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Abstract

Fixed point theory has long been an important area of research in mathematical
analysis, with applications ranging from mathematical modelling to graph theory,
optimization, approximation theory, and multidisciplinary disciplines such as eco-
nomics and physics. The constructive proofs of fixed point theorems and iterative
approaches for determining the fixed points of self mappings form the foundation
of the theory. Furthermore, the concept of common fixed points is especially im-
portant in the study of problems involving pairs of self mappings, broadening the
theory’s applicability to increasingly complex contexts. The stability of a func-
tional equation is concerned with the existence of an exact solution that is close to
the functional equation’s approximate solution. The study of stability has numer-
ous applications in dynamical systems and control theory, where the sensitivity of
solutions to small changes in initial conditions is of critical importance.

Despite significant progress in fixed point theory, many problems in metric spaces
and its generalized structures remain unexplored. The existing theory do not al-
ways ensure the existence of a fixed point or the stability of solutions to functional
equations. Exploring the relation between fixed points and the stability of func-
tional equations is an interesting area of study offering substantial potential for
future advancements in both theoretical and applied mathematics.

The main objectives of this research are to investigate the stability of generalized
functional equations in abstract spaces, to check the existence and uniqueness
of fixed points of mappings using various contraction principles, and to examine
the existence and uniqueness of common fixed points of self mappings in ab-
stract spaces. The research further aims to introduce a generalized metric space
and analyze the existence and uniqueness of fixed points for different contraction
mappings within this framework. As application, we claim the existence of so-
lution to Fredholm integral equation, initial value problem and operator equation.

In the first chapter, we begin with a brief introduction to the research work along
with some notations and definitions that are used throughout the thesis. The
chapterwise summary of all the subsequent chapters is also given at the end.

In the second chapter, we establish the results on the stability of quadratic and
quartic type functional equations. Some illustrations are presented to demon-
strate the significance of the assumption made in the proved results. Also, the
stability of generalized quartic function equation using a fixed point approach and
a conventional approach in n-BS and non- Archimedean n-BS is discussed.

In the third chapter, we introduce the concept of C"y,-mz-MS, which is a gener-
alization of both C%;-m-MS and R-MS. The first section presents the definition
of C%-mz-MS, along with its intrinsic properties and several illustrative exam-
ples. The second section focuses on the existence and uniqueness of fixed points
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within C%,-mz-MS, using the concept of C%,-mg-contraction mappings. The
results established in this chapter extend and generalize several well-known fixed
point theorems found in the literature. Also, as an application, the existence and
uniqueness of the solution to the operator equation is presented.

In the fourth chapter, we introduce the concept of a generalized distance function,
referred to as the multiplicative m-metric. The first section presents the basic def-
inition and intrinsic properties of the multiplicative m-MS, along with illustrative
examples. The second section discusses various fixed point results for self map-
pings within the framework of multiplicative m-MS, using different contractions.
Ilustrative examples are provided to discuss the existence of fixed points for dis-
continuous self mappings. In the third section, common fixed point results for a
pair of self mappings are explored using generalized contraction conditions. An
illustrative example, involving discontinuous self mappings, is discussed, along
with numerical iterations to approximate the common fixed point, supported by
graphical representations. The fourth section presents fixed point and common
fixed point results using a three-point analogue of contraction mappings. Addi-
tionally, as applications, the existence and uniqueness of solutions to the initial
value problem and a system of integral equations are discussed.

In the fifth chapter, we present several common fixed point results for self map-
pings in PMS using the (¢, 1)-Wardowski type contraction. Furthermore, some
fixed point results are proven using generalized cyclic contractions, followed by
illustrative examples. As an application, the existence of a fractal set for the
Hutchinson-Barnsley operator is established using the fixed point results proved
in the chapter. Finally, some iterations for generating fractal sets are presented,
along with the resulting fractals.

In the sixth chapter, we discuss some common fixed point results for self mapping
in b-MS using relation theoretic and a-admissible generalized contractions. As
applications of the proved results, the existence of solution to a class of non-linear
functional integral equation and an operator equation are established.

In the last chapter, we introduce several fixed point results within the framework
of m-MS using contraction mappings. The continuity conditions of self mappings
are not essential in the results proved, unlike those in existing literature. The
chapter discusses examples where well-known contractions in metric spaces do
not guarantee the existence of a fixed point, but their generalizations within m-
MS yield the desired outcome. These examples are validated through graphical
visualizations of contraction mappings, which help in understanding their behav-
ior and highlight the distinctions between metric spaces and m-MS. The main
sections present fixed point and common fixed point results using various con-
tractions. Finally, some numerical iterations for approximating the common fixed
point are provided, accompanied by graphs that visually demonstrate the results.

kokkokokokok
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Chapter 1

General Introduction

1.1 Introduction

Fixed point theory is a fundamental branch of mathematical analysis that has
numerous applications in mathematical modeling, graph theory, optimization,
approximation theory, and interdisciplinary areas like economics and physics. It
comprises algebraic, topological and geometrical aspects of mathematical analysis.
The theory deals with the existence of atleast one point that remains invariant
under the given transformation. Consider a self mapping I' defined on a non-
empty set 2. A point p € Q is called a fixed point of the self mapping I' if it
satisfies the condition I'(p) = p. The existence of a fixed point relies not only on
the behaviour of mapping but also on the algebraic and topological properties of
the domain. A mapping may or may not possess a fixed point within a specified
domain. Moreover, if it has a fixed point, it may not be unique. For example,

consider the mappings 'y, I'5,T's : R — R defined as

(i) (o) = o+ 3;

We observe that I'; has no fixed point, I's has a unique fixed point o = 0 and I's
has multiple fixed points o =0 and o = 1.

Graphically, the fixed points are the point of intersection of the graphs y = I'(o)
and y = p (see Figure 1.1).

Fixed point theory deals with the development of novel approaches for proving
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Figure 1.1: Graphical representation of the fixed point

the existence of fixed points. The origins of fixed point theory can be traced to
the method of successive approximation Liouville (1837); Picard (1890), initially
employed to establish the existence of solutions to differential equations. Picard
(1890) introduced the iterative scheme (0,11 = ['g,, where I' is a self mapping
defined on a non-empty set 2 and gy € Q2 is the initial point of the scheme) to
approximate the fixed point of the mapping. Brouwer (1912) established the fixed
point result “Every continuous self-map of a closed unit ball centered at the origin
in R™ has a fixed point.” The result is considered as a key contribution to the
theory of fixed points.

Banach (1922) introduced the contraction principle known as the Banach Con-
traction Principle that has become a cornerstone of nonlinear analysis and has
found numerous applications in ensuring the existence of solutions to differential

equations, integral equations, optimization problems, etc.

Theorem 1.1.1. Banach (1922) Consider a complete MS (§2,d). Then, a map-
ping I' : Q — Q has a unique fized point if Ik € [0,1) s.t.

d(To,T) < kd(p,v) Yo,9 € Q.

The key limitation of the principle was the condition of continuity of the mapping.

It restricts the applicability of contraction in certain scenarios where mappings



may be discontinuous or defined piecewise. To address this limitation, Kannan
(1968) introduced the generalized contraction condition that ensures the existence

of a fixed point even for discontinuous mappings.

Theorem 1.1.2. Kannan (1968) Consider a complete MS (Q2,d). Then, a map-
ping I' : Q — Q has a unique fized point if Ik € [0,1/2) s.t.

d(To,I'0) < k (d(0. o) + d(9,1'9)) Vo,V € .

Subsequently, many researchers have independently generalized this contraction
in their own ways (for references, see Edelstein (1962); Rakotch (1962); Cirié
(1974); Reich (1971); Sehgal (1971); Bianchini (1971); Chatterjea (1972); Zam-
firescu (1972); Wardowski (2012); Wardowski and Dung (2014); Imdad et al.
(2018); Pasupathi et al. (2020); Chanda et al. (2021); Nazir et al. (2021) and
many more.)

Frechet (1906) gave the framework of metric space to explore topology using dis-
tance notion. In a MS, the distance function is well defined and satisfies key prop-
erties such as non-negativity, symmetry, and the triangle inequality. However, in
some scenarios, these characteristics may be relaxed, prompting the establishment
of a more generalized notion. Czerwik (1993) introduced the notion of b-metric
space(b-MS) as an generalization of MS. Matthews (1994), introduced the notion
of partial metric space (PMS), where the self-distance of a point may be non-zero,
offering a new oversight in studying fixed points within various functional spaces.
Asadi et al. (2014) further extended the concept of partial metric spaces by in-
troducing m-metric space (m-MS), offering an even more versatile framework for
the fixed point theory. Some other generalization of metric space can be seen in
Wilson (1931); Karapimnar et al. (2013); Ma et al. (2014); Shukla (2014); Gupta
and Gautam (2015); Alsamir et al. (2019); Asim et al. (2019); Jleli and Samet
(2018); Chandok et al. (2019); Khalehoghli et al. (2020); M. Joshi et al. (2021);
Khalil et al. (2021); Malhotra et al. (2022).

Grossman and Katz (1972) contributed significantly to non-Newtonian calculus,
building on Robinson (1966) foundational development of non-standard analysis.
Their work introduced a comprehensive framework based on ultrapowers and hy-
perreals, providing a rigorous structure for non-Newtonian calculus that aligns
with conventional mathematics. Stanley (1999) made significant contributions
to the field of “multiplicative calculus”, also known as the “geometric calculus”.
Bashirov et al. (2008) introduced the notion of a distance function in multiplica-

tive calculus, using multiplicative absolute values, and laid the foundation of a
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multiplicative MS as an alternative to the MS.

Ozavsar and Cevikel (2012) proved some fixed point results using Banach-type,
Kannan-type, and Chhaterjea-type contractions in multiplicative MS. Subsequently,
many researchers have investigated the fixed points of various nonlinear contrac-
tive mappings in multiplicative MS.

Functional equations(FEs) are equations with functions as unknown variables in-

stead of conventional variables. The general FE can be represented as
9<F1;F27~~) :07
where [ ; are functions of finite variables.
Some illustrations of the FE along with their solutions are given below.
(i) Cauchy- FE, F (0.9) = F (o) + F (0), satisfied by F (o) = log(o).

(ii) F(o+T) = F (o), satisfied by periodic function f with period 7'

(iii) Jensen linear FE, 2F(#) = F (o) + F (V), satisfied by F (¢) = o.

(iv) Quadratic FE, F (o+9)+F (0—19) = 2F (0) +2F (9), satisfied by F (o) = 0*.

The concept of stability of FE was posed by Ulam in 1940, in his talk at the

University of Wisconsin. The open problem was posed as

“Suppose F (o) satisfies the linear equation approximately. Does there

exist a linear function that approzimate F (9)?”

More precisely the problem is stated as follows
Ulam’s Problem: Let GG; be a group with binary operation *; and G, be a
metric group with metric d and binary operation *,. Does for given € > 0, 36 > 0

s.t. if for F : G1 — Go
d(F (¢ 9),F(0) *2 £ (9)) <,
then 3 a homomorphism ¢ : G; — G5 s.t.
d(F (o) %2 9(0)) < €Vo e G,

Hyers (1941) provided the first solution to the stability problem of Ulam for
d—linear transformation on Banach spaces. He proved that if F (o) is a J-linear

function on BS , then 3 a unique linear map [(p) that approximates F (o), i.e.,
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|F (o) — I(0)|| < 6. This solution was stated as Ulam-Hyers stability of Cauchy
FE. Since then many researchers proved the stability results for higher order func-
tional equations as well as generalized the Ulam-Hyers stability result for various
functional equations.

Consider Cauchy FE

Flo+9)="F (o) +F (V).

Later, Aoki (1950) proved the same result with unbounded Cauchy difference.
T. M. Rassias (1978), proved the stability result for the Cauchy FE and gave an

affirmative solution to Ulam’s problem. He stated the result as

Theorem 1.1.3. T. M. Rassias (1978) Let E and E' be BSs. Let F : E — E’
be a transformation on E s.t. F (te) is continuous in t for fived o. If Ik > 0 and
0 <p<1s.t F satisfies the following condition

1F (e +9) = F(e) = F )]
lel[” + (1]

< kVp, 9 €E.

Then, 3 a linear function ¢ s.t.

1F (o) (o)l . 2k
el = 2—27

Gajda (1991) proved the result of T. M. Rassias (1978) for p > 1. He also
proved that the stability result is not valid for p = 1. Gavruta (1994) introduced
a generalized Ulam-Hyers-Rassias stability result for an approximately additive
mapping by relaxing the domain of mapping to the Abelian group. He stated the

result as

Theorem 1.1.4. Gavruta (1994) Let (G,+) be an Abelian group and Q be a BS.
Let ¢ : G x G — [0,00) be a mapping on G x G s.t.

d(0,9) = Z 27k p(2%0,289) <0V 0,9 € G.
k=0
If F : G — Q be a mapping s.t.
[F(e+0)=F (o) = FW) < le,d) Vo del.
Then, 3 a unique linear mapping T : G — 2 s.t.

IF (o) - T()]l < 33(09) VoG

Another generalization of Hyers’ findings was given by J. M. Rassias and Kim
(2009). He stated the results as



Theorem 1.1.5. J. M. Rassias and Kim (2009) Let Q be a NS andY be a BS.
Let ¢ > 0 and p,q € R s.t. p+q € [0,1). Consider a mapping F : Q — Y that
satisfies the following

IF (e +9) = F (o) = F(D) < cllelP[|9]]* Vo, 9 € 2 ~ {0}

Then, 3 a linear mapping T : Q2 — Y s.t.

cllol["*

HF(Q> - T(Q)“ < 5 _opta’

Brzdek (2014) extended the result of J. M. Rassias and Kim (2009) by proving
the above stability result for p + ¢ < 0, using fixed point approach in extended
MS and called it as Hyper stability of Cauchy FE. He stated the result as

Theorem 1.1.6. Brzdek (2014) Let Q2 be a NS and 'Y be a BS. Let ¢ > 0 and
p,q be real number s.t. p+ q < 0. Consider a mapping F : Q — Y that satisfies
the following

IF(e+9) = F (o) = F )| < cllel”[9]|* Ve, ¥ € @ ~ {0}
Then, F is a linear mapping. i.e.,

Flo+9)=F(o) + F (V) Yo, 0 € Q.

Moghimi and Najati (2022) proved the above result using a new approach and also,
proved some results on hyper stability and super stability result for the Cauchy
FE and Jensen FE on the restricted and unrestricted domains.

Numerous results related to fixed point theory and the stability of functional
equations can be found in various books and monographs, see (Hutchinson (1981);
Istratescu (1981); Dugundji and Granas (1982); M. C. Joshi and Bose (1985);
Zeidler (1986); Geobel and Kirk (1990); Murphy (1990); Rudin (1991); Rosen
(1991); Davidson (1996); Jungck and Rhoades (1998); Agarwal et al. (2001); Kirk
and Khamsi (2001); William and Brailey (2001); Agarwal et al. (2009); Chandok
(2015)), Oltra and Valero (2004); Valero (2005); Romaguera (2009a); Berenguer et
al. (2009); Altun et al. (2010); Altun and Sadarangani (2011); Abbas et al. (2012);
Aydi et al. (2012); Minirani and Mathew (2014); Sintunavarat (2016); Zada and
Sarwar (2019); Petrugel and Petrusel (2019); Altun et al. (2021); Choudhury and
Chakraborty (2022). In the subsequent section, we will outline the definitions and
results that are utilized in the later chapters, followed by a chapterwise summary

in the last section.



1.2 Notations and Definitions

Throughout the thesis, the symbols R, Z, N have their usual meaning, €2,Y, X are
non empty sets, R is a binary relation, B is a C*-algebra with zero element 6p

and identity element Iy
Definition 1.2.1. Frechet (1906) A mapping d :  x  — [0, 00) is termed as a
metric if it satisfies :

(i) d(o,9) >0 and d(0,9) =0 < 0 =1;

(i) d(e,V) = d(9, 0);

(i) d(o,9) < d(o,¢) +d((, ),

Yo,9,¢ € Q. Moreover, (0,d) is termed as a Metric Space (MS).
Definition 1.2.2. Rudin (1991) Let X be a VS over the field F. A mapping
|.]| : X — [0,00) is termed as norm if it satisfies :

(i) llel = 0 and [lo]| =0 & ¢ =0;

(i) llaoll = lalllel;

(iii) Nl + 01 < llell + 1],

V0,9 € X and o € F. Moreover, (X,|.||) is termed as a Normed Space (N'S).
Definition 1.2.3. Matthews (1994) A mapping p : 2 x Q — [0,00) is termed as
a partial metric if it satisfies :

(i) 9o, 0) = p(0,9) = (e, 0) & 0 =1;

(ii) (o, 0) < p(0,9);

(i) p(o,9) = (U, 0);

() p(0,9) < p(o,¢) + p(¢, ) — (¢, (),

Vo,0,¢ € Q. Moreover, (2, p) is termed as a Partial Metric Space (PMS).
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Definition 1.2.4. Matthews (1994); Romaguera (2009b) Let (2, p) be a PMS
and {0} be a sequence in 2. Then,

(i) (a) {or} is convergent if 3o € Q s.t. p(on, 0) — p(0,0) — 0 as h — oo;
(b) {or} is Cauchy z'ff lim (o5, 0m) exists finitely;
1, —00

(c) {or} is 0-Cauchy if . lim p(op, 0m) = 0;
1,MmM—00
1) (X, p) is complete if every partial Cse, {or} is convergent in €);
q

(ii7) (£, p) is 0-complete if for every 0-Cyeq {01}, J0 € Q s.t. . lim (o, 0) =
,M—>00
p(0,0) = 0.

Definition 1.2.5. Asadi et al. (2014) A mapping w : Q x Q — [0,00) is termed
as m-metric if it satisfies:
(1) w(0,9) = w(V,V) = w(e,0) & 0= 1;
(i) @o < w(0,9);
(iit) w(0, V) = w(V, 0);
(iv) @(0,9) = @ep < w(0, ) — @ + @(C, V) — o

where wyy = min {w(p, 0),w(V, )} and M,y = max {w(p, 0),w(V,V)} Vo,9,( €
Q. Moreover, (Q,w) is termed as m-Metric Space(m — MS).

o+

Example 1.2.6. Asadi et al. (2014) Let Q@ = R, U {0} and w(p,9) = 5

Then, (2, w) is an m-MS.

Definition 1.2.7. Asadi et al. (2014) A sequence {on} € (2, w) is c.t.b.

(i) convergent if 3p € Q s.t. w(pn, 0) — @y, — 0 as h — 00;

(ii) m-Cauchy if ﬁléigl()OW(Qﬁ’ 01) — Wy, ANA hléiinoo My, 00 — Wopo, €xist finitely.

Moreover, if every m-Cye, {0n} is convergent in Q, i.e., 3o € Q s.t.
@(0n, 0) — Wpo — 0 and M,,, — @,,, — 0 as h — 0.

Then, (2, w) is a complete m-MS.



Lemma 1.2.8. Asadi et al. (2014) Let {or} and {94} be two sequences in (2, w)
s.t. on — 0 and ¥y — 9. Then,
lim w(gh, 195) — Wepdy = w(g, 19) — Wyy-

h— o0

Lemma 1.2.9. Asadi et al. (2014) Let (2, @) be a m-MS. Then, ¥ 0,9, € €,

we have

(i) 0 <| My — @] =|w(0, 0) — = (9, 0)];
(i) M,y + w@,9 = w(0,0) + @(9,9);
(m) Mgﬂg — wgﬂg S M&C — @'ag —f- M<,19 — wC’ﬂ

Lemma 1.2.10. Asadi et al. (2014) Let (2, w) be a m-MS and {05} be a sequence
in Q s.t.

@ (0ns1,0n) < 1. w(op, 0n-1) Yh € N, wherer € [0, 1). (1.2.1)

Then,

(i) i (ons1. ) = 0
(i) Jim (e, 00) = 0;
(1i7) h,’rlrizl—l}oo Wonom = 0;
() {on} is a m-Clq.

Definition 1.2.11. Khalehoghli et al. (2020) Let R be a binary relation on €
and (,d) be a MS. Then, the triplet (2,d,R) is termed as a R-Metric Space
(R-MS).

Definition 1.2.12. Khalehoghli et al. (2020) Let {or} is a sequence in (2,d,R).
Then, {os} is c.t.b. an R-sequence if (on, onsx) € R, Vh, k € N.

Definition 1.2.13. Khalehoghli et al. (2020) Let (Q2,d,R) be an R-MS and {os}
be an R-sequence in 2. Then, {op} is c.t.b.

(i) R-convergent to o, if Ve >0, AK € N s.t.
d(on, 0) <€ YVh > K;
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(i) R-Cauchy, if Ve >0, IK € N s.t.
d(gfu Qm) <e Vﬁam > K.
Moreover, the triplet (2,d,R) is c.t.b. R-complete, if every R-Cyey in (2,d,R)
is convergent to some o € ).

Definition 1.2.14. Khalehoghli et al. (2020) Let (Q2,d,R) be an R-MS, and T
be a self mapping on 2. Then, I' is c.t.b. R-continuous at o € § if for every
R-sequence {o,} that converges to o, the sequence {I'0,} converges to I'p. Ad-
ditionally, T" is considered as R-continuous on ) if it is R-continuous at every
point o € 2.

Definition 1.2.15. Alsamir et al. (2019) Let B be a unital C* algebra with unit

Iy and zero element Og. A mapping w : Q2 x Q0 — B, is termed as C*-Algebra
Valued m-metric, if it satisfies :

(i) @w(o,9) = @w(o,0) = w(V,9) & 0 =1;
(ii) w(o,0) and w(V,¥) are comparable;
(iit) o9 = w(e, ), ;
(iv) w(o,9) = w(¥,0);
(v) @(0,9) = @Wow 3 @(0, () — Wy + @((, V) — Ty,
Vo,v,( € Q, where wyy = min {w(g, Q),w(ﬁ,ﬁ)}. Moreover, (2,B,m) is termed

as C*-Algebra Valued m-Metric Space (C*-AV-m-MS). The other topological

aspects of the space can be seen in Alsamir et al. (2019).

Remark 1.2.16. Alsamir et al. (2019) Let (Q,B,w) be a C*-AV-m-MS. Then,
YVo,9,z €€,

(Z) 0 = Mgﬁ + Wy = w(IQJ lQ) + ’W(ﬁ’ﬁ),
(ZZZ) Mgﬁ — Woy j MQC — Wy¢ + Mgﬁ — WY,
where wyy = min {w(g, 0), @ (¥, 19)} and M,y = max {w(g, 0), @ (¥, 19)}
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Definition 1.2.17. Czerwik (1993) A mapping dy : 2 x Q — [0, 00) is termed as
a b-metric, if for some s > 1, it satisfies:

(i) dy(0,9) =0 & 0 =1;

(ii) dy(0,9) = dy(9, 0);

(iii) dy(0,7) < s(dy(0,C) + dp((,V)),

Vo,9,¢ € Q. Moreover, (2,d,) is termed as b-Metric Space(b-MS).
Example 1.2.18. (R, d,) is a b-MS with s = 2 and dy(0,9) = |o — I|*.
Definition 1.2.19. Czerwik (1993) Let (2, dy) be a a b-MS and {or} be a sequence
in Q. Then, {op} is c.t.b.

(i) convergent if 3o € Q) s.t. dy(op,0) — 0 as h — oo;

(71) a Cseq in 2 th lim  dy(on, 0m) = 0.
M —00

Moreover, If every Cseq {on} is convergent in 2. Then, (€2, dy) is complete.
Definition 1.2.20. Alam and Imdad (2015, 2017) Let R be a binary relation on
MS (2,d), {or} be a sequence in Q and I : Q@ — Q be a mapping. Then,

(i) {on} is R-preserving if (o, on+1) € R Vh € N;

(i7) (2, d) is R-complete if every R-preserving Cse, in §2 is convergent in €);
(i) R is T'-closed if for (0,9) € R, we have (I'p,T'V) € R;

(iv) R is d-self-closed if for every R-preserving sequence {or} — 0, 3 a sub-
sequence op, S.t. [on,,0] € R i.e., ((Qﬁk, 0) € R or (0,0n,) € R);

(v) T is R-continuous at o € Q) if for every R-preserving sequence {o5} — o,
we have {I'gz} — To.

Definition 1.2.21. Zada and Sarwar (2019) Let R be a binary relation on set €
and S,I": Q — Q be self mapings. Then, R is (S,T')-regular closed if

(So,TY) € R and (T'9, So) € R, whenever (o,9) € R.
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Definition 1.2.22. Samet et al. (2012) Let a: Q x Q — [0,00) and I' : @ — Q

be mappings. Then, I' is a-admissible if
ale,9) > 1= «a(lp,T'Y) > 1V, € Q.

Definition 1.2.23. Sintunavarat (2016) Let a : 2 x Q — [0,00) and I' : Q@ — Q
be mappings. Then, I' is c.t.b. a-admissible of type s if

alo, V) > s = a(Tp,T9) > s Vo, 9 € Q.

Definition 1.2.24. Let a : 2 xQ — [0,00) and S, : Q — Q be mappings. Then,
(S,T) is c.t.b. generalized a-admissible of type s if

ale, V) > s = a(So,TY) > s and a(T'9, Sp) > s Vo, € Q.
Definition 1.2.25. Samet et al. (2012) Let W be the collection of all functions
YRy — Ry satisfying:
(i) ¢ is monotonically increasing i.e., ¥(z1) < Y(z2) & 21 < 29;
(i1) hlim Y"(2) = 0 Vz > 0, where ¢" is the A" iteration, i.e., (z) < z ¥z > 0.
—00
Definition 1.2.26. Liu et al. (2016) Let ® be the collection of all continuous
functions ¢ : Ry — R satisfying:
(i) ¢ is monotonically increasing function i.e., ¢(t1) < @(ts) < t1 < to;
(i1) hlggo o(ty) =0 < hli)rglo tp = 0, for any sequence t € (0,00).

Lemma 1.2.27. Miculescu and Mihail (2017) Let (2, dy,) be a b-MS and {or} be
a sequence in Q. If IX € [0, 1) s.t.

dp(0n+1, 0n) < Ady(on, 0n—1) Yh € N.
Then, {on} is a Cseq.

Definition 1.2.28. Stanley (1999) Let g : R — R™ be a positive function. Then,

the multiplicative derivative and integral of g are defined as

glo+ h)) "
g9(0) '

=g'(0) = 1im<

do h—0

/bg(g)dg _ oJ inlg(e)) de.
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Theorem 1.2.29. Grossman and Katz (1972) Let f and g are two multiplicative

integral function on |a,b]. Then, we have

(i) J2(f(0).9(0))% = [2 (o). J2 g(0)%;

b fle)de [7 f(o)te
() Jo gt =

(iii) [7((9(0))")% = (f; g(0)™)";

(iv) |12 g() | < [2lg(e)| .

Definition 1.2.30. Ozavsar and Cevikel (2012) A mapping u : X  — [1,00)

is termed as Multiplicative metric, if it satisfies :

(i) u(p,V) =1 o=1;
(iii) u(o, V) = u(V, 0);

(iv) u(e, V) < u(e,()-u(C, ),

Vo, 9, ¢ € Q. Moreover, (Q,u) is termed as a multiplicative metric space(multiplicative
MS).

Example 1.2.31. Ozavsar and Cevikel (2012) u(po,v) = o) |22 , where p =
0 0
1, V2],
2 a,a > 1; . T .
01,02), ¥ = (V1,0 and |a|, = is a multiplicative metric on
( ), ¥ = (Vh,72) € RL and|al, ) ) Itiplicat t
L <1.

Q=R

Definition 1.2.32. Ozavsar and Cevikel (2012) Let (2, u) be a multiplicative MS
and {or} be a sequence in Q). Then, {04} is c.t.b.

(i) convergent if u(os, 0) — 1 as h — oo;

(ii) Cauchy if u(op, 0m) — 1 as h,m — co.

Moreover, if every Cseq {0n} € Q2 converges to some g € Q, then (2, u) is multi-
plicative complete.
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Definition 1.2.33. Ozavsar and Cevikel (2012) A self mapping I' on (2, u) is
c.t.b. multiplicative continuous at o € S if for every multiplicative convergent

sequence {or} — o implies {T oz} — To, i.e.,
u(on, 0) — 1 implies u(Top, To) — 1.

' is c.t.b. multiplicative continuous on €1, if ' is multiplicative continuous at

every o € 2.
Lemma 1.2.34. Ma et al. (2014) Let B be a unital C*-algebra with unit Iy, zero
element Og. Then, we have
(i) if a € By with ||o|| < 3, then Iy — o is invertible and |la(Ig — o)~ < 1;
(ii) Yo, € By with o, 8 = 0y and off = Ba, then aff = Op;

i) if « € B and B,v € B where f = v = 0y and Iy — a € B’ is invertible
+

operator then
(Il —a) B = (s —a) 'y,
where By ={a €B:a>0g} and B'={a €B:af =pfa V3 € B}.
Definition 1.2.35. Ma et al. (2014) Let B be an unital C*-algebra and A mapping
d:Q2xQ—Bisctb aC*-algebra valued-metric, if it satisfies
(i) d(o,9) <X 6, and d(p,V¥) =0 < 0 =1;
(ii) d(e, V) = d(1, o)

(iit) d(e, V) = d(e, ) +d(¢, V),

YV, 0,¢ € Q. Then, (Q,d,B) is c.t.b a C*-algebra valued-metric space (C%,,-MS).
Definition 1.2.36. Malhotra et al. (2022) (Q,d,B,R) is c.t.b. a C*-algebra valued
R-metric space (C%,,-R-MS) if it satisfies:

(i) (Q,d,B) is a C%, -MS;

(7)) R is a reflexive binary relation on €.

Definition 1.2.37. Misiak (1989) Let Q be a VS with dimension atleast n, for
some n € N. A mapping ||.,...,.]| : Q" — [0,00) is termed as an n-norm, if it

satisfies :
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(1) |01, 02, -, 00l =0 < 0; and g; are linearly independent for 1 < i # j < n;
(ii) |01, 02, -, 0nl|| @s invariant under the permutations of o1, 02, - - ., On;

(”Z) ||a917027' . 7QTL|| - |Oé|||Ql,Q2, e '7Qn||;‘

(Z/U) HQl +7917@27"'7Q71” S HQl?QZa"')QnH + HﬂbQ?a"'aQnH;

Vo; € Q. Moreover, (X, ||.,...,.||) is termed as n- N'S.

Example 1.2.38. Misiak (1989) Consider Q = R™ with usual inner product.

Then, ||.,...,.|| :+ Q* — [0,00) defined as | o1, 02,-..,0n] = ’det(gij), where
011 P12 - Oin
det(g;;) = 21022 - Oy o — norm.
Onl On2 - Onn
Definition 1.2.39. Misiak (1989) Let (2, ||.,...,.||) be an n-N'S and {o,} be a
sequence in ). Then, {on} is c.t.b. a Cyeq if
lim Hgk— QZ,ZQ,...,ZnH :OVZQ,Z;),,...,ZTL e Q.
k,l—o0
Definition 1.2.40. Misiak (1989) Let (2, ]|.,...,.||) be an n-N'S and {o,} be a
sequence in ). Then, {o,} is c.t.b. convergent if
lim ||ox — 0,22, ..., 20| = 0 V22, 25,...,2, € Q.
k—o00
Definition 1.2.41. Misiak (1989) (2, ||.,...,.||) is c.t.b. an n- BS if every Cse,
in ) is convergent in ).
Lemma 1.2.42. Xu and Rassias (2012) Let (Q,]|.,...,.||) be an n-N'S and {ox}
be a convergent sequence in §2. Then,
lim ||ok, 22, 23, . . ., 2n|| = ‘ lim o, 22,23,...,2a|, Vz; € Q, wherel < i < n.
k—o0 k—o00
Lemma 1.2.43. Xu and Rassias (2012) Let (0, ||., ..., .||) be an n-N'S and

||Q)Q917192a s 71971—1“ =0 \V/'lgz € Q.
Then, o = 0.
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Theorem 1.2.44. Diaz and Margolis (1968) Consider a generalized complete MS
(Q,d) and a self mapping I : Q@ — Q satisfying:

d(T'e, ') < kd(o,9).

for k € [0,1), whenever d(p,v) < co. Then,
either d(T"™(0), T (0)) = oo or the following assertions holds:

(i) nlglg() o = 0", where o* is the fixed point of T';

(i) d(e, ¢") < lid(ﬁ,m).

k
Definition 1.2.45. Yang et al. (2015) Let Q2 be a VS over a scalar field K with
a non-Archimedean nontrivial valuation | - | and dimQ > n. Then, a mapping

.soey ]| - Q™ — [0, 00) is termed as a non-Archimedean n-norm, if it satisfies

(1) |01, 02, .-, 00l =0 < 0; and g; are linearly independent V' 1 < i # j < n;
(ii) |01, 02, - - -, 0nl|| @s invariant under the permutations of 01, 02, - - ., On;
(7’7’7’) Hagh 02, -+, QTLH = |04H|Q17 02,---, Qn”;

(“}) ||Q1 +Q917 02, .-, Qn” S ma’X{HQh 02, .-, Qn”u ||191)Q27 .. 7Qn||}7

Vo; € Q. Moreover, (4, ||.,...,.||) is termed as non-Archimedean n- N'S.

Definition 1.2.46. Yang et al. (2015) Let Q2 be a non-Archimedean n- NS and

{or} be a sequence in Q. Then, {op} is c.t.b. Cauchy < {ops1 — o} — 0, as
h — oo.

Definition 1.2.47. J. M. Rassias and Kim (2009) Consider a function ® : Q@ —
Y, where Q and (Y, <) are closed under addition. Then, ® is c.t.b.

(1) sub additive if ®(0 + V) < ®(0) + P(V);
(11) contractively sub additive if I\ € [0,1) s.t. P(o+ ) < A (P(0) + D(V));

(iii) expansively super additive if IX € [0,1) s.t. (0 +9) > + (B(0) + ®(¥)),

Vo, 9 € Q.
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1.3 Chapterwise Summary

In this section, we provide a brief summary of the results proved in the later chap-
ters of the thesis.

Chapter 2, deals with the results on the stability of quadratic and quartic type
functional equations. Some illustrations are presented to demonstrate the signifi-
cance of the assumption made in proved results. Also, the stability of a generalized
quartic function equation using fixed point approach and conventional approach

in n-BS and non- Archimedean n-BS is discussed.

Chapter 3, introduces the concept of Cy,-mz-MS, which is a generalization of
both C%-m-MS and R-MS. The first section presents the definition of C%;-my-
MS, along with its intrinsic properties and several illustrative examples. The
second section focuses on the existence and uniqueness of fixed points within
Cy-mg-MS, using the concept of (', -mg-contraction mappings. The results
established in this chapter extend and generalize several well-known fixed point
theorems found in the literature. Also, as an application the existence and unique-

ness of the solution to the operator equation is presented.

Chapter 4, introduces the concept of a generalized distance function, referred to
as the multiplicative m-metric. The first section presents the basic definition and
intrinsic properties of the multiplicative m-MS, along with illustrative examples.
The second section discusses various fixed point results for self mappings within
the framework of multiplicative m-MS, using different contractions. Illustrative
examples are provided to discuss the existence of fixed points for discontinuous
self mappings. In the third section, common fixed point results for a pair of self
mappings are explored using generalized contraction conditions. An illustrative
example, involving discontinuous self mappings, is discussed, along with numer-
ical iterations to approximate the common fixed point, supported by graphical
representations. The fourth section presents fixed point and common fixed point
results using a three-point analogue of contraction mappings. Additionally, as ap-
plications, the existence and uniqueness of solutions to the initial value problem

and a system of integral equations are discussed.

Chapter 5, presents several common fixed point results for self mappings in PMS
using the (¢,)-Wardowski type contraction. Furthermore, some fixed point

results are proven using generalized cyclic contractions, followed by illustrative
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examples. As an application, the existence of a fractal set for the Hutchinson-
Barnsley operator is established using the fixed point results proved in the chapter.
Finally, some iterations for generating fractal sets are presented, along with the

resulting fractals.

Chapter 6, discusses some common fixed point results for self mapping in b-MS us-
ing relation theoretic and a-admissible generalized contractions. As applications
of the proved results the existence of solution to a class of non-linear functional

integral equation and an operator equation are established.

Chapter 7 introduces several fixed point results within the framework of m-MS
using contraction mappings. The continuity conditions of self mappings are not
essential in the results proved, unlike those in existing literature. The chapter
discusses examples where well-known contractions in metric spaces do not guar-
antee the existence of a fixed point, but their generalizations within m-MS yield
the desired outcome. These examples are validated through graphical visualiza-
tions of contraction mappings, which help in understanding their behavior and
highlight the distinctions between metric spaces and m-MS. The main sections
present fixed point and common fixed point results using various contractions.
Finally, some numerical iterations for approximating the common fixed point are

provided, accompanied by graphs that visually demonstrate the results.

kokkokokokk
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Chapter 2

Some Stability and Hyperstability
Results for Functional Equations

2.1 Introduction

The concept of stability of functional equations(FEs) began with Ulam’s problem,
raised at the University of Wisconsin, which sought to determine when approx-
imate solutions to FEs are close to exact solutions. Hyers provided the first
significant response to this problem, known as Ulam-Hyers stability, which offers
a framework for understanding the conditions under which approximate solutions
to FEs are close to the exact solution.

Following Hyers’ work, numerous generalizations and extensions of this theory
have been developed, expanding its applicability to various functional equations
and contexts, for reference see ( Cholewa (1984); Brzdek and Pietrzyk (2008);
Bahyrycz et al. (2013); Brzdek and Cieplinski (2013); Bahyrycz and Piszczek
(2014); Brzdek (2014); Bahyrycz and Olko (2016); Brzdek et al. (2016); Alessa
et al. (2021); Cieplinski (2021); Bahyrycz and Sikorska (2022); Jeyaraman et al.
(2022); Aderyani et al. (2023); Benzarouala, Brzdek, et al. (2023); Benzarouala,
Brzdek, and Oubbi (2023); Park and Senasukh (2023); Jin and Lee (2024) and
the referenced cited therein).

The present chapter of the thesis explores some stability results for FEs mainly

quadratic type and quartic type FEs. In the first section, we establish some sta-
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bility results for classical quadratic FE F (o + 9) + F (0 — 9) = 2F (0) + 2F (9¥)
and Jensen type quadratic FE 2/ (m;—ﬁ) +2F (%) = F (o) + F (¥) using a well
established approach given by Moghimi and Najati (2022). Additionally, some
hyperstability results for quadratic type FEs along with some instances that illus-
trate the necessity of the assumptions made to establish the stability results on
quadratic type FEs.

In the second section, inspired by the stability results in literature, we present the

stability result for the generalized quartic FE of the form

F(ao+b0) + F (ap — b9) = 2a*(a® — b*)F (0) + 2b*(b* — a®)F (V)

+ a0 (F(o+9) +F(o—19)), (2.1.1)

where a,b (a # b) are positive integers. Also, we explore the Ulam-Hyers-Rassias
stability results in n-Banach space using a fixed point technique. Eventually, some
stability results are established using the conventional approach with contractively
and expansively sub additive control functions. At last, the stability results of the
quartic FE in non-Archimedean n-Banach space are established. The results of

this chapter are presented in ! 2.

2.2 Some Results on Stability of Quadratic type
Functional Equations in Banach Space

In this section, we explore some hyperstability results for quadratic type FEs in

the context of BSs.

Theorem 2.2.1. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose € > 0 and real numbers py, ps and ps satisfying p1 + pa + ps < 0.
Consider thatV o € U, 3 h, € N s.t. hoe UV h > h,. If a function F : V — W

Yadav, K., & Kumar, D. (2024). Some hyperstability results for quadratic type functional
equations. Applied Mathematics E-Notes, 2/, 212-227.

2Yadav, K., & Kumar, D. Stability analysis of a generalized quartic functional equation in
n-Banach space, (Communicated).

20



defined on V' satisfies

IFlo+d+Q)+F(a)+FW)+F () —Floe+9)—F@+C) —F(+ o)l
< ello[" [0 (ICIP*,  (2-2.1)

Vo, 0, €U0+, 0+ o+ o+v+CeU.
Then, F is a quadratic type FE satisfying

Flo+ 9+ +F @)+ F@)+F(Q)=Fletd)+F@+O+F(C+o)

Vo, ), 0+ 0,94+ 0+(,o+0+(eU.

Proof. 1t is given that p; + ps + p3 < 0. Therefore, without loss of generality, let
P2+ p3 < 0. Let 0,90 € U with o+ ¢, v+, (+ 0 € U. Hence, by the given
hypothesis 3 a natural number k s.t. fp, i, h¢, h(o + 9), A(Y + (), h(o + ¢) and
ho+9+()eUVYh>k

Substituting 0 = o, ¥ = hp and { = hp in (2.2.1), we have

HF((l—l—Qﬁ)g) +F (0)+2F (ho)—2F ((1+h)o) — F (2ho)

S €ﬁp2+P3HQHP1+p2+P3'

Similarly, we have

< 6hP2+P3HcHP1+p2+P3’

‘F((1+2ﬁ)§) +F(Q)+2F (h¢) —2F ((1+h)C) — F (2h()

< E)!!iszrpsH19H171+p2+1737

‘ F((L+2R)9) +F (0)+2F () —2F ((1+h)9) — F (2h)

HF((l +20)(0+9)) + F(o+9) +2F (hlo+1)) — 2F (14 h) (o +))

- F(2ﬁ(@ + 19)) < 6ﬁp2+p3HQ + 19”1”1+P2+p3’

HF((1 +20) (0 + Q) + F (9 + ) + 2k (h(® +¢)) — 2F (1 + B) (¥ +¢))

_ F(Qﬁw + C)) < el ||  C|Prtetes,
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HF((l +20)(0+ Q) + F(e+¢) +2F (h(o+¢)) —2r (1 +h)(e+))

S 6ﬁP2+P3HQ + C|’P1+p2+?3

— 1 (20 + )

and
HF((l—Ir2ﬁ)(Q+19+C))+F(Q+19+()+2F<ﬁ(g+z9+())—2F((1+ﬁ)(@+19—|—ﬁ))

— F(Qﬁ(g + 9+ C)) < eﬁp2+p3HQ + 9+ Cl|p1+m+p3‘

Since py + p3 < 0, taking limit as 7 — oo in above inequalities, we have

I (o) = lim <2F((1 +h)(0)) + I (2he) — F ((1+2h)o) — 2F(ﬁg)>,

F(9) = lim <2F((1 +1)(9)) + F (2h0) — F ((1+2h)9) — 2F(h19)>,

h—o00

F(¢) = lim <2F((1 +R)(Q)) + F (2h¢) — F ((1+2h)C) — 2F(h§)>,

h—o0

I (o+9) = lim <2F((1 +h)(e+9)) + F(2h(0 + 1))

— F((1+2h)(e+v)) —2F (h(o+ 19))),

F(0+¢) = lim <2F((1 +h) (@ + Q) + F(2h(9 + )

—F (4200 +¢)) — 2F (h(v + g))),

Flo+¢) = %LIEO<2F((1 +h)(e+Q)) + F(2h(e+ )

— F((1+2h)(0+¢)) — 2F (il + ()))

and
Flo+9+()= hlggo<2F((1 +h)(e+0+)) + F(2h(e+ 9 +0))

—F((+2m)(e+0+¢)) - 2F (hlo+ 0 + C)))-
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Now,

IA

IA

Hﬂgwm R+ F@) +F(Q) = Fo+9) — F(0+C) — F<g+<>||

lim
h—00

‘(2F((1+ﬁ)(@+19+())+,f(2ﬁg—H?—i—C) F((L+2m)(0+9+0))
—2F(ﬁ(g+ﬁ+§)))>+<2F<(1 (0)) + F (2h0) — F ((1+2h)o) — 2F ( ﬁg)
+<2F (1+m)(¥)) + F (2h9) — (1 +2R)9) — 2F ( ﬁﬂ)

+<2F (1+5)(Q)) + F (2h¢) — F ((1+2h)C) —2 )

- (
20(0 +C)) — F (1 +20) (9 + ) — 2F (h(¥ + ) )
2h(0+¢)) — F ((1+2h) (e +¢)) - 2F(ﬁ(@+g))>”
lim2HF<( +h)(e+0+C)) +F ((1+R)o) +F ((L+h)) +F ((1+h))
—F((L+8)(e+9) = F((L+R@+¢) = F ((L+h)(e+ c))H
+HF(2h(g +0+Q)) +F (2h0) + I (l0) +  (27) = F (2h(0+9)) — F (250 +¢)
—F(2h(g+§)>H

+HF ((+2m)(0+9+Q) +F ((1+2h)e) + £ ((1+2m)9) + F ((21 + K)C)
—F((t+2m)(e+9)) - F (A +2m)0 +0))

—F ((1+28)(0+¢) H+2H (o +0+C)) + F (ho) + F () + F (hC)

—F (Bl +9)) = F (A(¥ + Q) - ((g+¢))H

lim 6(2(1 -+ ﬁ)p1+p2+p3 + (2h)m+p2+173 4 (1 T 2h)771+p2+173 4 Qﬁp1+P2+p3>
h—o0

NlelPIg1P=I¢ ]
0.
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Hence,
Flotd+Q+F)+FWO)+F(Q)=F(e+d)+FW+OF(e+(),
Vo, ), 0+ 3,09+ o+(,o+0+(eU. O

Remark 2.2.2. The condition p1+ps+ps < 0 specified in Theorem 2.2.1 is crucial
for the hyperstability result. The example 2.2.3 illustrates that if the criterion
p1 + p2 + p3 < 0 is not met, then the function may not be of quadratic type.

Example 2.2.3. Let F : R — R be defined as F (9) = 0*. Then we have

[Flo+0+4¢) + F@+F@)+F(Q)—Fle+d)—F@+¢) —F(C+0)
= e+ 9+ ¢+ + P+ = (0+ ) = (9 +0)° = (C+0)

= |609¢] < 6]o|9[C] .

The hypothesis (2.2.1) holds, for py =1, po =1, p3 =1, € =6, but F is not a

quadratic function.

Theorem 2.2.4. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose € > 0 and real numbers py and ps satisfying p1 + pa < 0. Consider
thatV o€ U, 3 h, e Nst. hoe UY h > h,. If a function F : V — W defined

on 'V satisfies
IF(e+ )+ F (0 —1) = 2F (o) = 2F (V)| < ellol* |9, (2.2.2)
Vo, 0,04+ 19,0—19 € U. Then, F is quadratic on U, i.e.,
Flo+9)+F(o—19)=2F (o) + 2F (9),

Vo,9,0+9,0—9€U.

Proof. The result is analogous to Theorem 2.2.1. O

Remark 2.2.5. The condition p1 + ps < 0 specified in Theorem 2.2.4 is crucial
for the hyperstability result. The example 2.2.6, illustrates that if the criterion

p1 + p2 < 0 is not met, then the function may not be quadratic.
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Example 2.2.6. Let f : R — R be defined as F () = o*. Then, we have

(s Flo=0 =20 -2 0)] = flo+0)'+ (o= 0)* -2 = 20

= [120%9?] < 120" W]

The hypothesis (2.2.2) holds for e = 12 and py = pa = 2, but F is not quadratic.

Theorem 2.2.7. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose € > 0 and real numbers py and ps satisfying p1 + ps < 0. Consider
thatV o€ U, 4 h, € N s.1. ﬁ’—;’ e UV h>h, If afunction F :' V — W defined

on 'V satisfies

HQF (T) +25 (é);ﬁ) —F (o) — F (V)

Yo,?, #, % € U. Then, F is quadratic of Jensen type on U, i.e.,

< eflol[™[[0]]72, (2.2.3)

2F<Q—2H9> +2F<Q;§> = F (o) + F (9),

Vo,9, 42 ¢ e U

Proof. The result is analogous to Theorem 2.2.1. O

Remark 2.2.8. The condition py+ps < 0 specified in Theorem 2.2.7 is crucial for
the hyperstability result. In Example 2.2.9, we have illustrated that if the criterion

p1 + p2 < 0 is not met, then the function may not be quadratic of Jensen type.

Example 2.2.9. Let F : R — R be defined as F (0) = o* and let U = [1,00).

9\* —9\*
(552 (55 e

< Sle 1

Then, we have

HzF (W) LoF (‘);ﬁ> (o) - F(ﬂ)H _

_ 3’92_02

< —

3 4 4
= —lo|"|Y|".
~lol*}9)

The hypothesis (2.2.3) holds for e = %, and p1 = py = 4, but F is not quadratic
of Jensen type.
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Theorem 2.2.10. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose € > 0 and real numbers py, pa2, p3 and py satisfying p1+po+p3+ps <
0. Consider thatVo € U, 3h, € Ns.t. ho € UVh > h,. If a functionf : V — W
defined on V' satisfies

IFloe+V+Q)+F(a)+FW)+F()—Floe+9)—F@+C) —F(+ o)l

< ol 1P ([ClPello + 9 + ¢, (2.2.4)
Vo,9,(,0+9,94+C, 0+, 0+0+( € U. Then, F is a quadratic type FE satisfying
Flot9+Q)+F(o)+ F0) +F(Q) = Flo+9) + F(9+ Q)+ F(C+0)

Vo v,¢o+0, 9+C o+( o+0d+(eU.

Proof. The result is analogous to Theorem 2.2.1. ]

Remark 2.2.11. The condition p; 4+ pa + ps + ps < 0 specified in Theorem 2.2.10
is crucial for the hyperstability result. The example 2.2.12 illustrates that if the

criterion py+p2+p3+ps < 0 is not met, then the function may not be of quadratic

type.

Example 2.2.12. Let F : R — R defined as F (o) = o*. Then, we have

[Fle+9+¢) + F@+F@)+F(Q)~Fle+d) = F@+¢) ~F(C+0)|
= |+ 9+ + o'+ 0"+ =0+ ) = W+ ' = (0+ Q)
= ‘8(92y2+93y2§+91%2)
< 8lodC|lo+ 9+ ¢

< 8lo||[9]|¢]lo+ vV 4]

The hypothesis (2.2.4) holds for p1 = py = ps = ps = 1&e = 8, but F is not a

quadratic function.

Remark 2.2.13. The results proved in Theorem 2.2.1 and Theorem 2.2.10 is

associated to various hyperstability results concerning linear and quadratic FFEs
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in the existing literature. For instance, see Proposition 1.10 of Zhang (2015),
Corollary 8.7, Corollary 3.10, Corollary 3.12 of Bahyrycz and Olko (2016).

Theorem 2.2.14. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose €,0 > 0 and real numbers py, ps and ps satisfying p1 + p2 +p3 < 0
and py + p2 + 2p3 < 0. Consider that Vo € U, 3 an h, € N s.t. hoe UV h > h,.
If a function F : V. — W defined on V satisfies

[F (o+9)+F (0=0)=2F (o) =2F (W)[| < [lo|"* [[9]|”* (el o+d[|*+6] 0—V|[**), (2.2.5)
Vo, %, 0+ 19,0—19 € U, then F is quadratic on U, i.e.,

Flo+9)+ F(o—1)=2F(0) + 2F (9) Vo,0, 0+ 1,0 — 0 € U.

Proof. The result is analogous to Theorem 2.2.1. O

Remark 2.2.15. The conditions p1 + p2 +ps < 0 and py + pa + 2ps < 0 specified
in Theorem 2.2.1/ are crucial for the hyperstability result. In Example 2.2.16, we
have illustrated that if the criteria (p1 4+ p2 + p3 < 0 and p; + p2 + 2p3 < 0) is not

met, then the function may not be quadratic.

Example 2.2.16. Let F : R — R be defined as F (0) = ¢ and let U = [1,00).

Then, we have

[Flo+9)+Flo—)=2F(0) = 2F ()| = |(e+9)°+ (e~ 0)° — 20" — 20°|
= ‘6@192—2193’
= 20’30 — |
= 2[0]*Bo— o+ 0~
< 2P (|20l +]e - V])

< o'l (4lo+ 9| + 2l — v]).

The hypothesis (2.2.5) holds for py = 1,py = 2,p3 = 1,€ = 4&0 = 2, but F is not

a quadratic function.
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Remark 2.2.17. The result proved in Theorem 2.2.4 and Theorem 2.2.14 is as-
sociated to various hyperstability results concerning linear and quadratic FEs in

the existing literature. For instance, see Theorem 2 of Brzdek et al. (20106).

Theorem 2.2.18. Let V and W be two NSs and U C V — {0} be a non-empty
subset. Choose €,0 > 0 and real numbers py, ps and p3 satisfying p1 + p2 +p3 < 0
and p1 + p2 + 2p3 < 0. Consider that Vo € U, 3 an h, € N s.t. hp € U Vh > h,.
If a function F : V — W defined on V satisfies

H2F (T?) +2F <M> —F(0)—F (9)

< [lel[" 91 (ello+[[*+0l o —2][**),

2
(2.2.6)
9 —9 . . .
Yo, I, %, &= € U, then F is quadratic of Jensen type on U, i.e.,
+9 - +19 o0—0
2 (L) v2r (S ) = F (o) + FW) Vo0, 225 2o el
2 2 2 2
Proof. The result is analogues to Theorem 2.2.1. O]

Remark 2.2.19. The conditions p1 + p2 + ps < 0 and py + pa + 2ps < 0 specified
in Theorem 2.2.18 are crucial for the hyperstability result. In FExample 2.2.20, we
have illustrated that if the criteria p1 + ps + p3 < 0 and p; + ps + 2p3 < 0 is not

met, then the function may not be quadratic of Jensen type.

Example 2.2.20. Let F : R — R be defined as F (9) = ¢®, and let U = [1,00).

Q+193 9—193 3 3
( : >+2< ) e

(—293 + 600% — 4193>

Then, we have

(52 15 0]

2

NN ORI ORI N S

0® — 300% + 2193‘
0% — 0% + 203 — 2@192‘

o(0® = V%) + 20(¢” — ¥?)|

IN

o* — |0 + 20|

IN

[o*[9* (2|0 + 9| +|o —9]) -
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The hypothesis (2.2.6) holds for p1 = 2,p2 = 2,p3 = 1,e =2, &0 = 1, but F is not

a quadratic type Jensen function.

Remark 2.2.21. The result proved in Theorem 2.2.7 and Theorem 2.2.18 is as-
sociated to various hyperstability results concerning linear and quadratic FEs in
the existing literature. For instance, see Corollary 1, Corollary 2 and Corollary

3 of Brzdek et al. (2016), Theorem 2 and Theorem 5 of Bahyrycz and Piszczek
(2014).

Theorem 2.2.22. Let V be a N'S over field F and W be a NS over field K. Let
p,q €F—{0} and ¢ : X x X = [0,00) be a mapping s.t.
lim ¢(p~ (1 + h)o, —q *ho) = 0, rlim ¢(ho, k) = 0Vp,9 € V —{0}.
1— 00

h—o00

Let P,QeKand Re W. If F : V — W satisfies
IF (po+q9) + F (po— qV) = PF (o) = QF (V) — R < ¢(e, ), (2.2.7)
Vo, 0e{ eV || >d} for somed >0, then

F(po+ q9) + F (po — q¥) = PF (o) + QF (9) + RVo,9 € V.

Proof. By substituting o = (1%)9 and ¥ = % in (2.2.7), we have

HF(Q) +F ((1+2h)0) = Pr (p'(1+ h)e) — QF (—q 'he) — RH
<o (p ' (1+h)o,—q 'ho),

Vo€V —{0}and h € N, where p~ (1 + h)o,q 'ho € {C € V : |[C|| > d}.

Taking limit as 7 — oo on both sides, we have

h—o0

lim HF(Q) +F ((1L+2h)0) — PF (p™" (1 + h)o) — QF (—q 'ho) — RH

< lim ¢ (p~'(1 + h)o, —¢ 'ho) = 0. (2.2.8)

T h—oo

or

h—o0

F (o) = lim (PF (p7'(1+h)o) + QF (—q 'he) + R—F (1+ 2h)g)>.
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Similarly, we have

and

Now,

VAN

IA

F(0) = lim <PF (P71 +m)0) + QF (=g 7'm9) + R—F ((1+ 2h)19)>,

h—o00

F(pe+qv) = lim (PF (77" (1 + 1) (po + g9))

+Qr (—q "h(po+q9)) + R— 1 ((1+2h)(po+ qﬁ))>,

— 00

F(po—¢v) = lim (PF (P71 + 1) (po — g9))

+QF (=g 'h(po— g9)) + R— 1 (14 2h)(po — qﬁ)))

|F (po+q?9) + F (po — q¥) — PF (o) — QF () — R||
‘ (PF (P71 + B)(pe + 49)) + QF (—q 'hlpe + ) + R

= lim
h—00

—F ((1+2h)(pe + qﬁ))) + <PF (P (1 + 1) (e —a9)) +QF (—q 'hlpe— )

+R — F ((1+2h)(po — qﬁ)))

—P(PF (p7'(1+h)o) + QF (—q 'ho) + R—F (21 +h) )>

( F(p (1 +h)0) + QF (—q 'h) + R - F((21+ﬁ)19)>—RH
JL%OP‘|F<p "1+ (pe+a0) +F (p7'(1+h)(pe— qV)) = PF(p~' (1 + h)o)
—Qr@r%1+ﬁw>—RH+QH (—g hlpo+ 49)) + F (~a~h(po - a9))
—PF (—q"'he) — QF (—q'h) - H H 1+ 2h)(po + qv))

F (14 2)(po — g9)) — PF (14 2R)g) — QF (1 + 2R)9) — RH
lim (Pszﬁ (P (1 +h)e,p (1 + h)0) + Qo (—q o, —q ') +
¢ ((1+2h)o, (1 + 2ﬁ)19)> = 0.
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Therefore,
F (po+ qV) + F (po — q9) = PF (0) + QF (V) + RVp,9 € V.
0

Remark 2.2.23. The result proved in Theorem 2.2.22 is associated to various
hyperstability results concerning linear and quadratic FEs in the existing litera-
ture. For instance, see Theorem 2, Corollary 3 of Piszczek (2014), Theorem 2.1,
Theorem 2.3 of Piszczek (2015), Theorem 2.1 of Phochai and Saejung (2019),
Theorem 2 of Brzdek et al. (2016).

2.3 Stability Analysis of a Generalized Quartic
Functional Equation

In this section, we explore hyperstability results for quartic FE in n-A/'S using
both conventional as well as fixed point approach.
Remark 2.3.1. Consider two VSs Z and Y over the same field. Assume that the
mapping F : Z —'Y satisfies (2.1.1). Then, ¥V 0,9 € Z, we have

(i) On substituting o =9 =0 in (2.1.1), we have F (0) = 0;

(ii) On substituting 9 = 0 in (2.1.1), we have F (ag) = a*F (0);
(iii) On substituting o =0 in (2.1.1), we have F (—9) = F (¢).

2.3.1 Ulam-Hyers-Rassias Stability in n-Banach Space us-
ing Fixed Point Approach

In this section, we use the fixed point result of Diaz and Margolis (1968) on
generalized MS to examine the stability of the quartic FE (2.1.1) on an n-N'S.

Throughout the section, (Z, ||.,.||z) represents an n-N'S and (Y, ||, .||y) represents
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an n-BS. Also, let
GapF (0,9) = F (a0+b9)+ F (ag—b9) —2a*(a® — b*) F (0) — 20°(b* — a®)F (V)
— &V (F(o+9) + F(0— 1)),

Y 0,9 € Z and positive integers a and b with a # b represent the quartic FE and
19, z|ly = ||9, 29, 23, ..., 24|, where ¥ € Y, z € Y™ and Y™ denotes Y XYV x...x Y,

n times.

Theorem 2.3.2. Let Z be an n- NS and Y be an n-BS over the same field. Let
F:Z —Y beamapping s.t. F(0)=0 and =Z: Z x Z — [0,00) satisfying:

Z(ap, a¥) < Xa*Z(p, 1), (2.3.1)

|Gk (0,9), 2lly < Z(0, ), (2.3.2)

VodeZandze Y and X € [0,1). Then, 3 a unique quartic map © : Z —'Y
satisfying (2.1.1) and

1
HF(Q> - ®(Q>7ZHY < mE(@, 0), Vo € Z.
Proof. Consider,
x=1{f:Z—=Y|f(0) =0}

Let d : x X x — [0, 00] be a mapping defined as

d(f,g) = inf{u>0:f(0)—g(0),zlly < uZ(0,0) Vo€ Zand z € Y" '}, (2.3.3)

Then, we have

(i) d(f,9)=0
& inf{u>0|[f(e) — g(0). 2lly < 4Z(0,0), Vo€ Zand z € Y"1} =0
& |If(e) —9(0), 2y =0, Vo€ Zand z € Y™
& flo)—g(0) =0, Voe Z
s f=
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(ii) Symmetric d(f,g) = d(g, f).
(iii) For triangle inequality
1f(e) = glo). 2lly < [f(e) = h(e). 2lly + [[h(e) — g(o), 2lly

< d(f,h)#(e,0) +d(h, g)é(e,0)
(d(f,h) +d(h,g)) #(0,0).

A

Thus,

d(f,g) < d(f,h)+d(h,g).

Hence, (x,d) is a generalized MS.
Now, consider, a Cy., {fn} C x ie. rlzim d(fs, fi) = 0. Then, from (2.3.3), we
1,l—00

have

tim_[1f(0) = filo), 2lly < i d(fi fi)o(0,0) = 0z € Y,

hi—o0
This implies {fy(0)} 15 & Coeg in (¥, .. ly).
Since, (Y,].,-|ly) is an n-BS, therefore 3 some ¥ € Y s.t. lim;_,o fr(0) = ¥. We
define a function f: Z — Y s.t. f(o) =0 = ﬁlggo fr(o).
As {fn} is a Cseq in (x, d), therefore for each € > 0 3 hy s.t. d(f, fi) <, for every

h,l > hy ie.,

| fule) — fi(0), 2|ly < d(fu, f:) Z(0,0) Yo € Z. (2.3.4)
Taking limit as [ — oo in (2.3.4), we have

1f5(0) = f(0), 2lly < €E(0,0) Vi > h,
or

d(fr, f) < eVh > hy.

Therefore, {f;} — f. Also, f(0) = 0 as f;(0) =0, ¥V A € N . Hence, (x,d) is
complete.

Define F': y — x as




Consider,

F(ao) g(ao) B

ITq(e) — Tyle), 2lly = H 4 o

1
< =l (ae) = glao). 2y

IN

d(F,g)

at

A(F , 9)Z(0,0),

IN

IN

or
d(Tq,Tg) < M(F,g)YF,g € x.

Since A € [0,1), by Theorem 2.3.3, we have

(i) either d(F"F, F**"F) = oo ;

(ii) or

(i) lim F"(F) = O, where O is the fixed point of mapping F.

h— 00

(i) d(F,0) < 1_1Ad(F,Tq).

On substituting ¥ = 0 in (2.3.2), we have

1 _
ﬁ:(& 0).

4 —F(Q),Z

Y

On substituting o = a"p in (2.3.5), we have

1
Z(a"p,0).

h
— <
F(a"0), 2 S oa

at

H F(CLH_hQ)

To show d(F"f , F**"F) < .
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gd(F,g):(ae, 0)

a*Z(p,0)

(2.3.5)



Consider,

) 1 1 F(a1+hg) l
IF (o) = F'F(0),2lly = 5 || = F (a"0), 2 )
11,
< a4ﬁ@:(a 0,0)
A
< —E
< 5a=(,0),
or
A : F(a"o
A(F7'r Fhr) < g1 < O where F"'[ () = 514’7 )
Also,
F (ag I _
IP(F () = F (0), 2]y = H e Flo)ne < b0,
a v a
or
AT, r) < —
GE) =50
Therefore, F' has a fixed point ©. Also,
1
1—A
implies
1
— < — Tq)= < — = .
1F(0) = ©(0): 2lly < 37— d(F, Ta)=(e,0) < a1 =N (0,0)

Now, by replacing ¢ with ag, ¥ with o™ in (2.3.2) and dividing by a*", we have

adh adh a’h

H F (a"(ap + b)) N F (a"(ap — bY))

=(a", "))
adh ’

_ap (F(aﬁ(g +9)) , Fla"(o- ﬁ))) -

ath aih

Y

Taking limit as A — oo in (2.3.6), we have

H@(a@ L b)) + O(ao— bY) — 2a2(a® — b*)O(0) — 262(b* — a)O (V)

—a’b*(O(o+9) +O(0— 1)), z

Y

IN
,é.

h
o 2a2(a2 o b2)F(a 0) B 2b2(b2 B a2)

F (a™9)
T

(2.3.6)



Therefore, © is a quartic mapping.
Uniqueness: If possible, let ©” be another quartic mapping. Then, from Remark

(2.3.1), we have

6(a"0) = a"6(0) and &/(a'0) = a'&/(0),

or
h 1(h
o(0) = 20 na o(g) = LD por e
Consider,
, (e ahQ) o’ a4hg
oo - oa1.2], = |52 - TUGe,
Y
_ O(a"o) F(a"o) F(a"o) ©'(a"o)
N alh  gih + alh  gin ’ZY
1 1 / l 1
< Cﬂﬁ(H@(ahg)—F(afg),z‘Y—irH@(ah)g F(a’g),z‘y)
1 1
< =(a"
— a4ﬁ(l—)\)a4 (CL an)
)\ﬁ
< ——= )
< agow-e?

Taking limit as h — co, we have
1©(0) —©'(0),z|ly =0, Vo€ Z and z € ynt.

Therefore, © = ©'. ]

2.3.2 Ulam-Hyers-Rassias Stability in n-Banach Space us-
ing Conventional Approach

In this section, to examine the stability of the quartic FE (2.1.1) on n-N'S the

conventional approach is implemented.

Theorem 2.3.3. Let Z be an n-N'S and Y be an n-BS over the same field. Let
F :Z =Y be amapping s.t. F(0)=0. If for a mapping Z: Z x Z — [0,00), we
have

> 1

=(0.0) = 3_ —5Z(a"0, a"V) < oo, (2.3.7)
h=0
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[GanF (0,9), 2lly < E(0,9), (2.3.8)

YV 0,9€ Z and z € Y™ L. Then, 3 a unique quartic mapping © : Z =Y s.t.

I =

1F(e) = ©(0), zlly <
Proof. On substituting ¥ = 0 in (2.3.8), we have
12F (ag) - 2a"F (o), 2lly < EZ(e,0),

or

1
< —Z(p,0). (2.3.9)
Y

=(ao,0). (2.3.10)

Y

Using (2.3.9) and (2.3.10), we have

F(a*o)
(a*)?

On generalizing, we have

F(a"o)

ath

(o7 <5 y =eod) (2.3.11)

Now, replacing ¢ = a”¢ in (2.3.9) and dividing by a*", we have

On taking limit as & — oo in (2.3.12) and using (2.3.7), we have

F(a'*"o)  F(a"o)
PYICEST R

(2.3.12)

4 <

F(a'*o)  F(a"0)
A0+ agin ¢

— 0, (2.3.13)
Y

lim
h—o0

h
ie., {F(a Q)} is a Cyeq in (Y, ]|, .]]y). Also, as (Y,]|.,.]ly) is a n-BS, therefore we

qAh
h
can define a mapping © : 7 — Y s.t. O(p) = Flim F(Zh@.
1— 00 a

On taking limit as A — oo in (2.3.11), we have

IF () — ©(0), zlly < lim — = = —Z(0,0).

~ h—ooo 2a



On similar line of Theorem 2.3.2, it can be shown that © is a quartic mapping.
Uniqueness: If possible, let ©’ be an another quartic map.

Then,

|6(0) - ©'(0), =

, 2

s

H@(aﬁg) _ O/(d")
a4ﬁ

Y
a'o) Fld'o) Ol

|| a4ﬁ adh aih adh ’

< ﬁﬁm@m%> (o).

Y

2|, + et~ Fiate).2

)

—_

IN

or

> Z(a
|, < DD (2.3.14)

Taking limit as & — oo in (2.3.14), we have © = ©'. O

Theorem 2.3.4. Let Z be an n-N'S and Y be an n-BS over the same field. Let
F :Z =Y be a mapping with F (0) =0. If 3 a mapping = : Z x Z — [0,00) s.t.

= _ v
=(0,9 Z "= (51, cﬁ) < 00, (2.3.15)
|GasF (0,9), 2|ly < Z(0,9) Vo,9 € Z andz € Y" . (2.3.16)

Then, 3 a unique quartic map © : Z — 'Y s.t.

IF (0) = ©(0), 2lly < —+Z(0,0).

2a
Proof. On substituting ¥ = 0 in (2.3.16), we have

IF (a) — a'F (o), 2lly < 5=(0,0). (2317)
On substituting o = g in (2.3.17), we have

HF(Q) —a'F (5) i

1_

< 58 (5,0) . (2.3.18)
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Again on substituting ¢ = ¢ again in (2.3.18), we have

(9o (2)

From (2.3.18) and (2.3.19), we have

1
<= (5 (9,0) +a's (io)) | (2.3.20)
v 2 a a

1 0
<-=(=,0). 2.3.19
<3 (£.0) (2.3.19)

On generalizing, we have

h
iz (€
51 > a'E (ai,o) : (2.3.21)

Y =1

; 0
o=t (£) -

Now, on substituting o = % in (2.3.18) and multiplying it by a*”", we have
a

4h 9\ _a(1+n) 0
o (2) e ().

On taking limit as A — oo in (2.3.22) and using (2.3.15), we have

an (@ a(1+h) 0
¢ F(cﬁ‘) ¢ F<a1+h>’z

ie., {a‘mF (fh)} is a Cseq in (Y, ||, .]]y). Also, as (Y, ]|.,.||y) is an n-BS, therefore

we can define a mapping © : Z — Y as O(p) = ﬁlim a*'r (%) The remaining
— 00 a

— 2q4 al—i—h’

! a4<1+ﬁ>5( g 0). (2.3.22)

Y

lim
h—o00

=0, (2.3.23)
Y

part of the proof is analogues to Theorem 2.3.3. O]

Theorem 2.3.5. Let Z be an n-N'S andY be an n-BS over the same field. Let
F :Z — Y be a mapping with F (0) = 0. If for a contractively sub additive
mapping Z : Z X Z — [0,00) with contractive constant X\ having a3\ < 1, we

have
|GasF (0,9), 2|ly < Z(0,9) Vo,0 € Z andz € Y" 1. (2.3.24)

Then, 3 a unique quartic map © : Z =Y s.t.

IF(0) — ©(0), 2[ly <

Proof. On substituting ¥ = 0 in (2.3.24), we have

12 (ag) — 2a"F (o). 2lly < E(e,0),
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or

=(0,0). (2.3.25)

Y

Now, on substituting ¢ = a"p in (2.3.25) and dividing it by a*", we have

As = is contractively sub additive function i.e., Z(a’0,0) < (aX)'=(p, 0).

F(a"o) [ (d"0)
A(+h) i

1 Z(a”
) - 92a4 aih

Y

Therefore,
F(a'*"o) F(a"o) L (aN)"_ |
‘ qA(1+h) - adh ) % . < 2a4 gt ‘:(Qa O) = @(a >\) :(Q, 0) (2326)

On taking limit as 2 — oo in (2.3.26), we have

F(a'"0) F(a"o)
qdQ+h)  gan

, 2

— 0, (2.3.27)
Y

lim
h—o0

PO\ sy in (v Also, as (Y. is an n-BS. Theref
ie., an (82 Cseq in (Y,|.,.|ly). Also, as (Y, ||.,.||y) is an n-BS. Therefore,

h
© : Z — Y can be defined as O(p) = lim Fa Q).

oo a4l
On the outlines of Theorem 2.3.3, we have

F (a") 1 K"E(d'e, 0)
— < — _— . 2.3.28
o] < g > 2 2329

As E is a contractively sub additive i.e., Z(a’g,0) < (aX)'Z(0,0), therefore

| (a?) m - 2(0,0) 3 (a1t
Jim ’ 0] S JmhEe0 Y @
_ 1=2(e,0)
2a* —a\
or
1 =(e,0)
_ < Z

IF(0) —©(0), zlly < 2a% — a\

The remaining part of the proof is analogues to Theorem 2.3.3.
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Theorem 2.3.6. Let Z be an n-N'S and Y be an n-BS over the same field. Let
F :Z — Y be a mapping with F (0) = 0. If for a expansively super additive

mapping = : Z x Z — [0,00) with constant X having a*X < 1, we have
|GasF (0,9), 2|ly < Z(0,9) Vo,¥ € Z andz € Y™ . (2.3.29)
Then, 3 a unique quartic mapping © : Z —'Y s.t.

1E(0,0)A
— <= .
17 (0) = ©(o), 2lly < 5~

Proof. On substituting ¥ = 0 in (2.3.29), we have

IF (ag) — a*F (), 2lly < ~Z(0,0). (2.3.30)

[\

Again on substituting o = %in (2.3.30), we have
a

HF(Q) —d'r (5) 2| <58

1
<:IE (9,()) . (2.3.31)
v a

Now, o = % in (2.3.31) and multiplying by a*", we have
a

ah [ © 4(1+h) 0
¢ F(aﬁ) — F(al”l)’z

VAN
—_
S
=
+
3
(11
7 N\
U~
=)
N——

Y

>\ K3
As = is a expansively super additive, therefore = <5¢7 0> < <a> =(0,0).
Hence,
1+h
iy <Q)_a4(1+h)F< 0 > A < Lgsaen (2 =(0,0)
P a+h) 7| T 24 a ’
1

On taking limit as h — oo, we have

ahi( 2\ a(1+h) Y
¢ F(cﬁ) ¢ F<a1+ﬁ)’z

ie. {a‘mF (a‘;)} isa Cyeqin (Y, ||, -|ly)- Also, as (Y, ||, .||y) is an n-BS. Therefore,

lim
h—o00

=0,

Y

we can define © : Z — Y as O(p) = rlim e (i)
—00 a

41



On the outlines of Theorem 2.3.4, we have

h
giMAE:a“E(é;o>. (2.3.32)

Y i=1

4k 4%
HF(Q)-CL F(Cbh>7z

As Z is a expansively super additive i.e., = (Q, 0) < (%)Z =(0,0).

Therefore,

h—00

. 0
lim HF(Q) —a'"F (aﬁ> V2

Y

or

IF(0) = ©(0). 2lly < A =(5.0).

(a —a*X)

The remaining part of the proof is analogues to Theorem 2.3.4. [

2.3.3 Consequences

In this section, we presented the results from the literature that can be deduced

from the results proved in previous section.

Corollary 2.3.7. Let Z be an n-N'S and Y be an n-BS over the same field. Let
F :Z —Y be a mapping with F (0) = 0. If for a real number p < 4 and positive

real number €, we have
|Gk (0:9), 2|y < e(llolly + [1915)¢(2) Vo, 0 € Z and z € Y™, (2.3.33)
where ¥ : Y"1 —[0,00). Then, 3 a unique quartic map © : Z =Y s.t.

1
HH@—W%AW§M4

ﬂEHQH%w(Z)'

Proof. The result holds as a consequence of Theorem 2.3.2, using =(p,9) = 0 if
o=0or ¥ =0,and Z(p,9) = €(||o|ly + |9]|%)¢(z), otherwise.
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For 0,9 € Z, we have

E(ag,a¥) = e([lacllz + [lad|Z)¥(2)
< Ad'e([lellf + I9II5)(2)

= Aa'Z(g, ),

where A\ = a?~* < 1. m

Corollary 2.3.8. Let Z be an n-N'S and Y be an n-BS over the same field. Let
F :Z —Y be a mapping with F (0) = 0. If for non negative real numbers €,0,p

and q with p and g < 4, we have
1Gank (0,9), 2lly < (ellolly +0119119)(2) Yo, € Z and » € Z"7, (2.3.34)
where 1 : Y"1 — [0,00). Then, 3 a unique quartic map © : Z =Y s.t.

IF(e) — ©(0). 2lly < m¢<z>.

Proof. The result holds as a consequence of Theorem 2.3.3, using =Z(p,9) =
(ellell + 611911%) ¥ (2). O

Corollary 2.3.9. Let Z be an n- NS andY be an n- BS over the same field. Let
F:Z —Y be a mapping with F (0) = 0. If for non negative real numbers €,0,p

and q with p and q > 4, we have
|Gapk (0,9), 2lly < (ellolly +0119]1%)1(2) Yo,9 € Z and » € Y™, (2.3.35)
where 1 : Y"1 — [0,00). Then, 3 a unique quartic map © : Z =Y s.t.

I 0) - 0(0) 2l < 5 V4% v

Proof. The result holds as a consequence of Theorem 2.3.4, using Z(p,9) =
(elloll” + 8l]91|9) 1(z). O

Corollary 2.3.10. Let Z be an n-N'S and Y be an n-BS over the same field. Let

F :Z =Y be a mapping with F (0) = 0. If for a positive real number €, we have
|GasF (0,9), 2|y <2 Vo,9 € Zandze€ Y™ . (2.3.36)
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Then, 3 a unique quartic map © : Z =Y s.t.

€

2.3.4 Ulam-Hyers-Rassias Stability in Non-Archimedean
n-Normed Space

In this section, we presents the results on the stability of FE 2.1.1 in Non-

Archimedean n- N'S.

Theorem 2.3.11. Let Z be a non-Archimedean n-N'S andY be a non-Archimedean
n-BS over the same field. Let F : Z — Y be a mapping with F (0) = 0. If for a

mapping = : Z X Z — [0, 00), we have

: 1 —_ 1 1
hlgglo ﬁ:(afg, a™y) =0, (2.3.37)
|GasF (0,9), 2|ly < Z(0,9) Vo,9 € Z andz € Y. (2.3.38)

Then, 3 a unique quartic map © : Z =Y s.t.

[F(0) = ©(0), 2y < iE(g, 0), (2.3.39)

= E(a"p,0
where E(Q,O):max{(c;éﬁ’):z’EN )

Proof. On substituting ¥ = 0 in (2.3.38), we have
12F (ag) — 2a"F (o), lly < E(e,0),

or

=(0,0). (2.3.40)

Y
Now, on substituting ¢ = a"p in (2.3.40) and dividing by a*", we have

Fa*'o) Fla'o) | _ 1 Z(a',0)

’ ad+h) gk y < 204 qih (2.3.41)
On taking limit as 7 — oo in (2.3.41) and using (2.3.37), we have

_||F(a*o)  F(d"0)

,}E&’ AT g 0~ y =0, (2.3.42)
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ie., {ri{;g)} is a Cyseq in (Y, ||, |ly). Also, as (Y,].,.]ly) is a non-Archimedean

F(d"o)
n-BS. Therefore, we define © : Z — Y as ©(p) = lim :
h—00 a4ﬁ
Thus,
F(a") NN (Flate)  F (o)
%LIEOHF(Q) T g 0% . - ﬁhjrolo > Ay gu )07
Y
(a0, 0)
< 25202@41““{ an 0=tk
I =
= 27&5(@ 0),
= _ E(a'0,0) . L _
where =(g,0) = max{——_— 7€ N,. The remaining part of the proof is
a 1
analogues to Theorem 2.3.3. O]

Theorem 2.3.12. Let Z be a non-Archimedean n-N'S andY be a non-Archimedean
n-BS over the same field. Let F : Z — 'Y be a mapping with F (0) = 0. If for a

mapping = : Z X Z — [0,00), we have

; ah= [ @ ﬁ —
hlggoa = <aﬁ’ ah> =0, (2.3.43)
|GasF (0,9),2|ly <Z(0,9) Vo,0 € Z andz € Y" . (2.3.44)

Then, 3 a unique quartic map © : Z =Y s.t.

1F(0) = ©(0), 2lly < 5+Z(0,0), (2.3.45)

where Z(p,0) = max {a‘mE <C§1’O>} S N}.

Proof. On substituting ¥ = 0 in (2.3.44), we have

IF (a0) — a'F (o), 2|y < 1E(@, 0). (2.3.46)

[\

On substituting o = 2 in (2.3.46), we have
a

HF(Q) . (9> 2

a

1
<IE (2 0) . (2.3.47)

Y



Again on substituting o = % in (2.3.47) and multiplying by a*", we have
a

4h 9\ _a(1+n) 0
o (£) e ().

On taking limit as A — oo in (2.3.48) and using (2.3.43), we have
4h 9\  4(1+h) Y
o () ot ()

ie., {a4hF (Qf)} isa Cseqin (Y, ||, .]]y). Also, as (Y, ., .||y) is a non-archimedean
CLL

1 4(1+n)= [ @

lim
h—o00

=0, (2.3.49)
Y

n-BS. Therefore, we can define a map © : Z — Y as O(p) = hlim ar (i)
— 00 a
The remaining part of the proof is analogues to Theorem 2.3.11. O

2.4 Conclusion

The chapter presents the stability of quadratic and quartic FEs. The analysis
includes the stability of classical and Jensen-type quadratic FEs using well-known
methods, with a focus on hyperstability and examples that show the importance
of the assumptions in the analysis. The stability of a generalized quartic FE is
also explored, with results obtained in n-BSs using fixed-point techniques and
sub-additive control functions. The discussion also includes non-Archimedean n-
BSs, offering a clear and unified approach to understanding the stability of these

FEs across different mathematical contexts.

Kokoskoskokokk
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Chapter 3

Some Fixed Point Results in
C*-Algebra Valued mp-Metric
Space

3.1 Introduction

The aim of this chapter is to address and overcome certain limitations inherent
in Banach’s fixed-point theorem and its recent generalization. To address these
limitations, we introduce the notion of C*-algebra valued mg-metric space(C% -
mp-MS) which is a generalization of C%,-m-MS and R-MS . The first section deals
the basic definition and intrinsic properties of C-mz-MS, including convergence
of sequences and completeness. In the second section, we generalize some well-
known contraction mappings and prove fixed point theorems on the R-complete
Chy-mz-MS (not necessarily complete in metric sense).

Our findings extend various fixed point results in the literature. Moreover, we
provide examples where Banach-type contractions yield the desired results in this
structure, which is not the case in various generalized metric spaces. Finally, we
utilize our findings to establish the existence and uniqueness of solutions for an

operator equation. The results of this chapter are presented in *.

Yadav, K., & Kumar, D. C*-algebra valued mp-metric space and fixed point results with
application, Asian-European Journal of Mathematics, 2550109.
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3.2 (*-Algebra Valued mz-Metric Space

In this section, we introduced a new notion of C%;-mg -MS along with the intrinsic

properties and some illustrative examples of this framework.

Definition 3.2.1. (2,B,R,w) is c.t.b. a C*-algebra valued mg-metric space
(Chyv-mg-MS) if it satisfies:

(i) (Q,B,w) is a C%y-m-MS;
(ii) R is a reflexive binary relation on €.

Remark 3.2.2. A C,-mg-MS need not to be an C%y,-m-MS. For instance, con-
sider Q@ = R and I € B where B = My(R) with relation defined as (0,9) € R
& o =1 or 09 > 0. Then, w(p,9) = max {g|,|d|}] is an C%, -mg-metric
but it is not Cy,-m-metric. This is because, for o = —2 and ¥ = 2, we have

w(o,0) = w(0,9) = w(¥,9) =21. But o # 9.

Remark 3.2.3. Every C%-R-MS is C%,-mg-MS. But the converse may not
hold. Consider

Example 3.2.4. Let Q = [0,00) and B = M5(]0,00)). Let involution on B be

defined as M* = Mt VM € B, where M* denotes transpose of M and zero element

Op = Oax2. Norm on B is defined as || M| = 1r<na><<2’mij , for M = [my;]. Define
_17.7_

w:Qx Q— My([0,00)) as:
etd
2

For P = [p;|,Q = [¢;;] € M2([0,00)), we define P < Q < pij < i, Vi,j = 1,2.
One can easily verify that (2, B, w) is C%,-m-MS. Let R be a binary relation on
Q defined as oRY < o =19 or 0.9 =0. Then (2,B,R,w) is Cy -mp-MS.

Example 3.2.5. Let Q = [0,00) and B = M5([0,00)). Let involution on B be
defined as M* = M'NYM € B, where M" denotes transpose of M. Norm on B is

defined as || M| = max ’mij , for M = [my;]. Define w : Q2 x Q — Ms([0,00)) as:

1<i,5<2

M]Q

0
w(o,0) = {[ 20 [M]g] , where o > 1.
2

For P = [p;], Q = [q;;] € Ma([0,00)), we define P 2 Q < pij < qij, Vi, j = 1,2.
Let R be a binary relation on ) defined as oRvY < o = v or 0.9 = 0. Here,
(Q,B,R,w) is C%,,-mg-MS..
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Example 3.2.6. Let Q2 be a BS with norm ||.||. Let B = Ms([0,00)) and I
denote the identity matriz. Then (Q,B, R,m) be a C%,-mg-MS, where m-metric
is defined as:

w(0,9) = llo = I + min {{lof|, [VI[} I Ve, € 2,

and R be a reflexive relation defined on €.

Example 3.2.7. Let H be a Hilbert space with inner product <,>y and B(H) be
the set of all bounded linear operator on H. Clearly, B(H) with the usual norm

is a BS. Then for a positive operator P consider the metric defined as:
@ (1, 2) = [Ty = Dol P+ min {14, T2} P,

r
where ||.|| on B(H) defined as ||| = | (Q)H Let relation R on B(H)
ecH o0 | ol

be defined as (I'1,Ty) € R < |<T1(0),0 >u| <|<T2(0),0 >u| Vo € H. Then,
B(H) is a C%y,-mp-MS.

Definition 3.2.8. Let (2, B, R,w) is C%,-mg-MS. An Ry in (2,B, R, w) is
convergent to some g € ), if Ve > 0, 3hy € N s.t. ||w(on, 0) — @0l < € VR > Ry

i.e.,
@(0n, 0) — We,o — OB as h — 0.

Definition 3.2.9. Let (Q,B, R, @) is Cy,-mg-MS . An Ry in (B, R, w) is
c.t.b. mg-Cauchy if

lim w@(on, Om) — Wopom and lim M, , — @, ,,. erists finitely.
h,m—o0 h,m—o00

Definition 3.2.10. (2,B,R,w) is c.t.b. a R-complete C%,-mp-MS if all mp-
Cseq 1 (2,B, R, @) is convergent in S i.e., o € Q s.1.

@ (0n, 0) — Weo — O and My, , — @,,, — O as h — oo.

Remark 3.2.11. Let (Q,B, R, w) is C%,-mg-MS . Then

(i) @ (0,9) = @(0,9) + Myy — 2w y0;

g @(0,V0) —@wes, if 0# Y
11) ws(0,1) =

are C%y -R-metric and (2,B, R,m") and (2,B, R, w;) are C%,,-R-MSs.
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Lemma 3.2.12. Let (2, B, R, @) be a C4,-mg-MS . Let {on} be a sequence in

Q. Then,
(i) {os} is mg-Cauchy in (2, B, R,w) < {on} is R-Cauchy in (Q,B, R, m*);
(i) (Q,B, R, w) is complete < (2, B, R, m") is complete,

(ii7) {on} is mg-Cauchy in (,B, R, w) < {on} is R-Cauchy in (Q,B, R, w;);
(iv) (,B,R,w) is complete < (Q,B, R, wy) is complete.

Lemma 3.2.13. Let (2,B,R,d) be a C%,-R-MS and a,b € B with a,b >~ 0p.
Then (2,B, R, @) is a C%y,-mg-MS, where w(p,v) = ad(o,9) + b ¥(p,9) € R.

Definition 3.2.14. Let (2, B, R, w) be a C4y,-mg-MS . LetT': Q — Q . T is
c.t.b. R-preserving if Vo,9 € Q, (0,9) € R implies (I'p,I'J) € R.

Remark 3.2.15. Let (2, B, R, w) be a C%,-mg-MS . Foro,9,z € Q, s.t. (0,9) €
R, (0,2) € R and (z,9) € R, we have

(Z) QB = Mgﬂ + Wey = w(@a Q) + w(79779)7

(ii) 05 = Myy — wey =<W(9, o) — (0, 19)>V<W(19, ) — w(o, 9)>;

(ZZZ) Mgﬁ — W j Mgz — Woz + Mzg — Wyy-

3.3 Some Fixed Point Results in C*-Algebra Val-
ued mp-Metric Space

In this section, some fixed point results are established using some well known

contraction mapping in the framework of C%,-mz-MS.

Definition 3.3.1. Let (2,B, R, w) be a Cy,-mr-MS and ' : Q — Q be a mapping
on Q. Then T is c.t.b. C%,-mg-contraction if 3 an A € B with ||A| < 1, s.t.

w (Lo, ') X A*w(p,V)A, (3.3.1)
Vo, 9 € Q, s.t. (0,9) € R.

Theorem 3.3.2. Let (2,B,R,w) be an R-complete C%,-mgr-MS, and let T' :
Q — Q satisfy:
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(i) T is R-preserving;
(i) 3 an gy € Q s.t. (o0, V) € R, VI €

(iii) T is a C%, -mg-contraction.
Then, I' possesses exactly one fized point.

Proof. For gy € Q satisfying condition (ii), define the iterative sequence {o5} as
orn = Los_1 Vh € N.

If 05 = 051 for some A € N. Then I'os_1 = 05 = 051 implies p5_1 is a fixed point
of I'. Hence, the result holds.

Now, assume that oy # 051 Vh € N.

As, 0o € Q satisfying condition (ii) and I' is R-preserving. Hence,

(00,) ER VI €Q = (00,T00) €ER
= (QO; 491) S R.

On repeated use of R-preserving property, we have
(0n, 0nt1) € R.
Also, by assumption (ii), we have
(00,T%(00)) € R, where k € N.

Therefore, using R-preserving property, we can easily prove that {g;} is an R,
ie., (Qf“ QfH_k) € RVh, ke N.

Now, using (3.3.1), we have

w(ont1,0n) =X A'w(op, 05-1)A
< (AY)’w(n-1, on-2)A?

PN

(A")'w (01, 00) A"
Let @(01,00) = B. Then,

(o, 0n) < (A)BA = (4252 A"
(82 AT .[52 A" < || 52 A"||* L
152 12| A" (1 .

IA

o1



As ||A]l < 1 and [|A"]| < JA|" = [lA"[| = 0.

Hence,

ﬁhm w(@ﬁ-l—la Qﬁ) = (9]]3. (332)
—»00

Also, @,,0,,, = min {W(Qh, Qﬁ)?w(QﬁJrlaQﬁJrl)} = w(0pt1,08) — Ogas h — oo.

Hence,
hli}rgo w(on,, 0r) — Op. (3.3.3)
Using (3.3.3), we have
lim w,,,, = 0s. (3.3.4)

h,m—o00

For m > h, consider

IN

W(Qm, Qh) — Womon w(@ma Qm—l) — Womom-1
+ w(gm—lv Qm—2> ~ Wom—10m-2

+w(gh+l> Qh) — Wopy10r

j w(@ma mel) + w(meb meQ)--- + w(@ﬁ+17 Qﬁ)
j [A*]mflﬁAmfl + [A*]m72ﬁAm72 IR [A*]ﬁﬁAh
m—1 m—1
k=h k=h
= Z 187 A*|* I = Z 182121 A* | Ts
k=h
Ah 2
< 18P 3 AN = 5t

Now, since ||A]| < 1 = ||A"|| = 0, then we have

h}/ggl@@(@m, 0h) = Wopon = U

Using (3.3.3) and Remark 3.2.15, we have

hm MQmQh meQh = QB'

Hence, {gs} is an mg-Cl,.
As, (2, B, R, w) is an R-complete C%,-mg-MS and {g5} is mg -Cj,. Therefore,
Jo € Q s.t.

w(on, 0) — W — O and  M,,, — @, — 08 as h — oco. (3.3.5)
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Using (3.3.3), we have

Wy = Min {w(gﬁ, o), @ (o, g)} = w(on, 0r) — Op as h — oc. (3.3.6)
Using (3.3.6) and Remark 3.2.15, we have

w(on, 0) — g, M,,, — 0 and w(p, 0) = 0. (3.3.7)

Were = Min {W(Q, 0),@ (Lo, Fg)} =< w@(0,0) = O = @W,r, = . (3.3.8)

Using (3.3.1), (3.3.8) and the triangle inequality, we have

w(o0,To) = w@(o0,T0) — @or, = @(0, 01) — @oo + @ (08, T'0) — @p,r0
=< limsup@(g, 05) — @We,o + @0k, L'0) — @y,

h—o0

= limsup @(os, ['0) — @y, rps
h—00

or

w(o, ') < limsup w(gs, I'0) — @y, (3.3.9)

h—o00

Using (3.3.1), (3.3.6) and (3.3.7), in (3.3.9), we have

0 < w(o,To) = limsupw(on o) — @4,

h—o00

= limsup @w(gs, I'o) = limsup @w(los-1, o)
h—o00 h—00

=< limsup A*w(gs-1,0)A = Op. (3.3.10)
h—o0

Using (3.3.1) and (3.3.7), we have

Op < w(lo, o) = A*w(p, 0)A = Op. (3.3.11)
By (3.3.3), (3.3.10) and (3.3.11), we have

w(0,0) = w(e,Te) = w(l'e,To) = To = o,

i.e, o is fixed point of T'.

Uniqueness: let J # o € ) be another fixed point of I' with w(¥,9) = 05.
From assumption (ii), (0o,?) € R. Using R-preserving property of I, we have
(T"(00),T"(9)) € R VA € N. Then, using (3.3.1), we have

@(on V) = w(T(00). I"(¥)) = A= (o), I"(¥))A

< A" w(0,0)A" (3.3.12)

53



Taking limit as & — oo on both side of (3.3.12), we have
w(ga 19) = QB
i.e., o = 1. Hence, I' possesses exactly one fixed point. O

Theorem 3.3.3. Let (2,B,R,w) be an R-complete C%y, -mg-MS, and let T' :
Q — Q satisfy:

(i) T is mp-preserving;
(i) 3 an op € Q s.t. (09,9) € R, VI € Q;

(iii) 3 an A € A, with || A|| < 3, satisfying

@(To, ') < A(w(g, o) + w (¥, Fﬁ)), (3.3.13)

Vo, 9 € Q s.t. (0,9) € R.

Then, I' possesses exactly one fized point.

Proof. For gy € € satisfying condition (ii), define the iterative sequence, {g;} s.t.
on =To;_1, Vh € N.

If o, = 051 for some h € N, then g5 = 'os_1 = 0s_1 implies g;_1 is a fixed point
of I'. Hence, the result holds.

Now, consider o5 # 051, Vh € N.

As, gy € Q) satisfies condition (ii) and I' is mgz-preserving, we have

= (00,01) € R.

On repeated use of R-preserving property, we have
(0n, 0n11) € R.
Also, by assumption (ii), we have

(00,T%(00)) € R, where k € N.
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Therefore, using R-preserving property, we can easily prove that {on} is an Ry,
i.e.,(on, 0r+k) € R, for each h, k € N.
Using (3.3.13), we have

w(ont1,0n) = w(lop Top1) = -A(w(&)ru Lon) + w(on-1, FQh—1)>

= A<W(gﬁ, or+1) + @(0n-1, Qﬁ)) :

As, ||A]l < i, by Lemma 1.2.34, (Iy — A)™! exists. Also, ||(Iy — A)7'A| < 1.

Therefore,

(IB - A)w(ng_l, Qﬁ) j A(W(Qﬁ, Qﬁ—l))-

implies
@(ont1,0n) = (Is —A) " A(w(on 06-1))
= <(]]B — A)_1A> w(0r-1, Or—2)
i
= <<]]B - A 1«4> @ (01, 00)-

Let @(g1,00) = B and (I — A)"' A =t. Then,

@(on1s0n) = "B ="B|Is < [IB]|It]" Is.

As, |[t]| < 1= ||t||" — 0. Therefore,

@ (0n+1, 05) — Op. (3.3.14)

Also, @,,4,,, = min {W(Qh, on), @(0nt1, Qﬁ+1)} = w(ont1, 08) — O, as h — oo.

Hence,

hli)rgo w(on,, 0r) — Op. (3.3.15)
Using (3.3.15), we have

I o = 10
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For m > A, consider

w(@mv Qﬁ) — Womon — w(@fm Qm—l) — Womom—1
+ w(gm—la Qm—2> — Wom—10m—2

+w(gﬁ+1> Qﬁ) — Wont10n

PN

W(Qm, Qm—1) + w(Qm—b Qm—z)--- + W(le, Qh)

m—2

((IB - A>‘1A> m_lm ((13 - A)‘1A> B+

PN

h
+ ((IB - A)_1A> B
= "It L+t B = Wf thp
k=h

DB =D B = > AN e

<
k=h k=h k=h
< 18IS e = a1
= B0 2 el s = N1l e — O
k=h

Hence,
@ (0m; Or) — Woy,0r — OB-
Using (3.3.15), we have
M

omon — Pomon — OB

Hence, {01} is mg-Cieq. As, (2,B, R, @) be a R-complete C%-mz-MS and {05}
is mg -Cseq. Hence, Jp € 2 s.t.

@(0n, 0) — Wy,o — O and M,, , — w,,, — Op as h — oo. (3.3.17)
Also, using (3.3.15),
Woye = Min {W(Qm on), @(o, @)} = @(on, on) — Op. (3.3.18)

Using (3.3.18) and Remark 3.2.15, we have
w(on, 0) — g, M,,, — 0 and w(p, 0) = Op. (3.3.19)

Also,
Wore = Min {w(g, 0),w(To, FQ)} < w(p,0) = O = wW,r, = O5. (3.3.20)
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Using (3.3.13), (3.3.20) and the triangle inequality, we have

w(o,T'o) = @(0.T0) —wer, 2 @(0,08) — Topo + @08, '0) — @o,ro
= limsup (o, on) — @po + @(0n,I'0) — @p,re
= limsupa(en, o) — wpre;
or
w(o,To) <X ligi}sip (o, I'0) — @y, (3.3.21)

Using (3.3.13), (3.3.18) and (3.3.19) in (3.3.21), we have

w(o,lo) = liIﬁnSUpw(Qﬁ; 0) — Weyre
—00
lim sup @ (o5, ['o)
h—o00
limsup @w(T'o_1, o)

h—00

PN

IA

limsup A| w(or-1,T 051 +W(Q,FQ)>

h—00

= limsupA<w or-1, on) + w(o, FQ)) = Aw(o,lo)

h—o0

This implies
lw(o.To)ll < [Aw(o. o)l < [|Allllz=(e. To)l-
Since ||A|| < 5 implies || (o, T'0)|| = 0, therefore
w(o, o) = Op. (3.3.22)

Now, consider

05 < w(To,To) = A(w@,r@)w(g,r@)):2Aw<g,r9>=eﬁ.

Hence,
w(lo,I'0) = Op. (3.3.23)

Using (3.3.19), (3.3.22) and (3.3.23), we have w(o,['0) = w(p,0) = w(lo, o)
implies o = I'p, i.e., ¢ is a fixed point of I'.
Uniqueness: let ¥ # o € Q be another fixed point of T' with w(J,9) = 0.
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From assumption (ii), (0o,?) € R. Using R-preserving property of I, we have
(T"(00),T"(9)) € R VA € N. Then, using (3.3.13), we have

o) = =((00). ") = (T (")) T (I"(9))
= Ao (I (@) + =0T (M)
= A(@(00),T"(00)) = A(w(co, o)) (3.3.24)
Taking limit as /i — oo on both side of (3.3.24), we have
w(0,9) = Op.

Therefore, w(p,v) = w(o,0) = w(¥,¥) = Op. This implies p = ¥. Hence, T

possesses exactly one fixed point. O
Theorem 3.3.4. Let (2, B, R, @) be an R-complete C%y,-mg-MS and ' : Q@ — Q
satisfying:

(i) T is R-preserving;

(i) 3 an go € 2 s.t. (00,7) € R, VI € Q;
(iii) for oo € Q, w(I oy, T 1oy) < w(IMpy, Moy), VA € N;

(iv) 3 an A € A, with ||A| <1, s.t.

w(To, ') < A(w(g, ') + w (9, FQ)), (3.3.25)

Vo, € Q s.t. (0,9) € R. Then, T’ possesses unique fized point.

Proof. For g, € ) satisfying condition (ii), define the iterative sequence {g;} s.t.
orn =lon_1 Yh € N. If g5, = p;_1 for some h, then I'o;_1 = o5, = 051 implies 051
is a fixed point of I'. Hence, the result holds. Now, consider g; # 051, VA € N.
As, 0o € Q satisfying condition (ii) and I' is R-preserving. Hence,

(00,9) ER VI €Q = (00,T00) € R
= (QO) Ql) S R.

On repeated use of R-preserving property, we have

(on, 0r1) € R.
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Also, by assumption (ii), we have

(00, Fk(Qo)) € R, where k € N.

Therefore, using R-preserving property, we can easily prove that {on} is an Ry,

i.e.,(0n, 0r+k) € R, for each h, k € N.

Now, using assumption (iii), we have
Wor

Using (3.3.25), we have

—10n @ (o, 0n), Woronir — @(0n+1, On+1) and Won-10r41 =

w(@fiJrla Qﬁ+1)-

w(ont1, 0n) = w(Lon, Ton—1) = A(w on, on-1) + w(on- 1,F9h)>

= A

PN

A(W On, On ‘f‘W(Qﬁ 179ﬁ)

w(on, orn) + @ (0n- lth—H))

w.@ﬁ—wﬁ

(Qha Qh+1> Wonont1 + W, 1@ﬁ+1>

A

Since ||A|| < 3, therefore by Lemma 1.2.34, (Iz — .A)~! exists.

29

A)~'A|| < 1. Thus,

(Is — A)w(ons1, on) = Am(on, 0n-1)-

implies

A

(Iy — A) " A(w (o, 0n-1))
< <[B — 1A> @ (0n-1, On—2)
< -

)h?ﬂ(m, %)

w(@ﬁ+17 Qﬁ)

Let @w(01,00) = 8 and (I — A)"' A =t. Then,

@(on1s o) = "B =B Is < [IB1|1t]" Ts.

99

A<W<Qh+1a on) + @ (on, Qﬁl)) :

Also, ||(Ip —



Now, ||t < 1= ||¢||" — 0. Hence,

@(0nt1, 0n) — Op. (3.3.26)

AISO, w@ﬁ@ﬁ+1 = min {w(gﬁu (Qﬁ)u w(gﬁ+1, QﬁJrl)} j w(gﬁ+17 Qﬁ) — 9[8 as h — o0.

Hence,
lim w(op,, 0r) = OB (3.3.27)
h—o0

and
fwlggoo Wonom = OB (3.3.28)

For m > h, consider

W(Qfm Qﬁ) — Womor — w(gm, Qm—1> — Womom—1
+ W(Qm—la Qm—Q) — Wom—10m—2

+TD(Qﬁ-I—lv Qﬁ) — Wonti0n

IA

@ (0m, Om—1) + @(0m—1, Om—2)-.. + @ (0n+1, On)

m—2

((IB — A)‘lA) m_lm ((IB - A)‘1A> B+

A

h
+<(IB - A)_1A> o}

m—1
= "I+ B+ L+t = >R
k=h

= Y B2 B = Y IBNIE T < 18I 1t
k=h

k=h k=h k=h
)"

= W o

Ig — 0 as h — o0.

Hence,

lim @ (om, 0r) — @, 0n = Un-
h,m—o00

Similarly, using (3.3.27), we have
lim My, o, = @0, = OB

h,m—o0

Hence, {01} is mg-Cieq. As, (2,B, R, @) be a R-complete C%-mz-MS and {05}
is mg -Cseq. Hence, 3 some p € 2 s.t.

@ (on, 0) — We,o — O and M,,, — w,,, — 0 as h — oo. (3.3.29)
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Also, using (3.3.28),

Weye = Min {W(Qha on), @ (0, @)} = w(on, o) — Os. (3.3.30)
Now, using (3.3.30) and Remark 3.2.15, we have

w(on, 0) — g, M, , — 0 and w(p, 0) = 0. (3.3.31)
Also,

Wor, = Min {w(g, 0),w(To, Fg)} < w(p,0) =0 = wyr, = . (3.3.32)

Using (3.3.25), (3.3.32) and the triangle inequality, we have

w(o,To) = w(o,T0) — @ X @(0,08) — Tono + @(0n, L'0) — @1y
=< lil}’in sup @ (0, 0n) — Woye + @(0n, 1'0) — @y,
—00
= limsup @(os, ['0) — @y,re-
h—o00

Using (3.3.25), (3.3.30) and (3.3.31), we have

w(p,To) =< limsupw(os '0) — @, r, = limsupw(los_1, o)

h—o0 h—o0

PN

h—o0

limsupA(w on-1,10) + @ (0, Ton- 1))

(PN

limsup A| w(os_1,T0) + @(p, Qﬁ))

h—o0

PN

h—o0

PN

lim sup A(w Oh—1, Fg)

lim SupA w Qh 1,0) — Wy 10t w(Q? FQ) Wolp + wQﬁ_1FQ>7

h—o0

(3.3.33)
w(o,To) = A(@(g, Lo) + w@ﬁlrg>. (3.3.34)

Using (3.3.27), we have

Wop_1To = min {w(gﬁ—lv Qﬁ—l)a W(FQ, FQ)} j w(gﬁ—la Qﬁ—l) = Wop_1To = ‘9153-

(3.3.35)
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Hence, using (3.3.35) in (3.3.34), we have
w(e,l'o) 2 Aw(o, T'o) ie., [lw(e, To)|| < [ Alllle=(e, o)l
Now, since ||A|| < 5 implies [|@ (o, T0)|| = 0, therefore
@(0,T0) = 0. (3.3.36)

Thus,
O 2 w(lo,To) = Alw(e,T'0) +w(0,T0)) =2Am(o,I'0) = 0.

Hence,
w(Io,I'0) = Op. (3.3.37)

Using (3.3.31), (3.3.36) and (3.3.37), we have w(o,'0) = w(p,0) = w(lo, o)
implies o = o, i.e., ¢ is a fixed point of T'.

Uniqueness: let J # ¢ € € be another fixed point of I' with w(v¥,9) = 05.
From assumption (ii), (0o,?) € R. Using R-preserving property of I, we have
(T"(00),T"(9)) € R, for h € N. Then, using (3.3.25), we have

w(on9) = w(Fﬁ(go),Fﬁ(ﬂ)):w(F (Fﬁl(go)),T<Fﬁ1(ﬁ)))

< A (w (M (00), T"(9)) + = (T"'(9), Fﬁ(@o)))
= A(@(op-1,9) + @(on, 7)),

or

(Is — A)w(on, V)

= w(gﬁ, 19)

A

A (@(on — 1,9))

A @len—1.9)

PN

Ah

= w(on, V) m(w(aofﬁ))- (3.3.38)

IA

Now, ||A|| < § implies (Iz — A) is invertible and HIB%AH < 1. Therefore, taking
limit as A — oo on both side of (3.3.38), we have

’W(Q’ 19) = QE-

As, w(p,V) = w(p, 0) = w(V,¥) = 0. Hence, o = 1, i.e., I' has exactly one fixed
point. ]
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Example 3.3.5. Let Q = [0,00) and B = M([0,00)), with involution A* = A
VA € B, where A" denotes the transpose of A. For A = [a;], || Al = nax,

SU,]>
Let w : Q x Q — My(R) be defined as

el g

2

aij

For P = [py] and Q = |qi5], P 2 Q < pij < qij, for 1 <id, j <2. (0,9) €ER &
o="1 or o9 =0. Then (,B, R, w) is R-complete C%,,-mg-MS . Let I' be

2, ife<1

0, otherwise.

['(o) =

1
Now, we will prove that for A = [\66 , ' satisfies Theorem 3.3.2. As, relation

< g o
| I |

R on Q is defined as (p,9) € R if p =
Case(i) For p =¥ < 1, we have

or 0. = 0. Then,

~o

O~
(@]
| S

Case(ii) For o =19 > 1, we have
0 0
ete
wwﬁ%ﬂMQMZ[ 44-
1
Hence, for A = A* = [\66

w(lo, I'Y) < A*w(p,V)A.

Let o # 9, then 0. = 01i.e., p =0 or ¥ = 0. Without loss of generality, let ¥ = 0.
Case(iii) For o > 1 and ¥ = 0, we have

w (T, ) = w(0,0) = lg 8] ,
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O NI

@ (o, V) = l

e O

|

1
Hence, for A = A* = [\66 ] , we have

S o

w(lo, ') < A"w(p, V).A.

Case(iv) For o <1 and ¥ = 0, we have

F@)ééﬂ’

(Do, TW) = w<§ o)

w(0,7) = -
0
L 0
Hence, for A = A* = \66 . |, we have
NG

w(lp, I'Y) < A*w(p,9).A.
Thus, I' satisfies Theorem (3.3.2). Hence, I" possesses exactly one fixed point.
Example 3.3.6. Let Q = [0,00) and B = M([0,00)), with involution A* = A’
VA € B, where A" denotes the transpose of A. For A = [a;], || A| = max,
WS
Let w: Q x Q — My(R,) be defined as
etd

2

CLZ']'

Also, for P = [p;;] and Q = [gij], P = Q < pij < q;; V1 < i,j < 2. Then
(Q,B, R, w) is R-complete C*,-mp-MS . (0,9) € R < o =1 or 09 =0. NowT
s.t.

r<g>={§’ de=3

QTQ4> otherwise.

1
Now, we will prove that for A = 8 ?1, I satisfies Theorem 3.3.3. As, relation

6
R defined as (p,9) € R, if o =9 or g = 0. Then
Case(i) For p =9 < 3, we have

w(fg,rm_w(g,g) _ lé(i;@)

PN
L
O~
~e O
| S — |



otz
w(¥, 1) = w(p,l'0) = 8 ore |
2

Hence, for A =
Case(ii) For o = ¢

, (Lo, T'Y) < .A(w(g, o) + w (1, Fﬁ)). Also, A e A',.

—
OOl
\ o= O

3, we have

[1( e )
0 0 s(GH+2H) 0
w(lo, 'Y :w<,> = |2‘e 0
( ) o+4 0+4 i 0 3G+ 24)
l(@+£) 0
=< 2\7 7
=707 ey
_ |7 0
0 7
ot 0
w (¥, ') = w(o, o) = (2) ooty |
2

1
Hence, for A = [8 (1)], w(lo, TY) < A(w(g, o) + @ (0, Fﬁ)). Also, A e A',.

6
Case(iii) Without loss of generality, let ¥ = 0 and ¢ < 3. Then, we have

crarn-=(3) - [ 3]

o+ 0
w(@a FQ) = (2) Q+$ )

(9, T9) = [8 8} .

Hence, for A =

o= O
[ —

, (Lo, I'Y) < A(w(g, o) + w(9, Fﬂ)). Also, A e A',.
Case(iv) For ¥ = 0 and p > 3, we have

| —
O ol

0 3G 0
w(Fg,m):w<Q+4,0> - { . i(ix)]’
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1
Hence, for A = [8 (1)], w(To, TY) < .A(w(g, o) + w(0, Fﬂ)). Also, A e A',.
6
Thus, I' satisfies the conditions of Theorem (3.3.3). Hence, I" possesses exactly

one fixed point.Hence, by Theorem (3.3.3), I' has exactly one fixed point.

Example 3.3.7. Let Q =1[0,1) and @w : Q x Q — R be C%,,-m- metric defined on
Q as w(o,¥) = L. Then for B =R with a* = a, |a|| =|a| and a < b < a < b.
(Q,B, R, w) is R-complete C%,-mg-MS, where aRb iff a =b or a.b =0. Let I'
be a self mapping defined on 2 as:

N@Z{? Fo<i

5, otherwise.

oRY implies o = UV or 0.0 = 0. Now o = ¥ implies T'o =T'0 i.e., (I'p,['Y) € R.
If o # 0 e, 0=0 ord =0 implies To =0 or 'Y = 0. Hence, (['o,T'Y) € R
V(o,9) € R i.e., I is R-preserving.

Case(I) Let o =1, then

(i) Foro=9 <3,

w(To, TY) = w(le,T'0) = @(0,0) =0,
@(0,V) = w(e; 0) = o

For A" = A= /2
=(To,T9) < A*w(0,0)A.

(ii) For o =19 >3,

11 1

@ (0,V) = w(eo; 0) = o
For A* = A= \/g, we have

w(To, ') < A*w(p, 0).A.

Csae(II) Let o # ¥ implies 0.9 = 0. If 9 = 0. Then,
(i) For 0 <32 and ¥ =0, we have

w(To,I'Y) = w(0,0) = 0.
Hence, for A* = A = %, we have

w(lo, I'Y) < A*w(o,V)A.
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(i) For 0 > 2 and ¥ = 0, we have
1 1

w(i,()) = -

@ (T, T) = 1

and

w(e.0) = w(0,0) = g.

Hence, for A* = A= /3, we have
w(To, ') < A"w(p,0)A.
Hence by Theorem 3.3.2, I' has exactly one fixed point.

Remark 3.3.8. In the above example, Q2 = [0,1) is a R-complete C%,-mp-MS.
But it is not complete in usual m-MS as well as C*-AV-m-MS. Hence Banach
contraction in m-MS and C*-AV-m-MS does not ensure the existence of the fixed

point.

Example 3.3.9. Let Q =[0,2) and @ : Q2 x Q@ — R be C%y,-m- metric defined on
Q as w(p,¥) = &L, Then for B = R with a* = a, ||a|| =|a| and a < b < a < b.
(Q,B, R, w) is R-complete C*%,-mg-MS, where aRb iff a =b or a.b =0. Let I'
be a self mapping defined on 2 as:

I'(0) = {gl Z:f =1
5, Yl<o<2
oRY implies o = 0V or 0.0 = 0. Now o = ¥ implies T'o =T'0 i.e., (I'p,['Y) € R.
Ifo# 9 ie, 0=0o0rd =0 impliesTo=0 or T'9 =0. Hence, (T'p,T'0) € R for
every (0,9) € R, i.e., I is R-preserving.
Case(I) Let o =10, then we have
(i) For o =19 <1, we have

w (o, I'Y) = w(lp, o) =

S|
—
V\fb
+ \lro/
I
ol

_ 1 1
= 5laleto)

1/1 0
< Z|Z £
< 5<2 @+5)>

1
= 5(@ 0,T0) +w QI@))

= A(w 0,T0) +w(¥,T9) .

N——



For A =

(ii) F07“1< 0 =1 <2, we have

@ (Lo, I'Y) = w(I'e, o)

Hence, For A = A* =

IA

IN

£ < 1, we have w(T'o,TW) < A(w(o,T0) + w(V,I'9)).

11y _ 1
“\10°10) ~ 10

1

10 (1+1)>

1/1

5<2@+@)
(lor b
1

5<w o,To) +w @,F9)>

A(w 0,10) + @ (v F19)>

==z < f, we have w(Fo, I'Y) < A(w(Q,Fg) + w (9, Fﬁ)).

Case(II) Let o # ¥ zmplzes 0.9 = 0. Without loss of generality, let ¥ = 0.
(i) For o <1 and ¥ =0, we have

@ (To,T) = w<§

)

where A = £ and w(9,TV) = 0.
Hence, For A= A* = = < f, we have w (Lo, ['Y) < A(w(Q,Fg) + (v, Fﬁ)).
(i) For 1 < 9 <2 and ¥ =0, we have

w(lo, ) =w <110, 0)

IN



where A = A* = % and w(¥,TY) = 0.

5

For A= A" =1 <1 we have w(To,T') < A(w(g, o) + w (9, Fﬁ)).

27

Therefore, by Theorem 3.3.3, I' has exactly one fixed point.

Remark 3.3.10. In the above example, Q@ = [0,2) is a R-complete C%,, -mp-
MS . But it is not complete in usual m-MS and C*-AV-m-MS. Hence, Kannan-
contraction in m-MS and C*-AV-m-MS does not ensure the existence of the fixed

point.

Remark 3.3.11. The completeness in the fized point results of Theorem 35.5.2,
3.3.3 and 3.3.4 can be further relazed with the following hypotheses

(H) 3 an R-complete subset Y of Q s.t. I'(Q2) C Y.

Using the hypothesis (H) , one can prove the Theorems 3.3.2, 3.3.3 and 3.3.4. To

verify the claim consider

Example 3.3.12. Let Q =[0,2) and w : Q@ x Q@ — R be m- metric defined on <
as w(p, V) = #. Then for B = R with a* = a, |ja|| =la|] and a < b < a < b.

Then (Q,B,R,w) is complete C%,, -mgr-MS, where R = Q x Q. Let T be a self
mapping defined on ) as following:

g, if o<1
(o) =417 .
5, Yo>1

Then, I' is R-preserving. Also, I' satisfies the additional assumption with T =

[0,1/5]. Therefore, T' meets all the criteria of Theorem 3.3.2 with A = A* = %

and Theorem 3.3.3 with A = % Consequently, I' possesses exactly one fized point.

One can observe that in the above example

o ) is not complete;

e I is not R-continuous.

But still I' satisfies the Banach type contraction in the Cy,-mg-MS, but not in
MS.
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3.4 Existence of Solution to the Operator equa-
tion

In this section, a potential application of the derived fixed point results is dis-
cussed. The applicability of these results in operator equations demonstrates

their significance.

Theorem 3.4.1. Let H be a Hilbert space and B(H) be the set of all bounded
linear operators on H. Suppose Sy € B(H) s.t. 32, ||Ssll* < 1. Then the
operator equation
M= S;MS,=0 (3.4.1)
h=1
has exactly one solution.

Proof. Define a mapping w : B(H) x B(H) — B(H)y as
@ (M, My) = |[My — My || P + min {|[My ]|, [[ M|} P,

for an positive operator P define on H. Consider a reflexive binary relation R
defined as (M, My) € R < My + My = My V M. Then, B(H) is a C%,-mz-MS.
Consider a self mapping I" defined on B(H) as:
D(M) =) SpMS;.
h=1

Step (i) I' is R-preserving:

Let (Ml, MQ) ER i.e., M1 + MQ = M1 V MQ. Then,

D(Mi+M) =Y Sp(Mi+M)Sy =Y SiMiSpV Y~ SyMaSy = T'(Mp) VI(Ms,),

h=1 h=1 h=1
i.e., I' is R-preserving.

Step (ii) I' is C*-AV mg-contraction:

w(D(M),T(My)) = [D(M;) = T(My)[| P+ min {[[T(M)]], [T (M)} P
S ZS;(Ml—MQ)Sﬁ P—i—mln{ ZS;Mlsh s ZS}:MQSﬁ }P
h=1 h=1 h=1
< Y lISll* 1My — Me|| P+ min {Z 1SaI” 1M D7 1 Sall? ||Mz||} P
h=1 h=1 =1
< w (|My = My|| P+ min {[| M, | M2} P)

= o"w(Mi, My)a,
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where o = \/k < 1.
Clearly, B(H) is complete and I' satisfies all the conditions of Theorem 3.3.2.

Hence the operator equation (3.4.1) has exactly one solution. O]

3.5 Conclusion

In the present chapter, we introduced a notion of C%,-mz-MS as a generalization
of C%-m-MS and R-MS, and proved some fixed point results in this framework.
To support our findings, some illustrative examples are discussed. At last, we
ensure the existence and uniqueness of solutions to an operator equation using
the results proved in the chapter. Our findings generalized the following results

in the literature.

(i) By taking R = Q2 x in Theorem 3.3.2, one can derive the fixed point result
for Banach-type self mappings in C%;-m-MS (Alsamir et al., 2019).

(ii) By taking R = Q2 xQ in Theorem 3.3.3, one can derive the fixed point result
for Kannan-type self mappings in C%-m-MS (Alsamir et al., 2019).

(iii) By considering B = R with ||a|| =|a| Va € B in Theorem 3.3.2, one can derive
the fixed point results for Banach-type self mappings in R,,-MS (Khalil et
al., 2021).

(iv) By considering B = R with ||a|| =|a| Ya € B in Theorem 3.3.3, one can derive
the fixed point results for Kannan-type self mappings in R,-MS (Khalil et
al., 2021).

(v) By taking R = Q x Q and B = R with ||a|]| = |a|, Va € B in Theorem
3.3.2, one can derive the fixed point results for Banach-type self mappings
in m-MS (Asadi et al., 2014).

(vi) By taking R = Q x Q and B = R with ||a|| = |a|, Ya € B in Theorem
3.3.3, one can derive the fixed point results for Kannan-type self mappings

in m-MS (Asadi et al., 2014).

Kokokoskokok sk
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Chapter 4

Some Fixed Point and Common
Fixed Point Results in
Multiplicative m-Metric Space

4.1 Introduction

In the present chapter of the thesis, we introduce the notion of multiplicative m-
metric space, inspired by the concepts of multiplicative metric space and m-metric
space. The first section deals with the fundamental definitions for the multiplica-
tive m-metric space, its intrinsic properties and illustrative examples. In the
second section, we establish some fixed point results using contraction mappings
in complete multiplicative m-metric space. To support our findings, we discuss
some illustrative examples, where well known fixed point results in the literature
does not ensure the existence of fixed point. In the third section, we discuss some
common fixed point results for a pair of self mapping using various contraction.
An illustrative example, involving discontinuous self mappings, is discussed, along
with numerical iterations to approximate the common fixed point, supported by
graphical representations. At the last, we prove the existence of solution to a
system of multiplicative integral equation and multiplicative initial value problem

using the fixed point results proved in the chapter.
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The results of the chapter are presented in * 2 3.

4.2 Multiplicative m-Metric Space

In this section, we have introduced a new notion of multiplicative m-MS along

with the intrinsic properties and some illustrative examples of this framework.
Definition 4.2.1. A mapping pn : Q@ xQ — [1,00) is c.t.b. multiplicative m-metric
if it satisfies:

(i) (o, V) = pu(9,9) = p(o, 0) < 0 =;

(i) pon < p(o,9);

(iii) p1(0,9) = (9, 0);

(iv) pe,9) _ p(e,€) p(€,9)
Moo~ e Hey

where 9 = min{u(@, 0), (Y, ?9)}, and iy = maX{u(Q, Q),u(ﬁ,ﬁ)} Vo,9,§ €
Q0. Also, (2, 1) is c.t.b. a multiplicative m-MS.

Remark 4.2.2. Every multiplicative metric is a multiplicative m-metric. But the

converse s not true.

Example 4.2.3. Let Q2 = [0, 00) and p(o,9) = e#, then (2, 1) is a multiplicative
m-MS. But (2, p) is not a multiplicative MS. Because, for o # 0, u(o, 0) = e? # 1.

Remark 4.2.4. Let (2, 1) be a multiplicative m-MS. Then, Yo,3, 0 € 2, we have

(o, 0)
(3, 9)

(i) 13”9”:‘

Koy

)
*

YYadav, K., & Kumar, D. (2024). Multiplicative m-metric space, fixed point theorems with
applications in multiplicative integral equations and numerical results. Journal of Applied Anal-
ysis, 30(1), 173-186.

2Yadav, K., & Kumar, D. (2024). Common fixed point theorems in multiplicative m-metric
space with applications to the system of multiplicative integral equations and numerical results.
Hacettepe Journal of Mathematics and Statistics, 1-12.

3Yadav, K., & Kumar, D. Fixed Point Results Using a Three-Point Analogue of Contraction
in Multiplicative m-Metric Spaces, (Communicated)
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lu“gﬁ /’ng :ufﬁ
Hov Mot /Jw

(iii)

where pigy = min{mg,g),uw,ﬁ)}, e = max{m@, @),M(ﬁ,ﬂ)} and Jal, =

a,a>1;
L fora e R,.
E,CL< 1.

Remark 4.2.5. Let (Q, 1) be a multiplicative m-MS. Then, Yo, € €, we have

(0, 9) 1y
Hod - oy 7

w(e,9) ) 9
(b) MS(Qaﬂ) { Bov Zf Q?é

(1) (a) u*(e,9) =

1, if o="1

are multiplicative metric on €.

e, 0) _

,979

pe,9) _

,979

(i) (a) < p(0,9) < pu(0,9) .

(b) < ps(0,9) < (o, V).

Example 4.2.6. Let (2, u) be a multiplicative MS. Let ¢ : [1,00) — [a, 00), where

a = ¢(1) be a one to one and non-decreasing function s.t.

¢(0)-¢(V)
T (4.2.1)

Vo,0 > 1. Then, u(p,9) = ¢(u(p,?)) is a multiplicative m-metric.

P(0.9) <

Proof. Tt is given that (£2,u) is a multiplicative MS. In order to prove pu(p,d) =
o(u(0,1)) is a multiplicative m-MS, we shall prove the following :
(i) Since, (€2, u) is a multiplicative MS. Therefore,

0=19 < u(p,0) =u(¥,9) =u(p,d)=1
& o(ulo, 0) = ¢(u(v,9)) = d(u(e,¥)) = ¢(1) (As, ¢ is one to one )
< plo,0) = wd,9) = plo,v).

(ii) Since, p(o, 0) = d(u(o, 0)) = ¢(1) and p(V, V) = ¢(9,9) = ¢(1). Therefore,
foy = min {u(g, 0), u(v, 19)} o(1) = a < ¢(u(o,9)) = u(e, ). This is because
of the fact that ¢(p) > a, Vo € [1,0).

)



(iii) Also, p(o,9) = ¢(u(p,?)) = ¢(u(¥, 0)) = u(J, o). This is because of the fact
that (£2,u) is a multiplicative MS.

(iv) For triangle inequality, we have

fLov (1) o(1)
o ue,§)) o(ufé,))
T o) (1)
1(0,§) p(&,v)
Heo ' Mgy ‘

e, ) _ oue,9)) _  olule e)-ulo¥))

(Using (4.2.1))

Thus, p(o,v) = ¢(u(o,?)) is a multiplicative m-metric and (€2, ) is a multiplica-
tive m-MS. [l

Example 4.2.7. Let (Q,u) be a multiplicative MS. Then u(o,9) = b.u(o,9)?,

where a,b > 1 is a multiplicative m-metric.

Example 4.2.8. Let (Q,m) be an m-MS. Then u(o,9) = e™@?) is a multiplicative

m-metric on  and (2, u) is a multiplicative m-MS.

Example 4.2.9. Let (Q,d) be a MS. Then, Ya,b > 0, u(o,9) = e®@N+b 45 ¢

multiplicative m-metric and (2, u) is a multiplicative m-MS.

Example 4.2.10. Let (Q, ) be a multiplicative m-MS then m(o,9) = In u(o, 9)

is an m-metric and d(o,9) = In p(o, V) +In why — 21In(pe9) is a usual metric.

Definition 4.2.11. Let {05} be a sequence in (Q, ). Then {ox} is c.t.b. multi-

plicative

(i) convergent if Ip in Q s.t.

o Mmoo
h=00 oo
(it) m-Cauchy if
lim #lon om) and  lim Peem opig finitely.
h,m—o0 Ko om h,m—o00 Ko om

Also, if every multiplicative m-Cy, in Q is convergent in Q, i.e., 3o € Q s.t.

limwzl and lim —=€ =

h— o0 H,th h—o00 :ughg

Then (2, 1) is a multiplicative m-complete MS.
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Lemma 4.2.12. Let (2, 1) be a multiplicative m-MS. Consider the m-metric and
usual metric defined by m(o,9) = In(u(o,v)) and d(o, V) = In(u(o,V)) +In(pyy) —
2In(ju9) respectively. Then {on} is a multiplicative m-Cie, iff {o0r} is Cauchy w.r.t
to either of the multiplicative metric ‘u™’, ‘us’, m-metric ‘m’ and usual metric ‘d’.
Also, the multiplicative m-MS (Q, p) is complete iff it is complete w.r.t. to either

Gw i )

of the multiplicative metric ‘u*’, ‘us’, m-metric ‘m’” and usual metric ‘d’.

Proof. Using Definitions 4.2.11, one can easily verify the above result. O]

Lemma 4.2.13. Let {os} and {U} be two sequences in (2, ) s.t. op — o0 and
¥y — . Then,

i e On) _ p(e,9)

h=oo  [ho, 9y Koy

Proof. Consider the sequences {gx} and {9;} s.t. o — 0 and J; — 9. Then,

lim 4000y 2O (4.2.2)

h— o0 H,th h— o0 :u19ﬁ,19

Now, consider

plon, ) _ plon 0) p(0,9) p(n,9)
Mop9y - Mopo Hov Hopd

Taking limit as & — oo on both sides and using (4.2.2), we have

plon9n) _ ple,9)

lim < (4.2.3)
h=oo ooy, Hov
Similarly,
) v
Moo oo loywy,
From (4.2.3) and (4.2.4), we have
1) ,l9l 719
lim 1(on, Un) _ p(o )_
h=o0 loyvy, Hov
O

Lemma 4.2.14. Let {o;} be a sequence in (2, 1) s.t. on — 0 and o5 — 0. Then
w(o,9) = pp. Also, in case u(p, 0) = p(V,9), then o = 1.

Proof. Using Lemma 4.2.13, one can easily prove the required result. O]
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Lemma 4.2.15. Let (2, 1) be a multiplicative m-MS and {or} be a sequence in
Q s.t.

M(Qﬁ-‘rla Qﬁ) < M(Qﬁv Qﬁ—l)rv Vhe N7 where r € [O’ 1) (425)

Then,

(i) im p(onsr, 0n) = 1.
(i) lim (o, on) = 1.
(iti) h}ggloo Honem = 1.
() {on} is a multiplicative m-Cl.,.

Proof. (i) Consider a sequence {g} in multiplicative m-MS (Q, ). Then using
(4.2.5), we have

A

wlonsi, on) < plon, 0n-1)"
< plon-1,0n-2)"

2

h

M(Qb Qo)r .

IN

Taking limit as h — oo, we have

h

. < . T
N gi(ongr, on) < lim pier, 00)" = 1 (Asr < 1) (4.2.6)

Also, by Definition 4.2.1, we have

(01, 0) > 1. (4.2.7)

From (4.2.6) and (4.2.7), we have

lim pu(ony1, 0n) = 1.
h—o00

(ii) By using (i) and Definition 4.2.1, we have

lim /LQﬁJrlQh = hlggomm {/’L(Qﬁ+17 Qﬁ+1>7/'l’<gﬁv Qﬁ)} S ﬁh_glo /’L(Qﬁ+17 Qﬁ> = 17

h—o00

or
. <1
hhm pon, on) <1
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Also, by the Definition of multiplicative m-metric, we have

w(on, on) > 1.

Thus, limp_,ee (05, 01) = 1.
(iii) Using (ii), one can easily deduce the required result.

(iv) Let {on} be the given sequence. Using triangle inequality, we have

ploms on) - Hom; 0m—1) -1, 0m—2) pen+1, 0n)
Homen Foomom—1 Hom—10m—2 Fontion
< plor,00)" pler, 00)" il o)
< ulo, Qo)rm*1+rm*2+...rﬁ
< u(or, QO)% — 1 ash— oo (Becauser < 1).

Using (ii) and Remark 4.2.4, we have

— lash,m— oo.

*

MZWLQH :|/'I/<Qm7gm)
1(0n, on)

Mgmgﬁ

Hence, {o;} is a multiplicative m-C,,.

4.3 Some Fixed Point Results in Multiplicative

m-Metric Space

In this section, we established some fixed point results using some well known

contractions in the framework of multiplicative m-MS.

Theorem 4.3.1. Let I' : Q — Q be a mapping defined on a multiplicative m-

complete MS (Q, ). Suppose Ja,b,c >0, witha+b+c <1 s.t.

a b c
u(rg,ms(u(g,m) (u@,m) (uw,rm) Vo0 € Q.

Then, I' possesses exactly one fized point.

Proof. Let gy € € and consider the sequence {g;} iss.t. 01 = oo and o = I'gp_1.

If o, = o5_1, then, T'oy_1 = o = 051 implies g;_1 is a fixed point of I". Hence,

the result holds.
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Now, consider g # 051, VA € N
Using (4.3.1), we have

w(ons1, 0n) = p(lop Ton1)

a b c

(u(gﬁ, Qii—1)> (M(Qm F95)> (N(Qh—lurgh—1)>
a b c
= (u(gn, Qn_1)> (M(Qn, Qﬁ+1)> </~L(Qh—179h)>

IN

or
a-+c
1-b a+c 11
(ﬂ(@ﬁ-ﬁ-la Qh)) < (N(Qh—la Qh)) = (o1, 0n) < <H(Qﬁ—1, Qh)) :
Since $¢ < 1, using Lemma 4.2.15, we have
ﬁlim w(ons1, 0n) = 1, (4.3.2)
—r 00
Jim gu(on, o) = 1, (4.3.3)

lim =1
h,m—o0 MQﬁQm

and {o5} is a multiplicative m-Cj.,. As (€2, 1) is complete, hence Jp in 2 s.t.

w(on, 0) Higno

lim ————= =1 and lim =1 (4.3.4)
oo [lgye =00 Loy

Also, using (4.3.3), we have
Jm i, = lim min{u(@ﬁ, on), (e, @)} < lim p(on, on) — 1. (4.3.5)

Using (4.3.4), (4.3.5) and Remark 4.2.4, we have

Jim pien, 0) = 1, lim 1, , = 1 and p(e, 0) = 1. (4.3.6)
Also,
1 < pior, = min {u(g, 0), (Lo, FQ)} < p(o,0) = 1= pigr, = 1. (4.3.7)

By triangle inequality, (4.3.2) and (4.3.7), we have

r r
n(o, o) = uel'e) < lim sup e, en) plenTe) < lim sup p(on, T'o),
Hel'o =00 Hopo Heorlo fi—s00
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or

1(0,To) < limsup p(Top-1,T0). (4.3.8)

h—o00

Using (4.3.1) and (4.3.6) in (4.3.8), we have

a b c
M(Q,FQ)Slimsup<u(9ﬁ_1,@)> (U(Qii—hr@h—l)> (u(ahﬁ) = u(o,I'o)".

h—o00
(4.3.9)
Since ¢ < 1, we have
(o, I'o) = 1. (4.3.10)
Using (4.3.1), we have
a b c
1< ulo, o) < (u(& 9)) <M(Q7F9)> (u(g,F9)>
a b+c
= (u(g, 9)) <M(Q7F9)> =1,
w(To,Tp) = 1. (4.3.11)

Thus, by (4.3.6), (4.3.10) and (4.3.11), we have

1(0,0) = u(To,T'o) = pu(o,T'o).

Hence, by Definition 4.2.1, I'p = o.
Uniqueness: let § # p € Q be an another fixed point of I'. Using (4.3.1), we

have
(o, 9) = p(l'e,I'0)
< (M(@ﬁ)>a<u(9,F9)>b<u(07W)>C
= (u(@7ﬁ)>a<u(g, 9)>b<u(19,19)>c
= (uten) <ute)
a contradiction. Hence, ¢ = 9. 0
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Corollary 4.3.2. Let I' : Q — Q be a mapping defined on a multiplicative m-
complete MS (2, ). Suppose Ja € [0,1) s.t.

(o, ') < (u(g, 19)) Vo,V € Q. (4.3.12)
Then, ' possesses exactly one fized point.

Corollary 4.3.3. Let I' : © — € be a mapping defined on a multiplicative m-
complete MS (2, p). Suppose Ja € {0, %) s.t.

w(To, TY) < (u(@, T'o).u(9, W)) Vo, € (. (4.3.13)
Then, T' possesses exactly one fized point.

Theorem 4.3.4. Let I' : Q — Q be a mapping defined on a multiplicative m-
complete MS (2, p). Suppose Joo € Q and a € [0, %) s.t.

(Lo, ') S(u(g, Fﬁ)‘u(ﬁ,Fg)) , (4.3.14)
and
,LL(FHHQO, Fﬁ“go) < M(Fﬁgo, tho) Vh e N, (4.3.15)

Vo, € Q. Then, I" possesses exactly one fized point.

Proof. For gy € €, consider the sequence {gr} s.t. 01 = I'gy. On generalizing,
on =To;_1 Vh € N.

If, o, = o051 for some h € N. Then, I'g;_1 = 05 = o5_1 implies p;_; is a fixed
point of I'. Hence, the result holds.

Now, consider o5 # 051, Vh € N.

Using (4.3.14) and triangle inequality, we have

pwlons1, on) = p(Ton,Ton1)

< (M o, L'on—1) (Qﬁ—laFQﬁ)>
= (M Oty Qﬁ Qﬁ 1;Qﬁ+1>>
p(0on-1, on) M(Qh, On+1) ¢
< (,U Qﬁu Qh Hop_10n4+1 ) >
Hop—10n Hokoni1
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or

p(on-1, 0n) p(on, Ont1 ¢
11(0n+1, 0n) S(u(@ﬁ, on)- (0r1, 08) il One1) gﬁlng) : (4.3.16)
Hoy_105 Horori1
Using (4.3.15), we have
Honon—1 = 11(on, on) and Hor—1on41 = (0ni1; On1) = Horonyi - (4.3.17)

Using (4.3.17) in (4.3.16), we have

/L(Qﬁflagﬁ) N(Qﬁa@ﬁ 1) ¢
M(Qh+1>9fi) S (ﬂ(@ﬁv Qﬁ)- . i '“Qﬁ—19ﬁ+1

0r—10n Horont1

= (M(@ﬁl, Qﬁ)-ﬂ(@ﬁ, Qﬁ+1)>
= wlont, 00)'™* < plon-1,0n)"

= p(oni1, 0n) < plon_1, 0n)T 0.

Since a < % = 1% < 1, using Lemma 4.2.15, we have

lim (041, o) = 1, (4.3.18)
h—o0

Jim w(on, on) = 1, (4.3.19)

lim =1
h,m—o00 Frenom

and {o5} is a multiplicative m-Cj,,. As (£, 1) is complete, hence Jp € 2 s.t.

lim 4200 _y nd g Pee g (4.3.20)
h=00 floye h=00 lhg,0

Also, using (4.3.19), we have
Jim 45,0 = lim min {M(Qn, on), (o, 9)} < lim yi(on; 0n) = 1. (4.3.21)

Using (4.3.20), (4.3.21) and Remark 4.2.4, we have

Jim pion, 0) = 1, lim 1, , = 1 and p(e, 0) = 1. (4.3.22)
Also,

1 < pigr, = min {u(g, o), (Lo, FQ)} <o, 0)=1= pgro=1. (4.3.23)
Using triangle inequality, (4.3.22) and (4.3.23), we have

r ) w(on. T .
M < lim sup 'U/(Q’ Qf) M(Qf Q) < lim sup M(Qﬁ, FQ)’

Hol'o h—o0 Horo HorTo h—o0

(o, To) =
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or

(0, To) < limsup pu(Lop—1,T0). (4.3.24)

h—00

Using, (4.3.14), (4.3.22), (4.3.23) and the triangle inequality in (4.3.24), we have

(o, o) < limsup (M(Qﬁ_l, I'o).u(o, FQh—1)>

h—00
1(on-1,0) p(o,T'o) ‘
( . Mop_1Tp- M(Q> Qﬁ)
Hop_10 Mol

< limsup
h—o00

= limsup (u(@, FQ)-M%J@) )

h—o00

or

(o, o) < limsup (u(g, Fg).ugh_lpg> . (4.3.25)

h—o0

Since7 /’L.Qﬁ,_lr.Q = min {/’L(gﬁ—b Qﬁ—l))ﬂ(rg71—‘g)} S /’L(Qﬁ—ly Qﬁ—l) - 17 by (4325)7

we have
p(o,To) S(u(@f@)) :

Since, a < %, we have

(o, I'o) = 1. (4.3.26)

Using (4.3.14), we have

1 < pu(To, o) S(u(g,FQ)-M(Q, FQ)) = 1. (4.3.27)
Thus, by (4.3.22), (4.3.26) and (4.3.27), we have

1o, 0) = (Lo, T'o) = pu(o,To).

Hence, by Definition 4.2.1 I'p = o.
Uniqueness: let ¢ # ¢ € ) be an another fixed point of . Using (4.3.14), we

have
p(o, ) = (T, T) < (u(g, ['9).pu(0, F@)) = (M(g, J).u(0, 19)) < (o, ),
a contradiction. Hence, o = 7. O
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Example 4.3.5. Consider Q = [0,00) along with u(p,?9) = e#, YV 0,9 € Q.
Here, (2, ) is a multiplicative m-complete MS. Consider T : 0 — Q s.t.

g, if o €1[0,3)

0 .
—, ifo>3.
012 fo>
Now, we will prove that I" satisfies all the conditions of Theorem 4.3.1 with a = %,

_1 —1
b—Sandc—4.

Case (i) For g, 9 < 3, we have

1o 9
2\5 "5
u(Lo,I'Y) = e

['(o) =

wlo, T'Y) = e

IN
o
—
e N R
[\ClNe) (1801} )
+
N o W

INA
o

10 Y 10 ¥
25 0+2) . 2\57 5
(o, TY) = e T2 <e

I
(SR
/N
N
+
NI ISS
~_—
+
W =
N | =
=

=}
+ |
DO
~_—
+
= =
VR
N —
<
+
<
4+ | <
[\]
~



For a = %, b= % and ¢ = i, I" satisfies all the conditions of Theorem 4.3.1. Hence,

I' possesses exactly one fixed point i.e., o = 0.

+9

Example 4.3.6. Consider Q = [0, 1] with multiplicative m-metric p(o,9) = e“z .
Clearly, (2, ) is multiplicative m-complete MS. Consider I : Q2 — Q

e if o<1
Flo)=41 ..
] ng_l

=

Now, we will prove that I" satisfies all the conditions of Corollary 4.3.2 with a =
Case (i) For g, 9 < 1, we have

1o
2l1"1
u(lo,TY) = e
1<Q—|—19>
= (u(g, 19)) :
Case (ii) For o =9 = 1, we have

plo,TY) = e/f </t

= (u(@, 79)>a-

Case (iii) For o < 1 and ¥ = 1, we have

aearn - 2l17)

< e ( a)
- (u@,ﬁ)).

For a = i € [0,1), T satisfies all the conditions of Corollary 4.3.2. Hence, T

possesses exactly one fixed point i.e., o = 0.

+

N | — N | —

= =
+

== ool
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Remark 4.3.7. In Example 4.3.6, self mapping T' is not continuous (in multi-
plicative MS). Hence, multiplicative Banach contraction is not applicable. There-
fore, the existence of fixed point can not be guaranteed in multiplicative MS. On
other hand, T' satisfies Corollary 4.3.2. Hence, the existence of a fixed point is

guaranteed in multiplicative m-MS.

ot+d

Example 4.3.8. Consider 2 = [0, 1] with multiplicative m-metric p(o,9) =e 2 .
(Q, 1) is multiplicative m-complete MS. Consider T : 2 — €

2, difo<1
lo)=4% ..
7 Zf@ - 1

Now, we will prove that I" satisfies all the conditions of Corollary 4.3.3 with a =

Wl

Case (i) For p,9 < 1, we have

1o 9
2373
wTo,IY) = e
1
1 o, 1 (V-
- Y (9~
< (207D

= (u(QrFQ)M(07Fﬁ)>i

Case (ii) For o =9 = 1, we have

1/8
u(To,TY) = 61/7_<68/14_68/14>
1/3
< <68/14'68/14>
_ (u@,r@).uw,m)).

Case (iii) For o < 1 and 9 = 1, we have

ory — 20677) _alaer?)
ity
= (uubfg)uﬁilwﬂ>i
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For, a = % € [0, %), I satisfies all the conditions of Corollary 4.3.3. Hence, I'

possesses exactly one fixed point i.e., o = 0.

Remark 4.3.9. In FExample 4.3.8, one can easily verify that the self mapping

o=

' with induced multiplicative metric u(p,v) = e 2z does not satisfy Kannan-
contraction in multiplicative MS for o = 0 and ¥ = % Hence, the existence of
a fized point in multiplicative MS can not be guaranteed. On the other hand, T’
satisfies the conditions of Corollary 4.3.3. Hence, existence of a fixed point is

guaranteed in multiplicative m-MS.

4.3.1 Numerical Approximation of Fixed Point

In this section, we have presented some iterations for the approximation of unique
fixed point of I' in Example 4.3.5, 4.3.6 and 4.3.8. Also, we established the conver-
gence of Picard’s iterative sequence graphically and concluded that the fixed point

of the mapping does not depend on the initial point of the iterative procedure.

Xo 1.000000 | 2.000000 | 3.000000 | 4.000000 | 5.000000
X 0.200000 | 0.400000 | 0.600000 | 0.666667 | 0.714286
X 0.040000 | 0.080000 | 0.120000 | 0.133333 | 0.142857
X3 0.008000 | 0.016000 | 0.024000 | 0.026667 | 0.028571
Xs 0.001600 | 0.003200 | 0.004800 | 0.005333 | 0.005714
Xs 0.000320 | 0.000640 | 0.000960 | 0.001067 | 0.001143
Xg 0.000064 | 0.000128 | 0.000192 | 0.000213 | 0.000229
X7 0.000013 | 0.000026 | 0.000038 | 0.000043 | 0.000046
Xg 0.000003 | 0.000005 | 0.000008 | 0.000009 | 0.000009
Xg 0.000001 | 0.000001 | 0.000002 | 0.000002 | 0.000002
X10 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

Figure 4.1: Iteration for Picard’s sequence of Example 4.3.5.
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Values of xn

Iteration number(n)

—8—x0=1

—8—x0=2 x0=3 x0=4 —@—x0=5

Figure 4.2: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.5.

Xp 0.200000 | 0.400000 | 0.600000 0.800000 1.000000
X1 0.050000 | 0.100000 | 0.150000 0.200000 0.125000
X; 0.012500 | 0.025000 | 0.037500 0.050000 0.031250
X3 0.003125 | 0.006250 | 0.009375 0.012500 0.007813
Xy 0.000781 | 0.001563 | 0.002344 0.003125 0.001953
X5 0.000195 | 0.000391 | 0.000586 0.000781 0.000488
Xg 0.000049 | 0.000098 | 0.000147 0.000195 0.000122
X7 0.000012 | 0.000025 | 0.000037 0.000049 0.000031
Xg 0.000003 | 0.000006 | 0.000009 0.000012 0.000008
Xg 0.000001 | 0.000002 | 0.000002 0.000003 0.000002
X;o | 0.000000 | 0.000001 | 0.000001 0.000001 0.000001
Xy | 0.000000 | 0.000000 | 0.000000 0.000000 0.000000

Figure 4.3: Iteration for Picard’s sequence of Example 4.3.6.

12

Values of xn
=)
=
L

Iteration numer(n)

——x0=0.2 —x0=0.4 x0=0.6 x0=0.8 —@—x0=1

Figure 4.4: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.6.
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Xg 0.210000 | 0.410000 | 0.610000| 0.810000 | 1.000000

Xq 0.070000 | 0.136667 | 0.203333|0.270000| 0.142857
X3 0.023333 | 0.045556 | 0.067778| 0.090000 | 0.047619
X3 0.007778 | 0.015185 | 0.022593 | 0.030000 | 0.015873
Xa 0.002593 | 0.005062 | 0.007531 | 0.010000 | 0.005291
Xs 0.000864 | 0.001687 | 0.002510| 0.003333 | 0.001764
X5 0.000288 | 0.000562 | 0.000837|0.001111 | 0.000588
X7 0.000096 | 0.000187 | 0.000279| 0.000370 | 0.000196
Xg 0.000032 | 0.000062 | 0.000093 | 0.000123 | 0.000065

Xg 0.000011 | 0.000021 | 0.000031 | 0.000041 | 0.000022
X10 0.000004 | 0.000007 | 0.000010| 0.000014 | 0.000007
X11 0.000001 | 0.000002 | 0.000003 | 0.000005 | 0.000002
X12 0.000000 | 0.000001 | 0.000001 | 0.000002 | 0.000001
X13 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.000000

Figure 4.5: Iteration for Picard’s sequence of Example 4.3.8.

1.20

Values of xn

&
[

g b \ 4 9

0 2 4 6 8 10 12 14

Iteration number(n)

—8—x0-0.21 —8—x0=0.41 x0=0.61 x0=0.81 —@—x0=1

Figure 4.6: Convergence behaviour of Picard’s sequence at different points for
Example 4.3.8.
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4.4 Some Common Fixed Point Results in Mul-
tiplicative m-Metric Space

In this section, we have established some common fixed point results for a pair of
self mappings using well known contractions in the framework of multiplicative
m-MS.

Theorem 4.4.1. Let ',y : @ — Q be mappings defined on multiplicative m-
complete MS (2, ). Suppose Jay, as,az € (0,1) with a; + ag + az < 1 s.t.

p(T10,To9) < (u(o,9)™ (u(o,T10))*™ (u(0,T20))* Vo, 0 € Q. (4.4.1)

Then, either 'y or I'y has a fized point oy € 0 (say). Moreover, if ug ,,

200 <

w(Ty00,T200), then 'y, Ty have exactly one common fized point.

Proof. For gy € 2, construct a sequence in {2

0241 = L'102n, and gopyo = 20941 for i € Np.

If for some hy € Ny we have g9p,+1 = 02s,+2. Then,

02m0+1 = L1'1028y = 02n9+2 = I'20280+1

implies 095,11 = 021,42 is the fixed point of mapping I's.

Now, consider o911 # 02n42 for h € Ny. Then,

M(QZﬁ—H» th+2) = ,U(Fl 02#, F2Q2h+1)
< (p(o2n, 02n41)) ™ (102, T102) ) " (11 0241, T20241) )
= (N(Qzﬁ, QQthl))al (M(th, 92ﬁ+1))a2 (N(Q2h+1, szz))as

or

ajtag

({0111, 02m2) " < (1 02m, 02541)) T & p1(02n41, 02nr2) < (1 02n, O2ne1)) 7%

Using similar arguments, we have
aj+tag
11(02n+25 02i43) < (p1(02n+15 O242)) 1775 -
Therefore,

a]+tag a

1tag
p(on, on+1) < plon—1, 0n) 7o or u(ont1, 0n) < plon, 0n-1) - VheN.
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Since ‘l%rg < 1, using Lemma 4.2.15, we have

lim p(ont1, 0n) = 1, (4.4.2)
h—00

lim p(on, o) = 1, (4.4.3)
h—o0
lim =1 4.4.4
Hop,om

h,m—o0
and { o} is a multiplicative m-Cl,. As, (€2, 1) is multiplicative m-complete, there-
fore do € Q2 s.t.

tim 2909 i P (f*’“ o9 _y (4.4.5)
h—00 Hog .0 h—o0 ILL.Qﬁ,Q

Moreover, using (4.4.3), we have
Ny, = lim min{p(en, o), p(e, @)} < lim pi(op, 0n) = 1. (4.4.6)

Using (4.4.5), (4.4.6) and Remark 4.2.4 | we have

lim gu(on, 0) = 1, lim iy, , = 1 and p(e, 0) = 1. (4.4.7)
Also,

torio = min{pu(o, 0), u('10,T'10)} < pilo, 0) =1, (4.4.8)
and

forse = min{y(o, 0), n(I'20,T20)} < p(o, 0) = 1. (4.4.9)

Further, using (4.4.6), (4.4.9) and the triangle inequality, we have

1(0.Tr0) = e Ta0) o ple oons) ploanss I20)
Ho,T20 Ho,00n41 Foogy,  Ta0
r
< limsup (o, Q2ﬁ+2)'M(Q2ﬁ+1, 20)
fi—o0 Ho,00541 Hoop1,T20
< limsup p(02n11, 20),
h—o00
or
(o, Top) < liIhn sup p(T'y 005, T20). (4.4.10)
aadee]

Using (4.4.1), (4.4.6), (4.4.9) and the triangle inequality in (4.4.10), we have

IN

lim sup p(I'; 02, ['20)

h—o00

h;n sup(p(2n, 0))" (11( 02, T'1021))
—00

w(o,T20)

az

IN

p(o, Ta0)®

a2

IN

lim sup(2(02n, @)™ ({021, 02n11))* 11(0, T'20)**

h—o0

(o, T20)°.
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Since, a3 < 1. Hence,
(o, Iy0) = 1. (4.4.11)
On similar lines, we have

w(o, o) = 1. (4.4.12)

Using (4.4.1), (4.4.7), (4.4.11) and (4.4.12), we have

pTioTao) < (u(e, 0))" - (nle, T10))™ (1o, T20))* = 1,

or
(10, To0) = 1. (4.4.13)

Also,

HT10,T20 = mln{u(Flg, Fl@)?M(FQQv FQQ)} S M(Flga FQQ) =L

Suppose, u(I'1o, o) < p(I20,I'20). Then pu(T'10,T'10) = 1. Hence, u(I'10,T'10) =
1= u(o,0) = u(o,T'10) implies I'10 = o, i.e., o is the fixed point of T';.
Further, suppose that uy ,r,, < #(I'1e,I'20). Then,
N(F2Q7 F?Q) = maX{:u(Flga Flg)v M(F2Q7 F2Q)} = /”L;lg,rgg < M(FlQa FQQ) = 17
or
(20, T20) = 1.

Therefore,

M(FlQa FQQ) - M(Flgyrlg) = H’(FQQa FQQ) = 1a

implies I'1o =T'50 = 0.
Uniqueness: let 9 # o € (2 be an another common fixed point of I';,I's. Then,
using (4.4.1), we have

n(o,9) = u(FlajFﬂi) ) .
< (uten) (weria) (uorm)
= (ute0) (ste.0)) (wo00))”
= (sten)) " < ute)
a contradiction. Hence, 9 = o. 0
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Example 4.4.2. Consider Q) = [0,00) with multiplicative m-metric pu(o,9) =
em@{ed} - Clearly, (Q, 1) is multiplicative m-complete MS.Consider, T, Ty : Q —
Q

Q, ZQGO,I Q’ 2960,1
ng:{S foel ),Fw={2 foe 1)

L otherwise. otherwise.

10’ 1

Then,

(i) for 0,9 € [0,1), we have

(T, Tyl) = emaxilel2d}

emax{g. 2} _ %

< (o, )s.

al|—=

(”) For 0,9 > 1, we have

(D10, To9) = emaxiliolzo}

11 )
= emax{fo,ﬁ} — eT0

wtl=

< (@0 = ulp0)F

(iii) For o > 1,19 < %, we have

u(lio,I'90) = emax{l1o,la0}
1

1 9
— emaX{ﬁ:7} = e10

< (e} < o)},

atl=

- 7
(iv) For o > 1,15 < ¥ <1, we have

((Dr0,To9) = emaxliolzo}

9
_ emax{lio,7} _ .

< (emxlet)r < pu(p,9)5.

(v) For 9 >1,0< %’ we have

M(Fl 0, F219) = emax{rlg,rgﬁ}

L 1
emax{g,ﬁ = 14 S <e,l9>7



(vi) For ¥ > 1,% <0< 1, we have

M(Fl 0, FQ'&) = emaX{FIQ,FQﬁ}

and /1’;1Q,F29 = maX{M<F1Q7 FlQ)? /’L(F2gv FQQ)} = nax {erlgu erzg} S emax{rlg,rzg} =
w(T10,T20). Therefore, I'1,Ty satisfy Theorem 4.4.1 with a; = %,(12 =0 = as.

Hence, I'1,T'y have exactly one common fixed point.

4.4.1 Numerical Approximation of Common Fixed Point

In this section, we have presented some iterations for approximating the common
fixed point of I'y, 'y in Example 4.4.2. In addition, we graphically demonstrated
the convergence of Iterative sequence and concluded that the fixed point of the
mapping is independent of the iterative procedure’s initial point (see Figure 4.4.1).

The iteration scheme used for the approximation is given as

For initial pOil’lt o, Topt1 = Fl.%gh and Topt2 = F2x2ﬁ+1.

0.160000000
0.140000000
0.120000000

=

'3 0.100000000

(=1

= 0080000000

i

--"'a 0.060000000

oy
0.040000000

0.020000000

0.000000000
1 2 3 4 5 6 7 8 9 0 11 12

Number of iterations

e x0=0.1 e=le=x0=0.4 x0=0.7 Xx0=1.0 smlemmyx0=1.3

Figure 4.7: Convergence behaviour of iteration scheme at different initial points
for Example 4.4.2.
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x0 0.10 0.40 0.70 1.00 1.30
x1 0.020000000 0.080000000 0.140000000 0.100000000 0.100000000

x2 0.002857143 0.011428571 0.020000000 0.014285714 0.014285714

x3 0.000571429 0.002285714 0.004000000 0.002857143 0.002857143

x4 0.000081633 0.000326531 0.000571429 0.000408163 0.000408163

x5 0.000016327 0.000065306 0.000114286 0.000081633 0.000081633

x6 0.000002332 0.000009329 0.000016327 0.000011662 0.000011662

x7 0.000000466 0.000001866 0.000003265 0.000002332 0.000002332

x8 0.000000067 0.000000267 0.000000466 0.000000333 0.000000333

x9 0.000000013 0.000000053 0.000000093 0.000000067 0.000000067

x10 0.000000002 0.000000008 0.000000013 0.000000010 0.000000010

x11 0.000000000 0.000000002 0.000000003 0.000000002 0.000000002

x12 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

Figure 4.8: Numerical iteration for Example 4.4.2.

4.5 Some Fixed Point Results using Three Point
Analogue of Contraction Mappings

In this section, we have established some fixed point results using three point

analogue of contraction in multiplicative m-MS.

Definition 4.5.1. Consider an multiplicative m-MS (2, u). A self mapping T' is
c.t.b. self distance contraction on Q) if Ik, € [0,1) s.t.

u(To,To) < (u(o, 0)™ Vo€ Q. (4.5.1)

Definition 4.5.2. Consider an multiplicative m-complete MS (2, ). A self map-
ping T is c.t.b. contracting perimeter of triangle on Q) if Ik € [0,1) s.t.

p(To, T0). (T, T€). (T, To) < (o, )19, ).u(€, 0))", (4.5.2)
Y pairwise distinct 0,v,& € Q.

Remark 4.5.3. The condition (pairwise distinct) given in Definition 4.5.2 made
the contraction substantially different from the Banach contraction principle. If
0,9, & are not distinct, then the condition (4.5.2) is reduced to classic contraction

in multiplicative m-MS.

u(To,T9) < (u(o,9))*.

Remark 4.5.4. A self mapping I' contracting perimeter of triangle in multiplica-
tive m-MS need not to be continuous. But in the usual MS the mapping must be

continuous. For illustration see the Example 4.5.5.
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o+v

Example 4.5.5. Consider Q) = [0, 2] with multiplicative m-metric, p(o0,9) = e 2 .
Clearly, (Q, i) is multiplicative m-complete MS. Consider, T': Q — Q

Q - 1 .
=, otherwise.

(i) If 0,9,§ < 1. Then,

Lo+l T94T¢ Té+4Tp
2

w(To, T9).u(T9,1€).u(T€,To) = e 2 e 2 e

IN
—
®
‘re
N
53
o
53
off
®
m‘-’—
S
N———
W=

(ii) For distinct 0,v,&, assume that 0,9 <1 & & = 1. Then,

Lo4Dl9 T94D¢  TLE4Tp

p(Lo, T0).u(T9, TE). w(TE To) = e 2 e 2 e 2
42 243 o
= e 2 . 2 .e 2
ero 9+3 F+o
= e 6 . 6 e 6
o+9 9+1 1+o0
< e6 .6 .6
1
+9 9+ +o0\ 3
S <eg2 e 2 @2Q>

Il
=
—~
s
=
=
ﬁ:’
722
Y
=
o
S
o

Then, T" is a contracting perimeter of triangle in multiplicative m-MS with k = %

Also, T'y is a self distance contraction.

Let LHS = d(To, T'0)+d(I'9,T€) +d(I'¢,To) and RHS = d(p,V)+d(9,§)+
d(&, 0), where d(p,¥) = |o — V| Yo,9 € [0,2]. The figures ??7 shows that there is
no such k € [0,1) that satisfies

d(To, TY)+d(T0,T¢)+d(T¢, To) <k (d(o,0) + d(9,&) + d(&, 0)) Vo,9,& € [0,2].

Therefore with usual metric d(p,9) = |o — V|, ' is not contracting perimeter of

triangle in (]0,2],d) i.e., ' does not meet the requirement of Theorem ?7.
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Remark 4.5.6. Consider a self mapping U satisfying the Banach contraction in
multiplicative m-MS with 0 < a < % i.e.,

(To,TY) < (u(0,9))", ¥ 0,0 €.

Then T is a mapping contracting the perimeter of triangle in multiplicative m-MS
(€2, ).

Theorem 4.5.7. Let I' : Q@ — € be a mapping defined on a multiplicative m-
complete MS (2, p). Suppose T' satisfies

(i) T is contracting perimeter of triangle on €2;
(77) T is a self distance contraction mapping,

(iii) there is no periodic point of order 2 in ).
Then, I possesses a fized point. Moreover, I' has atmost two fized point.

Proof. Let gy € €2 be any point. Consider the iterative sequence { o} generated
by mapping I' with initial point gy as

o1 =TLo0g, 02=T01, ... 0h41 = T'0n.

Suppose that g5 is not a fixed point VA € N. Then, g5,1 = oy # o05. Also, there
is no periodic point of order 2 implies o542 = I'(g511) = 205 # o0n- Moreover, by
assumption ;.1 is not a fixed point of I" i.e.; op1o = T'opi1 # 0nr1, proves that
Oh, Oris1, Onvo are all pairwise distinct.

Now consider the sequence {5} generated by perimeter of triangle in multiplica-

tive distance structure with vertices as the consecutive member of the sequence

{or} as

B = 1(on: on41)-1(0n+1; On2)-1(Onr2s On)-

Now, as 9p, 0rt1, 0rio are all pairwise distinct and I' is contracting perimeter of

triangle in (€2, ). Therefore, we have

B = pon, on1)-1(0nt1, Onr2)-1(Onv2; On)
= (o1, Ton)-p(Con, Topy1) (L o1, Lon1)
(14 0n-1, on)-1e(on, on1)-1i(0ns1, 0n1))"

< (Bp)"
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Moreover, as k < 1. Then,

Bo>61 >52 > >/8ﬁ_1 >Bh>

We claim that o;, 0i+1, 0;4+1 are all distinct. Suppose 35 > 3 s.t. p; = g; for some
0 <i<j—2. Then,

0i = 0j = 0ix1 =10 =T0; = 0j11 = 0ir2 = L'0it1 = Loj11 = 0j42,
implies
Bi = M(Qi» Qi+1)-M(Qi+17 Qi+2)-u(9i+2, Qi) = M(Qj, Qj+1)-#(@j+1, Qj+2)-,u(0j+27 Qj) = 5j,

a contradiction.

Consider,

pons onv1) < p(0ns Ont1)-1(0nt1s Ona)-11(Ons2; On) = B
< (Bt << (B (4.5.3)

As, k < 1. Then, taking limit as & tends to infinity in (4.5.3), we have

Jim (o, onyr) = 1. (4.5.4)

Also,

1 fi, g,y = i min{gi(on, o), p(ensrs o)} < lim p(on, 0n41) = 1, (4.5.5)

h—o0

ﬁlggo N(Qﬁa Qﬁ) = ﬁlggo H’(Qﬁ—i-la Qﬁ—i—l) = %L% mln{:u(gﬁa Qﬁ)a M(9h+1> in-i-l)}

= lim fiy, o,, = 1(4.5.6)

h—o00

and

lim H’Zﬁ on+l — ﬁll)rgo max{ﬂ(gh; Qﬁ): ,U(Qﬁ-l,-l, Qﬁ—‘rl)} =1L (457)

h— o0

Next, we will show that {g;} is a multiplicative m-Cl,,. Consider,

N(Qha@m) < M(QmQhH) M(Qh+1>Qh+2) M(Qm+1>9m)

Hor,om Hor,on41 Hopi1,0n42 Homi1,0m

1(0n, Ong1)-1(Ont15 Ong2)- - f(Omet1s Om)

Bri-Brt1-+++ Bt

(B)*"(B0)" -+ (B0

S L i (ﬁo)kﬁ(l*ff,:‘ﬁ)' (4.5.8)

INIA

IN

IA
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As k < 1. Then, by taking limit as #, m tends to infinity in (4.5.8), we have

lim (05, Om)

h.m—o00 /Lgﬁ om

=1, (4.5.9)

i.e., {or} is multiplicative m-Cauchy. Further, as (2, 1) is multiplicative m-
complete. Therefore, dp € ) s.t.

wlon, 0) = iy Hene (4.5.10)
Honeo 100 [long

lim
h—o00

Using (4.5.6), we have

ﬁlim Pono = lim min{pu(on, or), 10, 0)} < lim p(os, 0n) = 1. (4.5.11)
—00 h—o0 fi—o0

Using (4.5.10), (4.5.11) and Remark 4.2.4 , we have

lim pi(es, 0) =1, lim p, , =T and p(e, 0) = 1. (4.5.12)
Also,
fioro = min{y(o, 0), p(I'o, o)} = 1. (4.5.13)

Using (4.5.2),(4.5.13) and the triangle inequality, we have

(o, To)
HoTo
,u(g, Qh) M(an FQ)

Hopo HorT'o

p(o, on) plon, Lo
( L>. (on )-M<Qﬁagﬁ+1)-ﬂ(£)h+larg)
Koo HopTo

(0, 0)-1(T0, T 0—1)-11(Ton-1,Top).11(Ton, T o)
1(o, or) (1o, on-1)-1(0n-1, 0).11(on, 0))" (4.5.14)

1 <u(o,T'o) =

IA

IN

IN

IA

Taking limit as h — oo in (4.5.14), we have

w(o,T'o) = 1. (4.5.15)

Also, T is a self distance contraction. Therefore, Ikg € [0,1) s.t.

1(To,To) < (u(o, 0))™,

or
w(To,To) = 1. (4.5.16)
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Using (4.5.12), (4.5.13), (4.5.15) and (4.5.16), we have

p(o,0) = (o, T'o) = u(To,To) =1,

By using axiom (i) of Definition 4.2.1, we have o = I'o. Hence g is the fixed point
of T.

In order to prove that I' has atmost two fixed points, suppose that there are three
distinct fixed points say o,9,£. Then, we have u(p, 0) = pu(9,9) = u(&,§) =1
and ['p = o, T = 9, T¢ = . Consider

(0, 0)-pu(0,8).1(& 0) = (Lo, T9). (T, T'€). (T, To)
< (o, 0).p(9,€).u(€, 0)"
< plo,9).u(¥,8).1u(§; 0),

a contradiction. Hence, the mapping I' has atmost two fixed points. O]

Definition 4.5.8. Let (2, 1) be an multiplicative m-MS. A triplet (I'1,T'2,1'3) of
self mapping is c.t.b. contracting perimeter of triangle on Q if Ik € [0,1) s.t.

pu(T10, Tot).pu(Tad), T5€) (T3¢, Tro) < (o, 9)-p(0,€)-p(&, 0)",  (4.5.17)
Y pairwise distinct 0,1,& € €.
We extend the concept of periodic point further for a pair of self mappings (I'y, I's)
as : o has prime period 2 pairwise w.r.t. (I';,T9) if Ti0 # 0,20 # o, but

either FG(p) = o or GF(p) = p. Moreover, o has prime period 2 pairwise w.r.t.

(I'y, Ty, I'3), if o has prime period 2 pairwise w.r.t. each pair of self mappings.

Example 4.5.9. Consider the mapping I'y and I'y defines on Ry as I'yp = €2 and
Iy0 = In(p). Then, ¥ 0 € Ry, T'1p # 0 and Gx # o but FG(9) = o. Therefore,

every point in Ry has a prime order 2 pairwise w.r.t. mappings (I'1, ).
Theorem 4.5.10. Let I';,T5,I's : Q@ — Q are mappings defined on complete
multiplicative m-MS (Q, ). Suppose the triplet (I'1,To,T'3) satisfies

(i) triplet (I'y,Ty,T's) is contracting perimeter of triangle on €;

(7i) T'1,T9, s are self distance contraction mappings;

(iii) there is mo point in  that has a prime period of order 2 pairwise w.r.t.

(Fh F27 P3)
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Then, the triplet (I'y,T'5,T'3) has a common fized point. Moreover, the triplet

(I'1, Ty, I'3) has atmost two common fized points.

Proof. For some g, € 2, define the iterative sequence as

01 = I'100, 02 = T'201, 03 =I'302, ..., 03041 = I'1035, 03n+2 = D'2030+1, 03n43 = I'303n+2,

vV h € N. Without loss of generality, rename the sequence as g9 = vy and ¥ =
031, Ure1 = 03541, Unao = 0spee and so on..., for A € N. Suppose that ¥ is not a
common fixed point VA € N. Then, ¥y, 911, V412 are pairwise distinct. Now, we
can define the sequence {5} generated by perimeter of triangle in multiplicative
distance structure with vertices as the consecutive member of the sequence {9}

as

Br = M(ﬁfm 79;7,+1).M(19h+1, 19ﬁ+2)-#(79ﬁ+2> ?9h,)-

On similar line of Theorem4.5.7, it can be observe that {dJ;} is a multiplicative

m-Cle, in Q and
lim M(ﬂﬁ,0ﬁ+1) =1. (4518)
h—o0

Also,

dim gy, 9y, = Y min{p(Fn, On), p(Onr; Ongn) ; < Hmp(On, ) = 1, (4.5.19)

Jim (O, Un) = Jim w(Oni1, Opga) = Jim min{ p(In, In), p(Ons1, Ons) }

A /’[/19}1 §h+1 )
and

lim juy .01 = hli}rgo max{ (I, U5), (Vpp1,9541)} = 1. (4.5.20)

h—o00

Also, (2, ) is complete. Therefore, 39 € Q s.t.

O, ¥ :
lim 200 gy PO (4.5.21)

h—o0 /’L’ﬁﬁ’ﬁ h—o0 Mﬂﬁﬁ
Using (4.5.20), we have

ﬁlgr;o gy = hhﬁrgD min{ p(Vg, U5), w(9,9)} < ﬁlgﬁlo (04, 0) = 1. (4.5.22)
Using (4.5.21), (4.5.22) and Remark 4.2.4, we have

hlg&u(ﬁﬁ,ﬁ) =1, ﬁll)rgouﬂﬁﬁ = land p(9,9) = 1. (4.5.23)
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Also,
foryy = min{u(9,9), p(T'20, T20)} = 1. (4.5.24)
Using (4.5.17), (4.5.24) and the triangle inequality, we have

p(0.T20)
H9T50
(0, 03n41) (03541, '200)

Hosp19 Hospy1T20

p(9, 03r41) p(03n41, [2¥
( +1) : (o ) (T2, 03143)-14( 03143, 03h41)
Hogpir Hogpp1T20

,u(19, Q3ﬁ+1>‘,u(r1 O3, F2?9)~M(P219; F3Q3h+2)-ﬁb(r393ﬁ+27 I'y Q3ﬁ)

IN

IN

IN

M(197 QSfH—l) (N(Q3h; 19)-/1(?9, Q3h+2)-u(93h+2> an))k
100, 1) (O, 9)-pu0, D) (Do, 9)F . (45.25)

IN

Taking limit as A — oo in (4.5.25), we have
(9, o) = 1. (4.5.26)
Also, I'y is a self distance contraction. Therefore, Ikq € [0,1) s.t.

1(T20,T20) < (10, 0))*,

or
wu(Ta0,To0) = 1. (4.5.27)
Using (4.5.23), (4.5.26) and (4.5.27), we have
(9, 9) = p(0, I'd) = p(I20, I'ad) = 1,

i.e., ¥ = I'91). Thus, 9 is the fixed point of I's.
On the similar lines one can prove that ¥ = ')/ = 'y = I'sd) ie., ¢ is the
common fixed point of self mappings 'y, I's, I's.

The rest part of the theorem is analogues to Theorem 4.5.7. O

Example 4.5.11. Consider Q = {ay, as,az} with distance function m defined as
plar, ar) = plaz,az) = 1, plas,a3) = 2 and par, az) = plaz, as) = plar, as) =
wlag, ar) = ulag, az) = plag,ar) = 4. Then clearly (Q, 1) is multiplicative m-MS.
Let T be a self mapping defined on Q2 as I'(ay) = a1, '(as) = as,I'(a3) = as. Then,
['y satisfies Theorem 4.5.7 and has two fixed point.
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Example 4.5.12. Consider Q) = {ay, as,as} with distance function u defined as
plar, a1) = plag, ag) = plas,az) = 2 and p(ay, az) = plag, az) = p(ar,az) =
wlag, ar) = plas, az) = plas,a1) = 4. Then clearly (Q, 1) is multiplicative m-MS.
Let T be a self mapping defined on Q as T'(a1) = ag,I'(az) = a1,T'(a3) = ay. Then,
I' satisfies the condition of contracting perimeter and a,b are periodic points of

prime order 2. Also, I has no fixed point.

Remark 4.5.13. If under the assumption of Theorem 4.5.7, the mapping I' has
a fixed point o and it is a limit point of the iterative scheme o = I'op_1.Then, T’
possesses exactly one fized point.

Let if possible ¥ # o is another fived point. Clearly op, 0,9 are pairwise distinct.

Consider

plonst, 0)p(o, V) (0, onv1) = p(Lop, T'o).pu(To, T'9).u(T9, T 0y)
< (ulon 0)p(o. 9)p(V, on))"
< ,U(Qﬁ, Q)M(Qa 19):“(197 Qh)'

As, (limy oo pt( 05, 0) = limy oo pt(0n, ¥) = 1). Therefore, by taking limit as h —
oo, we have

(o, 9) < p(o, ),
a contradiction.

Remark 4.5.14. If under the assumption of Theorem 4.5.10, the triplet of map-
pings I'1, T, T's has a common fized point o and it is a limit point of the iterative
scheme

01 = I'1oo, 02 = 1201, 03 = 1302, ..., 03611 = L1038, 03042 = 20341, 03643 = I'303n+2,

Vh € N. Then, (I'1,T'9,T'3) possesses exactly one common fixed point.
Let if possible 9 # ¢ is another common fized point. Clearly osx, 0,79 are pairwise

distinct. Consider

M<Q3ﬁ+1, Q)M(Qa 19),“(197 Q3ﬁ+1) = M(Fl 03#;5 F2Q)-M(F2Q> F319)-M(F3797 Iy Qsﬁ)
< (ulosn, 0)u(0,9) (D, 031))"
< p(osn, 0)p(0,9) (D, 03n).

As (limy_y o0 pt( 035, 0) = limy_yo0 it 035, 9) = 1). Therefore, by taking limit as h —

oo, we have
(o, V) < p(o, V),
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a contradiction.

Example 4.5.15. Consider Q2 = [0, 00) with the multiplicative m-metric p(o,9) =
- Clearly, (2, u) is multiplicative m-complete MS. Consider 'y, 'y, T3 : 2 — Q

e dfo<1 g ifo<1 e ifo<1
1117 Zf@ F2Q2{5 fQ Fg {9 f@
8

. ) . Y = . )
, otherwise. S otherwise. otherwise.

Q
0+9’ 80+10°

(i) Suppose 0,9, < 1, then

/’L(F1Q7r2’l9),U(F219,F3£)/,L<F3€,Flg) = e%(%+%)e%(%+g)e%(g+§)
< emx{13}E+y) gmax{35}G+5)

b))

k
< (o, 0).pu(0,8)-1u(&, )™
where k; = max{§, %, 5} = 1.
(ii) Suppose & > 1 and p,9 < 1, then
#(T10, To0).p(Tad, o). u(Tof, Tro) = e3E+9) e3tain) et D)
< @%(§+g) e%(g+%)_@%(%+i)
o eon{b}ED e LAY

A
=
o
=
=
2
o
=
oo
o
'

where ky = max{}, £, &} = 1.
(7ii) Suppose ¥ > 1 and 0,& < 1, then

(D10, T90).u(Te, T'3€). (036, T0) = e2(51755) o3(3516) 3(5+9)

VAN
Q)
D=
—
)
+
2l
—
)
(S
—
sle
+
©olm
N
M)
(SIS
—~
+
LS
—

[
g
o
i
=
IS
S|
—~
(SIS
+
[NISY
N
® .
g
)
“
= ©okn
sl=
Ol
—
—~
S5
+
N
—

VAN

=
IS

=
=
ﬁo
m
=
o
=
S

11 1 1
where ks = max{;, 3,5} = ;-
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(tv) Suppose o > 1 and &9 < 1, then

pu(T10,T99). (D09, T3€) u(T5€, Tip) = e2(5T8) ea(5H5) ea(5+3)

emac{ 5.5 H(5+9)

(10, 9)-p(9, €)-pu(€, 0)™

IN

where ky = max{3, :, 5} = +.

Let k = max{ky, ko, ks, ky} = i. Then (I'1,T3,T'3) is a contracting perimeter

of triangle in (2, u) with k = i and there is no pairwise periodic point of prime

order 2. Also, I'1, 'y, 'y are self distance contractions. Hence, (I'1, 'y, ['s) satisfies
all the requirement of Theorem 4.5.10. Hence the triplet (I'1, 'y, 's) possesses a

common fized point.

4.5.1 Numerical Approximation of Common Fixed Point

In this section, we have introduced several iterations to approximate the com-
mon fixed point of the triplet (I';,T'9,I's) as defined in Example 4.5.15. We also
provided a graphical representation to illustrate the convergence behavior of the
iterative sequence, leading to the conclusion that the common fixed point of the
triplet is independent of the initial point chosen for the iterative procedure (see
figure 4.10). The iterative scheme employed for the approximation of the common
fixed point is as follows:

For some zq € (),
x1 = o, 29 = oz, 23 = I'329, cy L3n41 = I'xs,, L3n+2 = F2303n+1, L3n+3 = F3$3n+2,

Vh € N.

4.6 Existence of Solution to First-Order Multi-
plicative Initial Value Problem

In this section, we have discussed the applicability of the proved results by es-
tablishing the existence of solution to a first order multiplicative initial value

problem.
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xp | 0.210000 | 0.310000 | 0.410000 | 0.510000 | 0.710000 | 0.910000
xy | 0.052500 | 0.077500 | 0.102500 | 0.127500 | 0.177500 | 0.227500
x2 | 0.010500 | 0.015500 | 0.020500 | 0.025500 | 0.035500 | 0.045500
x3 | 0.001167 | 0.001722 | 0.002278 | 0.002833 | 0.003944 | 0.005056
z4 | 0.000292 | 0.000431 | 0.000569 | 0.000708 | 0.000986 | 0.001264
x5 | 0.000058 | 0.000086 | 0.000114 | 0.000142 | 0.000197 | 0.000253
g | 0.000006 | 0.000010 | 0.000013 | 0.000016 | 0.000022 | 0.000028
r7 | 0.000002 | 0.000002 | 0.000003 | 0.000004 | 0.000005 | 0.000007
xg | 0.000000 | 0.000000 | 0.000001 | 0.000001 | 0.000001 | 0.000001
zg | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

Figure 4.9: Numerical iteration for Example 4.5.15.

——x_0=0.21 =——x_0=0.31 x_0=0.41
%_0=0.51 ====x_0=0.71 =—@—x_0=0.91

1.000000
0.900000
0.800000

£ 0.700000

£ 0.600000

& 0.500000

= 0.400000

£ 0.300000
0.200000
0.100000

0.000000

1 2 3 4 5 6 7 8 a 10 11 12 13
NUMBER OF ITERATONS

Figure 4.10: Convergence behaviour of iteration scheme at different initial points
for Example 4.5.15.

Let C*[a,b] be the set of all real-valued multiplicative continuous function on

la,b] C Ry with multiplicative m-metric defined as

f(e)
u(f,9) = sup
> 1
where |a|, = Cf’a - 1’ for a € Ry. Then, (C*[a,b], p) is a multiplicative m-
La<

complete MS.

Consider the first order multiplicative initial value problem defined as

{ = f(0,9(0))
Q9(@0) =1y

where ¢ € [1,7] for a sufficiently small 7 > 1. f is a multiplicative continuous

: (4.6.1)

function on [1,7] x C*[1,7] — R. Suppose f satisfies the multiplicative Lipschitz
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conditions with @ > 1 i.e.,

f(s,91(s))
f(s,92(5)) ],
Vi, 95 € C*[1,7] and s € [1,7]. Suppose go € [1, 7], then multiplicative initial

|[91(5)/92(s)]

— Y

value problem given by equation (4.6.1) has a feasible solution on closed interval

[00 — K, 00 + K], for a sufficiently small x > 0 with k* < 1.

Proof. Define a self mapping I'y on C*[1, 7] as below
Do) = o [ f(s9)"
Q0

Then, for distinct ¥4, 9, ¥3, we have

(Fﬂl, Fﬁg /,L(Fﬁg, F’l93) M(Fﬁg, Fﬁl)

)-
'
o [T IR | T (o)
el T (92(0) |, oern|T(W3(0)) [, oenn| I(W1(0)) ],

B 2 (f(s,01(s))* 2 (f(s,0a(s)) " 2 (f(s.05(s))"
- ds ds up ds
oeltr| [o (f(8,01(8))™ |, eeltn| [, (F(5:93(5))7 |, eelin| [y, (f(s:01(5)))

ds ds ds
S sup e f(87/l91) <S7191) . sup /Q (87191)
0€[1,7] f(S 792) e€[l,7] Y00 f(57192) « 0€[l,7] 700 f(37192) %
< sup ( |191 )/Y2( s)| )ds sup 9(a|192(s)/193(s)|*)ds‘ sup 9(a|192(s)/191(s)|*>d5
0€[1,7] 0€[1,7] Y0 o€[1,7] /o
< sup Q(a,u(ﬁl,ﬁz))ds. sup Q(a,u(ﬁg,ﬁgnds‘ sup Q(a,u(ﬂg,ﬁl))ds
0€(1,7] 0€(1,7] 0€(1,7]
< sup (o — oo|)M772) (|0 — 0o]*)"727) (o — go|*)H P20
QE[LT]

< (RO (50) 0200, (k)R < (0, D) (D1, Do) -0, 92))"

Here, k* < 1. Therefore, I' satisfies the conditions of Theorem 4.5.7 and has
a fixed point i.e., initial value problem given by equation (4.6.1) has a feasible

solution.

4.7 Existence of Solution to System of Multi-
plicative Fredholm Integral Equation

In this section, we have discussed the applicability of the proved results by estab-

lishing the existence of solution to a multiplicative Fredholm integral equations.
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Theorem 4.7.1. Consider the following system of multiplicative integral equation
of Fredholm type

9(z) = [ff (ﬁ(S)Kl(s,z))dsr, where s,z € I = [1,2]
ds1¢ (471)
V(z) = [ff (19(3)1(2(5’2)) } , wheres,z € I =1,2],

where Ki(s, z), Ka(s, z) are continuous function defined on I xI s.t. |K;(s,z)| < B;
for 1 < i < 2. If Ba < 1, where = max{f1, 2}, then we have exactly one
solution to (4.7.1).

Proof. Consider the set of all multiplicative continuous positive function on [1,2]
denoted as C*[1,2]. Then the mapping u : C*[1,2] x C*[1,2] — [1,00) defined as

o\z .
pi(0,9) = sup 42| i sup [o(2)], , sup [9(2)], ¢,
2€[1,2] 19(2) " 2€[1,2] 2€[1,2
a,a>1; . . : .
where [a|, = ¢, ) is a multiplicative m-metric. Moreover, C*[1,2] is a
La<

complete multiplicative m-MS.
Define the self mappings I'; and T'y on C*[1, 2] as

e’

D) = | [ (6"

T(0(=) = | [ (96s)09)"

Consider,
' (94(2 .
BT 00, Ta(02)) = sup [N i b sup 0 @0a(2)), . sup [Ta(@a(2))],
2€[1,2] F2(192(Z)) " 2€[1,2] 2€[1,2]
2 Ki(s,2) ds'\
Ji (191(5) )
= sup P

zefr2)]| 2 (ﬁQ(S)Kz(s,z))

*

</12 (‘91(8)K1(s,z))d3>a
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, Sup
z€[1,2]
*

</12 (192(8)K2<s,z))d5> a

j

.min { sup
z€[1,2]



2 ds\ e 2 Bo 2 pa
< sup / V() .min{ sup (/ |191(s)\f5> , sup (/ ]192(3)|ffs>
2€[1,2] \ /1 192(5) " z€[1,2] \/1 z€[1,2] \/1
Ba
< 6]

su
zE[lI,)Q] 792(8)
)

= (u (01, 02))"

-min{ sup [1(z)], , sup |192(2)|*}

z€[1,2] z€[1,2]

Also, pir, (9),row) < p(I'1(9),F2(0)) . Therefore, I'y, I'y satisfies Theorem 4.4.1 with
a1 = Pfa < 1, ag = a3 = 0. Hence, I';, 'y have exactly one common fixed point

i.e., system of equations (4.7.1) has exactly one solution. ]

Theorem 4.7.2. Consider the following multiplicative Fredholm integral equation

[0}

I(t) = [/12 (ﬁ(s)K(S’t))dS] , where s, t € I =11,2] (4.7.2)

and K (s,t) is real valued continuous function on I x I s.t. |K(s,t)| < 8. If
Pa < 1, then we have exactly one solution to the equation (4.7.2).

Proof. The result follows as an direct consequence of Theorem 4.7.1. m

4.8 Conclusion

In this chapter, we established a generalized distance functions called multiplica-
tive m-metric and proved some fixed point results. We provided various illus-
trations to support our results. Moreover, we present some common fixed point
results of a pair of self mappings using a generalized contraction and common
fixed point for a triplet of self mapping using three point analogue of contraction
mapping in the context of multiplicative m-MS. We complemented our findings
with numerical results and graphs to provide visual support for our conclusions.
Furthermore, we explored the potential of utilizing the multiplicative m-metric to
demonstrate the existence of a solution to a initial value problem and a system of

multiplicative integral equation.

kokokokokokk

110



Chapter 5

Some Common Fixed Point
Results in Partial Metric Space

5.1 Introduction

Fractals, with their intricate and self-similar structures, have captivated researchers
across various fields, including mathematics, physics, computer science, and art.
Fixed point theory plays a crucial role in both the creation and characterization
of fractals. In this chapter, we present several common fixed point results for self
mappings in PMS using the (¢ — ¢) Wardowski type contraction. Furthermore,
some fixed point results are proven using generalized cyclic contractions, followed
by illustrative examples. As an application, the existence of a fractal set for the
Hutchinson-Barnsley operator is established using the established fixed point re-
sults. Finally, some iterations for generating fractal sets are presented, along with
the resulting fractals.

The results of this chapter are presented in .

5.2 Some Common Fixed Point Results in Par-
tial Metric Space

In this section, we present the coincidence point and common fixed point theorems
for a pair of self mappings using a (¢ —1) Wardowski contraction in partial metric
space (PMS).

Yadav, K., & Kumar, D. Fixed points of a generalized contraction in partial metric structure
and application to fractal generation (Communicated)
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Definition 5.2.1. Consider a PMS (0, ). A pair (I'1,Ts) of self mappings on
Q is referred to as a (¢ — ¥)- Wardowski type contraction pair if, for some
¢ e P andyp €V, we have

(0, T17) > 0= ¢ (p(T0,119)) <9 (Cb (MFLFQ(Q7 ﬁ))) ) (5.2.1)

where

Y

Ty0,T10) + p(To9,T
M r(o:0) = s {o(T0.Ta0) (0 i), o, 1), A2 D) L eABe0 el

Yo,V € Q.

Theorem 5.2.2. Let I'1,I's : Q@ — Q be mappings defined on a complete PMS
(Q, ). Suppose the pair (I'1,Ts) is a (¢ — ¥)-Wadowski type contraction pair,
where ¢ and v are continuous functions. IfT'1(Q) C 'y (Q) and T'y(Q2) is complete,
then I'y possesses a coincidence point. Furthermore, if the pair (I'y,T's) is weakly

compatible, then it possesses exactly one common fixed point.

Proof. Since I'1(€2) be a subset of I'y(2), consequently for some g, € Q 3 an
element p; in € st. I'jgg = I'y0,. Following the similar procedure, we can
generate the sequence ¥ € Q2 s.t. ¥, =05 = I'o0pq VR € N.

We assume that ¥541 # U5, VA € N. Otherwise, suppose 3 hp € N s.t. ¥ 41 = Vg,
that suggests I'1 05041 = I'205,+1, 1-€., 0r,+1 is a coincidence point of the mappings
(', Ty).

Next, we claim that o(J;, 95 + 1) > 0. If possible, p(¥;11,94) = 0, then (%, ¥5)
= (U1, V541) = 0, ie., Uppq = Uy

Therefore, p(J541,95) > 0. Also, (I'1,I's) be a (¢ —1)-Wadowski type contraction

pair. Then, we have

¢ ((ns1,91) = ¢ (9(T10ns1,T1on))
< (6 (Mrunalon o)),

where

My, r, (0541, 08) = maX{ ©(T20n+1, T20k), ©(T20541, Tiont1), 9(T20k, Tr0m),

o(T20n41,T1on) + o(T105+1, 20n) }
2

I, O) + o (Fnsr, i
- max{@(ﬁﬁaﬁh—l)a@(19m?9h+1)=@(79h—1,19h)p( to On) (s, O 1)}

2
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< max {@(ﬁﬁ, U-1), 9(Un, Ong1),
< max {p(Vn, Vn-1), p(In, Vns1)} -

©(n, Vn-1) + (I, Opt1) }
2

It MFl,F2<Qﬁ+17 Qﬁ) < @(19}1, /I-gﬁJrl). Then,
6 (9(Wni1,91)) < ¥ (6 (0(Wn, Dni1))) < & (9(Vn, Vi)
<

a contradiction. Hence, Mr, 1, (05, 05-1) < (U, 05-1).

Consider

6 (p(0ni1,90) < ¢ (@ (9Wn 1)) < & (9(Wh, In1))

implies p(J511,Y5) is a decreasing sequence. Also,

6 (91, 00) < ¥ (¢ (9, 9n 1))
< ¥ (¢ (91, 0n2)))

IN

V" (6 (9(01,90))) -

Taking the limit as A tends to co, we have
lim ©(P41,94) = 0.
h—o00

Also,

. . _
Jim o(0n, Op) < lim ©(Fni1,0n) = 0

(5.2.2)

(5.2.3)

If possible, {¥;} is not a C,. Then, for € > 0, 3 two subsequences 9, # V,,, s.t.

dp(ﬂﬁg7q~9mg) > €,
and
dp(ﬂﬁgfla ﬁmg) S €,

where d,(0,7) = 2p(0,9) — (0, 0) — p(I, ) Vo,? € Q is a metric.
Using (5.2.4) and triangle inequality, we have

€ < d@<79ﬁe719me)
< d@<19ﬁe> ﬁﬁe—l) + dgo(ﬁﬁg—h ﬁmg)’
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Taking the limit as ¢ tends to co and using (5.2.2) and (5.2.3), we have
élggo do(Vn,, Um,) = €. (5.2.6)
Also, using triangle inequality, we have
d@(ﬁﬁev 19me) < d@(ﬁﬁw ﬁﬁe—l) + d@(ﬁﬁe—l’ 19m£—1) + d@<79ﬂw—17 79771@)7
and
dp(ﬁﬁg—la lgmg—l) S dp(ﬁﬁg—la '(95[) + dp(ﬂﬁ(ga ﬁmg) + d@<19mg7 ﬁmg—l)
Taking the limit as ¢ tends to co and using (5.2.6), we have
}i}lfgé dp(ﬁﬁg—l7 ﬁmg—l) = €.

ﬁlggo 2@(19?74*17 ﬁmZ*l) - p(ﬁﬁe*hﬁﬁe*ﬁ - p(ﬁme*hﬁmz*l) =€ (5'2'7>
Using (5.2.2), (5.2.3) and (5.2.7), we have

. € . €
glggo 0(Vn,s Um,) = B and Zlg?o O(Vh,—1, Omyp—1) = 7 (5.2.8)

Also, by (5.2.8), (5.3.2) and continuity of ¢, we have

o(5) = Jim 6 (9nvm) = Jim 6 (9o, Tiom,))

2
lim <¢ (Mr, . (on,, Qme)))

£— 00

lim <¢> ( maX{ ©(L20n,, Lo20m,): ©(L20n,. T10s,); 9(T20m,, L'10m,)s

l—00

p(FQQﬁp Flgmg) + p(FQQmp Flgﬁg) }>>
2

IN

IN

L— 00

@(195,3_17 ﬁmz) + p(ﬁmz—la ﬁﬁz) }))

= lim ¢ <¢ < maX{pO?ﬁgla ﬁmgfl)a p(ﬁﬁe*b ﬂﬁg% @(ﬁmgfh ﬁmg)a

2

Urip—1,9m
p( fe21 e)_|_

IA

lim 1/} <¢ < maX{@(%@—la §m£—1)7 p(r&ﬁl—la ﬁﬁg)7 p<79mg—17 ﬁmg)v

L—o0

OOy, Unp—1) + ©(On,—1, Vmy—1) — ©(O—1, Vpp—1) }))

2
<0(3)

a contradiction. Therefore, {¥;} is a Cyq i.e.,

lim  dy, (95, Um) = 0,

h,m—o0
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or

lim  20(9%, Um) — ©(In, In) — 9(Im, Um) = 0.

h,m—o00

Using (5.2.3), we have

lim p(dy,9,) =0,

h,m—o0

i.e., {Us} is 0-Cyeq As, Q is an 0-complete PMS, therefore for some ¥ € 2, we have

lim p(J4,9) = p(9,9) = 0. (5.2.9)

h—o00

As, T'1(Q) C Ty () and T'y(Q2) is complete, therefore 3 some g € Q s.t. Tyo = V.
Also, ¥ — ¢ implies ' 05, — ¥ and 051 — 0, e, p(T105,9) — p(9,9) = 0.

Consider the following

(0, I'19) < 0, Tron)+oT 108, T19)— (Lo, Tion) < (0, Tion)+e(1ok, T'19).

We claim that o(I'y05,119) > 0 or p(I'10541,119) > 0. If not then, suppose
o(T10n,, ['19) = 0 and p(T'1 05,41, 19) = 0, for some hy € N.

Now,

©(Vn,41,05,) = @(Flghoﬂ,me)
o(T10n,41.T10) + p(T10n,, T10) — p(T10,T10)
o(T0m,41,T10) + (T 08, T10) =0,

IN

IN

a contradiction. Therefore, p(I'y 05, 1) > 0 or p(I'1 0541, 119) > 0. Without loss
of generality suppose p(I'105, ['19) > 0, then

¢ (p(T'1o,9) < ¢ (el Tion) + p(T1on 9) — p(L'1on, 'ion))
< ligrlilolp(b (o0, T10s) + p(T10s,9))
< hIgLigI”ﬁ (p(T'10n,T'10))
<

lim sup ¢ (qzﬁ (Mrl,rg(gh, Q))) ,

h—o0
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where

Mrl,rg(gha Q) =

IN

Here, p(¥4_1,7),

Iy0,T105) + (205, Th0
©(Ta0m,T20), 9(T20,T10), 9(Ta0n, T10n), o(I'20,T10p) : o(La0n, T )}

D0, 05) + (051, T
ma"{mﬁ—hfgm,p(rgg,rm),pwﬁ_l,m“ 20.00) % o0 @}

©(Un-1,7), (9, T10), o(Vn-1,05), 5

o0, 095) + p(Vh1, Flg)}
p(ﬁﬁfb ﬁ)? p(ﬂa F1 Q)a @(ﬁﬁfl, 79?1)7

(0, 1) . 9(V1,9) + p(9, T10) = p(0, 19)}
2 2 '

©(Uh-1,94) and p(9,9;) — 0, as h — oo. Let if possible

o(¥,I'10) > 0, then Mr, r,(0r, 0) < p(9,T10).

¢ (p(V,I'10))

< (¢ (Mrl,FQ(Qﬁ, Q)))

= ¥ (6 (p(¥,T10))
< ¢(p( o)),

a contradiction. Therefore, p(9,T'10) = 0 gives, p(J,9) = p(I'0,T10) = 0 =

o(0,T'10) ie,, o =1. Thus I'yp = ¥ =T'yp i.e., (I'1, ') has a coincidence point.

Uniqueness: let, 1, be another coincidence point of I'1 &I, then we have g; s.t.

I'or =T'01 = V1.

where

Mrl,rg(Qa 91) =

If p(¥,91) > 0, then

¢ (p(T0,T101))
< 9 ¢(MF1,F2(97@1))>7

o(T20,T101) + (T, FQQl)}
2

max {@(Fzg, F2Q1)7 @(FzQa F10)7 @(th F191)7
9(197 791) + p(ﬁa 791) }

max{p(ﬁaﬁl)ap(ﬁ7§>ap(ﬁlyﬁl)a 2

p(ﬁ, ’191)
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Therefore,

6o, 0)) = (6 (Mryr0.0))
< O o(d.0).

a contradiction. Therefore, ¥ = ;.

Also, the pair (I';,I'9) is weakly compatible and I';p0 = I'yp. Therefore, I'i)['y0 =
['sT10. Then, I'y¥ = I'sIM 0 = M50 = ' implies ¢ is the point of coincidence
for (I'1,'y). By uniqueness, we have ¢ = g i.e., I'19 = 'y = ). Hence, the result
holds.

]

Definition 5.2.3. Consider a PMS (Q, ). A self mapping I' : Q — Q is con-
sidered a (¢ — ¥)- Wardowski contraction, if for some ¢ € ® and ¢ € ¥, we

have
p(T'o, I'9) > 0= ¢(p(To, V) < P(p(Mr(o,9))), (5.2.10)

where

T9) + p(9.T
M(g.9) = max { ol 0), 0. To) (0. 10), HELD LD vy g e

Theorem 5.2.4. Let ' : Q — Q be a mapping defined on a complete PMS (92, ).
Suppose T is a (¢ — 1)-Wadowski contraction, then I' possesses exactly one fized

point.

Proof. substituting I'y = I" and 'y = I, where I represents the identity map in
Theorem 5.2.2, we obtain the required result. O
Corollary 5.2.5. Let I' : Q — Q be a mapping defined on a complete PMS (X, ).
Suppose ' satisfies:

(i) IN € (0,1) s.t. p(I'o, 1Y) < Ap(o, V);

(i) X € (0,3) s.t. p(To,TV) < X(p(o,To) + p(9,T9));

(iii) Jag, ay, as with ag+ay+as € (0,1) s.t. p(To, TV) < a,p(o,9)+ar1p(o,To)+
CLQ@(ﬁ, Fﬁ):

(w) 3F € F, and 7' > 0 s.t. 7"+ F (p(To,I'Y)) < F (p(0,));
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(v) IF € F, and 7" > 0 s.t. 7'+ F (p(T'o, T'9)) < F(M(p,9)),
where M(o,9) = max {p(0,9), p(0, T'0), p(0, T'9), Hetiielelo |

)

Vo, € Q. Then, I" possesses exactly one fized point.

Example 5.2.6. Consider Q = [0, 00] along with p(p,V) = max{o, 0}, for every
0,9 € Q. Here, (2, 9) is a complete PMS. Let 'y, Ty be self mappings defined on

Q as
% o<1 . ifo<1
FlQ = Z1l . ) FQQ = i
3, otherwise. ., otherwise.

Observe that T'1(2) = [0,1/4] C [0, 3] = T'2() and T'y(2) is complete.

Also, consider

= Wi

(i) for 0,9 € 0,1], we have

o v

p(Flgarlﬁ) = maX{4a4}

< Linax{o0)

4
1
< ZMFLFz(Qa 79)

(ii) for o,9 > 1, we have

p(T10,T19) = max{Tp, 'V}

1 1
= 3= ZmaX{Q,ﬁ}

1

< ZMFLH(@ 19)

(ii) for o € [0,1] and ¥ > 1, suppose o < 1

p(Io,T10) = maX{Q }

and if o > %, then

o1
[0, 000) = @2
p( 10,11 ) maX{4a8}
1
4



Moreover, I'y, Ty are weakly compatible. Therefore, I'y, Uy satisfy all the hypothesis

of Theorem 5.2.2. Hence, I'1 and I'y have exactly one common fixed point.

For Example 5.2.6, we provided several iterations to approximate the com-
mon fixed point of S,I". The iterative scheme used is
For initial point zq : x1 = I'sxg, o =124, ...... y Tont1 = [oTon, Topio = 1Xoptq.

Further graphically, we demonstrated the convergence of the iterative sequence
and determined that the common fixed point of the mappings is independent of

the initial point of the iterative process.

Initial point

1 2 3 4 5 6 7 8 9 10 11 12 13 184 15
Number of iteration

e (=0.) el x0=0.4 b X0=0.6 %0=0.8 ebemx0=1.0 =smx(=12

Figure 5.1: Convergence behaviour of iteration scheme at different initial points
for Example 5.2.6

5.3 Fractal Generation via Fixed Point Approach
using Generalized Cyclic Contraction

In this section, we present some fixed point results using generalized cyclic con-
traction. Later, the results are implemented to establish the existence of a fractal

set for the Hutchinson-Barnsley operator of IFS.
Definition 5.3.1. Consider a PMS (2, ), a positive integer m and non-empty
subsets A; C Q, for1 < i< m. A self mapping I : U A — U A; is considered

i=1 =

1
as cyclic (¢ — ¥)- Wardowski contraction, if for some ¢ € ® and ¢ € ¥, we

have
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04 0.6 08 1.0

gl 0,0666667 0,1333333 0.2000000 0.2666667 0.3333333 0,1428571
K2 (0166667 00333333 0.0500000 0.0666667 0.0833333 0.0357143
B 0,0055556 0.0111111 00166667 0.0222202 0.0277778 0.0119048
x4 00013889 0.0027778 0.0041667 0.0055556 0.0069444 0.0029762
Ko (0004630 0.0009259 0.0013889 0.0018519 0.0023148 0.0009921
%6 0,0001157 0.0002315 00003472 0.0004630 0.0005787 0.0002480
X7 0,0000386 0.0000772 00001157 0.0001543 0.0001929 0.0000827
xB0,0000096 0.0000193 00000289 0.0000386 0.0000482 0.0000207
x 00000032 0.0000064 0.0000096 0.0000129 0.0000161 0.0000069
10 0,0000008 0.0000016 00000024 0.0000032 0.0000040 0.0000017
11 0,0000003 0.0000005 00000008 0.0000011 0.0000013 0.0000006
12 0,0000001 0.0000001 0.0000002 0.0000003 0.0000003 0.0000001
13 0,0000000 0.0000000 0.0000001 0.0000001 0.0000001 0.0000000
14 0,0000000 0.0000000 00000000 0.0000000 0.0000000 0.0000000

Figure 5.2: Numerical iteration for Example 5.2.6

(ii) p(To,T9) > 0= ¢ (p(To,TD)) < v (& (Mr(e,9))),

where

Y

Mr(e,¥) = max {@(@, 9), o, Ta), p(9, D), L&) T (. To) }

2
and Am+1 = Al, VQ c Az,’l9 S Ai+1-

Theorem 5.3.2. Consider a complete PMS (£, p), a positive mteger m and non-

empty closed subsets A; C Q, for 1 < ¢ < m. Suppose I : U A — U A; be a
=1 i=1

cyclic (¢ — ¥)-Wardowski contraction w.r.t some ¢ € ® and ¢ € V. Then (] A;
i=1
is non-empty and I' has exactly one fixed point. Moreover, the Picard sequence

converges to o € ﬂ A;, for any initial point oy € U A;.
i=1 i=1

m
Proof. For any oy € U A;, consider the sequence g,.11 = I'o,, for n > 0. Observe

that o9 € A for sozr;ie k and I'(Ax) C Ay implies g = I'(gg) € Agy1. On
generalizing, for n > 0, we have some i(l) s.t. o, € A;y and 0p41 € Aj)41-

In case, 0, = 0p11, for some n € N. Then, g, is a fixed point of T'.

Suppose p(0n+1,0,) > 0 and T' is a cyclic (¢ — 1)-Wardowski contraction. Then,
on the outline of Theorem 6.2.3, we can verify that g, is a Cs,. Therefore, {o,}
is convergent to o € (€2, p).
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In addition, using the cyclic representation (A; : 1 <1i < m), it is feasible to de-

termine subsequences {o,,} € A; that converge to p. Also, A; is closed for every
m

1 <4 < m, which implies o € (] 4;.
=1

Let M = ﬂ A; and IV : M — M be the restriction of I' on Q. Clearly, M is a

i=1
complete subspace of ). Then, I satisfies all the assumptions of Theorem 5.2.3.

Therefore, I has exactly one fixed point, i.e., I'|q has a fixed point, ¢ (say).
At last, suppose 3 o € U A; s.t. T'(0) = o and ¢ # ¥. Then,

6(0,9) = ¢(p(T'e,T) < ¢ (¢ (Mr(e,9)))
< ¢ cb(max{@(Q,ﬁ),p(g,FQ),p(ﬁ,w),p<@’m);@<ﬂ’rg>})

< ¥ (d(ple,)) < o (p(0,9)),

a contradiction. Therefore, p(o,9) =0 = (0, 0) = p(J,9) i.e., o = V. O

Definition 5.3.3. Consider a PMS (L2, p), a posztwe mteger m, and non-empty

subsets A; CQ, for 1 <i<m. A self mapping I : U A — U A; is considered a

=1
cyclic (¢ — ¥)-Banach contraction, if for some gb € ® and ¢ € ¥, we have

(ii) p(To,T9) > 0= ¢ (p(To,TV)) < ¥ (¢ (90, 9))),

and Am+1 = Al, VQ c A“ﬁ c Ai+1.

Remark 5.3.4. Observe that if T = | J A; — |J Ai is a cyclic (¢ — ¢)-Banach

i=1 =1

contraction w.r.t some ¢ € ® and p € V. Then, I' : U A — U A; is a cyclic
i=1 i=1

(¢ — ¥)-Wardowski contraction w.r.t ¢ € ® and ¢ € V.

Corollary 5.3.5. Consider a complete PMS (2, p), a positive mteger m and non-

empty closed subsets A; C Q, for 1 <1 < m. Suppose I : U A; — U A; be a
=1 =1

cyclic (¢ — )-Banach contraction w.r.t some ¢ € ® and v € V. Then ﬂ A;
i=1
is non-empty cmd I’ has exactly one fized point. Moreover the Picard sequence

converges to o € ﬂ A;, for any initial point oy € U A;.
=1 =1
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Proof. The result can be deduced using Theorem 5.3.2 and Remark 5.3.4. O]

Theorem 5.3.6. Consider a complete PMS (€2, p), a positive integer m and non-

empty closed subsets A; C Q, for 1 <1 < m. Suppose I : U A, — U A; be a
=1 =1
continuous cyclzc (p— 1/1) Banach contraction w.r.t some ¢ € ® andp € V. Then,

mapping T : U K(A U K(A;) defined as I"(C) = T'(C) = {I'(0) : 0 € C},

i=1

VC € | J K(4;) is also a cyclic (9—1b)-Banach contraction w.r.t ¢ € ® andp € U
i=1

in PMS (K(Q), H,,).

Proof. Suppose that T" : U A — U A; be a continuous cyclic (¢ — 1)-Banach
i=1 i=1
contraction w.r.t some ¢ € ® and ¢ € V. Let C' € K(A;) for some 1 < i < m.

Then,

CCA = T(C)CT(4A) CAn
= I'(C) € K(Ai1) " T is continuous and cyclic.

This implies that IV(C) € K(A;11) ie., I"(K(4;)) € K(Ai1). Therefore, TV is

cyclic.
Let A € K(A;) and B € K(A;;+1). Then, we have to show that

6 (ho (T(A).1(B)) ) <0 (0 (holA B)))

Let g9 € A. Since B € K(A;11), we have ¥y € B s.t. p(00,%) = 9(00, B) =
greljfg ©(00,7). Then, for go € A C A; and ¥ € B C A;4, we have

¢ (¢ (Too, I'(B))) = <5nfp 00,V )<¢( (Too, o))
< (Gb 907190 =¢(¢(@(90,B))>

< w(qb sup (0.3 )) — (6 (ho(, B)))
< v(o(H(A.B)).

Also, og is arbitrary element of A and ¢ € ®. Therefore, we have

¢ (o (To,T(B))) < ¢ (¢> (Ho(4, B))) , Vo€ A,
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implies

supo (i (Fo. T(B)) < 0 (6(Ho(4.B))).

0EA

6 (o (T'(A).1(B)) ) = (o (T(A). D(BY) < 0 (6 (Hy(4.B))).

On similar lines ¢ (h, (I'(B), I"(4))) < ¢ (¢ (Hy(A. B))).
Thus,

o (H, (.T(B)) = o (max {ho (T).7(8) 1y (1'(B).T' () })
< v(o(ma.5)).

i.e., IV is also a cyclic (¢ —1)-Banach contraction w.r.t some ¢ € ® andp € . [

Theorem 5.3.7. Consider a complete PMS (€2, p), a positive integer m and non-
empty closed subsets A; C §Q, for 1 < ¢ < m. Suppose I, : Cj A — G A; are
continuous cyclic (¢ — ,)-Banach contractions w.r.t some QSZ:GI d andlz/in e Vv,
where n € N, is a finite natural number. Then the Hutchinson operator F :
6 K(A;) — G K(A;) defined as F(C) = @ I (C) has ezactly one fized point
i=1 i=1 n=1

A € K(Q) and for any B € QK(AZ-), the hlggo F"(B) = A, which is the fractal

generated by the IFS { ATy ne Nno}.

i=1

Proof. Suppose I, : U A — U A; are continuous cyclic (¢—1,)-Banach contrac-

tions w.r.t some ¢ € Z(f)f Y, € Z\ffland C € K(A;) for some 1 < ¢ < m. By Theorem
5.3.6, Vn € N,,;, I'! is a cyclic (¢ — 1,,)-Banach contraction on (K (), H,). As a
result, IV (C') € K(Aj41) V1 <n<m.

Also,

F(C) = Cj N (C) e K(A),i.e., F(K(A;)) C K(Aiq).
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Further, for A € K(A;) and B € K(A;4+1), we have

H, (F(4),F(B) = H, (U 4. U r;<B>)

< max H, (T}(A),I(B)).

- 1<n<no

Since ¢, 1 are increasing functions. Therefore,

1<n<ng

= max ¢ (Hp (F;(A%FZ(B)))

1<n<ng

< max (Cb (Hp(AvB))>

1<n<ng

= v (o (H(a.8)).

o(H,(F(A). F(B))) = ¢<max i, (r;<A>,r;<B>))

Hence, F : | JK(A) — |J K(4;) is a cyclic (¢ — 1) Wardowski contraction
i=1

i=1 =

on complete PMS (K (Q), H,), where 9(t) =  max Yn(t). Therefore, the result
Sn=no

holds. O

Example 5.3.8. Consider 2 = R with partial metric

p(g,ﬁ):{m_ﬁ"a if 0,0 € [1,3]

max{|g|, |9|}, otherwise.

Then, (X, p) is a complete PMS. Let Ay = [1,3] and As = [2,4]. Define mapping
Iy A1UA2 — Al UAQ as

) e dif o€ 1,3
F1<Q>_{2,7 if o € [3,4].

['1(A) =T41[1,3] = [2,16/7) C [2,4] = Ay and T'1(As) =T1[2,4] = [2,15/7] C [1,3] = A;.

Also, for o € [1,3] and ¥ € [2, 3] implies T'10,T19 € [1,3]. Then,

p(T1(0),T1¥) = ’17—9_17—19‘

7 7

7

|Q_19
1

< Zo(o0.9).
< 7@(@, )
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Further, o € [1,3] and 9 € [3,4] implies T'10,119 € [1,3]. Then,

17—p
7

3-0
7

@(Fwarlﬁ) = ‘ _2‘

2 2><3
7 21

2 2
< = =
< 21InaX{9,0} 21@%9,0)

Therefore, for ¢(t) =t and ¥(t) = lzf, Iy is a cyclic-(¢,v)-Banach contraction.
Now, define I'y : Ay UAs — A1 U Ay as

23— .
)= ifoel,3)
Fale) = {270 if o€ [3,4)

Hence,

Ty(Ay) = Dy[l, 3] = [20/7,22/7] C [2,4] = Ay and Ta(As) = Ts[2, 4] = [20/7,21/7] C

Also, o € [1,3] and ¥ € [2,3] implies 10,119 € [1,3]. Then,

p(I2(0), I20) =

23—@ 23—
7

| 7
<
Further, o € [1,3] and 9 € [3,4] implies I'10,119 € [1,3]. Then,

23—@ 20

@(F2 0, Fﬂ(}) = |

F—g _2x3

21

2
< —max{g,ﬁ} = —

).
< o 1(@,)

Therefore, for ¢(t) =t and ¥(t) = %t, [y is a cyclic-(¢,)-Banach contraction.
Since both I'y and 'y are continuous mappings, therefore by Theorem 5.3.7, the IFS
{A1UAy; T4, T2} has exactly one fractal, i.e., the Hutchinson-Barnsley operator
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F has exactly one fized point.
Moreover, few iteration of Hutchinson-Barnsley operator F with initial set Ay =

2,3] as follows

T (Ag) = I'1[2,3] = [2,15/7] and T5(Ag) = T'2[2, 3] = [20/7,21/7]

Then,

By = F(Ay) =T1(Ag) |J Ta(Ao) = [27 175] U [270: 271] :
Similarly

By = F*(Ag) = F(F(Ay)) = F(By) = '1(B1) |J Ta(Ba),
where

Ly (By) =Ty (12.15/7) U [20/7,21/7)) = lg‘g} U [98 99]

49’ 49
and
146 147 140 141
ra(n) =2 (21577 U poyr2um) = |0 0| U 1 g |
Therefore,

98 99 104 105 140 141 146 147
By= |2, = — = — —
2 [49’49] U [49’ 491 U [49’ 491 U [49’ 491
and so on....

A = lim F"(Ay) = lim By.

h—o0 h—o0

Iteration 1 I —

Tteration 2 | I
Iteration 3 =] | 1 [
Iteration 4 | [ (| [

N (2.3] B (2.15/7] U [20/7.3]

[2.99/49] U [104/49,105/49] U
[140/49,141/49] U [146/49.3 ]

Figure 5.3: Fractals for Example 5.3.8 with different iterations
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5.4 Conclusion

This chapter presents several common fixed-point theorems for self-mappings in
partially metric spaces (PMS) using the (¢ — ¢) Wardowski-type contraction.
Moreover, it establishes fixed-point results using generalized cyclic contractions,
supported by illustrative examples. As an application, the existence of a fractal
set for the Hutchinson-Barnsley operator is demonstrated using the established
fixed-point theorems. At the last, we present the iterative sequence for generating

fractal sets and the resulting fractal.

kokkokokokk
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Chapter 6

Some Common Fixed Point
Results in b-Metric Space

6.1 Introduction

In the present chapter of the thesis, we introduce the concept of (¢—1)) generalized
R-contraction within a b-metric space, equipped with a binary relation R and
proved some common fixed point results for a pair of self mappings. Also, we prove
some fixed point results for self mapping using a-(¢—1) Wardowski contraction in
the framework of b-MS. As an applications, we verify the existence and uniqueness
of solution to an operator equation and a non-linear functional integral equation.

The results of the chapter are presented in .

6.2 Some Common Fixed Point Results in b-Metric
Space

In this section, we discuss some common fixed point results using generalized

relation theoretic contraction in b-MS.

Definition 6.2.1. Consider a b-MS (2, dy) equipped with the binary relation R.
A pair of self mappings (T'1,Ts) defined on Q is c.t.b. a (¢ —) generalized
R-contraction pair if 3 functions ¢ € ®, andp € ¥ s.t.

dy(I'10,T'20) > 0 = ¢ (sdp(I'10,T'900)) < ¥ (¢ (Mrl,rz(ga 19))) g (6.2.1)

Yadav, K., & Kumar, D. Existence of Solution for a Non-linear Functional Integral Equation
and an Operator Equations via Fixed Point Approach (Communicated)
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where

dy(0,T'20) + dp (9, T
MF1,F2(Q7 19) = Inax {db(@, ﬁ)adb(garlg)>db(ﬁar2ﬁ)a b<Q 2 )28 b( 19)} )
Yo, ¥ € Q satisfying (o,7) € R.

Example 6.2.2. Consider the set ) = |, the set of all bounded sequence of real
numbers. Then, for p > 1, the mapping dp : loo X l — [0,00) defined as

dp(&, 0) = sup [& — osl”
heN

is a b-metric. Also, consider a binary relation R defined as (€, 0) € R if §;.0; =0,
V7 € N. Then, the pair of I'\,I's : loo — lo defined as

Ty (&, 6,y Cpy ) = (0%% 5’;‘1 ) ,

(& & G
F2(€17€27"'a£ﬁa"') - (07 77 7a"'7 7 7)

is a (¢ — ) generalized R-contraction pair.
Theorem 6.2.3. Let I'1,I's : 2 — € be mappings defined on R-complete b-MS
(Q,dy). Suppose T'1,T'y satisfy
(i) (I'1,Ty) is a (p-b) generalized R-contraction pair;
(7i) 3 some 0o € Q s.t. (00,1100) € R;
(iii) R is (I'1,T'y)-regular closed;

(iv) (a) T'y and Ty are R-continuous mappings;

or

(b) R is dy-self closed on Q.

Then pair (I'1,T3) has a common fized point. Moreover, if (0,9) € R, Yo,9 €
CF(T'1,T3), where CF(T'1,T') denotes the set of all the common fized points of

mappings I'1, Ty, then the pair (I'1,Ty) has exactly one common fized point.

Proof. From assumption (ii), we have an gy € Q s.t. (09,1'100) € R. Consider the

iterative sequence defined as
0241 = L'10on and gopro = Ta00n11 VA € NU{0}.
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Using (iii), we have

(00, 01) = (00,T100) € R < (I'100,'201) € R and (I'z01,100) € R,

or

(02,01) € R and (01,02) € R.

Now, as (02,01) € R. Hence, using (iii), we have (g3, 02) € R. Repeating this

process, we have

(on+1,0n) €ER, VhEN,

i.e., {0} is a R-sequence.

Suppose that 3 some N € N, s.t. goni1 = 0on12. Then,

['yoon = I'20an+1 = O2nv41 = 02n+2-

We claim that F292N+1 = F1Q2N+2. If possible, db(FQQQN_H, F192N+2) > O, then by

(6.2.1)

o (db(Q2N+27 Q2N+3))

where

MF1,F2 (Q2N+2> Q2N+1)

This implies

IA TN

IN

(sdy(02n+25 02n+3))
(Sdb(r2 O2N+1, I'y 02N+2)) = §Z5 (Sdb(rl 02N +2, I'y Q2N+1))

¢
¢
(0 (Cb (MF27F1(QZN+27 92N+1)>> )

max{db(Q2N+27 Q2N+1>7 db<Q2N+2a Iy Q2N+2) ) db(92N+17 I'y Q2N+1),

dp(0an+2, T20on+1) + do(T10on 12, 02N +1) }
2s

dy(02n+1, 02N +2) + dp(0aN 12, 02N +3) }
2

max {0, dy(02n+2, 02n+3), 0,

db(Q2N+27 Q2N+3>-

6 (dy(0an+2, 02v43) < ¥ (6 (dh(oan 12, 02v43)))

< ¢ (dp(02n+2, 02n+3)) 5
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a contradiction. Therefore, dy(I'20on+11,102n+2) = 0 which implies I'y and Ty
have a common fixed point. Indeed, gon+1 = @an12 is a common fixed point.

Now, suppose that gopy1 7# 02r+2 VA € N. Then, using (6.2.1), we have

IN

¢ (5dy( 02141, 020n42)) = ¢ (5dp(T1 021, '200541))
< v (¢ (MFQ,FI(Q%, Q2ﬁ+1)>) ;

o (db(92h+1a Q2ﬁ+2))

where

Mr, r, (025, 02541) = maX{db(QQmQ2h+1)7db(QQh7FlQQh)7db(Q2h+1,F292h+1)7

dp( 021, L'209n11) + dp( 02541, T'1025) }
2s

2s

dp( 02, 02n41) + db( 02741, 025+2) }
2

dy( 021, 021
= max {db(Q%a Q2ﬁ+1), db(@2h+1, Q2ﬁ+2)7 M

< max {db(gm 09541)s dp( 02141, O2n42),

= max {dy(02n, 02+1), db(02n+1, O2i+2) } -
If max {dy(021, 02541), do(02541, O2042) } = dp(02541, O2542). Then,

& (dp(02h41, 02142)) < ¢(¢(db(Q2ﬁ+1>Q2ﬁ+2)))
< ¢ (dp(0241, 02042))

a contradiction. Therefore, max {db(gzm th+1)7 db(@2h+1; 92h+2)} = db(@%a th+1)7

implies

¢ (sdy(02n+1, 02n42)) < w(¢(db(g2ﬁ7@2h+1>))
< ¢ (dp(02n, 02n41)) -

As, ¢ is a increasing function. Therefore,

1
dp(02h41, O2ht2) < ;db<Q2ﬁ> 02%i4+1)-

Also,

& (dp(02rt2, 021+3)) =

(db(02n+3, 02542))
(dp(T102542, Tont1)) < @ (sdp(T1 09042, [20241))

¢
¢
(0 (¢ (MFQ,FI(szHz, Q2ﬁ+1)>) )
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where

MF1,F2 (02ﬁ+27 Q2h+1) = maX{db(92ﬁ+2, QQh—H): db(@2h+2, I'y Q2ﬁ+2)7 db(@zml, F202ﬁ+1),

dp(02r+2: I'20254+1) + dp(02n41, I'102542) }
2s

db(@2h+1> Q2ﬁ+3) }

= max {db(Q2h+2a 091+1)s dp( 0242, 02n+3), 95

IA

dp( 02541, 02n+2) + dp( 02142, O2n+3) }

max {db(QQthQu Q2ﬁ+1) ) db(92ﬁ+2; Q2h+3) ) 9

= max {dy(02n+1, 02n+2), db( 02542, 021 +3) } -
If max {dy(02n+1, 020n+2), do(02n+2, 02n43) } = dp(02nt2, 02nt3). Then,

& (dp( 021425 02143)) < ¢(¢ (db(92ﬁ+27Q2ﬁ+3)))
< ¢ (dp(021425 021+3)) 5

a contradiction. Therefore, max {dy(02r+1, 02n+2), db( 02512, 021+3) } = dp( 0212, 02+1)-
Now,

¢ (sdy(0ant2, 02n43)) < ¢(¢(db(92h+2702n+1))>
< ¢ (dp(02n12; 02141)) ;

or

1
dy (02112, 02113) < ;db(szl, 02142)-

Therefore, VA € N, we have

1
dy(0n+1, 0n) < gdb(gﬁy Or—1).

Using Lemma 1.2.27, we can conclude that {gs} is a Cy, for s > 1.

In case s = 1, dy(0p+1, o) is a decreasing sequence. Then,

6 (dy(onsrron) < v (¢ (dy(on 01-1)))
¢2 (¢ (db(QﬁA, sz)))

IN

IA

" (6 (o1, 00)))
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Taking the limit as # tends to co, we have

ﬁhm db(gﬁ+1’ Qﬁ) = 0. (622)
—00

Suppose that {g;} is not a Cs,. Then, for € > 0, 3 two subsequences {gas, } #
{021, } s.t.

db(Qth—H; Q2lk) > €, (6.2.3)

and

dp(02ny, 021,) < € (6.2.4)

Using the triangle inequality and (6.2.3), we have

e < db(@2hk+17 Q2lk)

IA

dp(02ny, 11, 021, ) + dp(O2ny > 021, )-
Using (6.2.2), (6.2.4) and taking limit as k tends to oo, we have
131_)1{)10 dyp(02h41, 021, ) = €. (6.2.5)
Also, using the triangle inequality, we have
dy(02m, 115 021,) < dp(02m, 115 021,,) + db( 02,5 021, 1) + db(021, 1, 021,)
and

dp(02n,, > 021, —1) < dp( 021y, 5 021y +1) + db( 021,41, 021, ) + db( 021, 5 021, —1)-
Taking the limit as k tends to co and using (6.2.5), we have
,}1_)1{)10 dy (021 5 021,—1) = €.

As, dy(02m. > 021,) > € > 0. Therefore, using (6.2.1), we have

ple) < ¢ (db 0%+ + 021y, )
= ¢ (db L'y 02r s 2020, — 1))
< ¢(3d (T'r02ny,, 2001, - 1))
< @ <¢ Mr, r, (02, 021, — 1)))

134



where

Mr, v, (02m, s 021,—1) = maX{db(QzﬁMQzlk1),db(Q2hk,F192ﬁk),db(Qm,Fszk1),

dy( 025, s 2091, 1) + dp( 021, -1, FlQQhk)}
2s

= m&X{db(ank, QQlk—l); db(QQhka Q2hk+1), db(@Qhka 921k>7

dy (021, 021,) + db(021,—1, 021, +1) }
2s

IN

maX{db(Q%k, QQlk—l)a db(@?hka QZﬁk—H)a db(thk, szk),

dy (025, » 021,.) n sdy(02n,+1, 021,) + sdb(021,,, Q2lk1)}
2s 2s '

Taking limitsup as k£ — oo, we have

ole) < 1imSUP¢<¢ (Ml—‘l,l—‘Q(QQﬁkvgﬂk—l)))

k—o00

= ¥ (¢(e) < ¢(e),

a contradiction. Therefore, {or} is a Cyseq. Also, (2,dp) is a R-complete b-MS.
Hence, 3 an ¢ € Q s.t. o5 converges to o.

The following cases arises:

Case (i) If assumption (iv)(a) holds, i.e., if I';, T’y are R-continuous mappings and

{or} is R-preserving sequence converges to o, we have
{Fa0r} — a0 and {T'10r} — o,

or

{T2001+1} — T's0 and {I'1 021} — I'ip,

or

{Q2h+2} — I'y0 and {Q2h+1} — I'o.
Also, we have
{Q2h+2} — o and {Q2h+1} — 0.
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Therefore, I'y0 = 0 =Ty, i.e., (I'1,'2) has a common fixed point.

Case (ii) If R is dj-self closed on €2 and {g;} — o. Therefore, 3 a subsequence {pa, }
of {on} with (0as,,0) € R. Thus using (6.2.1), we have

¢ (db(Flehk, FQQ)) < ¢ (Sdb(rlQQhk,, FQQ))
< @ (gb (MF2,F1(Q2hk7 Q))) ;

where

Mrl,FQ(Qan> Q) = maX{db<Q2hk7 9)7 db(Q%k; F192hk)7 db(Q, FzQ),

dp (021, I'20) + di(0, T1 001, ) }

2s

IN

maX{db(thk, 0), dp( 021, I'1091,.), dp(0, T20),

db(@Qﬁkv Qzﬁkﬂ) db(Q2ﬁk+17 F2Q) db(Q, F1Q2ﬁk)
2 + 2 + 2s ’

implies
lim Mrp, r, (021,,0) < dp(o,T20).
k—o0

Also, using continuity of ¢, we have

¢ (dp(0,T'20)) = ]}i_)fglo¢(db(P1Q2hk,F2Q))

lim (qb (Mrg,rl(thk, Q)))

k—o0

kh_}rgow (¢ (dv(o, F2Q)))
¢ (dp(0,T20)) ,

IN A

A\

a contradiction. Therefore, klim dp(T'1 02, T'20) = 0, i.e.,
— 00

{Ty00m, } = T20 = {02n, 11} — T20.

Also, {oon,+1} — 0. Hence, I';p = p.
On the similar lines, I';0 = p. Therefore, I'yo = 0 = I'y0 i.e., ¢ is a common
fixed point of the pair (I'y,T's) .
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Uniqueness: If possible, let ¢ # p with (p,9) € R be another common fixed
point of the pair (I'y,I'y). Therefore, dy(o,9) = dp(I'10,I'29) > 0.
Using (6.2.1), we have

¢ (dp(0,7)) = & (dp(Sz,T20))
< ¢ (sdy(I'10,T'90))
S ¢ (¢ (MF2,F1(97 19))) )
where

MFl,FQ(Q7 19) = maX db(Q, 19)7 db(Qa Fl@)a db(ﬂv ]-_‘2?9)7

dp(0, I'20) + dy(V, 11 0) }
2s

= max {db(g, 9),0,0, db(i’ 19)} = dy(0, 7).
Then,

¢ (db(gv 19)) =

a contradiction. Therefore, the pair (I'1,T's) has exactly one common fixed point.
m

Corollary 6.2.4. Let I'y,T'y : ©Q — € be mappings defined on R-complete b-MS
(Q,dy,R). Suppose I'y, 'y satisfy

(i) (a) 3z €(0,) s.t. dy(T10,T20) < 2Mp, 1, (0,9);

or

(b) IF € Fand >0 s.t. 7+ F (sdp(I'10,T'29)) < F (dp(0,9));

or

(¢) IF € Fand 7 >0 s.t. 7+ F (sdy(T'10,T99)) < F (Mr, r,(0,9));
(ZZ) ElQo € Q s.t. (Qo,rlgo) € R,’
(iii) R is (I'y, T'y)-regular closed;

(iv) (a) I'y and 'y are R-continuous mappings;

or

137



(b) R is dy-self closed on Q,

where,

dy(0, To®) + dy(9),T
MF1,F2(Q719) = Inax {db(97ﬁ>adb(g>rlg)>db(ﬁaFQﬁ)> b(Q 2 )28 b( lg)}a

for all 0,9 € Q satisfying (0,9) € R. Then, the pair (I'1,T'3) has a common fized
point. Moreover, if (0,9) € R, Vo,9 € CF(I'1,I'y), where CF(I'1,T'y) denotes all
the common fized points of mappings 'y, I's, then the pair (I'v,'y) has exactly one

common fized point.

Definition 6.2.5. Let (2, dy) be a b-MS equipped with the binary relation R. A

self mapping T defined on Q is c.t.b. a (¢ — ) generalized R-contraction if
dpe P, eV and a:Q xQ— (0,00) s.t.

dy(To, T0) > 0 = ¢ (sdy(To, TD)) < ¥ (¢ (Mr(0,))) , (6.2.6)

where,

dy(0, T9) + dy(9, T
Mr(p,9) :maX{db(Qa19)>db(Q,FQ),db(19,Fz9), b(0,'0) + dy( Q)}’

2s

Vo, € Q satisfying (0,9) € R.
Theorem 6.2.6. Let I' : @ — Q be a mapping defined on R-complete b-MS.
Suppose I' satisfies
(i) T is a (¢ — ) generalized R-contraction;
(ii) Joo € Q s.t. (00,T00) € R;
(iii) R is I'-closed;

(iv) (a) T is R-continuous mapping;
(b) R is dy-self closed on Q.

Then, T' possesses a fized point. Moreover, if (0,9) € R Vo,0 € Fix(l'), where
Fiz(T") denotes the set of all the fized points of mapping I', then I' has ezactly one
fixed point.

Proof. Considering I'y = I'y = I'" in Theorem 6.2.3, one can easily deduce the
result. O
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Corollary 6.2.7. Let I' : Q — Q be a mapping defined on R-complete b-MS.
Suppose I' satisfies

(i) (a) 3z €(0,%) s.t. dy(To,TV) < zMrp(0,9);

or

(b) AF € Fand T >0 s.t. 7+ F (sdy(I'o, I'0)) < F (dp(0,9));

or

(¢) AF € Fand >0 s.t. 7+ F (sdp(T'0,T'0)) < F (Mr(0,9));
(i) Joo € Q2 s.t. (00,T00) €R;
(7ii) R is I'-closed;

(iv) (a) ' is R-continuous mappings;

or

(b) R is dy-self closed on €,

where,

dy(0, T'0) + dy(9, T
MF(Q,79>:maX{db(@,ﬁ),db(Q,FQ>,db(ﬂ7Fﬂ), b(g )28 b< Q)},

Yo,V € Q satisfying (0,79) € R.

Then, T' possesses a fized point. Moreover, if (0,9) € R, Yo,9 € Fix(I'), where
Fix(T') denotes the set of all the fized points of mapping I', then I" has exactly one
fixed point.

Proof. The results can be deduced from Theorem6.2.6, by substituting values of
¢ and :

(i) for case i (a), consider ¢(t) =t and ¢ (t) = zt;

(ii) for case i (b) and i (c), consider (t) = e~™ and ¢(t) = e"'®, where F € F.

O

Example 6.2.8. Consider Q0 = (0,2] equipped with b-metric dy(o,9) = |0 — 9|2

Consider a binary relation R defined as
<00 <2,

1 1
(0,9) € R, if ez’therg <p0,9<-=or

~4
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and a self mapping I' defined as

2 if0<op< i
(o) =143 | 3
5 fz3<e<2

One can easily verify that

e I' is not continuous but it is R continuous;

o Q is not complete but it is R complete.

Moreover, I satisfies all the requirements of Theorem 6.2.6. Therefore, I" possesses

a fized point. Also, fixed point obtained is not unique. Indeed, %&% are fized points

of I'. Note that (4%, %) ¢R.

Example 6.2.9. Consider the space I* of all real valued sequences {on} s.t.
Z\Qh\Q < oo. Then, the mapping dy : 1> X [* — [0,00) defined as dy(o,9) =
h=1

> low — Us* is a b-metric with s = 2. Define a relation on I*> as oRY if

h=1
0:9; =0, fori € N. Then, (I*,dy) is R-complete b-MS. Consider the self mappings

[,y : 12 — 12 defined as

0,2,2 & ), ifo+(1,0,0,0,..);
Fl(Q){< 7T T )

(%, 0,0, ) , otherwise.

Then, I'1, 'y are R continuous and satisfy the following conditions:
(i) R is (I'1,I'y)-regular closed:
Let (p,9) € R i.e., 0;.0; =0 fori € N.

(a) For o= (1,0,0,0,...), [10.T99 =0 i.e., (I'1p, ') € R.
(b) o# (1,0,0,0,...) and (o,9) € R. Then,

Flg.r219 = (O,QI’QQ7Q3,,,,,> . (0, 191 @ % )

777 7T
_ 0 01%1 022 p3U3
) 7 b) 7 b 7 bR

= 0, ( as(p,¥) ER).
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(i) (I'1,Ty) is (¢ — ) generalized R-contraction:
Let (p,9) € R i.e., 0;.0; =0 fori € N.

(a) If o # (1,0,0,0,...). Then,

01 02 O3 vy Uy Vs
2dy(I'10,1'99)) = 2d —, =, =, — =, =, ...
¢( b( IQaQ)) b <0a77777a )7<Oa7)7777 ))

S, le ol
= ;::12 -
< S d(0.0) <6 (6 (Mr,r(09) ).

(b) If 0 = (1,0,0,0,...), i.e., ¥; = 0. Then,

1 M Uy U3
= 2 = — =, =, ...
¢(2db(rlga F219)) db (<7a0707 ) ) <O7 7 9 7 ) 7 3 ))

(o] %[+

2

|

7

I
b

_ 2 2 2

= E(HW + (05" + ...
2

_ Zg(11_191|2+\q92\2+wgm....)
2

= Edb(Qa J) < <¢ (Mrl,FQ(Q, 19))) :

Therefore, (I'y,T's) meet all the requirements of Theorem (6.2.3), for ¢(t) =t and

P(t) = 4%15. Hence, I'1,T'y have a common fized point.

Definition 6.2.10. A pair of self mappings (I'1,'y) defined on a non-empty b-MS
(Q,dp) is c.t.b. a generalized a— (¢ — ) contraction pairif 3¢ € &, € ¥
and o : Q x Q — (0,00) s.t.

dy(I'10,T29) > 0 = ¢(afo,V)dp(T'10,T'20)) < ¢ (¢ (Mrl,rz(é% 19))) , (6.2.7)

where,

dp(0,T29) + dp(9,T
Mn,m(@ﬁ):max{db(g,ﬁ),db(g,Flg),db(ﬁ,Pﬁ), b(0, I20) + dy( 1Q)},

2s
Yo,V € Q satisfying a(p,9) > s.

Theorem 6.2.11. Let I'\,I'y : Q@ — Q  be mappings defined on complete b-MS
(Q,dy). Suppose the pair (I'1,Ty) satisfies
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(i) (I'1,Ty) is a generalized a-(¢ — 1) contraction pair;
(i) Joo € Q s.t. a(09,1100) > s and a(T'y00, 00) > s;
(iii) (I'1,Ty) is generalized c-admissible of type s;

(iv) (a) Ty and Ty are continuous mappings;

or

(b) if {or} is a sequence in Q with a(on, 05+1) > s Vh € N U {0} s.t.
on — 0 € Q as h — oo, then 3 a subsequence {on, } of {on} s.t.
a(on,, 0) > s Vk € NU{0}.

Then, the pair (I'1,T3) has a common fized point. Moreover, if a(p,¥) > s,
Vo, € CF(I'1,T'y), where CF(I'1,T'y) denotes the set of all the common fized
points of mappings I'1, Ty, then the pair (I'1,T's) has exactly one common fixed

point.

Proof. Using assumption (ii), we have an go € Q s.it. a0, '100) > s and

a(T'100, 00) > s. Consider the iterative sequence with initial point g, and
02n41 = L1025 and gapyo = Dagonn ¥V h € NU{0}.
Now, a(gg,'100) > s and (I'y,T'9) is generalized a-admissible. Therefore,
(00, 01) = a(00,T'100) > s = a(T'100,T201) = (01, 02) > s and (02, 01) > s.
Repeating this process, we have

alon, on1) > s and a(0pt1, 0r) > s.

On the similar lines of Theorem 6.2.3, we can easily prove that {gs} is a Cseq.
Also, (2, dp) is a complete b-MS. Thus, Jp € Q s.t. {o;} converges to o. The

following cases arises:

Case (i) If I'; and I'y are continuous mappings and {o5} converges to o. Then,

{T20r} = I'ypand {I'105} — [0,
or

{T2001+1} — T's0 and {I'1 091} — 1o,
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or

{Q2h+2} — I'y0 and {92h+1} — T'o.
Also,
{th+2} — ¢ and {Q2h+1} — 0.

Therefore, I'y0 = o = ', i.e., (I'1,'2) has a common fixed point.

Case (ii) In case assumption (iv)(b) holds. As, «a(op,0r+1) = s and {0} — o.
Therefore, 3 a subsequence {o;, } s.t. a(on,,0) > s. Now, suppose that
dy(0,T'20) > 0. Then,

o (db(Q2ﬁk+1, FQQ)) = ¢ (@(Qzﬁk, Q)db(F1Q2ﬁka FzQ))
(0 (¢ (Mrl,rz(mhk, Q))) :

IN

where

MF1,F2(Q2ﬁka Q)) = max{db(QQﬁka Q)) db(QZﬁk7 SxZﬁk)7 db(Q, FQQ))

dy (021, I'20) + dp(I'1 028, 0) }

2s

= maX{db(thk, Q)7 db(@Zﬁku Qzﬁk+1), db(@v F2Q)7

dy (021, I'20) + di (025,41, 0) }
2s

IN

max{db(QQkaa Q)a db(QZﬁ,ka QQﬁk-i-l)a db(@) F20)7

dp(02m,+1,0)  dp(02n,,0)  dip(0,T20)
+ + .
2s 2s 2s

Here, lim dy(02s,,0) = lUm dy(0op, , 025,+1) = 0. As, s > 1. Hence,
k—o0 k—o0
1}1—>I£1<> Mr, r,(02m,, 0) < di(0,T'20). (6.2.8)
Using (6.2.8), and continuity of ¢, we have
¢ (dy(0,T20)) = klim ¢ (db<92hk+lyr29))
— 00
¥ (¢ (di(0,T20))) < & (dbl0,T20)) ,

IN

a contradiction. Similarly, we can show that dy(g,I'10) = 0. Therefore,

['o=p=Ty0i.e., pis the common fixed point of the pair (I';,T's).
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Uniqueness: let p # ¢ be another common fixed points of mapping I'y, 'y with
a(p,9) > s. Then, using (6.2.7), we have

P(dp(0,9)) = ¢ (dp(T'10,T20))
< ¢ (afo,9)dy(T10,T29))
S 1/} ¢(MF1,F2(Q’§))>7
where

MFI,FQ(Q? 79) = Inax {db(Q, 19)7 db(Qa Flg)a db(/l?7 F27~9)a

_ max{db(g,ﬁ),0,0, d"(i’ﬁ)}

= db(g7 /l9>a

dp(0,T'29) + dy(V,T'10) }
2s

implies
6 (dy(0,9)) < ¥ (¢ (do(0,))) < ¢ (db(e,9)) ,
a contradiction. Therefore, (I';,'s) has exactly one common fixed point.
O

Definition 6.2.12. A self mapping I' defined on a non-empty b-MS (2, dy) is c.t.b.
a generalized a— (¢ — ) contraction if 3¢ € &, » € U and o : Q x Q — (0, 00)
S.t.

d(To.T9) > 0= ¢ (ale, Nd(Te.T) < v (6 (Mrore)),  (6:29)

Yo,V € Q satisfying a(o,9) > s, where

dy(0,T9) + dy(0, T
Mrl,r@,ﬁ):max{db@,ﬁ),db(g,rg>,dbw,m>, b, 1) + do @>},

2s

Theorem 6.2.13. Let I' : Q — Q be a mapping defined on a complete b-MS
(Q,dy). Suppose T satisfies

(i) T is a generalized o — (¢ — ) contraction;

(i) oo € Q s.t. a(go,T0o) > s and (Lo, 00) > s;
(7ii) T is a-admissible of type s;

144



(iv) (a) T is a continuous mapping;

or

(b) if {on} is a sequence in Q with a(os, 0n41) > s Vh € N U {0} s.t.
on — 0 € Q as h — oo, then 3 a subsequence {on, } of {on} s.t.
a(on,, 0) > s Vk e NU{0}.

Then T' has a fized point. Moreover, if a(o0,9) > s, Vo, € Fiz(I"), where Fiz(T)
denotes the set of all the fixed points of mapping I', then " has exactly one fixed

point.

Proof. Considering I'y = I" in Theorem 6.2.11, one can easily deduce the result.
O

Corollary 6.2.14. Let I' : Q@ — Q be a mapping defined on a complete b-MS
(Q,dy). Suppose T' satisfies

(i) (a) AF € Fand 7 >0 s.t. 7+ F (a(o,9)dpy(T'o,I'0)) < F (dy(0,9));

or

(b) AF € Fand 7> 0 s.t. 7+ F (a(p,0)dy(T'0,T0)) < F (Mr(0,7));

or

(c) I eV s.t. alp,?)d(Te, I'Y) <(d(o,9));
(7i) Joo € Q s.t. a(0o,T00) > s and a(Tog, 00) > s;
(iii) T is a-admissible of type s;

(iv) (a) T is a continuous mapping;
or
(b) if {on} is a sequence in Q with a(on, 05:1) > s VA € NU {0} s.t.
on — 0 € 2 as h — oo, then 3 a subsequence {on, } of {on} s.t.
a(on,, 0) > s Vk e NU{0},

where,

2s ’

Mo, ) — max {db@, 9), d(0,T0), (9, T9),

Vo,V € Q.
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Then, T" has a fized point. Moreover, if a(o,9) > s, Vo,9 € Fix(l'), where Fiz(T)
denotes the set of all the fixed points of mapping I', then " has exactly one fixed

point.

Proof. On substituting specific values of ¢ and ¢ in Theorem 6.2.13, we can verify

the above results.

(i) for case i (a) and i (b), consider 1(t) = e~ and ¢(t) = e’®, where F € F;

(ii) for case i (c), consider ¢(t) = t.

O
Example 6.2.15. Let Q = [0,00) and dy(0,9) = |0 — V|>. Define T'1,T5:Q — Q
Do) =, Talo) = ¢
If a: Q2 xQ —[0,00) is defined as

2+ cos(0* + V), if o€ [0,1];
0, otherwise.

a(e,9) = {
Then,
(1) (2, dp) is a complete b-MS with s = 2;
(ii) (T'1,Ty) is generalized a-admissible;

(iii) For ¢(t) = t and Y(t) = 69t, the pair (I'1,T'9) is a generalized a-(¢p — 1))

contraction pair.

For p,9 € [0,1]
92
db(F1Q7F279) = ‘Z_S
_ L] of
T 1619 2
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(i) Let o> 2, then

[\

| >

db(FIQa Fzﬁ) -

>~

S
)
[3%]
+
N
|
o
<
N———

—_
‘)-\CD‘)_\

IN

&+ 0% — ov)

IN

DN =

o
(%}
—

Wl W= Wl
()

A
oo
X
©
—
@‘@M

IN

dy (o, Fw))

IN
Nl o o] o)

~— N~ ~ X

Mrl,rg(Q, ﬁ)) .

(ii) Let o <2, then

[\

o[ AR ol
+
| g
|
e}
<
N——

dp(T'0,I20) =

LS

—_
‘HQ‘H

IN
Wl Wl Wl =
(@]

0
(iii) Let o = 5, then

dp(T'10,T20) = ‘Z - <

Therefore, for ¢(t) =t, 1(t) = 6t/9, we have

6 (e, Ndb('10.T29) < 6 (3ds(T0. Ta)) <0 (& (M, r,(0,0)) ).

Hence, all the requirements of Theorem 6.2.11 are satisfied. Indeed, o = 0 is a

common fized point.
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6.3 Existence of Solution to Operator Equation

In this section, we established the existence and uniqueness of the solution to an
operator equation using Theorem 6.2.11.

Let L(H) represents the set of bounded linear operators defined on the Hilbert
space H. Let A be a bounded linear operator on H. Then, L(H) is a normed

space with norm on H defined as

A
= sup L2

= | Aol|.
ozoer ol pemfol=1

Then, for A, B,C € L(H) and dy(A, B) = |A — B||?, we have

e dy(A,B) =0 implies |A— B||?=0iff |A— B| =0, ie., A= B;
« d(A,B) = [|A= B[ = [|B = Al|* = dy(B, A);

o for triangle inequality, consider

|Ao — Bo||? < 297'(||Ao — Co||? + ||Co — Bo||*)
= 5(|[Ao—Co||"+||Co— Bol|?), Vo€ H.

ie., |A— B[t < s(|A - C|| + |C — B|j¢) implies dy(A, B) < s(dy(A, C) +
dy(C, B)).

Therefore, space (L(H),d,) is a complete-b MS, where dy(A, B) = ||A — BJ|? with
s=21"" VA Be€ L(H) and ¢ > 1.
Consider the operator equation

Y — f: B:F(Y)B, = Q; (6.3.1)

n=1

where Y € L(H), Q € L(H),, B, be a sequence of bounded linear operator on
L(H) and F is operator valued functions on L(H). We will utilized the Theorem

6.2.11 to show the existence of the unique solution to the operator equation.

Theorem 6.3.1. Let B,, be a sequence of non-zero bounded linear operators with
Y NBal? = n is finite. Consider the assumption Ik € Ry s.t. |[F(Y)— F(Q)|| <
n=1

HIY =QI VY # Q€ L(H). Then, the operator equation (6.5.1) has exactly one

solution if nk < 1.
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Proof. Define the self mappings S on L(H) as
S(Y) = Q+ > BiF(Y)B,
n=1

For av: L(H) x L(H) — (0, 00) defined as a(Y, ) = 2. Clearly S is a-admissible.

To prove S is a-admissible (¢ — 1)) generalized contraction, consider the following

d(S(Y),5(Q) = [SY) =S
= | §BZF(Y)Bn - Z;BZF(Q)BnHQ

< i B (F(Y) — F(Q)) B,

< (i IBNIF(Y) - F(Q)uann)
< (iluBnu”"QHY—ﬂu)
. (njény—ﬂn) |

or

a(Y,Q)dy(S(Y), S(Q)) = (00llY — Q|)* = kd(Y, Q) < kMgr(Y,9Q),

e, ¢ (a(Y,Q)dy(S(Y), T(?)) < v(p(Msr(Y,))), where ¢(t) = t and
Y(t) = kt, where k = \/nk € [0,1).
As, S fulfills all the requirements of Theorem 6.2.13. Therefore, S possesses
exactly one fixed point. i.e., the operator equations (6.3.1) has exactly one solu-
tion. O

6.4 Existence of Solution to Non-Linear Func-
tional Integral Equation

In this section, we discussed the existence of the solution for the non-linear func-
tional integral equation using Theorem 6.2.6. Additionally, some illustrative ex-

amples are discussed at the end of this section to support our findings.

{Q(z) =g(z,002)+ f (Z, Jo u(z:s,0(s)) ds, 0 (a(z))) forz €1 (6.4.1)

g(z,0(2) > 1 for z € I.
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Considering the following:

H1) The function g : [0, 1] x R — R is continuous and 3Ja, : [0,1] — [0, 1] s.t.
19(2, 01) — 9(2, 02)| < a1(z)[o1 — o2l;

H2) The function f : [0,1] x R x R — R is continuous and Jas, as : [0, 1] — [0, 1]
s.t.

(2,91, 0) = f(2,72, 0)] < aa(2)][0 — Vs
|f(z77~9a Ql) - f(27197 QQ)' S CL3(Z)|Q1 - Q2|7

H3) The function u : [0,1] x [0,1] x R — R is continuous and 3 ay4 : [0, 1] — [0, 1]
s.t.

lu(z, s,01) —u(z,s,00)| < as(2)|or — 02l;

H4) 2k + k* < 1, where k = max { sup |az(z)|}

1S54 | seo

Theorem 6.4.1. Under the above mentioned assumptions the non-linear func-

tional integral equation (6.4.1) has a solution.

Proof. We consider the set Y = {o € C[0,1] : o(z) > 0) Vz € [0,1]} and define

the relation R on Y as
(0,9) € R whenever o(z).9(z) > o(z) VY(z),Vz € [0, 1].

Then, (Y, dy) is a b-MS with d,(p,?) = sup |o(z) — ¥(z)[P. Suppose go = 1, then
z€[0,1]
(00,0) € R Vo € Y. Let {p,} be an R-preserving Cy., and g, € C[0,1]. It

can be easily shown that {o,} converges uniformly to some ¢ € C[0,1]. Then,
for t € [0,1] using definition of R-preserving 0,,(t).0n+1(t) > 0n(t) V 0n+1(t). As,
{on(t) > 0}, therefore 3 an subsequence {g,, } s.t. 0,, > 1. Also, {o,, } converges
to o, i.e., o(t) > 1, vt € [0,1]. Hence, p € Y.

Now, we define the self mapping T : Y — Y as

T(o(2) = g (zr02) + f (2 [ u(zs.els) ds.ea(2) )

Clearly, the fixed points of the self mapping 7" are the solutions of (6.4.1). To

prove T satisfies all the conditions of Theorem 6.2.6, we shall prove that
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(i) R is T-closed
Let (o(2),9(z)) € R i.e., o(z).9(z) > o(z) V ¥(z). Then,

Toz) = g(z0(:)) + £ (= [ u (e, 0()) dssela(2))) = 1

or

To(2).TY(z) > TY(z),

ie., (To(z), TY(z)) € R.

(ii) T is (¢ — 1) generalized R-contraction

To(z) = TO(2)| =

902+ f (2 [ s e(s) ds.o(alz)) = g (2,9(2)
—f (z, /Ozu (z,8,9(s)) ds, v (a(z)))’

IA

9(z0(2) =g (2 9(2))| +

(5 [ wtes o s otale))
—f (z, /OZ u(z,s,0(s)) ds, 9 (oz(z))) ’ +
‘f (z, /Oz u(z,s,0(s))ds,v (oz(z)))

IN

a(2)le(z) = 9] + az(2) | [ ulz s 008) = [ uzs,9(5))
+ag(2)le (al2) = 9 (a(2) |

(@(2) + as(=) lel=) = (2)]

+as(z /|u(zsg ) —u(z,s,9(s))|ds

(@1(2) +as(2)) lo(z) = V(=)| + aa(=)as(2) () = 9(2)]
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Therefore,

o(dy(To,TV)) = til[(l)% To(z) — TY(2)[?
< s [ (01(2) + aa(2)) lol=) — 9()

+as(z) /Ot lu(z,8,0(8)) —u(z,s,9(s)) |dsr

< s [ (a1(2) + as(2) + aa(=)as(2)) |o(2) — ﬂ(zﬂ]
< Zse%pu [ (Qk + k‘2) lo(z) — 19(2)\] = kPdy(p, )
< ¥ (¢ (Mr(o,9))),

for ¢(2) = z and ¥(2) = KPz < z, where k = 2k + k%

(ili) T is R-continuous
Let {0,} be an R-sequence converging to ¢ € Y. Using the first part of
the proof p(z) > 1 Vz € I, hence p,(2)o(z) > 0,(2) Vn € N and all z € I,
therefore 0, Ro.
From the above part of the proof

dy(T0n, To) = Sl[gpu Ton(2) — To(2)[
ze|0,
< kP sup |on(z) — o(2)[
z€[0,1]
- kpdb (an Q) )

implies {T'0,} be an R-sequence converging to To € Y.

Therefore, T satisfies all the requirements of Theorem 6.2.6. Hence, T" has a fixed

point i.e., non-linear functional integral equation (6.4.1) has a solution.

Example 6.4.2. Consider the following fractional integral equation of the type

o) = 9(2) + B2 [ b(s)(z — 5)°ols)ds forz €]
g(z) > 1 forz e I.

The existence of the solution of this integral equation can be observed by Theorem
6.4-1 with g(z,0()) = g(2), (2 9(2), 0(a(2))) = B9(2), u(z, s, o(s)) = b(s) (=~
s)*o(s).
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Example 6.4.3. Volterra-Urysohn type integral equation

0(2) =g(2) + J5 u(z,s,0(s))ds forzel
g(z) > 1 forz e I.
has a solution under the requirements of Theorem 6.4.1.

Example 6.4.4. Consider the following equation

1
1+ 22

0(z) = 3 cos ( ) + ;/OZ scos(o(s))ds.

Here, g(z,0) = 3cos (TIQZ), f(z,9,0) = g, u(z, s, 0(s)) = zscos o(s) with
a1(z) =0, as(z) = %, as(z) = 0 and ay(z) = Z. Therefore, for k = % all the
conditions of Theorem 6.4.1 are fulfilled. O

6.5 Conclusion

In this chapter, we have introduced a novel approach for finding solutions to a
class of non-linear functional integral equations within a b-MS equipped with a
binary relation. Some common fixed point results are established in b-MS, which
were then reduced to fixed point results for single mappings. The results presented
in this chapter extend and generalize various existing fixed point results from the

literature.

o If s =1, Theorem 3.1 of Alam and Imdad (2015), Theorem 3.8, Theorem 3.9
of Gopal et al. (2016), Theorem 2.2 of Samet et al. (2012) can be deduced
as the consequences of Corollary 6.2.7 and Corollary 6.2.14.

e If R =Q xQ, Theorem 1 and Theorem 3 of Czerwik (1993), Theorem 1,
Theorem 2 and Theorem 3 of Kir and Kiziltunc (2013), Theorem 2 of Dubey
et al. (2014), Theorem 3.5 of Pant and Panicker (2016) can be deduced as

the consequences of Corollary 6.2.7.

e If s=1and R =Q xQ, Theorem 2.1 of Wardowski (2012), Theorem 2.4 of
Wardowski and Dung (2014) and Theorem 2.1 of Piri and Kumam (2014)

can be deduced as the consequences of Corollary 6.2.7.

As applications of the proved results, the existence of solution to a class of non-

linear functional integral equation and an operator equation are established.
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Chapter 7

Some Fixed Point Results in
m-Metric Space

7.1 Introduction

The present chapter delves into the study of fixed point results within the recently
developed framework of m-metric spaces, providing both theoretical extension ac-
companied by some illustrations. This chapter has two main sections. In the
first section, we explore various fixed point results for self mappings in m-metric
spaces using interpolative-type contractions and (¢ — 1) Wardowski contractions.
It has been highlighted that many in the existing literature are special cases of
our findings. Several illustrative examples are provided to validate and elucidate
these theoretical results.

The second section introduces a novel perspective on contraction mappings in m-
metric spaces, particularly highlighting the cases where traditional metric space
results are not applicable but their extended versions in m-metric spaces succeed.
Unlike classical Banach contraction mappings, the requirement for continuity is
relaxed in m-metric space, broadening its applicability. Also, we have compared
the behaviour of contraction mappings for metric spaces and m-metric spaces,
graphically. At last, we extend the scope by establishing results for the exis-
tence of common fixed points for pairs and triples of self mappings in incomplete
spaces. These findings are supported by detailed numerical iterations, examples,

and graphical representations to approximate the common fixed points effectively.

155



The results of the chapter are presented in * 2.

7.2 Comparison of Various Contraction in Met-
ric Spaces and m-Metric Space

In this section, we have explored how fixed point theorems in m-MS represent a
true generalization of those in MS. The procedure for determining the respective
contraction constant within an abstract metric space is discussed. Some illustra-
tive examples where traditional fixed point theorems fail, but the contractions in
m-MS guarantee the existence of a fixed point are presented. Also, the algorithms

to determine the Banach and Kannan contraction constants are presented.

Algorithm 1 How to find Banach Contraction constant with an distance function
(0)7
1: Initialize max k = 0 {To track the maximum contraction constant}
2: for each pair of distinct points (¢, v) in the set X do
3:  Calculate the distance between the points:
RHS = §(¢, v)
4:  Calculate the distance between their images under [
LHS = 8(F((), F(v))

5. Calculate the contraction ratio:
_ LHS
kCﬂf — RHS

6: if kK, > max k then

7 Update max k = k¢,

8 end if

9: if max k > 1 then

10: return "Not a Banach contraction" {Early exit if contraction condition
fails}

11:  end if

12: end for

13: return max k {Return Banach contraction constant if all k., < 1}

Example 7.2.1. Consider the m-MS ([0,2],m) , where m : [0, 00) x [0, 2] — [0, 00)

Yadav, K., & Kumar, D. Some fixed point result in m-metric space using different con-
tractions, In: Tomar, A., Jain, M. (eds) Banach Contraction Principle. Industrial and Ap-
plied Mathematics. Springer, Singapore.Banach Contraction Principle: A Centurial Journey,
Springer (Accepted)

2Yadav, K., & Kumar, D. (2025). Common Fixed Point Theorems for Discontinuous Map-
pings in m-Metric Space and Numerical Approximations, Journal of Computational and Applied
Mathematics, 470, 116720
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Algorithm 2 How to find Kannan Contraction constant with an distance function

(9)?

1: Initialize max_k = 0 {To track the maximum contraction constant}
2: for each pair of distinct points (,v) in the set X do
3:  Calculate the distance between the points:
RHS = §(¢,v)
4:  Calculate the distance between their images under F:
LHS = 6(C, F(C)) + (v, F(v)

5. QCalculate the contraction ratio:
_ LHS
ko = RHS

6: if k;, > max k then

7: Update max k = k¢,

8: end if

9: if max k> % then

10: return "Not a Kannan contraction" {Early exit if contraction condition
fails}

11:  end if

12: end for

13: return max_k {Return Kannan contraction constant if all k¢, < 1}

defined as m((,v) = HTU Let the self mapping F be defined as

F¢ =
1 . )
et otherwise.

{ﬁ, if¢<1

Then, F' is a contraction w.r.t the m-metric m i.e., m(F(, Fv) < km((,v), V¢ €
[0,2). One can verify the following cases:
Case (i) Let (,v < 1. Then,

m(F(, Fv) = ;(%:—i—%:)
1(¢ wv

= 2<5+5>
< imGo)
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Case (ii) Let ( <1 and v > 1. Then,
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Figure 7.1: Banach contraction w.r.t. the usual metric
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Figure 7.2: Banach contraction w.r.t. m-metric

Example 7.2.2. Consider the m-MS ([0,2], m) , where m : [0,2] x [0,2] — [0, c0)

defined as m((,v) = C;” and the self mapping F be defined as

Y

if ¢ <1
otherwise.

Aslen —i~

Fo - {
Then, F'is a Kannan contraction w.r.t the m-metric m i.e., m(F¢, Fv) < k(m(¢, F¢)+

m(Fv,v)), V¢ € [0,2). One can verify the following cases:

Case (i) Let (,v < 1. Then,

)

v

3
e+
3

+

<
3

(
|

1
2

m(F¢, Fv)

,Fv

v

(

J+3(+5))
)
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3
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— ™M —H M

<
<
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Case (iii) Let (,v > 1. Then,

1/1 1 1(1/3 3
m{Fe, Fo) =5 7+7>:3(2<7+7>)

<
<

Clearly, F satisfies Kannan contraction in m-MS. But one can easily verify that
for usual metric d((,v) =|( —v|, F does not satisfies the Kannan contraction.
From figures 7.2.2 and 7.2.2, one can graphically visualize that there is no such
k €10,1/2) for which d(F(, Fv) < k(d((, F¢) + d(v, Fv)) V¢, v € [0,2] holds.

—— LHS d(FT, Fu)
3.5 4 === RHSd(, F{)+d(v, Fu)
-+ k=0.5000

Points where k > 1/2
3.0 4

2.57

2.09

Value

4 k
15 I

1.0 1

0.5

Figure 7.3: Kannan contraction w.r.t. the usual metric

7.3 Some Fixed Point Results in m-Metric Space

In this section, we gave the definition of interpolative m-contraction of Riech-Rus-
Ciri¢ type and (¢ — 1) Wardowski contraction and presented some fixed point

results using these contraction in m-MS.

Definition 7.3.1. A self mapping T : Q — Q defined on a m-MS (Q,w) is c.t.b.
a Riech-Rus-Cirié type interpolative m-contraction if 3 constants A € [0,1) and

a,be (0,1) s.t.
@ (T, T9) < A (w(o,9) @ (0, T)'w (¥, T0)' =), (7.3.1)
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Figure 7.4: Kannan contraction w.r.t. the m-metric

Vo, 9 € Q with o # Lo, 9 # T, w(0,T0),w(d,T'Y) # 0.

Theorem 7.3.2. Let (Q,w) be a complete m-MS, and I : Q@ — Q is a Riech-Rus-

Ciri¢ type interpolative m-contraction, then T has a fized point.

Proof. For og € €1, define the Picard sequence defined as o5 = I'os_1, VA € N. If

3 a non negative integer hy s.t. om, = 0r,—1, then I'op,—1 = 05, = 05,—1 implies

Oro—1 1s a fixed point of the mapping I'.

As, I': Q — Q is a Riech-Rus-Cirié-type interpolative m-contraction, therefore,

from Definition (7.3.1), we have

& (w(on+1, 0n))

Sfornnon) = =(ConTor )
< M ((@lon 011" (@ (00 Ton) (@011, Tor 1)) )
= A ((w@h’ on1))" (@ (on: 0n11))" (@ (on1, Qh))l_a_b)
= X(wlon on-1))""

Al%ﬁ(@ﬁa O-1)-

& w(0ht1,00) =

Since, AT < 1, therefore, from Lemma 4.2.15, we have

ﬁlggo w(on+1,0r) =0, (7.3.2)
Z’%iinoo Weopoo =0, (7.3.3)
hli)rgo w(on,0n) =0 (7.3.4)
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and gy is an m-Cl,. Since, (2, w) is complete, therefore Jp € Q s.t. o5 — o.
Which implies

Jim w(on, 0) — Wy, = 0 and lim M,, , — w,, , = 0. (7.3.5)

h—o0

Also, using (7.3.4), we have

hlg(r)lo Weopo < hll)rgo w(on, or) = 0. (7.3.6)

Using, (7.3.5), (7.3.6) and Lemma 1.2.10 , we have

Jim M, , =0, lim @(gn, 0) = 0 and (e, 0) = 0. (7.3.7)
and
@,re = min{w(e, 0), w(I'e, o)} < @ (o, 0) = 0. (7.3.8)

@(TonTo) < A((@(eon 0)* (@(enTan)’ (w(e,Te)' ")
= A(@(on ) (@(en 0n11))" (@(0,T0)) ") .
Taking limit as & — oo and using (7.3.2), we have
ﬁlg(r)lo w(lop,I'o) = 0. (7.3.9)
As a consequence of (7.3.9), we have
lim wrp,, r, = lim min{w(Tes, L'es), w(Le, o)} < lim @w(T'gs, o) = 0. (7.3.10)
h—ro00 ] h—ro0 h—ro0

or
hli)]-’g-ow(rgfh FQ) - wFQﬁ,FQ - O’

which impliesI"g; converges to I'p.

Similarly, we have
lim @ (o5, 05+1) = lim w(os, Lon) =0
h—o00 h—o00
and
Jim @, ry, < lim @ (on, Lop) = 0.
Now, g5 and I'o; converges to ¢ and ['p. From Lemma 1.2.8, we have

ﬁlgrg(3 w(on, Lon) — @, 10, = w(0,T0) — wpr, = 0. (7.3.11)
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Consider

@(To,To) < A ((w(e,0)" (w(0,T0))" (w@(e,T0)) ") = 0. (7.3.12)

Using (7.3.8), (7.3.11) and (7.3.12), we have

w(0,0) = w(o,T'0) = Wo,o-

Hence, 'o = p i.e., o is a fixed point of T'.

]

Definition 7.3.3. A self mapping I' : Q — Q defined on a non- empty m-MS
(Q,w) is c.t.b. a (A —a—b— c) type interpolative m-contraction if 3 constants
A€ 0,1) and a,b,c € (0,1) with a+b+c <1 s.t. I' satisfies the following

w(Le. 1) < A((w(e.9)" (w(e.T0))" (@ (0, 19))°). (7.3.13)
Vo,v € Q with o # Lo,V # IV, w(0,T0),w(d,T'Y) # 0.

Theorem 7.3.4. Let (Q,w) be a complete m-MS, andT": @ — Q be a (A\—a—b—c)

type interpolative m contraction, then I' has a fized point.

Proof. For o € €1, define the Picard sequence defined as o5 = I'g;_1 VA € N. If
3 a non negative integer hy s.t. op, = 0n,—1, then I'op—1 = o5, = 0n,—1 implies
0Oro—1 1s a fixed point of the mapping I'.

As, T': Q — Yisaof (A\—a—b—c) type interpolative m-contraction, therefore,
from Definition (7.3.3), we have

w(ont1,0n) = @(Lon, Ton-1)
A ((@(on 051))" (@(on Ton)” (@(on-1,Ton1))°)

= A((@(on 0n1)" (@ (on 0n1))" (@(n1, 00))°)

IA

or
(w(gﬁ-ﬁ-bgﬁ))lib S )‘(w<gﬁagﬁ—1))a+cv
or
1 a+tc
w(ons1,0n) = AT0w(0p, On—1)1"
1
< AN w(on, 0r-1)-
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Since \TF < 1, therefore by Lemma 1.2.10, we have

lim w(QﬁJrla Qﬁ) = 07
h—o00

lim w =0
Z,ﬁ—)oo On,0¢ Y

lim w (s, 01) =0
h—o0

and oy is an m-Cle,.

The remaining proof can be done on the similar lines of Theorem 7.3.2. [

Example 7.3.5. Consider a set Q) = {0,1,2,3} with w(o,9) =|o— Y|+ 1. Then,
clearly (2, @) be an m-MS. A self mapping ' is defined on Q as I'(0) = 0,T'(1) =
1,I'(2) = I'(3) = 1. Then I satisfies all the conditions of Theorem 7.3.2 with

3,1 __1
A=1a=3b=3.

Case(i) For o =19 = 2, we have
w(To, W) = w(['(2),T'(2) =w(1,1) = 1.

w(p,¥) =w(2,2) = L;w(o,I'0) =w@(2,1(2) =w(2,1) =2 =w(@, ).
Then,

Mw(0,9)) (@ (0,T0)) (w(¥,19) " =1.19 > 1 = w(['g, TV).
Case(ii) For p =1 = 3, we have
w(lo, ') = w(['(3),I'(3)) = w(1,1) = 1.

w(0,9) =w(3,3) = L;w(o,['0) =w(3,I'(3)) = w(3,1) =3 =w(v,['V)
Then,

M (0,9))(w(0,T0))"(w (9, T9)) 7" = 1.56 > 1 = w(T'p, I'V)
Case(iii) For o =2 and ¥ = 3, we have
w(lo, 1Y) =w(I'(2),I'(3)) =w(1,1) = 1.

w(p,¥) =w(2,3) =2;w(0,l0) =w(2,1'(2) =w(2,1) = 2;w(¥, V) = w(3,['(3)) = w(3,1) = 3.
Then,

M (0,9))(w(0,T0))"(w (¥, T9)) 2" =1.36 > 1 = (T, I')

Therefore, 1" satisfies the hypotheses of Theorem 7.53.2. Hence, I" has a fixed point.
Indeed, o = 1,2 are two fized points of T
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Definition 7.3.6. Let (Q, @) be an m-MS. A self mapping I' : Q@ — Q is c.t.b.
(¢ — o)-Wardowski type contraction, if

@(Tg, 1) > 0 = ¢(w(To,TV)) < ¢ (¢ (Mr(e,9))), (7.3.14)
where

Mr(o,9) = max{w (o, V), w(0,I'0), w(V, ['V)},
Yo,9 € Q.

Theorem 7.3.7. Let (2, w) be a complete m-MS, and I' : Q@ — Q be a (¢ — ¢)-
Wadowski contraction with continuous function 1 and ¢(0) = 0, then T possesses

exactly one fixed point.

Proof. For o € €1, define the Picard sequence defined as o5 = g1 VA € N. If
3 a non negative integer hy s.t. on, = 0n,—1, then I'op,—1 = 05, = 0n,—1 implies
Oro—1 1s a fixed point of the mapping I.

As, I': Q — Qis (¢ — ¥)-Wardowski contraction, therefore, we have

d(w(ont1, 0n)) = d(w(Ton, Iop-1))
¥ (6 (Mr(on 0n-1)))

IA

where

Mr(on, 0n-1) = max{w(on, 0n-1), @(0n, 0n+1), @(0n-1, 0n)}

= max{w(on, 0n-1), @(0n, Ons1)}-

If possible Mr(on, 0n-1) = @w(0n, 0r+1). Then

A(@(0n41, 0n)) < Y(P(w(0n, 0n41))) < P(w(0ns On41))

a contradiction. Hence, Mr(op, 0r-1) = @(0n, 0n-1)-

Consider

o(w@(onr1,0n) < Y(o(w(on 0n-1))) < d(w(on, 0n-1)),
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implies @w(op+1, 0r) is a decreasing sequence.
Also,

N

6 (@(onsn,on) < ¥ (o (@(on 0n1)))
< @° (¢(W(Qh—1,9ﬁ—2)))

IA

V" (6 (@(01, 00))) -

Taking the limit as A tends to co, we have

lim @ (gp41,0r) = 0. (7.3.15)
h—o00

Also,
Wopsr.0n — min{w(osi1, 0nt1), @(0n, 0n)} (7.3.16)
Meoyi1,0n = max{w(0n+1, Ont1), @ (0n, On) }- (7.3.17)

Taking the limit as A tends to co, we have

%LﬁWQhH,Qh =0, ;LI&W(Q}’L, or) = 0 and ﬁhﬁrglo My, 1 0n = 0. (7.3.18)

If possible {5} is not m-Cauchy. Then, for ¢ > 0 3 two subsequences o, # 0o,
s.t.

d(QﬁmQﬂ,ﬂ) > € (7319)

and

d(QﬁK—UQKH) < €, (7320)

where, d(0,7V) = w(0,V) — 2w,9 + M,» V0,9 € Q is a metric.
Using triangle inequality and (7.3.19), we have

e < d(on,oc,)
S d(gﬁ,w Qﬁ,i71) + d(gﬁﬂfu QZN)'

Taking the limit as x tends to oo and using (7.3.15), we have

lim d(on,, 00,) = €. (7.3.21)
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Also, using triangle inequality, we have

d(fQﬁm ‘Q‘en) < d(gﬁm Qﬁnfl) + d<gﬁn717 szfl) + d(genfl7 Q€R)7

and

d(On_ys 0t_y) < d(0n,_ys 0n,) + d(0n,, 00.) + (0, 00,.)-

Taking the limit as x tends to oo and using (7.3.15) and (7.3.21), we have

Jim d(on, ., 06,,) =€ (7.3.22)

Using (7.3.18) in (7.3.21) and (7.3.22), we have
lim w(on,, 0¢,.) = € and lim @ (0h,_,, 00, ,) = €. (7.3.23)

Also, by continuity of ¢, (7.3.14) and (7.3.23), we have

d(e) = lim ¢ (w(on,, 0,))

KR—00

(
= lim (b(w(Fth 1+ Ol 1))

K— 00

lim ¢ gb(./\/lr Ohp_15 08, _ 1)))

K— 00

nggo 'QZ} <¢ <max hk—19 955_1)7 w(@hﬁ_p th)’ w(gfn—n an)}))
< ¢(e),

IN

IN

which contradicts itself. Therefore, {5} is a m-Cyeq. As, Q is an m-complete MS,

for some p € €2, we have

hli}rgo w(on, 0) — 2wy, o + My, , = 0. (7.3.24)
Also, from (7.3.18), we have

hli}rgo Wopo = hlgglo min{w(on, on), @w(0, 0)} < ﬁlglglo w(on, or) = 0. (7.3.25)
Using (7.3.25) and Lemma 1.2.9, we have

Jim My, , = 0,w(p, 0) =0 and w,r, = 0. (7.3.26)
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We claim that w(p,I'0) = 0. If feasible, let w(p,I'9) > 0, then consider the

following

¢(W<Q, FQ) - wQ,Fg) S ¢ (W(Q, Qﬁ) — Wop,e + w(@ﬁa FQ) — Wy, Fg)
= limsup ¢

msup o (=
(=

0 0n) = Wepe + @(on, I'0) — w@ﬁ,l“g)

= limsup ¢

h—o00

limsup ¢ (w(os, L'0)) = ¢ (w(Los, Lo))

h—o00

lim sup ¥ (¢(Mr(on, 0)))

h—o0

limsup¢( ¢ (max{w(op, 0), @ (Qﬁ,FQh),w(Q,FQ)}))

h—o0

v (¢ (=(0,T0)))
¢ (@(e,T0)),

@(on o) — @, rg)

(VANRE VAN VAN

IA

A\

a contradiction. Hence, w(p,I'g) = 0.
Next, we claim that w(I'p,I'g) = 0. If possible, let w(g, o) > 0, then

P(w(lo, o))

IN

v (6 (Mr(e, 0)))
¥ (¢ (max{w(o, 0). @(0.T0)}))
< ¥ ((0) < 6(0),

¢
¢

IN

a contradiction. Hence, w(I'g,T'0) = 0.

As we have already shown that w(p, 0) = w(p,I'0) = @w(T'o,T'0) = 0. Therefore,
o="To.

Uniqueness: If feasible, let ¥ # p be another fixed point with w(p, 0) = 0 =
w(1, ). If feasible, let w(p, ) > 0, then

¢(w(l'o, 1))

IN

v (¢ (Mr(o,9)))
¥ (¢ (max{w(0,9), @ (0, To), =(¥,T9)}))
< ¢ (6(0) < $(0),

IN

a contradiction. Therefore, w(p,9) = 0 = w(p,0) = w(¥,¥), which implies
o="1. n

Corollary 7.3.8. Let ' : Q — Q be a mapping defined on complete m-MS (Q, w).
If 3N e€(0,1) s.t

w(To, T) < Aw(p, V) Yo,V € Q.
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Then, I' possesses exactly one fized point.

Proof. Using ¢(t) =t and ¢(t) = kt, for k € (0,1), we have
@ (o, ) < Mw(o,9) < Amax{w(e, V), (0, T0), w(¥,TV)} = AMr(o,9).
Thus, the result holds as a consequence of Theorem 7.3.7. O]

Corollary 7.3.9. Let I' : Q — Q be a mapping defined on complete m-MS (2, ).
IfIX e (0,3) s.t.

@w(Lo, ITW) < A(w(o, o) + w(V,I'0)) Vo, 9 € Q.

Then, T' possesses exactly one fized point.

Proof. Using ¢(t) =t and (t) = 2t for A € (0,1), we have
@ (o, I'0) < Maw(o, I'o)+w(9,I'7)) < 2Amax{w(¢, V), w(o, T'0), w(¥,I'V)} = 2AMr (¢, 7).
Thus, the result holds as a consequence of Theorem 7.3.7. O

Corollary 7.3.10. Let I' : Q@ — Q be a mapping defined on complete m-MS
(Q,w) [f Elai > 0 with ap +ay + ag € (0, 1) s.t.

@(Lo, 1Y) < ayw(0,V) + a1w(0,T'0) + azw (¥, I'J) Vo, 9 € Q.

Then, ' possesses exactly one fized point.
Proof. Using ¢(t) =t and 9 (t) = At for A = ag + a1 + az € [0,1), we have

w(To,TY) < a,w(o,¥)+ arw(o,To) + ayw (¥, ')
< (CLO +a +CL2) max{w(g, ﬂ),w(g,l“g),w(ﬁ,l“ﬁ)}
Thus, the result holds as a consequence of Theorem 7.3.7. O

Corollary 7.3.11. Let I' : Q@ — Q be a mapping defined on complete m-MS
(Qw). IfIF € Fand T > 0 s.t.

w(To,TY) > 0= 7+ F(w(lp,T'Y)) < F(w(p,¥)) Vo,9 € Q.
Then, I' possesses exactly one fized point.
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Proof. Using ¢(z) = ef'®) and 1(z) = e 7z for 7 > 0 and F € F, we have

IN

T+ F(w(To,T))
ToI'9))

F(w(o, 7))

o oF 7 F(w(0))

IN

e

e—TeF max{w(0,9),w(0,I'0),w(J9,I'Y)} .

IN

Thus, the result holds as a consequence of Theorem 7.3.7. [

Corollary 7.3.12. Let I' : Q — Q be a mapping defined on complete m-MS
(Q,w). If IF € F and 7 > 0 s.t.

w(lo,IY) > 0= 7+ F(w(l'p,I'Y)) < F(Mr(o,9)) Vo,0 € Q,

where Mr(o,9) = max{w(o,?),w(0,T0),w(¥,I'F)}. Then, T possesses exactly

one fixed point.

Proof. Using ¢(z) = e"®) and ¢)(2) = e "z for 7 > 0 and f € F in Theorem 7.3.7,

we have the required result. O

Example 7.3.13. Consider Q = [0,00) along with w(p,?¥) = #, YV 0,9 € Q.
Here, (2, w) is a complete m-MS. Consider the mapping I' : Q — Q s.t.

ifo€l0,4)

e
Te)=14 "0 ifo>4

o+3’
Now, we will prove that I' satisfies Theorem 7.3.7 with ¢(t) = t and ¥(t) = kt
where k € (0,1).
Case (i) For p,9 < 4, we have

w(lp, TW) = ;(g—i—i)
<)o) o)
1 1 o+7v 1 o, 1 ¥
: <7+3+4)max{2,2< 73! 7)}
S k?./\/lr(g,ﬁ)
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fork=gs+5+3<L
Case (ii) For g, v > 4, we have

1 0 ¥
ToTw) = —(—2-+- "
@(l'e, 1) 2(g+3+19+3)

Lfo 9\ 1fo ¥

2(7+7>_7<2+2>

10 ¥ 1/1 0 1/1 0
7<2+2>+3<2(Q+g+3)>+4<2(79+19+3)>

111 040 1 o 1 9
iz erv 2 S8y T Y
(7+3+4>max{ 2 alet o)l +19+3>}

S kMF(Q» /19)7

IN

IN

IN

fork=3+5+3<L
Case (iii) For p < 4 and ¥ > 4, we have

1(p 9 1o
= (E4y T V<2842
@(le.IV) 2<7+19+4>_2<7+7>
1{o 0 1/1 0 1/1 0
< (&L Z (= _Y Z(Z 7
= 7(2+2>+3<2(9+g+3)>+4<2(§+ﬂ+3>>

1 1 1 o+17 1 o .1 i
<7+3+4)m’<{2’2<@+g+3>’2<ﬂw+3>}

< kMr(o,9),

IN

for k=3 +3+5<L
Therefore, I" satisfies Theorem 7.3.7. Hence, I' possesses exactly one fixed point.

Indeed, ¢ = 0 is the unique fixed point of I'.

7.4 Some Common Fixed Point Results in m-
Metric Space

In this section, we present various fixed point results within the framework of
m-MS, employing different generalized contraction conditions. From these proven
results, we can derive several additional fixed point theorems in the existing lit-

erature.

Definition 7.4.1. Let (2, @) be an m-MS. A self mapping I'y is c.t.b. self dis-

tance contraction on Q if kg € [0,1) s.t.

@(l'10,T10) < ko (@(0.0)) . (7.4.1)
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Yo € Q.

Theorem 7.4.2. Let I'y,T'y : Q — Q be mappings defined on complete m-MS
(Q, @) and Y be a complete subspace of Q s.t. T'1(Q)UT(Q) C Y. Suppose I'1, T’y
satisfy

(i) o, B,y > 0 with a+ 4+ v <1 s.t.
w0, T'2Y) < aw(o,9) + pw(o,T10) + yw (W, ['20), (7.4.2)
Vo, € Q;

(i) T'1,Ty are self distance contraction mappings.

Then, the pair (I'1,Ty) possesses exactly one common fized point.

Proof. Let gy € € be any point. Consider the sequence {g5} generated by map-
pings 'y, I'y with initial point og as

01 = I'100, 02 = 1201, ... 02541 = 108, 02042 = I'202541.

Now, consider

w(QQﬁ—f—l,QQﬁ) = W(F102ﬁ,F292ﬁ—1)
< aw(0on, 02n-1) + Bw (02, 02n41) + Y@ (0251, 021),
& (1= Bw(oomt1, 0an) < (a4 v)w(02m, 02n-1)
o+
& w(0ant1, 00n) < = ;w(gzﬁ, 09n-1),
or
(02541, 021) < K@ (02m, 021-1),
where Kk = %rg < 1. Without loss of generality, we have

@ (0n+1, 0n) < Kw(0n, On-1)-

Therefore, by Lemma 1.2.10, {o¢5} is m-Cauchy. Further, as Y is m-complete.
Therefore, dp € Y s.t.

%E&w(gha 0) = Wpe =0= hlggo Mo = Wope- (7.4.3)
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Using Lemma 1.2.10, we have

lim @,,, = lim min{c(on, 0n), (e, 0)} < lim w(es, o) = 0.

h—o00

Using (7.4.3), (7.4.4) and Lemma 1.2.9 , we have
ﬁlggo w(on, 0) = 0, hm M@n@ =0 and w(p,0) = 0.

Also,

Wel'1p = min{w(g, .Q)a w<P1Q> FIQ>} =0.

Using (7.4.2), (7.4.6) and the triangle inequality, we have

0<w@(o,lh0) = @(o.T10) — @erie
< @(0, 02n) — Woppo + @ (021, ['10) — Topri0
< @(o, 00n) + w(l'10,T'2005-1)
< (o, 0n) + a(@(0, 02n-1)) + B (w(02n-1, 021))

+7 (w(o,T10)) -

Taking limit as A — oo in (7.4.7), we have

Also, T'; is a self distance contraction. Therefore, 3 kg € [0,1) s.t

w(l0,T10) < ko(w(0, 0)),

or
@w(l10,T'10) = 0.
Using (7.4.5), (7.4.6), (7.4.8) and (7.4.9), we have

w(Qa Q) = w(Q,FlQ) = w(F1Q7F19) = 07

(7.4.4)

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

Using axiom (i) of Definition 1.2.5, we have ¢ = I'jp. On similar lines, one can

prove that o = I';0. Therefore, o is a common fixed point of I'y and I's.

w(,9) =

Uniqueness: let ¥ # o be another common fixed point with w(p, 0) =

0. Then,
w(0,9) = w(l0,I'20)
< a(w@(e)) + B(w(eT10) +7 (@(9,T90))
= a(w(e,V)) + B (w(e: 0) +7 (@(¥,9))
< w(o,9),
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a contradiction. Therefore, I';, 'y have exactly one common fixed point. O

Theorem 7.4.3. Let I'y,I's : Q — Q be mappings defined on complete m-MS
(Q, @) and Y be a complete subspace of Q s.t. T'1(Q)UT(Q) C Y. Suppose I'1,T'y
satisfy

(i) o, 5,7 > 0 with a + f+v < 1 s.t.

Yo, € Q;

(”) MFlg,FQQ S w(rlgv FZQ); VQ € Q.

Then, the pair (I'1,Ty) possesses exactly one common fized point.

Proof. The result is analogues to Theorem 7.4.2. O

Definition 7.4.4. Let (Q,m) be an m-MS. A triplet (I'1,T5,T'3) of self mappings

is c.t.b. contracting perimeter of triangle on S if 3 some k € [0,1) s.t.

w0, T20) + @ (T2, I's€) + w(I's€, T10) < k (w(e, V) +w(9,§) + @(§, 0)),
(7.4.11)

Yo,9,& € Q that are pairwise distinct.

We extend the concept of periodic point further for a pair of self mappings
(I'1,T'9) as : p has pairwise prime period ‘2" w.r.t. (I'y,y) if I'10 # 0,20 # o, but
either FG(p) = o or GF(p) = p. Moreover, p has pairwise prime period 2 w.r.t.

(I'1, Ty, T'3), if o has pairwise prime period ‘2’ w.r.t. each pair of self mappings.

Example 7.4.5. Consider the mapping I'y and I'y defines on Ry as'yp = €2 and
oo = In(g). Then, ¥ o € Ry, T'1o # 0 and T'y0 # 0 but FG(o0) = o. Therefore,

every point in Ry has a pairwise prime period ‘2° w.r.t. mappings (I'1,T's).

Theorem 7.4.6. Let I'y, '3, '3 : Q — € be mappings defined on complete m-MS
(Q, @) and Y be a complete subspace of Q s.t. T'1(Q)UlL(Q)UT'3(2) C Y. Suppose
triplet (I'y, 'y, ['s) satisfies

(i) triplet (I'1,T9,T'3) is contracting perimeter of triangle on €);
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(7i) 1,05, s are self distance contraction mappings;

(7ii) there is no point in § that has a pairwise prime period ‘2° w.r.t. (I'1,Ty,T'3).

Then, the triplet (I'1,T's,T's) possesses a common fized point. Moreover, the triplet

(I'1, Ty, T'3) has atmost two common fized points.

Proof. For some g, € €2, define the iterative sequence as

01 =100, 02 =T1201, 03 =300, .., 03n+1 = I'103n, O3n+2 = L'20311, and

03i+3 = I'303n+2,
V h € N. Suppose that g1 is not a common fixed point VA € N and there
is no point in € that has a prime order 2 pairwise w.r.t. (I';,I's,T'3). Then,
03541, 03h+2, 03r+3 are pairwise distinct. Now consider the sequence {5} generated
by perimeter of triangle in multiplicative distance structure with vertices as the

consecutive member of the sequence {gy} as

Br = w(0sn+1, 03i+2) + (03142, 03n+3) + (03543, 031+1)-

Now, as 0sn, 03541, 03542 are all pairwise distinct and (I'y,T'9,I'3) is contracting

perimeter of triangle in (2, ). Therefore, we have

Brn = w(03ht1, 03n+2) + (03142, 03h+3) + @ (03h+3, 03541)

w(Ly 03, Do0snt1) + w(T20sn41, s0sn2) + @(Us0sn12, I'1osn)

IA

k (w (03, 03rn+1) + @ (0341, 03142) + @ (03542, 031))
k(Bhr-1)-

IN

Moreover, since k < 1, therefore

Bo> 1> Pa> > B> P>

We claim that 03i+1, 03i+2, 03i+3 are all distinct. Suppose 3 j > 3 s.t. 03j+1 = 03i+1
for some 0 <1¢ < j — 2. Then,

03i+1 = 03j+1 = 03i+2 = L'203i41 = I'203j41 = 03542 = 03i43 = ['303i12 = ['303j42 = 0343,
implies
Bsi = W(Q3i+17 Q3i+2) + W(Q3i+2> Q31+3) + W(Q3i+3, Q3i+1)

= W(Q:st, Q3j+2) + W(Q3j+2; Q3j+3) + w(@3j+3, Q3j+1)

= 53]'7
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a contradiction.

Consider,

(031, O3hir2) < w(03n+1, O3n42) + W( 03042, 031i+3) + (03143, 03541) = B
< k(Bp1) < - < KM(Bo) (7.4.12)

Since k < 1, taking limit as A — oo in (7.4.12), we have

ﬁlim @ (03n+1, 03n42) = 0.
—00
Without loss of generality, we have
hli)rgo @(on, ont1) = 0. (7.4.13)

Also,

lim w,, Oht1 hlggo min{w(ox, or), @ (0n+1, Ort1)} < hlggo w(on, on+1) = 0,

h—00
(7.4.14)
f}ggo w(@h, Qh) = hh_{lolo w(@ﬁ+17 Qﬁ+1) = hlglgo mm{w(gﬁ, Qﬁ);w(!_)ml, Qh+1)}
= hll)nglo Won onss = 0s (7.4.15)
and
hlggo My, opt1 = ﬁlggo max{w (s, 0n), @(0n+1, 0ns1)} = 0. (7.4.16)

Next, we will show that {g;} is a m-Cj,,. Consider,

w(@3ﬁ+la93m+l) —  Wospt1,03m+1

IN

@ (0341, 03n42) — Wogni1,03n42 T @ (031425 03143)
~Wosnt2,03n+3 +e

+W(Q3m+27 Q3m+1) — Wosm42,03m+1

IN

@ (03011, 03n+2) + @(03012, 03n43) + +* + @W(03m12; 03m+1)
B+ Bry1 + -+ Bt

K (Bo) + K" (Bo) 4 -+ K™ (Bo)

K14k + k> + L E™T)(Bo)

metl—t
e 1’“_; )(Bo)- (7.4.17)

IAIA

IN
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Since k < 1, taking limit as h,m — oo in (7.4.17), we have

h}%gloow(g%-i—l: Q3m+1) — Wospt1 03m+1 — 0.

Without loss of generality, we have

lim @ (on, Om) — @Wop om = 0,
h,m—o00

i.e., {0} is m-Cauchy.
Further, as Y is m-complete. Therefore, dp € Y s.t.

hh_fgow(gha 0) — Woo=0= hlggo Moo — Wope-
Using (7.4.15), we have
lim w,,, =

h—o00 h

Using (7.4.19), (7.4.20) and Lemma 1.2.9, we have

— 00

Jim @ (gp, 0) =0, lim M,,, = 0 and (e, 0) = 0.
Also,
Woel'so = mln{w(Qa Q)7 ’W(FQQ, FQQ)} = 0.

Using (7.4.11), (7.4.22) and the triangle inequality, we have

0<w@(o,20) = @(0,120) — @yrs

IN

IN

+w (20, 035+3) + @ (03043, 035+1)

IN

+@(I'303n12, [1031)

IN

@ (0, 0sn1) + k(@ (0sn, ) + (0, 03n12)
+w(03h+2; QBﬁ))

Taking limit as A — oo in (7.4.23), we have

w(0,90) = 0.

Also, I'y is a self distance contraction. Therefore, 3 ko € [0, 1) s.t.

w(l20,T20) < ko(w (o, 0)),

177

lim min{e(gn, o), @(e, 0)} < lim w(es, on) = 0.

w(o, 03n+1) + @(L1o3n, Io0) + w(Fa0, T'505142)

(7.4.18)

(7.4.19)

(7.4.20)

(7.4.21)

(7.4.22)

YD(Q, QSh—H) — Wospt10 + w(@3h+17 FQQ) - w@3h+1F2@

W(Q, Q3h+1) — Wospir o+ W(Qsml, F2Q) — Wogpt1lao

(7.4.23)

(7.4.24)



or
Using (7.4.21), (7.4.24) and (7.4.25), we have

TD(Q, Q) = w(Q) FQQ) = w(FQQv FQQ) = 07

i.e., o = I'9p. Thus, p is the fixed point of I's.

On the similar lines, one can prove that o = I'y0 = I'sp = ['3p i.e., ¢ is the common
fixed point of self mappings I'y, 'y, I's.

In order to prove that I'y,I'9,I's have atmost two common fixed points, suppose
that 3 three distinct common fixed points say o,1,£. Then, we have w(p, 0) =
@ (¥,9) = w(£,§) = 0.

Consider,

w(0,V) + w(V,§) + (&, 0) w(l'10,T90) + @w(Le9, I's€) + w(I's€,T'0)
< k(w(o,0) +=(?,§) + =(&; 0)

< (o) + =¥, &) + (S 0),

a contradiction. Hence, I'1, 'y, I's have atmost two common fixed points. O

Remark 7.4.7. If under the assumption of Theorem 7.4.6, the triplet of mappings

I'1,T5, s has a common fixed point o and it is a limit point of the iterative scheme

01 = 100, 02 =101, 03 =1'302, ..., 03n11 = I'1038, 03012 = D'203n+1, 03n43 = '303n42,

Vh € N. Then, (I'1,T'9,T'3) possesses exactly one common fixed point.
If possible ¥ # o is another common fixed point. Clearly o03;, 0,7V are pairwise
distinct.

Consider,

w(0snt1,0) + @(0,9) + (¥, 03n41) = w1035, '20) + @w(l20,I'39) + w([39, ' 035)
k (w(osn, 0) + @ (0,9) + @ (¥, 0sn))
< w(Qdﬁag) —|—W(Q, ﬁ) +w(197 QSH)

IA

As (limpoo w035, 0) = limpoo w(03s,9) = 0). Therefore, by taking limit as

h — oo, we have
@ (0, V) < w(o, V),

a contradiction.
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Definition 7.4.8. Let (2, m) be an m-MS . A self mapping I'y is c.t.b. contract-
ing perimeter of triangle on ) if 3 some k € [0,1) s.t.

@w(T10,T19). w10, T16).w(01€,T10) < (w(o,¥).w(9,€).w(E, 0)*, (7.4.26)

Yo, & € Q that are pairwise distinct.

Theorem 7.4.9. Let 'y : Q — Q be a mapping defined on complete m-MS (2, w)
and Y be a complete subspace of Q s.t. T'1(Q) C Y. Suppose I'y satisfies

(i) Ty is contracting perimeter of triangle on );
(i) Ty is a self distance contraction mapping;

(iii) there is no periodic point of prime order 2 in €);
Then, T' possesses a fixzed point. Moreover, I'y has atmost two fixed point.

Proof. The result holds as a consequence of Theorem 7.4.6, by substituting I'y =
I's="T;. ]
Example 7.4.10. Consider a set Q = {p, q, s} with distance function m defined as
w(p,p) = @w(q,q) = 0, w(s,s) = 2 and w(p,q) = w(q, s) = w(p,s) = w(q,p) =
w(s,q) = w(s,p) = 4. Then, clearly (2, w) is m-MS. Let I : Q@ — Q defined as
L'(p) =p,T(q) = q,T'(s) = q. Then, " satisfies Theorem 7.4.9 and has two fized
point (say p € q ).

Example 7.4.11. Consider a set Q) = {p, q, s} with distance function m defined
as @w(p,p) = w(q, q) = @w(s,s) = 2 and @w(p,q) = w(q, s) = @w(p,s) = w(q,p) =
w(s,q) = w(s,p) = 4. Then, clearly (2, w) is m-MS. Let I' : Q — Q defined
as I'(p) = ¢,T'(q) = p,I'(s) = p. Then, T' satisfies the condition of contracting

perimeter and p,q are periodic points of prime order ‘2’ and has no fized point.

Remark 7.4.12. If under the assumptions of Theorem 7.4.9, the mapping I'y has
a fixed point o and it is a limit point of the iterative scheme oy = I'1op_1. Then,
I’y possesses exactly one fized point.

If possible ¥ # o is another fized point. Clearly, os, 0,V are pairwise distinct.

Consider,

@(ont1,0) + w(oV) +=(V, 0n41)

= w(TosT0) + (0, T19) + w(T19, T 05)
k (w(on, 0) + w@(0,9) + w(V, 01))
(on, 0) + @ (0,9) + @ (1, op).

IN

A
g
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As, (ﬁhm w(on, 0) = ﬁlim w(op, V) = O). Therefore, by taking limit as h — oo,
—00 —00

we have

@(0,9) < w(p, ),

a contradiction.

Example 7.4.13. Consider the m-MS [0,2), where m : [0,2) x [0,2) — [0, 00)
defined as w(p,V) = #. Let the self mappings I'1, 'y, '3 are defined as

92 ; 0 . 0 .
£, ifo<l1 e if o<1 ¢ dfo<1
[o= { 51 [a0 = {59 [0 = i
7

. ? . ) . *
—=, otherwise. et otherwise. otherwise.

(i) Suppose 0,9, < 1, then

w(lo,T90) + w(I'e0,T'58) —HD(Fgf I'h0)
(63603609
(38 o5

< ki (w(e,0)w(9,8)w(E 0)

Wl

IA

_ 111 __1
where ky —max{5,3} =3

(7i) Suppose 0 > 1 and £,9 < 1, then

’W(Plg, F2§) + w<r2797 F3£) + W(Fgg, F1 Q)

11 O\ 10 &\ 1/[¢ 1

EFAVET R AR AGRE) B A GV

1o 0 1[(v ¢ 1/& o

2<m+5>+2(5+3>+2<3+m)
11 ) 1 1) (v ¢

max{lo 5}<2+2>+mx{5 3}<2+2>
L 1]1(§, 0

+max{3 10}<2+2>

< ke (w(e,9) + @ (¥, £).w(E, 0))

IN

IA

0‘!\»—‘
Wl
—

Bl=

where ko = max{
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(7ii) Suppose ¥ > 1 and 0,& < 1, then

w(F1Q7 ]-—‘27*9) + W(Fgﬂ, F3€) + W(Fgg, 1—11 Q)

1 0* 0 1 0 & 1/ o
- 2<5+79+9>+2<19+9+3>+2<3+5
1o 0 19 £ 1/& o
2<5+10>+2<10+3>+2<3+5
L ilfe v\, 11
T 5100\ T 2) T 1003

+max{i1)), ;} (g + g)

S kS (’W(Q, 19)@(19, g)w(gv Q)) 3

IN

IN

where k3 = max{%, %, 11—0} = %
(iv) Suppose & > 1 and o,9 < 1, then

w10, T2Y) + @([e0,I'5) + ('3, '0)
CE () (1)
2\ 5 5 2\5 7 2\7 5
- 1<9+19>+max{1 1} <Q9+f>
- 5\2 2 57 2 2
11 & o
+max{7,5} (2 + 2)
ks (@ (0, 9).@(9,§).w(&, 0))

=4

Let k = max {kq, ko, k3, k4} = % Then, (I'y,T3,T'3) is a contracting perimeter of

triangle in (2, @) with k = % and there is no pairwise periodic point of prime order
2. Also, T'1,T'9,T's are self distance contractions. Hence, (I'1,T's,T'3) satisfies all

the requirements of Theorem 7.4.6. Hence, the triplet (I'1,I'5,I'3) has a common

IN

1
7

ot

where ky = max{

fixed point.

7.5 Conclusion

This chapter advances the study of fixed point theory by exploring novel results

within the framework of m-MSs. Utilizing interpolative-type contractions and
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(¢ — v) Wardowski type contractions, we generalized several classical results and
demonstrated their applicability through illustrative examples. The relaxation of
continuity requirements in m-MSs broadens the scope of contraction mappings,
addressing cases where traditional MS results are not applicable. Also, we ana-
lyzed the behavior of these mappings both theoretically as well as graphically and
highlighted the significance of the m-MSs in fixed point theory. The results pre-
sented herein not only extend the existing work but also pave the way for future

applications in more complex and incomplete spaces.

kokkokokokk
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