2IB

⪯ ∥β
1
2 ∥2

∞∑
k=ℏ

∥Ak∥2IB = ∥β
1
2 ∥2 ∥Aℏ∥2

1 − ∥A∥2 IB.

Now, since ∥A∥ < 1 ⇒ ∥Aℏ∥ → 0, then we have

lim
ℏ,m→∞

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ = θB.

Using (3.3.3) and Remark 3.2.15, we have

lim
ℏ,m→∞

Mϱmϱℏ −ϖϱmϱℏ = θB.

Hence, {ϱℏ} is an mR-Cseq.
As, (Ω,B,R, ϖ) is an R-complete C∗

AV -mR-MS and {ϱℏ} is mR -Cseq. Therefore,
∃ϱ ∈ Ω s.t.

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → θB and Mϱℏϱ −ϖϱℏϱ → θB as ℏ → ∞. (3.3.5)
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Using (3.3.3), we have

ϖϱℏϱ = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)

}
⪯ ϖ(ϱℏ, ϱℏ) → θB as ℏ → ∞. (3.3.6)

Using (3.3.6) and Remark 3.2.15, we have

ϖ(ϱℏ, ϱ) → θB, Mϱℏϱ → θB and ϖ(ϱ, ϱ) = θB. (3.3.7)

ϖϱΓϱ = min
{
ϖ(ϱ, ϱ), ϖ(Γϱ,Γϱ)

}
⪯ ϖ(ϱ, ϱ) = θB ⇒ ϖϱΓϱ = θB. (3.3.8)

Using (3.3.1), (3.3.8) and the triangle inequality, we have

ϖ(ϱ,Γϱ) = ϖ(ϱ,Γϱ) −ϖϱΓϱ ⪯ ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

⪯ lim sup
ℏ→∞

ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

= lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ,

or

ϖ(ϱ,Γϱ) ⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ. (3.3.9)

Using (3.3.1), (3.3.6) and (3.3.7), in (3.3.9), we have

θB ≤ ϖ(ϱ,Γϱ) ⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) = lim sup
ℏ→∞

ϖ(Γϱℏ−1,Γϱ)

⪯ lim sup
ℏ→∞

A∗ϖ(ϱℏ−1, ϱ)A = θB. (3.3.10)

Using (3.3.1) and (3.3.7), we have

θB ≺ ϖ(Γϱ,Γϱ) ⪯ A∗ϖ(ϱ, ϱ)A = θB. (3.3.11)

By (3.3.3), (3.3.10) and (3.3.11), we have

ϖ(ϱ, ϱ) = ϖ(ϱ,Γϱ) = ϖ(Γϱ,Γϱ) ⇒ Γϱ = ϱ,

i.e, ϱ is fixed point of Γ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be another fixed point of Γ with ϖ(ϑ, ϑ) = θB.
From assumption (ii), (ϱ0, ϑ) ∈ R. Using R-preserving property of Γ, we have
(Γℏ(ϱ0),Γℏ(ϑ)) ∈ R ∀ℏ ∈ N . Then, using (3.3.1), we have

ϖ(ϱℏ, ϑ) = ϖ(Γℏ(ϱ0),Γℏ(ϑ)) ⪯ A∗ϖ(Γℏ−1(ϱ),Γℏ−1(ϑ))A
...

⪯ A∗ℏϖ(ϱ0, ϑ)Aℏ (3.3.12)
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Taking limit as ℏ → ∞ on both side of (3.3.12), we have

ϖ(ϱ, ϑ) = θB

i.e., ϱ = ϑ. Hence, Γ possesses exactly one fixed point.

Theorem 3.3.3. Let (Ω,B,R, ϖ) be an R-complete C∗
AV -mR-MS, and let Γ :

Ω → Ω satisfy:

(i) Γ is mR-preserving;

(ii) ∃ an ϱ0 ∈ Ω s.t. (ϱ0, ϑ) ∈ R, ∀ϑ ∈ Ω;

(iii) ∃ an A ∈ A′
+ with ∥A∥ < 1

2 , satisfying

ϖ(Γϱ,Γϑ) ⪯ A
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
, (3.3.13)

∀ϱ, ϑ ∈ Ω s.t. (ϱ, ϑ) ∈ R.

Then, Γ possesses exactly one fixed point.

Proof. For ϱ0 ∈ Ω satisfying condition (ii), define the iterative sequence, {ϱℏ} s.t.
ϱℏ = Γϱℏ−1, ∀ℏ ∈ N.
If ϱℏ = ϱℏ−1 for some ℏ ∈ N, then ϱℏ = Γϱℏ−1 = ϱℏ−1 implies ϱℏ−1 is a fixed point
of Γ. Hence, the result holds.
Now, consider ϱℏ ̸= ϱℏ−1, ∀ℏ ∈ N.
As, ϱ0 ∈ Ω satisfies condition (ii) and Γ is mR-preserving, we have

(ϱ0, ϑ) ∈ R ∀ϑ ∈ Ω ⇒ (ϱ0,Γϱ0) ∈ R

⇒ (ϱ0, ϱ1) ∈ R.

On repeated use of R-preserving property, we have

(ϱℏ, ϱℏ+1) ∈ R.

Also, by assumption (ii), we have

(ϱ0,Γk(ϱ0)) ∈ R, where k ∈ N.
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Therefore, using R-preserving property, we can easily prove that {ϱℏ} is an Rseq

i.e.,(ϱℏ, ϱℏ+k) ∈ R, for each ℏ, k ∈ N.
Using (3.3.13), we have

ϖ(ϱℏ+1, ϱℏ) = ϖ(Γϱℏ,Γϱℏ−1) ⪯ A
(
ϖ(ϱℏ,Γϱℏ) +ϖ(ϱℏ−1,Γϱℏ−1)

)

= A
(
ϖ(ϱℏ, ϱℏ+1) +ϖ(ϱℏ−1, ϱℏ)

)
.

As, ∥A∥ < 1
2 , by Lemma 1.2.34, (IB − A)−1 exists. Also, ∥(IB − A)−1A∥ < 1.

Therefore,

(IB − A)ϖ(ϱℏ+1, ϱℏ) ⪯ A(ϖ(ϱℏ, ϱℏ−1)).

implies

ϖ(ϱℏ+1, ϱℏ) ⪯ (IB − A)−1A(ϖ(ϱℏ, ϱℏ−1))

⪯
(

(IB − A)−1A
)2

ϖ(ϱℏ−1, ϱℏ−2)
...

=
(

(IB − A)−1A
)ℏ

ϖ(ϱ1, ϱ0).

Let ϖ(ϱ1, ϱ0) = β and (IB − A)−1A = t. Then,

ϖ(ϱℏ+1, ϱℏ) ⪯ tℏβ ⪯ ∥tℏβ∥IB ⪯ ∥β∥∥t∥ℏIB.

As, ∥t∥ < 1 ⇒ ∥t∥ℏ → 0. Therefore,

ϖ(ϱℏ+1, ϱℏ) → θB. (3.3.14)

Also, ϖϱℏϱℏ+1 = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)

}
⪯ ϖ(ϱℏ+1, ϱℏ) → θB, as ℏ → ∞.

Hence,

lim
ℏ→∞

ϖ(ϱℏ,, ϱℏ) → θB. (3.3.15)

Using (3.3.15), we have

lim
ℏ,m→∞

ϖϱℏϱm = θB. (3.3.16)
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For m ≥ ℏ, consider

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ = ϖ(ϱm, ϱm−1) −ϖϱmϱm−1

+ ϖ(ϱm−1, ϱm−2) −ϖϱm−1ϱm−2

... +ϖ(ϱℏ+1, ϱℏ) −ϖϱℏ+1ϱℏ

⪯ ϖ(ϱm, ϱm−1) +ϖ(ϱm−1, ϱm−2)...+ϖ(ϱℏ+1, ϱℏ)

⪯
(

(IB − A)−1A
)m−1

β+
(

(IB − A)−1A
)m−2

β +

... +
(

(IB − A)−1A
)ℏ

β

= tm−1β + tm−2β + ...+ tℏβ =
m−1∑
k=ℏ

tkβ

⪯
∞∑

k=ℏ
tkβ ⪯

∞∑
k=ℏ

∥tkβ∥IB ⪯
∞∑

k=ℏ
∥β∥∥tk∥IB

⪯ ∥β∥
∞∑

k=ℏ
∥t∥kIB = ∥β∥ ∥t∥ℏ

1 − ∥t∥
IB → θB.

Hence,

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ → θB.

Using (3.3.15), we have

Mϱmϱℏ −ϖϱmϱℏ → θB.

Hence, {ϱℏ} is mR-Cseq. As, (Ω,B,R, ϖ) be a R-complete C∗
AV -mR-MS and {ϱℏ}

is mR -Cseq. Hence, ∃ϱ ∈ Ω s.t.

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → θB and Mϱℏϱ −ϖϱℏϱ → θB as ℏ → ∞. (3.3.17)

Also, using (3.3.15),

ϖϱℏϱ = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)

}
⪯ ϖ(ϱℏ, ϱℏ) → θB. (3.3.18)

Using (3.3.18) and Remark 3.2.15, we have

ϖ(ϱℏ, ϱ) → θB,Mϱℏϱ → θB and ϖ(ϱ, ϱ) = θB. (3.3.19)

Also,

ϖϱΓϱ = min
{
ϖ(ϱ, ϱ), ϖ(Γϱ,Γϱ)

}
⪯ ϖ(ϱ, ϱ) = θB ⇒ ϖϱΓϱ = θB. (3.3.20)
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Using (3.3.13), (3.3.20) and the triangle inequality, we have

ϖ(ϱ,Γϱ) = ϖ(ϱ,Γϱ) −ϖϱΓϱ ⪯ ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

⪯ lim sup
ℏ→∞

ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

= lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ,

or

ϖ(ϱ,Γϱ) ⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ. (3.3.21)

Using (3.3.13), (3.3.18) and (3.3.19) in (3.3.21), we have

ϖ(ϱ,Γϱ) ⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ)

= lim sup
ℏ→∞

ϖ(Γϱℏ−1,Γϱ)

⪯ lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1,Γϱℏ−1) +ϖ(ϱ,Γϱ)

)

= lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1, ϱℏ) +ϖ(ϱ,Γϱ)

)
= A ϖ(ϱ,Γϱ)

This implies

∥ϖ(ϱ,Γϱ)∥ ≤ ∥Aϖ(ϱ,Γϱ)∥ ≤ ∥A∥∥ϖ(ϱ,Γϱ)∥.

Since ∥A∥ < 1
2 implies ∥ϖ(ϱ,Γϱ)∥ = 0, therefore

ϖ(ϱ,Γϱ) = θB. (3.3.22)

Now, consider

θB ⪯ ϖ(Γϱ,Γϱ) ⪯ A
(
ϖ(ϱ,Γϱ) +ϖ(ϱ,Γϱ)

)
= 2A ϖ(ϱ,Γϱ) = θB.

Hence,

ϖ(Γϱ,Γϱ) = θB. (3.3.23)

Using (3.3.19), (3.3.22) and (3.3.23), we have ϖ(ϱ,Γϱ) = ϖ(ϱ, ϱ) = ϖ(Γϱ,Γϱ)
implies ϱ = Γϱ, i.e., ϱ is a fixed point of Γ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be another fixed point of Γ with ϖ(ϑ, ϑ) = θB.
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From assumption (ii), (ϱ0, ϑ) ∈ R. Using R-preserving property of Γ, we have
(Γℏ(ϱ0),Γℏ(ϑ)) ∈ R ∀ℏ ∈ N . Then, using (3.3.13), we have

ϖ(ϱℏ, ϑ) = ϖ(Γℏ(ϱ0),Γℏ(ϑ)) = ϖ
(

Γ
(
Γℏ−1(ϱ0)

)
,Γ
(
Γℏ−1(ϑ)

))
⪯ A

(
ϖ(ϱ0,Γ

(
Γℏ−1(ϱ0)

)
+ϖ(ϑ,Γ

(
Γℏ−1(ϑ)

))
= A

(
ϖ(ϱ0),Γℏ(ϱ0)

)
= A

(
ϖ(ϱ0, ϱℏ)

)
(3.3.24)

Taking limit as ℏ → ∞ on both side of (3.3.24), we have

ϖ(ϱ, ϑ) = θB.

Therefore, ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) = ϖ(ϑ, ϑ) = θB. This implies ϱ = ϑ. Hence, Γ
possesses exactly one fixed point.

Theorem 3.3.4. Let (Ω,B,R, ϖ) be an R-complete C∗
AV -mR-MS and Γ : Ω → Ω

satisfying:

(i) Γ is R-preserving;

(ii) ∃ an ϱ0 ∈ Ω s.t. (ϱ0, ϑ) ∈ R, ∀ϑ ∈ Ω;

(iii) for ϱ0 ∈ Ω, ϖ(Γℏ+1ϱ0,Γℏ+1ϱ0) ⪯ ϖ(Γℏϱ0,Γℏϱ0), ∀ℏ ∈ N;

(iv) ∃ an A ∈ A′
+ with ∥A∥ < 1

2 , s.t.

ϖ(Γϱ,Γϑ) ⪯ A
(
ϖ(ϱ,Γϑ) +ϖ(ϑ,Γϱ)

)
, (3.3.25)

∀ϱ, ϑ ∈ Ω s.t. (ϱ, ϑ) ∈ R. Then, Γ possesses unique fixed point.

Proof. For ϱ0 ∈ Ω satisfying condition (ii), define the iterative sequence {ϱℏ} s.t.
ϱℏ = Γϱℏ−1 ∀ℏ ∈ N. If ϱℏ = ϱℏ−1 for some ℏ, then Γϱℏ−1 = ϱℏ = ϱℏ−1 implies ϱℏ−1

is a fixed point of Γ. Hence, the result holds. Now, consider ϱℏ ̸= ϱℏ−1, ∀ℏ ∈ N.
As, ϱ0 ∈ Ω satisfying condition (ii) and Γ is R-preserving. Hence,

(ϱ0, ϑ) ∈ R ∀ϑ ∈ Ω ⇒ (ϱ0,Γϱ0) ∈ R

⇒ (ϱ0, ϱ1) ∈ R.

On repeated use of R-preserving property, we have

(ϱℏ, ϱℏ+1) ∈ R.

58



Also, by assumption (ii), we have

(ϱ0,Γk(ϱ0)) ∈ R, where k ∈ N.

Therefore, using R-preserving property, we can easily prove that {ϱℏ} is an Rseq

i.e.,(ϱℏ, ϱℏ+k) ∈ R, for each ℏ, k ∈ N.
Now, using assumption (iii), we have

ϖϱℏ−1ϱℏ = ϖ(ϱℏ, ϱℏ), ϖϱℏϱℏ+1 = ϖ(ϱℏ+1, ϱℏ+1) and ϖϱℏ−1ϱℏ+1 = ϖ(ϱℏ+1, ϱℏ+1).

Using (3.3.25), we have

ϖ(ϱℏ+1, ϱℏ) = ϖ(Γϱℏ,Γϱℏ−1) ⪯ A
(
ϖ(ϱℏ,Γϱℏ−1) +ϖ(ϱℏ−1,Γϱℏ)

)

= A
(
ϖ(ϱℏ, ϱℏ) +ϖ(ϱℏ−1, ϱℏ+1)

)

⪯ A
(
ϖ(ϱℏ, ϱℏ) +ϖ(ϱℏ−1, ϱℏ) −ϖϱℏ−1ϱℏ

+ϖ(ϱℏ, ϱℏ+1) −ϖϱℏϱℏ+1 +ϖϱℏ−1ϱℏ+1

)

⪯ A
(
ϖ(ϱℏ+1, ϱℏ) +ϖ(ϱℏ, ϱℏ−1)

)
.

Since ∥A∥ < 1
2 , therefore by Lemma 1.2.34, (IB − A)−1 exists. Also, ∥(IB −

A)−1A∥ < 1. Thus,

(IB − A)ϖ(ϱℏ+1, ϱℏ) ⪯ Am(ϱℏ, ϱℏ−1).

implies

ϖ(ϱℏ+1, ϱℏ) ⪯ (IB − A)−1A(ϖ(ϱℏ, ϱℏ−1))

⪯
(

(IB − A)−1A
)2

ϖ(ϱℏ−1, ϱℏ−2)
...

=
(

(IB − A)−1A
)ℏ

ϖ(ϱ1, ϱ0).

Let ϖ(ϱ1, ϱ0) = β and (IB − A)−1A = t. Then,

ϖ(ϱℏ+1, ϱℏ) ⪯ tℏβ ⪯ ∥tℏβ∥IB ⪯ ∥β∥∥t∥ℏIB.
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Now, ∥t∥ < 1 ⇒ ∥t∥ℏ → 0. Hence,

ϖ(ϱℏ+1, ϱℏ) → θB. (3.3.26)

Also, ϖϱℏϱℏ+1 = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)

}
⪯ ϖ(ϱℏ+1, ϱℏ) → θB as ℏ → ∞.

Hence,

lim
ℏ→∞

ϖ(ϱℏ,, ϱℏ) → θB (3.3.27)

and

lim
ℏ,m→∞

ϖϱℏϱm = θB. (3.3.28)

For m ≥ ℏ, consider

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ = ϖ(ϱm, ϱm−1) −ϖϱmϱm−1

+ ϖ(ϱm−1, ϱm−2) −ϖϱm−1ϱm−2

... +ϖ(ϱℏ+1, ϱℏ) −ϖϱℏ+1ϱℏ

⪯ ϖ(ϱm, ϱm−1) +ϖ(ϱm−1, ϱm−2)...+ϖ(ϱℏ+1, ϱℏ)

⪯
(

(IB − A)−1A
)m−1

β+
(

(IB − A)−1A
)m−2

β +

... +
(

(IB − A)−1A
)ℏ

β

= tm−1β + tm−2β + ...+ tℏβ =
m−1∑
k=ℏ

tkβ

⪯
∞∑

k=ℏ
tkβ ⪯

∞∑
k=ℏ

∥tkβ∥IB ⪯
∞∑

k=ℏ
∥β∥∥tk∥IB ⪯ ∥β∥

∞∑
k=ℏ

∥t∥kIB

= ∥β∥ ∥t∥ℏ

1 − ∥t∥
IB → θB as ℏ → ∞.

Hence,

lim
ℏ,m→∞

ϖ(ϱm, ϱℏ) −ϖϱmϱℏ = θB.

Similarly, using (3.3.27), we have

lim
ℏ,m→∞

Mϱmϱℏ −ϖϱmϱℏ = θB.

Hence, {ϱℏ} is mR-Cseq. As, (Ω,B,R, ϖ) be a R-complete C∗
AV -mR-MS and {ϱℏ}

is mR -Cseq. Hence, ∃ some ϱ ∈ Ω s.t.

ϖ(ϱℏ, ϱ) −ϖϱℏϱ → θB and Mϱℏϱ −ϖϱℏϱ → θB as ℏ → ∞. (3.3.29)
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Also, using (3.3.28),

ϖϱℏϱ = min
{
ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)

}
⪯ ϖ(ϱℏ, ϱℏ) → θB. (3.3.30)

Now, using (3.3.30) and Remark 3.2.15, we have

ϖ(ϱℏ, ϱ) → θB, Mϱℏϱ → θB and ϖ(ϱ, ϱ) = θB. (3.3.31)

Also,

ϖϱΓϱ = min
{
ϖ(ϱ, ϱ), ϖ(Γϱ,Γϱ)

}
⪯ ϖ(ϱ, ϱ) = θB ⇒ ϖϱΓϱ = θB. (3.3.32)

Using (3.3.25), (3.3.32) and the triangle inequality, we have

ϖ(ϱ,Γϱ) = ϖ(ϱ,Γϱ) −ϖϱΓϱ ⪯ ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

⪯ lim sup
ℏ→∞

ϖ(ϱ, ϱℏ) −ϖϱℏϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ

= lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ.

Using (3.3.25), (3.3.30) and (3.3.31), we have

ϖ(ϱ,Γϱ) ⪯ lim sup
ℏ→∞

ϖ(ϱℏ,Γϱ) −ϖϱℏΓϱ ⪯ lim sup
ℏ→∞

ϖ(Γϱℏ−1,Γϱ)

⪯ lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1,Γϱ) +ϖ(ϱ,Γϱℏ−1)

)

⪯ lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1,Γϱ) +ϖ(ϱ, ϱℏ)

)

⪯ lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1,Γϱ

)

⪯ lim sup
ℏ→∞

A
(
ϖ(ϱℏ−1, ϱ) −ϖϱℏ−1ϱ +ϖ(ϱ,Γϱ) −ϖϱΓϱ +ϖϱℏ−1Γϱ

)
,

(3.3.33)

or

ϖ(ϱ,Γϱ) ⪯ A
(
ϖ(ϱ,Γϱ) +ϖϱℏ−1Γϱ

)
. (3.3.34)

Using (3.3.27), we have

ϖϱℏ−1Γϱ = min
{
ϖ(ϱℏ−1, ϱℏ−1), ϖ(Γϱ,Γϱ)

}
⪯ ϖ(ϱℏ−1, ϱℏ−1) ⇒ ϖϱℏ−1Γϱ = θB.

(3.3.35)
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Hence, using (3.3.35) in (3.3.34), we have

ϖ(ϱ,Γϱ) ⪯ Aϖ(ϱ,Γϱ) i.e., ∥ϖ(ϱ,Γϱ)∥ ≤ ∥A∥∥ϖ(ϱ,Γϱ)∥.

Now, since ∥A∥ < 1
2 implies ∥ϖ(ϱ,Γϱ)∥ = 0, therefore

ϖ(ϱ,Γϱ) = θB. (3.3.36)

Thus,

θB ⪯ ϖ(Γϱ,Γϱ) ⪯ A(ϖ(ϱ,Γϱ) +ϖ(ϱ,Γϱ)) = 2Am(ϱ,Γϱ) = θB.

Hence,

ϖ(Γϱ,Γϱ) = θB. (3.3.37)

Using (3.3.31), (3.3.36) and (3.3.37), we have ϖ(ϱ,Γϱ) = ϖ(ϱ, ϱ) = ϖ(Γϱ,Γϱ)
implies ϱ = Γϱ, i.e., ϱ is a fixed point of Γ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be another fixed point of Γ with ϖ(ϑ, ϑ) = θB.
From assumption (ii), (ϱ0, ϑ) ∈ R. Using R-preserving property of Γ, we have
(Γℏ(ϱ0),Γℏ(ϑ)) ∈ R, for ℏ ∈ N . Then, using (3.3.25), we have

ϖ(ϱℏ, ϑ) = ϖ(Γℏ(ϱ0),Γℏ(ϑ)) = ϖ
(

Γ
(
Γℏ−1(ϱ0)

)
,Γ
(
Γℏ−1(ϑ)

))
⪯ A

(
ϖ
(
Γℏ−1(ϱ0),Γℏ(ϑ)

)
+ϖ

(
Γℏ−1(ϑ),Γℏ(ϱ0)

))
= A

(
ϖ(ϱℏ−1, ϑ) +ϖ(ϱℏ, ϑ)

)
,

or

(IB − A)ϖ(ϱℏ, ϑ) ⪯ A
(
ϖ(ϱℏ − 1, ϑ)

)
⇒ ϖ(ϱℏ, ϑ) ⪯ A

IB − A
(
ϖ(ϱℏ − 1, ϑ)

)
...

⇒ ϖ(ϱℏ, ϑ) ⪯ Aℏ

(IB − A)ℏ (ϖ(ϱ0, ϑ)). (3.3.38)

Now, ∥A∥ < 1
2 implies (IB − A) is invertible and ∥ A

IB−A∥ < 1. Therefore, taking
limit as ℏ → ∞ on both side of (3.3.38), we have

ϖ(ϱ, ϑ) = θB.

As, ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) = ϖ(ϑ, ϑ) = θB. Hence, ϱ = ϑ, i.e., Γ has exactly one fixed
point.
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Example 3.3.5. Let Ω = [0,∞) and B = M2([0,∞)), with involution A∗ = At

∀A ∈ B, where At denotes the transpose of A. For A = [aij], ∥A∥ = max
1≤i,j≤2

∣∣∣aij

∣∣∣.
Let ϖ : Ω × Ω → M2(R) be defined as

ϖ(ϱ, ϑ) =
ϱ+ϑ

2 0
0 ϱ+ϑ

2

 .
For P = [pij] and Q = [qij], P ⪯ Q ⇔ pij ≤ qij, for 1 ≤ i, j ≤ 2. (ϱ, ϑ) ∈ R ⇔
ϱ = ϑ or ϱϑ = 0. Then (Ω,B,R, ϖ) is R-complete C∗

AV -mR-MS . Let Γ be

Γ(ϱ) =


ϱ
7 , if ϱ ≤ 1
0, otherwise.

Now, we will prove that for A =
 1√

6 0
0 1√

6

, Γ satisfies Theorem 3.3.2. As, relation

R on Ω is defined as (ϱ, ϑ) ∈ R if ϱ = ϑ or ϱ.ϑ = 0. Then,
Case(i) For ϱ = ϑ ≤ 1, we have

ϖ(Γϱ,Γϱ) = ϖ

(
ϱ

7 ,
ϱ

7

)
=
[

1
2(ϱ

7 + ϱ
7) 0

0 1
2(ϱ

7 + ϱ
7)

]
=
[

ϱ
7 0
0 ϱ

7

]
,

ϖ(ϱ, ϱ) =
[

ϱ+ϱ
2 0
0 ϱ+ϱ

2

]
=
[
ϱ 0
0 ϱ

]
.

For A = A∗ =
 1√

6 0
0 1√

6

, we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Case(ii) For ϱ = ϑ > 1, we have

ϖ(Γϱ,Γϑ) =
[
0 0
0 0

]
,

ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) =
[

ϱ+ϱ
2 0
0 ϱ+ϱ

2

]
.

Hence, for A = A∗ =
 1√

6 0
0 1√

6

, we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Let ϱ ̸= ϑ, then ϱ.ϑ = 0 i.e., ϱ = 0 or ϑ = 0. Without loss of generality, let ϑ = 0.
Case(iii) For ϱ > 1 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ(0, 0) =
[
0 0
0 0

]
,
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ϖ(ϱ, ϑ) =
[

ϱ
2 0
0 ϱ

2

]
.

Hence, for A = A∗ =
 1√

6 0
0 1√

6

, we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Case(iv) For ϱ ≤ 1 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

7 , 0
)

=
[

1
2(ϱ

7) 0
0 1

2(ϱ
7)

]
,

ϖ(ϱ, ϑ) =
[

ϱ
2 0
0 ϱ

2

]
.

Hence, for A = A∗ =
 1√

6 0
0 1√

6

, we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Thus, Γ satisfies Theorem (3.3.2). Hence, Γ possesses exactly one fixed point.

Example 3.3.6. Let Ω = [0,∞) and B = M2([0,∞)), with involution A∗ = At

∀A ∈ B, where At denotes the transpose of A. For A = [aij], ∥A∥ = max
1≤i,j≤2

∣∣∣aij

∣∣∣.
Let ϖ : Ω × Ω → M2(R+) be defined as

ϖ(ϱ, ϑ) =
ϱ+ϑ

2 0
0 ϱ+ϑ

2

 .
Also, for P = [pij] and Q = [qij], P ⪯ Q ⇔ pij ≤ qij ∀1 ≤ i, j ≤ 2. Then
(Ω,B,R, ϖ) is R-complete C∗

AV -mR-MS . (ϱ, ϑ) ∈ R ⇔ ϱ = ϑ or ϱϑ = 0. Now Γ
s.t.

Γ(ϱ) =


ϱ
7 , if ϱ ≤ 3

ϱ
ϱ+4 , otherwise.

Now, we will prove that for A =
[

1
6 0
0 1

6

]
, Γ satisfies Theorem 3.3.3. As, relation

R defined as (ϱ, ϑ) ∈ R, if ϱ = ϑ or ϱϑ = 0. Then
Case(i) For ϱ = ϑ ≤ 3, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

7 ,
ϱ

7

)
=

[
1
2(ϱ

7 + ϱ
7) 0

0 1
2(ϱ

7 + ϱ
7)

]

⪯
[

ϱ
7 0
0 ϱ

7

]
,
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ϖ(ϑ,Γϑ) = ϖ(ϱ,Γϱ) =
ϱ+ ϱ

7
2 0
0 ϱ+ ϱ

7
2

 .
Hence, for A =

[
1
6 0
0 1

6

]
, ϖ(Γϱ,Γϑ) ⪯ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
. Also, A ∈ A′

+.

Case(ii) For ϱ = ϑ > 3, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

ϱ+ 4 ,
ϱ

ϱ+ 4

)
=

1
2( ϱ

ϱ+4 + ϱ
ϱ+4) 0

0 1
2( ϱ

ϱ+4 + ϱ
ϱ+4)


⪯

[
1
2(ϱ

7 + ϱ
7) 0

0 1
2(ϱ

7 + ϱ
7)

]

=
[

ϱ
7 0
0 ϱ

7

]
,

ϖ(ϑ,Γϑ) = ϖ(ϱ,Γϱ) =

ϱ+ ϱ
ϱ+4
2 0
0 ϱ+ ϱ

ϱ+4
2

 .
Hence, for A =

[
1
6 0
0 1

6

]
, ϖ(Γϱ,Γϑ) ⪯ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
. Also, A ∈ A′

+.

Case(iii) Without loss of generality, let ϑ = 0 and ϱ ≤ 3. Then, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

7 , 0
)

=
[

1
2(ϱ

7) 0
0 1

2(ϱ
7)

]
,

ϖ(ϱ,Γϱ) =
ϱ+ ϱ

7
2 0
0 ϱ+ ϱ

7
2

 ,
ϖ(ϑ,Γϑ) =

[
0 0
0 0

]
.

Hence, for A =
[

1
6 0
0 1

6

]
, ϖ(Γϱ,Γϑ) ⪯ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
. Also, A ∈ A′

+.

Case(iv) For ϑ = 0 and ϱ > 3, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

ϱ+ 4 , 0
)

=
1

2( ϱ
ϱ+4) 0
0 1

2( ϱ
ϱ+4)

 ,

ϖ(ϱ,Γϱ) =

ϱ+ ϱ
ϱ+4
2 0
0 ϱ+ ϱ

ϱ+4
2

 ,
ϖ(ϑ,Γϑ) =

[
0 0
0 0

]
.
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Hence, for A =
[

1
6 0
0 1

6

]
, ϖ(Γϱ,Γϑ) ⪯ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
. Also, A ∈ A′

+.

Thus, Γ satisfies the conditions of Theorem (3.3.3). Hence, Γ possesses exactly
one fixed point.Hence, by Theorem (3.3.3), Γ has exactly one fixed point.

Example 3.3.7. Let Ω = [0, 1) and ϖ : Ω × Ω → R be C∗
AV -m- metric defined on

Ω as ϖ(ϱ, ϑ) = ϱ+ϑ
2 . Then for B = R with a∗ = a, ∥a∥ = |a| and a ⪯ b ⇔ a ≤ b.

(Ω,B,R, ϖ) is R-complete C∗
AV -mR-MS, where aRb iff a = b or a.b = 0. Let Γ

be a self mapping defined on Ω as:

Γ(ϱ) =
0, if ϱ ≤ 3

4
1
2 , otherwise.

ϱRϑ implies ϱ = ϑ or ϱ.ϑ = 0. Now ϱ = ϑ implies Γϱ = Γϑ i.e., (Γϱ,Γϑ) ∈ R.
If ϱ ̸= ϑ i.e., ϱ = 0 or ϑ = 0 implies Γϱ = 0 or Γϑ = 0. Hence, (Γϱ,Γϑ) ∈ R
∀(ϱ, ϑ) ∈ R i.e., Γ is R-preserving.
Case(I) Let ϱ = ϑ, then
(i) For ϱ = ϑ ≤ 3

4 ,

ϖ(Γϱ,Γϑ) = ϖ(Γϱ,Γϱ) = ϖ(0, 0) = 0,

ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) = ϱ.

For A∗ = A =
√

2
3

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

(ii) For ϱ = ϑ > 3
4 ,

ϖ(Γϱ,Γϑ) = ϖ(Γϱ,Γϱ) = ϖ

(
1
2 ,

1
2

)
= 1

2 ,

ϖ(ϱ, ϑ) = ϖ(ϱ, ϱ) = ϱ.

For A∗ = A =
√

2
3 , we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Csae(II) Let ϱ ̸= ϑ implies ϱ.ϑ = 0. If ϑ = 0. Then,
(i) For ϱ ≤ 3

4 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ(0, 0) = 0.

Hence, for A∗ = A =
√

2
3 , we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.
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(ii) For ϱ > 3
4 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ(1
2 , 0) = 1

4
and

ϖ(ϱ, ϑ) = ϖ(ϱ, 0) = ϱ

2 .

Hence, for A∗ = A =
√

2
3 , we have

ϖ(Γϱ,Γϑ) ⪯ A∗ϖ(ϱ, ϑ)A.

Hence by Theorem 3.3.2, Γ has exactly one fixed point.

Remark 3.3.8. In the above example, Ω = [0, 1) is a R-complete C∗
AV -mR-MS.

But it is not complete in usual m-MS as well as C∗-AV-m-MS. Hence Banach
contraction in m-MS and C∗-AV-m-MS does not ensure the existence of the fixed
point.

Example 3.3.9. Let Ω = [0, 2) and ϖ : Ω × Ω → R be C∗
AV -m- metric defined on

Ω as ϖ(ϱ, ϑ) = ϱ+ϑ
2 . Then for B = R with a∗ = a, ∥a∥ = |a| and a ⪯ b ⇔ a ≤ b.

(Ω,B,R, ϖ) is R-complete C∗
AV -mR-MS, where aRb iff a = b or a.b = 0. Let Γ

be a self mapping defined on Ω as:

Γ(ϱ) =


ϱ
5 , if ϱ ≤ 1
1
10 , if 1 < ϱ < 2.

ϱRϑ implies ϱ = ϑ or ϱ.ϑ = 0. Now ϱ = ϑ implies Γϱ = Γϑ i.e., (Γϱ,Γϑ) ∈ R.
If ϱ ̸= ϑ i.e., ϱ = 0 or ϑ = 0 implies Γϱ = 0 or Γϑ = 0. Hence, (Γϱ,Γϑ) ∈ R for
every (ϱ, ϑ) ∈ R, i.e., Γ is R-preserving.
Case(I) Let ϱ = ϑ, then we have
(i) For ϱ = ϑ ≤ 1, we have

ϖ(Γϱ,Γϑ) = ϖ(Γϱ,Γϱ) = ϖ

(
ϱ

5 ,
ϱ

5

)
= ϱ

5

= 1
5

(
1
2(ϱ+ ϱ)

)

≤ 1
5

(
1
2(ϱ+ ϱ

5) + 1
2(ϱ+ ϱ

5)
)

= 1
5

(
ϖ(ϱ,Γϱ) +ϖ(ϱ,Γϱ)

)

= A
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
.
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For A = 1
5 <

1
2 , we have ϖ(Γϱ,Γϑ) ≤ A(ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)).

(ii) For 1 < ϱ = ϑ < 2, we have

ϖ(Γϱ,Γϑ) = ϖ(Γϱ,Γϱ) = ϖ

(
1
10 ,

1
10

)
= 1

10

= 1
10

(
1
2(1 + 1)

)

≤ 1
5

(
1
2(ϱ+ ϱ)

)

≤ 1
5

(
1
2(ϱ+ ϱ

5) + 1
2(ϱ+ ϱ

5)
)

= 1
5

(
ϖ(ϱ,Γϱ) +ϖ(ϱ,Γϱ)

)

= A
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
.

Hence, For A = A∗ = 1
5 <

1
2 , we have ϖ(Γϱ,Γϑ) ≤ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
.

Case(II) Let ϱ ̸= ϑ implies ϱ.ϑ = 0. Without loss of generality, let ϑ = 0.
(i) For ϱ ≤ 1 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ

(
ϱ

5 , 0
)

= ϱ

10

≤ 1
5

(
1
2(ϱ+ ϱ

5)
)

= A
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
,

where A = 1
5 and ϖ(ϑ,Γϑ) = 0.

Hence, For A = A∗ = 1
5 <

1
2 , we have ϖ(Γϱ,Γϑ) ≤ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
.

(ii) For 1 < ϱ < 2 and ϑ = 0, we have

ϖ(Γϱ,Γϑ) = ϖ

(
1
10 , 0

)
= 1

20 ≤ 1
10

≤ 1
5

(
1
2(ϱ+ 1

10)
)

= A
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
,
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where A = A∗ = 1
5 and ϖ(ϑ,Γϑ) = 0.

For A = A∗ = 1
5 <

1
2 , we have ϖ(Γϱ,Γϑ) ≤ A

(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
.

Therefore, by Theorem 3.3.3, Γ has exactly one fixed point.

Remark 3.3.10. In the above example, Ω = [0, 2) is a R-complete C∗
AV -mR-

MS . But it is not complete in usual m-MS and C∗-AV-m-MS. Hence, Kannan-
contraction in m-MS and C∗-AV-m-MS does not ensure the existence of the fixed
point.

Remark 3.3.11. The completeness in the fixed point results of Theorem 3.3.2,
3.3.3 and 3.3.4 can be further relaxed with the following hypotheses

(H) ∃ an R-complete subset Υ of Ω s.t. Γ(Ω) ⊆ Υ.

Using the hypothesis (H) , one can prove the Theorems 3.3.2, 3.3.3 and 3.3.4. To
verify the claim consider

Example 3.3.12. Let Ω = [0, 2) and ϖ : Ω × Ω → R be m- metric defined on Ω
as ϖ(ϱ, ϑ) = ϱ+ϑ

2 . Then for B = R with a∗ = a, ∥a∥ = |a| and a ⪯ b ⇔ a ≤ b.
Then (Ω,B,R, ϖ) is complete C∗

AV -mR-MS, where R = Ω × Ω. Let Γ be a self
mapping defined on Ω as following:

Γ(ϱ) =


ϱ
5 , if ϱ ≤ 1
1
10 , if ϱ > 1.

Then, Γ is R-preserving. Also, Γ satisfies the additional assumption with Υ =
[0, 1/5]. Therefore, Γ meets all the criteria of Theorem 3.3.2 with A = A∗ = 1√

5
and Theorem 3.3.3 with A = 1

5 . Consequently, Γ possesses exactly one fixed point.
One can observe that in the above example

• Ω is not complete;

• Γ is not R-continuous.

But still Γ satisfies the Banach type contraction in the C∗
AV -mR-MS, but not in

MS.
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3.4 Existence of Solution to the Operator equa-
tion

In this section, a potential application of the derived fixed point results is dis-
cussed. The applicability of these results in operator equations demonstrates
their significance.

Theorem 3.4.1. Let H be a Hilbert space and B(H) be the set of all bounded
linear operators on H. Suppose Sℏ ∈ B(H) s.t. ∑∞

ℏ=1 ∥Sℏ∥2 < 1. Then the
operator equation

M −
∞∑
ℏ=1

S∗
ℏMSℏ = 0 (3.4.1)

has exactly one solution.

Proof. Define a mapping ϖ : B(H) ×B(H) → B(H)+ as

ϖ(M1,M2) = ∥M1 −M2∥P + min
{
∥M1∥, ∥M2∥

}
P,

for an positive operator P define on H. Consider a reflexive binary relation R
defined as (M1,M2) ∈ R ⇔ M1 +M2 = M1 ∨M2. Then, B(H) is a C∗

AV -mR-MS.
Consider a self mapping Γ defined on B(H) as:

Γ(M) =
∞∑
ℏ=1

S∗
ℏMSℏ.

Step (i) Γ is R-preserving:

Let (M1,M2) ∈ R i.e., M1 +M2 = M1 ∨M2. Then,

Γ(M1 +M2) =
∞∑
ℏ=1

S∗
ℏ(M1 +M2)Sℏ =

∞∑
ℏ=1

S∗
ℏM1Sℏ∨

∞∑
ℏ=1

S∗
ℏM2Sℏ = Γ(M1)∨Γ(M2),

i.e., Γ is R-preserving.
Step (ii) Γ is C∗-AV mR-contraction:

ϖ(Γ(M1),Γ(M2)) =
∥∥Γ(M1) − Γ(M2)

∥∥P + min
{
∥Γ(M1)∥, ∥Γ(M2)∥

}
P

≤

∥∥∥∥∥∥
∞∑
ℏ=1

S∗
ℏ(M1 −M2)Sℏ

∥∥∥∥∥∥P + min


∥∥∥∥∥∥

∞∑
ℏ=1

S∗
ℏM1Sℏ

∥∥∥∥∥∥ ,
∥∥∥∥∥∥

∞∑
ℏ=1

S∗
ℏM2Sℏ

∥∥∥∥∥∥
P

≤
∞∑
ℏ=1

∥Sℏ∥2 ∥M1 −M2∥P + min


∞∑
ℏ=1

∥Sℏ∥2 ∥M1∥,
∞∑
ℏ=1

∥Sℏ∥2 ∥M2∥

P
≤ κ

(
∥M1 −M2∥P + min

{
∥M1∥, ∥M2∥

}
P
)

= α∗ϖ(M1,M2)α,
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where α =
√
κ < 1.

Clearly, B(H) is complete and Γ satisfies all the conditions of Theorem 3.3.2.
Hence the operator equation (3.4.1) has exactly one solution.

3.5 Conclusion

In the present chapter, we introduced a notion of C∗
AV -mR-MS as a generalization

of C∗
AV -m-MS and R-MS, and proved some fixed point results in this framework.

To support our findings, some illustrative examples are discussed. At last, we
ensure the existence and uniqueness of solutions to an operator equation using
the results proved in the chapter. Our findings generalized the following results
in the literature.

(i) By taking R = Ω×Ω in Theorem 3.3.2, one can derive the fixed point result
for Banach-type self mappings in C∗

AV -m-MS (Alsamir et al., 2019).

(ii) By taking R = Ω×Ω in Theorem 3.3.3, one can derive the fixed point result
for Kannan-type self mappings in C∗

AV -m-MS (Alsamir et al., 2019).

(iii) By considering B = R with ∥a∥ = |a| ∀a ∈ B in Theorem 3.3.2, one can derive
the fixed point results for Banach-type self mappings in Rm-MS (Khalil et
al., 2021).

(iv) By considering B = R with ∥a∥ = |a| ∀a ∈ B in Theorem 3.3.3, one can derive
the fixed point results for Kannan-type self mappings in Rm-MS (Khalil et
al., 2021).

(v) By taking R = Ω × Ω and B = R with ∥a∥ = |a|, ∀a ∈ B in Theorem
3.3.2, one can derive the fixed point results for Banach-type self mappings
in m-MS (Asadi et al., 2014).

(vi) By taking R = Ω × Ω and B = R with ∥a∥ = |a|, ∀a ∈ B in Theorem
3.3.3, one can derive the fixed point results for Kannan-type self mappings
in m-MS (Asadi et al., 2014).

*******
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Chapter 4

Some Fixed Point and Common
Fixed Point Results in
Multiplicative m-Metric Space

4.1 Introduction

In the present chapter of the thesis, we introduce the notion of multiplicative m-
metric space, inspired by the concepts of multiplicative metric space and m-metric
space. The first section deals with the fundamental definitions for the multiplica-
tive m-metric space, its intrinsic properties and illustrative examples. In the
second section, we establish some fixed point results using contraction mappings
in complete multiplicative m-metric space. To support our findings, we discuss
some illustrative examples, where well known fixed point results in the literature
does not ensure the existence of fixed point. In the third section, we discuss some
common fixed point results for a pair of self mapping using various contraction.
An illustrative example, involving discontinuous self mappings, is discussed, along
with numerical iterations to approximate the common fixed point, supported by
graphical representations. At the last, we prove the existence of solution to a
system of multiplicative integral equation and multiplicative initial value problem
using the fixed point results proved in the chapter. ghgjkjhjjjjjjjjjjjjjjjjhhhhhhh-
hhhhhjjjjjjjjkkkkkkkkkkkkk
ghgjkjhjjjjjjjjjjjjjjjjhhhhhhhhhhhhjjjjjjjjkkkkkkkkkkkkk
ghgjkjhjjjjjjjjjjjjjjjjhhhhhhhhhhhhjjjjjjjjkkkkkkkkkkkkk
ghgjkjhjjjjjjjjjjjjjjjjhhhhhhhhhhhhjjjjjjjjkkkkkkkkkkkkk
ghgjkjhjjjjjjjjjjjjjjjjhhhhhhhhhhhhjjjjjjjjkkkkkkkkkkkkk
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The results of the chapter are presented in 1 2 3.

4.2 Multiplicative m-Metric Space

In this section, we have introduced a new notion of multiplicative m-MS along
with the intrinsic properties and some illustrative examples of this framework.

Definition 4.2.1. A mapping µ : Ω×Ω → [1,∞) is c.t.b. multiplicative m-metric
if it satisfies:

(i) µ(ϱ, ϑ) = µ(ϑ, ϑ) = µ(ϱ, ϱ) ⇔ ϱ = ϑ;

(ii) µϱϑ ≤ µ(ϱ, ϑ);

(iii) µ(ϱ, ϑ) = µ(ϑ, ϱ);

(iv) µ(ϱ, ϑ)
µϱϑ

≤ µ(ϱ, ξ)
µϱξ

.
µ(ξ, ϑ)
µξϑ

,

where µϱϑ = min
{
µ(ϱ, ϱ), µ(ϑ, ϑ)

}
, and µ∗

ϱϑ = max
{
µ(ϱ, ϱ), µ(ϑ, ϑ)

}
∀ϱ, ϑ, ξ ∈

Ω. Also, (Ω, µ) is c.t.b. a multiplicative m-MS.

Remark 4.2.2. Every multiplicative metric is a multiplicative m-metric. But the
converse is not true.

Example 4.2.3. Let Ω = [0,∞) and µ(ϱ, ϑ) = e
ϱ+ϑ

2 , then (Ω, µ) is a multiplicative
m-MS. But (Ω, µ) is not a multiplicative MS. Because, for ϱ ̸= 0, µ(ϱ, ϱ) = eϱ ̸= 1.

Remark 4.2.4. Let (Ω, µ) be a multiplicative m-MS. Then, ∀ϱ, ϑ, ϱ ∈ Ω, we have

(i) 1 ≤ µ∗
ϱϑ.µϱϑ = µ(ϱ, ϱ).µ(ϑ, ϑ);

(ii) 1 ≤
µ∗

ϱϑ

µϱϑ

=
∣∣∣∣∣µ(ϱ, ϱ)
µ(ϑ, ϑ)

∣∣∣∣∣
∗
;

1Yadav, K., & Kumar, D. (2024). Multiplicative m-metric space, fixed point theorems with
applications in multiplicative integral equations and numerical results. Journal of Applied Anal-
ysis, 30 (1), 173–186.

2Yadav, K., & Kumar, D. (2024). Common fixed point theorems in multiplicative m-metric
space with applications to the system of multiplicative integral equations and numerical results.
Hacettepe Journal of Mathematics and Statistics, 1–12.

3Yadav, K., & Kumar, D. Fixed Point Results Using a Three-Point Analogue of Contraction
in Multiplicative m-Metric Spaces, (Communicated)
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(iii)
µ∗

ϱϑ

µϱϑ

≤
µ∗

ϱξ

µϱξ

.
µ∗

ξϑ

µξϑ

,

where µϱϑ = min
{
µ(ϱ, ϱ), µ(ϑ, ϑ)

}
, µ∗

ϱϑ = max
{
µ(ϱ, ϱ), µ(ϑ, ϑ)

}
and |a|∗ =a, a ≥ 1;

1
a
, a < 1.

for a ∈ R+.

Remark 4.2.5. Let (Ω, µ) be a multiplicative m-MS. Then, ∀ϱ, ϑ ∈ Ω, we have

(i) (a) µw(ϱ, ϑ) =
µ(ϱ, ϑ).µ∗

ϱϑ

µϱϑ.µϱϑ

;

(b) µs(ϱ, ϑ) =


µ(ϱ,ϑ)

µϱϑ
, if ϱ ̸= ϑ

1, if ϱ = ϑ,

are multiplicative metric on Ω.

(ii) (a) µ(ϱ, ϑ)
µ∗

ϱϑ

≤ µw(ϱ, ϑ) ≤ µ(ϱ, ϑ).µ∗
ϱϑ;

(b) µ(ϱ, ϑ)
µ∗

ϱϑ

≤ µs(ϱ, ϑ) ≤ µ(ϱ, ϑ).

Example 4.2.6. Let (Ω, u) be a multiplicative MS. Let ϕ : [1,∞) → [a,∞), where
a = ϕ(1) be a one to one and non-decreasing function s.t.

ϕ(ϱ.ϑ) ≤ ϕ(ϱ).ϕ(ϑ)
ϕ(1) , (4.2.1)

∀ϱ, ϑ ≥ 1. Then, µ(ϱ, ϑ) = ϕ(u(ϱ, ϑ)) is a multiplicative m-metric.

Proof. It is given that (Ω, u) is a multiplicative MS. In order to prove µ(ϱ, ϑ) =
ϕ(u(ϱ, ϑ)) is a multiplicative m-MS, we shall prove the following :
(i) Since, (Ω, u) is a multiplicative MS. Therefore,

ϱ = ϑ ⇔ u(ϱ, ϱ) = u(ϑ, ϑ) = u(ϱ, ϑ) = 1
⇔ ϕ(u(ϱ, ϱ)) = ϕ(u(ϑ, ϑ)) = ϕ(u(ϱ, ϑ)) = ϕ(1) (As, ϕ is one to one )
⇔ µ(ϱ, ϱ) = µ(ϑ, ϑ) = µ(ϱ, ϑ).

(ii) Since, µ(ϱ, ϱ) = ϕ(u(ϱ, ϱ)) = ϕ(1) and µ(ϑ, ϑ) = ϕ(ϑ, ϑ) = ϕ(1). Therefore,

µϱϑ = min
{
µ(ϱ, ϱ), µ(ϑ, ϑ)

}
= ϕ(1) = a ≤ ϕ(u(ϱ, ϑ)) = µ(ϱ, ϑ). This is because

of the fact that ϕ(ϱ) ≥ a, ∀ϱ ∈ [1,∞).
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(iii) Also, µ(ϱ, ϑ) = ϕ(u(ϱ, ϑ)) = ϕ(u(ϑ, ϱ)) = µ(ϑ, ϱ). This is because of the fact
that (Ω, u) is a multiplicative MS.
(iv) For triangle inequality, we have

µ(ϱ, ϑ)
µϱϑ

= ϕ(u(ϱ, ϑ))
ϕ(1) ≤ ϕ(u(ϱ, ϱ).u(ϱ, ϑ))

ϕ(1)

≤ ϕ(u(ϱ, ξ))
ϕ(1) .

ϕ(u(ξ, ϑ))
ϕ(1) (Using (4.2.1))

= µ(ϱ, ξ)
µξϱ

.
µ(ξ, ϑ)
µξϑ

.

Thus, µ(ϱ, ϑ) = ϕ(u(ϱ, ϑ)) is a multiplicative m-metric and (Ω, µ) is a multiplica-
tive m-MS.

Example 4.2.7. Let (Ω, u) be a multiplicative MS. Then µ(ϱ, ϑ) = b.u(ϱ, ϑ)a,
where a, b > 1 is a multiplicative m-metric.

Example 4.2.8. Let (Ω,m) be an m-MS. Then µ(ϱ, ϑ) = em(ϱ,ϑ) is a multiplicative
m-metric on Ω and (Ω, µ) is a multiplicative m-MS.

Example 4.2.9. Let (Ω, d) be a MS. Then, ∀a, b > 0, µ(ϱ, ϑ) = ead(ϱ,ϑ)+b is a
multiplicative m-metric and (Ω, µ) is a multiplicative m-MS.

Example 4.2.10. Let (Ω, µ) be a multiplicative m-MS then m(ϱ, ϑ) = lnµ(ϱ, ϑ)
is an m-metric and d(ϱ, ϑ) = lnµ(ϱ, ϑ) + lnµ∗

ϱϑ − 2 ln(µϱϑ) is a usual metric.

Definition 4.2.11. Let {ϱℏ} be a sequence in (Ω, µ). Then {ϱℏ} is c.t.b. multi-
plicative

(i) convergent if ∃ϱ in Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1.

(ii) mmm-Cauchy if

lim
ℏ,m→∞

µ(ϱℏ, ϱm)
µϱℏϱm

and lim
ℏ,m→∞

µ∗
ϱℏϱm

µϱℏϱm

exist finitely.

Also, if every multiplicative m-Cseq in Ω is convergent in Ω, i.e., ∃ϱ ∈ Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1 and lim
ℏ→∞

µ∗
ϱℏϱ

µϱℏϱ

= 1.

Then (Ω, µ) is a multiplicative m-complete MS.
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Lemma 4.2.12. Let (Ω, µ) be a multiplicative m-MS. Consider the m-metric and
usual metric defined by m(ϱ, ϑ) = ln(µ(ϱ, ϑ)) and d(ϱ, ϑ) = ln(µ(ϱ, ϑ))+ ln(µ∗

ϱϑ)−
2ln(µϱϑ) respectively. Then {ϱℏ} is a multiplicative m-Cseq iff {ϱℏ} is Cauchy w.r.t
to either of the multiplicative metric ‘µw’, ‘µs’, m-metric ‘m’ and usual metric ‘d’.
Also, the multiplicative m-MS (Ω, µ) is complete iff it is complete w.r.t. to either
of the multiplicative metric ‘µw’, ‘µs’, m-metric ‘m’ and usual metric ‘d’.

Proof. Using Definitions 4.2.11, one can easily verify the above result.

Lemma 4.2.13. Let {ϱℏ} and {ϑℏ} be two sequences in (Ω, µ) s.t. ϱℏ → ϱ and
ϑℏ → ϑ. Then,

lim
ℏ→∞

µ(ϱℏ, ϑℏ)
µϱℏϑℏ

= µ(ϱ, ϑ)
µϱϑ

.

Proof. Consider the sequences {ϱℏ} and {ϑℏ} s.t. ϱℏ → ϱ and ϑℏ → ϑ. Then,

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1, lim
ℏ→∞

µ(ϑℏ, ϑ)
µϑℏϑ

= 1. (4.2.2)

Now, consider

µ(ϱℏ, ϑℏ)
µϱℏϑℏ

≤ µ(ϱℏ, ϱ)
µϱℏϱ

.
µ(ϱ, ϑ)
µϱϑ

.
µ(ϑℏ, ϑ)
µϑℏϑ

.

Taking limit as ℏ → ∞ on both sides and using (4.2.2), we have

lim
ℏ→∞

µ(ϱℏ, ϑℏ)
µϱℏϑℏ

≤ µ(ϱ, ϑ)
µϱϑ

. (4.2.3)

Similarly,

µ(ϱ, ϑ)
µϱϑ

≤ lim
ℏ→∞

µ(ϱℏ, ϑℏ)
µϱℏϑℏ

. (4.2.4)

From (4.2.3) and (4.2.4), we have

lim
ℏ→∞

µ(ϱℏ, ϑℏ)
µϱℏϑℏ

= µ(ϱ, ϑ)
µϱϑ

.

Lemma 4.2.14. Let {ϱℏ} be a sequence in (Ω, µ) s.t. ϱℏ → ϱ and ϱℏ → ϑ. Then
µ(ϱ, ϑ) = µϱϑ. Also, in case µ(ϱ, ϱ) = µ(ϑ, ϑ), then ϱ = ϑ.

Proof. Using Lemma 4.2.13, one can easily prove the required result.
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Lemma 4.2.15. Let (Ω, µ) be a multiplicative m-MS and {ϱℏ} be a sequence in
Ω s.t.

µ(ϱℏ+1, ϱℏ) ≤ µ(ϱℏ, ϱℏ−1)r, ∀ ℏ ∈ N, where r ∈ [0, 1). (4.2.5)

Then,

(i) lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1.

(ii) lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1.

(iii) lim
ℏ,m→∞

µϱℏϱm = 1.

(iv) {ϱℏ} is a multiplicative m-Cseq.

Proof. (i) Consider a sequence {ϱℏ} in multiplicative m-MS (Ω, µ). Then using
(4.2.5), we have

µ(ϱℏ+1, ϱℏ) ≤ µ(ϱℏ, ϱℏ−1)r

≤ µ(ϱℏ−1, ϱℏ−2)r2

...

≤ µ(ϱ1, ϱ0)rℏ .

Taking limit as ℏ → ∞, we have

lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) ≤ lim
ℏ→∞

µ(ϱ1, ϱ0)rℏ → 1. (As r < 1) (4.2.6)

Also, by Definition 4.2.1, we have

µ(ϱℏ+1, ϱℏ) ≥ 1. (4.2.7)

From (4.2.6) and (4.2.7), we have

lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1.

(ii) By using (i) and Definition 4.2.1, we have

lim
ℏ→∞

µϱℏ+1ϱℏ = lim
ℏ→∞

min {µ(ϱℏ+1, ϱℏ+1), µ(ϱℏ, ϱℏ)} ≤ lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1,

or

lim
ℏ→∞

µ(ϱℏ, ϱℏ) ≤ 1.
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Also, by the Definition of multiplicative m-metric, we have

µ(ϱℏ, ϱℏ) ≥ 1.

Thus, limℏ→∞ µ(ϱℏ, ϱℏ) = 1.
(iii) Using (ii), one can easily deduce the required result.
(iv) Let {ϱℏ} be the given sequence. Using triangle inequality, we have

µ(ϱm, ϱℏ)
µϱmϱℏ

≤ µ(ϱm, ϱm−1)
µϱmϱm−1

.
µ(ϱm−1, ϱm−2)
µϱm−1ϱm−2

...
µ(ϱℏ+1, ϱℏ)
µϱℏ+1ϱℏ

≤ µ(ϱ1, ϱ0)rm−1
.µ(ϱ1, ϱ0)rm−2

...µ(ϱ1, ϱ0)rℏ

≤ µ(ϱ1, ϱ0)rm−1+rm−2+...rℏ

≤ µ(ϱ1, ϱ0)
rℏ

1−r → 1 as ℏ → ∞ (Because r < 1).

Using (ii) and Remark 4.2.4, we have

µ∗
ϱmϱℏ

µϱmϱℏ

=
∣∣∣∣∣µ(ϱm, ϱm)
µ(ϱℏ, ϱℏ)

∣∣∣∣∣
∗

→ 1 as ℏ,m → ∞.

Hence, {ϱℏ} is a multiplicative m-Cseq.

4.3 Some Fixed Point Results in Multiplicative
m-Metric Space

In this section, we established some fixed point results using some well known
contractions in the framework of multiplicative m-MS.

Theorem 4.3.1. Let Γ : Ω → Ω be a mapping defined on a multiplicative m-
complete MS (Ω, µ). Suppose ∃a, b, c ≥ 0, with a+ b+ c < 1 s.t.

µ(Γϱ,Γϑ) ≤
(
µ(ϱ, ϑ)

)a(
µ(ϱ,Γϱ)

)b(
µ(ϑ,Γϑ)

)c

∀ϱ, ϑ ∈ Ω. (4.3.1)

Then, Γ possesses exactly one fixed point.

Proof. Let ϱ0 ∈ Ω and consider the sequence {ϱℏ} is s.t. ϱ1 = Γϱ0 and ϱℏ = Γϱℏ−1.
If ϱℏ = ϱℏ−1, then, Γϱℏ−1 = ϱℏ = ϱℏ−1 implies ϱℏ−1 is a fixed point of Γ. Hence,
the result holds.
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Now, consider ϱℏ ̸= ϱℏ−1, ∀ℏ ∈ N
Using (4.3.1), we have

µ(ϱℏ+1, ϱℏ) = µ(Γϱℏ,Γϱℏ−1)

≤
(
µ(ϱℏ, ϱℏ−1)

)a(
µ(ϱℏ,Γϱℏ)

)b(
µ(ϱℏ−1,Γϱℏ−1)

)c

=
(
µ(ϱℏ, ϱℏ−1)

)a(
µ(ϱℏ, ϱℏ+1)

)b(
µ(ϱℏ−1, ϱℏ)

)c

or

(
µ(ϱℏ+1, ϱℏ)

)1−b

≤
(
µ(ϱℏ−1, ϱℏ)

)a+c

⇒ µ(ϱℏ+1, ϱℏ) ≤
(
µ(ϱℏ−1, ϱℏ)

)a+ c

1 − b
.

Since a+c
1−b

< 1, using Lemma 4.2.15, we have

lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1, (4.3.2)

lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1, (4.3.3)

lim
ℏ,m→∞

µϱℏϱm = 1

and {ϱℏ} is a multiplicative m-Cseq. As (Ω, µ) is complete, hence ∃ϱ in Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1 and lim
ℏ→∞

µ∗
ϱℏϱ

µϱℏϱ

= 1. (4.3.4)

Also, using (4.3.3), we have

lim
ℏ→∞

µϱℏϱ = lim
ℏ→∞

min
{
µ(ϱℏ, ϱℏ), µ(ϱ, ϱ)

}
≤ lim

ℏ→∞
µ(ϱℏ, ϱℏ) → 1. (4.3.5)

Using (4.3.4), (4.3.5) and Remark 4.2.4, we have

lim
ℏ→∞

µ(ϱℏ, ϱ) = 1, lim
ℏ→∞

µ∗
ϱℏϱ = 1 and µ(ϱ, ϱ) = 1. (4.3.6)

Also,

1 ≤ µϱΓϱ = min
{
µ(ϱ, ϱ), µ(Γϱ,Γϱ)

}
≤ µ(ϱ, ϱ) = 1 ⇒ µϱΓϱ = 1. (4.3.7)

By triangle inequality, (4.3.2) and (4.3.7), we have

µ(ϱ,Γϱ) = µ(ϱ,Γϱ)
µϱΓϱ

≤ lim sup
ℏ→∞

µ(ϱ, ϱℏ)
µϱℏϱ

.
µ(ϱℏ,Γϱ)
µϱℏΓϱ

≤ lim sup
ℏ→∞

µ(ϱℏ,Γϱ),

80



or

µ(ϱ,Γϱ) ≤ lim sup
ℏ→∞

µ(Γϱℏ−1,Γϱ). (4.3.8)

Using (4.3.1) and (4.3.6) in (4.3.8), we have

µ(ϱ,Γϱ) ≤ lim sup
ℏ→∞

(
µ(ϱℏ−1, ϱ)

)a(
µ(ϱℏ−1,Γϱℏ−1)

)b(
µ(ϱ,Γϱ)

)c

= µ(ϱ,Γϱ)c.

(4.3.9)

Since c < 1, we have

µ(ϱ,Γϱ) = 1. (4.3.10)

Using (4.3.1), we have

1 ≤ µ(Γϱ,Γϱ) ≤
(
µ(ϱ, ϱ)

)a(
µ(ϱ,Γϱ)

)b(
µ(ϱ,Γϱ)

)c

=
(
µ(ϱ, ϱ)

)a(
µ(ϱ,Γϱ)

)b+c

= 1,

or

µ(Γϱ,Γϱ) = 1. (4.3.11)

Thus, by (4.3.6), (4.3.10) and (4.3.11), we have

µ(ϱ, ϱ) = µ(Γϱ,Γϱ) = µ(ϱ,Γϱ).

Hence, by Definition 4.2.1, Γϱ = ϱ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be an another fixed point of Γ. Using (4.3.1), we
have

µ(ϱ, ϑ) = µ(Γϱ,Γϑ)

≤
(
µ(ϱ, ϑ)

)a(
µ(ϱ,Γϱ)

)b(
µ(ϑ,Γϑ)

)c

=
(
µ(ϱ, ϑ)

)a(
µ(ϱ, ϱ)

)b(
µ(ϑ, ϑ)

)c

=
(
µ(ϱ, ϑ)

)a

< µ(ϱ, ϑ),

a contradiction. Hence, ϱ = ϑ.
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Corollary 4.3.2. Let Γ : Ω → Ω be a mapping defined on a multiplicative m-
complete MS (Ω, µ). Suppose ∃a ∈ [0, 1) s.t.

µ(Γϱ,Γϑ) ≤
(
µ(ϱ, ϑ)

)a

∀ϱ, ϑ ∈ Ω. (4.3.12)

Then, Γ possesses exactly one fixed point.

Corollary 4.3.3. Let Γ : Ω → Ω be a mapping defined on a multiplicative m-
complete MS (Ω, µ). Suppose ∃a ∈

[
0, 1

2

)
s.t.

µ(Γϱ,Γϑ) ≤
(
µ(ϱ,Γϱ).µ(ϑ,Γϑ)

)a

∀ϱ, ϑ ∈ Ω. (4.3.13)

Then, Γ possesses exactly one fixed point.

Theorem 4.3.4. Let Γ : Ω → Ω be a mapping defined on a multiplicative m-
complete MS (Ω, µ). Suppose ∃ϱ0 ∈ Ω and a ∈

[
0, 1

2

)
s.t.

µ(Γϱ,Γϑ) ≤
(
µ(ϱ,Γϑ).µ(ϑ,Γϱ)

)a

, (4.3.14)

and

µ(Γℏ+1ϱ0,Γℏ+1ϱ0) ≤ µ(Γℏϱ0,Γℏϱ0) ∀ℏ ∈ N, (4.3.15)

∀ϱ, ϑ ∈ Ω. Then, Γ possesses exactly one fixed point.

Proof. For ϱ0 ∈ Ω, consider the sequence {ϱℏ} s.t. ϱ1 = Γϱ0. On generalizing,
ϱℏ = Γϱℏ−1 ∀ℏ ∈ N.
If, ϱℏ = ϱℏ−1 for some ℏ ∈ N. Then, Γϱℏ−1 = ϱℏ = ϱℏ−1 implies ϱℏ−1 is a fixed
point of Γ. Hence, the result holds.
Now, consider ϱℏ ̸= ϱℏ−1, ∀ℏ ∈ N.
Using (4.3.14) and triangle inequality, we have

µ(ϱℏ+1, ϱℏ) = µ(Γϱℏ,Γϱℏ−1)

≤
(
µ(ϱℏ,Γϱℏ−1).µ(ϱℏ−1,Γϱℏ)

)a

=
(
µ(ϱℏ, ϱℏ).µ(ϱℏ−1, ϱℏ+1)

)a

≤
(
µ(ϱℏ, ϱℏ).

µ(ϱℏ−1, ϱℏ)
µϱℏ−1ϱℏ

.
µ(ϱℏ, ϱℏ+1)
µϱℏϱℏ+1

.µϱℏ−1ϱℏ+1

)a

,
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or

µ(ϱℏ+1, ϱℏ) ≤
(
µ(ϱℏ, ϱℏ).

µ(ϱℏ−1, ϱℏ)
µϱℏ−1ϱℏ

.
µ(ϱℏ, ϱℏ+1)
µϱℏϱℏ+1

.µϱℏ−1ϱℏ+1

)a

. (4.3.16)

Using (4.3.15), we have

µϱℏϱℏ−1 = µ(ϱℏ, ϱℏ) and µϱℏ−1ϱℏ+1 = µ(ϱℏ+1, ϱℏ+1) = µϱℏϱℏ+1 . (4.3.17)

Using (4.3.17) in (4.3.16), we have

µ(ϱℏ+1, ϱℏ) ≤
(
µ(ϱℏ, ϱℏ).

µ(ϱℏ−1, ϱℏ)
µϱℏ−1ϱℏ

.
µ(ϱℏ, ϱℏ+1)
µϱℏϱℏ+1

. µϱℏ−1ϱℏ+1

)a

=
(
µ(ϱℏ−1, ϱℏ).µ(ϱℏ, ϱℏ+1)

)a

⇒ µ(ϱℏ+1, ϱℏ)1−a ≤ µ(ϱℏ−1, ϱℏ)a

⇒ µ(ϱℏ+1, ϱℏ) ≤ µ(ϱℏ−1, ϱℏ)
a

1−a .

Since a < 1
2 ⇒ a

1−a
< 1, using Lemma 4.2.15, we have

lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1, (4.3.18)

lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1, (4.3.19)

lim
ℏ,m→∞

µϱℏϱm = 1

and {ϱℏ} is a multiplicative m-Cseq. As (Ω, µ) is complete, hence ∃ϱ ∈ Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1 and lim
ℏ→∞

µ∗
ϱℏϱ

µϱℏϱ

= 1. (4.3.20)

Also, using (4.3.19), we have

lim
ℏ→∞

µϱℏϱ = lim
ℏ→∞

min
{
µ(ϱℏ, ϱℏ), µ(ϱ, ϱ)

}
≤ lim

ℏ→∞
µ(ϱℏ, ϱℏ) → 1. (4.3.21)

Using (4.3.20), (4.3.21) and Remark 4.2.4, we have

lim
ℏ→∞

µ(ϱℏ, ϱ) = 1, lim
ℏ→∞

µ∗
ϱℏϱ = 1 and µ(ϱ, ϱ) = 1. (4.3.22)

Also,

1 ≤ µϱΓϱ = min
{
µ(ϱ, ϱ), µ(Γϱ,Γϱ)

}
≤ µ(ϱ, ϱ) = 1 ⇒ µϱΓϱ = 1. (4.3.23)

Using triangle inequality, (4.3.22) and (4.3.23), we have

µ(ϱ,Γϱ) = µ(ϱ,Γϱ)
µϱΓϱ

≤ lim sup
ℏ→∞

µ(ϱ, ϱℏ)
µϱℏϱ

.
µ(ϱℏ,Γϱ)
µϱℏΓϱ

≤ lim sup
ℏ→∞

µ(ϱℏ,Γϱ),
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or

µ(ϱ,Γϱ) ≤ lim sup
ℏ→∞

µ(Γϱℏ−1,Γϱ). (4.3.24)

Using, (4.3.14), (4.3.22), (4.3.23) and the triangle inequality in (4.3.24), we have

µ(ϱ,Γϱ) ≤ lim sup
ℏ→∞

(
µ(ϱℏ−1,Γϱ).µ(ϱ,Γϱℏ−1)

)a

≤ lim sup
ℏ→∞

(
µ(ϱℏ−1, ϱ)
µϱℏ−1ϱ

.
µ(ϱ,Γϱ)
µϱΓϱ

.µϱℏ−1Γϱ. µ(ϱ, ϱℏ)
)a

= lim sup
ℏ→∞

(
µ(ϱ,Γϱ).µϱℏ−1Γϱ

)a

,

or

µ(ϱ,Γϱ) ≤ lim sup
ℏ→∞

(
µ(ϱ,Γϱ).µϱℏ−1Γϱ

)a

. (4.3.25)

Since, µϱℏ−1Γϱ = min
{
µ(ϱℏ−1, ϱℏ−1), µ(Γϱ,Γϱ)

}
≤ µ(ϱℏ−1, ϱℏ−1) → 1, by (4.3.25),

we have

µ(ϱ,Γϱ) ≤
(
µ(ϱ,Γϱ)

)a

.

Since, a < 1
2 , we have

µ(ϱ,Γϱ) = 1. (4.3.26)

Using (4.3.14), we have

1 ≤ µ(Γϱ,Γϱ) ≤
(
µ(ϱ,Γϱ).µ(ϱ,Γϱ)

)a

= 1. (4.3.27)

Thus, by (4.3.22), (4.3.26) and (4.3.27), we have

µ(ϱ, ϱ) = µ(Γϱ,Γϱ) = µ(ϱ,Γϱ).

Hence, by Definition 4.2.1 Γϱ = ϱ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be an another fixed point of Γ. Using (4.3.14), we
have

µ(ϱ, ϑ) = µ(Γϱ,Γϑ) ≤
(
µ(ϱ,Γϑ).µ(ϑ,Γϱ)

)a

=
(
µ(ϱ, ϑ).µ(ϱ, ϑ)

)a

< µ(ϱ, ϑ),

a contradiction. Hence, ϱ = ϑ.
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Example 4.3.5. Consider Ω = [0,∞) along with µ(ϱ, ϑ) = e
ϱ+ϑ

2 , ∀ ϱ, ϑ ∈ Ω.
Here, (Ω, µ) is a multiplicative m-complete MS. Consider Γ : Ω → Ω s.t.

Γ(ϱ) =


ϱ

5 , if ϱ ∈ [0, 3)
ϱ

ϱ+ 2 , if ϱ ≥ 3.

Now, we will prove that Γ satisfies all the conditions of Theorem 4.3.1 with a = 1
5 ,

b = 1
3 and c = 1

4 .
Case (i) For ϱ, ϑ < 3, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

5 + ϑ

5

)

≤ e

1
5

(
ϱ+ ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

5)
)

+ 1
4

(
1
2(ϑ+ ϑ

5 )
)

=
(
µ(ϱ, ϑ)

)1
5
.

(
µ(ϱ,Γϱ)

)1
3
.

(
µ(ϑ,Γϑ)

)1
4
.

Case (ii) For ϱ, ϑ ≥ 3, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

ϱ+ 2 + ϑ

ϑ+ 2

)

≤ e

1
2

(
ϱ

5 + ϑ

5

)
= e

1
5

(
ϱ

2 + ϑ

2

)

≤ e

1
5

(
ϱ

2 + ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

ϱ+ 2)
)

+ 1
4

(
1
2(ϑ+ ϑ

ϑ+ 2)
)

=
(
µ(ϱ, ϑ)

)1
5
.

(
µ(ϱ,Γϱ)

)1
3
.

(
µ(ϑ,Γϑ)

)1
4
.

Case (iii) For ϱ < 3 and ϑ ≥ 3, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

5 + ϑ

ϑ+ 2

)
≤ e

1
2

(
ϱ

5 + ϑ

5

)

≤ e

1
5

(
ϱ

2 + ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

ϱ+ 2)
)

+ 1
4

(
1
2(ϑ+ ϑ

ϑ+ 2)
)

=
(
µ(ϱ, ϑ)

)1
5
.

(
µ(ϱ,Γϱ)

)1
3
.

(
µ(ϑ,Γϑ)

)1
4
.
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For a = 1
5 , b = 1

3 and c = 1
4 , Γ satisfies all the conditions of Theorem 4.3.1. Hence,

Γ possesses exactly one fixed point i.e., ϱ = 0.

Example 4.3.6. Consider Ω = [0, 1] with multiplicative m-metric µ(ϱ, ϑ) = e
ϱ+ϑ

2 .
Clearly, (Ω, µ) is multiplicative m-complete MS. Consider Γ : Ω → Ω

Γ(ϱ) =


ϱ
4 , if ϱ < 1
1
8 , if ϱ = 1.

Now, we will prove that Γ satisfies all the conditions of Corollary 4.3.2 with a = 1
4 .

Case (i) For ϱ, ϑ < 1, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

4 + ϑ

4

)

≤ e

1
4

(
ϱ+ ϑ

2

)

=
(
µ(ϱ, ϑ)

)a

.

Case (ii) For ϱ = ϑ = 1, we have

µ(Γϱ,Γϑ) = e1/8 ≤ e1/4

=
(
µ(ϱ, ϑ)

)a

.

Case (iii) For ϱ < 1 and ϑ = 1, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

4 + 1
8

)

≤ e

1
2

(
ϱ

4 + 1
4

)

=
(
µ(ϱ, ϑ)

)a

.

For a = 1
4 ∈ [0, 1), Γ satisfies all the conditions of Corollary 4.3.2. Hence, Γ

possesses exactly one fixed point i.e., ϱ = 0.
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Remark 4.3.7. In Example 4.3.6, self mapping Γ is not continuous (in multi-
plicative MS). Hence, multiplicative Banach contraction is not applicable. There-
fore, the existence of fixed point can not be guaranteed in multiplicative MS. On
other hand, Γ satisfies Corollary 4.3.2. Hence, the existence of a fixed point is
guaranteed in multiplicative m-MS.

Example 4.3.8. Consider Ω = [0, 1] with multiplicative m-metric µ(ϱ, ϑ) = e
ϱ+ϑ

2 .
(Ω, µ) is multiplicative m-complete MS. Consider Γ : Ω → Ω

Γ(ϱ) =


ϱ
3 , if ϱ < 1
1
7 , if ϱ = 1.

Now, we will prove that Γ satisfies all the conditions of Corollary 4.3.3 with a = 1
3 .

Case (i) For ϱ, ϑ < 1, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

3 + ϑ

3

)

≤
(
e

1
2(ϱ+ ϱ

3)
.e

1
2(ϑ+ ϑ

3 ))1
3

=
(
µ(ϱ,Γϱ).µ(ϑ,Γϑ)

)a

.

Case (ii) For ϱ = ϑ = 1, we have

µ(Γϱ,Γϑ) = e1/7 =
(
e8/14.e8/14

)1/8

≤
(
e8/14.e8/14

)1/3

=
(
µ(ϱ,Γϱ).µ(ϑ,Γϑ)

)a

.

Case (iii) For ϱ < 1 and ϑ = 1, we have

µ(Γϱ,Γϑ) = e

1
2

(
ϱ

3 + 1
7

)
= e

1
3

(
1
2(ϱ+ 3

7)
)

≤ e

1
3

(
1
2(ϱ+ ϱ

3 + 1 + 1
7)
)

=
(
µ(ϱ,Γϱ).µ(ϑ,Γϑ)

)a

.
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For, a = 1
3 ∈ [0, 1

2), Γ satisfies all the conditions of Corollary 4.3.3. Hence, Γ
possesses exactly one fixed point i.e., ϱ = 0.

Remark 4.3.9. In Example 4.3.8, one can easily verify that the self mapping
Γ with induced multiplicative metric u(ϱ, ϑ) = e

|ϱ−ϑ|
2 does not satisfy Kannan-

contraction in multiplicative MS for ϱ = 0 and ϑ = 1
3 . Hence, the existence of

a fixed point in multiplicative MS can not be guaranteed. On the other hand, Γ
satisfies the conditions of Corollary 4.3.3. Hence, existence of a fixed point is
guaranteed in multiplicative m-MS.

4.3.1 Numerical Approximation of Fixed Point

In this section, we have presented some iterations for the approximation of unique
fixed point of Γ in Example 4.3.5, 4.3.6 and 4.3.8. Also, we established the conver-
gence of Picard’s iterative sequence graphically and concluded that the fixed point
of the mapping does not depend on the initial point of the iterative procedure.

Figure 4.1: Iteration for Picard’s sequence of Example 4.3.5.

88



Figure 4.2: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.5.

Figure 4.3: Iteration for Picard’s sequence of Example 4.3.6.

Figure 4.4: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.6.
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Figure 4.5: Iteration for Picard’s sequence of Example 4.3.8.

Figure 4.6: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.8.
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4.4 Some Common Fixed Point Results in Mul-
tiplicative m-Metric Space

In this section, we have established some common fixed point results for a pair of
self mappings using well known contractions in the framework of multiplicative
m-MS.

Theorem 4.4.1. Let Γ1,Γ2 : Ω → Ω be mappings defined on multiplicative m-
complete MS (Ω, µ). Suppose ∃a1, a2, a3 ∈ (0, 1) with a1 + a2 + a3 < 1 s.t.

µ(Γ1ϱ,Γ2ϑ) ≤
(
µ(ϱ, ϑ)

)a1 (µ(ϱ,Γ1ϱ)
)a2 (µ(ϑ,Γ2ϑ)

)a3 ∀ϱ, ϑ ∈ Ω. (4.4.1)

Then, either Γ1 or Γ2 has a fixed point ϱ0 ∈ Ω (say). Moreover, if µ∗
Γ1ϱ0,Γ2ϱ0 ≤

µ(Γ1ϱ0,Γ2ϱ0), then Γ1,Γ2 have exactly one common fixed point.

Proof. For ϱ0 ∈ Ω, construct a sequence in Ω

ϱ2ℏ+1 = Γ1ϱ2ℏ, and ϱ2ℏ+2 = Γ2ϱ2ℏ+1 for ℏ ∈ N0.

If for some ℏ0 ∈ N0 we have ϱ2ℏ0+1 = ϱ2ℏ0+2. Then,

ϱ2ℏ0+1 = Γ1ϱ2ℏ0 = ϱ2ℏ0+2 = Γ2ϱ2ℏ0+1

implies ϱ2ℏ0+1 = ϱ2ℏ0+2 is the fixed point of mapping Γ2.
Now, consider ϱ2ℏ+1 ̸= ϱ2ℏ+2 for ℏ ∈ N0. Then,

µ(ϱ2ℏ+1, ϱ2ℏ+2) = µ(Γ1ϱ2ℏ,Γ2ϱ2ℏ+1)
≤ (µ(ϱ2ℏ, ϱ2ℏ+1))a1(µ(ϱ2ℏ,Γ1ϱ2ℏ))a2(µ(ϱ2ℏ+1,Γ2ϱ2ℏ+1))a3

= (µ(ϱ2ℏ, ϱ2ℏ+1))a1(µ(ϱ2ℏ, ϱ2ℏ+1))a2(µ(ϱ2ℏ+1, ϱ2ℏ+2))a3

or

µ(ϱ2ℏ+1, ϱ2ℏ+2)1−a3 ≤ (µ(ϱ2ℏ, ϱ2ℏ+1))a1+a2 ⇔ µ(ϱ2ℏ+1, ϱ2ℏ+2) ≤ (µ(ϱ2ℏ, ϱ2ℏ+1))
a1+a2
1−a3 .

Using similar arguments, we have

µ(ϱ2ℏ+2, ϱ2ℏ+3) ≤ (µ(ϱ2ℏ+1, ϱ2ℏ+2))
a1+a2
1−a3 .

Therefore,

µ(ϱℏ, ϱℏ+1) ≤ µ(ϱℏ−1, ϱℏ)
a1+a2
1−a3 or µ(ϱℏ+1, ϱℏ) ≤ µ(ϱℏ, ϱℏ−1)

a1+a2
1−a3 ∀ ℏ ∈ N.
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Since a+b
1−c

< 1, using Lemma 4.2.15, we have

lim
ℏ→∞

µ(ϱℏ+1, ϱℏ) = 1, (4.4.2)

lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1, (4.4.3)

lim
ℏ,m→∞

µϱℏ,ϱm = 1 (4.4.4)

and {ϱℏ} is a multiplicative m-Cseq. As, (Ω, µ) is multiplicative m-complete, there-
fore ∃ϱ ∈ Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏ,ϱ

= 1 and lim
ℏ→∞

µ∗(ϱℏ, ϱ)
µ∗

ϱℏ,ϱ

= 1. (4.4.5)

Moreover, using (4.4.3), we have

lim
ℏ→∞

µϱℏϱ = lim
ℏ→∞

min{µ(ϱℏ, ϱℏ), µ(ϱ, ϱ)} ≤ lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1. (4.4.6)

Using (4.4.5), (4.4.6) and Remark 4.2.4 , we have

lim
ℏ→∞

µ(ϱℏ, ϱ) = 1, lim
ℏ→∞

µ∗
ϱℏϱ = 1 and µ(ϱ, ϱ) = 1. (4.4.7)

Also,

µϱ,Γ1ϱ = min{µ(ϱ, ϱ), µ(Γ1ϱ,Γ1ϱ)} ≤ µ(ϱ, ϱ) = 1, (4.4.8)

and

µϱ,Γ2ϱ = min{µ(ϱ, ϱ), µ(Γ2ϱ,Γ2ϱ)} ≤ µ(ϱ, ϱ) = 1. (4.4.9)

Further, using (4.4.6), (4.4.9) and the triangle inequality, we have

µ(ϱ,Γ2ϱ) = µ(ϱ,Γ2ϱ)
µϱ,Γ2ϱ

≤ µ(ϱ, ϱ2ℏ+2)
µϱ,ϱ2ℏ+1

.
µ(ϱ2ℏ+1,Γ2ϱ)
µϱϱ2ℏ+1,Γ2ϱ

≤ lim sup
ℏ→∞

µ(ϱ, ϱ2ℏ+2)
µϱ,ϱ2ℏ+1

.
µ(ϱ2ℏ+1,Γ2ϱ)
µϱ2ℏ+1,Γ2ϱ

≤ lim sup
ℏ→∞

µ(ϱ2ℏ+1,Γ2ϱ),

or

µ(ϱ,Γ2ϱ) ≤ lim sup
ℏ→∞

µ(Γ1ϱ2ℏ,Γ2ϱ). (4.4.10)

Using (4.4.1), (4.4.6), (4.4.9) and the triangle inequality in (4.4.10), we have

µ(ϱ,Γ2ϱ) ≤ lim sup
ℏ→∞

µ(Γ1ϱ2ℏ,Γ2ϱ)

≤ lim sup
ℏ→∞

(µ(ϱ2ℏ, ϱ))a1(µ(ϱ2ℏ,Γ1ϱ2ℏ))a2µ(ϱ,Γ2ϱ)a3

≤ lim sup
ℏ→∞

(µ(ϱ2ℏ, ϱ))a1(µ(ϱ2ℏ, ϱ2ℏ+1))a2µ(ϱ,Γ2ϱ)a3

= µ(ϱ,Γ2ϱ)c.
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Since, a3 < 1. Hence,

µ(ϱ,Γ2ϱ) = 1. (4.4.11)

On similar lines, we have

µ(ϱ,Γ1ϱ) = 1. (4.4.12)

Using (4.4.1), (4.4.7), (4.4.11) and (4.4.12), we have

µ(Γ1ϱ,Γ2ϱ) ≤ (µ(ϱ, ϱ))a1 .(µ(ϱ,Γ1ϱ))a2 .(µ(ϱ,Γ2ϱ))a3 = 1,

or

µ(Γ1ϱ,Γ2ϱ) = 1. (4.4.13)

Also,

µΓ1ϱ,Γ2ϱ = min{µ(Γ1ϱ,Γ1ϱ), µ(Γ2ϱ,Γ2ϱ)} ≤ µ(Γ1ϱ,Γ2ϱ) = 1.

Suppose, µ(Γ1ϱ,Γ1ϱ) ≤ µ(Γ2ϱ,Γ2ϱ). Then µ(Γ1ϱ,Γ1ϱ) = 1. Hence, µ(Γ1ϱ,Γ1ϱ) =
1 = µ(ϱ, ϱ) = µ(ϱ,Γ1ϱ) implies Γ1ϱ = ϱ, i.e., ϱ is the fixed point of Γ1.
Further, suppose that µ∗

Γ1ϱ,Γ2ϱ ≤ µ(Γ1ϱ,Γ2ϱ). Then,

µ(Γ2ϱ,Γ2ϱ) = max{µ(Γ1ϱ,Γ1ϱ), µ(Γ2ϱ,Γ2ϱ)} = µ∗
Γ1ϱ,Γ2ϱ ≤ µ(Γ1ϱ,Γ2ϱ) = 1,

or
µ(Γ2ϱ,Γ2ϱ) = 1.

Therefore,

µ(Γ1ϱ,Γ2ϱ) = µ(Γ1ϱ,Γ1ϱ) = µ(Γ2ϱ,Γ2ϱ) = 1,

implies Γ1ϱ = Γ2ϱ = ϱ.
Uniqueness: let ϑ ̸= ϱ ∈ Ω be an another common fixed point of Γ1,Γ2. Then,
using (4.4.1), we have

µ(ϱ, ϑ) = µ(Γ1ϱ,Γ2ϑ)

≤
(
µ(ϱ, ϑ)

)a1(
µ(ϱ,Γ1ϱ)

)a2(
µ(ϑ,Γ2ϑ)

)a3

=
(
µ(ϱ, ϑ)

)a1(
µ(ϱ, ϱ)

)a2(
µ(ϑ, ϑ)

)a3

=
(
µ(ϱ, ϑ)

)a1

< µ(ϱ, ϑ),

a contradiction. Hence, ϑ = ϱ.
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Example 4.4.2. Consider Ω = [0,∞) with multiplicative m-metric µ(ϱ, ϑ) =
emax{ϱ,ϑ}. Clearly, (Ω, µ) is multiplicative m-complete MS.Consider, Γ1,Γ2 : Ω →
Ω

Γ1ϱ =


ϱ
5 , if ϱ ∈ [0, 1)
1
10 , otherwise.

, Γ2ϱ =


ϱ
7 , if ϱ ∈ [0, 1)
1
14 , otherwise.

.

Then,

(i) for ϱ, ϑ ∈ [0, 1), we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ ϱ
5 , ϱ

7 } = e
ϱ
5

≤ µ(ϱ, ϑ) 1
5 .

(ii) For ϱ, ϑ ≥ 1, we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ 1
10 , 1

14 } = e
1

10

≤ (emax{ϱ,ϑ}) 1
5 = µ(ϱ, ϑ) 1

5 .

(iii) For ϱ > 1, ϑ ≤ 7
10 , we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ 1
10 , ϑ

7 } = e
1

10

≤ (emax{ϱ,ϑ}) 1
5 = µ(ϱ, ϑ) 1

5 .

(iv) For ϱ > 1, 7
10 < ϑ < 1, we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ 1
10 , ϑ

7 } = e
ϑ
7

≤ (emax{ϱ,ϑ}) 1
7 ≤ µ(ϱ, ϑ) 1

5 .

(v) For ϑ > 1, ϱ ≤ 5
14 , we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ ϱ
5 , 1

14 } = e
1

14 ≤ (eϑ) 1
7

≤ (emax{ϱ,ϑ}) 1
7 ≤ µ(ϱ, ϑ) 1

5 .
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(vi) For ϑ > 1, 5
14 < ϱ < 1, we have

µ(Γ1ϱ,Γ2ϑ) = emax{Γ1ϱ,Γ2ϑ}

= emax{ ϱ
5 , 1

14 } = e
ϱ
5 ≤ (eϱ) 1

5

≤ (emax{ϱ,ϑ}) 1
5 ,

and µ∗
Γ1ϱ,Γ2ϱ = max{µ(Γ1ϱ,Γ1ϱ), µ(Γ2ϱ,Γ2ϱ)} = max

{
eΓ1ϱ, eΓ2ϱ

}
≤ emax{Γ1ϱ,Γ2ϱ} =

µ(Γ1ϱ,Γ2ϱ). Therefore, Γ1,Γ2 satisfy Theorem 4.4.1 with a1 = 1
5 , a2 = 0 = a3.

Hence, Γ1,Γ2 have exactly one common fixed point.

4.4.1 Numerical Approximation of Common Fixed Point

In this section, we have presented some iterations for approximating the common
fixed point of Γ1,Γ2 in Example 4.4.2. In addition, we graphically demonstrated
the convergence of Iterative sequence and concluded that the fixed point of the
mapping is independent of the iterative procedure’s initial point (see Figure 4.4.1).
The iteration scheme used for the approximation is given as

For initial point x0, x2ℏ+1 = Γ1x2ℏ and x2ℏ+2 = Γ2x2ℏ+1.

Figure 4.7: Convergence behaviour of iteration scheme at different initial points
for Example 4.4.2.
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Figure 4.8: Numerical iteration for Example 4.4.2.

4.5 Some Fixed Point Results using Three Point
Analogue of Contraction Mappings

In this section, we have established some fixed point results using three point
analogue of contraction in multiplicative m-MS.

Definition 4.5.1. Consider an multiplicative m-MS (Ω, µ). A self mapping Γ is
c.t.b. self distance contraction on Ω if ∃k0 ∈ [0, 1) s.t.

µ(Γϱ,Γϱ) ≤
(
µ(ϱ, ϱ)

)k0 ∀ϱ ∈ Ω. (4.5.1)

Definition 4.5.2. Consider an multiplicative m-complete MS (Ω, µ). A self map-
ping Γ is c.t.b. contracting perimeter of triangle on Ω if ∃k ∈ [0, 1) s.t.

µ(Γϱ,Γϑ).µ(Γϑ,Γξ).µ(Γξ,Γϱ) ≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k , (4.5.2)

∀ pairwise distinct ϱ, ϑ, ξ ∈ Ω.

Remark 4.5.3. The condition (pairwise distinct) given in Definition 4.5.2 made
the contraction substantially different from the Banach contraction principle. If
ϱ, ϑ, ξ are not distinct, then the condition (4.5.2) is reduced to classic contraction
in multiplicative m-MS.

µ(Γϱ,Γϑ) ≤
(
µ(ϱ, ϑ)

)k .
Remark 4.5.4. A self mapping Γ contracting perimeter of triangle in multiplica-
tive m-MS need not to be continuous. But in the usual MS the mapping must be
continuous. For illustration see the Example 4.5.5.
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Example 4.5.5. Consider Ω = [0, 2] with multiplicative m-metric, µ(ϱ, ϑ) = e
ϱ+ϑ

2 .
Clearly, (Ω, µ) is multiplicative m-complete MS. Consider, Γ : Ω → Ω

Γϱ =


ϱ
3 , if ϱ < 1
1
7 , otherwise.

(i) If ϱ, ϑ, ξ < 1. Then,

µ(Γϱ,Γϑ).µ(Γϑ,Γξ).µ(Γξ,Γϱ) = e
Γϱ+Γϑ

2 .e
Γϑ+Γξ

2 .e
Γξ+Γϱ

2

= e
ϱ+ϑ

6 .e
ϑ+ξ

6 .e
ξ+ϱ

6

≤
(
e

ϱ+ϑ
2 .e

ϑ+ξ
2 .e

ξ+ϱ
2

) 1
3

=
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

) 1
3 .

(ii) For distinct ϱ, ϑ, ξ, assume that ϱ, ϑ < 1 & ξ = 1. Then,

µ(Γϱ,Γϑ).µ(Γϑ,Γξ).µ(Γξ,Γϱ) = e
Γϱ+Γϑ

2 .e
Γϑ+Γξ

2 .e
Γξ+Γϱ

2

= e
ϱ
3 + ϑ

3
2 .e

ϑ
3 + 1

7
2 .e

1
7 + ϱ

3
2

= e
ϱ+ϑ

6 .e
ϑ+ 3

7
6 .e

3
7 +ϱ

6

≤ e
ϱ+ϑ

6 .e
ϑ+1

6 .e
1+ϱ

6

≤
(
e

ϱ+ϑ
2 .e

ϑ+ξ
2 .e

ξ+ϱ
2

) 1
3

=
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

) 1
3 .

Then, Γ is a contracting perimeter of triangle in multiplicative m-MS with k = 1
3 .

Also, Γ1 is a self distance contraction.

Let LHS = d(Γϱ,Γϑ)+d(Γϑ,Γξ)+d(Γξ,Γϱ) and RHS = d(ϱ, ϑ)+d(ϑ, ξ)+
d(ξ, ϱ), where d(ϱ, ϑ) = |ϱ− ϑ| ∀ϱ, ϑ ∈ [0, 2]. The figures ?? shows that there is
no such k ∈ [0, 1) that satisfies

d(Γϱ,Γϑ)+d(Γϑ,Γξ)+d(Γξ,Γϱ) ≤ k
(
d(ϱ, ϑ) + d(ϑ, ξ) + d(ξ, ϱ)

)
∀ϱ, ϑ, ξ ∈ [0, 2].

Therefore with usual metric d(ϱ, ϑ) = |ϱ− ϑ|, Γ is not contracting perimeter of
triangle in ([0, 2], d) i.e., Γ does not meet the requirement of Theorem ??.
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Remark 4.5.6. Consider a self mapping Γ satisfying the Banach contraction in
multiplicative m-MS with 0 ≤ α < 1

3 i.e.,

µ(Γϱ,Γϑ) ≤
(
µ(ϱ, ϑ)

)α , ∀ ϱ, ϑ ∈ Ω.

Then Γ is a mapping contracting the perimeter of triangle in multiplicative m-MS
(Ω, µ).

Theorem 4.5.7. Let Γ : Ω → Ω be a mapping defined on a multiplicative m-
complete MS (Ω, µ). Suppose Γ satisfies

(i) Γ is contracting perimeter of triangle on Ω;

(ii) Γ is a self distance contraction mapping;

(iii) there is no periodic point of order 2 in Ω.

Then, Γ possesses a fixed point. Moreover, Γ has atmost two fixed point.

Proof. Let ϱ0 ∈ Ω be any point. Consider the iterative sequence {ϱℏ} generated
by mapping Γ with initial point ϱ0 as

ϱ1 = Γϱ0, ϱ2 = Γϱ1, ... ϱℏ+1 = Γϱℏ.

Suppose that ϱℏ is not a fixed point ∀ℏ ∈ N. Then, ϱℏ+1 = Γϱℏ ̸= ϱℏ. Also, there
is no periodic point of order 2 implies ϱℏ+2 = Γ(ϱℏ+1) = Γ2ϱℏ ̸= ϱℏ. Moreover, by
assumption ϱℏ+1 is not a fixed point of Γ i.e., ϱℏ+2 = Γϱℏ+1 ̸= ϱℏ+1, proves that
ϱℏ, ϱℏ+1, ϱℏ+2 are all pairwise distinct.
Now consider the sequence {βℏ} generated by perimeter of triangle in multiplica-
tive distance structure with vertices as the consecutive member of the sequence
{ϱℏ} as

βℏ = µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1, ϱℏ+2).µ(ϱℏ+2, ϱℏ).

Now, as ϱℏ, ϱℏ+1, ϱℏ+2 are all pairwise distinct and Γ is contracting perimeter of
triangle in (Ω, µ). Therefore, we have

βℏ = µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1, ϱℏ+2).µ(ϱℏ+2, ϱℏ)
= µ(Γϱℏ−1,Γϱℏ).µ(Γϱℏ,Γϱℏ+1).µ(Γϱℏ+1,Γϱℏ−1)
≤

(
µ(ϱℏ−1, ϱℏ).µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1, ϱℏ−1)

)k
≤ (βℏ−1)k.
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Moreover, as k < 1. Then,

β0 > β1 > β2 > .... > βℏ−1 > βℏ > ...

We claim that ϱi, ϱi+1, ϱi+1 are all distinct. Suppose ∃j ≥ 3 s.t. ϱj = ϱi for some
0 ≤ i ≤ j − 2. Then,

ϱi = ϱj ⇒ ϱi+1 = Γϱi = Γϱj = ϱj+1 ⇒ ϱi+2 = Γϱi+1 = Γϱj+1 = ϱj+2,

implies

βi = µ(ϱi, ϱi+1).µ(ϱi+1, ϱi+2).µ(ϱi+2, ϱi) = µ(ϱj, ϱj+1).µ(ϱj+1, ϱj+2).µ(ϱj+2, ϱj) = βj,

a contradiction.
Consider,

µ(ϱℏ, ϱℏ+1) ≤ µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1, ϱℏ+2).µ(ϱℏ+2, ϱℏ) = βℏ

≤ (βℏ−1)k ≤ · · · ≤ (β0)kℏ
. (4.5.3)

As, k < 1. Then, taking limit as ℏ tends to infinity in (4.5.3), we have

lim
ℏ→∞

µ(ϱℏ, ϱℏ+1) = 1. (4.5.4)

Also,

lim
ℏ→∞

µϱℏ ϱℏ+1 = lim
ℏ→∞

min{µ(ϱℏ, ϱℏ), µ(ϱℏ+1, ϱℏ+1)} ≤ lim
ℏ→∞

µ(ϱℏ, ϱℏ+1) = 1, (4.5.5)

lim
ℏ→∞

µ(ϱℏ, ϱℏ) = lim
ℏ→∞

µ(ϱℏ+1, ϱℏ+1) = lim
ℏ→∞

min{µ(ϱℏ, ϱℏ), µ(ϱℏ+1, ϱℏ+1)}
= lim

ℏ→∞
µϱℏ ϱℏ+1 = 1,(4.5.6)

and

lim
ℏ→∞

µ∗
ϱℏ ϱℏ+1 = lim

ℏ→∞
max{µ(ϱℏ, ϱℏ), µ(ϱℏ+1, ϱℏ+1)} = 1. (4.5.7)

Next, we will show that {ϱℏ} is a multiplicative m-Cseq. Consider,

µ(ϱℏ, ϱm)
µϱℏ,ϱm

≤ µ(ϱℏ, ϱℏ+1)
µϱℏ,ϱℏ+1

.
µ(ϱℏ+1, ϱℏ+2)
µϱℏ+1,ϱℏ+2

. · · · .µ(ϱm+1, ϱm)
µϱm+1,ϱm

≤ µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1, ϱℏ+2). · · · .µ(ϱm+1, ϱm)
≤ βℏ.βℏ+1. · · · .βm+1

≤ (β0)kℏ
.(β0)kℏ+1

. · · · .(β0)km+1

≤ (β0)kℏ(1+k+k2+...km+1−ℏ) = (β0)kℏ( 1−km+1−ℏ
1−k

). (4.5.8)
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As k < 1. Then, by taking limit as ℏ,m tends to infinity in (4.5.8), we have

lim
ℏ.m→∞

µ(ϱℏ, ϱm)
µϱℏ ϱm

= 1, (4.5.9)

i.e., {ϱℏ} is multiplicative m-Cauchy. Further, as (Ω, µ) is multiplicative m-
complete. Therefore, ∃ϱ ∈ Ω s.t.

lim
ℏ→∞

µ(ϱℏ, ϱ)
µϱℏϱ

= 1 = lim
ℏ→∞

µ∗
ϱℏϱ

µϱℏϱ

. (4.5.10)

Using (4.5.6), we have

lim
ℏ→∞

µϱℏϱ = lim
ℏ→∞

min{µ(ϱℏ, ϱℏ), µ(ϱ, ϱ)} ≤ lim
ℏ→∞

µ(ϱℏ, ϱℏ) = 1. (4.5.11)

Using (4.5.10), (4.5.11) and Remark 4.2.4 , we have

lim
ℏ→∞

µ(ϱℏ, ϱ) = 1, lim
ℏ→∞

µ∗
ϱℏϱ = 1 and µ(ϱ, ϱ) = 1. (4.5.12)

Also,

µϱΓϱ = min{µ(ϱ, ϱ), µ(Γϱ,Γϱ)} = 1. (4.5.13)

Using (4.5.2),(4.5.13) and the triangle inequality, we have

1 ≤ µ(ϱ,Γϱ) = µ(ϱ,Γϱ)
µϱΓϱ

≤ µ(ϱ, ϱℏ)
µϱℏϱ

.
µ(ϱℏ,Γϱ)
µϱℏΓϱ

≤ µ(ϱ, ϱℏ)
µϱℏϱ

.
µ(ϱℏ,Γϱ)
µϱℏΓϱ

.µ(ϱℏ, ϱℏ+1).µ(ϱℏ+1,Γϱ)

≤ µ(ϱ, ϱℏ).µ(Γϱ,Γϱℏ−1).µ(Γϱℏ−1,Γϱℏ).µ(Γϱℏ,Γϱ)
≤ µ(ϱ, ϱℏ)

(
µ(ϱ, ϱℏ−1).µ(ϱℏ−1, ϱ).µ(ϱℏ, ϱ)

)k . (4.5.14)

Taking limit as ℏ → ∞ in (4.5.14), we have

µ(ϱ,Γϱ) = 1. (4.5.15)

Also, Γ is a self distance contraction. Therefore, ∃k0 ∈ [0, 1) s.t.

µ(Γϱ,Γϱ) ≤ (µ(ϱ, ϱ))k0 ,

or

µ(Γϱ,Γϱ) = 1. (4.5.16)
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Using (4.5.12), (4.5.13), (4.5.15) and (4.5.16), we have

µ(ϱ, ϱ) = µ(ϱ,Γϱ) = µ(Γϱ,Γϱ) = 1,

By using axiom (i) of Definition 4.2.1, we have ϱ = Γϱ. Hence ϱ is the fixed point
of Γ.
In order to prove that Γ has atmost two fixed points, suppose that there are three
distinct fixed points say ϱ, ϑ, ξ. Then, we have µ(ϱ, ϱ) = µ(ϑ, ϑ) = µ(ξ, ξ) = 1
and Γϱ = ϱ,Γϑ = ϑ,Γξ = ξ. Consider

µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ) = µ(Γϱ,Γϑ).µ(Γϑ,Γξ).µ(Γξ,Γϱ)
≤

(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k
< µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ),

a contradiction. Hence, the mapping Γ has atmost two fixed points.

Definition 4.5.8. Let (Ω, µ) be an multiplicative m-MS. A triplet (Γ1,Γ2,Γ3) of
self mapping is c.t.b. contracting perimeter of triangle on Ω if ∃k ∈ [0, 1) s.t.

µ(Γ1ϱ,Γ2ϑ).µ(Γ2ϑ,Γ3ξ).µ(Γ3ξ,Γ1ϱ) ≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k , (4.5.17)

∀ pairwise distinct ϱ, ϑ, ξ ∈ Ω.

We extend the concept of periodic point further for a pair of self mappings (Γ1,Γ2)
as : ϱ has prime period 2 pairwise w.r.t. (Γ1,Γ2) if Γ1ϱ ̸= ϱ,Γ2ϱ ̸= ϱ, but
either FG(ϱ) = ϱ or GF (ϱ) = ϱ. Moreover, ϱ has prime period 2 pairwise w.r.t.
(Γ1,Γ2,Γ3), if ϱ has prime period 2 pairwise w.r.t. each pair of self mappings.

Example 4.5.9. Consider the mapping Γ1 and Γ2 defines on R+ as Γ1ϱ = eϱ and
Γ2ϱ = ln(ϱ). Then, ∀ ϱ ∈ R+, Γ1ϱ ̸= ϱ and Gx ̸= ϱ but FG(ϱ) = ϱ. Therefore,
every point in R+ has a prime order 2 pairwise w.r.t. mappings (Γ1,Γ2).

Theorem 4.5.10. Let Γ1,Γ2,Γ3 : Ω → Ω are mappings defined on complete
multiplicative m-MS (Ω, µ). Suppose the triplet (Γ1,Γ2,Γ3) satisfies

(i) triplet (Γ1,Γ2,Γ3) is contracting perimeter of triangle on Ω;

(ii) Γ1,Γ2,Γ3 are self distance contraction mappings;

(iii) there is no point in Ω that has a prime period of order 2 pairwise w.r.t.
(Γ1,Γ2,Γ3).
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Then, the triplet (Γ1,Γ2,Γ3) has a common fixed point. Moreover, the triplet
(Γ1,Γ2,Γ3) has atmost two common fixed points.

Proof. For some ϱ0 ∈ Ω, define the iterative sequence as

ϱ1 = Γ1ϱ0, ϱ2 = Γ2ϱ1, ϱ3 = Γ3ϱ2, ..., ϱ3ℏ+1 = Γ1ϱ3ℏ, ϱ3ℏ+2 = Γ2ϱ3ℏ+1, ϱ3ℏ+3 = Γ3ϱ3ℏ+2,

∀ ℏ ∈ N. Without loss of generality, rename the sequence as ϱ0 = ϑ0 and ϑℏ =
ϱ3ℏ, ϑℏ+1 = ϱ3ℏ+1, ϑℏ+2 = ϱ3ℏ+2 and so on..., for ℏ ∈ N. Suppose that ϑℏ is not a
common fixed point ∀ℏ ∈ N. Then, ϑℏ, ϑℏ+1, ϑℏ+2 are pairwise distinct. Now, we
can define the sequence {βℏ} generated by perimeter of triangle in multiplicative
distance structure with vertices as the consecutive member of the sequence {ϑℏ}
as

βℏ = µ(ϑℏ, ϑℏ+1).µ(ϑℏ+1, ϑℏ+2).µ(ϑℏ+2, ϑℏ).

On similar line of Theorem4.5.7, it can be observe that {ϑℏ} is a multiplicative
m-Cseq in Ω and

lim
ℏ→∞

µ(ϑℏ, ϑℏ+1) = 1. (4.5.18)

Also,

lim
ℏ→∞

µϑℏ ϑℏ+1 = lim
ℏ→∞

min{µ(ϑℏ, ϑℏ), µ(ϑℏ+1, ϑℏ+1)} ≤ lim
ℏ→∞

µ(ϑℏ, ϑℏ+1) = 1, (4.5.19)

lim
ℏ→∞

µ(ϑℏ, ϑℏ) = lim
ℏ→∞

µ(ϑℏ+1, ϑℏ+1) = lim
ℏ→∞

min{µ(ϑℏ, ϑℏ), µ(ϑℏ+1, ϑℏ+1)}
= lim

ℏ→∞
µϑℏ ϑℏ+1 = 1,

and

lim
ℏ→∞

µ∗
ϑℏ ϑℏ+1 = lim

ℏ→∞
max{µ(ϑℏ, ϑℏ), µ(ϑℏ+1, ϑℏ+1)} = 1. (4.5.20)

Also, (Ω, µ) is complete. Therefore, ∃ϑ ∈ Ω s.t.

lim
ℏ→∞

µ(ϑℏ, ϑ)
µϑℏϑ

= 1 = lim
ℏ→∞

µ∗
ϑℏϑ

µϑℏϑ

. (4.5.21)

Using (4.5.20), we have

lim
ℏ→∞

µϑℏϑ = lim
ℏ→∞

min{µ(ϑℏ, ϑℏ), µ(ϑ, ϑ)} ≤ lim
ℏ→∞

µ(ϑℏ, ϑℏ) = 1. (4.5.22)

Using (4.5.21), (4.5.22) and Remark 4.2.4, we have

lim
ℏ→∞

µ(ϑℏ, ϑ) = 1, lim
ℏ→∞

µ∗
ϑℏϑ = 1 and µ(ϑ, ϑ) = 1. (4.5.23)
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Also,

µϑΓ2ϑ = min{µ(ϑ, ϑ), µ(Γ2ϑ,Γ2ϑ)} = 1. (4.5.24)

Using (4.5.17), (4.5.24) and the triangle inequality, we have

1 ≤ µ(ϑ,Γ2ϑ) = µ(ϑ,Γ2ϑ)
µϑΓ2ϑ

≤ µ(ϑ, ϱ3ℏ+1)
µϱ3ℏ+1ϑ

.
µ(ϱ3ℏ+1,Γ2ϑ)
µϱ3ℏ+1Γ2ϑ

≤ µ(ϑ, ϱ3ℏ+1)
µϱ3ℏ+1 ϑ

.
µ(ϱ3ℏ+1,Γ2ϑ)
µϱ3ℏ+1Γ2ϑ

.µ(Γ2ϑ, ϱ3ℏ+3).µ(ϱ3ℏ+3, ϱ3ℏ+1)

≤ µ(ϑ, ϱ3ℏ+1).µ(Γ1ϱ3ℏ,Γ2ϑ).µ(Γ2ϑ,Γ3ϱ3ℏ+2).µ(Γ3ϱ3ℏ+2,Γ1ϱ3ℏ)
≤ µ(ϑ, ϱ3ℏ+1)

(
µ(ϱ3ℏ, ϑ).µ(ϑ, ϱ3ℏ+2).µ(ϱ3ℏ+2, ϱ3ℏ)

)k
= µ(ϑ, ϑℏ+1)

(
µ(ϑℏ, ϑ).µ(ϑ, ϑℏ+2).µ(ϑℏ+2, ϑℏ)

)k . (4.5.25)

Taking limit as ℏ → ∞ in (4.5.25), we have

µ(ϑ,Γ2ϑ) = 1. (4.5.26)

Also, Γ2 is a self distance contraction. Therefore, ∃k0 ∈ [0, 1) s.t.

µ(Γ2ϱ,Γ2ϱ) ≤ (µ(ϱ, ϱ))k0 ,

or

µ(Γ2ϱ,Γ2ϱ) = 1. (4.5.27)

Using (4.5.23), (4.5.26) and (4.5.27), we have

µ(ϑ, ϑ) = µ(ϑ,Γ2ϑ) = µ(Γ2ϑ,Γ2ϑ) = 1,

i.e., ϑ = Γ2ϑ. Thus, ϑ is the fixed point of Γ2.
On the similar lines one can prove that ϑ = Γ1ϑ = Γ2ϑ = Γ3ϑ i.e., ϑ is the
common fixed point of self mappings Γ1,Γ2,Γ3.
The rest part of the theorem is analogues to Theorem 4.5.7.

Example 4.5.11. Consider Ω = {a1, a2, a3} with distance function m defined as
µ(a1, a1) = µ(a2, a2) = 1, µ(a3, a3) = 2 and µ(a1, a2) = µ(a2, a3) = µ(a1, a3) =
µ(a2, a1) = µ(a3, a2) = µ(a3, a1) = 4. Then clearly (Ω, µ) is multiplicative m-MS.
Let Γ be a self mapping defined on Ω as Γ(a1) = a1,Γ(a2) = a2,Γ(a3) = a2. Then,
Γ1 satisfies Theorem 4.5.7 and has two fixed point.
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Example 4.5.12. Consider Ω = {a1, a2, a3} with distance function µ defined as
µ(a1, a1) = µ(a2, a2) = µ(a3, a3) = 2 and µ(a1, a2) = µ(a2, a3) = µ(a1, a3) =
µ(a2, a1) = µ(a3, a2) = µ(a3, a1) = 4. Then clearly (Ω, µ) is multiplicative m-MS.
Let Γ be a self mapping defined on Ω as Γ(a1) = a2,Γ(a2) = a1,Γ(a3) = a1. Then,
Γ satisfies the condition of contracting perimeter and a, b are periodic points of
prime order 2. Also, Γ has no fixed point.

Remark 4.5.13. If under the assumption of Theorem 4.5.7, the mapping Γ has
a fixed point ϱ and it is a limit point of the iterative scheme ϱℏ = Γϱℏ−1.Then, Γ
possesses exactly one fixed point.
Let if possible ϑ ̸= ϱ is another fixed point. Clearly ϱℏ, ϱ, ϑ are pairwise distinct.
Consider

µ(ϱℏ+1, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱℏ+1) = µ(Γϱℏ,Γϱ).µ(Γϱ,Γϑ).µ(Γϑ,Γϱℏ)
≤

(
µ(ϱℏ, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱℏ)

)k
< µ(ϱℏ, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱℏ).

As,
(
limℏ→∞ µ(ϱℏ, ϱ) = limℏ→∞ µ(ϱℏ, ϑ) = 1

)
. Therefore, by taking limit as ℏ →

∞, we have

µ(ϱ, ϑ) < µ(ϱ, ϑ),

a contradiction.

Remark 4.5.14. If under the assumption of Theorem 4.5.10, the triplet of map-
pings Γ1,Γ2,Γ3 has a common fixed point ϱ and it is a limit point of the iterative
scheme

ϱ1 = Γ1ϱ0, ϱ2 = Γ2ϱ1, ϱ3 = Γ3ϱ2, ..., ϱ3ℏ+1 = Γ1ϱ3ℏ, ϱ3ℏ+2 = Γ2ϱ3ℏ+1, ϱ3ℏ+3 = Γ3ϱ3ℏ+2,

∀ℏ ∈ N. Then, (Γ1,Γ2,Γ3) possesses exactly one common fixed point.
Let if possible ϑ ̸= ϱ is another common fixed point. Clearly ϱ3ℏ, ϱ, ϑ are pairwise
distinct. Consider

µ(ϱ3ℏ+1, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱ3ℏ+1) = µ(Γ1ϱ3ℏ,Γ2ϱ).µ(Γ2ϱ,Γ3ϑ).µ(Γ3ϑ,Γ1ϱ3ℏ)
≤

(
µ(ϱ3ℏ, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱ3ℏ)

)k
< µ(ϱ3ℏ, ϱ)µ(ϱ, ϑ)µ(ϑ, ϱ3ℏ).

As (limℏ→∞ µ(ϱ3ℏ, ϱ) = limℏ→∞ µ(ϱ3ℏ, ϑ) = 1). Therefore, by taking limit as ℏ →
∞, we have

µ(ϱ, ϑ) < µ(ϱ, ϑ),
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a contradiction.

Example 4.5.15. Consider Ω = [0,∞) with the multiplicative m-metric µ(ϱ, ϑ) =
e

ϱ+ϑ
2 . Clearly, (Ω, µ) is multiplicative m-complete MS. Consider Γ1,Γ2,Γ3 : Ω → Ω

Γ1ϱ =


ϱ
4 , if ϱ < 1
1
8 , otherwise.

,Γ2ϱ =


ϱ
5 , if ϱ < 1

ϱ
ϱ+9 , otherwise.

,Γ3ϱ =


ϱ
9 , if ϱ < 1

ϱ
8ϱ+10 , otherwise.

,

Then,

(i) Suppose ϱ, ϑ, ξ < 1, then

µ(Γ1ϱ,Γ2ϑ).µ(Γ2ϑ,Γ3ξ).µ(Γ3ξ,Γ1ϱ) = e
1
2 ( ϱ

4 + ϑ
5 ).e

1
2 ( ϑ

5 + ξ
9 ).e

1
2 ( ξ

9 + ϱ
4 )

≤ emax{ 1
4 , 1

5}( ϱ
2 + ϑ

2 ).emax{ 1
5 , 1

9}( ϑ
2 + ξ

2 )

.emax{ 1
9 , 1

4}( ξ
2 + ϱ

2 )

≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k1 ,

where k1 = max{1
4 ,

1
5 ,

1
9} = 1

4 .

(ii) Suppose ξ ≥ 1 and ϱ, ϑ < 1, then

µ(Γ1ϱ,Γ2ϑ).µ(Γ2ϑ,Γ3ξ).µ(Γ3ξ,Γ1ϱ) = e
1
2 ( ϱ

4 + ϑ
5 ).e

1
2 ( ϑ

5 + ξ
8ξ+10 ).e

1
2 ( ξ

8ξ+10 + ϱ
4 )

≤ e
1
2 ( ϱ

4 + ϑ
5 ).e

1
2 ( ϑ

5 + ξ
18 ).e

1
2 ( ξ

18 + ϱ
4 )

≤ emax{ 1
4 , 1

5}( ϱ
2 + ϑ

2 ).emax{ 1
5 , 1

18}( ϑ
2 + ξ

2 )

.emax{ 1
18 , 1

4}( ξ
2 + ϱ

2 )

≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k2 ,

where k2 = max{1
4 ,

1
5 ,

1
18} = 1

4 .

(iii) Suppose ϑ ≥ 1 and ϱ, ξ < 1, then

µ(Γ1ϱ,Γ2ϑ).µ(Γ2ϑ,Γ3ξ).µ(Γ3ξ,Γ1ϱ) = e
1
2 ( ϱ

4 + ϑ
ϑ+9 ).e

1
2 ( ϑ

ϑ+9 + ξ
9 ).e

1
2 ( ξ

9 + ϱ
4 )

≤ e
1
2 ( ϱ

4 + ϑ
10 ).e

1
2 ( ϑ

10 + ξ
9 ).e

1
2 ( ξ

9 + ϱ
4 )

≤ emax{ 1
4 , 1

10}( ϱ
2 + ϑ

2 ).emax{ 1
10 , 1

9}( ϑ
2 + ξ

2 )

.emax{ 1
9 , 1

4}( ξ
2 + ϱ

2 )

≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k3 ,

where k3 = max{1
4 ,

1
9 ,

1
10} = 1

4 .
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(iv) Suppose ϱ ≥ 1 and ξ, ϑ < 1, then

µ(Γ1ϱ,Γ2ϑ).µ(Γ2ϑ,Γ3ξ).µ(Γ3ξ,Γ1ϱ) = e
1
2 ( 1

8 + ϑ
5 ).e

1
2 ( ϑ

5 + ξ
9 ).e

1
2 ( ξ

9 + 1
8 )

≤ emax{ 1
8 , 1

5}( ϱ
2 + ϑ

2 ).emax{ 1
5 , 1

9}( ϑ
2 + ξ

2 )

.emax{ 1
9 , 1

8}( ξ
2 + ϱ

2 )

≤
(
µ(ϱ, ϑ).µ(ϑ, ξ).µ(ξ, ϱ)

)k4 ,

where k4 = max{1
8 ,

1
5 ,

1
9} = 1

5 .

Let k = max{k1, k2, k3, k4} = 1
4 . Then (Γ1,Γ2,Γ3) is a contracting perimeter

of triangle in (Ω, µ) with k = 1
4 and there is no pairwise periodic point of prime

order 2. Also, Γ1,Γ2,Γ3 are self distance contractions. Hence, (Γ1,Γ2,Γ3) satisfies
all the requirement of Theorem 4.5.10. Hence the triplet (Γ1,Γ2,Γ3) possesses a
common fixed point.

4.5.1 Numerical Approximation of Common Fixed Point

In this section, we have introduced several iterations to approximate the com-
mon fixed point of the triplet (Γ1,Γ2,Γ3) as defined in Example 4.5.15. We also
provided a graphical representation to illustrate the convergence behavior of the
iterative sequence, leading to the conclusion that the common fixed point of the
triplet is independent of the initial point chosen for the iterative procedure (see
figure 4.10). The iterative scheme employed for the approximation of the common
fixed point is as follows:
For some x0 ∈ Ω,

x1 = Γ1x0, x2 = Γ2x1, x3 = Γ3x2, ..., x3n+1 = Γ1x3n, x3n+2 = Γ2x3n+1, x3n+3 = Γ3x3n+2,

∀ℏ ∈ N.

4.6 Existence of Solution to First-Order Multi-
plicative Initial Value Problem

In this section, we have discussed the applicability of the proved results by es-
tablishing the existence of solution to a first order multiplicative initial value
problem.
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Figure 4.9: Numerical iteration for Example 4.5.15.

Figure 4.10: Convergence behaviour of iteration scheme at different initial points
for Example 4.5.15.

Let C∗[a, b] be the set of all real-valued multiplicative continuous function on
[a, b] ⊂ R+ with multiplicative m-metric defined as

µ(f, g) = sup
ϱ∈[a,b]

∣∣∣∣∣f(ϱ)
g(ϱ)

∣∣∣∣∣
∗
,

where |a|∗ =
a, a ≥ 1;

1
a
, a < 1.

for a ∈ R+. Then, (C∗[a, b], µ) is a multiplicative m-

complete MS.
Consider the first order multiplicative initial value problem defined as

d∗ϑ
dϱ

= f
(
ϱ, ϑ(ϱ)

)
ϑ(ϱ0) = ϑ0

, (4.6.1)

where ϱ ∈ [1, τ ] for a sufficiently small τ > 1. f is a multiplicative continuous
function on [1, τ ]×C∗[1, τ ] → R+. Suppose f satisfies the multiplicative Lipschitz

107



conditions with α ≥ 1 i.e.,∣∣∣∣∣f(s, ϑ1(s))
f(s, ϑ2(s))

∣∣∣∣∣
∗

≤ α|ϑ1(s)/ϑ2(s)|∗ ,

∀ϑ1, ϑ2 ∈ C∗[1, τ ] and s ∈ [1, τ ]. Suppose ϱ0 ∈ [1, τ ], then multiplicative initial
value problem given by equation (4.6.1) has a feasible solution on closed interval
[ϱ0 − κ, ϱ0 + κ], for a sufficiently small κ > 0 with κα < 1.

Proof. Define a self mapping Γ1 on C∗[1, τ ] as below

Γϑ(ϱ) = ϑ0

∫ ϱ

ϱ0
f(s, ϑ)ds.

Then, for distinct ϑ1, ϑ2, ϑ3, we have

µ(Γϑ1,Γϑ2).µ(Γϑ2,Γϑ3).µ(Γϑ3,Γϑ1)

= sup
ϱ∈[1,τ ]

∣∣∣∣∣Γ(ϑ1(ϱ))
Γ(ϑ2(ϱ))

∣∣∣∣∣
∗
. sup

ϱ∈[1,τ ]

∣∣∣∣∣Γ(ϑ2(ϱ))
Γ(ϑ3(ϱ))

∣∣∣∣∣
∗
. sup

ϱ∈[1,τ ]

∣∣∣∣∣Γ(ϑ3(ϱ))
Γ(ϑ1(ϱ))

∣∣∣∣∣
∗

= sup
ϱ∈[1,τ ]

∣∣∣∣∣∣
∫ ϱ

ϱ0

(
f(s, ϑ1(s))

)ds∫ ϱ
ϱ0

(
f(s, ϑ1(s))

)ds

∣∣∣∣∣∣
∗

. sup
ϱ∈[1,τ ]

∣∣∣∣∣∣
∫ ϱ

ϱ0

(
f(s, ϑ2(s))

)ds∫ ϱ
ϱ0

(
f(s, ϑ3(s))

)ds

∣∣∣∣∣∣
∗

. sup
ϱ∈[1,τ ]

∣∣∣∣∣∣
∫ ϱ

ϱ0

(
f(s, ϑ3(s))

)ds∫ ϱ
ϱ0

(
f(s, ϑ1(s))

)ds

∣∣∣∣∣∣
∗

≤ sup
ϱ∈[1,τ ]

∫ ϱ

ϱ0

∣∣∣∣∣f(s, ϑ1)
f(s, ϑ2)

∣∣∣∣∣
ds

∗
. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0

∣∣∣∣∣f(s, ϑ1)
f(s, ϑ2)

∣∣∣∣∣
ds

∗
. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0

∣∣∣∣∣f(s, ϑ1)
f(s, ϑ2)

∣∣∣∣∣
ds

∗

≤ sup
ϱ∈[1,τ ]

∫ ϱ

ϱ0
(α|ϑ1(s)/ϑ2(s)|∗)ds. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0
(α|ϑ2(s)/ϑ3(s)|∗)ds. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0
(α|ϑ2(s)/ϑ1(s)|∗)ds

≤ sup
ϱ∈[1,τ ]

∫ ϱ

ϱ0
(αµ(ϑ1,ϑ2))ds. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0
(αµ(ϑ2,ϑ3))ds. sup

ϱ∈[1,τ ]

∫ ϱ

ϱ0
(αµ(ϑ3,ϑ1))ds

≤ sup
ϱ∈[1,τ ]

(|ϱ− ϱ0|α)µ(ϑ1,ϑ2).(|ϱ− ϱ0|α)µ(ϑ2,ϑ3).(|ϱ− ϱ0|α)µ(ϑ3,ϑ1)

≤ (κα)µ(ϑ1,ϑ2).(κα)µ(ϑ2,ϑ3).(κα)µ(ϑ3,ϑ1) ≤
(
µ(ϑ1, ϑ2).µ(ϑ1, ϑ2).µ(ϑ1, ϑ2)

)κα

.

Here, κα < 1. Therefore, Γ satisfies the conditions of Theorem 4.5.7 and has
a fixed point i.e., initial value problem given by equation (4.6.1) has a feasible
solution.

4.7 Existence of Solution to System of Multi-
plicative Fredholm Integral Equation

In this section, we have discussed the applicability of the proved results by estab-
lishing the existence of solution to a multiplicative Fredholm integral equations.

108



Theorem 4.7.1. Consider the following system of multiplicative integral equation
of Fredholm type

ϑ(z) =
[∫ 2

1

(
ϑ(s)K1(s,z)

)ds
]α

, where s, z ∈ I = [1, 2]

ϑ(z) =
[∫ 2

1

(
ϑ(s)K2(s,z)

)ds
]α

, where s, z ∈ I = [1, 2],
(4.7.1)

where K1(s, z), K2(s, z) are continuous function defined on I×I s.t.
∣∣Ki(s, z)

∣∣ ≤ βi

for 1 ≤ i ≤ 2. If βα < 1, where β = max{β1, β2}, then we have exactly one
solution to (4.7.1).

Proof. Consider the set of all multiplicative continuous positive function on [1,2]
denoted as C∗[1, 2]. Then the mapping µ : C∗[1, 2] × C∗[1, 2] → [1,∞) defined as

µ(ϱ, ϑ) = sup
z∈[1,2]

∣∣∣∣∣ϱ(z)ϑ(z)

∣∣∣∣∣
∗
.min

 sup
z∈[1,2]

∣∣ϱ(z)∣∣∗ , sup
z∈[1,2]

∣∣ϑ(z)
∣∣
∗

 ,

where |a|∗ =
a, a ≥ 1;

1
a
, a < 1.

is a multiplicative m-metric. Moreover, C∗[1, 2] is a

complete multiplicative m-MS.
Define the self mappings Γ1 and Γ2 on C∗[1, 2] as

Γ1(ϑ(z)) =
[∫ 2

1

(
ϑ(s)K1(s,z)

)ds
]α

,

Γ2(ϑ(z)) =
[∫ 2

1

(
ϑ(s)K2(s,z)

)ds
]α

.

Consider,

µ(Γ1(ϑ1),Γ2(ϑ2)) = sup
z∈[1,2]

∣∣∣∣∣Γ1(ϑ1(z))
Γ2(ϑ2(z))

∣∣∣∣∣
∗
.min

 sup
z∈[1,2]

∣∣Γ1(ϑ1(z))
∣∣
∗ , sup

z∈[1,2]

∣∣Γ2(ϑ2(z))
∣∣
∗



= sup
z∈[1,2]

∣∣∣∣∣∣∣∣∣

∫ 2

1

(
ϑ1(s)K1(s,z)

)ds

∫ 2
1

(
ϑ2(s)K2(s,z)

)ds


α
∣∣∣∣∣∣∣∣∣
∗

.min

 sup
z∈[1,2]

∣∣∣∣∣∣
(∫ 2

1

(
ϑ1(s)K1(s,z)

)ds
)α
∣∣∣∣∣∣
∗

, sup
z∈[1,2]

∣∣∣∣∣∣
(∫ 2

1

(
ϑ2(s)K2(s,z)

)ds
)α
∣∣∣∣∣∣
∗


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≤ sup
z∈[1,2]

∫ 2

1

∣∣∣∣∣ϑ1(s)
ϑ2(s)

∣∣∣∣∣
ds

∗

βα

.min
 sup

z∈[1,2]

(∫ 2

1

∣∣ϑ1(s)
∣∣ds
∗

)βα

, sup
z∈[1,2]

(∫ 2

1

∣∣ϑ2(s)
∣∣ds
∗

)βα


≤

 sup
z∈[1,2]

∣∣∣∣∣ϑ1(s)
ϑ2(s)

∣∣∣∣∣
∗
.min

 sup
z∈[1,2]

∣∣ϑ1(z)
∣∣
∗ , sup

z∈[1,2]

∣∣ϑ2(z)
∣∣
∗




βα

=
(
µ (ϑ1, ϑ2)

)βα .

Also, µΓ1(ϑ),Γ2(ϑ) ≤ µ(Γ1(ϑ),Γ2(ϑ)) . Therefore, Γ1,Γ2 satisfies Theorem 4.4.1 with
a1 = βα < 1, a2 = a3 = 0. Hence, Γ1,Γ2 have exactly one common fixed point
i.e., system of equations (4.7.1) has exactly one solution.

Theorem 4.7.2. Consider the following multiplicative Fredholm integral equation

ϑ(t) =
[∫ 2

1

(
ϑ(s)K(s,t)

)ds
]α

, where s, t ∈ I = [1, 2] (4.7.2)

and K(s, t) is real valued continuous function on I × I s.t.
∣∣K(s, t)

∣∣ ≤ β. If
βα < 1, then we have exactly one solution to the equation (4.7.2).

Proof. The result follows as an direct consequence of Theorem 4.7.1.

4.8 Conclusion

In this chapter, we established a generalized distance functions called multiplica-
tive m-metric and proved some fixed point results. We provided various illus-
trations to support our results. Moreover, we present some common fixed point
results of a pair of self mappings using a generalized contraction and common
fixed point for a triplet of self mapping using three point analogue of contraction
mapping in the context of multiplicative m-MS. We complemented our findings
with numerical results and graphs to provide visual support for our conclusions.
Furthermore, we explored the potential of utilizing the multiplicative m-metric to
demonstrate the existence of a solution to a initial value problem and a system of
multiplicative integral equation.

*******
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Chapter 5

Some Common Fixed Point
Results in Partial Metric Space

5.1 Introduction

Fractals, with their intricate and self-similar structures, have captivated researchers
across various fields, including mathematics, physics, computer science, and art.
Fixed point theory plays a crucial role in both the creation and characterization
of fractals. In this chapter, we present several common fixed point results for self
mappings in PMS using the (ϕ − ψ) Wardowski type contraction. Furthermore,
some fixed point results are proven using generalized cyclic contractions, followed
by illustrative examples. As an application, the existence of a fractal set for the
Hutchinson-Barnsley operator is established using the established fixed point re-
sults. Finally, some iterations for generating fractal sets are presented, along with
the resulting fractals.
The results of this chapter are presented in 1.

5.2 Some Common Fixed Point Results in Par-
tial Metric Space

In this section, we present the coincidence point and common fixed point theorems
for a pair of self mappings using a (ϕ−ψ) Wardowski contraction in partial metric
space (PMS).

1Yadav, K., & Kumar, D. Fixed points of a generalized contraction in partial metric structure
and application to fractal generation (Communicated)
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Definition 5.2.1. Consider a PMS (Ω, ℘). A pair (Γ1,Γ2) of self mappings on
Ω is referred to as a (ϕ− ψ)(ϕ− ψ)(ϕ− ψ)-Wardowski type contraction pair if, for some
ϕ ∈ Φ and ψ ∈ Ψ, we have

℘(Γ1ϱ,Γ1ϑ) > 0 ⇒ ϕ
(
℘(Γ1ϱ,Γ1ϑ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
, (5.2.1)

where

MΓ1,Γ2(ϱ, ϑ) = max
{
℘(Γ2ϱ,Γ2ϑ), ℘(Γ2ϱ,Γ1ϱ), ℘(Γ2ϑ,Γ1ϑ), ℘(Γ2ϱ,Γ1ϑ) + ℘(Γ2ϑ,Γ1ϱ)

2

}
,

∀ϱ, ϑ ∈ Ω.

Theorem 5.2.2. Let Γ1,Γ2 : Ω → Ω be mappings defined on a complete PMS
(Ω, ℘). Suppose the pair (Γ1,Γ2) is a (ϕ − ψ)-Wadowski type contraction pair,
where ϕ and ψ are continuous functions. If Γ1(Ω) ⊆ Γ2(Ω) and Γ2(Ω) is complete,
then Γ1 possesses a coincidence point. Furthermore, if the pair (Γ1,Γ2) is weakly
compatible, then it possesses exactly one common fixed point.

Proof. Since Γ1(Ω) be a subset of Γ2(Ω), consequently for some ϱ0 ∈ Ω ∃ an
element ϱ1 in Ω s.t. Γ1ϱ0 = Γ2ϱ1. Following the similar procedure, we can
generate the sequence ϑℏ ∈ Ω s.t. ϑℏ = Γ1ϱℏ = Γ2ϱℏ+1 ∀ℏ ∈ N.
We assume that ϑℏ+1 ̸= ϑℏ, ∀ℏ ∈ N. Otherwise, suppose ∃ ℏ0 ∈ N s.t. ϑℏ0+1 = ϑℏ0

that suggests Γ1ϱℏ0+1 = Γ2ϱℏ0+1, i.e., ϱℏ0+1 is a coincidence point of the mappings
(Γ1,Γ2).
Next, we claim that ℘(ϑℏ, ϑℏ + 1) > 0. If possible, ℘(ϑℏ+1, ϑℏ) = 0, then ℘(ϑℏ, ϑℏ)
= ℘(ϑℏ+1, ϑℏ+1) = 0, i.e., ϑℏ+1 = ϑℏ.
Therefore, ℘(ϑℏ+1, ϑℏ) > 0. Also, (Γ1,Γ2) be a (ϕ−ψ)-Wadowski type contraction
pair. Then, we have

ϕ
(
℘(ϑℏ+1, ϑℏ)

)
= ϕ

(
℘(Γ1ϱℏ+1,Γ1ϱℏ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱℏ+1, ϱℏ)

))
,

where

MΓ1,Γ2(ϱℏ+1, ϱℏ) = max
{
℘(Γ2ϱℏ+1,Γ2ϱℏ), ℘(Γ2ϱℏ+1,Γ1ϱℏ+1), ℘(Γ2ϱℏ,Γ1ϱℏ),

℘(Γ2ϱℏ+1,Γ1ϱℏ) + ℘(Γ1ϱℏ+1,Γ2ϱℏ)
2

}

= max
{
℘(ϑℏ, ϑℏ−1), ℘(ϑℏ, ϑℏ+1), ℘(ϑℏ−1, ϑℏ)

℘(ϑℏ, ϑℏ) + ℘(ϑℏ+1, ϑℏ−1)
2

}
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≤ max
{
℘(ϑℏ, ϑℏ−1), ℘(ϑℏ, ϑℏ+1),

℘(ϑℏ, ϑℏ−1) + ℘(ϑℏ, ϑℏ+1)
2

}
≤ max

{
℘(ϑℏ, ϑℏ−1), ℘(ϑℏ, ϑℏ+1)

}
.

If MΓ1,Γ2(ϱℏ+1, ϱℏ) ≤ ℘(ϑℏ, ϑℏ+1). Then,

ϕ
(
℘(ϑℏ+1, ϑℏ)

)
≤ ψ

(
ϕ
(
℘(ϑℏ, ϑℏ+1)

))
< ϕ

(
℘(ϑℏ, ϑℏ+1)

)
,

a contradiction. Hence, MΓ1,Γ2(ϱℏ, ϱℏ−1) ≤ ℘(ϑℏ, ϑℏ−1).
Consider

ϕ
(
℘(ϑℏ+1, ϑℏ)

)
≤ ψ

(
ϕ
(
℘(ϑℏ, ϑℏ−1)

))
< ϕ

(
℘(ϑℏ, ϑℏ−1)

)
,

implies ℘(ϑℏ+1, ϑℏ) is a decreasing sequence. Also,

ϕ
(
℘(ϑℏ+1, ϑℏ)

)
≤ ψ

(
ϕ
(
℘(ϑℏ, ϑℏ−1)

))
≤ ψ2

(
ϕ
(
℘(ϑℏ−1, ϑℏ−2)

))
...

≤ ψℏ
(
ϕ
(
℘(ϑ1, ϑ0)

))
.

Taking the limit as ℏ tends to ∞, we have

lim
ℏ→∞

℘(ϑℏ+1, ϑℏ) = 0. (5.2.2)

Also,

lim
ℏ→∞

℘(ϑℏ, ϑℏ) ≤ lim
ℏ→∞

℘(ϑℏ+1, ϑℏ) = 0. (5.2.3)

If possible, {ϑℏ} is not a Cseq. Then, for ϵ > 0, ∃ two subsequences ϑℏℓ
̸= ϑmℓ

s.t.

d℘(ϑℏℓ
, ϑmℓ

) > ϵ, (5.2.4)

and

d℘(ϑℏℓ−1, ϑmℓ
) ≤ ϵ, (5.2.5)

where d℘(ϱ, ϑ) = 2℘(ϱ, ϑ) − ℘(ϱ, ϱ) − ℘(ϑ, ϑ) ∀ϱ, ϑ ∈ Ω is a metric.
Using (5.2.4) and triangle inequality, we have

ϵ < d℘(ϑℏℓ
, ϑmℓ

)
≤ d℘(ϑℏℓ

, ϑℏℓ−1) + d℘(ϑℏℓ−1, ϑmℓ
).
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Taking the limit as ℓ tends to ∞ and using (5.2.2) and (5.2.3), we have

lim
ℓ→∞

d℘(ϑℏℓ
, ϑmℓ

) = ϵ. (5.2.6)

Also, using triangle inequality, we have

d℘(ϑℏℓ
, ϑmℓ

) ≤ d℘(ϑℏℓ
, ϑℏℓ−1) + d℘(ϑℏℓ−1, ϑmℓ−1) + d℘(ϑmℓ−1, ϑmℓ

),

and

d℘(ϑℏℓ−1, ϑmℓ−1) ≤ d℘(ϑℏℓ−1, ϑℏℓ
) + d℘(ϑℏℓ

, ϑmℓ
) + d℘(ϑmℓ

, ϑmℓ−1).

Taking the limit as ℓ tends to ∞ and using (5.2.6), we have

lim
ℓ→∞

d℘(ϑℏℓ−1, ϑmℓ−1) = ϵ.

lim
ℓ→∞

2℘(ϑℏℓ−1, ϑmℓ−1) − ℘(ϑℏℓ−1, ϑℏℓ−1) − ℘(ϑmℓ−1, ϑmℓ−1) = ϵ. (5.2.7)

Using (5.2.2), (5.2.3) and (5.2.7), we have

lim
ℓ→∞

℘(ϑℏℓ
, ϑmℓ

) = ϵ

2 and lim
ℓ→∞

℘(ϑℏℓ−1, ϑmℓ−1) = ϵ

2 . (5.2.8)

Also, by (5.2.8), (5.3.2) and continuity of ϕ, we have

ϕ
(
ϵ

2

)
= lim

ℓ→∞
ϕ
(
℘(ϑℏℓ

, ϑmℓ
)
)

= lim
ℓ→∞

ϕ
(
℘(Γ1ϱℏℓ

,Γ1ϱmℓ
)
)

≤ lim
ℓ→∞

ψ
(
ϕ
(
MΓ1,Γ2(ϱℏℓ

, ϱmℓ
)
))

≤ lim
ℓ→∞

ψ

(
ϕ

(
max

{
℘(Γ2ϱℏℓ

,Γ2ϱmℓ
), ℘(Γ2ϱℏℓ

,Γ1ϱℏℓ
), ℘(Γ2ϱmℓ

,Γ1ϱmℓ
),

℘(Γ2ϱℏℓ
,Γ1ϱmℓ

) + ℘(Γ2ϱmℓ
,Γ1ϱℏℓ

)
2

}))

= lim
ℓ→∞

ψ

(
ϕ

(
max

{
℘(ϑℏℓ−1, ϑmℓ−1), ℘(ϑℏℓ−1, ϑℏℓ

), ℘(ϑmℓ−1, ϑmℓ
),

℘(ϑℏℓ−1, ϑmℓ
) + ℘(ϑmℓ−1, ϑℏℓ

)
2

}))

≤ lim
ℓ→∞

ψ

(
ϕ

(
max

{
℘(ϑℏℓ−1, ϑmℓ−1), ℘(ϑℏℓ−1, ϑℏℓ

), ℘(ϑmℓ−1, ϑmℓ
), ℘(ϑℏℓ−1, ϑmℓ

)
2 +

℘(ϑℏℓ
, ϑℏℓ−1) + ℘(ϑℏℓ−1, ϑmℓ−1) − ℘(ϑℏℓ−1, ϑℏℓ−1)

2

}))

< ϕ
(
ϵ

2

)
,

a contradiction. Therefore, {ϑℏ} is a Cseq i.e.,

lim
ℏ,m→∞

d℘(ϑℏ, ϑm) = 0,
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or

lim
ℏ,m→∞

2℘(ϑℏ, ϑm) − ℘(ϑℏ, ϑℏ) − ℘(ϑm, ϑm) = 0.

Using (5.2.3), we have

lim
ℏ,m→∞

℘(ϑℏ, ϑm) = 0,

i.e., {ϑℏ} is 0-Cseq As, Ω is an 0-complete PMS, therefore for some ϑ ∈ Ω, we have

lim
ℏ→∞

℘(ϑℏ, ϑ) = ℘(ϑ, ϑ) = 0. (5.2.9)

As, Γ1(Ω) ⊆ Γ2(Ω) and Γ2(Ω) is complete, therefore ∃ some ϱ ∈ Ω s.t. Γ2ϱ = ϑ.
Also, ϑℏ → ϑ implies Γ1ϱℏ → ϑ and Γ2ϱℏ+1 → ϑ, i.e., ℘(Γ1ϱℏ, ϑ) → ℘(ϑ, ϑ) = 0.
Consider the following

℘(ϑ,Γ1ϑ) ≤ ℘(ϑ,Γ1ϱℏ)+℘(Γ1ϱℏ,Γ1ϑ)−℘(Γ1ϱℏ,Γ1ϱℏ) ≤ ℘(ϑ,Γ1ϱℏ)+℘(Γ1ϱℏ,Γ1ϑ).

We claim that ℘(Γ1ϱℏ,Γ1ϑ) > 0 or ℘(Γ1ϱℏ+1,Γ1ϑ) > 0. If not then, suppose
℘(Γ1ϱℏ0 ,Γ1ϑ) = 0 and ℘(Γ1ϱℏ0+1,Γ1ϑ) = 0, for some ℏ0 ∈ N.
Now,

℘(ϑℏo+1, ϑℏo) = ℘(Γ1ϱℏo+1,Γ1ϱℏo)
≤ ℘(Γ1ϱℏo+1,Γ1ϱ) + ℘(Γ1ϱℏo ,Γ1ϱ) − ℘(Γ1ϱ,Γ1ϱ)
≤ ℘(Γ1ϱℏo+1,Γ1ϱ) + ℘(Γ1ϱℏo ,Γ1ϱ) = 0,

a contradiction. Therefore, ℘(Γ1ϱℏ,Γ1ϑ) > 0 or ℘(Γ1ϱℏ+1,Γ1ϑ) > 0. Without loss
of generality suppose ℘(Γ1ϱℏ,Γ1ϑ) > 0, then

ϕ
(
℘(Γ1ϱ, ϑ)

)
≤ ϕ

(
℘(Γ1ϱ,Γ1ϱℏ) + ℘(Γ1ϱℏ, ϑ) − ℘(Γ1ϱℏ,Γ1ϱℏ)

)
≤ lim sup

ℏ→∞
ϕ
(
℘(Γ1ϱ,Γ1ϱℏ) + ℘(Γ1ϱℏ, ϑ)

)
≤ lim sup

ℏ→∞
ϕ
(
℘(Γ1ϱℏ,Γ1ϱ)

)
≤ lim sup

ℏ→∞
ψ
(
ϕ
(
MΓ1,Γ2(ϱℏ, ϱ)

))
,

115



where

MΓ1,Γ2(ϱℏ, ϱ) = max
{
℘(Γ2ϱℏ,Γ2ϱ), ℘(Γ2ϱ,Γ1ϱ), ℘(Γ2ϱℏ,Γ1ϱℏ),

℘(Γ2ϱ,Γ1ϱℏ) + ℘(Γ2ϱℏ,Γ1ϱ)
2

}

= max
{
℘(ϑℏ−1,Γ2ϱ), ℘(Γ2ϱ,Γ1ϱ), ℘(ϑℏ−1, ϑℏ),

℘(Γ2ϱ, ϑℏ) + ℘(ϑℏ−1,Γ1ϱ)
2

}

= max
{
℘(ϑℏ−1, ϑ), ℘(ϑ,Γ1ϱ), ℘(ϑℏ−1, ϑℏ),

℘(ϑ, ϑℏ) + ℘(ϑℏ−1,Γ1ϱ)
2

}

≤ max
{
℘(ϑℏ−1, ϑ), ℘(ϑ,Γ1ϱ), ℘(ϑℏ−1, ϑℏ),

℘(ϑ, ϑℏ)
2 + ℘(ϑℏ−1, ϑ) + ℘(ϑ,Γ1ϱ) − ℘(ϑ, ϑ)

2

}
.

Here, ℘(ϑℏ−1, ϑ), ℘(ϑℏ−1, ϑℏ) and ℘(ϑ, ϑℏ) → 0, as ℏ → ∞. Let if possible
℘(ϑ,Γ1ϱ) > 0, then MΓ1,Γ2(ϱℏ, ϱ) ≤ ℘(ϑ,Γ1ϱ).

ϕ
(
℘(ϑ,Γ1ϱ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱℏ, ϱ)

))
= ψ

(
ϕ
(
℘(ϑ,Γ1ϱ)

))
< ϕ

(
℘(ϑ,Γ1ϱ)

)
,

a contradiction. Therefore, ℘(ϑ,Γ1ϱ) = 0 gives, ℘(ϑ, ϑ) = ℘(Γ1ϱ,Γ1ϱ) = 0 =
℘(ϱ,Γ1ϱ) i.e., Γ1ϱ = ϑ. Thus Γ1ϱ = ϑ = Γ2ϱ i.e., (Γ1,Γ2) has a coincidence point.
Uniqueness: let, ϑ1 be another coincidence point of Γ1&Γ2, then we have ϱ1 s.t.
Γ1ϱ1 = Γ2ϱ1 = ϑ1. If ℘(ϑ, ϑ1) > 0, then

ϕ
(
℘(ϑ, ϑ1)

)
= ϕ

(
℘(Γ1ϱ,Γ1ϱ1)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϱ1)

))
,

where

MΓ1,Γ2(ϱ, ϱ1) = max
{
℘(Γ2ϱ,Γ2ϱ1), ℘(Γ2ϱ,Γ1ϱ), ℘(Γ2ϱ1,Γ1ϱ1),

℘(Γ2ϱ,Γ1ϱ1) + ℘(Γ1ϱ,Γ2ϱ1)
2

}

= max
{
℘(ϑ, ϑ1), ℘(ϑ, ϑ), ℘(ϑ1, ϑ1),

℘(ϑ, ϑ1) + ℘(ϑ, ϑ1)
2

}
= ℘(ϑ, ϑ1).
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Therefore,

ϕ
(
℘(ϑ, ϑ1)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϱ1)

))
< ϕ

(
℘(ϑ, ϑ1)

)
,

a contradiction. Therefore, ϑ = ϑ1.
Also, the pair (Γ1,Γ2) is weakly compatible and Γ2ϱ = Γ1ϱ. Therefore, Γ1Γ2ϱ =
Γ2Γ1ϱ. Then, Γ2ϑ = Γ2Γ1ϱ = Γ1Γ2ϱ = Γ1ϑ implies ϑ is the point of coincidence
for (Γ1,Γ2). By uniqueness, we have ϑ = ϱ i.e., Γ1ϑ = Γ2ϑ = ϑ. Hence, the result
holds.

Definition 5.2.3. Consider a PMS (Ω, ℘). A self mapping Γ : Ω → Ω is con-
sidered a (ϕ− ψ)(ϕ− ψ)(ϕ− ψ)-Wardowski contraction, if for some ϕ ∈ Φ and ψ ∈ Ψ, we
have

℘(Γϱ,Γϑ) > 0 ⇒ ϕ(℘(Γϱ,Γϑ)) ≤ ψ(ϕ(MΓ(ϱ, ϑ))), (5.2.10)

where

MΓ(ϱ, ϑ) = max
{
℘(ϱ, ϑ), ℘(ϱ,Γϱ), ℘(ϑ,Γϑ), ℘(ϱ,Γϑ) + ℘(ϑ,Γϱ)

2

}
∀ϱ, ϑ ∈ Ω.

Theorem 5.2.4. Let Γ : Ω → Ω be a mapping defined on a complete PMS (Ω, ℘).
Suppose Γ is a (ϕ − ψ)-Wadowski contraction, then Γ possesses exactly one fixed
point.

Proof. substituting Γ1 = Γ and Γ2 = I, where I represents the identity map in
Theorem 5.2.2, we obtain the required result.

Corollary 5.2.5. Let Γ : Ω → Ω be a mapping defined on a complete PMS (Ω, ℘).
Suppose Γ satisfies:

(i) ∃λ ∈ (0, 1) s.t. ℘(Γϱ,Γϑ) ≤ λ℘(ϱ, ϑ);

(ii) ∃λ ∈ (0, 1
2) s.t. ℘(Γϱ,Γϑ) ≤ λ

(
℘(ϱ,Γϱ) + ℘(ϑ,Γϑ)

)
;

(iii) ∃a0, a1, a2 with a0 +a1 +a2 ∈ (0, 1) s.t. ℘(Γϱ,Γϑ) ≤ ao℘(ϱ, ϑ)+a1℘(ϱ,Γϱ)+
a2℘(ϑ,Γϑ);

(iv) ∃𭟋 ∈ F∗ and τ ′ > 0 s.t. τ ′ + 𭟋(℘(Γϱ,Γϑ)) ≤ 𭟋(℘(ϱ, ϑ));
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(v) ∃𭟋 ∈ F∗ and τ ′ > 0 s.t. τ ′ + 𭟋(℘(Γϱ,Γϑ)) ≤ 𭟋(M(ϱ, ϑ)),
where M(ϱ, ϑ) = max

{
℘(ϱ, ϑ), ℘(ϱ,Γϱ), ℘(ϑ,Γϑ), ℘(ϱ,Γϑ)+℘(ϑ,Γϱ)

2

}
,

∀ϱ, ϑ ∈ Ω. Then, Γ possesses exactly one fixed point.

Example 5.2.6. Consider Ω = [0,∞] along with ℘(ϱ, ϑ) = max{ϱ, ϑ}, for every
ϱ, ϑ ∈ Ω. Here, (Ω, ℘) is a complete PMS. Let Γ1,Γ2 be self mappings defined on
Ω as

Γ1ϱ =


ϱ
4 , if ϱ ≤ 1
1
8 , otherwise.

, Γ2ϱ =


ϱ
3 , if ϱ ≤ 1
1
7 , otherwise.

Observe that Γ1(Ω) = [0, 1/4] ⊆ [0, 1
3 ] = Γ2(Ω) and Γ2(Ω) is complete.

Also, consider

(i) for ϱ, ϑ ∈ [0, 1], we have

p(Γ1ϱ,Γ1ϑ) = max
{
ϱ

4 ,
ϑ

4

}

≤ 1
4 max {ϱ, ϑ}

≤ 1
4MΓ1,Γ2(ϱ, ϑ).

(ii) for ϱ, ϑ > 1, we have

p(Γ1ϱ,Γ1ϑ) = max{Γϱ,Γϑ}

= 1
8 ≤ 1

4 max{ϱ, ϑ}

≤ 1
4MΓ1,Γ2(ϱ, ϑ).

(iii) for ϱ ∈ [0, 1] and ϑ > 1, suppose ϱ ≤ 1
2

p(Γ1ϱ,Γ1ϑ) = max
{
ϱ

4 ,
1
8

}

= 1
8 ≤ 1

4 max{ϱ, ϑ}

≤ 1
4MΓ1,Γ2(ϱ, ϑ),

and if ϱ > 1
2 , then

p(Γ1ϱ,Γ1ϑ) = max
{
ϱ

4 ,
1
8

}

= ϱ

4 ≤ 1
4 max{ϱ, ϑ}

≤ 1
4MΓ1,Γ2(ϱ, ϑ).
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Moreover, Γ1,Γ2 are weakly compatible. Therefore, Γ1,Γ2 satisfy all the hypothesis
of Theorem 5.2.2. Hence, Γ1 and Γ2 have exactly one common fixed point.

For Example 5.2.6, we provided several iterations to approximate the com-
mon fixed point of S,Γ. The iterative scheme used is

For initial point x0 : x1 = Γ2x0, x2 = Γ1x1, ......, x2n+1 = Γ2x2n, x2n+2 = Γ1x2n+1.

Further graphically, we demonstrated the convergence of the iterative sequence
and determined that the common fixed point of the mappings is independent of
the initial point of the iterative process.

Figure 5.1: Convergence behaviour of iteration scheme at different initial points
for Example 5.2.6

5.3 Fractal Generation via Fixed Point Approach
using Generalized Cyclic Contraction

In this section, we present some fixed point results using generalized cyclic con-
traction. Later, the results are implemented to establish the existence of a fractal
set for the Hutchinson-Barnsley operator of IFS.

Definition 5.3.1. Consider a PMS (Ω, ℘), a positive integer m and non-empty

subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. A self mapping Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai is considered

as cyclic (ϕ− ψ)(ϕ− ψ)(ϕ− ψ)-Wardowski contraction, if for some ϕ ∈ Φ and ψ ∈ Ψ, we
have
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Figure 5.2: Numerical iteration for Example 5.2.6

(i) Γ(Ai) ⊆ Ai+1 ∀1 ≤ i ≤ m;

(ii) ℘(Γϱ,Γϑ) > 0 ⇒ ϕ
(
℘(Γϱ,Γϑ)

)
≤ ψ

(
ϕ
(
MΓ(ϱ, ϑ)

))
,

where

MΓ(ϱ, ϑ) = max
{
℘(ϱ, ϑ), ℘(ϱ,Γϱ), ℘(ϑ,Γϑ), ℘(ϱ,Γϑ) + ℘(ϑ,Γϱ)

2

}
,

and Am+1 = A1, ∀ϱ ∈ Ai, ϑ ∈ Ai+1.

Theorem 5.3.2. Consider a complete PMS (Ω, ℘), a positive integer m and non-

empty closed subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. Suppose Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai be a

cyclic (ϕ − ψ)-Wardowski contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ. Then
m⋂

i=1
Ai

is non-empty and Γ has exactly one fixed point. Moreover, the Picard sequence

converges to ϱ ∈
m⋂

i=1
Ai, for any initial point ϱ0 ∈

m⋃
i=1

Ai.

Proof. For any ϱ0 ∈
m⋃

i=1
Ai, consider the sequence ϱn+1 = Γϱn, for n ≥ 0. Observe

that ϱ0 ∈ Ak for some k and Γ(Ak) ⊆ Ak+1 implies ϱ1 = Γ(ϱ0) ∈ Ak+1. On
generalizing, for n ≥ 0, we have some i(l) s.t. ϱn ∈ Ai(l) and ϱn+1 ∈ Ai(l)+1.
In case, ϱn = ϱn+1, for some n ∈ N. Then, ϱn is a fixed point of Γ.
Suppose p(ϱn+1, ϱn) > 0 and Γ is a cyclic (ϕ − ψ)-Wardowski contraction. Then,
on the outline of Theorem 6.2.3, we can verify that ϱn is a Cseq. Therefore, {ϱn}
is convergent to ϱ ∈ (Ω, ℘).
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In addition, using the cyclic representation (Ai : 1 ≤ i ≤ m), it is feasible to de-
termine subsequences {ϱni

} ∈ Ai that converge to ϱ. Also, Ai is closed for every

1 ≤ i ≤ m, which implies ϱ ∈
m⋂

i=1
Ai.

Let M =
m⋂

i=1
Ai and Γ′ : M → M be the restriction of Γ on Ω. Clearly, M is a

complete subspace of Ω. Then, Γ′ satisfies all the assumptions of Theorem 5.2.3.
Therefore, Γ′ has exactly one fixed point, i.e., Γ|Ω has a fixed point, ϑ (say).

At last, suppose ∃ ϱ ∈
m⋃

i=1
Ai s.t. Γ(ϱ) = ϱ and ϱ ̸= ϑ. Then,

ϕ(ϱ, ϑ) = ϕ
(
℘(Γϱ,Γϑ)

)
≤ ψ

(
ϕ
(
MΓ(ϱ, ϑ)

))
≤ ψ

ϕ
max

{
℘(ϱ, ϑ), ℘(ϱ,Γϱ), ℘(ϑ,Γϑ), ℘(ϱ,Γϑ) + ℘(ϑ,Γϱ)

2

}


≤ ψ
(
ϕ
(
℘(ϱ, ϑ)

))
< ϕ

(
℘(ϱ, ϑ)

)
,

a contradiction. Therefore, ℘(ϱ, ϑ) = 0 = ℘(ϱ, ϱ) = ℘(ϑ, ϑ) i.e., ϱ = ϑ.

Definition 5.3.3. Consider a PMS (Ω, ℘), a positive integer m, and non-empty

subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. A self mapping Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai is considered a

cyclic (ϕ− ψ)(ϕ− ψ)(ϕ− ψ)-Banach contraction, if for some ϕ ∈ Φ and ψ ∈ Ψ, we have

(i) Γ(Ai) ⊆ Ai+1 ∀ 1 ≤ i ≤ m;

(ii) ℘(Γϱ,Γϑ) > 0 ⇒ ϕ
(
℘(Γϱ,Γϑ)

)
≤ ψ

(
ϕ
(
℘(ϱ, ϑ)

))
,

and Am+1 = A1, ∀ϱ ∈ Ai, ϑ ∈ Ai+1.

Remark 5.3.4. Observe that if Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai is a cyclic (ϕ − ψ)-Banach

contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ. Then, Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai is a cyclic

(ϕ− ψ)-Wardowski contraction w.r.t ϕ ∈ Φ and ψ ∈ Ψ.

Corollary 5.3.5. Consider a complete PMS (Ω, ℘), a positive integer m and non-

empty closed subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. Suppose Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai be a

cyclic (ϕ − ψ)-Banach contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ. Then
m⋂

i=1
Ai

is non-empty and Γ has exactly one fixed point. Moreover, the Picard sequence

converges to ϱ ∈
m⋂

i=1
Ai, for any initial point ϱ0 ∈

m⋃
i=1

Ai.
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Proof. The result can be deduced using Theorem 5.3.2 and Remark 5.3.4.

Theorem 5.3.6. Consider a complete PMS (Ω, ℘), a positive integer m and non-

empty closed subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. Suppose Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai be a

continuous cyclic (ϕ−ψ)-Banach contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ. Then,

mapping Γ′ :
m⋃

i=1
K(Ai) →

m⋃
i=1

K(Ai) defined as Γ′(C) = Γ(C) = {Γ(ϱ) : ϱ ∈ C},

∀C ∈
m⋃

i=1
K(Ai) is also a cyclic (ϕ−ψ)-Banach contraction w.r.t ϕ ∈ Φ and ψ ∈ Ψ

in PMS (K(Ω), H℘).

Proof. Suppose that Γ :
m⋃

i=1
Ai →

m⋃
i=1

Ai be a continuous cyclic (ϕ − ψ)-Banach

contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ. Let C ∈ K(Ai) for some 1 ≤ i ≤ m.
Then,

C ⊆ Ai ⇒ Γ(C) ⊆ Γ(Ai) ⊆ Ai+1

⇒ Γ(C) ∈ K(Ai+1) ∵ Γ is continuous and cyclic.

This implies that Γ′(C) ∈ K(Ai+1) i.e., Γ′(K(Ai)) ⊆ K(Ai+1). Therefore, Γ′ is
cyclic.
Let A ∈ K(Ai) and B ∈ K(Ai+1). Then, we have to show that

ϕ
(
h℘

(
Γ′(A),Γ′(B)

))
≤ ψ

(
ϕ
(
h℘(A,B)

))
.

Let ϱ0 ∈ A. Since B ∈ K(Ai+1), we have ϑ0 ∈ B s.t. ℘(ϱ0, ϑ0) = ℘(ϱ0, B) =
inf
ϑ∈B

℘(ϱ0, ϑ). Then, for ϱ0 ∈ A ⊆ Ai and ϑ ∈ B ⊆ Ai+1, we have

ϕ
(
℘
(
Γϱ0,Γ(B)

))
= ϕ

(
inf
ϑ∈B

℘ (ϱ0, ϑ)
)

≤ ϕ
(
℘ (Γϱ0,Γϑ0)

)
≤ ψ

(
ϕ
(
℘ (ϱ0, ϑ0)

))
= ψ

(
ϕ
(
℘ (ϱ0, B)

))
≤ ψ

ϕ
sup

ϱ∈A
℘ (ϱ,B)


 = ψ

(
ϕ
(
h℘(A,B)

))

≤ ψ
(
ϕ
(
H℘(A,B)

))
.

Also, ϱ0 is arbitrary element of A and ϕ ∈ Φ. Therefore, we have

ϕ
(
℘
(
Γϱ,Γ(B)

))
≤ ψ

(
ϕ
(
H℘(A,B)

))
, ∀ ϱ ∈ A,
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implies

sup
ϱ∈A

ϕ
(
℘
(
Γϱ,Γ(B)

))
≤ ψ

(
ϕ
(
H℘(A,B)

))
,

or

ϕ
(
h℘

(
Γ′(A),Γ′(B)

))
= ϕ

(
h℘

(
Γ(A),Γ(B)

))
≤ ψ

(
ϕ
(
H℘(A,B)

))
.

On similar lines ϕ
(
h℘

(
Γ′(B),Γ′(A)

))
≤ ψ

(
ϕ
(
H℘(A,B)

))
.

Thus,

ϕ
(
H℘

(
Γ′(A),Γ′(B)

))
= ϕ

(
max

{
h℘

(
Γ′(A),Γ′(B)

)
, h℘

(
Γ′(B),Γ′(A)

)})

≤ ψ
(
ϕ
(
H℘(A,B)

))
,

i.e., Γ′ is also a cyclic (ϕ−ψ)-Banach contraction w.r.t some ϕ ∈ Φ and ψ ∈ Ψ.

Theorem 5.3.7. Consider a complete PMS (Ω, ℘), a positive integer m and non-

empty closed subsets Ai ⊆ Ω, for 1 ≤ i ≤ m. Suppose Γn :
m⋃

i=1
Ai →

m⋃
i=1

Ai are

continuous cyclic (ϕ − ψn)-Banach contractions w.r.t some ϕ ∈ Φ and ψn ∈ Ψ,
where n ∈ Nn0 is a finite natural number. Then the Hutchinson operator F :
m⋃

i=1
K(Ai) →

m⋃
i=1

K(Ai) defined as F (C) =
n0⋃

n=1
Γ′

n(C) has exactly one fixed point

A ∈ K(Ω) and for any B ∈
m⋃

i=1
K(Ai), the lim

ℏ→∞
F ℏ(B) = A, which is the fractal

generated by the IFS
{

m⋃
i=1

Ai,Γn, n ∈ Nn0

}
.

Proof. Suppose Γn :
m⋃

i=1
Ai →

m⋃
i=1

Ai are continuous cyclic (ϕ−ψn)-Banach contrac-

tions w.r.t some ϕ ∈ Φ, ψn ∈ Ψ and C ∈ K(Ai) for some 1 ≤ i ≤ m. By Theorem
5.3.6, ∀n ∈ Nn0 , Γ′

n is a cyclic (ϕ− ψn)-Banach contraction on (K(Ω), H℘). As a
result, Γ′

n(C) ∈ K(Ai+1) ∀ 1 ≤ n ≤ m.
Also,

F (C) =
n0⋃

n=1
Γ′

n(C) ∈ K(Ai), i.e., F (K(Ai)) ⊆ K(Ai+1).
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Further, for A ∈ K(Ai) and B ∈ K(Ai+1), we have

H℘

(
F (A), F (B)

)
= H℘

 n0⋃
n=1

Γ′
n(A),

n0⋃
n=1

Γ′
n(B)


≤ max

1≤n≤n0
H℘

(
Γ′

n(A),Γ′
n(B)

)
.

Since ϕ, ψ are increasing functions. Therefore,

ϕ(H℘(F (A), F (B))) = ϕ

(
max

1≤n≤n0
H℘

(
Γ′

n(A),Γ′
n(B)

))

= max
1≤n≤n0

ϕ
(
H℘

(
Γ′

n(A),Γ′
n(B)

))
≤ max

1≤n≤n0
ψi

(
ϕ
(
H℘(A,B)

))
= ψ

(
ϕ
(
H℘(A,B)

))
.

Hence, F :
m⋃

i=1
K(Ai) →

m⋃
i=1

K(Ai) is a cyclic (ϕ − ψ) Wardowski contraction

on complete PMS (K(Ω), H℘), where ψ(t) = max
1≤n≤n0

ψn(t). Therefore, the result
holds.

Example 5.3.8. Consider Ω = R with partial metric

℘(ϱ, ϑ) =
|ϱ− ϑ|, if ϱ, ϑ ∈ [1, 3]

max{|ϱ|, |ϑ|}, otherwise.

Then, (X,℘) is a complete PMS. Let A1 = [1, 3] and A2 = [2, 4]. Define mapping
Γ1 : A1

⋃
A2 → A1

⋃
A2 as

Γ1(ϱ) =


17−ϱ
7 , if ϱ ∈ [1, 3]

2, if ϱ ∈ [3, 4].

Hence,

Γ1(A1) = Γ1[1, 3] = [2, 16/7] ⊆ [2, 4] = A2 and Γ1(A2) = Γ1[2, 4] = [2, 15/7] ⊆ [1, 3] = A1.

Also, for ϱ ∈ [1, 3] and ϑ ∈ [2, 3] implies Γ1ϱ,Γ1ϑ ∈ [1, 3]. Then,

℘(Γ1(ϱ),Γ1ϑ) =
∣∣∣∣∣17 − ϱ

7 − 17 − ϑ

7

∣∣∣∣∣
=

∣∣∣∣∣ϱ− ϑ

7

∣∣∣∣∣
≤ 1

7℘(ϱ, ϑ).
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Further, ϱ ∈ [1, 3] and ϑ ∈ [3, 4] implies Γ1ϱ,Γ1ϑ ∈ [1, 3]. Then,

℘(Γ1ϱ,Γ1ϑ) =
∣∣∣∣∣17 − ϱ

7 − 2
∣∣∣∣∣

=
∣∣∣∣∣3 − ϱ

7

∣∣∣∣∣ ≤ 2
7 = 2 × 3

21

≤ 2
21 max{ϱ, ϑ} = 2

21℘(ϱ, ϑ).

Therefore, for ϕ(t) = t and ψ(t) = 1
7t, Γ1 is a cyclic-(ϕ, ψ)-Banach contraction.

Now, define Γ2 : A1
⋃
A2 → A1

⋃
A2 as

Γ2(ϱ) =


23−ϱ
7 , if ϱ ∈ [1, 3]

20
7 , if ϱ ∈ [3, 4].

Hence,

Γ2(A1) = Γ2[1, 3] = [20/7, 22/7] ⊆ [2, 4] = A2 and Γ2(A2) = Γ2[2, 4] = [20/7, 21/7] ⊆ [1, 3] = A1.

Also, ϱ ∈ [1, 3] and ϑ ∈ [2, 3] implies Γ1ϱ,Γ1ϑ ∈ [1, 3]. Then,

℘(Γ2(ϱ),Γ2ϑ) =
∣∣∣∣∣23 − ϱ

7 − 23 − ϑ

7

∣∣∣∣∣
=

∣∣∣∣∣ϱ− ϑ

7

∣∣∣∣∣
≤ 1

7℘(ϱ, ϑ).

Further, ϱ ∈ [1, 3] and ϑ ∈ [3, 4] implies Γ1ϱ,Γ1ϑ ∈ [1, 3]. Then,

℘(Γ2ϱ,Γ2ϑ) =
∣∣∣∣∣23 − ϱ

7 − 20
7

∣∣∣∣∣
=

∣∣∣∣∣3 − ϱ

7

∣∣∣∣∣ ≤ 2
7 = 2 × 3

21

≤ 2
21 max{ϱ, ϑ} = 2

21℘(ϱ, ϑ).

Therefore, for ϕ(t) = t and ψ(t) = 1
7t, Γ2 is a cyclic-(ϕ, ψ)-Banach contraction.

Since both Γ1 and Γ2 are continuous mappings, therefore by Theorem 5.3.7, the IFS
{A1

⋃
A2; Γ1,Γ2} has exactly one fractal, i.e., the Hutchinson-Barnsley operator
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F has exactly one fixed point.
Moreover, few iteration of Hutchinson-Barnsley operator F with initial set A0 =
[2, 3] as follows

Γ1(A0) = Γ1[2, 3] = [2, 15/7] and Γ2(A0) = Γ2[2, 3] = [20/7, 21/7]

Then,

B1 = F (A0) = Γ1(A0)
⋃

Γ2(A0) =
[
2, 15

7

] ⋃ [
20
7 ,

21
7

]
.

Similarly

B2 = F 2(A0) = F (F (A0)) = F (B1) = Γ1(B1)
⋃

Γ2(B2),

where

Γ1(B1) = Γ1
(
[2, 15/7]

⋃
[20/7, 21/7]

)
=
[

104
49 ,

105
49

] ⋃ [
98
49 ,

99
49

]

and

Γ2(B1) = Γ2
(
[2, 15/7]

⋃
[20/7, 21/7]

)
=
[

146
49 ,

147
49

] ⋃ [
140
49 ,

141
49

]
.

Therefore,

B2 =
[

98
49 ,

99
49

] ⋃ [
104
49 ,

105
49

] ⋃ [
140
49 ,

141
49

] ⋃ [
146
49 ,

147
49

]

and so on....

A = lim
ℏ→∞

F ℏ(A0) = lim
ℏ→∞

Bℏ.

Figure 5.3: Fractals for Example 5.3.8 with different iterations
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5.4 Conclusion

This chapter presents several common fixed-point theorems for self-mappings in
partially metric spaces (PMS) using the (ϕ − ψ) Wardowski-type contraction.
Moreover, it establishes fixed-point results using generalized cyclic contractions,
supported by illustrative examples. As an application, the existence of a fractal
set for the Hutchinson-Barnsley operator is demonstrated using the established
fixed-point theorems. At the last, we present the iterative sequence for generating
fractal sets and the resulting fractal.

*******
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Chapter 6

Some Common Fixed Point
Results in b-Metric Space

6.1 Introduction

In the present chapter of the thesis, we introduce the concept of (ϕ−ψ) generalized
R-contraction within a b-metric space, equipped with a binary relation R and
proved some common fixed point results for a pair of self mappings. Also, we prove
some fixed point results for self mapping using α-(ϕ−ψ) Wardowski contraction in
the framework of b-MS. As an applications, we verify the existence and uniqueness
of solution to an operator equation and a non-linear functional integral equation.
The results of the chapter are presented in 1.

6.2 Some Common Fixed Point Results in b-Metric
Space

In this section, we discuss some common fixed point results using generalized
relation theoretic contraction in b-MS.

Definition 6.2.1. Consider a b-MS (Ω, db) equipped with the binary relation R.
A pair of self mappings (Γ1,Γ2) defined on Ω is c.t.b. a (ϕ− ψ)(ϕ− ψ)(ϕ− ψ) generalized
R-contraction pair if ∃ functions ϕ ∈ Φ, and ψ ∈ Ψ s.t.

db(Γ1ϱ,Γ2ϑ) > 0 ⇒ ϕ
(
sdb(Γ1ϱ,Γ2ϑ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
, (6.2.1)

1Yadav, K., & Kumar, D. Existence of Solution for a Non-linear Functional Integral Equation
and an Operator Equations via Fixed Point Approach (Communicated)
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where

MΓ1,Γ2(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γ1ϱ), db(ϑ,Γ2ϑ), db(ϱ,Γ2ϑ) + db(ϑ,Γ1ϱ)

2s

}
,

∀ϱ, ϑ ∈ Ω satisfying (ϱ, ϑ) ∈ R.

Example 6.2.2. Consider the set Ω = l∞, the set of all bounded sequence of real
numbers. Then, for p ≥ 1, the mapping db : l∞ × l∞ → [0,∞) defined as

db(ξ, ϱ) = sup
ℏ∈N

|ξℏ − ϱℏ|p

is a b-metric. Also, consider a binary relation R defined as (ξ, ϱ) ∈ R if ξj.ϱj = 0,
∀j ∈ N. Then, the pair of Γ1,Γ2 : l∞ → l∞ defined as

Γ1(ξ1, ξ2, ..., ξℏ, ...) =
(

0, ξ1

3 ,
ξ2

3 , ...,
ξℏ−1

3 , ...

)
,

Γ2(ξ1, ξ2, ..., ξℏ, ...) =
(

0, ξ1

7 ,
ξ2

7 , ...,
ξℏ−1

7 , ...

)
is a (ϕ− ψ) generalized R-contraction pair.

Theorem 6.2.3. Let Γ1,Γ2 : Ω → Ω be mappings defined on R-complete b-MS
(Ω, db). Suppose Γ1,Γ2 satisfy

(i) (Γ1,Γ2) is a (ϕ-ψ) generalized R-contraction pair;

(ii) ∃ some ϱ0 ∈ Ω s.t. (ϱ0,Γ1ϱ0) ∈ R;

(iii) R is (Γ1,Γ2)-regular closed;

(iv) (a) Γ1 and Γ2 are R-continuous mappings;
or

(b) R is db-self closed on Ω.

Then pair (Γ1,Γ2) has a common fixed point. Moreover, if (ϱ, ϑ) ∈ R, ∀ϱ, ϑ ∈
CF (Γ1,Γ2), where CF (Γ1,Γ) denotes the set of all the common fixed points of
mappings Γ1,Γ2, then the pair (Γ1,Γ2) has exactly one common fixed point.

Proof. From assumption (ii), we have an ϱ0 ∈ Ω s.t. (ϱ0,Γ1ϱ0) ∈ R. Consider the
iterative sequence defined as

ϱ2ℏ+1 = Γ1ϱ2ℏ and ϱ2ℏ+2 = Γ2ϱ2ℏ+1 ∀ ℏ ∈ N ∪ {0}.
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Using (iii), we have

(ϱ0, ϱ1) = (ϱ0,Γ1ϱ0) ∈ R ⇔ (Γ1ϱ0,Γ2ϱ1) ∈ R and (Γ2ϱ1,Γ1ϱ0) ∈ R,

or

(ϱ2, ϱ1) ∈ R and (ϱ1, ϱ2) ∈ R.

Now, as (ϱ2, ϱ1) ∈ R. Hence, using (iii), we have (ϱ3, ϱ2) ∈ R. Repeating this
process, we have

(ϱℏ+1, ϱℏ) ∈ R, ∀ ℏ ∈ N,

i.e., {ϱℏ} is a R-sequence.
Suppose that ∃ some N ∈ N, s.t. ϱ2N+1 = ϱ2N+2. Then,

Γ1ϱ2N = Γ2ϱ2N+1 = ϱ2N+1 = ϱ2N+2.

We claim that Γ2ϱ2N+1 = Γ1ϱ2N+2. If possible, db(Γ2ϱ2N+1,Γ1ϱ2N+2) > 0, then by
(6.2.1)

ϕ
(
db(ϱ2N+2, ϱ2N+3)

)
≤ ϕ

(
sdb(ϱ2N+2, ϱ2N+3)

)
≤ ϕ

(
sdb(Γ2ϱ2N+1,Γ1ϱ2N+2)

)
= ϕ

(
sdb(Γ1ϱ2N+2,Γ2ϱ2N+1)

)
≤ ψ

(
ϕ
(
MΓ2,Γ1(ϱ2N+2, ϱ2N+1)

))
,

where

MΓ1,Γ2(ϱ2N+2, ϱ2N+1) = max
{
db(ϱ2N+2, ϱ2N+1), db(ϱ2N+2,Γ1ϱ2N+2), db(ϱ2N+1,Γ2ϱ2N+1),

db(ϱ2N+2,Γ2ϱ2N+1) + db(Γ1ϱ2N+2, ϱ2N+1)
2s

}

= max
{

0, db(ϱ2N+2, ϱ2N+3), 0,
db(ϱ2N+1, ϱ2N+2) + db(ϱ2N+2, ϱ2N+3)

2

}
= db(ϱ2N+2, ϱ2N+3).

This implies

ϕ
(
db(ϱ2N+2, ϱ2N+3)

)
≤ ψ

(
ϕ
(
db(ϱ2N+2, ϱ2N+3)

))
< ϕ

(
db(ϱ2N+2, ϱ2N+3)

)
,
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a contradiction. Therefore, db(Γ2ϱ2N+1,Γ1ϱ2N+2) = 0 which implies Γ1 and Γ2

have a common fixed point. Indeed, ϱ2N+1 = ϱ2N+2 is a common fixed point.
Now, suppose that ϱ2ℏ+1 ̸= ϱ2ℏ+2 ∀ℏ ∈ N. Then, using (6.2.1), we have

ϕ
(
db(ϱ2ℏ+1, ϱ2ℏ+2)

)
≤ ϕ

(
sdb(ϱ2ℏ+1, ϱ2ℏ+2)

)
= ϕ

(
sdb(Γ1ϱ2ℏ,Γ2ϱ2ℏ+1)

)
≤ ψ

(
ϕ
(
MΓ2,Γ1(ϱ2ℏ, ϱ2ℏ+1)

))
,

where

MΓ1,Γ2(ϱ2ℏ, ϱ2ℏ+1) = max
{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ,Γ1ϱ2ℏ), db(ϱ2ℏ+1,Γ2ϱ2ℏ+1),

db(ϱ2ℏ,Γ2ϱ2ℏ+1) + db(ϱ2ℏ+1,Γ1ϱ2ℏ)
2s

}

= max
{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ+1, ϱ2ℏ+2),

db(ϱ2ℏ, ϱ2ℏ+2)
2s

}

≤ max
{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ+1, ϱ2ℏ+2),

db(ϱ2ℏ, ϱ2ℏ+1) + db(ϱ2ℏ+1, ϱ2ℏ+2)
2

}
= max

{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ+1, ϱ2ℏ+2)

}
.

If max
{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ+1, ϱ2ℏ+2)

}
= db(ϱ2ℏ+1, ϱ2ℏ+2). Then,

ϕ
(
db(ϱ2ℏ+1, ϱ2ℏ+2)

)
≤ ψ

(
ϕ
(
db(ϱ2ℏ+1, ϱ2ℏ+2)

))
< ϕ

(
db(ϱ2ℏ+1, ϱ2ℏ+2)

)
,

a contradiction. Therefore, max
{
db(ϱ2ℏ, ϱ2ℏ+1), db(ϱ2ℏ+1, ϱ2ℏ+2)

}
= db(ϱ2ℏ, ϱ2ℏ+1),

implies

ϕ
(
sdb(ϱ2ℏ+1, ϱ2ℏ+2)

)
≤ ψ

(
ϕ
(
db(ϱ2ℏ, ϱ2ℏ+1)

))
< ϕ

(
db(ϱ2ℏ, ϱ2ℏ+1)

)
.

As, ϕ is a increasing function. Therefore,

db(ϱ2ℏ+1, ϱ2ℏ+2) ≤ 1
s
db(ϱ2ℏ, ϱ2ℏ+1).

Also,

ϕ
(
db(ϱ2ℏ+2, ϱ2ℏ+3)

)
= ϕ

(
db(ϱ2ℏ+3, ϱ2ℏ+2)

)
= ϕ

(
db(Γ1ϱ2ℏ+2,Γ2ℏ+1)

)
≤ ϕ

(
sdb(Γ1ϱ2ℏ+2,Γ2ϱ2ℏ+1)

)
≤ ψ

(
ϕ
(
MΓ2,Γ1(ϱ2ℏ+2, ϱ2ℏ+1)

))
,
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where

MΓ1,Γ2(ϱ2ℏ+2, ϱ2ℏ+1) = max
{
db(ϱ2ℏ+2, ϱ2ℏ+1), db(ϱ2ℏ+2,Γ1ϱ2ℏ+2), db(ϱ2ℏ+1,Γ2ϱ2ℏ+1),

db(ϱ2ℏ+2,Γ2ϱ2ℏ+1) + db(ϱ2ℏ+1,Γ1ϱ2ℏ+2)
2s

}

= max
{
db(ϱ2ℏ+2, ϱ2ℏ+1), db(ϱ2ℏ+2, ϱ2ℏ+3),

db(ϱ2ℏ+1, ϱ2ℏ+3)
2s

}

≤ max
{
db(ϱ2ℏ+2, ϱ2ℏ+1), db(ϱ2ℏ+2, ϱ2ℏ+3),

db(ϱ2ℏ+1, ϱ2ℏ+2) + db(ϱ2ℏ+2, ϱ2ℏ+3)
2

}
= max

{
db(ϱ2ℏ+1, ϱ2ℏ+2), db(ϱ2ℏ+2, ϱ2ℏ+3)

}
.

If max
{
db(ϱ2ℏ+1, ϱ2ℏ+2), db(ϱ2ℏ+2, ϱ2ℏ+3)

}
= db(ϱ2ℏ+2, ϱ2ℏ+3). Then,

ϕ
(
db(ϱ2ℏ+2, ϱ2ℏ+3)

)
≤ ψ

(
ϕ
(
db(ϱ2ℏ+2, ϱ2ℏ+3)

))
< ϕ

(
db(ϱ2ℏ+2, ϱ2ℏ+3)

)
,

a contradiction. Therefore, max
{
db(ϱ2ℏ+1, ϱ2ℏ+2), db(ϱ2ℏ+2, ϱ2ℏ+3)

}
= db(ϱ2ℏ+2, ϱ2ℏ+1).

Now,

ϕ
(
sdb(ϱ2ℏ+2, ϱ2ℏ+3)

)
≤ ψ

(
ϕ
(
db(ϱ2ℏ+2, ϱ2ℏ+1)

))
< ϕ

(
db(ϱ2ℏ+2, ϱ2ℏ+1)

)
,

or

db(ϱ2ℏ+2, ϱ2ℏ+3) ≤ 1
s
db(ϱ2ℏ+1, ϱ2ℏ+2).

Therefore, ∀ℏ ∈ N, we have

db(ϱℏ+1, ϱℏ) ≤ 1
s
db(ϱℏ, ϱℏ−1).

Using Lemma 1.2.27, we can conclude that {ϱℏ} is a Cseq, for s > 1.
In case s = 1, db(ϱℏ+1, ϱℏ) is a decreasing sequence. Then,

ϕ
(
db(ϱℏ+1, ϱℏ)

)
≤ ψ

(
ϕ
(
db(ϱℏ, ϱℏ−1)

))
≤ ψ2

(
ϕ
(
db(ϱℏ−1, ϱℏ−2)

))
...

≤ ψℏ
(
ϕ
(
db(ϱ1, ϱ0)

))
.
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Taking the limit as ℏ tends to ∞, we have

lim
ℏ→∞

db(ϱℏ+1, ϱℏ) = 0. (6.2.2)

Suppose that {ϱℏ} is not a Cseq. Then, for ϵ > 0, ∃ two subsequences {ϱ2ℏk
} ̸=

{ϱ2lk} s.t.

db(ϱ2ℏk+1, ϱ2lk) > ϵ, (6.2.3)

and

db(ϱ2ℏk
, ϱ2lk) ≤ ϵ. (6.2.4)

Using the triangle inequality and (6.2.3), we have

ϵ < db(ϱ2ℏk+1, ϱ2lk)
≤ db(ϱ2ℏk+1, ϱ2ℏk

) + db(ϱ2ℏk
, ϱ2lk).

Using (6.2.2), (6.2.4) and taking limit as k tends to ∞, we have

lim
k→∞

db(ϱ2ℏk+1, ϱ2lk) = ϵ. (6.2.5)

Also, using the triangle inequality, we have

db(ϱ2ℏk+1, ϱ2lk) ≤ db(ϱ2ℏk+1, ϱ2ℏk
) + db(ϱ2ℏk

, ϱ2lk−1) + db(ϱ2lk−1, ϱ2lk),

and

db(ϱ2ℏk
, ϱ2lk−1) ≤ db(ϱ2ℏk

, ϱ2ℏk+1) + db(ϱ2ℏk+1, ϱ2lk) + db(ϱ2lk , ϱ2lk−1).

Taking the limit as k tends to ∞ and using (6.2.5), we have

lim
k→∞

db(ϱ2ℏk
, ϱ2lk−1) = ϵ.

As, db(ϱ2ℏk+1 , ϱ2lk) > ϵ > 0. Therefore, using (6.2.1), we have

ϕ(ϵ) < ϕ
(
db(ϱ2ℏk+1 , ϱ2lk)

)
= ϕ

(
db(Γ1ϱ2ℏk

,Γ2ϱ2lk−1)
)

≤ ϕ
(
sdb(Γ1ϱ2ℏk

,Γ2ϱ2lk−1)
)

≤ ψ
(
ϕ
(
MΓ1,Γ2(ϱ2ℏk

, ϱ2lk−1)
))

,
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where

MΓ1,Γ2(ϱ2ℏk
, ϱ2lk−1) = max

{
db(ϱ2ℏk

, ϱ2lk−1), db(ϱ2ℏk
,Γ1ϱ2ℏk

), db(ϱ2ℏk
,Γ2ϱ2lk−1),

db(ϱ2ℏk
,Γ2ϱ2lk−1) + db(ϱ2lk−1,Γ1ϱ2ℏk

)
2s

}

= max
{
db(ϱ2ℏk

, ϱ2lk−1), db(ϱ2ℏk
, ϱ2ℏk+1), db(ϱ2ℏk

, ϱ2lk),

db(ϱ2ℏk
, ϱ2lk) + db(ϱ2lk−1, ϱ2ℏk+1)

2s

}

≤ max
{
db(ϱ2ℏk

, ϱ2lk−1), db(ϱ2ℏk
, ϱ2ℏk+1), db(ϱ2ℏk

, ϱ2lk),

db(ϱ2ℏk
, ϱ2lk)

2s + sdb(ϱ2ℏk+1, ϱ2lk) + sdb(ϱ2lk , ϱ2lk−1)
2s

}
.

Taking limitsup as k → ∞, we have

ϕ(ϵ) ≤ lim sup
k→∞

ψ
(
ϕ
(
MΓ1,Γ2(ϱ2ℏk

, ϱ2lk−1)
))

= ψ
(
ϕ(ϵ)

)
< ϕ(ϵ),

a contradiction. Therefore, {ϱℏ} is a Cseq. Also, (Ω, db) is a R-complete b-MS.
Hence, ∃ an ϱ ∈ Ω s.t. ϱℏ converges to ϱ.
The following cases arises:

Case (i) If assumption (iv)(a) holds, i.e., if Γ1,Γ2 are R-continuous mappings and
{ϱℏ} is R-preserving sequence converges to ϱ, we have

{Γ2ϱℏ} → Γ2ϱ and {Γ1ϱℏ} → Γ1ϱ,

or

{Γ2ϱ2ℏ+1} → Γ2ϱ and {Γ1ϱ2ℏ} → Γ1ϱ,

or

{ϱ2ℏ+2} → Γ2ϱ and {ϱ2ℏ+1} → Γ1ϱ.

Also, we have

{ϱ2ℏ+2} → ϱ and {ϱ2ℏ+1} → ϱ.
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Therefore, Γ2ϱ = ϱ = Γ1ϱ, i.e., (Γ1,Γ2) has a common fixed point.

Case (ii) If R is db-self closed on Ω and {ϱℏ} → ϱ. Therefore, ∃ a subsequence {ϱ2ℏk
}

of {ϱℏ} with (ϱ2ℏk
, ϱ) ∈ R. Thus using (6.2.1), we have

ϕ
(
db(Γ1ϱ2ℏk

,Γ2ϱ)
)

≤ ϕ
(
sdb(Γ1ϱ2ℏk

,Γ2ϱ)
)

≤ ψ
(
ϕ
(
MΓ2,Γ1(ϱ2ℏk

, ϱ)
))

,

where

MΓ1,Γ2(ϱ2ℏk
, ϱ) = max

{
db(ϱ2ℏk

, ϱ), db(ϱ2ℏk
,Γ1ϱ2ℏk

), db(ϱ,Γ2ϱ),

db(ϱ2ℏk
,Γ2ϱ) + db(ϱ,Γ1ϱ2ℏk

)
2s

}

≤ max
{
db(ϱ2ℏk

, ϱ), db(ϱ2ℏk
,Γ1ϱ2ℏk

), db(ϱ,Γ2ϱ),

db(ϱ2ℏk
, ϱ2ℏk+1)
2 + db(ϱ2ℏk+1,Γ2ϱ)

2 + db(ϱ,Γ1ϱ2ℏk
)

2s

}
,

implies

lim
k→∞

MΓ2,Γ1(ϱ2ℏk
, ϱ) ≤ db(ϱ,Γ2ϱ).

Also, using continuity of ϕ, we have

ϕ
(
db(ϱ,Γ2ϱ)

)
= lim

k→∞
ϕ
(
db(Γ1ϱ2ℏk

,Γ2ϱ)
)

≤ lim
k→∞

ψ
(
ϕ
(
MΓ2,Γ1(ϱ2ℏk

, ϱ)
))

≤ lim
k→∞

ψ
(
ϕ
(
db(ϱ,Γ2ϱ)

))
< ϕ

(
db(ϱ,Γ2ϱ)

)
,

a contradiction. Therefore, lim
k→∞

db(Γ1ϱ2ℏk
,Γ2ϱ) = 0, i.e.,

{Γ1ϱ2ℏk
} → Γ2ϱ ⇒ {ϱ2ℏk+1} → Γ2ϱ.

Also, {ϱ2ℏk+1} → ϱ. Hence, Γ2ϱ = ϱ.
On the similar lines, Γ1ϱ = ϱ. Therefore, Γ1ϱ = ϱ = Γ2ϱ i.e., ϱ is a common
fixed point of the pair (Γ1,Γ2) .
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Uniqueness: If possible, let ϑ ̸= ϱ with (ϱ, ϑ) ∈ R be another common fixed
point of the pair (Γ1,Γ2). Therefore, db(ϱ, ϑ) = db(Γ1ϱ,Γ2ϑ) > 0.
Using (6.2.1), we have

ϕ
(
db(ϱ, ϑ)

)
= ϕ

(
db(Sx,Γ2ϑ)

)
≤ ϕ

(
sdb(Γ1ϱ,Γ2ϑ

)
)

≤ ψ
(
ϕ
(
MΓ2,Γ1(ϱ, ϑ)

))
,

where

MΓ1,Γ2(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γ1ϱ), db(ϑ,Γ2ϑ), db(ϱ,Γ2ϑ) + db(ϑ,Γ1ϱ)

2s

}

= max
{
db(ϱ, ϑ), 0, 0, db(ϱ, ϑ)

s

}
= db(ϱ, ϑ).

Then,

ϕ
(
db(ϱ, ϑ)

)
= ψ

(
ϕ
(
MΓ2,Γ1(ϱ, ϑ)

))
= ψ

(
ϕ
(
db(ϱ, ϑ)

))
< ϕ

(
db(ϱ, ϑ)

)
,

a contradiction. Therefore, the pair (Γ1,Γ2) has exactly one common fixed point.

Corollary 6.2.4. Let Γ1,Γ2 : Ω → Ω be mappings defined on R-complete b-MS
(Ω, db,R). Suppose Γ1,Γ2 satisfy

(i) (a) ∃z ∈ (0, 1
s
) s.t. db(Γ1ϱ,Γ2ϑ) ≤ zMΓ2,Γ1(ϱ, ϑ);

or

(b) ∃F ∈ F and τ > 0 s.t. τ + F
(
sdb(Γ1ϱ,Γ2ϑ)

)
≤ F

(
db(ϱ, ϑ)

)
;

or

(c) ∃F ∈ F and τ > 0 s.t. τ + F
(
sdb(Γ1ϱ,Γ2ϑ)

)
≤ F

(
MΓ2,Γ1(ϱ, ϑ)

)
;

(ii) ∃ϱ0 ∈ Ω s.t. (ϱ0,Γ1ϱ0) ∈ R;

(iii) R is (Γ1,Γ2)-regular closed;

(iv) (a) Γ1 and Γ2 are R-continuous mappings;
or
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(b) R is db-self closed on Ω,

where,

MΓ1,Γ2(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γ1ϱ), db(ϑ,Γ2ϑ), db(ϱ,Γ2ϑ) + db(ϑ,Γ1ϱ)

2s

}
,

for all ϱ, ϑ ∈ Ω satisfying (ϱ, ϑ) ∈ R. Then, the pair (Γ1,Γ2) has a common fixed
point. Moreover, if (ϱ, ϑ) ∈ R, ∀ϱ, ϑ ∈ CF (Γ1,Γ2), where CF (Γ1,Γ2) denotes all
the common fixed points of mappings Γ1,Γ2, then the pair (Γ1,Γ2) has exactly one
common fixed point.

Definition 6.2.5. Let (Ω, db) be a b-MS equipped with the binary relation R. A
self mapping Γ defined on Ω is c.t.b. a (ϕ− ψ)(ϕ− ψ)(ϕ− ψ) generalized R-contraction if
∃ϕ ∈ Φ, ψ ∈ Ψ and α : Ω × Ω → (0,∞) s.t.

db(Γϱ,Γϑ) > 0 ⇒ ϕ
(
sdb(Γϱ,Γϑ)

)
≤ ψ

(
ϕ
(
MΓ(ϱ, ϑ)

))
, (6.2.6)

where,

MΓ(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γϱ), db(ϑ,Γϑ), db(ϱ,Γϑ) + db(ϑ,Γϱ)

2s

}
,

∀ϱ, ϑ ∈ Ω satisfying (ϱ, ϑ) ∈ R.

Theorem 6.2.6. Let Γ : Ω → Ω be a mapping defined on R-complete b-MS.
Suppose Γ satisfies

(i) Γ is a (ϕ− ψ) generalized R-contraction;

(ii) ∃ϱ0 ∈ Ω s.t. (ϱ0,Γϱ0) ∈ R;

(iii) R is Γ-closed;

(iv) (a) Γ is R-continuous mapping;

(b) R is db-self closed on Ω.

Then, Γ possesses a fixed point. Moreover, if (ϱ, ϑ) ∈ R ∀ϱ, ϑ ∈ Fix(Γ), where
Fix(Γ) denotes the set of all the fixed points of mapping Γ, then Γ has exactly one
fixed point.

Proof. Considering Γ1 = Γ2 = Γ in Theorem 6.2.3, one can easily deduce the
result.
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Corollary 6.2.7. Let Γ : Ω → Ω be a mapping defined on R-complete b-MS.
Suppose Γ satisfies

(i) (a) ∃z ∈ (0, 1
s
) s.t. db(Γϱ,Γϑ) ≤ zMΓ(ϱ, ϑ);

or

(b) ∃F ∈ F and τ > 0 s.t. τ + F
(
sdb(Γϱ,Γϑ)

)
≤ F

(
db(ϱ, ϑ)

)
;

or

(c) ∃F ∈ F and τ > 0 s.t. τ + F
(
sdb(Γϱ,Γϑ)

)
≤ F

(
MΓ(ϱ, ϑ)

)
;

(ii) ∃ϱ0 ∈ Ω s.t. (ϱ0,Γϱ0) ∈ R;

(iii) R is Γ-closed;

(iv) (a) Γ is R-continuous mappings;
or

(b) R is db-self closed on Ω,

where,

MΓ(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γϱ), db(ϑ,Γϑ), db(ϱ,Γϑ) + db(ϑ,Γϱ)

2s

}
,

∀ϱ, ϑ ∈ Ω satisfying (ϱ, ϑ) ∈ R.
Then, Γ possesses a fixed point. Moreover, if (ϱ, ϑ) ∈ R, ∀ϱ, ϑ ∈ Fix(Γ), where
Fix(Γ) denotes the set of all the fixed points of mapping Γ, then Γ has exactly one
fixed point.

Proof. The results can be deduced from Theorem6.2.6, by substituting values of
ϕ and ψ:

(i) for case i (a), consider ϕ(t) = t and ψ(t) = zt;

(ii) for case i (b) and i (c), consider ψ(t) = e−τt and ϕ(t) = eF (t), where F ∈ F.

Example 6.2.8. Consider Ω = (0, 2] equipped with b-metric db(ϱ, ϑ) = |ϱ − ϑ|2.
Consider a binary relation R defined as

(ϱ, ϑ) ∈ R, if either 1
5 ≤ ϱ, ϑ ≤ 1

4 or 1
3 ≤ ϱ, ϑ ≤ 2,
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and a self mapping Γ defined as

Γ(ϱ) =


9
40 , if 0 ≤ ϱ ≤ 1

3 ;
2
3 , if 1

3 ≤ ϱ ≤ 2.

One can easily verify that

• Γ is not continuous but it is R continuous;

• Ω is not complete but it is R complete.

Moreover, Γ satisfies all the requirements of Theorem 6.2.6. Therefore, Γ possesses
a fixed point. Also, fixed point obtained is not unique. Indeed, 9

40&2
3 are fixed points

of Γ. Note that
(

9
40 ,

2
3

)
/∈ R.

Example 6.2.9. Consider the space l2 of all real valued sequences {ϱℏ} s.t.
∞∑
ℏ=1

|ϱℏ|2 < ∞. Then, the mapping db : l2 × l2 → [0,∞) defined as db(ϱ, ϑ) =
∞∑
ℏ=1

|ϱℏ − ϑℏ|2 is a b-metric with s = 2. Define a relation on l2 as ϱRϑ if

ϱiϑi = 0, for i ∈ N. Then, (l2, db) is R-complete b-MS. Consider the self mappings
Γ1,Γ2 : l2 → l2 defined as

Γ1(ϱ) =


(
0, ϱ1

7 ,
ϱ2
7 ,

ϱ3
7 , ....

)
, if ϱ ̸= (1, 0, 0, 0, ...);(

1
7 , 0, 0, ...

)
, otherwise.

and

Γ2(ϑ) =
(

0, ϑ1

7 ,
ϑ2

7 ,
ϑ3

7 , ....
)
.

Then, Γ1,Γ2 are R continuous and satisfy the following conditions:

(i) R is (Γ1,Γ2)-regular closed:
Let (ϱ, ϑ) ∈ R i.e., ϱi.ϑi = 0 for i ∈ N.

(a) For ϱ = (1, 0, 0, 0, ...), Γ1ϱ.Γ2ϑ = 0 i.e., (Γ1ϱ,Γ2ϑ) ∈ R.

(b) ϱ ̸= (1, 0, 0, 0, ...) and (ϱ, ϑ) ∈ R. Then,

Γ1ϱ.Γ2ϑ =
(

0, ϱ1

7 ,
ϱ2

7 ,
ϱ3

7 , ....
)
.

(
0, ϑ1

7 ,
ϑ2

7 ,
ϑ3

7 , ....
)

=
(

0, ϱ1ϑ1

7 ,
ϱ2ϑ2

7 ,
ϱ3ϑ3

7 , ....

)
= 0, ( as (ϱ, ϑ) ∈ R).
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(ii) (Γ1,Γ2) is (ϕ− ψ) generalized R-contraction:
Let (ϱ, ϑ) ∈ R i.e., ϱi.ϑi = 0 for i ∈ N.

(a) If ϱ ̸= (1, 0, 0, 0, ...). Then,

ϕ(2db(Γ1ϱ,Γ2ϑ)) = 2db

(0, ϱ1

7 ,
ϱ2

7 ,
ϱ3

7 , ....
)
,

(
0, ϑ1

7 ,
ϑ2

7 ,
ϑ3

7 , ....
)

=
∞∑

i=1
2
∣∣∣∣∣ϱi

7 − ϑi

7

∣∣∣∣∣
2

≤ 2
49db(ϱ, ϑ) ≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
.

(b) If ϱ = (1, 0, 0, 0, ...), i.e., ϑ1 = 0. Then,

ϕ(2db(Γ1ϱ,Γ2ϑ)) = 2db

(1
7 , 0, 0, ...

)
,

(
0, ϑ1

7 ,
ϑ2

7 ,
ϑ3

7 , ....
)

= 2
∣∣∣∣∣17

∣∣∣∣∣
2

+
∣∣∣∣∣ϑ1

7

∣∣∣∣∣
2

+ ....


= 2

49
(
1 + |ϑ2|2 + |ϑ3|2 + ....

)
= 2

49
(
|1 − ϑ1|2 + |ϑ2|2 + |ϑ3|2 + ....

)
= 2

49db(ϱ, ϑ) ≤ ψ
(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
.

Therefore, (Γ1,Γ2) meet all the requirements of Theorem (6.2.3), for ϕ(t) = t and
ψ(t) = 2

49t. Hence, Γ1,Γ2 have a common fixed point.

Definition 6.2.10. A pair of self mappings (Γ1,Γ2) defined on a non-empty b-MS
(Ω, db) is c.t.b. a generalized α−α−α− (ϕ− ψ)(ϕ− ψ)(ϕ− ψ) contraction pair if ∃ ϕ ∈ Φ, ψ ∈ Ψ
and α : Ω × Ω → (0,∞) s.t.

db(Γ1ϱ,Γ2ϑ) > 0 ⇒ ϕ(α(ϱ, ϑ)db(Γ1ϱ,Γ2ϑ)) ≤ ψ
(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
, (6.2.7)

where,

MΓ1,Γ2(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γ1ϱ), db(ϑ,Γ2ϑ), db(ϱ,Γ2ϑ) + db(ϑ,Γ1ϱ)

2s

}
,

∀ϱ, ϑ ∈ Ω satisfying α(ϱ, ϑ) ≥ s.

Theorem 6.2.11. Let Γ1,Γ2 : Ω → Ω be mappings defined on complete b-MS
(Ω, db). Suppose the pair (Γ1,Γ2) satisfies
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(i) (Γ1,Γ2) is a generalized α-(ϕ− ψ) contraction pair;

(ii) ∃ϱ0 ∈ Ω s.t. α(ϱ0,Γ1ϱ0) ≥ s and α(Γ1ϱ0, ϱ0) ≥ s;

(iii) (Γ1,Γ2) is generalized α-admissible of type s;

(iv) (a) Γ1 and Γ2 are continuous mappings;
or

(b) if {ϱℏ} is a sequence in Ω with α(ϱℏ, ϱℏ+1) ≥ s ∀ℏ ∈ N ∪ {0} s.t.
ϱℏ → ϱ ∈ Ω as ℏ → ∞, then ∃ a subsequence {ϱℏk

} of {ϱℏ} s.t.
α(ϱℏk

, ϱ) ≥ s ∀k ∈ N ∪ {0}.

Then, the pair (Γ1,Γ2) has a common fixed point. Moreover, if α(ϱ, ϑ) ≥ s,
∀ϱ, ϑ ∈ CF (Γ1,Γ2), where CF (Γ1,Γ2) denotes the set of all the common fixed
points of mappings Γ1,Γ2, then the pair (Γ1,Γ2) has exactly one common fixed
point.

Proof. Using assumption (ii), we have an ϱ0 ∈ Ω s.t. α(ϱ0,Γ1ϱ0) ≥ s and
α(Γ1ϱ0, ϱ0) ≥ s. Consider the iterative sequence with initial point ϱ0 and

ϱ2ℏ+1 = Γ1ϱ2ℏ and ϱ2ℏ+2 = Γ2ϱ2ℏ+1 ∀ ℏ ∈ N ∪ {0}.

Now, α(ϱ0,Γ1ϱ0) ≥ s and (Γ1,Γ2) is generalized α-admissible. Therefore,

α(ϱ0, ϱ1) = α(ϱ0,Γ1ϱ0) ≥ s ⇒ α(Γ1ϱ0,Γ2ϱ1) = α(ϱ1, ϱ2) ≥ s and α(ϱ2, ϱ1) ≥ s.

Repeating this process, we have

α(ϱℏ, ϱℏ+1) ≥ s and α(ϱℏ+1, ϱℏ) ≥ s.

On the similar lines of Theorem 6.2.3, we can easily prove that {ϱℏ} is a Cseq.
Also, (Ω, db) is a complete b-MS. Thus, ∃ϱ ∈ Ω s.t. {ϱℏ} converges to ϱ. The
following cases arises:

Case (i) If Γ1 and Γ2 are continuous mappings and {ϱℏ} converges to ϱ. Then,

{Γ2ϱℏ} → Γ2ϱ and {Γ1ϱℏ} → Γ1ϱ,

or

{Γ2ϱ2ℏ+1} → Γ2ϱ and {Γ1ϱ2ℏ} → Γ1ϱ,
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or

{ϱ2ℏ+2} → Γ2ϱ and {ϱ2ℏ+1} → Γ1ϱ.

Also,

{ϱ2ℏ+2} → ϱ and {ϱ2ℏ+1} → ϱ.

Therefore, Γ2ϱ = ϱ = Γ1ϱ, i.e., (Γ1,Γ2) has a common fixed point.

Case (ii) In case assumption (iv)(b) holds. As, α(ϱℏ, ϱℏ+1) ≥ s and {ϱℏ} → ϱ.
Therefore, ∃ a subsequence {ϱℏk

} s.t. α(ϱℏk
, ϱ) ≥ s. Now, suppose that

db(ϱ,Γ2ϱ) > 0. Then,

ϕ
(
db(ϱ2ℏk+1,Γ2ϱ)

)
= ϕ

(
α(ϱ2ℏk

, ϱ)db(Γ1ϱ2ℏk
,Γ2ϱ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ2ℏk

, ϱ)
))

,

where

MΓ1,Γ2(ϱ2ℏk
, ϱ)) = max

{
db(ϱ2ℏk

, ϱ), db(ϱ2ℏk
, Sx2ℏk

), db(ϱ,Γ2ϱ),

db(ϱ2ℏk
,Γ2ϱ) + db(Γ1ϱ2ℏk

, ϱ)
2s

}

= max
{
db(ϱ2ℏk

, ϱ), db(ϱ2ℏk
, ϱ2ℏk+1), db(ϱ,Γ2ϱ),

db(ϱ2ℏk
,Γ2ϱ) + db(ϱ2ℏk+1, ϱ)

2s

}

≤ max
{
db(ϱ2ℏk

, ϱ), db(ϱ2ℏk
, ϱ2ℏk+1), db(ϱ,Γ2ϱ),

db(ϱ2ℏk+1, ϱ)
2s + db(ϱ2ℏk

, ϱ)
2s + db(ϱ,Γ2ϱ)

2s

}
.

Here, lim
k→∞

db(ϱ2ℏk
, ϱ) = lim

k→∞
db(ϱ2ℏk

, ϱ2ℏk+1) = 0. As, s ≥ 1. Hence,

lim
k→∞

MΓ1,Γ2(ϱ2ℏk
, ϱ) ≤ db(ϱ,Γ2ϱ). (6.2.8)

Using (6.2.8), and continuity of ϕ, we have

ϕ
(
db(ϱ,Γ2ϱ)

)
= lim

k→∞
ϕ
(
db(ϱ2ℏk+1,Γ2ϱ)

)
≤ ψ

(
ϕ
(
db(ϱ,Γ2ϱ)

))
< ϕ

(
db(ϱ,Γ2ϱ)

)
,

a contradiction. Similarly, we can show that db(ϱ,Γ1ϱ) = 0. Therefore,
Γ1ϱ = ϱ = Γ2ϱ i.e., ϱ is the common fixed point of the pair (Γ1,Γ2).
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Uniqueness: let ϱ ̸= ϑ be another common fixed points of mapping Γ1,Γ2 with
α(ϱ, ϑ) ≥ s. Then, using (6.2.7), we have

ϕ(db(ϱ, ϑ)) = ϕ
(
db(Γ1ϱ,Γ2ϑ)

)
≤ ϕ

(
α(ϱ, ϑ)db(Γ1ϱ,Γ2ϑ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
,

where

MΓ1,Γ2(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γ1ϱ), db(ϑ,Γ2ϑ), db(ϱ,Γ2ϑ) + db(ϑ,Γ1ϱ)

2s

}

= max
{
db(ϱ, ϑ), 0, 0, db(ϱ, ϑ)

s

}
= db(ϱ, ϑ),

implies

ϕ
(
db(ϱ, ϑ)

)
≤ ψ

(
ϕ
(
db(ϱ, ϑ)

))
< ϕ

(
db(ϱ, ϑ)

)
,

a contradiction. Therefore, (Γ1,Γ2) has exactly one common fixed point.

Definition 6.2.12. A self mapping Γ defined on a non-empty b-MS (Ω, db) is c.t.b.
a generalized α−α−α− (ϕ− ψ)(ϕ− ψ)(ϕ− ψ) contraction if ∃ϕ ∈ Φ, ψ ∈ Ψ and α : Ω×Ω → (0,∞)
s.t.

db(Γϱ,Γϑ) > 0 ⇒ ϕ
(
α(ϱ, ϑ)db(Γϱ,Γϑ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ(ϱ, ϑ)

))
, (6.2.9)

∀ϱ, ϑ ∈ Ω satisfying α(ϱ, ϑ) ≥ s, where

MΓ1,Γ(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γϱ), db(ϑ,Γϑ), db(ϱ,Γϑ) + db(ϑ,Γϱ)

2s

}
.

Theorem 6.2.13. Let Γ : Ω → Ω be a mapping defined on a complete b-MS
(Ω, db). Suppose Γ satisfies

(i) Γ is a generalized α− (ϕ− ψ) contraction;

(ii) ∃ϱ0 ∈ Ω s.t. α(ϱ0,Γϱ0) ≥ s and α(Γϱ0, ϱ0) ≥ s;

(iii) Γ is α-admissible of type s;
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(iv) (a) Γ is a continuous mapping;
or

(b) if {ϱℏ} is a sequence in Ω with α(ϱℏ, ϱℏ+1) ≥ s ∀ℏ ∈ N ∪ {0} s.t.
ϱℏ → ϱ ∈ Ω as ℏ → ∞, then ∃ a subsequence {ϱℏk

} of {ϱℏ} s.t.
α(ϱℏk

, ϱ) ≥ s ∀k ∈ N ∪ {0}.

Then Γ has a fixed point. Moreover, if α(ϱ, ϑ) ≥ s, ∀ϱ, ϑ ∈ Fix(Γ), where Fix(Γ)
denotes the set of all the fixed points of mapping Γ, then Γ has exactly one fixed
point.

Proof. Considering Γ1 = Γ in Theorem 6.2.11, one can easily deduce the result.

Corollary 6.2.14. Let Γ : Ω → Ω be a mapping defined on a complete b-MS
(Ω, db). Suppose Γ satisfies

(i) (a) ∃F ∈ F and τ > 0 s.t. τ + F
(
α(ϱ, ϑ)db(Γϱ,Γϑ)

)
≤ F

(
db(ϱ, ϑ)

)
;

or

(b) ∃F ∈ F and τ > 0 s.t. τ + F
(
α(ϱ, ϑ)db(Γϱ,Γϑ)

)
≤ F

(
MΓ(ϱ, ϑ)

)
;

or

(c) ∃ψ ∈ Ψ s.t. α(ϱ, ϑ)d(Γϱ,Γϑ) ≤ ψ(d(ϱ, ϑ));

(ii) ∃ϱ0 ∈ Ω s.t. α(ϱ0,Γϱ0) ≥ s and α(Γϱ0, ϱ0) ≥ s;

(iii) Γ is α-admissible of type s;

(iv) (a) Γ is a continuous mapping;
or

(b) if {ϱℏ} is a sequence in Ω with α(ϱℏ, ϱℏ+1) ≥ s ∀ℏ ∈ N ∪ {0} s.t.
ϱℏ → ϱ ∈ Ω as ℏ → ∞, then ∃ a subsequence {ϱℏk

} of {ϱℏ} s.t.
α(ϱℏk

, ϱ) ≥ s ∀k ∈ N ∪ {0},

where,

MΓ(ϱ, ϑ) = max
{
db(ϱ, ϑ), db(ϱ,Γϱ), db(ϑ,Γϑ), db(ϱ,Γϑ) + db(ϑ,Γϱ)

2s

}
,

∀ϱ, ϑ ∈ Ω.
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Then, Γ has a fixed point. Moreover, if α(ϱ, ϑ) ≥ s, ∀ϱ, ϑ ∈ Fix(Γ), where Fix(Γ)
denotes the set of all the fixed points of mapping Γ, then Γ has exactly one fixed
point.

Proof. On substituting specific values of ϕ and ψ in Theorem 6.2.13, we can verify
the above results.

(i) for case i (a) and i (b), consider ψ(t) = e−τt and ϕ(t) = eF (t), where F ∈ F;

(ii) for case i (c), consider ϕ(t) = t.

Example 6.2.15. Let Ω = [0,∞) and db(ϱ, ϑ) = |ϱ− ϑ|2. Define Γ1,Γ2 : Ω → Ω

Γ1(ϱ) = ϱ

4 , Γ2(ϱ) = ϱ

8 .

If α : Ω × Ω → [0,∞) is defined as

α(ϱ, ϑ) =
2 + cos(ϱ2 + ϑ), if ϱ ∈ [0, 1];

0, otherwise.

Then,

(i) (Ω, db) is a complete b-MS with s = 2;

(ii) (Γ1,Γ2) is generalized α-admissible;

(iii) For ϕ(t) = t and ψ(t) = 6t
9 , the pair (Γ1,Γ2) is a generalized α-(ϕ − ψ)

contraction pair.

For ϱ, ϑ ∈ [0, 1]

db(Γ1ϱ,Γ2ϑ) =
∣∣∣∣∣ϱ4 − ϑ

8

∣∣∣∣∣
2

= 1
16

∣∣∣∣∣ϱ− ϑ

2

∣∣∣∣∣
2

.
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(i) Let ϱ > ϑ
2 , then

db(Γ1ϱ,Γ2ϑ) =
∣∣∣∣∣ϱ4 − ϑ

8

∣∣∣∣∣
2

= 1
16

(
ϱ2 + ϑ2

4 − ϱϑ

)

≤ 1
16
(
ϱ2 + ϱ2 − ϱϑ

)
≤ 2ϱ2

16

≤ 1
3 × 6

9 × 9ϱ2

16

≤ 1
3

(
6
9db(ϱ,Γ1ϱ)

)

≤ 1
3

(
6
9MΓ1,Γ2(ϱ, ϑ)

)
.

(ii) Let ϱ < ϑ
2 , then

db(Γ1ϱ,Γ2ϑ) =
∣∣∣∣∣ϱ4 − ϑ

8

∣∣∣∣∣
2

= 1
16

(
ϑ2

4 + ϑ2

4 − ϱϑ

)

= 1
16

(
ϑ2

2

)

≤ 1
3

6
9

(
9
64ϑ

2
)

= 1
3

(
6
9
(
db(ϑ,Γ2ϑ)

))

≤ 1
3

(
6
9MΓ1,Γ2(ϱ, ϑ)

)
.

(iii) Let ϱ = ϑ
2 , then

db(Γ1ϱ,Γ2ϑ) =
∣∣∣∣∣ϱ4 − ϑ

8

∣∣∣∣∣
2

= 0 ≤ 1
3

(
6
9
(
db(ϱ, ϑ)

))
.

Therefore, for ϕ(t) = t, ψ(t) = 6t/9, we have

ϕ
(
α(ϱ, ϑ)db(Γ1ϱ,Γ2ϑ)

)
≤ ϕ

(
3db(Γ1ϱ,Γ2ϑ)

)
≤ ψ

(
ϕ
(
MΓ1,Γ2(ϱ, ϑ)

))
.

Hence, all the requirements of Theorem 6.2.11 are satisfied. Indeed, ϱ = 0 is a
common fixed point.
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6.3 Existence of Solution to Operator Equation

In this section, we established the existence and uniqueness of the solution to an
operator equation using Theorem 6.2.11.
Let L(H) represents the set of bounded linear operators defined on the Hilbert
space H. Let A be a bounded linear operator on H. Then, L(H) is a normed
space with norm on H defined as

∥A∥ = sup
ϱ̸=0∈H

∥Aϱ∥
∥ϱ∥

= sup
ϱ∈H,∥ϱ∥=1

∥Aϱ∥.

Then, for A,B,C ∈ L(H) and db(A,B) = ∥A−B∥q, we have

• db(A,B) = 0 implies ∥A−B∥q = 0 iff ∥A−B∥ = 0, i.e., A = B;

• db(A,B) = ∥A−B∥q = ∥B − A∥q = db(B,A);

• for triangle inequality, consider

∥Aϱ−Bϱ∥q ≤ 2q−1(∥Aϱ− Cϱ∥q + ∥Cϱ−Bϱ∥q)
= s(∥Aϱ− Cϱ∥q + ∥Cϱ−Bϱ∥q), ∀ ϱ ∈ H.

i.e., ∥A − B∥q ≤ s(∥A − C∥q + ∥C − B∥q) implies db(A,B) ≤ s(db(A,C) +
db(C,B)).

Therefore, space (L(H), db) is a complete-b MS, where db(A,B) = ∥A−B∥q with
s = 2q−1, ∀A,B ∈ L(H) and q > 1.
Consider the operator equation

Y −
∞∑

n=1
B∗

nF (Y )Bn = Q; (6.3.1)

where Y ∈ L(H), Q ∈ L(H)+, Bn be a sequence of bounded linear operator on
L(H) and F is operator valued functions on L(H). We will utilized the Theorem
6.2.11 to show the existence of the unique solution to the operator equation.

Theorem 6.3.1. Let Bn be a sequence of non-zero bounded linear operators with
∞∑

n=1
∥Bn∥2 = η is finite. Consider the assumption ∃κ ∈ R+ s.t. ∥F (Y ) −F (Ω)∥ ≤

κ√
2∥Y −Ω∥, ∀Y ̸= Ω ∈ L(H). Then, the operator equation (6.3.1) has exactly one

solution if ηκ < 1.

148



Proof. Define the self mappings S on L(H) as

S(Y ) = Q+
∞∑

n=1
B∗

nF (Y )Bn

For α : L(H) ×L(H) → (0,∞) defined as α(Y,Ω) = 2. Clearly S is α-admissible.
To prove S is α-admissible (ϕ−ψ) generalized contraction, consider the following

db(S(Y ), S(Ω)) = ∥S(Y ) − S(Ω)∥2

= ∥
∞∑

n=1
B∗

nF (Y )Bn −
∞∑

n=1
B∗

nF (Ω)Bn∥2

≤ ∥
∞∑

n=1
B∗

n

(
F (Y ) − F (Ω)

)
Bn∥2

≤

 ∞∑
n=1

∥B∗
n∥∥F (Y ) − F (Ω)∥∥Bn∥

2

≤

 ∞∑
n=1

∥Bn∥2 κ√
2

∥Y − Ω∥

2

=
(
η
κ√
2

∥Y − Ω∥
)2

,

or

α(Y,Ω)db(S(Y ), S(Ω)) =
(
ϱϱ∥Y − Ω∥

)2 = kd(Y,Ω) ≤ kMS,T (Y,Ω),

i.e., ϕ
(
α(Y,Ω)db(S(Y ), T (Ω))

)
≤ ψ(ϕ(MS,T (Y,Ω))), where ϕ(t) = t and

ψ(t) = kt, where k = √
ηκ ∈ [0, 1).

As, S fulfills all the requirements of Theorem 6.2.13. Therefore, S possesses
exactly one fixed point. i.e., the operator equations (6.3.1) has exactly one solu-
tion.

6.4 Existence of Solution to Non-Linear Func-
tional Integral Equation

In this section, we discussed the existence of the solution for the non-linear func-
tional integral equation using Theorem 6.2.6. Additionally, some illustrative ex-
amples are discussed at the end of this section to support our findings.ϱ(z) = g(z, ϱ(z)) + f

(
z,
∫ z

0 u
(
z, s, ϱ(s)

)
ds, ϱ

(
α(z)

))
for z ∈ I

g(z, ϱ(z)) ≥ 1 for z ∈ I.
(6.4.1)
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Considering the following:

H1) The function g : [0, 1] × R → R is continuous and ∃a1 : [0, 1] → [0, 1] s.t.

|g(z, ϱ1) − g(z, ϱ2)| ≤ a1(z)|ϱ1 − ϱ2|;

H2) The function f : [0, 1] ×R×R → R is continuous and ∃a2, a3 : [0, 1] → [0, 1]
s.t.

|f(z, ϑ1, ϱ) − f(z, ϑ2, ϱ)| ≤ a2(z)|ϑ1 − ϑ2|

|f(z, ϑ, ϱ1) − f(z, ϑ, ϱ2)| ≤ a3(z)|ϱ1 − ϱ2|;

H3) The function u : [0, 1]× [0, 1]×R → R is continuous and ∃ a4 : [0, 1] → [0, 1]
s.t.

|u(z, s, ϱ1) − u(z, s, ϱ2)| ≤ a4(z)|ϱ1 − ϱ2|;

H4) 2k + k2 < 1, where k = max
1≤i≤4

 sup
z∈[0,1]

|ai(z)|
.

Theorem 6.4.1. Under the above mentioned assumptions the non-linear func-
tional integral equation (6.4.1) has a solution.

Proof. We consider the set Y = {ϱ ∈ C[0, 1] : ϱ(z) > 0) ∀z ∈ [0, 1]} and define
the relation R on Y as

(ϱ, ϑ) ∈ R whenever ϱ(z).ϑ(z) ≥ ϱ(z) ∨ ϑ(z),∀z ∈ [0, 1].

Then, (Y, db) is a b-MS with db(ϱ, ϑ) = sup
z∈[0,1]

|ϱ(z) − ϑ(z)|p. Suppose ϱ0 = 1, then

(ϱ0, ϱ) ∈ R ∀ϱ ∈ Y . Let {ϱn} be an R-preserving Cseq and ϱn ∈ C[0, 1]. It
can be easily shown that {ϱn} converges uniformly to some ϱ ∈ C[0, 1]. Then,
for t ∈ [0, 1] using definition of R-preserving ϱn(t).ϱn+1(t) ≥ ϱn(t) ∨ ϱn+1(t). As,
{ϱn(t) > 0}, therefore ∃ an subsequence {ϱnk

} s.t. ϱnk
≥ 1. Also, {ϱnk

} converges
to ϱ, i.e., ϱ(t) ≥ 1, ∀t ∈ [0, 1]. Hence, ϱ ∈ Y .
Now, we define the self mapping T : Y → Y as

T
(
ϱ(z)

)
= g

(
z, ϱ(z)

)
+ f

(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϱ

(
α(z)

))
.

Clearly, the fixed points of the self mapping T are the solutions of (6.4.1). To
prove T satisfies all the conditions of Theorem 6.2.6, we shall prove that

150



(i) R is T -closed
Let

(
ϱ(z), ϑ(z)

)
∈ R i.e., ϱ(z).ϑ(z) ≥ ϱ(z) ∨ ϑ(z). Then,

Tϱ(z) = g(z, ϱ(z)) + f
(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϱ(α(z))

)
≥ 1,

or

Tϱ(z).Tϑ(z) ≥ Tϑ(z),

i.e.,
(
Tϱ(z), Tϑ(z)

)
∈ R.

(ii) T is (ϕ− ψ) generalized R-contraction

|Tϱ(z) − Tϑ(z)| =
∣∣∣∣∣g (z, ϱ(z))+ f

(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϱ

(
α(z)

))
− g

(
z, ϑ(z)

)
−f

(
z,
∫ z

0
u
(
z, s, ϑ(s)

)
ds, ϑ

(
α(z)

))∣∣∣∣∣
≤

∣∣∣∣∣g (z, ϱ(z))− g
(
z, ϑ(z)

)∣∣∣∣∣+∣∣∣∣∣f
(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϱ

(
α(z)

))

−f
(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϑ

(
α(z)

))∣∣∣∣∣+∣∣∣∣∣f
(
z,
∫ z

0
u
(
z, s, ϱ(s)

)
ds, ϑ

(
α(z)

))

−f
(
z,
∫ z

0
u
(
z, s, ϑ(s)

)
ds, ϑ

(
α(z)

))∣∣∣∣∣
≤ a1(z)|ϱ(z) − ϑ(z)| + a2(z)

∣∣∣∣∫ z

0
u(z, s, ϱ(s)) −

∫ z

0
u
(
z, s, ϑ(s)

)∣∣∣∣
+a3(z)|ϱ

(
α(z)

)
− ϑ

(
α(z)

)
|

≤
(
a1(z) + a3(z)

)
|ϱ(z) − ϑ(z)|

+a2(z)
∫ z

0
|u
(
z, s, ϱ(s)

)
− u

(
z, s, ϑ(s)

)
|ds

≤
(
a1(z) + a3(z)

)
|ϱ(z) − ϑ(z)| + a2(z)a4(z)|ϱ(z) − ϑ(z)|.
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Therefore,

ϕ(db(Tϱ, Tϑ)) = sup
t∈[0,1]

|Tϱ(z) − Tϑ(z)|p

≤ sup
z∈[0,1]

[ (
a1(z) + a3(z)

)
|ϱ(z) − ϑ(z)|

+a2(z)
∫ t

0
|u
(
z, s, ϱ(s)

)
− u

(
z, s, ϑ(s)

)
|ds
]p

≤ sup
z∈[0,1]

[ (
a1(z) + a3(z) + a2(z)a4(z)

)
|ϱ(z) − ϑ(z)|

]p

≤ sup
z∈[0,1]

[ (
2k + k2

)
|ϱ(z) − ϑ(z)|

]p

= κpdb(ϱ, ϑ)

≤ ψ
(
ϕ
(
MT (ϱ, ϑ)

))
,

for ϕ(z) = z and ψ(z) = κpz < z, where κ = 2k + k2.

(iii) T is R-continuous
Let {ϱn} be an R-sequence converging to ϱ ∈ Y . Using the first part of
the proof ϱ(z) ≥ 1 ∀z ∈ I, hence ϱn(z)ϱ(z) ≥ ϱn(z) ∀n ∈ N and all z ∈ I,
therefore ϱnRϱ.
From the above part of the proof

db(Tϱn, Tϱ) = sup
z∈[0,1]

|Tϱn(z) − Tϱ(z)|p

≤ kp sup
z∈[0,1]

|ϱn(z) − ϱ(z)|p

= kpdb (ϱn, ϱ) ,

implies {Tϱn} be an R-sequence converging to Tϱ ∈ Y .

Therefore, T satisfies all the requirements of Theorem 6.2.6. Hence, T has a fixed
point i.e., non-linear functional integral equation (6.4.1) has a solution.

Example 6.4.2. Consider the following fractional integral equation of the typeϱ(z) = g(z) + a(z)
Γ(α)

∫ z
0 b(s)(z − s)α−1ϱ(s)ds for z ∈ I

g(z) ≥ 1 for z ∈ I.

The existence of the solution of this integral equation can be observed by Theorem
6.4.1 with g(z, ϱ(z)) = g(z), f(z, ϑ(z), ϱ(α(z))) = a(z)

Γ(α)ϑ(z), u(z, s, ϱ(s)) = b(s)(z−
s)α−1ϱ(s).
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Example 6.4.3. Volterra-Urysohn type integral equationϱ(z) = g(z) +
∫ z

0 u(z, s, ϱ(s))ds for z ∈ I

g(z) ≥ 1 for z ∈ I.

has a solution under the requirements of Theorem 6.4.1.

Example 6.4.4. Consider the following equation

ϱ(z) = 3 cos
(

1
1 + 2z

)
+ z

7

∫ z

0
s cos(ϱ(s))ds.

Here, g(z, ϱ) = 3 cos
(

1
1+2z

)
, f(z, ϑ, ϱ) = ϑ

7 , u(z, s, ϱ(s)) = zs cos ϱ(s) with
a1(z) = 0, a2(z) = 1√

7 , a3(z) = 0 and a4(z) = z√
7 . Therefore, for k = 1√

7 all the
conditions of Theorem 6.4.1 are fulfilled.

6.5 Conclusion

In this chapter, we have introduced a novel approach for finding solutions to a
class of non-linear functional integral equations within a b-MS equipped with a
binary relation. Some common fixed point results are established in b-MS, which
were then reduced to fixed point results for single mappings. The results presented
in this chapter extend and generalize various existing fixed point results from the
literature.

• If s = 1, Theorem 3.1 of Alam and Imdad (2015), Theorem 3.8, Theorem 3.9
of Gopal et al. (2016), Theorem 2.2 of Samet et al. (2012) can be deduced
as the consequences of Corollary 6.2.7 and Corollary 6.2.14.

• If R = Ω × Ω, Theorem 1 and Theorem 3 of Czerwik (1993), Theorem 1,
Theorem 2 and Theorem 3 of Kir and Kiziltunc (2013), Theorem 2 of Dubey
et al. (2014), Theorem 3.5 of Pant and Panicker (2016) can be deduced as
the consequences of Corollary 6.2.7.

• If s = 1 and R = Ω × Ω, Theorem 2.1 of Wardowski (2012), Theorem 2.4 of
Wardowski and Dung (2014) and Theorem 2.1 of Piri and Kumam (2014)
can be deduced as the consequences of Corollary 6.2.7.

As applications of the proved results, the existence of solution to a class of non-
linear functional integral equation and an operator equation are established.

153



*******

154



Chapter 7

Some Fixed Point Results in
m-Metric Space

7.1 Introduction

The present chapter delves into the study of fixed point results within the recently
developed framework of m-metric spaces, providing both theoretical extension ac-
companied by some illustrations. This chapter has two main sections. In the
first section, we explore various fixed point results for self mappings in m-metric
spaces using interpolative-type contractions and (ϕ−ψ) Wardowski contractions.
It has been highlighted that many in the existing literature are special cases of
our findings. Several illustrative examples are provided to validate and elucidate
these theoretical results.
The second section introduces a novel perspective on contraction mappings in m-
metric spaces, particularly highlighting the cases where traditional metric space
results are not applicable but their extended versions in m-metric spaces succeed.
Unlike classical Banach contraction mappings, the requirement for continuity is
relaxed in m-metric space, broadening its applicability. Also, we have compared
the behaviour of contraction mappings for metric spaces and m-metric spaces,
graphically. At last, we extend the scope by establishing results for the exis-
tence of common fixed points for pairs and triples of self mappings in incomplete
spaces. These findings are supported by detailed numerical iterations, examples,
and graphical representations to approximate the common fixed points effectively.
This is a sample text in blue.zxvzvvvvvvvvvvvvvvvvvvvvv
ghgjkjhjjjjjjjjjjjjjjjjhhhhhhhhhhhhjjjjjjjjkkkkkkkkkkkkk
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The results of the chapter are presented in 1 2.

7.2 Comparison of Various Contraction in Met-
ric Spaces and m-Metric Space

In this section, we have explored how fixed point theorems in m-MS represent a
true generalization of those in MS. The procedure for determining the respective
contraction constant within an abstract metric space is discussed. Some illustra-
tive examples where traditional fixed point theorems fail, but the contractions in
m-MS guarantee the existence of a fixed point are presented. Also, the algorithms
to determine the Banach and Kannan contraction constants are presented.

Algorithm 1 How to find Banach Contraction constant with an distance function
(δ)?

1: Initialize max_k = 0 {To track the maximum contraction constant}
2: for each pair of distinct points (ζ, υ) in the set X do
3: Calculate the distance between the points:

RHS = δ(ζ, υ)
4: Calculate the distance between their images under F :

LHS = δ(F (ζ), F (υ))
5: Calculate the contraction ratio:

kζ,υ = LHS
RHS

6: if kζ,υ > max_k then
7: Update max_k = kζ,υ

8: end if
9: if max_k ≥ 1 then

10: return "Not a Banach contraction" {Early exit if contraction condition
fails}

11: end if
12: end for
13: return max_k {Return Banach contraction constant if all kζ,υ < 1}

Example 7.2.1. Consider the m-MS ([0, 2],m) , where m : [0,∞)×[0, 2] → [0,∞)

1Yadav, K., & Kumar, D. Some fixed point result in m-metric space using different con-
tractions, In: Tomar, A., Jain, M. (eds) Banach Contraction Principle. Industrial and Ap-
plied Mathematics. Springer, Singapore.Banach Contraction Principle: A Centurial Journey,
Springer (Accepted)

2Yadav, K., & Kumar, D. (2025). Common Fixed Point Theorems for Discontinuous Map-
pings in m-Metric Space and Numerical Approximations, Journal of Computational and Applied
Mathematics, 470, 116720
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Algorithm 2 How to find Kannan Contraction constant with an distance function
(δ)?

1: Initialize max_k = 0 {To track the maximum contraction constant}
2: for each pair of distinct points (ζ, υ) in the set X do
3: Calculate the distance between the points:

RHS = δ(ζ, υ)
4: Calculate the distance between their images under F :

LHS = δ(ζ, F (ζ)) + δ(υ, F (υ))
5: Calculate the contraction ratio:

kζ,υ = LHS
RHS

6: if kζ,υ > max_k then
7: Update max_k = kζ,υ

8: end if
9: if max_k ≥ 1

2 then
10: return "Not a Kannan contraction" {Early exit if contraction condition

fails}
11: end if
12: end for
13: return max_k {Return Kannan contraction constant if all kζ,υ <

1
2}

defined as m(ζ, υ) = ζ+υ
2 . Let the self mapping F be defined as

Fζ =


ζ2

5 , if ζ < 1
1

ζ+9 , otherwise.
,

Then, F is a contraction w.r.t the m-metric m i.e., m(Fζ, Fυ) ≤ km(ζ, υ), ∀ζ ∈
[0, 2). One can verify the following cases:
Case (i) Let ζ, υ < 1. Then,

m(Fζ, Fυ) = 1
2

(
ζ2

5 + υ2

5

)

≤ 1
2

(
ζ

5 + υ

5

)

≤ 1
5m(ζ, υ).
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Case (ii) Let ζ < 1 and υ ≥ 1. Then,

m(Fζ, Fυ) = 1
2

(
ζ2

5 + 1
υ + 9

)

≤ 1
2

(
ζ

5 + 1
10

)

≤ 1
2

(
ζ

5 + 1
5

)

≤ 1
5m(ζ, υ).

Case (iii) Let ζ, υ ≥ 1. Then,

m(Fζ, Fυ) = 1
2

(
1

ζ + 9 + 1
υ + 9

)

≤ 1
2

(
1
10 + 1

10

)

≤ 1
2

(
ζ

5 + υ

5

)

≤ 1
5m(ζ, υ).

Clearly, F satisfies Banach contraction in m-MS. But one can easily verify that
for usual metric d(ζ, υ) = |ζ − υ|, F does not satisfies the Banach contraction
Principle. From figures 7.2.1 and 7.2.1, one can verify that there is no such
k ∈ [0, 1) for which d(Fζ, Fυ) ≤ kd(ζ, υ) ∀ζ, υ ∈ [0, 2] holds.

Figure 7.1: Banach contraction w.r.t. the usual metric
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Figure 7.2: Banach contraction w.r.t. m-metric

Example 7.2.2. Consider the m-MS ([0, 2],m) , where m : [0, 2] × [0, 2] → [0,∞)
defined as m(ζ, υ) = ζ+υ

2 and the self mapping F be defined as

Fζ =


ζ
3 , if ζ < 1
1
7 , otherwise.

,

Then, F is a Kannan contraction w.r.t the m-metric m i.e., m(Fζ, Fυ) ≤ k(m(ζ, Fζ)+
m(Fυ, υ)), ∀ζ ∈ [0, 2). One can verify the following cases:
Case (i) Let ζ, υ < 1. Then,

m(Fζ, Fυ) = 1
2

(
ζ

3 + υ

3

)

≤ 1
3

1
2

(
ζ + ζ

3

)
+ 1

2

(
υ + υ

3

)
≤ 1

3
(
m(ζ, Fζ) + m(υ, Fυ)

)
.

Case (ii) Let ζ < 1 and υ ≥ 1. Then,

m(Fζ, Fυ) = 1
2

(
ζ

3 + 1
7

)
= 1

3

1
2

(
ζ + 3

7

)
≤ 1

3

1
2

(
ζ + ζ

3

)
+ 1

2

(
1 + 1

7

)
≤ 1

3
(
m(ζ, Fζ) + m(υ, Fυ)

)
.

159



Case (iii) Let ζ, υ ≥ 1. Then,

m(Fζ, Fυ) = 1
2

(
1
7 + 1

7

)
= 1

3

1
2

(
3
7 + 3

7

)
≤ 1

3

1
2

(
1 + 1

7

)
+ 1

2

(
1 + 1

7

)
≤ 1

3
(
m(ζ, Fζ) + m(υ, Fυ)

)
.

Clearly, F satisfies Kannan contraction in m-MS. But one can easily verify that
for usual metric d(ζ, υ) = |ζ − υ|, F does not satisfies the Kannan contraction.
From figures 7.2.2 and 7.2.2, one can graphically visualize that there is no such
k ∈ [0, 1/2) for which d(Fζ, Fυ) ≤ k(d(ζ, Fζ) + d(υ, Fυ)) ∀ζ, υ ∈ [0, 2] holds.

Figure 7.3: Kannan contraction w.r.t. the usual metric

7.3 Some Fixed Point Results in m-Metric Space

In this section, we gave the definition of interpolative m-contraction of Riech-Rus-
Ćirić type and (ϕ − ψ) Wardowski contraction and presented some fixed point
results using these contraction in m-MS.

Definition 7.3.1. A self mapping Γ : Ω → Ω defined on a m-MS (Ω, ϖ) is c.t.b.
a Riech-Rus-Ćirić type interpolative m-contraction if ∃ constants λ ∈ [0, 1) and
a, b ∈ (0, 1) s.t.

ϖ(Γϱ,Γϑ) ≤ λ
(
ϖ(ϱ, ϑ)aϖ(ϱ,Γϱ)bϖ(ϑ,Γϑ)1−a−b

)
, (7.3.1)
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Figure 7.4: Kannan contraction w.r.t. the m-metric

∀ϱ, ϑ ∈ Ω with ϱ ̸= Γϱ, ϑ ̸= Γϑ,ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ) ̸= 0.

Theorem 7.3.2. Let (Ω, ϖ) be a complete m-MS, and Γ : Ω → Ω is a Riech-Rus-
Ćirić type interpolative m-contraction, then Γ has a fixed point.

Proof. For ϱ0 ∈ Ω, define the Picard sequence defined as ϱℏ = Γϱℏ−1, ∀ℏ ∈ N. If
∃ a non negative integer ℏ0 s.t. ϱℏ0 = ϱℏ0−1, then Γϱℏ0−1 = ϱℏ0 = ϱℏ0−1 implies
ϱℏ0−1 is a fixed point of the mapping Γ.
As, Γ : Ω → Ω is a Riech-Rus-Ćirić-type interpolative m-contraction, therefore,
from Definition (7.3.1), we have

ϖ(ϱℏ+1, ϱℏ) = ϖ(Γϱℏ,Γϱℏ−1)
≤ λ

(
(ϖ(ϱℏ, ϱℏ−1))a(ϖ(ϱℏ,Γϱℏ))b(ϖ(ϱℏ−1,Γϱℏ−1))1−a−b

)
= λ

(
(ϖ(ϱℏ, ϱℏ−1))a(ϖ(ϱℏ, ϱℏ+1))b(ϖ(ϱℏ−1, ϱℏ))1−a−b

)
⇔
(
ϖ(ϱℏ+1, ϱℏ)

)1−b = λ
(
ϖ(ϱℏ, ϱℏ−1)

)1−b

⇔ ϖ(ϱℏ+1, ϱℏ) = λ
1

1−bϖ(ϱℏ, ϱℏ−1).

Since, λ
1

1−b < 1, therefore, from Lemma 4.2.15, we have

lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ) = 0, (7.3.2)
lim

ℓ,ℏ→∞
ϖϱℏ,ϱℓ

= 0, (7.3.3)

lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0 (7.3.4)
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and ϱℏ is an m-Cseq. Since, (Ω, ϖ) is complete, therefore ∃ϱ ∈ Ω s.t. ϱℏ → ϱ.
Which implies

lim
ℏ→∞

ϖ(ϱℏ, ϱ) −ϖϱℏϱ = 0 and lim
ℏ→∞

Mϱℏ,ϱ −ϖϱℏ,ϱ = 0. (7.3.5)

Also, using (7.3.4), we have

lim
ℏ→∞

ϖϱℏ,ϱ ≤ lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0. (7.3.6)

Using, (7.3.5), (7.3.6) and Lemma 1.2.10 , we have

lim
ℏ→∞

Mϱℏ,ϱ = 0, lim
ℏ→∞

ϖ(ϱℏ, ϱ) = 0 and ϖ(ϱ, ϱ) = 0. (7.3.7)

and

ϖϱ,Γϱ = min{ϖ(ϱ, ϱ), ϖ(Γϱ,Γϱ)} ≤ ϖ(ϱ, ϱ) = 0. (7.3.8)

ϖ(Γϱℏ,Γϱ) ≤ λ
((
ϖ(ϱℏ, ϱ)

)a (ϖ(ϱℏ,Γϱℏ)
)b (ϖ(ϱ,Γϱ)

)1−a−b
)

= λ
((
ϖ(ϱℏ, ϱ)

)a (ϖ(ϱℏ, ϱℏ+1)
)b (ϖ(ϱ,Γϱ)

)1−a−b
)
.

Taking limit as ℏ → ∞ and using (7.3.2), we have

lim
ℏ→∞

ϖ(Γϱℏ,Γϱ) = 0. (7.3.9)

As a consequence of (7.3.9), we have

lim
ℏ→∞

ϖΓϱℏ,Γϱ = lim
ℏ→∞

min{ϖ(Γϱℏ,Γϱℏ), ϖ(Γϱ,Γϱ)} ≤ lim
ℏ→∞

ϖ(Γϱℏ,Γϱ) = 0. (7.3.10)

or

lim
ℏ→∞

ϖ(Γϱℏ,Γϱ) −ϖΓϱℏ,Γϱ = 0,

which impliesΓϱℏ converges to Γϱ.
Similarly, we have

lim
ℏ→∞

ϖ(ϱℏ, ϱℏ+1) = lim
ℏ→∞

ϖ(ϱℏ,Γϱℏ) = 0

and

lim
ℏ→∞

ϖϱℏ,Γϱℏ ≤ lim
ℏ→∞

ϖ(ϱℏ,Γϱℏ) = 0.

Now, ϱℏ and Γϱℏ converges to ϱ and Γϱ. From Lemma 1.2.8, we have

lim
ℏ→∞

ϖ(ϱℏ,Γϱℏ) −ϖϱℏ,Γϱℏ = ϖ(ϱ,Γϱ) −ϖϱ,Γϱ = 0. (7.3.11)
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Consider

ϖ(Γϱ,Γϱ) ≤ λ
((
ϖ(ϱ, ϱ)

)a (ϖ(ϱ,Γϱ)
)b (ϖ(ϱ,Γϱ)

)1−a−b
)

= 0. (7.3.12)

Using (7.3.8), (7.3.11) and (7.3.12), we have

ϖ(ϱ, ϱ) = ϖ(ϱ,Γϱ) = ϖϱ,Γϱ.

Hence, Γϱ = ϱ i.e., ϱ is a fixed point of Γ.

Definition 7.3.3. A self mapping Γ : Ω → Ω defined on a non- empty m-MS
(Ω, ϖ) is c.t.b. a (λ − a − b − c) type interpolative m-contraction if ∃ constants
λ ∈ [0, 1) and a, b, c ∈ (0, 1) with a+ b+ c < 1 s.t. Γ satisfies the following

ϖ(Γϱ,Γϑ) ≤ λ
((
ϖ(ϱ, ϑ)

)a (ϖ(ϱ,Γϱ)
)b (ϖ(ϑ,Γϑ)

)c) , (7.3.13)

∀ϱ, ϑ ∈ Ω with ϱ ̸= Γϱ, ϑ ̸= Γϑ,ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ) ̸= 0.

Theorem 7.3.4. Let (Ω, ϖ) be a complete m-MS, and Γ : Ω → Ω be a (λ−a−b−c)
type interpolative m contraction, then Γ has a fixed point.

Proof. For ϱ0 ∈ Ω, define the Picard sequence defined as ϱℏ = Γϱℏ−1 ∀ℏ ∈ N. If
∃ a non negative integer ℏ0 s.t. ϱℏ0 = ϱℏ0−1, then Γϱℏ0−1 = ϱℏ0 = ϱℏ0−1 implies
ϱℏ0−1 is a fixed point of the mapping Γ.
As, Γ : Ω → Y is a of (λ− a− b− c) type interpolative m-contraction, therefore,
from Definition (7.3.3), we have

ϖ(ϱℏ+1, ϱℏ) = ϖ(Γϱℏ,Γϱℏ−1)
≤ λ

((
ϖ(ϱℏ, ϱℏ−1)

)a (ϖ(ϱℏ,Γϱℏ)
)b (ϖ(ϱℏ−1,Γϱℏ−1)

)c)
= λ

((
ϖ(ϱℏ, ϱℏ−1)

)a (ϖ(ϱℏ, ϱℏ+1)
)b (ϖ(ϱℏ−1, ϱℏ)

)c) ,
or

(
ϖ(ϱℏ+1, ϱℏ)

)1−b ≤ λ
(
ϖ(ϱℏ, ϱℏ−1)

)a+c ,

or

ϖ(ϱℏ+1, ϱℏ) = λ
1

1−bϖ(ϱℏ, ϱℏ−1)
a+c
1−b

≤ λ
1

1−bϖ(ϱℏ, ϱℏ−1).
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Since λ
1

1−b < 1, therefore by Lemma 1.2.10, we have

lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ) = 0,
lim

ℓ,ℏ→∞
ϖϱℏ,ϱℓ

= 0,

lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0

and ϱℏ is an m-Cseq.
The remaining proof can be done on the similar lines of Theorem 7.3.2.

Example 7.3.5. Consider a set Ω = {0, 1, 2, 3} with ϖ(ϱ, ϑ) = |ϱ− ϑ|+1. Then,
clearly (Ω, ϖ) be an m-MS. A self mapping Γ is defined on Ω as Γ(0) = 0,Γ(1) =
1,Γ(2) = Γ(3) = 1. Then Γ satisfies all the conditions of Theorem 7.3.2 with
λ = 3

4 , a = 1
3 , b = 1

3 .
Case(i) For ϱ = ϑ = 2, we have

ϖ(Γϱ,Γϑ) = ϖ(Γ(2),Γ(2)) = ϖ(1, 1) = 1.

ϖ(ϱ, ϑ) = ϖ(2, 2) = 1;ϖ(ϱ,Γϱ) = ϖ(2,Γ(2)) = ϖ(2, 1) = 2 = ϖ(ϑ,Γϑ).

Then,

λ(ϖ(ϱ, ϑ))a(ϖ(ϱ,Γϱ))b(ϖ(ϑ,Γϑ))1−a−b = 1.19 ≥ 1 = ϖ(Γϱ,Γϑ).

Case(ii) For ϱ = ϑ = 3, we have

ϖ(Γϱ,Γϑ) = ϖ(Γ(3),Γ(3)) = ϖ(1, 1) = 1.

ϖ(ϱ, ϑ) = ϖ(3, 3) = 1;ϖ(ϱ,Γϱ) = ϖ(3,Γ(3)) = ϖ(3, 1) = 3 = ϖ(ϑ,Γϑ)

Then,

λ(ϖ(ϱ, ϑ))a(ϖ(ϱ,Γϱ))b(ϖ(ϑ,Γϑ))1−a−b = 1.56 ≥ 1 = ϖ(Γϱ,Γϑ)

Case(iii) For ϱ = 2 and ϑ = 3, we have

ϖ(Γϱ,Γϑ) = ϖ(Γ(2),Γ(3)) = ϖ(1, 1) = 1.

ϖ(ϱ, ϑ) = ϖ(2, 3) = 2;ϖ(ϱ,Γϱ) = ϖ(2,Γ(2)) = ϖ(2, 1) = 2;ϖ(ϑ,Γϑ) = ϖ(3,Γ(3)) = ϖ(3, 1) = 3.

Then,

λ(ϖ(ϱ, ϑ))a(ϖ(ϱ,Γϱ))b(ϖ(ϑ,Γϑ))1−a−b = 1.36 ≥ 1 = ϖ(Γϱ,Γϑ)

Therefore, Γ satisfies the hypotheses of Theorem 7.3.2. Hence, Γ has a fixed point.
Indeed, ϱ = 1, 2 are two fixed points of Γ.
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Definition 7.3.6. Let (Ω, ϖ) be an m-MS. A self mapping Γ : Ω → Ω is c.t.b.
(ϕ− ψ)-Wardowski type contraction, if

ϖ(Γϱ,Γϑ) > 0 ⇒ ϕ(ϖ(Γϱ,Γϑ)) ≤ ψ
(
ϕ
(
MΓ(ϱ, ϑ)

))
, (7.3.14)

where

MΓ(ϱ, ϑ) = max{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)},

∀ϱ, ϑ ∈ Ω.

Theorem 7.3.7. Let (Ω, ϖ) be a complete m-MS, and Γ : Ω → Ω be a (ϕ − ψ)-
Wadowski contraction with continuous function ψ and ϕ(0) = 0, then Γ possesses
exactly one fixed point.

Proof. For ϱ0 ∈ Ω, define the Picard sequence defined as ϱℏ = Γϱℏ−1 ∀ℏ ∈ N. If
∃ a non negative integer ℏ0 s.t. ϱℏ0 = ϱℏ0−1, then Γϱℏ0−1 = ϱℏ0 = ϱℏ0−1 implies
ϱℏ0−1 is a fixed point of the mapping Γ.
As, Γ : Ω → Ω is (ϕ− ψ)-Wardowski contraction, therefore, we have

ϕ(ϖ(ϱℏ+1, ϱℏ)) = ϕ(ϖ(Γϱℏ,Γϱℏ−1))
≤ ψ

(
ϕ
(
MΓ(ϱℏ, ϱℏ−1)

))
,

where

MΓ(ϱℏ, ϱℏ−1) = max{ϖ(ϱℏ, ϱℏ−1), ϖ(ϱℏ, ϱℏ+1), ϖ(ϱℏ−1, ϱℏ)}
= max{ϖ(ϱℏ, ϱℏ−1), ϖ(ϱℏ, ϱℏ+1)}.

If possible MΓ(ϱℏ, ϱℏ−1) = ϖ(ϱℏ, ϱℏ+1). Then

ϕ(ϖ(ϱℏ+1, ϱℏ)) ≤ ψ(ϕ(ϖ(ϱℏ, ϱℏ+1))) < ϕ(ϖ(ϱℏ, ϱℏ+1)),

a contradiction. Hence, MΓ(ϱℏ, ϱℏ−1) = ϖ(ϱℏ, ϱℏ−1).
Consider

ϕ(ϖ(ϱℏ+1, ϱℏ)) ≤ ψ(ϕ(ϖ(ϱℏ, ϱℏ−1))) < ϕ(ϖ(ϱℏ, ϱℏ−1)),
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implies ϖ(ϱℏ+1, ϱℏ) is a decreasing sequence.
Also,

ϕ
(
ϖ(ϱℏ+1, ϱℏ)

)
≤ ψ

(
ϕ
(
ϖ(ϱℏ, ϱℏ−1)

))
≤ ψ2

(
ϕ
(
ϖ(ϱℏ−1, ϱℏ−2)

))
...

≤ ψℏ
(
ϕ
(
ϖ(ϱ1, ϱ0)

))
.

Taking the limit as ℏ tends to ∞, we have

lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ) = 0. (7.3.15)

Also,

ϖϱℏ+1,ϱℏ = min{ϖ(ϱℏ+1, ϱℏ+1), ϖ(ϱℏ, ϱℏ)} (7.3.16)

Mϱℏ+1,ϱℏ = max{ϖ(ϱℏ+1, ϱℏ+1), ϖ(ϱℏ, ϱℏ)}. (7.3.17)

Taking the limit as ℏ tends to ∞, we have

lim
ℏ→∞

ϖϱℏ+1,ϱℏ = 0, lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0 and lim
ℏ→∞

Mϱℏ+1,ϱℏ = 0. (7.3.18)

If possible {ϱℏ} is not m-Cauchy. Then, for ϵ > 0 ∃ two subsequences ϱℏκ ̸= ϱℓκ

s.t.

d(ϱℏκ , ϱℓκ) > ϵ, (7.3.19)

and

d(ϱℏκ−1 , ϱℓκ) ≤ ϵ, (7.3.20)

where, d(ϱ, ϑ) = ϖ(ϱ, ϑ) − 2ϖϱ,ϑ +Mϱ,ϑ ∀ϱ, ϑ ∈ Ω is a metric.
Using triangle inequality and (7.3.19), we have

ϵ < d(ϱℏκ , ϱℓκ)
≤ d(ϱℏκ , ϱℏκ−1) + d(ϱℏκ−1 , ϱℓκ).

Taking the limit as κ tends to ∞ and using (7.3.15), we have

lim
κ→∞

d(ϱℏκ , ϱℓκ) = ϵ. (7.3.21)
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Also, using triangle inequality, we have

d(ϱℏκ , ϱℓκ) ≤ d(ϱℏκ , ϱℏκ−1) + d(ϱℏκ−1 , ϱℓκ−1) + d(ϱℓκ−1 , ϱℓκ),

and

d(ϱℏκ−1 , ϱℓκ−1) ≤ d(ϱℏκ−1 , ϱℏκ) + d(ϱℏκ , ϱℓκ) + d(ϱℓκ , ϱℓκ).

Taking the limit as κ tends to ∞ and using (7.3.15) and (7.3.21), we have

lim
κ→∞

d(ϱℏκ−1 , ϱℓκ−1) = ϵ. (7.3.22)

Using (7.3.18) in (7.3.21) and (7.3.22), we have

lim
κ→∞

ϖ(ϱℏκ , ϱℓκ) = ϵ and lim
κ→∞

ϖ(ϱℏκ−1 , ϱℓκ−1) = ϵ. (7.3.23)

Also, by continuity of ϕ, (7.3.14) and (7.3.23), we have

ϕ(ϵ) = lim
κ→∞

ϕ
(
ϖ(ϱℏκ , ϱℓκ)

)
= lim

κ→∞
ϕ
(
ϖ(Γϱℏκ−1 ,Γϱℓκ−1)

)
≤ lim

κ→∞
ψ
(
ϕ
(
MΓ(ϱℏκ−1 , ϱℓκ−1)

))
≤ lim

κ→∞
ψ

(
ϕ
(

max
{
ϖ(ϱℏκ−1 , ϱℓκ−1), ϖ(ϱℏκ−1 , ϱℏκ), ϖ(ϱℓκ−1 , ϱℓκ)

}))
< ϕ(ϵ),

which contradicts itself. Therefore, {ϱℏ} is a m-Cseq. As, Ω is an m-complete MS,
for some ϱ ∈ Ω, we have

lim
ℏ→∞

ϖ(ϱℏ, ϱ) − 2ϖϱℏ,ϱ +Mϱℏ,ϱ = 0. (7.3.24)

Also, from (7.3.18), we have

lim
ℏ→∞

ϖϱℏ,ϱ = lim
ℏ→∞

min{ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)} ≤ lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0. (7.3.25)

Using (7.3.25) and Lemma 1.2.9, we have

lim
ℏ→∞

Mϱℏ,ϱ = 0, ϖ(ϱ, ϱ) = 0 and ϖϱ,Γϱ = 0. (7.3.26)
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We claim that ϖ(ϱ,Γϱ) = 0. If feasible, let ϖ(ϱ,Γϱ) > 0, then consider the
following

ϕ(ϖ(ϱ,Γϱ) −ϖϱ,Γϱ) ≤ ϕ
(
ϖ(ϱ, ϱℏ) −ϖϱℏ,ϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏ,Γϱ

)
= lim sup

ℏ→∞
ϕ
(
ϖ(ϱ, ϱℏ) −ϖϱℏ,ϱ +ϖ(ϱℏ,Γϱ) −ϖϱℏ,Γϱ

)
= lim sup

ℏ→∞
ϕ
(
ϖ(ϱℏ,Γϱ) −ϖϱℏ,Γϱ

)
≤ lim sup

ℏ→∞
ϕ
(
ϖ(ϱℏ,Γϱ)

)
= ϕ

(
ϖ(Γϱℏ,Γϱ)

)
≤ lim sup

ℏ→∞
ψ
(
ϕ(MΓ(ϱℏ, ϱ))

)
≤ lim sup

ℏ→∞
ψ
(
ϕ
(
max{ϖ(ϱℏ, ϱ), ϖ(ϱℏ,Γϱℏ), ϖ(ϱ,Γϱ)}

))
≤ ψ

(
ϕ
(
ϖ(ϱ,Γϱ)

))
< ϕ

(
ϖ(ϱ,Γϱ)

)
,

a contradiction. Hence, ϖ(ϱ,Γϱ) = 0.
Next, we claim that ϖ(Γϱ,Γϱ) = 0. If possible, let ϖ(ϱ,Γϱ) > 0, then

ϕ(ϖ(Γϱ,Γϱ)) ≤ ψ
(
ϕ
(
MΓ(ϱ, ϱ)

))
≤ ψ

(
ϕ
(
max{ϖ(ϱ, ϱ), ϖ(ϱ,Γϱ)}

))
≤ ψ

(
ϕ(0)

)
< ϕ(0),

a contradiction. Hence, ϖ(Γϱ,Γϱ) = 0.
As we have already shown that ϖ(ϱ, ϱ) = ϖ(ϱ,Γϱ) = ϖ(Γϱ,Γϱ) = 0. Therefore,
ϱ = Γϱ.
Uniqueness: If feasible, let ϑ ̸= ϱ be another fixed point with ϖ(ϱ, ϱ) = 0 =
ϖ(ϑ, ϑ). If feasible, let ϖ(ϱ, ϑ) > 0, then

ϕ(ϖ(Γϱ,Γϑ)) ≤ ψ
(
ϕ
(
MΓ(ϱ, ϑ)

))
≤ ψ

(
ϕ
(
max{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)}

))
≤ ψ

(
ϕ(0)

)
< ϕ(0),

a contradiction. Therefore, ϖ(ϱ, ϑ) = 0 = ϖ(ϱ, ϱ) = ϖ(ϑ, ϑ), which implies
ϱ = ϑ.

Corollary 7.3.8. Let Γ : Ω → Ω be a mapping defined on complete m-MS (Ω, ϖ).
If ∃ λ ∈ (0, 1) s.t.

ϖ(Γϱ,Γϑ) ≤ λϖ(ϱ, ϑ) ∀ϱ, ϑ ∈ Ω.
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Then, Γ possesses exactly one fixed point.

Proof. Using ϕ(t) = t and ψ(t) = kt, for k ∈ (0, 1), we have

ϖ(Γϱ,Γϑ) ≤ λ(ϖ(ϱ, ϑ) ≤ λmax{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)} = λMΓ(ϱ, ϑ).

Thus, the result holds as a consequence of Theorem 7.3.7.

Corollary 7.3.9. Let Γ : Ω → Ω be a mapping defined on complete m-MS (Ω, ϖ).
If ∃λ ∈ (0, 1

2) s.t.

ϖ(Γϱ,Γϑ) ≤ λ
(
ϖ(ϱ,Γϱ) +ϖ(ϑ,Γϑ)

)
∀ϱ, ϑ ∈ Ω.

Then, Γ possesses exactly one fixed point.

Proof. Using ϕ(t) = t and ψ(t) = 2λt for λ ∈ (0, 1
2), we have

ϖ(Γϱ,Γϑ) ≤ λ(ϖ(ϱ,Γϱ)+ϖ(ϑ,Γϑ)) ≤ 2λmax{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)} = 2λMΓ(ϱ, ϑ).

Thus, the result holds as a consequence of Theorem 7.3.7.

Corollary 7.3.10. Let Γ : Ω → Ω be a mapping defined on complete m-MS
(Ω, ϖ). If ∃ai ≥ 0 with a0 + a1 + a2 ∈ (0, 1) s.t.

ϖ(Γϱ,Γϑ) ≤ aoϖ(ϱ, ϑ) + a1ϖ(ϱ,Γϱ) + a2ϖ(ϑ,Γϑ) ∀ϱ, ϑ ∈ Ω.

Then, Γ possesses exactly one fixed point.

Proof. Using ϕ(t) = t and ψ(t) = λt for λ = a0 + a1 + a2 ∈ [0, 1), we have

ϖ(Γϱ,Γϑ) ≤ aoϖ(ϱ, ϑ) + a1ϖ(ϱ,Γϱ) + a2ϖ(ϑ,Γϑ)
≤ (a0 + a1 + a2) max{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)}
= λMΓ(ϱ, ϑ).

Thus, the result holds as a consequence of Theorem 7.3.7.

Corollary 7.3.11. Let Γ : Ω → Ω be a mapping defined on complete m-MS
(Ω, ϖ). If ∃F ∈ F and τ > 0 s.t.

ϖ(Γϱ,Γϑ) > 0 ⇒ τ + F (ϖ(Γϱ,Γϑ)) ≤ F (ϖ(ϱ, ϑ)) ∀ϱ, ϑ ∈ Ω.

Then, Γ possesses exactly one fixed point.
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Proof. Using ϕ(z) = eF (z) and ψ(z) = e−τz for τ > 0 and F ∈ F, we have

τ + F (ϖ(Γϱ,Γϑ)) ≤ F (ϖ(ϱ, ϑ))
⇔ eF (ϖ(Γϱ,Γϑ)) ≤ e−τeF (ϖ(ϱ,ϑ))

≤ e−τeF max{ϖ(ϱ,ϑ),ϖ(ϱ,Γϱ),ϖ(ϑ,Γϑ)}.

Thus, the result holds as a consequence of Theorem 7.3.7.

Corollary 7.3.12. Let Γ : Ω → Ω be a mapping defined on complete m-MS
(Ω, ϖ). If ∃F ∈ F and τ > 0 s.t.

ϖ(Γϱ,Γϑ) > 0 ⇒ τ + F (ϖ(Γϱ,Γϑ)) ≤ F (MΓ(ϱ, ϑ)) ∀ϱ, ϑ ∈ Ω,

where MΓ(ϱ, ϑ) = max{ϖ(ϱ, ϑ), ϖ(ϱ,Γϱ), ϖ(ϑ,Γϑ)}. Then, Γ possesses exactly
one fixed point.

Proof. Using ϕ(z) = eF (z) and ψ(z) = e−τz for τ > 0 and f ∈ F in Theorem 7.3.7,
we have the required result.

Example 7.3.13. Consider Ω = [0,∞) along with ϖ(ϱ, ϑ) = ϱ+ϑ
2 , ∀ ϱ, ϑ ∈ Ω.

Here, (Ω, ϖ) is a complete m-MS. Consider the mapping Γ : Ω → Ω s.t.

Γ(ϱ) =


ϱ

7 , if ϱ ∈ [0, 4)
ϱ

ϱ+ 3 , if ϱ ≥ 4.

Now, we will prove that Γ satisfies Theorem 7.3.7 with ϕ(t) = t and ψ(t) = kt

where k ∈ (0, 1).
Case (i) For ϱ, ϑ < 4, we have

ϖ(Γϱ,Γϑ) = 1
2

(
ϱ

7 + ϑ

7

)

≤ 1
7

(
ϱ+ ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

7)
)

+ 1
4

(
1
2(ϱ+ ϱ

7)
)

≤
(

1
7 + 1

3 + 1
4

)
max

{
ϱ+ ϑ

2 ,
1
2(ϱ+ ϱ

7), 1
2(ϑ+ ϑ

7 )
}

≤ kMΓ(ϱ, ϑ),
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for k = 1
7 + 1

3 + 1
4 < 1.

Case (ii) For ϱ, ϑ ≥ 4, we have

ϖ(Γϱ,Γϑ) = 1
2

(
ϱ

ϱ+ 3 + ϑ

ϑ+ 3

)

≤ 1
2

(
ϱ

7 + ϑ

7

)
= 1

7

(
ϱ

2 + ϑ

2

)

≤ 1
7

(
ϱ

2 + ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

ϱ+ 3)
)

+ 1
4

(
1
2(ϑ+ ϑ

ϑ+ 3)
)

≤
(

1
7 + 1

3 + 1
4

)
max

{
ϱ+ ϑ

2 ,
1
2(ϱ+ ϱ

ϱ+ 3), 1
2(ϑ+ ϑ

ϑ+ 3)
}

≤ kMΓ(ϱ, ϑ),

for k = 1
7 + 1

3 + 1
4 < 1.

Case (iii) For ϱ < 4 and ϑ ≥ 4, we have

ϖ(Γϱ,Γϑ) = 1
2

(
ϱ

7 + ϑ

ϑ+ 4

)
≤ 1

2

(
ϱ

7 + ϑ

7

)

≤ 1
7

(
ϱ

2 + ϑ

2

)
+ 1

3

(
1
2(ϱ+ ϱ

ϱ+ 3)
)

+ 1
4

(
1
2(ϑ+ ϑ

ϑ+ 3)
)

≤
(

1
7 + 1

3 + 1
4

)
max

{
ϱ+ ϑ

2 ,
1
2(ϱ+ ϱ

ϱ+ 3), 1
2(ϑ+ ϑ

ϑ+ 3)
}

≤ kMΓ(ϱ, ϑ),

for k = 1
7 + 1

3 + 1
4 < 1.

Therefore, Γ satisfies Theorem 7.3.7. Hence, Γ possesses exactly one fixed point.
Indeed, ϱ = 0 is the unique fixed point of Γ.

7.4 Some Common Fixed Point Results in m-
Metric Space

In this section, we present various fixed point results within the framework of
m-MS, employing different generalized contraction conditions. From these proven
results, we can derive several additional fixed point theorems in the existing lit-
erature.

Definition 7.4.1. Let (Ω, ϖ) be an m-MS. A self mapping Γ1 is c.t.b. self dis-
tance contraction on Ω if ∃k0 ∈ [0, 1) s.t.

ϖ(Γ1ϱ,Γ1ϱ) ≤ k0
(
ϖ(ϱ, ϱ)

)
, (7.4.1)
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∀ϱ ∈ Ω.

Theorem 7.4.2. Let Γ1,Γ2 : Ω → Ω be mappings defined on complete m-MS
(Ω, ϖ) and Y be a complete subspace of Ω s.t. Γ1(Ω)∪Γ2(Ω) ⊆ Y . Suppose Γ1,Γ2

satisfy

(i) ∃α, β, γ ≥ 0 with α + β + γ < 1 s.t.

ϖ(Γ1ϱ,Γ2ϑ) ≤ αϖ(ϱ, ϑ) + βϖ(ϱ,Γ1ϱ) + γϖ(ϑ,Γ2ϑ), (7.4.2)

∀ϱ, ϑ ∈ Ω;

(ii) Γ1,Γ2 are self distance contraction mappings.

Then, the pair (Γ1,Γ2) possesses exactly one common fixed point.

Proof. Let ϱ0 ∈ Ω be any point. Consider the sequence {ϱℏ} generated by map-
pings Γ1,Γ2 with initial point ϱ0 as

ϱ1 = Γ1ϱ0, ϱ2 = Γ2ϱ1, ... ϱ2ℏ+1 = Γ1ϱℏ, ϱ2ℏ+2 = Γ2ϱ2ℏ+1.

Now, consider

ϖ(ϱ2ℏ+1,ϱ2ℏ) = ϖ(Γ1ϱ2ℏ,Γ2ϱ2ℏ−1)
≤ αϖ(ϱ2ℏ, ϱ2ℏ−1) + βϖ(ϱ2ℏ, ϱ2ℏ+1) + γϖ(ϱ2ℏ−1, ϱ2ℏ),

⇔ (1 − β)ϖ(ϱ2ℏ+1, ϱ2ℏ) ≤ (α + γ)ϖ(ϱ2ℏ, ϱ2ℏ−1),

⇔ ϖ(ϱ2ℏ+1, ϱ2ℏ) ≤ α + γ

1 − β
ϖ(ϱ2ℏ, ϱ2ℏ−1),

or

ϖ(ϱ2ℏ+1, ϱ2ℏ) ≤ κϖ(ϱ2ℏ, ϱ2ℏ−1),

where κ = α+γ
1−β

< 1. Without loss of generality, we have

ϖ(ϱℏ+1, ϱℏ) ≤ κϖ(ϱℏ, ϱℏ−1).

Therefore, by Lemma 1.2.10, {ϱℏ} is m-Cauchy. Further, as Y is m-complete.
Therefore, ∃ϱ ∈ Y s.t.

lim
ℏ→∞

ϖ(ϱℏ, ϱ) −ϖϱℏϱ = 0 = lim
ℏ→∞

Mϱℏϱ −ϖϱℏϱ. (7.4.3)
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Using Lemma 1.2.10, we have

lim
ℏ→∞

ϖϱℏϱ = lim
ℏ→∞

min{ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)} ≤ lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0. (7.4.4)

Using (7.4.3), (7.4.4) and Lemma 1.2.9 , we have

lim
ℏ→∞

ϖ(ϱℏ, ϱ) = 0, lim
ℏ→∞

Mϱℏϱ = 0 and ϖ(ϱ, ϱ) = 0. (7.4.5)

Also,

ϖϱΓ1ϱ = min{ϖ(ϱ, ϱ), ϖ(Γ1ϱ,Γ1ϱ)} = 0. (7.4.6)

Using (7.4.2), (7.4.6) and the triangle inequality, we have

0 ≤ ϖ(ϱ,Γ1ϱ) = ϖ(ϱ,Γ1ϱ) −ϖϱΓ1ϱ

≤ ϖ(ϱ, ϱ2ℏ) −ϖϱ2ℏϱ +ϖ(ϱ2ℏ,Γ1ϱ) −ϖϱ2ℏΓ1ϱ

≤ ϖ(ϱ, ϱ2ℏ) +ϖ(Γ1ϱ,Γ2ϱ2ℏ−1)
≤ ϖ(ϱ, ϱℏ) + α

(
ϖ(ϱ, ϱ2ℏ−1)

)
+ β

(
ϖ(ϱ2ℏ−1, ϱ2ℏ)

)
+γ

(
ϖ(ϱ,Γ1ϱ)

)
. (7.4.7)

Taking limit as ℏ → ∞ in (7.4.7), we have

ϖ(ϱ,Γ1ϱ) = 0. (7.4.8)

Also, Γ1 is a self distance contraction. Therefore, ∃ k0 ∈ [0, 1) s.t.

ϖ(Γ1ϱ,Γ1ϱ) ≤ k0(ϖ(ϱ, ϱ)),

or

ϖ(Γ1ϱ,Γ1ϱ) = 0. (7.4.9)

Using (7.4.5), (7.4.6), (7.4.8) and (7.4.9), we have

ϖ(ϱ, ϱ) = ϖ(ϱ,Γ1ϱ) = ϖ(Γ1ϱ,Γ1ϱ) = 0,

Using axiom (i) of Definition 1.2.5, we have ϱ = Γ1ϱ. On similar lines, one can
prove that ϱ = Γ2ϱ. Therefore, ϱ is a common fixed point of Γ1 and Γ2.
Uniqueness: let ϑ ̸= ϱ be another common fixed point with ϖ(ϱ, ϱ) = ϖ(ϑ, ϑ) =
0. Then,

ϖ(ϱ, ϑ) = ϖ(Γ1ϱ,Γ2ϑ)
≤ α

(
ϖ(ϱ, ϑ)

)
+ β

(
ϖ(ϱ,Γ1ϱ)

)
+ γ

(
ϖ(ϑ,Γ2ϑ)

)
= α

(
ϖ(ϱ, ϑ)

)
+ β

(
ϖ(ϱ, ϱ)

)
+ γ

(
ϖ(ϑ, ϑ)

)
< ϖ(ϱ, ϑ),
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a contradiction. Therefore, Γ1,Γ2 have exactly one common fixed point.

Theorem 7.4.3. Let Γ1,Γ2 : Ω → Ω be mappings defined on complete m-MS
(Ω, ϖ) and Y be a complete subspace of Ω s.t. Γ1(Ω)∪Γ2(Ω) ⊆ Y . Suppose Γ1,Γ2

satisfy

(i) ∃α, β, γ ≥ 0 with α + β + γ < 1 s.t.

ϖ(Γ1ϱ,Γ2ϑ) ≤ αϖ(ϱ, ϑ) + βϖ(ϱ,Γ1ϱ) + γϖ(ϑ,Γ2ϑ), (7.4.10)

∀ϱ, ϑ ∈ Ω;

(ii) MΓ1ϱ,Γ2ϱ ≤ ϖ(Γ1ϱ,Γ2ϱ), ∀ϱ ∈ Ω.

Then, the pair (Γ1,Γ2) possesses exactly one common fixed point.

Proof. The result is analogues to Theorem 7.4.2.

Definition 7.4.4. Let (Ω,m) be an m-MS. A triplet (Γ1,Γ2,Γ3) of self mappings
is c.t.b. contracting perimeter of triangle on Ω if ∃ some k ∈ [0, 1) s.t.

ϖ(Γ1ϱ,Γ2ϑ) +ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ) ≤ k
(
ϖ(ϱ, ϑ) +ϖ(ϑ, ξ) +ϖ(ξ, ϱ)

)
,

(7.4.11)

∀ϱ, ϑ, ξ ∈ Ω that are pairwise distinct.

We extend the concept of periodic point further for a pair of self mappings
(Γ1,Γ2) as : ϱ has pairwise prime period ‘2’ w.r.t. (Γ1,Γ2) if Γ1ϱ ̸= ϱ,Γ2ϱ ̸= ϱ, but
either FG(ϱ) = ϱ or GF (ϱ) = ϱ. Moreover, ϱ has pairwise prime period 2 w.r.t.
(Γ1,Γ2,Γ3), if ϱ has pairwise prime period ‘2’ w.r.t. each pair of self mappings.

Example 7.4.5. Consider the mapping Γ1 and Γ2 defines on R+ as Γ1ϱ = eϱ and
Γ2ϱ = ln(ϱ). Then, ∀ ϱ ∈ R+, Γ1ϱ ̸= ϱ and Γ2ϱ ̸= ϱ but FG(ϱ) = ϱ. Therefore,
every point in R+ has a pairwise prime period ‘2’ w.r.t. mappings (Γ1,Γ2).

Theorem 7.4.6. Let Γ1,Γ2,Γ3 : Ω → Ω be mappings defined on complete m-MS
(Ω, ϖ) and Y be a complete subspace of Ω s.t. Γ1(Ω)∪Γ2(Ω)∪Γ3(Ω) ⊆ Y . Suppose
triplet (Γ1,Γ2,Γ3) satisfies

(i) triplet (Γ1,Γ2,Γ3) is contracting perimeter of triangle on Ω;
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(ii) Γ1,Γ2,Γ3 are self distance contraction mappings;

(iii) there is no point in Ω that has a pairwise prime period ‘2’ w.r.t. (Γ1,Γ2,Γ3).

Then, the triplet (Γ1,Γ2,Γ3) possesses a common fixed point. Moreover, the triplet
(Γ1,Γ2,Γ3) has atmost two common fixed points.

Proof. For some ϱ0 ∈ Ω, define the iterative sequence as

ϱ1 = Γ1ϱ0, ϱ2 = Γ2ϱ1, ϱ3 = Γ3ϱ2, ..., ϱ3ℏ+1 = Γ1ϱ3ℏ, ϱ3ℏ+2 = Γ2ϱ3ℏ+1, and
ϱ3ℏ+3 = Γ3ϱ3ℏ+2,

∀ ℏ ∈ N. Suppose that ϱℏ+1 is not a common fixed point ∀ℏ ∈ N and there
is no point in Ω that has a prime order 2 pairwise w.r.t. (Γ1,Γ2,Γ3). Then,
ϱ3ℏ+1, ϱ3ℏ+2, ϱ3ℏ+3 are pairwise distinct. Now consider the sequence {βℏ} generated
by perimeter of triangle in multiplicative distance structure with vertices as the
consecutive member of the sequence {ϱℏ} as

βℏ = ϖ(ϱ3ℏ+1, ϱ3ℏ+2) +ϖ(ϱ3ℏ+2, ϱ3ℏ+3) +ϖ(ϱ3ℏ+3, ϱ3ℏ+1).

Now, as ϱ3ℏ, ϱ3ℏ+1, ϱ3ℏ+2 are all pairwise distinct and (Γ1,Γ2,Γ3) is contracting
perimeter of triangle in (Ω, ϖ). Therefore, we have

βℏ = ϖ(ϱ3ℏ+1, ϱ3ℏ+2) +ϖ(ϱ3ℏ+2, ϱ3ℏ+3) +ϖ(ϱ3ℏ+3, ϱ3ℏ+1)
= ϖ(Γ1ϱ3ℏ,Γ2ϱ3ℏ+1) +ϖ(Γ2ϱ3ℏ+1,Γ3ϱ3ℏ+2) +ϖ(Γ3ϱ3ℏ+2,Γ1ϱ3ℏ)
≤ k

(
ϖ(ϱ3ℏ, ϱ3ℏ+1) +ϖ(ϱ3ℏ+1, ϱ3ℏ+2) +ϖ(ϱ3ℏ+2, ϱ3ℏ)

)
≤ k(βℏ−1).

Moreover, since k < 1, therefore

β0 > β1 > β2 > · · · > βℏ−1 > βℏ > · · · .

We claim that ϱ3i+1, ϱ3i+2, ϱ3i+3 are all distinct. Suppose ∃ j ≥ 3 s.t. ϱ3j+1 = ϱ3i+1

for some 0 ≤ i ≤ j − 2. Then,

ϱ3i+1 = ϱ3j+1 ⇒ ϱ3i+2 = Γ2ϱ3i+1 = Γ2ϱ3j+1 = ϱ3j+2 ⇒ ϱ3i+3 = Γ3ϱ3i+2 = Γ3ϱ3j+2 = ϱ3j+3,

implies

β3i = ϖ(ϱ3i+1, ϱ3i+2) +ϖ(ϱ3i+2, ϱ3i+3) +ϖ(ϱ3i+3, ϱ3i+1)
= ϖ(ϱ3j+1, ϱ3j+2) +ϖ(ϱ3j+2, ϱ3j+3) +ϖ(ϱ3j+3, ϱ3j+1)
= β3j,
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a contradiction.
Consider,

ϖ(ϱ3ℏ+1, ϱ3ℏ+2) ≤ ϖ(ϱ3ℏ+1, ϱ3ℏ+2) +ϖ(ϱ3ℏ+2, ϱ3ℏ+3) +ϖ(ϱ3ℏ+3, ϱ3ℏ+1) = βℏ

≤ k(βℏ−1) ≤ · · · ≤ kℏ(β0) (7.4.12)

Since k < 1, taking limit as ℏ → ∞ in (7.4.12), we have

lim
ℏ→∞

ϖ(ϱ3ℏ+1, ϱ3ℏ+2) = 0.

Without loss of generality, we have

lim
ℏ→∞

ϖ(ϱℏ, ϱℏ+1) = 0. (7.4.13)

Also,

lim
ℏ→∞

ϖϱℏ ϱℏ+1 = lim
ℏ→∞

min{ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)} ≤ lim
ℏ→∞

ϖ(ϱℏ, ϱℏ+1) = 0,
(7.4.14)

lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = lim
ℏ→∞

ϖ(ϱℏ+1, ϱℏ+1) = lim
ℏ→∞

min{ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)}
= lim

ℏ→∞
ϖϱℏ ϱℏ+1 = 0, (7.4.15)

and

lim
ℏ→∞

Mϱℏ ϱℏ+1 = lim
ℏ→∞

max{ϖ(ϱℏ, ϱℏ), ϖ(ϱℏ+1, ϱℏ+1)} = 0. (7.4.16)

Next, we will show that {ϱℏ} is a m-Cseq. Consider,

ϖ(ϱ3ℏ+1, ϱ3m+1) − ϖϱ3ℏ+1,ϱ3m+1

≤ ϖ(ϱ3ℏ+1, ϱ3ℏ+2) −ϖϱ3ℏ+1,ϱ3ℏ+2 +ϖ(ϱ3ℏ+2, ϱ3ℏ+3)
−ϖϱ3ℏ+2,ϱ3ℏ+3 + · · ·

+ϖ(ϱ3m+2, ϱ3m+1) −ϖϱ3m+2,ϱ3m+1

≤ ϖ(ϱ3ℏ+1, ϱ3ℏ+2) +ϖ(ϱ3ℏ+2, ϱ3ℏ+3) + · · · +ϖ(ϱ3m+2, ϱ3m+1)
≤ βℏ + βℏ+1 + · · · + βm+1

≤ kℏ(β0) + kℏ+1(β0) + · · · + km+1(β0)
≤ kℏ(1 + k + k2 + ...km+1−ℏ)(β0)

= kℏ(1 − km+1−ℏ

1 − k
)(β0). (7.4.17)
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Since k < 1, taking limit as ℏ,m → ∞ in (7.4.17), we have

lim
ℏ,m→∞

ϖ(ϱ3ℏ+1, ϱ3m+1) −ϖϱ3ℏ+1 ϱ3m+1 = 0.

Without loss of generality, we have

lim
ℏ,m→∞

ϖ(ϱℏ, ϱm) −ϖϱℏ ϱm = 0, (7.4.18)

i.e., {ϱℏ} is m-Cauchy.
Further, as Y is m-complete. Therefore, ∃ϱ ∈ Y s.t.

lim
ℏ→∞

ϖ(ϱℏ, ϱ) −ϖϱℏϱ = 0 = lim
ℏ→∞

Mϱℏϱ −ϖϱℏϱ. (7.4.19)

Using (7.4.15), we have

lim
ℏ→∞

ϖϱℏϱ = lim
ℏ→∞

min{ϖ(ϱℏ, ϱℏ), ϖ(ϱ, ϱ)} ≤ lim
ℏ→∞

ϖ(ϱℏ, ϱℏ) = 0. (7.4.20)

Using (7.4.19), (7.4.20) and Lemma 1.2.9, we have

lim
ℏ→∞

ϖ(ϱℏ, ϱ) = 0, lim
ℏ→∞

Mϱℏϱ = 0 and ϖ(ϱ, ϱ) = 0. (7.4.21)

Also,

ϖϱΓ2ϱ = min{ϖ(ϱ, ϱ), ϖ(Γ2ϱ,Γ2ϱ)} = 0. (7.4.22)

Using (7.4.11), (7.4.22) and the triangle inequality, we have

0 ≤ ϖ(ϱ,Γ2ϱ) = ϖ(ϱ,Γ2ϱ) −ϖϱΓ2ϱ

≤ ϖ(ϱ, ϱ3ℏ+1) −ϖϱ3ℏ+1ϱ +ϖ(ϱ3ℏ+1,Γ2ϱ) −ϖϱ3ℏ+1Γ2ϱ

≤ ϖ(ϱ, ϱ3ℏ+1) −ϖϱ3ℏ+1 ϱ +ϖ(ϱ3ℏ+1,Γ2ϱ) −ϖϱ3ℏ+1Γ2ϱ

+ϖ(Γ2ϱ, ϱ3ℏ+3) +ϖ(ϱ3ℏ+3, ϱ3ℏ+1)
≤ ϖ(ϱ, ϱ3ℏ+1) +ϖ(Γ1ϱ3ℏ,Γ2ϱ) +ϖ(Γ2ϱ,Γ3ϱ3ℏ+2)

+ϖ(Γ3ϱ3ℏ+2,Γ1ϱ3ℏ)
≤ ϖ(ϱ, ϱ3ℏ+1) + k

(
ϖ(ϱ3ℏ, ϱ) +ϖ(ϱ, ϱ3ℏ+2)

+ϖ(ϱ3ℏ+2, ϱ3ℏ)
)

(7.4.23)

Taking limit as ℏ → ∞ in (7.4.23), we have

ϖ(ϱ,Γ2ϱ) = 0. (7.4.24)

Also, Γ2 is a self distance contraction. Therefore, ∃ k0 ∈ [0, 1) s.t.

ϖ(Γ2ϱ,Γ2ϱ) ≤ k0(ϖ(ϱ, ϱ)),
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or

ϖ(Γ2ϱ,Γ2ϱ) = 0. (7.4.25)

Using (7.4.21), (7.4.24) and (7.4.25), we have

ϖ(ϱ, ϱ) = ϖ(ϱ,Γ2ϱ) = ϖ(Γ2ϱ,Γ2ϱ) = 0,

i.e., ϱ = Γ2ϱ. Thus, ϱ is the fixed point of Γ2.
On the similar lines, one can prove that ϱ = Γ1ϱ = Γ2ϱ = Γ3ϱ i.e., ϱ is the common
fixed point of self mappings Γ1,Γ2,Γ3.
In order to prove that Γ1,Γ2,Γ3 have atmost two common fixed points, suppose
that ∃ three distinct common fixed points say ϱ, ϑ, ξ. Then, we have ϖ(ϱ, ϱ) =
ϖ(ϑ, ϑ) = ϖ(ξ, ξ) = 0.
Consider,

ϖ(ϱ, ϑ) +ϖ(ϑ, ξ) +ϖ(ξ, ϱ) = ϖ(Γ1ϱ,Γ2ϑ) +ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ)
≤ k

(
ϖ(ϱ, ϑ) +ϖ(ϑ, ξ) +ϖ(ξ, ϱ)

)
< ϖ(ϱ, ϑ) +ϖ(ϑ, ξ) +ϖ(ξ, ϱ),

a contradiction. Hence, Γ1,Γ2,Γ3 have atmost two common fixed points.

Remark 7.4.7. If under the assumption of Theorem 7.4.6, the triplet of mappings
Γ1,Γ2,Γ3 has a common fixed point ϱ and it is a limit point of the iterative scheme

ϱ1 = Γ1ϱ0, ϱ2 = Γ2ϱ1, ϱ3 = Γ3ϱ2, ..., ϱ3ℏ+1 = Γ1ϱ3ℏ, ϱ3ℏ+2 = Γ2ϱ3ℏ+1, ϱ3ℏ+3 = Γ3ϱ3ℏ+2,

∀ℏ ∈ N. Then, (Γ1,Γ2,Γ3) possesses exactly one common fixed point.
If possible ϑ ̸= ϱ is another common fixed point. Clearly ϱ3ℏ, ϱ, ϑ are pairwise
distinct.
Consider,

ϖ(ϱ3ℏ+1, ϱ) +ϖ(ϱ, ϑ) +ϖ(ϑ, ϱ3ℏ+1) = ϖ(Γ1ϱ3ℏ,Γ2ϱ) +ϖ(Γ2ϱ,Γ3ϑ) +ϖ(Γ3ϑ,Γ1ϱ3ℏ)
≤ k

(
ϖ(ϱ3ℏ, ϱ) +ϖ(ϱ, ϑ) +ϖ(ϑ, ϱ3ℏ)

)
< ϖ(ϱ3ℏ, ϱ) +ϖ(ϱ, ϑ) +ϖ(ϑ, ϱ3ℏ).

As (limℏ→∞ ϖ(ϱ3ℏ, ϱ) = limℏ→∞ ϖ(ϱ3ℏ, ϑ) = 0). Therefore, by taking limit as
ℏ → ∞, we have

ϖ(ϱ, ϑ) < ϖ(ϱ, ϑ),

a contradiction.
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Definition 7.4.8. Let (Ω,m) be an m-MS . A self mapping Γ1 is c.t.b. contract-
ing perimeter of triangle on Ω if ∃ some k ∈ [0, 1) s.t.

ϖ(Γ1ϱ,Γ1ϑ).ϖ(Γ1ϑ,Γ1ξ).ϖ(Γ1ξ,Γ1ϱ) ≤
(
ϖ(ϱ, ϑ).ϖ(ϑ, ξ).ϖ(ξ, ϱ)

)k , (7.4.26)

∀ϱ, ϑ, ξ ∈ Ω that are pairwise distinct.

Theorem 7.4.9. Let Γ1 : Ω → Ω be a mapping defined on complete m-MS (Ω, ϖ)
and Y be a complete subspace of Ω s.t. Γ1(Ω) ⊆ Y . Suppose Γ1 satisfies

(i) Γ1 is contracting perimeter of triangle on Ω;

(ii) Γ1 is a self distance contraction mapping;

(iii) there is no periodic point of prime order 2 in Ω;

Then, Γ possesses a fixed point. Moreover, Γ1 has atmost two fixed point.

Proof. The result holds as a consequence of Theorem 7.4.6, by substituting Γ2 =
Γ3 = Γ1.

Example 7.4.10. Consider a set Ω = {p, q, s} with distance function m defined as
ϖ(p, p) = ϖ(q, q) = 0, ϖ(s, s) = 2 and ϖ(p, q) = ϖ(q, s) = ϖ(p, s) = ϖ(q, p) =
ϖ(s, q) = ϖ(s, p) = 4. Then, clearly (Ω, ϖ) is m-MS. Let Γ : Ω → Ω defined as
Γ(p) = p,Γ(q) = q,Γ(s) = q. Then, Γ satisfies Theorem 7.4.9 and has two fixed
point (say p & q ).

Example 7.4.11. Consider a set Ω = {p, q, s} with distance function m defined
as ϖ(p, p) = ϖ(q, q) = ϖ(s, s) = 2 and ϖ(p, q) = ϖ(q, s) = ϖ(p, s) = ϖ(q, p) =
ϖ(s, q) = ϖ(s, p) = 4. Then, clearly (Ω, ϖ) is m-MS. Let Γ : Ω → Ω defined
as Γ(p) = q,Γ(q) = p,Γ(s) = p. Then, Γ satisfies the condition of contracting
perimeter and p, q are periodic points of prime order ‘2’ and has no fixed point.

Remark 7.4.12. If under the assumptions of Theorem 7.4.9, the mapping Γ1 has
a fixed point ϱ and it is a limit point of the iterative scheme ϱℏ = Γ1ϱℏ−1. Then,
Γ1 possesses exactly one fixed point.
If possible ϑ ̸= ϱ is another fixed point. Clearly, ϱℏ, ϱ, ϑ are pairwise distinct.
Consider,

ϖ(ϱℏ+1, ϱ) + ϖ(ϱ, ϑ) +ϖ(ϑ, ϱℏ+1)
= ϖ(Γ1ϱℏ,Γ1ϱ) +ϖ(Γ1ϱ,Γ1ϑ) +ϖ(Γ1ϑ,Γ1ϱℏ)
≤ k

(
ϖ(ϱℏ, ϱ) +ϖ(ϱ, ϑ) +ϖ(ϑ, ϱℏ)

)
< ϖ(ϱℏ, ϱ) +ϖ(ϱ, ϑ) +ϖ(ϑ, ϱℏ).
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As,
(

lim
ℏ→∞

ϖ(ϱℏ, ϱ) = lim
ℏ→∞

ϖ(ϱℏ, ϑ) = 0
)

. Therefore, by taking limit as ℏ → ∞,
we have

ϖ(ϱ, ϑ) < ϖ(ϱ, ϑ),

a contradiction.

Example 7.4.13. Consider the m-MS [0, 2), where m : [0, 2) × [0, 2) → [0,∞)
defined as ϖ(ϱ, ϑ) = ϱ+ϑ

2 . Let the self mappings Γ1,Γ2,Γ3 are defined as

Γ1ϱ =


ϱ2

5 , if ϱ < 1
1

ϱ+9 , otherwise.
, Γ2ϱ =


ϱ
5 , if ϱ < 1

ϱ
ϱ+9 , otherwise.

, Γ3ϱ =


ϱ
3 , if ϱ < 1
1
7 , otherwise.

.

Then,

(i) Suppose ϱ, ϑ, ξ < 1, then

ϖ(Γ1ϱ,Γ2ϑ) + ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ)

= 1
2

(
ϱ2

5 + ϑ

5

)
+ 1

2

(
ϑ

5 + ξ

3

)
+ 1

2

(
ξ

3 + ϱ2

5

)

≤ 1
5

(
ϱ

2 + ϑ

2

)
+ max

{
1
5 ,

1
3

}(
ϑ

2 + ξ

2

)
+ max

{
1
5 ,

1
3

}(
ξ

2 + ϱ

2

)
≤ k1

(
ϖ(ϱ, ϑ).ϖ(ϑ, ξ).ϖ(ξ, ϱ)

)
,

where k1 = max
{

1
5 ,

1
3

}
= 1

3 .

(ii) Suppose ϱ ≥ 1 and ξ, ϑ < 1, then

ϖ(Γ1ϱ,Γ2ϑ) + ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ)

= 1
2

(
1

ϱ+ 9 + ϑ

5

)
+ 1

2

(
ϑ

5 + ξ

3

)
+ 1

2

(
ξ

3 + 1
ϱ+ 9

)

≤ 1
2

(
ϱ

10 + ϑ

5

)
+ 1

2

(
ϑ

5 + ξ

3

)
+ 1

2

(
ξ

3 + ϱ

10

)

≤ max
{

1
10 ,

1
5

}(
ϱ

2 + ϑ

2

)
+ max

{
1
5 ,

1
3

}(
ϑ

2 + ξ

2

)

+ max
{

1
3 ,

1
10

}(
ξ

2 + ϱ

2

)
≤ k2

(
ϖ(ϱ, ϑ) +ϖ(ϑ, ξ).ϖ(ξ, ϱ)

)
,

where k2 = max
{

1
5 ,

1
3 ,

1
10

}
= 1

3 .
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(iii) Suppose ϑ ≥ 1 and ϱ, ξ < 1, then

ϖ(Γ1ϱ,Γ2ϑ) + ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ)

= 1
2

(
ϱ2

5 + ϑ

ϑ+ 9

)
+ 1

2

(
ϑ

ϑ+ 9 + ξ

3

)
+ 1

2

(
ξ

3 + ϱ2

5

)

≤ 1
2

(
ϱ

5 + ϑ

10

)
+ 1

2

(
ϑ

10 + ξ

3

)
+ 1

2

(
ξ

3 + ϱ

5

)

≤ max
{

1
5 ,

1
10

}(
ϱ

2 + ϑ

2

)
+ max

{
1
10 ,

1
3

}(
ϑ

2 + ξ

2

)

+ max
{

1
3 ,

1
5

}(
ξ

2 + ϱ

2

)
≤ k3

(
ϖ(ϱ, ϑ).ϖ(ϑ, ξ).ϖ(ξ, ϱ)

)
,

where k3 = max
{

1
3 ,

1
5 ,

1
10

}
= 1

3 .

(iv) Suppose ξ ≥ 1 and ϱ, ϑ < 1, then

ϖ(Γ1ϱ,Γ2ϑ) + ϖ(Γ2ϑ,Γ3ξ) +ϖ(Γ3ξ,Γ1ϱ)

= 1
2

(
ϱ2

5 + ϑ

5

)
+ 1

2

(
ϑ

5 + 1
7

)
+ 1

2

(
1
7 + ϱ2

5

)

≤ 1
5

(
ϱ

2 + ϑ

2

)
+ max

{
1
5 ,

1
7

}(
ϑ

2 + ξ

2

)

+ max
{

1
7 ,

1
5

}(
ξ

2 + ϱ

2

)
≤ k4

(
ϖ(ϱ, ϑ).ϖ(ϑ, ξ).ϖ(ξ, ϱ)

)
,

where k4 = max
{

1
5 ,

1
7

}
= 1

5 .

Let k = max {k1, k2, k3, k4} = 1
3 . Then, (Γ1,Γ2,Γ3) is a contracting perimeter of

triangle in (Ω, ϖ) with k = 1
3 and there is no pairwise periodic point of prime order

2. Also, Γ1,Γ2,Γ3 are self distance contractions. Hence, (Γ1,Γ2,Γ3) satisfies all
the requirements of Theorem 7.4.6. Hence, the triplet (Γ1,Γ2,Γ3) has a common
fixed point.

7.5 Conclusion

This chapter advances the study of fixed point theory by exploring novel results
within the framework of m-MSs. Utilizing interpolative-type contractions and
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(ϕ− ψ) Wardowski type contractions, we generalized several classical results and
demonstrated their applicability through illustrative examples. The relaxation of
continuity requirements in m-MSs broadens the scope of contraction mappings,
addressing cases where traditional MS results are not applicable. Also, we ana-
lyzed the behavior of these mappings both theoretically as well as graphically and
highlighted the significance of the m-MSs in fixed point theory. The results pre-
sented herein not only extend the existing work but also pave the way for future
applications in more complex and incomplete spaces.
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