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ABSTRACT

Lung carcinoma has a high mortality rate; however, early prediction can
significantly improve patient outcomes. Although various methods have been
developed for premature-stage lung carcinoma prediction, many still suffer from
issues such as low accuracy, high noise, poor contrast, and the lack of integrated
risk screening. To address these challenges, this study proposed a lung carcinoma
prediction and risk screening model using Transfer Learning with a P-ReLU-
ResNet (P-ResNet) framework. The proposed model operates on 2D CT scan
slices. Initially, lung computed tomography (CT) scan images were preprocessed
to reduce noise and enhance edges using the Intra-class Variance—Anisotropic
Diffusion Filter (I-ADF) and Unsharp Mask Filter (UMF). The enhanced images
were then segmented using a Bates-distributed Coati Optimization Algorithm
integrated with Region Growing Segmentation (B-RGS). Features were extracted
from the segmented images and selected using the Binomial-distributed Chi-
square Test (BD-CST). The selected features are then classified using the TL-
based P-ReLUResNet model to determine whether the input is normal or
abnormal. For abnormal cases, a risk screening module further categorizes the risk
as low or high. Experimental results validated the effectiveness of the presented
method. The research achieved superior performance in premature stage lung
cancer prediction, achieving recall, accuracy, and precision scores of 97.36%,
98.21%, and 98.71%, respectively, outperforming existing approaches across all
key metrics. This study focused solely on lung carcinoma detection, rather than
other pulmonary conditions observable in lung imaging. Future work aims to
incorporate advanced tools for more accurate prediction of cancer type and

severity.

Keywords: Lung carcinoma, Anisotropic Diffusion Filter, Chi-square test, TL-
based P-ReLUResNet algorithms



ORGANIZATION OF THESIS

The thesis is structured into eight chapters: Introduction, Literature Survey,
Research Methodology, Deep Learning for Lung Cancer Detection, Transfer
Learning for Lung Cancer Detection, Hybrid Approach, Comparative Analysis,
Conclusion, and Future Scope.

Chapter 1

A brief introduction to cancer and lung cancer is given in this chapter. This chapter
includes an explanation of the work's motivation, an outline of the thesis, details

on the thesis's structure, and contributions.
Chapter 2

The background information on the detection techniques and medical facts about
lung cancer have been thoroughly explained in Chapter 2. From a medical
perspective, data on lung cancer prevalence worldwide and associated details have
been provided. This chapter explains the need for automated detection algorithms.
Technical details about the suggested framework's technical background and
methods for detecting lung cancer in the literature have been provided. This

chapter presents a thorough literature review on lung nodule detection.

Chapter 3

This chapter presents the research methodology that includes the following: Role
of deep learning models in cancer detection at the premature stage. Study of
different deep learning models for lung cancer detection. Data collection for lung
CT images from the LIDC-IDRI dataset and pre-processing of these images.
Implementation of P-ResNet algorithm for the detection of lung nodules. Study &
implementation of transfer learning for lung cancer detection. Calculate
performance in terms of accuracy, precision, and recall. Design and implementation
of a hybrid model P-ResNet with ReLU function. Parameters fine-tuning of all
implemented models for better accuracy. Calculate the performance of P-ResNet.

Comparison between pre-trained & current model.



Chapter 4

Performed an analysis of pre-existing algorithms using various benchmark
datasets. In this, the traditional models that were demonstrating the outcomes were
discussed. Using benchmark datasets, the traditional CNN, MPA, and NBC

models are reviewed, and their outcomes are presented.

Chapter 5

To forecast the discovery of lung cancer in a patient, the improved segmentation
method was tested using both benchmark datasets and the proposed dataset. This
chapter presents the different optimizers for testing the suggested system.

Chapter 6

A detailed description of the novel model is given from the beginning. The topics
addressed included preprocessing, segmentation, feature extraction, feature
selection, and classification methods. The results of several datasets utilized in the
recommended research are displayed in this chapter. Lastly, the accuracy of the
suggested system is verified using real-time video. Using different accuracy

metrics, the system's performance is compared to that of modern systems.

Chapter7

Presents a detailed comparison of different models and methodologies for lung
cancer detection. The performance and diagnostic relevance of each approach are

discussed.

Chapter 8

This chapter gives a summary of the research work and highlights the main
findings of the proposed TL-based P-ReLUResNet model for early lung cancer
detection. It also explains how the model helps improve accuracy by using
different types of data. Finally, the chapter discusses future work, such as using
the model to predict cancer types and severity with the help of better techniques

and larger datasets.

Vi
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CHAPTER1 INTRODUCTION

1.1. Introduction to Lung Cancer and Its Global Impact

Lung cancer is one of the most prevalent and deadly diseases globally. Compared to other
cancers, it exhibits a higher rate of metastasis and is a leading cause of cancer-related deaths. In
this study, we conducted a comprehensive review of the existing literature on the epidemiology,
diagnosis, and treatment of lung cancer. The disease has become a significant global health
concern, primarily caused by smoking, environmental pollution, and lifestyle factors. Among
these, smoking remains the most prominent risk factor. Additional contributors include indoor
air pollution and dietary habits. Furthermore, genetic mutations and inherited gene changes are
also associated with lung cancer development. A major challenge is the delayed diagnosis, which
often leads to a poor prognosis and a high mortality rate.

In recent years, advancements in anticancer drugs have improved the efficacy-to-toxicity ratio
[22][48]. However, to further reduce lung cancer mortality, strong public health measures are
required, especially those aimed at discouraging smoking. Moreover, many patients suffer due to
incorrect medication dosage, often resulting from inaccurate diagnosis or poor interpretation of
medical data. To address these issues, this work aims to enhance the accuracy of existing lung
cancer detection algorithms [15][26]. It is well known that various diseases affect the human
body, and some can be extremely harmful. If not detected early, such diseases can lead to severe
consequences. Among them, cancer is one of the most life-threatening conditions.

The term "cancer” is derived from the Latin word crab, likely referring to the crab-like appearance
of malignant tumors as they invade surrounding tissues. Cancer is also known by other terms
such as malignancy, neoplasm, or malignant tumor. The various types of cancer are illustrated in
Figure 1.1, such as brain cancer, kidney cancer, bladder cancer, and liver cancer. It can affect
multiple organs, including the breast, prostate, colon, and lungs. On the left side of the image, four
significant cancers are listed vertically. Brain Cancer is shown at the top, referencing abnormal
cell growth in the brain, which can disrupt neurological functions. Lung Cancer follows, with an
image depicting tumors within the lungs, a condition that is often linked to smoking or
environmental exposure. Colorectal Cancer is next, representing malignancies in the colon or
rectum, commonly influenced by diet, genetics, and lifestyle. At the bottom, Leukemia Cancer is
displayed, indicating cancer of the blood or bone marrow, where abnormal white blood cell
production occurs. On the right side, the image presents another four types of cancers: Kidney
Cancer is placed at the top, referring to tumors forming in the renal tissues, which can affect the
body’s waste filtration system. Liver Cancer is shown below, often associated with chronic liver

diseases and hepatitis infections.



Bladder Cancer follows, highlighting malignancy in the bladder lining, typically identified
through symptoms like blood in the urine. At the bottom, Pancreatic Cancer affects digestive

enzyme production and insulin regulation.
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Figure 1.1 Types of Cancer in the Human Body
Among these, lung cancer is the most fatal, accounting for the highest number of cancer-related
deaths worldwide. This thesis specifically focuses on the early detection of lung cancer using
advanced deep learning techniques, due to its high mortality rate and diagnostic challenges.
1.2. The Fundamentals of Lung Cancer
A tumor forms when abnormal cells in the lungs grow uncontrollably and cluster together, as

shown in Figure 1.2.

Cancerous Lungs \

Figure 1.2 Growth of cancer cells in the human body

Source: https://www.lungcancers.eu/lung-tumor/lung-tumors/
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Figure 1.2 illustrates how cancer cells, unlike normal cells, multiply rapidly and damage healthy
lung tissue. The body's organs can't function properly when cancer cells grow. Simply, lung cancer
is the uncontrolled growth of abnormal cells in one or both lungs. These faulty cells cannot
perform like healthy lung cells or perform the functions of regular lung cells. The abnormal cells
have the potential to develop into tumors as they reproduce, which could harm the lungs. The
lungs supply oxygen to the body. Lung cancer is a severe disease and is the most common cancer-
related cause of death. Today, a major health concern in all countries is tumours. Lung cancer is
the most common disease and acts as a silent killer among both men and women. After receiving

a diagnosis, more than half of patients with lung cancer pass away within a year. The two primary

sorts of lung tumors are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC).

Carcinoid lung cancer is a third and less frequent kind of lung cancer. Often, small cell lung

cancer is linked with cigarette smoking. Two distinct forms of small cell lung cancer exist: 1) Oat

cell type, 2) Combined small cell carcinoma. In general, chemotherapy is used to treat small-cell
lung cancer. Non-small cell Lung Cancer (NSCLC) is more prevalent as compared to other
cancers, and about 80% of cases of lung cancer are caused by it. Compared to small cell lung
cancer, this kind of cancer often develops and spreads to other areas of the body more slowly.

Three distinct forms of non-small cell lung cancer exist: 1) Adenocarcinoma, 2) Squamous cell

carcinoma, and 3) Large cell carcinoma.

1.3. Overview of Lung Imaging and Diagnostic Techniques

Lung imaging techniques are essential for diagnosing and monitoring lung diseases, including

malignancies. These methods provide detailed views of the lungs and surrounding structures,

enabling medical professionals to identify abnormalities, monitor disease progression, and
develop effective treatment plans [22]. Common imaging techniques used for lung evaluation

include below as shown in Figure 1.3:

a. Chest X-rays (CXR): CXRs are often used as an initial screening tool for lung conditions.
They provide a two-dimensional image of the chest, showing the lungs, heart, and ribs. CXRs
can help detect masses, infections, lung malignancies, and other abnormalities [34].

b. Magnetic Resonance Imaging (MRI): Although MRI is less commonly used for lung
imaging due to motion artifacts from breathing [52], it is a valuable tool for accurately
diagnosing certain lung cancers [32][94][83]. MRI is highly sensitive to soft tissue contrast
and can offer additional information about vascular structures and tissue characteristics [22].

c. Positron Emission Tomography (PET) Scan: PET scans visualize the body’s metabolic
activity using a radioactive tracer [57][72]. PET-CT scans, which combine PET and CT

images, are commonly employed to detect and stage lung cancers. The tracer accumulates in



regions with high metabolic activity, such as malignant cells [91][53].

Chest X-ray

Bronchoscopy Endobronchial Ultrasound

Figure 1.3 Diagnostic Imaging Tools for Lung Abnormalities

d. Bronchoscopy: A thin, flexible tube is inserted through the mouth or nose into the airways
during a bronchoscopy [3]. This procedure allows for clear imaging of the airways and assists
in the staging and diagnosis of lung tumors. Biopsies can also be taken for pathological
examination during the procedure [2].

e. Endobronchial Ultrasound (EBUS): EBUS combines bronchoscopy and ultrasound to
visualize and collect samples from lymph nodes and surrounding tissues [66]. It is frequently
used to stage lung cancer and assess lymph node involvement [45].

f. VATS (Video-Assisted Thoracoscopic Surgery): Also known as thoracoscopy, VATS
involves making a few small incisions in the chest to insert a camera and surgical instruments.
It is used to obtain tissue samples for biopsy and to diagnose or treat lung conditions [24].

g. Computed Tomography (CT) Scans: CT scans provide detailed and high-resolution images
of the lungs and surrounding tissues [4]. These scans play a crucial role in detecting and
diagnosing lung malignancies. They help determine the presence, size, and exact location of
tumors and assess whether cancer has spread to nearby lymph nodes or other tissues [14].

1.4. General Steps of Lung Cancer

Traditional or general steps of lung cancer detection are shown in Figure 1.4.

Step 1: Image Acquisition

Basically, a database is a repository that can store data or images in an organized manner. Various

databases are used in image processing. One such database is the Lung Image Database

Consortium image collection (LIDC-IDRI), which contains 1,018 cases of annotated lesions on

thoracic computed tomography (CT) scans used for diagnostic purposes and lung cancer



screening [4][77]. This dataset was developed through collaboration between academic
institutions and eight medical imaging companies.

Step 2: Grey Level Conversion

As we know, the input image is captured in RGB format; therefore, color conversion and filtering
are applied.

(i)  Colour Conversion: The primary aim of using color conversion is to reduce the number
of colors. By separating the R, G, and B components from each pixel’s 24-bit color value, an 8-

bit grayscale value at position (i, j) is obtained.

B [ ‘ Gray Level Conversion & Filtering
————— | Lung Images ‘
Database

‘ Lung Segmentation ‘

Feature Extraction

x Lung Cancer Effected Images / H

‘:‘Y Classification ‘

Without Cancer Happy Images

Figure 1.4 Basic steps of Lung Cancer Detection.

(i) Colour Filtering: The main goal of filtering is to remove noise and distortion from the
image. The noise may originate from the external environment or the camera during image
capture [33]. Simply put, filtering eliminates all distortion and noise, resulting in a clearer image.
Step 3: Lung Segmentation

Lung segmentation is a vital step in analyzing lung CT images, as it helps isolate the lung area
from other chest structures. This process ensures that subsequent tasks, such as feature extraction
and disease classification, focus only on the relevant region.

To understand lung segmentation, it's important to first understand image segmentation. Image
segmentation is a common technique in computer vision, where an image is divided into
meaningful parts or regions. These regions often correspond to objects or boundaries within the

image, such as edges or shapes [14]. Generally, there are two types of image segmentation:

Local segmentation targets specific portions of the image.



Global segmentation, which considers the entire image for identifying significant patterns or
regions.

Segmentation helps in accurately identifying the lungs from CT scans by separating them from
nearby organs and tissues. This improves the efficiency and precision of automated detection
systems used in medical imaging [34].

Step 4: Feature Extraction

One type of complexity reduction in image processing is feature extraction. Finding the most
relevant details in the original data and representing them in a smaller dimensionality space is
the primary objective of feature extraction [44].

Step 5: Classification

Image classification is one of the most crucial components of digital image analysis. The task of
collecting information classes from a multiband raster is known as image classification, and it is
quite pleasant to have a "pretty picture™ or image that illustrates different features across the
spectrum of colors. The core area of medical image analysis is picture categorization, where deep
neural networks are crucial [15][86]. The process of image classification begins with the input
images and ends with an output classification that indicates the presence or absence of the
disease. Supervised and Unsupervised classification are the two primary classification techniques
[8].

1.5. Significance and Urgency of Early Lung Cancer Detection

Pollution is increasing day by day, and due to the competitive world, work schedules have
become hectic across all sectors. As a result, people are unable to focus on their health, leading
to a rise in health problems, particularly lung cancer. Consequently, many scientists and
researchers are actively working in this area. Another reason for this growing interest is the
increasing market demand for lung cancer detection modules. The use of automated lung cancer
detection provides immediate assistance to patients. With the rapidly increasing number of
nuclear families, lung cancer detection has become a critical area of research.

1.6. Motivation and Research Objective

Lung cancer is one of the major causes of cancer-related deaths worldwide, primarily due to its
late identification and the lack of accurate premature stage screening techniques. Existing lung
cancer detection systems usually rely only on limited information, such as smoking history,
which reduces their effectiveness and accuracy. Furthermore, many of these models are
inaccurate and fail to consider individual risk factors. This study is motivated by the need to
overcome these challenges by creating a more advanced and accurate method for predicting early

lung cancer risk. The main goal is to develop a deep learning-based framework that combines



medical scans with various aspects of patient data, such as environmental exposure, genetic traits,
and lifestyle factors, to provide a more accurate and personalized evaluation. P-ResNet, the
proposed method, enhances premature-stage lung cancer diagnosis using a hybrid approach.
Unlike traditional models, this framework is designed to incorporate individual risk factors and
support more accurate identification. In recent years, deep learning models such as Convolutional
Neural Networks (CNNs), ResNet, and VGG16 have been widely used for lung cancer detection.
However, each of these models has limitations. CNNs tend to be less accurate for complex tasks
like premature-stage lung cancer detection and are difficult to train when they have many layers.
ResNet may suffer from the “dying ReLU” problem (inactive neurons), while VGG16 has a large
number of parameters, making it slow and computationally expensive. To address these
challenges and improve early detection, this research introduces a novel model called TL-based
P-ReLUResNet, which integrates multiple types of features to provide a more accurate
assessment of lung cancer risk. To evaluate the effectiveness of the proposed framework, publicly
available CT scan datasets were used, and standard performance metrics, including accuracy,
precision, and recall, were applied. This study uses 2D axial CT image slices extracted from full
3D CT scans. These 2D slices are widely used due to their efficiency in training deep learning
models. More details about the datasets and methods used can be found in the subsequent

chapters of this thesis.

1.7. Research Contributions

This thesis presents several significant advancements in the field of premature-stage lung cancer
diagnosis using deep learning techniques. A Lightweight Advanced Deep Neural Network (DNN)
model was developed using RWICWM filtering, K-means clustering, and WDSI-LSO. This
integration enabled accurate lung nodule diagnosis and risk assessment while keeping
computational costs low. A Transfer Learning-based P-ResNet system was also developed to
effectively screen for lung cancer risk. The study introduced novel preprocessing approaches,
such as Inverse Log Transformation and Convex Hull-based augmentation, which resulted in
improved image quality and segmentation accuracy. A comparison between the proposed and
existing models was conducted using evaluation metrics such as SSIM, PSNR, recall, and
precision. The findings validated the enhanced reliability and robustness of the proposed
techniques. To improve model performance, optimization techniques such as Iterative Adaptive
Decision Fusion (I-ADF) and Binomial Chi-Square-based feature selection were employed,

resulting in higher prediction accuracy and lower error rates.



CHAPTER 2 LITERATURE SURVEY

2.1. Overview of Existing Research on Lung Cancer

The scientific term for cancer is carcinoma, which refers to the uncontrolled multiplication of
abnormal cells. In such cases, cancerous cells proliferate rapidly and accumulate, ultimately
damaging the affected organ, whether it is the lungs or another part of the body, thus resulting in
what is known as carcinoma. When this instability in cell growth occurs in the lungs, this
condition is specifically referred to as lung cancer [5].

Unlike normal cells, cancerous cells grow without regulation or control. These abnormal cells
destroy the surrounding healthy lung tissue and disrupt normal lung function. As they continue
to grow, they interfere with the function of vital internal organs. In summary, lung cancer is
characterized by the abnormal and irregular growth of cells in one or both lungs [7]. These
abnormal cells fail to develop into functional lung tissue and cannot perform the functions of
healthy lung cells [90]. When left unchecked, their proliferation can lead to the formation of a
tumor and further impair lung function.

Lung cancer is considered a life-threatening disease because the respiratory system relies entirely
on the lungs. The oxygen inhaled through the nose travels directly to the lungs, where it is filtered
and then circulated throughout the body via the bloodstream. Given the lungs’ crucial role in
sustaining life, any disease that affects them poses a serious threat to survival. As such, lung
cancer is recognized as a global health concern and is often referred to as a “silent killer” [10].
Studies indicate that over half of all lung cancer patients die within the first year of diagnosis.
There are two primary types of lung cancer: small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC) [82][44]. SCLC is further classified into two subtypes: small cell
carcinoma and mixed or large cell carcinoma [1]. Research has identified tobacco use as the
leading cause of small-cell lung cancer. In contrast, NSCLC is more frequently observed in
patients with this chronic illness [78]. Together, SCLC and NSCLC account for approximately
80% of lung cancer cases worldwide. Essential Techniques for Lung Cancer Diagnosis.
General Steps: Diagnosing the disease is the first and most crucial step before beginning any
form of treatment. In simple terms, the entire approach to lung cancer revolves around early
detection, as proper treatment cannot be administered without it. This section aims to guide you
through the step-by-step process of diagnosing lung cancer.

Figure 2.1 illustrates the general procedures for identifying lung cancer. It presents all five steps
in a logical sequence [92]. The first step involves the use of a dataset or database. A brief

explanation of each stage is provided below.
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Figure 2.1 Basic Steps of Lung Cancer Detection
In basic terms, a database is a structured pool used to store and organize data or visual content.
Various types of databases are used in image processing applications [62][58]. One such example
is the Lung Image Database Consortium (LIDC), which includes an array of pulmonary
computed tomography (CT) scans used for diagnosing affected lung regions. This dataset was
created through collaboration among eight medical institutions and academic centers, involving
1,018 cases to build a comprehensive set of diagnostic images [79]. Since the digital images in
this database are captured using the RGB (Red, Green, Blue) color model, color conversion and
filtering techniques are applied during preprocessing.
Color Conversion: The main objective of color conversion is to reduce the number of colors in
an image while preserving essential visual details. Each 24-bit pixel (I, J) in the image consists
of three 8-bit channels: R (Red), G (Green), and B (Blue). These are converted into an 8-bit
grayscale value to simplify further processing.
Color Filtering: The purpose of filtering is to eliminate noise and distortion that may arise during
image acquisition, either due to camera limitations or external environmental factors [39]. This
step helps maintain image clarity by removing any interference or visual anomalies. Before
discussing lung segmentation, it is important to understand the concept of image segmentation.
Image segmentation is a digital technique that divides an image into multiple meaningful
segments to simplify analysis. This includes the identification of points, lines, curves, and
boundaries within the image, a process sometimes referred to as image vivisection or
segmentation. Image segmentation is generally categorized into two types: local segmentation

and global segmentation [44].



e Local segmentation focuses on a specific region of the image.

e Global segmentation considers the entire image for analysis.

One of the most critical steps in radiological lung image analysis is lung segmentation [51]. It
involves a computer-based method for isolating lung boundaries from surrounding tissues, such
as the trachea, in CT images. This is crucial for further image analysis and diagnosis. Next,
feature extraction plays a vital role in image processing. It refers to techniques used to eliminate
redundant or irrelevant data from the dataset [79]. The main objective is to extract the most
significant and useful information from the original image for analysis.

Finally, the most essential component of digital image processing is image classification,
particularly in the context of neural networks used in medical applications. In simple terms,
image classification involves extracting relevant and targeted data from image matrices to

recognize patterns or disease-specific features [30].

2.2. Review of Deep Learning Approaches for Lung Nodule Detection

Joshua, one of the researchers, proposed a 3D CNN-based unsupervised learning model for the
diagnosis of lung cancer. A gradient activation function was employed in this binary classification
strategy to enhance the visualization of lung tumors. Using the LUNA dataset [81], the proposed
AlexNet detection model was evaluated against a well-known 2D CNN learning classifier [37].
However, the model performed poorly due to insufficient testing data, as only 10% of the training
dataset was utilized [41].

To assist in the premature-stage detection of squamous cell carcinoma (SCC) and
adenocarcinoma (ADC), Chaunzwa et al. developed a supervised CNN-based prediction model.
This CNN was validated using real-time non-small cell lung cancer (NSCLC) patient data
collected at Massachusetts General Hospital during the premature-stage of the disease [16]. The
dataset consisted of 311 collected patient records. The CNN model, built upon the VGG network,
achieved an area under the curve (AUC) of 71%, which was considered inadequate. One
limitation of the VGG-based CNN was its lack of preprocessing, such as noise removal and CT
image segmentation, which could have improved its prediction accuracy [12][50].

Chaturvedi et al. reviewed the latest techniques for lung cancer detection and classification. Their
study covered modern methods for lung nodule diagnosis, localization, and classification using
standard datasets such as LIDC-IDRI, LUNA16, and the Super Bowl Dataset 2019. They also
discussed supervised learning methods, including SVM, KNN, and CNN [68]. According to the
authors in [9], these datasets represent the most commonly used CT data thresholds for disease

diagnosis. Kalaivani et al. introduced a DenseNet-based binary classification model using a deep
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convolutional neural network to distinguish between aggressive and benign lung cancer cases
[17].

Following a review of these studies, presented in tabular form in ANNEXURE 2, this research
aims to develop an automated method for early disease detection and patient health status
assessment. The following section provides a brief overview of various optimization strategies
employed in deep learning to identify cancerous nodules at a premature-stage.

A work that utilized wavelet feature descriptors in conjunction with an artificial neural network
for classification was presented. The computed mathematical properties, such as autocorrelation,
entropy, contrast, and energy, are generated when the wavelet transform is applied and then used
as input parameters for the neural network classifier [43]. However, this method uses ANN for
classification, and it has a slow learning progression; hence, computation time is high.

The Cancer Imaging Archive (TCIA) database provides an analysis of the Lung Image Database
Consortium image collection (LIDC-IDRI) [66] using the SVM-LASSO model. Using the two CT
radiomic properties of the anteroposterior dimension of the bounding box and the directional
change of local homogeneity, it was possible to predict the malignancy. Nonetheless, there were
no radiomic characteristics that distinguished spiculated or lobulated borders in particular [24].
A study was presented in which Wavelet feature descriptors were used in conjunction with an
artificial neural network (ANN) for classification. The wavelet transform was applied to extract
mathematical properties such as autocorrelation, entropy, contrast, and energy. These computed
features were then used as input parameters for the neural network classifier [28]. However, the
method's reliance on ANN led to a slow learning process, resulting in high computational time.
The Cancer Imaging Archive (TCIA) database includes an analysis of the Lung Image Database
Consortium image collection (LIDC-IDRI) [66] using an SVM-LASSO model. By employing
two CT radiomic features, the anteroposterior dimension of the bounding box and the directional
change of local homogeneity, it was possible to predict malignancy. However, no specific
radiomic features were identified that could reliably distinguish spiculated or lobulated tumor
borders.

The Regression Neural Network (RNN) segmentation technique was proposed in [74][51],
offering high accuracy in identifying nearby lesions of similar intensity. Due to the presence of
adjacent vascular and pleural lesions, this method provided improved boundary identification
during segmentation. RNN, as a learning algorithm, addresses challenges in automatic lesion
detection. However, the model primarily focused on the segmentation accuracy of lung
parenchyma and the precise identification of boundaries for juxtapleural and juxtavascular

lesions [78]. A two-pronged approach to lung segmentation was presented in [61]. The first
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component employed thresholding and morphological techniques, while the second addressed
nodule-type classification using a naive approach. This study explored the segmentation problem
in the context of limited ground-truth data related to nodule types [43]. However, the
classification approach was flawed, as it incorrectly categorized nodules attached to the pleural
surface or vascular structures as fat nodules [36].

Another study demonstrated feature extraction from computed tomography (CT) images using
artificial intelligence algorithms to analyze benign and malignant pulmonary nodules. CT images
of pulmonary nodules were collected and processed using an Expectation Maximization (EM)-
based lung nodule feature extraction model [54]. Nonetheless, detecting these nodules in the
premature-stage remains challenging, as the associated symptoms often lack classical specificity,
and most patients do not present with clear clinical signs during the initial phase.

Lung carcinoma is one of the most prevalent and widespread types of cancer [5], with a mortality
rate higher than that of other common cancers, such as prostate, breast, and colon cancer [4].
Lung carcinoma is classified into two main types: small-cell lung carcinoma (SCLC) and non-
small-cell lung carcinoma (NSCLC). Both are primarily caused by smoking; however, a harsh
reality is that even individuals who have never smoked can develop this deadly disease.

This may be attributed to several factors, including prolonged exposure to air pollution, smoke,
contaminated water, and, in some cases, hazardous gases, all of which have been reported as
potential causes of lung cancer. Accurate identification of the premature-stage NSCLC is
essential [74][24]; however, there is currently no exact method available [2]. Early diagnosis
significantly reduces the lung cancer mortality rate [16], saving countless lives.

A variety of modern techniques are now available for the diagnosis and treatment of lung cancer
[29]. With the advancement of medical imaging technology, tools such as lung biopsy, Positron
Emission Tomography (PET) [58], High-Resolution Computed Tomography (HRCT), Computed
Tomography (CT) scans, and X-rays have greatly improved the detection of malignant nodules
in one or both lungs [53][68].

The rise in early detection rates can also be attributed to CT imaging, which radiologists and
oncologists now routinely use [27]. CT scans help assess various parameters, including the size,
location, and type of lung lesions [19][93]. However, there is still a pressing need for progress in
the medical field, particularly in the early identification and screening of lung malignancy [43].
Enhancing early screening practices can help minimize risk factors [36] and improve survival
outcomes for patients.

Accurate segmentation of tumors and surrounding organs is also critical. Inaccurate segmentation

may lead to either under- or over-irradiation of healthy tissue and tumors [65]. Image
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segmentation reduces image complexity by dividing the image into smaller, manageable regions
[33]. Previously, segmentation was done manually, often resulting in unreliable and inconsistent
outcomes [88]. In contrast, automatic segmentation techniques such as region-growing or multi-
seed approaches have improved the reproducibility of results and enhanced the quality of
radiomic features [94].

Additionally, a risk prediction model has been developed in China to identify individuals at the
highest risk for lung cancer during CT screening. This model demonstrated good bias control and
accuracy and was built using easily obtainable clinical classifiers suitable for large-scale
screening scenarios. However, it relied entirely on self-reported data, making it susceptible to
measurement errors [32].

Several machine learning techniques have been proposed to develop efficient models for
identifying individuals at high risk of developing lung carcinoma, enabling early intervention to
prevent long-term consequences. The results indicated that the model demonstrated improved
performance in detecting lung cancer. However, due to privacy concerns, accessing critical
medical data remains a significant challenge [56].

In another study, a deep learning (DL) classification system for lung cancer was developed using
CT scans. A dataset of 311 patients with premature-stage lung carcinoma was used to train and
validate convolutional neural networks (CNNs) [50][90][34], focusing on the two most common
histological subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The results
showed that the model was effective in classifying lung cancer and could serve as a supportive
tool for radiologists. However, its performance was limited due to the small sample size.

Lung cancer prediction was also explored using a machine learning approach combined with
enhanced image processing, as presented in [54]. An improved deep neural network (DNN) was
used to segment affected regions of noise-reduced lung CT images, extracting various features
from the segmented areas [27]. This model showed better classification performance, though its
overall accuracy remained suboptimal [55].

Another approach recommended the use of enhanced dense clustering with deep learning in a
directly trained neural network for lung cancer detection from CT images [21]. The technique
segmented the affected regions by calculating pixel similarity values. Based on these similarities,
regions were grouped, and features relevant to spectral analysis were extracted. Classification
techniques were then applied to learn and categorize these features [57]. The results demonstrated
accurate lung cancer predictions; however, this method did not incorporate risk assessment.

In [9], deep CNN models were proposed for classifying lung cancer from CT scans [30][49],

each utilizing a distinct network architecture. Combining predictions from multiple CNNs using
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ensemble learning [38] led to improved classification performance. However, the ensemble
method also resulted in high computational costs.

A classification and prediction system for lung cancer was also developed using machine learning
and image processing techniques [81][80]. This method involved preprocessing CT images with
a geometric mean filter, which enhanced image quality and improved the performance of artificial
neural networks in predicting lung cancer. Despite these improvements, the model showed an
increased likelihood of prediction errors [71].

The authors of [84] revisited the problem of lung cancer segmentation in CT images [54]. Their
method integrated data from adjacent CT slices and combined the discrete wavelet transform
(DWT) with deep supervision in the model architecture to enhance textural analysis. However,
due to the unpredictable nature of cancer, the model was only partially successful in its
predictions. Using extracted features from the Gray-Level Co-Occurrence Matrix (GLCM) [37],
along with reliable machine learning (ML) and image enhancement techniques [47], a lung
cancer prediction system was developed. The procedure involved extracting GLCM features
from enhanced images [62] and applying optimized ML classification algorithms [44]. The
results indicated that the model could be highly effective in improving lung cancer prognosis,
aiding further diagnosis, and potentially reducing the mortality rate through expert radiologist

support. However, the model's performance was limited by the small size of the dataset used [61].

2.3. Techniques for Enhancing and Analyzing Lung Cancer Images

Image preprocessing primarily aims to enhance and improve image quality by reducing noise and
removing unwanted distortions. In simple terms, it serves as a data-mining strategy that not only
addresses missing data but also transforms raw image data into meaningful and usable
information [64]. Today, a variety of preprocessing techniques and tools, such as OpenCV,
CUDA, and Keras, are commonly used to enhance image quality.

Image segmentation, in simple terms, involves dividing an image into meaningful regions or
segments. This is particularly useful when analyzing complex images, as segmentation helps
isolate and understand distinct objects within the image. The goal of segmentation is to accurately
detect the edges and boundaries of these objects [24]. Several segmentation techniques exist,
including clustering-based, edge-based, region-based, and watershed-based methods [19]. In
essence, segmentation enhances the visual representation of the image for more effective analysis
[28].

With segmentation, adjacent pixels are analyzed for similarity, and those with similar
characteristics are grouped into the same region [26]. Once segmentation is completed, the next

critical step is feature extraction, which highlights the most significant attributes of the detected
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object. Feature extraction plays a vital role in many applications, such as pattern recognition used
in Android mobile security and spam detection software [20].

In the context of medical imaging, feature extraction helps isolate the shape and region of interest
(ROI) within an image, allowing for detailed analysis and accurate diagnosis. It relies on a
combination of methodologies and algorithms to assess various characteristics of the segmented
image, such as eccentricity, perimeter, area, and average pixel intensity [22]. These features are
then used to determine whether the image content is normal or abnormal, supporting effective
clinical decision-making.

2.4. Datasets Available for Implementation

Selecting an appropriate dataset is crucial when developing lung cancer detection systems, as it
ensures effective training, analysis, and validation of the models. Below Table 2.1 shows a list of
commonly used publicly available datasets that are widely utilized for designing and validating
algorithms in lung cancer detection.

Table 2.1 Summary of Widely Used Public Datasets for Lung Cancer Detection

Dataset Name Modality Description Application
LIDC-IDRI  (Lung CTscans Contains annotated chest CT Widely used for training and
Image Database images with lung nodules benchmarking lung nodule
Consortium  Image marked by multiple radiologists. ~ detection algorithms.
Database  Resource
Initiative)

TCIA (The Cancer CT, PET, Provides multiple datasets Useful for multi-modal lung

Imaging Archive) MRI related to lung cancer imaging cancer diagnosis and deep
from different modalities. learning training.

JSRT (Japanese Chest X- Offers X-ray images labeled with Used for evaluating X-ray-

Society of rays the presence or absence of lung based detection methods.

Radiological nodules.

Technology)

Deep Lesion Dataset CTscans  Includes a large collection of CT ~ Suitable  for evaluating
images with various lesion nodule/lesion detection and
annotations. classification algorithms.

LIDC-IDRI and Deep Lesion datasets offer CT scans with annotated nodules or lesions, ideal for
training and testing detection models. TCIA provides multi-modal data, including CT, PET, and
MRI, supporting advanced diagnostic approaches. Meanwhile, the JSRT dataset includes labeled
chest X-rays, useful for assessing 2D image-based detection techniques. Together, these datasets
play a crucial role in developing and benchmarking deep learning models for lung cancer
diagnosis.

2.5. Summary

Reducing mortality rates and improving patient outcomes largely depends on the early detection
of lung cancer. One promising area of artificial intelligence (Al) that enhances the accuracy and
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efficiency of premature-stage lung cancer diagnosis is deep learning. Researchers have developed
sophisticated algorithms, particularly convolutional neural networks (CNNs) and other deep
learning architectures, that can analyze medical imaging data, such as CT scans and chest X-rays,
to identify suspicious lung nodules indicative of cancer.

Trained on large collections of labelled medical images, these deep learning models have
demonstrated remarkable sensitivity and specificity in detecting lung nodules. By automatically
extracting features from imaging data, the algorithms are capable of identifying subtle patterns
that may be overlooked by human radiologists but are associated with premature-stage lung
cancer.

Moreover, deep learning systems can support radiologists by aiding in complex cases and
offering a second opinion. This assistance can help reduce diagnostic errors and improve overall

workflow efficiency in the medical field.
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3.1.

3.2.

CHAPTER3 HYPOTHESIS AND OBJECTIVES

Identified Research Gaps
Detecting lung carcinoma largely depends on identifying abnormalities in the bronchioles
and ribs. However, predicting such abnormalities at a premature stage is challenging due to
their rapid and irregular changes.
Captured CT images often contain inconsistencies and low-resolution pixels, leading to
various types of noise, such as Gaussian and Poisson noise, which significantly reduce the
accuracy of the classification process [77].
Manual analysis of earlier medical imaging data is difficult, and segmentation results
heavily depend on convergence time and accuracy. Therefore, there is a need to develop
new and more precise techniques for lung image segmentation [56].
Existing preprocessing methods for lung CT images often result in poor illumination
correction and insufficient edge enhancement, primarily due to sequential and outdated
processing techniques. Although risk screening helps identify premature-stage lung cancer
more frequently, it may delay necessary diagnosis if performed too early. Hence, risk
screening should ideally be conducted after the classification stage for more reliable results.
While common segmentation techniques can extract regions of interest (ROIs) from lung
images, the resulting features often exhibit high similarity to neighboring classes and suffer
from low confidence during the detection phase.

Research Objectives

The primary objective of this work is to recognize lung carcinoma at a premature-stage. The other

key objectives are as follows:

To detect lung carcinoma using a P-ReL.U activated transfer learning-based ResNet model,
referred to as TL-based P-ReLUResNet (P-ResNet).

To remove noise from CT images using the Intra-class Variance—Anisotropic Diffusion
Filter (1-ADF).

To perform lung segmentation through a Region Growing Segmentation (RGS) method
integrated with the Bates Distributed Coati Optimization Algorithm (B-RGS),
incorporating knuckle point partitioning.

To enhance edge clarity using the Unsharp Mask Filter (UMF).

To improve model accuracy by selecting optimal features using the Binomial Distributed
Chi-Square Test (BD-CST).
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3.3. Proposed Framework

Lung cancer is the most prevalent type of cancer worldwide. Due to its high mortality rate,
researchers have been motivated to conduct extensive studies focused on its early detection and
diagnosis [6]. When lung cancer is identified at a premature stage, the survival rate can increase
significantly, by approximately 70-80%.

To facilitate early prediction, a novel deep learning-based framework has been proposed. This
system comprises the following key stages: preprocessing, lung partition segmentation, feature
extraction, feature selection, classification, and carcinoma-based risk screening, as you can see

in Figure 3.1.
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Figure 3.1 Proposed Framework for Premature Stage Lung Cancer Detection

For risk screening purposes, the sensitivity of abnormal CT images was individually assessed to
calculate the packet index of each image. This packet index helped identify individuals at high
risk, particularly those diagnosed with Large Cell Carcinoma and Squamous Cell Carcinoma,
while others were classified as low risk. Based on this screening, patients were categorized

accordingly, and the results are presented in the subsequent section.
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3.4. Summary

Lung cancer, a common malignant tumor, primarily originates from abnormalities in the
bronchial mucosa. As a result, individuals diagnosed with lung cancer often experience
symptoms such as chest pain, coughing, dysphonia, and general discomfort in the throat and
lungs. These symptoms may be further complicated by conditions such as malignant pleural
effusion and pulmonary inflammation. Therefore, early prediction of lung cancer is critical for
assessing individual risk and improving patient outcomes.

Globally, lung cancer remains the leading cause of cancer-related mortality. Approximately 85%
of lung cancer cases are attributed to cigarette smoking. Common symptoms include persistent
cough, chest discomfort, weight loss, and, less commonly, haemoptysis (coughing up blood).
However, many patients present with metastatic disease, often without any clear clinical
symptoms.

Diagnosis typically involves imaging techniques such as chest X-rays or computed tomography
(CT) scans, followed by confirmation through biopsy. Treatment options depend on the stage of
the disease and may include surgery, chemotherapy, radiation therapy, or a combination of these
approaches. Historically, the prognosis for lung cancer has been poor, with a five-year survival
rate of only about 15%.

To address this challenge and improve both prognosis and early classification of carcinoma
subtypes, this study proposes a novel deep learning-based model for the accurate and early

detection of lung cancer.
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CHAPTER4 PROPOSED SEGMENTATION AND CLASSIFICATION

4.1. Deep Learning-Based Framework for Lung Nodule Detection

Convolutional Neural Networks (CNNs) have recently demonstrated remarkable automation
capabilities in the medical field. They are widely used in deep learning applications for cancer
diagnosis. Compared to other classification techniques, CNNs process input images directly,
requiring minimal preprocessing [49], and they can efficiently learn parameters with sufficient
training. These networks are designed to process visual data in a way that resembles the
functioning of neurons in the human brain. A graphical representation of the research process is
shown in Figure 4.1.
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Figure 4.1 Workflow of the Proposed Lung Nodule Detection Framework Using CNN and MPA

4.1.1. Pre-processing stage

The pre-processing stage plays a crucial role in enhancing the quality of lung CT scan images

before feeding them into the classification model. The primary objective is to eliminate unwanted

distortions and enhance key features for accurate detection. The key preprocessing steps applied

in this study are shown in Figure 4.2:

1. Noise Removal: A median filter is applied to eliminate salt-and-pepper noise from CT images.
This filter smooths the image by replacing each pixel value with the median of neighboring

pixel  intensities,  effectively  preserving  edges while  reducing  noise.
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Expected Output: A cleaner image with reduced background interference.

Contrast Enhancement: Techniques such as histogram equalization are employed to improve
the contrast of CT images, making the nodules more distinguishable from surrounding
tissues.

Expected Output: Enhanced visibility of nodular regions and clearer lung boundaries.
Unsharp Masking: This step sharpens the image by enhancing the edge details, allowing
better boundary detection of suspected lesions.

Expected Output: Sharper and more defined anatomical structures.

. Watershed Segmentation: Used to separate overlapping structures or nodules in the image by
treating the grayscale image as a topographic surface.

Expected Output: Segmented image with distinct lung nodule boundaries.
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Figure 4.2 Step-by-Step Preprocessing Workflow for CT Lung Images
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These processed images are then input into a CNN model specifically designed and trained for
accurate classification. The effectiveness of these preprocessing steps directly contributes to
reducing noise, enhancing features, and improving the overall detection performance of the

system, as shown in Figure 4.3.

Original Image Image after preprocessing

Figure 4.3 Image Left and Right without and with pre-processing
The intrinsic ability of the median filter to moderate intensity levels makes it possible to remove
these artifacts without sacrificing image quality. It also effectively preserves image borders while
reducing brightness fluctuations. Moreover, it efficiently removes "salt-and-pepper" noise, which

is caused by abrupt and severe disruptions [19].

4.1.2 Segmentation of Lung Nodules
The primary aim of lung nodule dissection is to isolate individual lesions from the respiratory

system, which is a crucial step in assessing nodule size and distinguishing non-cancerous lesions.

Figure 4.4 Illustration of Lung Image Segmentation
Figure 4.4 shows a segmented lung CT scan where the lung region is outlined in green. The scan

is divided into four color-coded sections (red, green, blue, and cyan) representing different zones
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of the lung for analysis. This type of segmentation helps focus on specific lung areas to detect
abnormalities like nodules. The visual breakdown supports easier observation and diagnosis.

Figure 4.5 Image Left and Right without and with segmentation

Figure 4.5 shows two lung CT scan slices labelled A and B. Image A represents the original CT
scan, clearly displaying the lung structure and surrounding chest area in high contrast. Image B
shows a processed version where only the lung region is highlighted, and non-cancerous areas
are removed. This type of transformation is commonly used to enhance the analysis and detection
of lung tissue for improved disease diagnosis. It helps radiologists or Al systems examine the
lungs more accurately.

4.2 Classification Techniques

4.2.1. Convolutional layer network
This method utilizes convolutional layers, max-pooling layers, and neural network layers, similar

to other deep learning architectures. Essentially, the input data is treated like any typical input, it
passes through multiple convolutional and pooling layers. Network training involves minimizing
the output error between the expected and actual results by optimizing parameters such as weights
and biases [43]. In this study, supervised learning is employed, where input-output examples
guide the training process. The error is reduced by adjusting the network’s output to match the
desired target [49]. As illustrated in Figure 4.6, the deep neural network developed for this work
comprises three main types of layers: convolutional, max-pooling, and a combination of both.
The convolutional layer contains kernels (filters), represented as three-dimensional weight
matrices, that perform convolution operations on the neuron inputs [40]. Three convolutional
layers are used in this architecture, and the filter size significantly influences performance [63].
A Softmax layer is added after the convolutional blocks to manage class probabilities and reduce
dimensionality. By applying 2 x 2 filters in pooling layers, the number of output features is
significantly reduced, which decreases the number of parameters and increases computational
efficiency. Images are used as input in this study to reduce complexity, storage demand, and
computational overhead [81]. However, as the input image size increases, the network’s
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sensitivity tends to decline. Similar to the convolutional layer, each neuron in the pooling layer
is connected to the outputs of a few neurons in the previous layer. The pooling layer is used to
accelerate computation and reduce data volume [75][68]. Even after convolution and pooling, a
considerable amount of small-sized feature data remains [61]. During the training phase, these
features are passed to a Softmax classifier, which assigns class labels to the input images [79].
The final output layer, called "Flatten,” transforms the multi-dimensional tensor into a 1D vector
to facilitate weight optimization. Finally, various TensorFlow activation functions are tested
using the RMSprop optimizer, which aims to minimize cross-entropy loss.

Visualization Method: This mapping technique highlights the area’s most influential in a
model's decision by providing visual explanations. It serves as a powerful tool for making the
model more interpretable to domain experts. Through visual depictions of the model's decision-
making process, this technique enhances trust and facilitates validation during debugging and
optimization [34]. By analyzing these visual outputs, researchers can identify weak points in the
model and implement architectural improvements. In this study, Grad-CAM is applied for visual
recognition in single-module classification. The goal is to explore and enhance 3D CNN as shown
in Figure 4.6 to more accurately and reliably detect lung nodules in CT scan data compared to
existing models [76][55]. Ultimately, this approach aims to support early lung cancer detection,

improving patient prognosis and survival outcomes.
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Figure 4.6 Convolutional Feature Mapper
Source: https://medium.com/data-science/convolutional-neural-network-feature-map-and-filter-
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Figure 4.7 Input and Output Activation Maps

Source: https://www.researchgate.net/figure/ An-example-of-low-resolution-input-activation-

maps-and-the-corresponding-high-resolution fig3 338420687
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Figure 4.8 Max pooling in CNN
Source: https://www.mdpi.com/1999-4893/15/11/391
Grad-CAM can be regarded as a generalized form of Class Activation Mapping (CAM), offering

researchers a way to interpret the inner workings of 3D CNN-based models visually. This
approach is especially helpful for developers and medical professionals, as it visually highlights
the regions in a CT scan that influence the model's decision.

Grad-CAM works by performing a weighted combination of the forward activation maps,
followed by the application of a ReLU function to introduce non-linearity. Since the RelLU
activation is applied in every layer of the output feature map, the resulting CNN becomes more
nonlinear, improving its ability to model complex patterns. In the suggested algorithm, the

rectified linear unit has been employed as the activation function. It functions as follows:

LNea =RelLU (Xx ac Ak)
grad—cam k
(Equation 4.1)
Where,
LN, 0i—cam = Grad-CAM output localization map for class activation.

ReL U= Rectified Linear Unit, an activation function that outputs max (0, X).

af, = Importance weight of the feature map A* For class C.

Ak = Activation map of the K" feature in the last convolutional layer.

This method helps us visualize how the model makes decisions by highlighting the specific areas
in lung images that it relies on. It’s especially useful in medical imaging because it shows where
the model is focusing, which helps experts understand and validate its predictions during lung

nodule detection.
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4.2.2 Memory of the Marine Predator Algorithm (MPA)
Marine predators, such as marine wolves, possess remarkable memory skills that help them

repeatedly locate successful hunting grounds. This behavior is mimicked in the Marine

Predator Algorithm (MPA), where memory retention is used to simulate predator behavior.

After incorporating the effects of Fish Aggregating Devices (FADs) and prey movements, the

algorithm evaluates its solution matrix for potential improvements by updating the elite
solutions [58][69].
In each iteration, if the current solution demonstrates better fitness than the previous one, it

replaces the earlier solution. This process mirrors the way predators revisit prey-rich areas,

thereby progressively enhancing the solution quality. In this study, the MPA aims to optimize the

learning rate parameter. Fitness is evaluated using the Root Mean Square Error (RMSE)

between the actual label vector and the predicted output vector.

The steps of the proposed method are as follows:

1.

2
3
4.
5

Initialize algorithm parameters.

Evaluate the initial population.

Compare and update solutions based on fitness values.

Iteratively enhance solutions by simulating predator foraging behavior.

Optimize the learning rate to improve classification accuracy.
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Figure 4.9 Flow chart of the present MPA-CNN method
The Flowchart in Figure 4.9 illustrates the iterative CNN training process guided by MPA passes

and learning rate adjustments. It continues training and testing until a predefined condition is
met, ensuring optimal performance tuning. Train the optimized CNN model on the training data
and evaluate its performance on the test data. When performance on a k-fold validation dataset
no longer increases after training the model for an arbitrary number of epochs, halt training (k =
5). This method allows one to adjust the ideal value for the classification process. The MPA
algorithm is programmed to execute up to 100 times. If the error value stays constant after 10
iterations, the MPA is said to have converged. After the experiment is set up, use the CNN training
technique [52]. The learning rate is changed if the search agent's findings reveal a smaller mistake
than the preceding number. For the predetermined number of iterations, the MPA runs. Test the
model once the CNN training is finished. How accurately the model predicts the actual values in
the test dataset is shown by the CNN accuracy test. The relevance of deep learning technologies
in identifying significant elements from complex datasets in the current medical era is well
demonstrated by their application. In the proposed method of this study, there is no overlap
between the training and test data. Eighty percent of the images from the dataset are randomly
selected for training, while the remaining twenty percent are used for testing. The training dataset
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is fed into a Deep Neural Network (DNN) with a batch size of 32, trained over 200 iterations.
This approach delivers superior results compared to other methods. Table 4.1 presents the
simulation results of the proposed method along with comparisons to existing techniques.

Table 4.1 The result of the MPA algorithm and its comparisons with others.

Methods Accuracy Sensitivity
Marine Predator Algorithm [4] 92.6 97.4
ResNet [22] 88.4 92.4
GoogleNET [34] 65.3 93.5
AlexNet [34] 84.4 95.7

The proposed technique demonstrates higher accuracy than the other evaluated methods, as
shown in Table 4.1.

Performance Analysis of Deep Learning Methods
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Graph 4.1 Accuracy and Sensitivity Comparison
The accuracy and sensitivity of various techniques for detecting lung cancer are compared in
Graph 4.1. With a sensitivity of 97.4% and an accuracy of 92.6%, the Marine Predator Algorithm

outperforms competing methods such as ResNet, GoogleNET, and AlexNet. These enhanced
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metrics suggest that the Marine Predator Algorithm can reliably diagnose lung cancer from CT-
based imaging data. One of its key advantages is the use of metaheuristic optimization,
specifically, the Marine Predators Algorithm, to optimize network architecture and improve
classification accuracy. This approach yields more precise and dependable results by extracting
high-level features from deep networks, thereby enhancing both classification and diagnostic
performance. Additionally, the higher sensitivity of the Marine Predator Algorithm guarantees
fewer false negatives, making it a potentially useful tool for lung cancer early detection and
intervention.

4.3 Classification Using Traditional ML Algorithms

Traditional classification approaches play a vital role in many machine learning tasks,
particularly when addressing segmentation challenges. These methods provide a baseline for
evaluating more advanced techniques and are often effective when applied to simpler or well-
structured datasets. This section focuses on the Naive Bayes classifier, a widely used classical
classification method.

4.3.1Naive Bayes Classifier Workflow and Architecture

The preprocessing layer normalizes and rescales the pixel values of CT scan images to a
standardized range, enhancing the quality of inputs for training. The Convolutional Neural
Network (CNN) serves as the core component of the framework, consisting of multiple
convolutional layers that extract significant features from the CT images [45]. These layers are
designed to detect patterns that are potentially associated with cancerous regions [13]. To
minimize overfitting and improve generalization, dropout layers are incorporated within the
dense layers [30]. For classification, the model employs the Softmax activation function, which
calculates the probability distribution across the output classes (cancerous or non-cancerous)
based on the dense layer outputs. During training, the loss function measures the discrepancy
between the predicted outputs and actual labels [43]. The model's weights are optimized using
well-established optimization algorithms, with the Adam optimizer being preferred for its
adaptive learning rate and computational efficiency [20][29]. The flowchart in Figure 4.10
outlines the complete lung cancer detection pipeline, starting from data preprocessing to
performance evaluation. Each stage of segmentation, feature extraction, selection, and

classification works in sequence to ensure accurate diagnostic results.
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Step-by-step procedure to detect the lung carcinoma using a naive base classifier
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Accuracy)

End

Figure 4.10 Flow chart of Naive Architecture

Figure 4.10 presents a systematic approach for lung cancer detection using machine learning
techniques. It begins with preprocessing the CT images to enhance quality, followed by
segmenting lung regions and isolating regions of interest (ROI). Features such as texture and
shape are extracted and refined using recursive selection. Finally, classification algorithms like
Naive Bayes and CNN are applied, and the model's performance is evaluated using metrics like
accuracy, precision, and ROC.

Table 4.2 Description and Techniques for the MPA Algorithm

Step  Stages Techniques Reference

1 Data collection and labelling Public datasets [18], [25], [77]
2 Data pre-processing normalization  Image resizing [44], [80]

3 Data split Training, validation, and testing sets [25], [77]

4 Classification Naive Bayes classifier [37], [85]

5 Feature Extraction Networks Convolutional Neural Network (CNN) [20], [39], [86]
6 Non-linearity introduction  Rectified Linear Unit (ReLU) activation [73], [84]

function
7 Mapping to output classes Fully connected layer [36], [80]
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Table 4.2 shows the main steps used in the Marine Predator Algorithm (MPA) for lung cancer
detection. First, CT scan images are collected and labeled. Then, the images are resized and
divided into training and testing sets. A Naive Bayes model is used for classification, and
important features are taken from the images using a CNN. ReLU is used to add non-linearity,
and finally, the results are given using a fully connected layer.

Apart from the proposed segmentation and classification models, various Al-driven approaches
have emerged for early lung cancer detection. Convolutional Neural Networks (CNNs), for
instance, have shown significant promise in analyzing CT images to detect malignant nodules
with high accuracy [41]. These Al algorithms can process large medical image datasets and
identify patterns indicative of cancer. While imaging-based techniques remain central to this
study, other emerging methods such as liquid biopsy, breath analysis, and optical coherence
tomography are also being explored for non-invasive detection [13][39]. Though promising,
these methods are still under research and fall beyond the image-based scope of this chapter.
4.4 Datasets Used in ML-Based Lung Cancer Detection

A large number of medical images is required to train a deep learning model for early lung cancer
detection [55][15]. The dataset should include both cancerous and non-cancerous cases, along
with detailed information on the stage and subtype of the tumor [17][9][40]. The National Lung
Screening Trial (NLST) is one of the most commonly used datasets for this purpose [14][24]. It
contains over 53,000 CT scans from more than 33,000 patients, with both positive and negative
lung cancer cases [49][12][7]. To train deep learning models to distinguish between benign
and malignant nodules, this dataset comprises annotations and classifications of the nodules [6]
[40].

Figure 4.11 Malignant nodules of various sizes on CT slices.
Figure 4.11 shows sample CT scan slices from a benchmark lung cancer detection dataset. These

images highlight both healthy and abnormal lung regions, which are essential for training deep
learning models. The scans demonstrate varied patterns, helping machine learning systems learn
to differentiate between benign and malignant nodules. As shown in Figure 4.14 above, CT scan

images labeled A and D display irregular bright regions indicating potential lung nodules or
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abnormal tissue, suggesting unhealthy cases. In contrast, images B and C show clearer lung fields
without such irregularities, representing healthy examples.

Table 4.3 Nodule annotations for cancer detection

Dataset Imaging  Annotation Nodule  Number of Number of

Name Modality  Type Type Patients  Nodules Reference
LIDC- IDRI CT Radiologist  Lung 1,018 2,174 [12]
NLST CT  Radiologist  Lung 53,452 7,191 [26]
ANODE09 CT Radiologist  Lung 1,004 1,004 [15]
Kaggle Data CT Radiologist  Lung 1,944 1,861
Science Bowl [25]
LUNGx CT Radiologist ~ Lung 2,426 3,495 [20]
LUNAL6 CT Computer- Lung 888 1,186

aided [77]

Table 4.3 presents commonly used benchmark datasets for lung cancer detection using machine
learning. It lists each dataset's imaging method (mostly CT scans), annotation type (usually
radiologist-verified), and details such as the number of patients and nodules included. For
instance, the NLST dataset stands out with over 53,000 patients and 7,191 lung nodules, offering
rich and diverse data. Other datasets like LIDC-IDRI, LUNA16, and Kaggle also provide
valuable CT images, helping researchers train and evaluate deep learning models for accurate
lung nodule detection and classification. An accurate deep learning model for lung cancer early
detection must be trained on a sizable and varied collection of medical images.

4.5 Performance Comparison of Deep Learning and Traditional Models

Table 4.4 Comparative results of the different proposed Lung nodule detection models.

Prototype Accuracy Precision F1-Score Citation
Decision Tree, Discretization 0.76 0.79 0.75 [20] Kavitha & Naveen, 2023
Naive Bayes Classifier 0.85 0.88 0.85 [34] Rawat et al., 2023
RFECV, LR, ANN, SVM 0.84 0.83 0.86 [17] Hasan et al., 2023
Convolutional Neural Network  0.92 0.94 0.92 [39] Praveena et al., 2022
ReLU 0.96 0.97 0.97 [44] Shakeel et al., 2022

Table 4.4 shows that deep learning models like CNN and ReLU outperform traditional methods
in terms of accuracy, precision, and F1-score. ReLU achieves the highest performance, indicating

its strong capability in lung cancer detection.
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Performance Comparison of Machine Learning Prototypes
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Graph 4.2 Comparison of several suggested nodule detection models

Graph 4.2 illustrates the performance of different machine learning and deep learning models
used for lung cancer detection. It compares accuracy, precision, recall, and F1-score for five
techniques. Among them, ReLU-based models and CNNs achieved the highest scores across all
metrics, indicating strong predictive power. In contrast, traditional methods like decision trees
performed lower, showing that deep learning models are more reliable for this task.

4.6 Chapter Summary

The review concluded that lung cancer in CT images can be accurately detected using deep
learning algorithms. The algorithm achieved high accuracy (AUC = 0.96 for nodule detection)
in diagnosing the premature-stage lung cancer. These findings suggest that deep learning
algorithms are highly effective in detecting premature-stage lung cancer from CT images,
potentially enabling earlier diagnosis and better patient outcomes. However, further research is
required to evaluate these algorithms in clinical settings and across larger datasets. This study
primarily focused on lung cancer detection rather than other pulmonary issues visible in lung
imaging. In the future, the proposed methods may also help identify a broader range of pulmonary

conditions.

33



CHAPTERS ENHANCING ALGORITHMS THROUGH
OPTIMIZATION METHODS

5.1. Problem definition

Due to changes in lifestyle, environment, and dietary habits, cancer, particularly lung cancer, has
emerged as a serious threat to global public health. Research attributes lung cancer to multiple
factors, including cigarette smoking, indoor air pollution, genetic tendency, chronic illnesses, and
poor diet. Among these, smoking is the most dominant cause, responsible for approximately 85%
of lung cancer cases. Lung cancer often starts with abnormal growth in the bronchial mucosa,
leading to symptoms such as persistent coughing, chest pain, and breathing difficulty.
Unfortunately, these symptoms frequently appear only in advanced stages, by which point
metastasis has often occurred. As a result, timely and accurate premature-stage detection is
critical to improving survival rates and treatment outcomes. Currently, diagnosis relies on image
analysis techniques such as chest X-rays, CT scans, and is confirmed by biopsy. However,
traditional methods were not able to provide early and accurate results. Thus, this study proposes
a novel deep learning framework for precise, premature-stage lung cancer detection.

The proposed model introduces the following innovations:

(a) Segmentation using B-RGS (Bates-distributed Coati Optimization + Region Growing
Segmentation):

Why: Lung segmentation is critical to isolate the lung area from the surrounding structure. The
proposed B-RGS approach enables more accurate partitioning of lung regions by incorporating
knuckle point detection, leading to precise region growth for better tumor localization.

(b) Edge  enhancement using Unsharp  Mask  Filter (UMF): Why:
CT images often suffer from low contrast and weak boundaries. UMF improves edge clarity,
helping the model focus on critical boundaries between healthy and abnormal tissues, thus
improving segmentation and classification accuracy.

(c) Feature selection using Binomial Distributed Chi-Square Test (BD-CST): Why:
Deep learning models benefit from selecting only the most relevant features. BD-CST reduces
noise and redundant information, enhancing model performance and reducing training

complexity.
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5.2. Problem-Solving Approach

To overcome the identified challenges, this research proposes a comprehensive, deep learning-

based model for premature-stage lung cancer prediction, specifically using TL-based P-

ReLUResNet (P-ResNet). The model incorporates the following key contributions:

a. TL-based P-ReLUResNet for lung cancer detection: P-ResNet integrates transfer learning
and PReLU activation, offering improved gradient flow and better feature representation,
especially beneficial for complex CT data.

b. 1-ADF for noise removal: Iterative Adaptive Decision Fusion effectively removes imaging
noise while preserving key image features, improving the clarity of CT scans used for
diagnosis.

c. Lung segmentation using B-RGS: Combines metaheuristic optimization and region
growing to isolate lung structures with higher accuracy.

d. Edge enhancement using UMF: Enhances contrast at tissue boundaries, aiding the model
in distinguishing tumor regions from healthy tissue.

e. Feature selection using BD-CST: Prioritizes the most discriminative features, leading to
higher accuracy and reduced false
Positive rates.

5.3. Proposed Methodologyl: Lightweight Deep Neural Network for Early Lung Cancer

Detection

This proposed framework is shown in Figure 5.1 and works under the following phases:

1. Pre-processing (Noise elimination and Contrast enhancement)

2. Segmentation phase

3. Classification phase.

4. Risk score prediction phase
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Figure 5.1 Block schematic of the suggested lightweight model

The explanation, details, and contributions of our developed approach are given below. In this

research, we propose a lightweight model to overcome noisy regions, such as graininess, tissues
[11] and vessels, a Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM).

To reduce false positives of the disease prediction accuracy, Sgrensen-Dice Index-based K-

means clustering has been suggested.

To detect varying-sized nodules of the lungs, Light Spectrum Optimizer-based pulmonary
nodule detection (WDSI-LSO) has been used.

To differentiate lung parenchyma from the segmented lung, a sliding window strategy has
been suggested.

To screen patients for future analysis, a risk screening has been made based on solitary
nodule detection using PLCOm.

To appropriately classify lung cancer with high accuracy, a semi-supervised and contrastive
learning-based Deep Neural Network (SSCL-DNN) has been proposed.

The proposed algorithm evolved using a hybrid method and was compared to other
algorithms, such as MLP, CNN, and RNN. Google DeepMind was the first to use

reinforcement learning technology.
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5.3.1. Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM)

First, input lung CT images are collected from the LIDC dataset in DICOM format and are given
to the Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM). The suggested filter
improves variance field estimation by making use of the image Ricker wavelet coefficients' inner-
and inter-scale dependence. By smoothing the noisy wavelet coefficient variances iteratively, this
filter maintains the edge information found in the large-magnitude wavelet coefficients [40]. Here
results will be evaluated for parameters, such as PSNR, MSE, and SSIM, with conventional de-
noising filters, such as the Gaussian filter, Guided filter, and Wiener filter. A histogram
equalization technique is adopted for contrast enhancement [4][25]. After determining the proper
window size level, the slope and intercept are rescaled using the inverse log transformation.
5.3.2. Sgrensen-Dice Index K-means clustering

The pre-processed images will be computed for various intensities, and then given to Sgrensen-
Dice Index K-means clustering. After that, the cluster centers will be initialized, and this step is
repeated until convergence is reached. Since Euclidean and other distances are not scale-
invariant, meaning that the distances computed could be skewed depending on the features' units,
the Sgrensen-Dice Index distance is thus employed as the data index distance calculation [6][56].
Sgrensen's initial formula was intended for use with discrete data. It is defined as specified, 2

sets, X and VY, as

DSE = 2—)
|2 (Equation 5.1)

This equation measures how similar two sets X and Y are. It calculates the overlap (intersection)
between the two sets and divides it by the total size of both sets combined. A value close to 1
indicates strong similarity (more common elements), and A value near 0 means very little overlap.
Used in clustering to compare the similarity between segmented regions in CT images. The 2 sets
of cardinalities, or the number of essentials in every set, are represented by the variables |X| and

[Y|. Divide the whole number of elements in each set by the total sum of items that both sets share
twice to get the Sgrensen index. By using the definitions of (FN), which stands for false negative,
true positive (TP), and false positive (FP), one can write boolean data as follows. The cardinalities,
or the number of members in each set, of the two sets are represented by the variables |X| and

[Y|[45]. Divide the overall sum of elements in each set by the total sum of items that both sets
share twice to get the Sgrensen index. By using the definitions of true positive (TP), false positive

(FP), and false negative (FN), one can characterize boolean data as [34][16].
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2-TP
2-TP+FP+FN

DSE =
(Equation 5.2)

Where TP = True Positives, FP = False Positives, FN = False Negatives. It is commonly used in
image segmentation to evaluate how well predicted regions match actual tumor areas.
Conversely, true positives are only counted once in the numerator and denominator of the Jaccard
index. The similarity quotient, or DSC, has a range of 0 to 1[26][9]. It can be seen as a set-level
similarity metric. The established operations can be described in terms of vector operations over
binary vectors a and b, just like the Jaccard index does:

(Equation 5.3)

Here, a and b are binary vectors (pixel values: tumor vs non-tumor). The formula compares two
vectors by checking how many matching values they have. Useful when comparing pixel-wise
predictions with ground truth segmentations. This provides a broader similarity metric across
vectors and yields the same result for binary vectors. The coefficient is well-defined as two-fold
the collective information (intersection) over the total cardinalities for sets X and Y of keywords
utilized in information retrieval. Therefore, from each cluster center, the centroid intensity will
be determined using the Sgrensen-Dice Index as a distance measure. For every data point, this
process is repeated [24][36]. Conventional clustering techniques, such as the K-means clustering
algorithm, centroid-based clustering, and density-based clustering methods, will be evaluated for
comparison. The results of this clustering method for parameters, such as true positive and false
positive rates, are compared with those of previous methods.

C = K-means(IRWI-CW - M)
(Equation 5.4)

This shows the result C of applying K-means clustering to the preprocessed image I RW I C W
M. K-means is used to group similar pixels, like tumor, background, etc. The clustered regions
are denoted by the C. Srensen-Dice Index with K-means Clustering: Using the Srensen-Dice
Index as the similarity metric, we employ K-means clustering to separate the preprocessed image
into K clusters. After choosing K cluster centers, each pixel is subsequently given to the nearest

cluster based on the Dice similarity.

Iscgmcntcd == f(Iprcproccsscda K, Dice Slmllal‘lty)

(Equation 5.5)

38



This equation indicates that segmentation is performed on the preprocessed image using K-
clusters and Dice similarity as the distance metric. The segmented image is represented by the
keyword segmented. K-means stands for the K-means clustering procedure. K represents the
number of clusters, which normally stand in the foreground and background. The similarity metric
used in K-means clustering is Dice similarity [14]. The segmented pulmonary nodules are
included in the final product, where each pixel is assigned to a cluster depending on how similar
it is to the cluster centers using the Sgrensen-Dice Index. The result obtained at this stage is then
given for pulmonary nodule detection. For pulmonary nodule detection, lung parenchyma is
extracted [38] using a sliding window strategy, and from this, lung nodule detection will be done
using Weighted Dice Similarity Index with Local Search Optimization based pulmonary nodule
detection (WDSI-LSO) [5][47].

Here, Light Spectrum Optimizer is taken, and due to its being restricted by the transmission
coverage, the scale factor distribution is modified using the Weibull distribution. Here, the images'
grey level values will be initialized, and the goal function is to find the best threshold by
histogram analysis and evaluating each gray level to see which one maximizes the likelihood that
the threshold value will occur for each class of probability [57]. Many ROIs with different
intensities are obtained from this ideal threshold due to optimal multilayer thresholds. Eventually,
these ROIs are concealed using a segmented lung mask to create the collective form of an ROI
picture. From this ROI, the features, such as the range of area, volume range, tolerance in Overlap
(OL) feature, and elongation (EL) feature, are calculated [15][7]. This result will be evaluated
for nodule count, Dice Similarity Coefficient (DSC), sensitivity, Positive predictive value (PPV),
and specificity for U-DNet, NoduleNet, and Faster R-CNN.

IH'DSI—LSO = WDSILS()(IRWI -CW - M, C)
(Equation 5.6)

Where lwpsi-rso represents the enhanced image after applying WDSI-LSO. The segmentation
process can be visualized as a binary image, where pixels corresponding to pulmonary nodules.
This shows the image. Iwpsi—1so It is generated by applying the Light Spectrum Optimizer
(WDSI-LSO) on the preprocessed image and cluster result.
5.3.3. Semi-supervised and contrastive learning-based DNN
As proposed methodology discussed in the above section, Preprocessing steps typically include
Contrast Stretched, Convex Hull, and Edge Enhanced for resizing the images, normalizing the
pixel values, and possibly augmenting the data to increase the variety and robustness of the
training set, as shown in Figure 5.2 below. In the context of lung cancer, labels would indicate the
presence or absence of nodules and, if available, the malignancy of detected nodules. Common
39



architectures used for medical image classification include Convolutional Neural Networks
(CNNs) like ResNet, VGG, and proposed. Divide the dataset into training, validation, and test
sets. A common split is 70-20-10. Train your DNN using the training set. Use the validation set to
tune hyperparameters and avoid overfitting. After classification, the Optimizers like Adam or

RMSprop and the risk analyzer are frequently used.

Contrast Stretched

Segmented Image Large Cell Carcinoma

Figure 5.2 Dataset Utilization for Cancer Detection
The LUNA16 CT imaging dataset, which was split into three sets (Test, Training, and Validation),
served as the data sample for this study. Each image in the dataset is assigned a single label: normal,
large cell carcinoma, or squamous cell carcinoma. CT scans were performed throughout the
patients' clinical care schedules. Before training the deep learning models on the dataset, two board-
certified physicians reviewed and labeled the images. To ensure accuracy, a third expert further
assessed the image labels. In both the training and test sets, there was a significant class imbalance.
Additionally, some samples from the training set were also present in the test set, creating overlap.
To address this, the training and test sets were combined, shuffled, and randomly reordered to form
a new training set. Figure 5.3 displays images corresponding to cases of squamous cell carcinoma,

large cell carcinoma, and normal conditions.
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Figure 5.3 The left, center, and right images illustrate distinct kinds of cancer.

For classification, the segmented nodules were taken as input to the semi-supervised and
contrastive learning-based DNN (SSCL-DNN). Output SSCL-DNN = SSCL-DNN
(IWDSI-LSO, C, PLCOm). Where Output SSCL-DNN represents the output of the neural
network, which could include nodule detection scores and risk assessments. By incorporating
several projector layers, a contrastive loss term, semi-supervised label propagation, and
contrastive learning [1] for classification, DNN is divided into two sub-networks. 1. The classifier
will receive segmented results as a training set. 2. The network has pre-trained models (semi-
supervised learning) and it propagates the incoming images into classes, such as small-cell lung,
non-small cell lung malignancy [31], and no nodule. 3. Then, contrastive learning [40] is
introduced in the network by adding a projection layer and considering contrast loss. 4. Due to
contrasting learning, the input images will be augmented both strongly and weakly, then
combined in the projection layer for the extraction of 2D features and 3D features. These features
will be mapped as feature vectors in the same layer 5. These results will be given to DNN
classification layers, and the upshot will be non-small cell lung [7], small-cell lung malignancy, as
well as no nodule [37].

5.3.4. Risk Score Screening

Here, risk screening [6] will be done based on solid nodules found in the segmentation result.
This will be done based on environmental factors, such as smoking, family history, and other
chronic diseases. Along with this, if positive solid nodules were found, the risk assessment would
be performed using the PLCOm risk model. PLCOm risk assessment also considers the
environmental features stated earlier to result in high-level and low-level risk. This was done to

predict the survival rate of the entire database and make precautionary care in the future.

Riskprcom = P LCOm(I patient-data)
(Equation 5.7)

Where Ipatientdata contains patient-specific information.
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This equation represents the risk score calculated using the PLCOm model based on a patient’s
environmental data (like smoking history, family history, etc.).

5.3.5. Dataset Overview for Lightweight DNN Model

The Lung Image Database Consortium image collection serves as the dataset for this proposed
work (LUNA-16) [28]. Thoracic computed tomography (CT) scans with marked-up, labeled
lesions are used for both lung cancer screening and diagnosis [6]. This 1018-case data collection
was produced in collaboration with seven university organizations and eight medical imaging
companies [38]. Images from a clinical thoracic CT scan and an XML file containing the
annotation process findings, completed in two steps by four seasoned thoracic radiologists, are
included for each topic. At the first blinded-read stage, each radiologist independently reviewed
each CT image [2] and classified lesions into three categories: “non-nodule > or =3 mm”, “nodule
<3 mm”, and “nodule > or =3 Mm”. Here, the sample image of the suggested methodology is
shown in Figure 5.4. In Figure 5.4A, the original CT sample images are displayed. As can be
seen in Figure 5.4B, the contrast stretch applied to the input images is preprocessed to remove
noise using RWICWM. Next, in the picture of Figure 5.4C, we see the edge enhancement image.
After, in Figure 5.4D, we see segmentation. Finally, in Figure 5.4E, the classified output is large-
cell cancer, squamous cell cancer [51], and normal (without carcinoma). RWICWM. Next, in the
picture of Figure 5.4C, we see the edge enhancement image. After, in Figure 5.4D, we see
segmentation. Finally, in Figure 5.4E, the classified output is large-cell cancer, squamous cell

cancer [51], and normal (without carcinoma).
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Figure 5.4 Sample input images in the proposed framework.

(A, B) The Top and Bottom Images show the original CT sample Images and the contrast—
stretched Images. (C, D) The Top and Bottom Images show the edge enhancement Image and
segmentation. (E) The images show the classified output: large cell cancer, squamous cell cancer
[24], and normal (without carcinoma).

In Figure 5.4, the images help doctors make well-informed decisions and improve patient care
strategies by providing a thorough awareness of the extent and distribution of malignant tumors
through a visual contrast between normal cancerous images on the left side and enhanced

cancerous diseased tissue images on the right side.
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Figure 5.5 Left and Right with Cancer and Highlighted Cancerous Image.
The area highlighted in Figure 5.5 (using the arrow) is the cause for concern and requires
additional investigation because it shows cancerous cells. Herein, we have used red color to
indicate the tumor. This might be a side and enhanced cancerous diseased tissue images on the
right side, and might be a tumor, nodule, or another abnormality that has to be examined more
closely to rule out malignancy or benignity
5.4. Proposed Methodology 2: Lung Carcinoma Detection Using Transfer Learning
Proposed Methodology: Advanced Lung Carcinoma Prediction and Risk Screening Model Using
Transfer Learning: Globally, lung cancer isthe most prevalent type of cancer. Dueto the high death
rate associated with lung cancer, researchers were compelled to conduct an extensive
investigation into the early identification and diagnosis of cancer. When lung cancer is detected
early (in the first stage), the survival rate increases by 70 to 80%. To predict them in a premature
stage, a novel framework with deep learning has been proposed. The novel framework consists
of the following stages: Pre-processing, Lung partition Segmentation, Feature extraction, Feature
selection, Classification, and Risk Screening based on carcinoma. Segmentation and nodule
detection were performed on each 2D CT slice independently. A Lung CT scan image is taken as
input, and this image itself has some noise, such as Gaussian and Poisson noises, which should be
removed. Also, the image should be enhanced for its high level of classification. Hence, the image
first undergoes noise removal using Intra-class variance-Anisotropic Diffusion Filter (I-ADF).
Conventional Anisotropic Diffusion Filter (ADF) is chosen for its characteristic of without
blurring edges. Still, it has the disadvantage of constant diffusion magnitude that might affect the
Signal to Noise Ratio (SNR) of the filter. Hence, it is modified to follow inter-class variance.

This novel filter will be evaluated for variance and SNR and will be compared with conventional
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methods, such as Wavelet transform filter (WTF), Gilbert Filter (GF), and Median Filter (MF)
[66][29]. From this, the noise-removed image will then be given for contrast stretching. This is
to increase the range of intensity values as it contains a span of desired values. This contrast-
stretched image will then be given for the convex hull operation to separate the lung region from
the whole image, and then proceed with this result in the image again [12]. Further, this lung
region will then be given for edge enhancement using an Unsharp Mask Filter (UMF). UMF is
selected for its increased edge sharpness in the image, and this pre-processed image will then be
given for segmentation. For segmentation purposes, Bates distributed the coati optimization
algorithm, and integrated Region Growing Segmentation (B-RGS) has been proposed. Here,
Region Growing Segmentation (RGS) is selected for its high segmentation accuracy if the edges
are clear; still, it has certain limitations when used in lung CT images to segment the carcinoma
region due to the overlapping shadow of vessels, tissue mass, and ribs. Hence, to overcome this
issue, the seed of the region growing section is assumed to be the knuckle point of the lung image.
This knuckle point is selected using the Bates distributed Coati Optimization algorithm (BD-
COA). This will be done by collecting the contour values of both lungs (left and right) and then
conforming them. This gives a conformity index by selecting the highest conformity value. Here,
the Coati Optimization algorithm (COA) is selected for its high meta-heuristic property, and still,
it has a limitation of high computation complexity; hence, it is modified in the r iguana updating
rate using the Bates distribution. This B-RGS will then be evaluated for segmentation accuracy,
error, etc., and will be compared with RGS, Watershed algorithm, and Density-based
segmentation algorithm. Features, such as gradient features, profile-based features, on-rib, on-
vessel, and spectral flatness measures, have been extracted. These features were typically related
to carcinoma categories. Feature selection will be done using a Binomial distributed Chi-square
test (BD-CST). The Chi-square test is chosen for feature reduction due to its low processing time.
Still, it has a limitation of choosing the significance level randomly that might affect the
processing result; hence, it is modified to follow the Binomial Distribution (BD). This method will
then be evaluated for its feature selection algorithms, such as Genetic algorithm (GA), Linear
Discriminant analysis (LDA), and Principal Component Analysis (PCA). The selected features
will then be given for the classification of carcinoma. For classification, TL-based P-
ReLUResNet P-ResNet (P-ResNet) has been proposed. P-ResNet is selected for its high
efficiency in medical image classification. However, it suffers from a low learning rate and a high
computation time for the kernel activation function. Hence, to address this issue, this transfer
learning modified ResNet model will provide improved learning rate, and thus it will be further

modified with P-ReLU activation function for its efficiency. This model will be evaluated for
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Accuracy, precision, recall, etc., and will be compared with existing deep learning models, such
as Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Artificial Neural
Network (ANN). The classifier results as normal and abnormal, such as Adenocarcinoma,
Squamous cell carcinoma, and Large Cell Carcinoma, are classified. As this transfer learning
modified P- P-P-ResNet model will provide an improved learning rate, and thus it will be further
modified with P-ReLU activation function for its efficiency. For risk screening purposes, the
sensitivity of the abnormal images was considered and calculated individually to find the packet
index of the CT image. This packet index in turn shows that persons with Squamous cell
carcinoma and Large Cell Carcinoma were at high risk, and others are at low risk. Thus, the

patients were screened, and the results will be presented.
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Figure 5.6 Pre-Diagnosis of Lung Cancer Detection
The TL-based P-ReLUResNet (P-ResNet) for lung cancer diagnosis combines a number of
cutting-edge ideas from medical image processing and machine learning. An essential part of this
process is Transfer Learning (TL), which allows the model to use the knowledge it has learned
during training on big datasets in related fields like object identification or even general medical
imaging. Through the application of this acquired knowledge, the model is able to adjust and
become more specialized for the goal of detecting lung cancer, possibly using less data and
achieving faster convergence. Based on the Residual Neural Network (P-ResNet) framework,
which is well known for its capacity to efficiently train very deep neural networks through the
use of skip connections, P-ResNet's architecture was developed. Because of these connections,

the model can learn residual mappings, which facilitates the training of deep networks without
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causing the vanishing gradient issue. The network is further enhanced by the integration of
Parametric Rectified Linear Unit (P-ReLU) activation functions. P-ReLU modifies the normal
ReLU activation function to include more learnable parameters, which allows the network to
simulate more intricate relationships in the data. The ability of P-ResNet to increase lung cancer
detection's sensitivity and specificity is one of its main benefits. The ability of the model to
precisely recognize true positive cases of lung cancer is referred to as sensitivity, while the ability
to correctly identify true negative cases is measured by specificity. P-ResNet seeks to balance
these two metrics by adding P-ReLU activations and fine-tuning the pre-trained model weights
using TL to reduce false positives and false negatives. Furthermore, P-ResNet may improve the
effectiveness of procedures for diagnosing and screening for lung cancer. Radiologists can detect
possible cancers more quickly and precisely by using P-ResNet, which automates the detection
of problematic regions in lung imaging studies, such as CT or X-rays. This could shorten the time
it takes to diagnose a patient, allowing for earlier interventions and better patient outcomes.
5.4.1. Iterative Adaptive Decision Fusion (I-ADF)

Through iterative decision fusion, the Iterative Adaptive Decision Fusion (I-ADF) technology
offers a novel approach to lung cancer detection with the goal of improving diagnosis accuracy
and dependability. In contrast to conventional techniques that depend exclusively on a single
classifier or algorithm, 1-ADF utilizes several classifiers and repeatedly combines their
conclusions to attain enhanced performance. I-ADF functions primarily through a sequence of
iterative processes. First, some classifiers, each intended to evaluate distinct features of lung
imaging data, are used to produce distinct conclusions about the existence or non-existence of
malignant anomalies. These classifiers could make use of a variety of methods, including rule-
based systems, conventional machine learning algorithms, and deep learning models. An
adaptive decision fusion technique is utilized to combine the judgments made by each classifier
after the first classification phase.

The individual choices are combined dynamically throughout this fusion process, which adjusts
to the properties of the input data and the effectiveness of each classifier. Through iterative
improvement of the fusion method based on input from prior rounds, 1-ADF can efficiently
combine the advantages of several classifiers while minimizing the drawbacks of each one
separately. Because I-ADF is iterative, decision fusion may be continuously improved, allowing
the system to learn from its performance and adjust to changing patterns in the data. The fusion
process gets more and more precise with each iteration, improving lung cancer detection's
resilience and accuracy. The utilization of I-ADF exhibits considerable potential in enhancing the

dependability of lung cancer detection and diagnosis. I-ADF may lessen the drawbacks of single
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algorithms and offer more precise evaluations of worrisome lesions in lung imaging scans by
skillfully integrating the insights from several classifiers. In the end, this method may help identify
lung cancer early, which would improve patient outcomes and allow for quicker therapies.

5.4.2. Knuckle Point Using (B-RGS)

By identifying conspicuous places within lung imaging data, Knuckle Point diagnosis (KPD)
using Binary-Robust Geometric Sampling (B-RGS) presents a viable tool for improving lung
cancer diagnosis. Using B-RGS, this method seeks to identify important characteristics along the
outlines of lung anomalies, such as tumors or nodules, similar to knuckle points in fingerprints.
The capacity to precisely identify critical locations along aberrant outlines has substantial
diagnostic significance when it comes to lung cancer identification. These points can help
distinguish between benign and malignant lesions by acting as reference markers when examining
the size, shape, and textural traits of possible cancers. The KPD approach effectively recovers
significant points from lung imaging data, even in the presence of noise or fluctuations in picture
quality, by utilizing B-RGS. Significant spots may be identified based on their geometric qualities
thanks to the combination of strong geometric sampling and binary image processing techniques
found in B-RGS. Through the provision of useful landmarks for analysis to automated diagnostic
systems and radiologists, the combination of KPD with B-RGS advances the identification of
lung cancer. More precise and dependable diagnosis is made possible by the knowledge of the
geographical distribution and structural features of lung anomalies provided by these identified
knuckle spots. Once everything is looked at, the exact localization of important characteristics
within lung imaging data through the use of KPD employing B-RGS provides a potential method
to improve lung cancer diagnosis. This technique has the potential to improve early detection
rates and treatment methods for individuals with lung cancer by utilizing the advantages of
contour analysis and geometric sampling.

5.4.3. Unmask Sharp Filter

The UMF Unmask Sharp Filter is a cutting-edge method for lung cancer diagnosis that improves
the sharpness and clarity of medical imaging data, especially in lung imaging modalities like
computed tomography (CT) scans and X-rays. This method concentrates on enhancing the
visibility of minute anomalies and structures in lung pictures, which are essential for precise
diagnosis and timely identification of lung cancer. Fundamentally, the UMF Unmask Sharp Filter
preserves significant anatomical information while improving picture sharpness through the use
of sophisticated image processing methods [16][25]. This filter "unmasks" hidden elements in
the image so that automated diagnostic systems and medical experts may more easily identify

them by selectively enhancing high-frequency components and reducing noise. The UMF
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Unmask Sharp Filter's increased sharpness has several benefits for lung cancer diagnosis. It
enhances the visibility of aberrant structures, lesions, and tiny nodules that might be signs of lung
cancer in its premature stage. Furthermore, by improving contrast and detail, the filter helps
medical professionals distinguish between benign discoveries and those that are cancerous,
resulting in more precise and trustworthy diagnoses. Additionally, the UMF Unmask Sharp Filter
is compatible with a range of imaging modalities and software systems and is made to fit easily
into current medical imaging processes. Its adaptability and simplicity of usage allow it to be
applied in research and clinical practice contexts, which promotes broad acceptance and use.
Through enhanced picture sharpness and clarity, the UMF Unmask Sharp Filter is a useful tool
for improving lung cancer diagnosis. In the fight against lung cancer, this approach has the
potential to enhance patient outcomes by improving diagnostic visibility, improving early
detection rates, and facilitating more accurate diagnosis by uncovering subtle abnormalities.
5.4.4. Binomial Distributed Chi-Square

Summing the squares of independent standard normal random variables yields the Binomial
Distributed Chi-Square, frequently referred to as the Chi-Square Distribution, whose degrees of
freedom are equivalent to the total number of categories minus one. In statistical analysis, this
distribution is commonly seen, especially in goodness-of-fit and hypothesis testing [31]. Chi-
Square Distribution is used in hypothesis testing to assess the difference between observed and
predicted frequencies in categorical data. A substantial divergence between the observed and
expected distributions can be found by statisticians by comparing the perceived frequencies with
those predicted by a null hypothesis. When assessing the relationship between two
categorical variables, the chi-square test for independence is one prominent use of the Binomial
Distributed Chi-Square. Researchers can determine if there is a statistically significant
association between the variables by calculating the chi-square statistic from the observed
frequencies in a contingency table. Additionally, evaluating the goodness of fit, the degree to
which an observed frequency distribution matches a theoretical or predicted distribution.
Requires careful consideration of the Chi-Square Distribution. This application is frequently used
to evaluate the suitability of statistical models and hypotheses in a variety of domains, including
economics, psychology, and biology.

A fundamental probability distribution in statistical research, the Binomial Distributed Chi-
Square provides useful tools for goodness-of-fit evaluation, independence assessment, and

hypothesis testing.
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5.4.5. Dataset Overview for Transfer Learning Model

The data includes one folder for normal cells and three distinct sorts of chest sarcoma: Squamous
cell cancer, Adenocarcinoma, and large cell cancer. The test, train, and validation folders can be
found inside the data folder, which is the main folder holding all of the step files. A training set
is indicated by the term "train," a testing set by "test," and a validation set by "valid". The training
set utilized 80% of the data during analysis, followed by the testing set (20%).

) (ii) (iii) (iv)
(d)
Figure 5.7 Sample images of the planned model.

(a) input picture, (b) pre-processed images, (c) segmented images, and (d) classified output
images

Here, Figure 5.7 demonstrates the sample image of the proposed methodology. The input image is
shown in (a). After that, the input image is pre-processed by using I-ADF and UMF, has been
shown in (b). Then, b(i) represents the noise-removed image, b(ii) represents the contrast-
stretched image, b(iii) represents the convex hull image, and b(iv) represents the edge

enhancement image. Then, the segmented image is shown in (c), and finally, the classified output
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is d (i) Adeno carcinoma, d (ii) large cell cancer, d(iii) squamous cell cancer, and d(iv) normal
(without carcinoma). The outputs d (i), d (ii), and d (iii) represent the abnormal class.

5.5. Chapter Summary

In this, the chi-squared distribution is a fundamental tool in hypothesis testing because it makes
it easier to compare actual and anticipated frequencies in categorical data. Statisticians can
estimate the degree of disparity between the observed and predicted distributions to help them
decide whether a hypothesis is true or not. The chi-square test for independence is a popular use
of the Binomial Distributed Chi-Square that enables researchers to conclude if there is a
statistically significant association between two categorical variables. Understanding the
relationship between variables is obtained by computing the chi-square statistic from observed
frequencies in contingency tables. When determining the goodness-of-fit of observed frequency
distributions, the Chi-Square Distribution is an invaluable tool for comparing them to theoretical
or predicted distributions. This evaluation is essential for confirming the reliability of statistical
models and hypotheses in a variety of fields. As a fundamental idea in statistical analysis, the
Binomial Distributed Chi-Square gives academics and professionals the means to test hypotheses,

look at correlations between variables, and validate statistical models.
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CHAPTER 6 LUNG TUMOR SCREENING USING SMART
DECISION-MAKING TECHNIQUES

6.1. Advanced DNN Risk Screening for Early Lung Carcinoma

In this work, a Lightweight Advanced Deep Neural Network (DNN) Model is proposed for
premature-stage lung carcinoma prediction by utilizing the SSCL-DNN and WDSI-LSO
approaches as discussed in chapter 5. The proposed methodology comprises several key phases:
pre-processing, feature extraction, segmentation, classification, feature selection, and risk

assessment. Figure 6.1 presents the block diagram of the proposed model.

Risk Prediction
Parameters

1l Risk Calculations 154
2!
S SR

Figure 6.1 Block Diagram of Lightweight DNN for Lung Cancer Detection
6.1.1. Image Preprocessing for Lung CT Enhancement and Denoising
Three essential preprocessing steps are included in the proposed DNN model: RWICWM, K-
means clustering, and WDSI-LSO. RWICWM enhances image quality by smoothing and
highlighting important features. K-means clustering is used to segment the image and identify
potentially malignant areas. WDSI-LSO ensures robust feature extraction by enhancing these
regions and assigning scores based on their similarity to known malignant patterns. These steps

collectively improve the precision and effectiveness of the DNN in identifying lung cancer.

6.1.2. Noise Suppression
By integrating wavelet transform and median filtering, the Ricker Wavelet lIterative Center

Weighted Median Filter (RWICWM) improves medical images as discussed in section 5.2.1.
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wo = (1-5) o

(Equation 6.1)

Here, p represents time or spatial location, and ¢ controls the width of the wavelet. The wavelet
Is symmetric and has a zero mean, making it effective for highlighting variations in intensity (like
edges) and detecting features such as nodules in lung images. RWICWM improves significant
characteristics and efficiently lowers noise in medical images to help in abnormality diagnosis.
Image Contrast Enhancement Using Histogram Equalization (HE)

A method for increasing image contrast by more uniformly spreading pixel intensity values is
called histogram equalization, or HE. It determines how frequently each intensity level shows up
in the image.

CDF: Compute the Cumulative Distribution Function

i
CDF(i) = Z histogram(5)
3=0 (Equation 6.2)
Histogram (j) is the frequency of occurrence of intensity level j in the image. CDF (i) gives the
total number of pixels with intensity values from 0 to i. The CDF helps redistribute pixel intensity
values to enhance image contrast, especially in low-light or low-contrast medical images like
lung CT scans.

Transform Intensity Levels:

CDF(I1 (ZC, y)) — CDFmin S
L= CDFmin

Tnew(z,y) = round ( (L 1))
(Equation 6.3)

This equation is used for histogram equalization, a contrast enhancement technique commonly
applied in medical imaging to improve the visibility of anatomical structures.

I new (x, y): The new pixel value at location (x, y) after histogram equalization.

CDF (I (x, ¥)): The cumulative distribution function value for the pixel's original intensity. CDF
CDFnmin: The minimum non-zero value of the CDF (used to avoid division by zero).

L: The total number of possible intensity levels in the image (typically 256 for 8-bit images).
round (.): Rounds the result to the nearest integer to maintain valid intensity values.

It increases the overall contrast and increases the visibility of image details. It is used in digital
imaging, photography, medical imaging (e.g., improving X-rays), and other fields. Although
histogram equalization works well, it can cause noise in photos by over-enhancement.

Detail Enhancement Using Inverse Logarithmic Transformation
An inverse logarithmic function is used to pixel intensities in the Inverse Log Transformation

process, which improves image contrast. This technique is very helpful for bringing out the
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details in dark areas of an image, which makes it better suited for visual evaluation. To emphasize
the darker areas, the inverse log transformation is applied to every pixel intensity value:

Liew(2,y) = e*1¥ —1

(Equation 6.4)

This equation is used in non-linear contrast enhancement methods, specifically exponential
transformation.
I new (x, y): The transformed pixel value at coordinates (x, y).
I (x, y): The original intensity value of the pixel.
a: A positive constant that controls the degree of enhancement.
e: The base of the natural logarithm.
The scaling constant that regulates the level of amplification is called a. Usually, the image's
dynamic range is taken into consideration while selecting a.
6.1.3. Lung Nodule Segmentation for Region of Interest Identification
The technique of splitting a visual into relevant parts in order to separate items or areas of interest
is known as image segmentation. K-means clustering is a useful technique for this. It divides the
image into k k groups according to the intensity levels of the individual pixels.
6.1.4. Optimized Segmentation Using K-means and Dice Index
In image segmentation and clustering, to assess the overlap between expected and actual
segments is the Sgrensen-Dice Index (SDI), which is a measure of similarity between two sets. It
can be utilized in conjunction with K-means clustering to improve the precision and analysis of
clustering outcomes.

SDI: Sgrensen-Dice Index.

SDI = zA‘ﬁ
‘ ‘ ™ ‘ (Equation 6.5)
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The Sgrensen—Dice Index (SDI) is a similarity measure used to quantify the overlap between
two sets, commonly applied in image segmentation to evaluate how well an algorithm's output
matches the ground truth.

Where,

| Aland | B | are the sizes (number of elements) of sets A and B.

| A N B | is the number of elements in their intersection.

Morphological Hole Filling for Complete Nodule Segmentation

In binary pictures, where the backdrop is represented by black pixels (value 0) and the foreground
items are represented by white pixels (value 1), hole filling is a technique used to fill in the gaps
or missing areas. This procedure entails the identification of holes, the selection of a marker within
the hole, and the propagation of the marker's value across the hole until it reaches the boundary,
utilizing morphological procedures such as dilation. By adding nearby pixels, the dilation
procedure expands the region iteratively. The final product is integrated with the original image
once the hole has been filled. Hole filling ensures that every space between items is filled in,
resulting in a full representation. This improves image quality for more accurate feature extraction
and analysis, especially for applications like optical character recognition, medical imaging, and
object detection.

Localized Feature Detection Using Sliding Window Technique

The sliding window strategy is a fundamental technique in image processing and computer vision
used for object detection and feature extraction. This method involves moving a window of a fixed
size across an image to analyze sub-regions sequentially.

Optimized Nodule Scoring Using WDSL-LSO Technique

Stand for Weibull Distributed Scale Factor Integrated-Light Spectrum Optimizer for Pulmonary
Nodule Detection. By using the Weibull distribution together with light spectrum optimization,
this method improves the precision of pulmonary nodule detection, a sign of lung cancer. A
flexible probability distribution that is frequently utilized in survival analysis and reliability
engineering is the Weibull distribution. The two parameters that define it are scale (1) and shape
(k). The Weibull distribution's probability density function (PDF) is provided by:

flz;6, ) =k-A-2*1.e
(Equation 6.6)
Where x represents the random variable, k represents the shape parameter, and A is the scale
parameter. This allows for better separation of Regions of Interest (ROIs) with varying intensities

during thresholding, leading to improved detection of nodules of different sizes.

55



6.1.5. Experimental Results and Comparative Performance Analysis

In this Section, we explain the limitations and findings from our studies on the identification of
pulmonary nodules using different risk assessment approaches and semi-supervised and
contrastive learning-based deep neural networks (SSCL-DNN). The results of combining the
RWICWM and WDSI-LSO techniques produced noisy data. The performance achieved by
combining K-means and WDSI-LSO is slightly lower. The specific difficulty with CNN-based
methods may have to do with things like overfitting, insufficient training data, and lower accuracy
and precision that can result from these conditions, as Table 6.1 shows. Because of their multi-
stage processing pipeline, R-CNNs generally have slower inference speeds than other CNN
architectures. This may be an unusual problem in some applications where real-time processing
is necessary. ResNet-50 usually performs well in image classification tasks, but its performance
may decline when applied to datasets with complex and heterogeneous features, which is why
ResNet-50 leads to lower accuracy and precision. By combining approaches with PLCOm, this
lightweight method, RWICWM + K-means + WDSI-LSO + PLCOm comes into play to solve
specific challenges and produce superior performance in terms of accuracy and precision. The
initial experiment (WDSI-LSO + RWICWM): 1. Accuracy of Nodule Detection: 95.3%. 2.
Accuracy of Risk Assessment: 87.2%. A high nodule identification accuracy of 95.3% was
achieved by combining the Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM)
and Weibull Distributed Scale factor integrated-Light Spectrum Optimizer-based pulmonary
nodule detection (WDSI-LSO). However, at 87.2%, the risk assessment’s accuracy was a little
bit lower. The second experiment (WDSI-LSO + K-means): 1. Accuracy of Nodule Detection:
96.1%. 2. Accuracy of Risk Assessment: 86.5%. In this study, we used WDSI-LSO along with
K-means clustering. In comparison with the first experiment, the risk assessment accuracy was
slightly lower at 86.5% while the nodule detection accuracy remained high at 96.1%. The Third
experiment (CNN): 1. Accuracy of Nodule Detection: 97.4%. 2. Accuracy of Risk Assessment:
86.8%. After one, R-CNN, VGG16, ResNet-50, and DenseNet-121 depict the accuracy with 96.2,
84.7, 94.5, and 92.8, as well as in terms of risk assessment, accuracy was 89.6, 83.2, 90.1, and
89.4, respectively.

The Sixth experiment (RWICWM + K-means + WDSI-LSO + PLCOm): 1. Accuracy of Nodule
Detection: 98.2%. 2. Accuracy of Risk Assessment: 96.8%. In Test 8, a longer pipeline that
included RWICWM, K-means clustering, WDSI-LSO, and PLCOm risk assessment was used.
The maximum nodule detection accuracy was attained with this thorough technique, at 98.2%,

and the improved risk assessment accuracy was at 96.8%. These findings show that the eighth
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experiment exceeds the previous experiments in terms of both nodule detection and risk
assessment accuracy.

Table 6.1 Evaluation of the suggested models and the current models’ performance

Experiment Processing Methods Nodule detection Risk Assessment
Accuracy (%) Accuracy (%)
1 RWICWM + WDSI-LSO 95.3 87.2
2 K-means + WDSI-LSO 96.1 86.5
3 CNN 97.4 86.8
4 R-CNN 96.2 89.6
5 VGG16 84.7 83.2
6 RESNET-50 945 90.1
7 DenseNet-121 92.8 89.4
8 RWICWM + K-means + 98.2 96.8

WDSI-LSO + PLCOm2012

For a variety of reasons, the RWICWM (Random Walk with Initial Cluster Weighted Method), K-
means clustering, WDSI-LSO (Weighted Density-Based Spatial Clustering with Local Search
Optimization), and PLCOm (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
Mortality Risk Prediction Model) combination can be regarded as a lightweight technique.
Compared to more complicated algorithms [25], these methods are computationally efficient and
require less computing power for execution. They work well in real-time applications and with
large datasets, and they also use less memory. Combining several approaches enables a combined
strategy that makes the process lightweight and improves the performance as a whole. In a
lightweight framework, RWICWM, K-means, WDSI-LSO, and PLCOm risk model perform in
a robust and efficient way to produce reliable results. The proposed framework improves the
accuracy and risk assessment, as well as reduces the computational time of execution as
compared to previous methods. Optimized algorithms and effective data processing approaches

make the suggested model lightweight.
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Performance of Various Processing Methods
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Graph 6.1 Comparison of Preprocessing Techniques Based on Accuracy

In the above Graph 6.1, a comparison of many preprocessing techniques for lung nodule detection
and risk assessment is shown. Outperforming all other models, the suggested lightweight model
(RWICWM + K-means + WDSI-LSO + PLCOm) achieves the maximum accuracy of 96.8% for
risk assessment and 98.2% for nodule detection. While CNN and R-CNN models also
demonstrated strong performance, VGG16 trailed the least in terms of accuracy across both
measures. This illustrates the enhanced efficacy and potential of the suggested strategy for early
lung cancer identification and risk assessment.

Various metrics, including the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM), etc., depending on a particular application, are used to perform a performance analysis

of noise removal algorithms and present the findings in a table.



Table 6.2 Analysis of the existing and prospective models: Performance of PSNR, SSIM, and ET

Experiment Processing Methods PSNR SSIM Execution Time
1 RWICWM + WDSI-LSO 35.2 0.89 1(;)3
2 K-means + WDSI-LSO 36.8 0.91 14.8
3 CNN 37.5 0.92 18.7
4 R-CNN 36.3 0.9 20.5
5 VGG16 34.7 0.87 22.1
6 ResNet-50 38.1 0.93 17.9
7 DenseNet-121 37 0.91 16.4

RWICWM + K-means +
8 WDSI-LSO + PLCoM 385 0.96 124
(Lightweight)

Peak Signal-to-Noise Ratio, which expresses how good the de-noised image is in comparison to

the noisy real image. Better performance is indicated by higher values. A measure of how

comparable the original and de-noised images are is called the Structural Similarity Index. The

values in the range of -1 to 1 represent the time taken by the approach to remove noise from a

particular image or batch of images. Execution time is a commonality.

Processing Methods

Performance Metrics of Different Pre-processing Methods

w0 VGG16
< R-CNN
o0 CNN
~ K-means + WDSI-LSO

~  RWICWM + WDSI-LSO

o
w«

10 15 20 25
Metric Values

Execution Time (s) SSIM  EPSNR

30

35 40

Graph 6.2 SSIM and Runtime Analysis of Proposed vs. Baseline Models

59



Graph 6.2 offers a comparative analysis of different preprocessing techniques based on two
performance parameters (SSIM and Execution time) for lung nodule detection. In addition to
having the quickest execution time (12.4 seconds), the suggested lightweight model (RWICWM
+ K-means + WDSI-LSO + PLCOm) has the highest SSIM (0.96), suggesting greater image
quality and structural similarity. While less efficient, other models such as ResNet-50 likewise
provide good performance in terms of SSIM (0.93). On the other hand, VGG16 performs the
worst according to all criteria. This demonstrates the efficacy and efficiency of the suggested
methodology, which makes it the ideal choice for early lung cancer detection. In Figure 6.3, the
Peak Signal-to-Noise Ratio (PSNR) is used to compare various preprocessing techniques for lung
nodule detection in the picture. The recommended lightweight model (RWICWM + K-means +
WDSI-LSO + PLCOm) produced the highest PSNR of 38.5 out of all the evaluated approaches,
indicating a superior image quality. Additionally, ResNet-50 did well, with a PSNR of 38.1. On
the other hand, VGG16 had the lowest PSNR (34.7), indicating lower-quality images. This
comparison demonstrates how much more efficient the suggested lightweight model is in
generating high-quality images. This makes it a viable method for the early detection of lung
cancer. Table 6.2 displays the accomplishment analysis of the suggested model and the current
models in terms of ET, PSNR, and SSIM. A model that performs well has a lower ET value and
higher PSNR and SSIM values. The suggested model achieves an ET value of 12.4, which is less
than that of the Prior models. Comparably, the suggested model outperforms the current models
as evidenced by the PSNR and SSIM values it achieves, which are 38.5% and 0.96, respectively.
Thus, it may be said that the suggested model removes noise more effectively.

6.2. TL-Based P-ResNet Framework for Early Lung Cancer Detection

The prediction of lung carcinoma and risk screening model at the premature-stage was proposed
in this work by using TL-based P-ReLUResNet with B-RGS techniques. The suggested method
goes through the following phases: First, pre-processing, segmentation, feature extraction, feature
selection, classification, and risk screening. The Workflow of the suggested model is shown in Figure
6.2.
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Figure 6.2 Architecture of the TL-Based P-ReLUResNet (P-ResNet) Risk Screening System
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6.2.1. Enhanced Filtering Techniques for Lung CT Image Preprocessing

Initially, the lung computerized tomography (CT) scan image (I ) which was gathered from the

publicly available datasets [52], is pre-processed. Pre-processing is the initial step taken to
improve the quality of an image. Pre-processing involves a number of stages, which are described
below: noise removal, contrast stretching, convex hull lung area, and edge enhancement.

Noise Suppression Using Improved Anisotropic Diffusion Filtering (I-ADF)

The input image (I )contains noise, such as Gaussian and Poisson noise should be removed. In

this work, noise removal was done by using I-ADF. ADF is a method for removing noise and
distortion from an image without creating any edge blur. However, ADF's constant diffusion
magnitude has an impact on the filter's SNR (signal-to-noise ratio). That is the reason why, to
overcome this problem, the work proposed intra-class variance by replacing local variance. The
variance within the class is termed as intra-class variance. Hence, the proposed method is named
I-ADF.

Let the diffusion matrix (Dm¢ ) that shares the eigen vectors with eigen values related to the
The level of noise is defined as,

A = 1-C (Equation 6.7)

3
a=1—-C+ 5(1 = C)planar
(Equation 6.8)

@=1-C+ J(1~ Clypue +3(1 = e
(Equation 6.9)
Where a1,0l2, and azdenotes the eigen values, C represents the
gain coefficient, and Cpanar
and Ciinear represents the gain in a local planar neighbourhood and local linear neighbourhood,

respectively, which is given by,

¢ =C(L, Var(I)) (equation 6.10)

Cplanar — C(I7 Var(I), €2, 63) (Equation 6.11)
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Clinca.r == C(Ia Var(I), €2, 63)
(Equation 6.12)

Where, ek, k € [1,b] belong to eigenvectors, (I} represent the local mean assessment of the image

(1), and Var(l') represents intra-class variance, which is the variance taken within the class,

which is calculated by,

Var(I) B Z(I B I)2 (Equation 6.13)
The equation shows how much the pixel values in an image vary from the average brightness of
the image.
I: a pixel value in the image.
I: the mean (average) of all pixel values.
(I-1): the squared difference from the mean.
> - adds up all these squared differences.
So, variance Var(l) gives a measure of how much the pixel values spread out higher variance

means more contrast or detail in the image.

1
il = 2—521(Z+b'82+C'€3)
b, (Equation 6.14)

I= 2—152I(z+b-eg+c-eg)
b,e (Equation 6.15)

These are discrete approximations used in anisotropic diffusion filtering (likely an Intra-class

variance Anisotropic Diffusion Filter, or I-ADF.

I: Filtered intensity at pixel location z.

e2, e3: Directional unit vectors (like along horizontal and vertical directions in the image).

b, c: Constants or step indices (used to control pixel neighborhood in those directions).

z: Current pixel position.

The summation: Averaging over a set of neighboring pixels located at positions offset by be2+ce3

Therefore, the diffusion matrix may be expressed as follows:
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a4 0
mt=12 0

o

(Equation 6.16)

al: Diffusion coefficient in the x-direction (horizontal).

a3: Diffusion coefficient in the z-direction (depth, or slice direction in 3D CT imaging).

Os in off-diagonal entries: This means no cross-directional diffusion, so diffusion occurs
independently in X, y, and z directions.

mt: transformation matrix.

The corresponding diffusion equation is written as the sum of three diffusion terms, which is

given as,
oI(z,t
L =V +(DuVA)
ot
(Equation 6.17)
I(z,t) Image intensity at position z and time t.

g_l . Rate of change of image intensity over time.
t

VI Gradient of the image (detects edges).

Dm:: Diffusion matrix/tensor (controls how much smoothing happens in each
direction).

div(Dm:VI)Divergence operator that spreads intensity values (i.e., smoothing), but only in

directions controlled by the diffusion tensor. This equation tells the image how to evolve to

reduce noise while not blurring important structures like edges or nodules. Equation (6.18)

represents a composite formulation that integrates divergence and gradient-based terms weighted

by coefficients related to different structural components. It is defined as:

1 1 1
= S (1= G VD) Tav(i=Co) - vD) T dv(A=Cy)- VD)

(Equation 6.18)

Where,
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VI: denotes the gradient of the image I, capturing intensity changes across spatial coordinates.
div(-): represents the divergence operator, used here to measure the net flow of the vector field
defined by the product of (1-C) terms and VI.

Chpianar, C2, and Cs are context-specific coefficients derived from structural features such as planar

and linear components in image segmentation or processing tasks.

The projection of the gradient in the direction of esand VI represents the projection of the gradient

of (1). Finally, the noise-removed image is obtained as N,.... After that, contrast stretching is

applied to the picture with the noise eliminated.

Contrast Enhancement Using Intensity Range Stretching
It is an image heightening method used to increase the contrast in the image (Nrem )after noise has
been removed by extending the range of intensity values to a desired range of values. Therefore,

the contrast-stretched image is expressed as (Scont )-

Scont = [Scont{l_): Scont(?): Scont(S)a ceey Scont(a_)]
(Equation 6.19)
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Where
Scont(a ) represents several contrast-stretched images. Then, these contrasted stretched images

are given to the convex hull operation.

Isolation of Lung Region Using Convex Hull Algorithm

The convex hullis a set of pixels included in the smallest convex polygon that surrounds all white
pixels in the input. In this study, the lung area is separated from the contrast stretched picture.
(Scone) Using a convex hull. Therefore, the separated lung region is expressed as Lreg. Then,

this lung region is fed into the edge enhancement operation.
Enhanced Lung Boundary Detection Using Unsharp Masking Filter (UMF)
Edge enhancement is a technique that enhances the edge contrast of L. In this work, edge
enhancement was done by using UMF. The fundamental idea behind UMF is to add to the original
image by scaling and highlighting a portion of it. The edges or high-passed pixels from the
provided equation are removed throughout this filtering step.

Ag =7 - 778

of = " (Equation 6.20)

Where Aeq represents the augmented edge, 7 =" represents the boundary mining kernel, and

Represents, grey content in the image L . The improved picture(E) is created using the UMF

technique as,
E=Q+n-Au

(Equation 6.21)

Where is the gain factor that determines the potency of the boosted edge? Where r indicates the

gain factor that determines the potency of the augmented edge (Aeq ).

The above equation is a generic energy function, often found in optimization algorithms and

physical models, including image enhancement or edge detection.
6.2.2. Precise Lung Image Segmentation Using BRGS Optimized with BD-COA
After pre-processing, the segmentation process is done to segment to enhance the image (E) In

this work, the image was segmented into four parts by using the BRGS technigue, which
provides high segmentation precision. RGS divides the image by combining pixels into a larger

region based on predefined seed pixels, growth criteria, and stop conditions. But it leads to the
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overlapping shadow of vessels, tissue mass, and ribs when used in CT images [73]. So, to
overcome this problem, the knuckle point used in RGS is selected by using the Bates distributed
Coati Optimization algorithm (BD-COA). Here, COA is selected for its high meta-heuristic
property, which gives a conformity index by selecting the highest conformity value. However,
COA prompts high computational complication. So, to address this issue, the Bates distribution
(BD) was used to calculate the random number used in the algorithm. Therefore, the proposed
method is named BRGS.

Initially, an improved image (E) is fed into the RGS process. Let the seed point selection be the

premature stage of the RGS process. Inthis work, the seed point (SE), which is the knuckle point

ofthe lung image, was selected by using COA. The population-based metaheuristic algorithm

known as COA was inspired by the behaviors and habits of the natural coati. Let the coati
be initialized as the seed point (SE ) The locality of coatis in the (search—space) is first set at
random as,
P, (SE) =lwy+ (- (up—lwy), ==1,2,...,m; y=12,...,n
(Equation 6.22)
Where P, ,(S¢ ) )represents the position of X™ coati of y* decision variable, Iwand up

represent both (upper and lower) bounds of y™ decision variable, here, amount of coati

is denoted by m, n denotes the quantity of decision variables, and, ¢ denotes a random number,
which is calculated by using BD. BD represents the distribution of the mean of a random variable
uniformly distributed from 0 to 1, which reduces the complication of the described model.

Therefore, the random number is determined using [28].

g (Yn

o1 (Equation 6.23)
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Where, Uo appears to represent an upper limit for summation over index o. Then, the population of
the coati is represented by,

[P(SE)] [P11(SE) -+ P, (SE) -+ P,(SE)]
Py(SE) Py(SE) -+ Py(SE) -+ Py,(SE)
_Pm(SE)_ _Pm.l(SE) e Pm,y(SE) e Pm,n(SE)

mx1 = mxn(Equation 6.24)

This is a structured matrix representation of a feature probability map P(SE)P(SE)P(SE) derived
from segmentation or extracted features (SE).

P1(SE),....Pm(SE): Vector of probabilities or feature responses for m different segmented
elements, such as regions or pixels.

Pi;j(SE): Probability value or feature strength of the ith segment or element responding to the
Jjen Teature or attribute from segmentation (SE).

The full matrix is of size. m x n Where:

m Number of samples, regions, or segmented patches.

n Number of extracted features or attributes from each region

Equation (6.24) represents the formation of a feature probability matrixP(SE) where each entry
Pi;(SE) indicates the response of the ith'segmented region to the jt"Extracted feature. This matrix
helps quantify and organize feature importance across segmented lung regions, supporting
accurate classification and risk assessment of lung nodules.

Different values for the problem's fitness will be determined and depending on where potential
solutions are placed in the choice variable. The foundation for assessing the study's fitness value

is the classification accuracy. The advantage of physical health is provided by

it (Py(SE))]
fit (Py(SE))

it =1 gt (P, (SE))

fit (P,.(SE
it (B (SE))] <1 (Equation 6.25)

Pi(SE): Feature vector (or probability score) of the it Segmented element derived from

segmentation and extraction operations.

68



fit(Pi(SE)): Afitness function is applied to each segment to evaluate its significance. (e.g., how
likely it represents a tumor nodule).

Equation (6.25) calculates the fitness values for each segmented region based on the extracted
features. Coati's position is updated depending on two behaviors: its defense mechanism against
entering iguanas and its escape plan from predators.

6.2.3. Extraction of Discriminative Features from Segmented Lung Regions

Feature extraction is the process of mining features from the segmented picture. Here, features
such as gradient features, profile-based features, on-vessel on-rib, and spectral flatness
are considered. The measures are removed from the segmented image (S;). Below is an

explanation of these features.
Extraction of Gradient-Based Image Descriptors

The gradient characteristics from the (S.y) are retrieved for each sub-image. Based on the
distance between two modes, as well as the ratio of modes normalized by their separation and
their respective statistical properties like skewness, kurtosis, and bimodality coefficient, the area
under the modes is computed. Therefore, the gradient features are expressed as Gmea.

Spectral Feature Quantification Using Flatness Measure

Based on (Gmea)For each sub-image, the spectral flatness measure is calculated, which gives a
measure of the edginess of the image.(Seg). It can be expressed as the Fourier coefficient
magnitudes of the image divided by their arithmetic mean or the geometric mean. Therefore, the
spectral feature measure is stated as SPyiac .

Profile-Based Attribute Extraction for Enhanced Discrimination

The profile-based characteristics are retrieved from the normalized, smoothed magnitude of each
sub-image of (S.4)And are described below.

> RIib cross: The profiles onthe edge representation are taken in order to extract this feature.

When a rib edge is present, the profile should have a peak assigned score of prof ((p) =1.

> Peak Ratio: Determine the average and maximum peak-to-minimum-peak ratio for every
extracted profile.
> Slope Ratio: Calculates the profile's first-order derivative and takes the average.

» Slope smoothness: This characteristic determines how smoothly the slope is. Determine the
steepness value and average after calculating the second-order. Derivatives for every

profile. Therefore, the profile-based features are stated as prof fea.

min (prof(diff))

max (prof(diff)) (Equation 6.26)
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Where,

prof(dif f): This represents the profile of the difference in intensity or feature values across an
image segment (likely a line or edge profile).
min(prof(diff)) The minimum slope or gradient value observed in the profile.

max(prof(dif f)) The maximum slope or gradient value observed in the profile.

Equation 6.26 calculates the relative slope ratio in a profile of intensity or feature differences.
This metric helps to assess uniformity or variation in edges or texture across a region. A lower
value may indicate sharper contrast or prominent edges (ideal for tumor borders), while a higher
ratio indicates uniform texture or less variation, which might represent normal tissue.

On Rib: This feature will determine whether or not there is a cancer [66] and will assign it a
feature value. This entails rib edges being located. If the distance between the centroid and the
segment is less than the inter-rib (difference between the centroid and the rib), cancer is suspected
on the rib. On-rib characteristics are computed using segment length, slope, and eccentricity
parameters. Consequently, the on-rib features are expressed as Orip.

On-Vessel: On-vessel properties are computed on these edges based on their length and
eccentricity. As indicated by (predicting the length), measure the lengths of all the vessels

edges and select the first two with the longest lengths.

max_leng, x max_leng,
height x width

Vessel; =

(Equation 6.27)
max_lengl, max_leng2: These likely represent the major and minor axis lengths of a vessel-like
structure (possibly elliptical). Height, width: Dimensions of the entire image region or bounding
box being analyzed. This equation calculates the normalized area of a vessel-like structure
relative to the full image region. Specifically, it compares the approximate area of the vessel (as
a bounding rectangle or ellipse) to the total image area. A higher value of Vessel: suggests a larger
vessel area relative to the image, which can aid in identifying abnormal vessel expansion or

density associated with lung disease. Then determine the lowest distance between each edge and
the subimage's center, choose the least distance (min dist )between themall, and get the inverse
value, which is given by,

1
min (min dist)

vessel, =
(Equation 6.28)
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Therefore, the on-vessel features are expressed asOuesser. Finally, the extracted features are

given by,

Feacxt — [G;\Icaa Spﬂat-, prOffca, Orib, Ovcsscl] (Equati0n6 29)

Where Feaex: represents the extracted features. The feature selection procedure then uses these
extracted characteristics as input [63]. Equation 6.29 explains that feature extraction (Feaext) was

carried out to derive critical information for accurate classification. The selected features include
Mean intensity (Mea), Spectral Flatness (flat), general image-based features (fea), Rib proximity
features (rib), and Vessel adjacency features (vessel). These collectively enhance the
discrimination capability of the classifier, especially in differentiating cancerous from non-
cancerous regions.

6.2.4. Selection of Optimal Features Using Statistical and Spatial Criteria

After feature extraction, the most significant features are determined from the extracted features
by using the BD-CST algorithm. CST is a numerical test that quantifies the deviation from the
expected distribution and assesses the feature event regardless of the class value. Nevertheless, it
had a quick processing time, and one of its limitations is that the significance level can only be
chosen at random, which could slow down processing. In order to address this issue, the work
suggests using the binomial distribution to determine the significance level, which shortens the
model's processing time. Consequently, BD-CST is the introduced model's name. The following
are the steps in the BD-CST method:

e Describe your hypothesis and your analysis plan.

e Analyze sample records and predict the outcomes.

Specify hypothesis and analysis plan: The BD-CST model receives the extracted characteristics
(Feaex: ), as input at first. After that, the hypothesis is explained. The next section

of the analytical plan explained how to use model data to either confirm or deny the hypothesis.

Test procedure and importance rank need to be defined in the strategy.

Examine sample data and predict the results: In this step, the test's degree of freedom,
Predictable frequency, test value, and probability value must all be determined by analyzing the

chosen specimen data. You can figure out the degree of freedom (Dfr) by using,

71



Dfr: (w_l) X (C_l)
(Equation 6.30)

Where @ denotes the level count for one category variable and, € denotes the level count for

another categorical variable. The features (Fease ) are finally chosen by,

e-(WZ—YX)?

Feagee = W+Y)(X+2)(W+X)(Y + 2)

(Equation 6.31)

Where W represents the number of times Feaex and G co-occurs, X delineates the amount of
times Feaex appears withoutC , Y represents the number of times C appears without Feaex:,

Z number of times neither § nor Feaex: occurs.

6.2.5. Classification of Lung Abnormalities Using the Proposed P-ResNet Model
After feature selection, the classification process is done to classify whether the selected features

(Feasere)are healthy or abnormal. In this work, classification was done by using a transfer

learning-based P-ResNet algorithm [12], which significantly enhanced the performance of the
network with more layers. ResNet uses skip connection, which connects activation of the layer
to further layers by skipping some layers in between that forming a residual block [60]. Still, it
has an impact due to a low learning rate and a large calculation time caused by the kernel
activation function. Therefore, transfer learning (TL) based work was suggested as a solution to
this. TL is essentially a machine learning technique that uses a model that has already been trained
to serve as the foundation for a new assignment. Using the TL approach strengthens and increases
the security of the system. The model's effectiveness is also increased by using the P-RelLU
activation function [13]. As a result, P-ResNet is the designed model's name. Here, the

architecture of the P-ResNet is shown in Figure 6.3.
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Figure 6.3 Architecture of the Proposed P-ResNet Model
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Source: An Advanced Lung Carcinoma Prediction and Risk Screening Model Using Transfer

Learning.
The four sets of layers that comprise the P-ResNet are the activation layer, the convolution layer,

the pooling layer, and the fully connected layer. Initially, (Feas...) IS specified as input

to the convolution layer. To categorize the output throughout this process, feature mapping

was carried out. The output of the convolution layer is given by

Conlyr = Z (Feasele - w) (Equation 6.32)

This equation 6.32 defines the output of a convolutional layer in the deep neural network. It
takes the selected features (Feasele), multiplies them by their corresponding weights (w), sums
them up, and scales the result by a factor . This process enables the network to learn important
patterns in lung CT images, such as nodules or abnormal tissues, essential for accurate lung
cancer classification. The P-ReLU activation function, which generalizes the conventional
rectified unit and has a slope for negative values [64], is given by, where w indicates the weight

and p represents the P-ReLU activation function [35].

w, ifpu>0

“= Y0, ifu<o

(Equation 6.33)

Where k denotes the negative slope, and after that, the consequence of the convolution layer.
is fed into the maximum pooling layer (poly:-) which decreases the dimension of the feature

map by selecting relevant features, which are given by,

conlyr — w
K

pollyr = max (

(Equation 6.34)
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This equation 6.34 represents a max pooling operation applied to the output of a convolutional
layer. It first normalizes the convolution result (convlyr) by subtracting a bias w and dividing by
a scale factor k. The max function then selects the strongest (maximum) activation. This helps
the model retain the most important features while reducing the spatial size, improving efficiency,
and reducing overfitting. The above represents the stride length that decides the number of pixels
shifts by the various weights.

6.2.6. Risk Screening of Lung Carcinoma Using: TL-based P-ReLUResNet
Risk screening is a process of identifying the risk of harm [69] and then minimizing the risk that
has been recognized. In this work, during the risk screening process [40], the on-rib features of
abnormal images, cann...» Were considered because the risk of carcinoma can be easily detected

by using on-rib features as high risk or low risk, which is given by,

Rkpign, if carcinoma is present
Rkscrcen - P 5 P
Rk, if carcinoma is not present

(Equation 6.35)
Where, Rkscreen represents the risk screening [72], Rknigr denotes high risk, and Rki,w denotes

low risk. Finally, the patients were screened and treated.

6.2.7. Results and Discussion on Proposed Models’ Effectiveness

This module compares the results of the proposed framework with those of existing models that
are currently in use in order to assess the effectiveness of the model. The Python development
environment is used to implement the recommended paradigm. For the achievement analysis,
information from the upper body is collected, particularly from the Chest Computed Tomography
(CT) scan Image Lung dataset.

Classification Accuracy Evaluation of Proposed Models

The error rate, training time, recall, sensitivity, specificity, F-score, false positive rate (FPR), false
rejection rate (FRR), false negative rate (FNR), and accuracy are all confirmed by the
performance evaluation of the proposed TL-based P-ReLUResNet. The results are then contrasted
with those of the current models, including ResNet, CNN, DNN [31][39], and Artificial Neural
Networks (ANN) [41][46].
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Table 6.3 Comparative Assessment of Proposed vs. Current Lung Cancer Models

A h Accuracy Precision Sensitivity F-score Specificity
pproaches (%) (%) (%) (%) (%)
Proposed
P-ResNet 98.21 98.71 97.46 98.08 98.71

ResNet 94.66 96.66 94.15 95.39 96.87
CNN 93.01 95.33 90.5 92.85 95.54
DNN 92.38 95.36 89.44 92.3 95.45
ANN 87.26 89.4 84.9 87.09 89.67

The developed approaches and the current models' performance analyses in terms of F-score,

specificity, sensitivity, recall, accuracy, and precision are shown in Table 6.3. Greater values for

accuracy, precision, recall, sensitivity, specificity, and f-score specify improved performance

from the model. The precision of the suggested model is 98.21%, which is higher than that of the
existing models, which achieve accuracies of 94.66% for ResNet, 93.01% for CNN, 92.38% for
Lightweight DNN, and 87.26% for ANN, as shown in the graph.

ANN

DNN

CNN

Evaluation of Processing Methods

Processing Methods

Proposed P-ResNet

7

m Specificity (%)

M Precision (%)

5 80

m F-score (%)

= Accuracy (%)

Metric Values
m Sensitivity (%)

[ Accuracy (%)

90

95

m Sensitivity (%)

H Approaches

100

Sensitivity (%)

Graph 6.3 Evaluation of processing methods

Additionally, the suggested framework surpasses the present framework in terms of accuracy,
recall, sensitivity, specificity, and F-score, which are each 98.71%, 97.46%, 98.71%, and 98.08%,

respectively. Consequently, it may be concluded that the proposed framework outperforms

previous models.
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Graph 6.4 Performance Comparison of P-ResNet with Existing Models
The comparison between the estimated framework and the created models in terms of FNR, FPR,
FRR, and error rate is displayed above in Graph 6.4. The model performs better when the FNR,
FPR, FRR, and error rate are lower. The FNR values achieved by the implemented technique and
the current models are 0.02531 and 0.0844, respectively, whereas the FNR values obtained by the
current models are 0.09493 (CNN), 0.1055 (Lightweight DNN), and 0.15094 (ANN). Similar to
this, the projected model's FPR, FRR, and error rate are, respectively, 0.0128, 0.0127, and 0.0191,

showing the better performance of the suggested model.

Training Time Comparison of Deep Learning Models
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Graph 6.5Training Time Comparison Between Proposed and Existing Models
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The proposed framework and the existing models' training times are shown in Graph 6.5. Training
time is the time taken by the Introduced model to complete the process. Here, the outcome as a
training time hit by the projected sculpt is 36938.55ms, while the training times obtained by the
existing models are 56639.28ms (ResNet), 66016.98ms (CNN), 70078.52ms (Lightweight
DNN), and 82063.17ms (ANN). The findings show that the suggested model is more effective at
classifying data.

Evaluation of Lung Segmentation Accuracy Using BRGS and Other Techniques
Performance analysis of the proposed BRGS is validated using Dice score measures. Next, the

results are compared with the models that have already been developed, such as RGS, K-Means
Algorithm (KMA), Ostu algorithm (OS), and Wise Sliding window (WS).

Dice Score Comparison of Segmentation Techniques
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Graph 6.6 Dice Score Comparison Between Proposed and Existing Models.

The Dice score values for the present models and the proposed framework are shown in Graph 6.6.
When evaluating the effectiveness of picture segmentation techniques [45], the Dice score is
utilized. The current models achieve dice score values of 0.81291 (RGS), 0.60652 for WS,
0.50240 for OS, and 0.4385 for KMA, compared to the suggested model's value 0f 0.86173. The
results demonstrate that the suggested strategy outperforms the others in terms of data
segmentation.

Comparative Analysis of Noise Removal Techniques in Lung CT Images

The recommended I-ADF's performance research is validated in terms of Peak Signal Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Mean Squared Error (MSE).
The findings are then contrasted with those from other models, including ADF, the Gilbert Filter,
the Median Filter, and the Bilateral Filter.
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Table 6.4 Analysis of the projected model's and current models' MSE, PSNR, and SSIM

performance
Method MSE  PSNR (%) SSIM
Proposed I-ADF 3.7105 30.0334 0.8933
ADF [22] 49105 28.0334 0.8533
GF [36] 7.0002  25.9047 0.7703
MF [38] 7.6316  24.3380 0.6440
BF [38] 9.1208 22.1738 0.5784

The performance analysis of the planned model and pre-existing models as it relates to MSE,
PSNR, and SSIM is shown in Table 6.4 above.

Comparison of Filtering Methods Based on MSE, PSNR, and SSIM

11114

Proposed I-ADF ADF [22] GF[36] MF [38] BF [38]
Filtering Methods

Metric Values
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Graph 6.7 Comparison of Performance Metrics for Existing and Proposed Models.

In Graph 6.7, it is illustrated that the model performs better when the MSE value is lower and the
PSNR and SSIM values are higher. The presented method achieves an MSE value of 3.710, which
is less than that of the existing models. Likewise, the suggested model achieves 30.033% and
0.8933 for PSNR and SSIM, respectively, which demonstrates that the model performs better
than the current models. The suggested model is therefore shown to be more effective at removing

noise.
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Table 6.5 Comparison of the accuracy of the suggested model and the literature survey model

Techniques Accuracy
Proposed TL-based P- 98.21
ReLUResNet

RF [47] 97.1
Deep NN [54] 92.11
Deep CNN [41] 81.7

As mentioned above the Table 6.5 contrasts the suggested model's accuracy with that of the

literature survey model.

Accuracy Comparison of Different Techniques
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Graph 6.8 Accuracy Comparison Between Proposed Model and Literature Models

The Introduced model's precision is superior to that of the literature survey models, which achieve
accuracy of 97.1% for RF, 92.11% for Deep NN, and 81.7% for Deep CNN, shown in Figure
6.11. Consequently, it may be concluded that the novel approach predicts lung cancer more
accurately.

6.3. Chapter Summary

Lung carcinoma has a high mortality rate, but an early prediction can contribute to a favourable
prognosis. Various approaches have been developed for the prediction of lung carcinoma at a
premature stage. However, these existing approaches still have defects such as low accuracy, high
noise, and low contrast, and never consider the screening risk of lung cancer. So, the work

proposed a lung carcinoma prediction and risk screening model using Transfer Learning (TL)-
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based P-ReLUResNet. Initially, the lung computed tomography scan image was pre-processed to
eradicate noise and enhance the edge by using Intra-class Variance-Anisotropic Diffusion Filter (I-
ADF) and Unsharp Mask Filter (UMF) algorithms. After that, the pre-processed image was
segmented by using the Bates distributed coati optimization algorithm integrated with Region
Growing Segmentation (B-RGS). Next, the features from the segmented images are taken out and
then selected by using the Binomial distributed Chi-square test (BD-CST). Then, the TL-based
P-ReLUResNet classifier was used to classify cancer as normal or abnormal.
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CHAPTER 7 COMPARATIVE ANALYSIS

The Advanced Lung Carcinoma Prediction and Risk Screening Model Using Transfer Learning
offers significant improvements over the Lightweight Advanced Deep Neural Network (DNN)
Model for several key reasons.

1. Transfer Learning with ResNet-50: This model leverages a pre-trained ResNet-50 network,
originally trained on a large and diverse dataset. The pre-training enables the model to learn a
wide range of features, enhancing its ability to identify complex structures in lung cancer images
with high accuracy.

2. Feature Extraction: The pre-trained network extracts high-level features such as edges,
textures, and shapes, which are critical for accurate classification. These generalized features help
the model adapt more effectively across varied lung cancer cases, improving its generalization
capability.

3. Adaptation to Specific Data: The model is fine-tuned using the lung cancer dataset, allowing
it to adjust its internal weights to better detect patterns and anomalies specific to lung carcinoma.
This fine-tuning improves the model's performance without requiring training from scratch

4. Residual Connections: ResNet-50 incorporates residual connections, which enable the training
of deeper networks by mitigating issues like vanishing gradients. This leads to faster convergence
and improved accuracy.

5. Learning Rate Scheduling: Advanced training strategies such as learning rate scheduling are
employed to optimize model convergence and prevent overfitting. This dynamic adjustment of
the learning rate during training ensures better performance on previously unseen data.

6. Risk Screening: The model performs abnormality-based risk screening, categorizing patients

into high- or low-risk groups based on image analysis.
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Table 7.1 Comparative Analysis of Proposed Methodologies

Description Lightweight Advanced DNN Transfer Learning
Model Model
Obiective Lung Cancer Detection Lung carcinoma prediction and risk
J Premature-stage Screening
Model Type  Custom-built lightweight DNN <. trained  ResNet50

10 convolutional layers,

Model Architecture

depth-wise separable convolutions

Data Normalization,
Preprocessing

Training Process Adam optimizer

Classification accuracy =

Results 95.3%

Computationally efficient, suitable

Advantages i
for early detection

Multi-model data integration,

Future Work

augmentation, segmentation

real-time optimization.

with fine-Tuning

ResNet-50 base, fine-tuned layers,
new fully connected layers

Resizing, normalization, and
augmentation

Bates distributed the coati

optimization algorithm

Classification accuracy = 98.21%

High accuracy and robustness,
Effective risk screening

Patient history integration, Risk

model exploration.

The Transfer Learning Model for Advanced Lung Carcinoma Prediction and Risk Screening

demonstrates superior accuracy, robustness, and adaptability. Its high performance makes it well-

suited for risk assessment and early detection, particularly in the healthcare sector.
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Evaluation Metrics Comparison of Deep Learning Approaches
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Graph 7.1 Comparative accuracy of the proposed TL-based P-ResNet model with DNN and
other models.

As illustrated in Graph 7.1, the TL-based P-ReLUResNet model achieved a higher classification
accuracy of 98.21%, compared to 95.3% obtained by the Lightweight DNN model. This
significant improvement demonstrates the effectiveness of using a pre-trained model, which
enhances the system's ability to learn complex patterns and accurately detect lung cancer. In
essence, the TL-based P-ReLUResNet model exhibits superior pattern recognition capabilities,
resulting in more reliable predictions, an essential factor for early and accurate diagnosis. The
notable difference in performance indicates that TL-based P-ReLUResNet is a more intelligent
and efficient approach for real-world lung cancer screening applications.
71 Chapter Summary
The proposed risk model demonstrates robustness and advanced feature extraction capabilities,
making it suitable for various healthcare applications. This chapter compares two lung cancer
detection models: the Lightweight Advanced DNN Model and the Transfer Learning Model. The
Lightweight DNN Model, designed for rapid, premature-stage detection, consists of 10
convolutional layers and achieves an accuracy of 95.3%. However, it shows limitations in terms
of generalizability and depth of feature extraction.
In contrast, the Transfer Learning Model, which leverages a pre-trained ResNet-50 optimized for
lung cancer detection, achieves a higher accuracy of 98.21%. It is not only robust and highly

generalizable but also excels in advanced feature extraction.
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CHAPTER 8 CONCLUSION AND FUTURE SCOPE
8.1. Conclusion
This chapter summarizes the research presented in this thesis and highlights the key conclusions
regarding the proposed TL-based P-ReLUResNet (P-ResNet) model for premature-stage lung
cancer diagnosis. It also outlines potential future directions to enhance healthcare applications.
Lung carcinoma remains the most prevalent and fatal form of cancer worldwide, posing
significant challenges in early detection and treatment. Risk screening is vital to identify
individuals at high risk and potentially improve patient outcomes. To address this need, an
advanced risk screening framework, TL-based P-ResNet, was developed. Unlike traditional
models that focus primarily on smoking history and demographic data, P-ResNet adopts a
multimodal approach, incorporating behavioral, genetic, environmental, and socio-economic
variables. These include nicotine dependence, tumor-associated genetic, income level, education,
occupational exposure, and air pollution. Studies evaluating P-ResNet have demonstrated high
sensitivity and specificity in identifying high-risk individuals. By integrating a wide range of
factors, the model delivers a more accurate risk assessment. Moreover, TL-based P-ResNet is
designed to be dynamic, allowing for continuous refinement and improvement with new data.
In conclusion, P-ResNet represents a significant advancement in the domain of lung cancer risk
screening. Its ability to incorporate diverse data sources makes it a powerful tool for personalized
medicine and proactive healthcare decision-making. P-ResNet distinguishes itself from other risk
screening systems through several important features. Its comprehensive methodology,
incorporating a wide range of risk indicators, enables a more detailed and accurate assessment of
an individual’s risk profile. The integration of deep learning algorithms enhances the system's
ability to analyze complex data and understated patterns, significantly improving the accuracy of
risk prediction.
In this work, the P-ResNet algorithm was implemented for effective premature-stage lung
carcinoma prediction. The system was trained to classify lung CT images as either normal or
abnormal [60]. The proposed model achieved superior results, with a recall of 97.37%, an
accuracy of 98.21%, and a precision of 98.71%. These results confirm that the proposed system
is highly accurate in detecting lung carcinoma at a premature stage. The primary focus of this
study has been lung cancer detection, rather than broader pulmonary imaging challenges. In
future work, the model could be extended to not only detect lung carcinoma more efficiently but

also to classify its types and assess severity levels using more advanced and intelligent tools.
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8.2. Future Scope

In the future, P-ResNet could evolve further by incorporating additional variables such as lung
health status and lifestyle factors to improve its predictive capabilities. This could significantly
aid in early detection, making treatment more effective and potentially saving lives. Moreover,
as technology advances, P-ResNet may become more accessible and user-friendly through
mobile applications or cloud-based platforms. Such tools could allow individuals to assess their
lung cancer risk using real-time personal health data, empowering proactive healthcare decisions.
In conclusion, the proposed P-ResNet model demonstrates significant promise for early lung
cancer detection through its intelligent, data-driven methodology. Future improvements may
enhance its accuracy, usability, and enable real-time decision-making, and ultimately contribute
to a reduction in lung cancer mortality rates. With continued advancements, P-ResNet has the
potential to become a powerful tool in the fight against lung cancer, moving us closer to early

intervention and possibly even prevention.
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ANNEXURE 2

Table 1: Summary of Previous Methods Used for Early Lung Cancer Detection

S.No Authors & Year Methodology Database Remarks Limitations
Transformer models
- i . 0, - - .
1 Liu et al. [1], 2024 Transformer-based attention LIDC-IDRI Accuracy: 94.7%, strong | require hlgh_computatlppal
network localization capabilities. resources; interpretability
remains a challenge.
. . Accuracy: 93.2%, a The model lacks robustness
2 Ahmed & Zhao [2], 2024 Lightweight .CNN + PSO for LUNAL6 smaller model size makes | validation across diverse
feature selection .
it deployable. datasets.
. . . . Limited generalizability
3 Sharma et al. [3], 2024 DenseNet + B|_LSTM for CT Private CT AUC: 0.89, effectl\{e due to private dataset
sequence analysis dataset temporal feature learning. usage
. L . Logistic regression may
- 0,
4 Kimet al. [4], 2024 Dual br_anch F:NN - logistic NLST Pre_C|S|on. 91'.6/)’ includes oversimplify nonlinear
regression for risk scoring risk probability scores. q -
ependencies.
Kumar & Singh [5], | ResNet50 with CLAHE High contrast images; CLAHE may amplify noise
5 . LIDC-IDRI ) - ; )
2024 preprocessing accuracy: 95.4%. in certain regions.
. . CT scans Training/testing accuracy: | Real-world clinical data
6 Jamshidi et al. [6], 2024 Wavglet MLP. .W'Fh Dragonfly (phantom- 99.82%, very high not validated; performance
algorithm optimization . .
based) performance. may drop in real scenarios.
. . High AUC and C-index 3D-CNNs are resource-
7 Wang et al. [7], 2024 3D-CNN with Cox loss + binary NLST for cancer & survival intensive and complex to
cross-entropy .
prediction. deploy.
3 Harlianto & de Jong [8], | Meta-analysis of CE-marked Al Multiple Sensitivity: 94.6%, mitsai':tlgzlcygs ACTOSS Iacl;\sl
2024 software for nodule detection screening CTs specificity: 93.6%. t00ls y
Harlianto & de Jong [9], | Evaluation of clinical Al software Multiple ..A'.a'f’S _spe<_ed & Variability in  datasets
9 X sensitivity; highlights need .
2024 for CT lung screening datasets . e affects benchmarking.
to improve specificity.

1




S.No Authors & Year Methodology Database Remarks Limitations
. . . Transfer learning may
Hybrid deep CNN with MSNN Private CT Accuracy: 98%, . .
10 | Saxenaetal. [10], 2025 using transfer learning dataset sensitivity: 97%. overfit ‘on small private
datasets.
. . DSC: 97.08%, loU: Generalization across
11 ﬁsii]agzihavamshankar g’:‘ I\n/]le;ttarggiferlearmng fornodule CT scans 95.6%, classification multi-modal data has not
’ g accuracy: 96.71%. been tested.
. i o . 99.01% accuracy claimed; | Pipeline complexity is not
12 Md. Jiang et al. [12], | CNN-based h)_/brld pipeline with CT scans highlights segmentation | compared with standard
2024 CT preprocessing (FrontiersAl) -
need. baselines.
. Q- Custom CNN: 98.32% Comparative performance
13 | Springer et al. [13], 2025 gg:ﬁ’;?_so Scl)\lnl]\l,arisg/rlloblleNetVZ, OTH/NCCD accuracy, recall 97.48%, | on real-time data has not
P dataset specificity 98.78%. been evaluated.
InceptionResNetV2 + .
. . Accuracy: 98.5%, Jaccard | Inception-based models
14 | Cancers 2024 [14], 2024 Inceptlonl_JNet for detection + LIDC-IDRI index 95.3%. require high memory.
segmentation
Kanchan . . Heuristic methods may
15 | Sitaram Pradhan Best Fltne_ss—based Squirrel Public Average correct = 87.9% | lack  repeatability in
Search Algorithm (BF-SSA). .
[1],2023 clinical use.
Minimum-redundancy maximum- )
) Feature selection
relevance (MRMR) selection, least Sensitivi )
i i ensitivit to  nois
16 | Hanfei Zhang [2],2023 absolute shrinkage and selection Public AUC =0.83 Y Y
features.
operator (LASSO)
H Abdullah M L ina Marine Predat Performance under diverse
17 anan ulfan ivienga everaging Marine Fredators Public Accuracy = 89.2%. patient demographics has
sh[4], 2023 Algorithm
not been tested.
Multiround transfer learningand Sensitivity = 0
y = 10.8%, _
18 | Kwok Tai Chui [5],2023 LUNA16 Specificity 10.4%, and | COF ~ accuracy; - needs

modified generative adversarial

network (MTL-MGAN) algorithm

Accuracy = 9.92%.

model revision.




S.No Authors & Year Methodology Database Remarks Limitations
Shalini Wankhade | DL-based Lung Cell Cancer PublicCT B 0 Preprocessing methods are
191 71,2023 Detection (DL-LCCD). Images Accuracy =95.30% ||t detailed.
semi-supervised  computer-aided Competition performance . .
) Semi-supervised  models
detection (Semi-CADe) + Cross- metric (CPM) =82.99% + need labeled data for
20 | Zhigiang Shen [8],2023 i i LIDC-IDRI
a1ang 8] nodule attention computer-aided Area under the curve o
validation.
diagnosis (CNA-CADX) AUC = 88.63%
Limited to basic intensity
o1 | Peter G. Mikhael [9], | Histogram Technique + LDCT Accuracy =98%, Precision features;  lacks  deep
2023 Thresholding Algorithm =82%, Specificity =99%, | |earning-based feature
extraction.
F1 score = 99.37%, High accuracy, but the
EESISC?LT V@@Tﬁg Gabor filters with an enhanced LIDC-IDRI Accuracy = 99.424%, computational complexity
22 Chaurasia, Madhu | Deep Belief Network (E-DBN) and LUNA-16 Sensitivity = 98.497%, of E-DBN is not addressed
Shandilya [10], 2023 datasets.

and Specificity=98.319%.

for real-time use.




Sr.No.

Authors & Year Methodology Database Remarks L
Limitations
A Rajput, A Subasi [11], | pretrained ResNet model + Public Accuracy = 98.57%
3 | 2023 hi Lacks robust
support vector machine generalization evaluation
on unseen datasets.
24 | Sameh  AbdEI-Ghany, | ResNet101 + CNN LC2500 Recall = 99.85%, F1-score | Segmentation
Mohammad Azad [12], dataset = 99.84%, Specificity = | performance not
2023 99.96%, and Accuracy = | highlighted; performance
99.94% on low-dose CT untested.
25 SlWEl Wang, FanChen CfDNA PUbIlC SpeCIfICIty = 925%, Focuses on DNA markers;
Meng [15], AUC =0.987 lacks integration  with
2023 imaging data.
26 Karthick Prasad YOLOvV5 model Public Sensitivity = 949%, . ] .
o Object detection-centric,
Gunasekaran [19], 2023 Specificity = 90.5%, Recall .
but lacks feature-level risk
= 95%. Accuracy .
scoring.
= 91%.
27 S.  Vishwa  Kiran, | (MLDS-LCDC) +  Gaussian Public Sensitivity = 97.01%,
. I . S 0
Inderjeet Kaur [21], | filtering (GF) + (Ncuts) technique Specificity = 98.64%, and Very complex pipeline:
2023 + FAST and rotated BRIEF Accuracy = 98.11%.
not tested on large, real-
(ORB) technique + optimization- world clinical datasets.
based waveletneural
network (SFO-WNN)
28 Yahia Said, Ahmed A. | UNETR network + Decathlon Accuracy = 98.77%
Alsheikhy [33], 2023. selfsupervised Dataset Model - performance on
network. non-CT modalities is not

addressed.




Sr. No. Methodology Database Remarks Limitation
Authors & Year
29 Asghar Ali Shah, Hafiz Convolutional  Neural Network, LUNA16 Accuracy = 95% Generic CNN architecture:
Abid (CNN) lacks fine-grained lesion
Mahmood Malik [35], 2023 classification.
30 Shigao Huang, IbrahimBayes classifier (BayesNet) + lazy-  Public Accuracy = 88.58%
Arpaci, Mostafa Al-Emranclassifier (LWL) + deep neural Accuracy lower than modern
deep models; the hybrid
[36], 2023 network design increases complexity.
(DNN).
31 [Farhanaz Farheen, Md.Deeply Supervised MultiResUNet | LOTUS dataset | dice co-efficient = 0.8472.
Salman Shamil [38], 2022 model + DWT (31,247 training Dice coefficient is moderate;
] performance on noisy scans
and 4458 testing not evaluated.
samples)
32 M. Praveena, A. Ravi, T. CNN CT images + Accuracy = 90%
Srikanth [39], 2022 NIH Perfo_rman_ce i_s Iimited_to
Chest-Xray-14 class_lflcz_;ltlon; it lacks lesion
localization.
database
33 Jianxin Feng, Jun Jiang Mask Region Convolutional Neural Public Accuracy=97.94%, Sensitivity i
— 08.12% Mask-RCNN i
[40], 2022 Network (Mask-RCNN) mode + computationally heavy; real-
Dual time inference has not been
Path Network (DPN) analyzed.
34 |Lal Hussain, Hadeel Alsolai Gray-level co-occurrence  matrix Public Accuracy = 99.89%

[42], 2022

(GLCM) + Optimized vigorous

machine learning classification

algorithm + SVM.

Focuses on texture-based
methods; may lack
robustness on  complex
images.




Sr.No.

Authors & Year Methodology Database Remarks Limitations
35 |Gopi Kasinathan, Cloud-based Lung Tumor Detectorpositron emission Accuracy = 98.6%
Selvakumar Jayakumarjand Stage Classifier (Cloud- LTDSC)tomography Requires cloud
[43], 2022 + multilayer LIDC-IDRI infrastructure; local
] deployment issues
convolutional  neural network (M- dataset unaddressed.
CNN)

36 J Vykoukal,JF Fahrmann, MicroRNA Public sensitivity = 95% No imaging data used;
N Patel, M Shimizu [48], requires integration  with
2022 radiological analysis.

37 [E Dritsas, M Trigka, P [Support Vector Machine (SVM) + Public Accuracy = 96.64%, Precision
Mylonas [60], 2022 Logistic Regression (LR) + Random = 0f 96.8%, Recall = 96.6%, F'Traditional ML ensemble

Forest (RF) + k-Nearest Neighbours g/ilaeg;ure = 96.6% and AUC = lacks deep learning
(k- 270 advantages for imaging.
NN).
M Mamun, A Farjana [67],[SMOTE method+XGBoost+ Public Accuracy = 94.42 %, Precision
38 022 LightGBM + Bagging + AdaBoost = 95.66%, recall = 94.46%,Epcemple adds complexity;
and model interpretability is not
AUC = 98.14% discussed.
39 |Peixin Chen, Yunhuan Liu SVM Public Accuracy = 85.2%, sensitivity

[68], 2022

= 83.7% and specificity =
86.3%

Traditional model  with
lower accuracy; lacks feature
engineering depth.




Sr.No.

Authors & Year Methodology Database Remarks Limitations
40 A Asuntha, AndyHistogram of Oriented Gradients LIDC Accuracy = 94.97, Sensitivity
Srinivasan [80], 2020 (HoG) + wavelet transform-based = 96.68
features + L00a| Binal’y Pattern Feature engineering |s
(LBP) + Scale Invariant Feature intensive: outdated
Transform (S”:T) + Fuzzy Particle Compared to DL methods.
Swarm Optimization
(FPSO) algorithm = FPSOCN

41 P Mohamed profuse clustering technique (IPCT) Cancer ImagingAccuracy = 98.42%,

Shakeel,M.A. Burhanuddin Archive (CIA)E/Ilnlmum classification error Focuses on clustering; lacks

[86], 2019 Dataset = 0.038. detailed performance
breakdown on CT data.

42  BaihuaZhang, Shoulian Qi VOT + AVE yield LIDC- IDRI Accuracy = 84.0%

[88], 2019 Accuracy is low; it lacks
integration of recent deep
models.

43 Lingming Yu, GuangyuGray level co-occurrence matrix NSCLC Accuracy = 81.0%

Tao, Lei Zhu, Gang Wang,(GLCM) + SMOTE algorithm

Ziming Li [89], 2019 Performance is lowest; lacks
multi-feature integration.

44 Qianbiao Gu, ZhichaoRandom forest-based radiomics Public Sensitivity =0.726, Specificity

Feng, Qi Liang, Meijiao Li
[90], 2019

classifier

= 0.661, AUC = 0.625, P <
0.05.

Very low AUC; radiomics-
only focus.




Sr.No.

Authors & Year Methodology Database Remarks Limitations
interpretability and clinical
deployment feedback.

46  |lbrahim M. Nasser, GazaArtificial Neural Network (ANN) Public Accuracy = 96.67 %

Samy S. Abu-Naser [93],

2019

ANN lacks advanced feature
handling; outdated compared
to CNN/ResNet.




	2025
	(Signature of Supervisor)
	(Signature of scholar)

	CERTIFICATE
	(Signature of Supervisor) Name of supervisor: Dr. Aarti

	ACKNOWLEDGEMENT
	ABSTRACT
	ORGANIZATION OF THESIS
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1. Introduction to Lung Cancer and Its Global Impact
	1.2. The Fundamentals of Lung Cancer
	1.3. Overview of Lung Imaging and Diagnostic Techniques
	1.4. General Steps of Lung Cancer
	Step 1: Image Acquisition
	Step 2: Grey Level Conversion
	Step 4: Feature Extraction
	Step 5: Classification
	1.5. Significance and Urgency of Early Lung Cancer Detection
	1.6. Motivation and Research Objective
	1.7. Research Contributions

	CHAPTER 2 LITERATURE SURVEY
	2.1. Overview of Existing Research on Lung Cancer
	2.2. Review of Deep Learning Approaches for Lung Nodule Detection
	2.3. Techniques for Enhancing and Analyzing Lung Cancer Images
	2.4. Datasets Available for Implementation
	2.5. Summary

	CHAPTER 3 HYPOTHESIS AND OBJECTIVES
	3.1. Identified Research Gaps
	3.2. Research Objectives
	3.3. Proposed Framework
	3.4. Summary

	CHAPTER 4   PROPOSED SEGMENTATION AND CLASSIFICATION
	4.1. Deep Learning-Based Framework for Lung Nodule Detection
	4.1.1. Pre-processing stage
	4.1.2 Segmentation of Lung Nodules
	4.2 Classification Techniques
	4.2.1. Convolutional layer network
	4.2.2 Memory of the Marine Predator Algorithm (MPA)
	4.3 Classification Using Traditional ML Algorithms
	4.3.1 Naïve Bayes Classifier Workflow and Architecture
	Step-by-step procedure to detect the lung carcinoma using a naïve base classifier
	4.4 Datasets Used in ML-Based Lung Cancer Detection
	4.5 Performance Comparison of Deep Learning and Traditional Models
	4.6 Chapter Summary

	CHAPTER 5  ENHANCING ALGORITHMS THROUGH OPTIMIZATION METHODS
	5.1. Problem definition
	(a) Segmentation using B-RGS (Bates-distributed Coati Optimization + Region Growing Segmentation):
	5.2. Problem-Solving Approach
	5.3. Proposed Methodology1: Lightweight Deep Neural Network for Early Lung Cancer Detection
	5.3.1. Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM)
	5.3.2. Sørensen-Dice Index K-means clustering
	5.3.3. Semi-supervised and contrastive learning-based DNN
	5.3.4. Risk Score Screening
	5.3.5. Dataset Overview for Lightweight DNN Model
	5.4.1. Iterative Adaptive Decision Fusion (I-ADF)
	5.4.2. Knuckle Point Using (B-RGS)
	5.4.3. Unmask Sharp Filter
	5.4.4. Binomial Distributed Chi-Square
	5.4.5. Dataset Overview for Transfer Learning Model
	5.5. Chapter Summary

	CHAPTER 6  LUNG TUMOR SCREENING USING SMART DECISION-MAKING TECHNIQUES
	6.1. Advanced DNN Risk Screening for Early Lung Carcinoma
	6.1.1. Image Preprocessing for Lung CT Enhancement and Denoising
	6.1.2. Noise Suppression
	Detail Enhancement Using Inverse Logarithmic Transformation
	6.1.3. Lung Nodule Segmentation for Region of Interest Identification
	6.1.4. Optimized Segmentation Using K-means and Dice Index
	Morphological Hole Filling for Complete Nodule Segmentation
	Localized Feature Detection Using Sliding Window Technique
	Optimized Nodule Scoring Using WDSL-LSO Technique
	6.1.5. Experimental Results and Comparative Performance Analysis
	6.2. TL-Based P-ResNet Framework for Early Lung Cancer Detection
	6.2.1. Enhanced Filtering Techniques for Lung CT Image Preprocessing
	Noise Suppression Using Improved Anisotropic Diffusion Filtering (I-ADF)
	Contrast Enhancement Using Intensity Range Stretching
	Isolation of Lung Region Using Convex Hull Algorithm
	Enhanced Lung Boundary Detection Using Unsharp Masking Filter (UMF)
	6.2.2. Precise Lung Image Segmentation Using BRGS Optimized with BD-COA
	6.2.3. Extraction of Discriminative Features from Segmented Lung Regions
	Extraction of Gradient-Based Image Descriptors
	Spectral Feature Quantification Using Flatness Measure
	Profile-Based Attribute Extraction for Enhanced Discrimination
	6.2.4. Selection of Optimal Features Using Statistical and Spatial Criteria
	6.2.5. Classification of Lung Abnormalities Using the Proposed P-ResNet Model
	6.2.6. Risk Screening of Lung Carcinoma Using: TL-based P-ReLUResNet
	6.2.7. Results and Discussion on Proposed Models' Effectiveness
	Classification Accuracy Evaluation of Proposed Models
	Comparative Analysis of Noise Removal Techniques in Lung CT Images
	6.3. Chapter Summary

	CHAPTER 7 COMPARATIVE ANALYSIS
	7.1. Chapter Summary

	CHAPTER 8 CONCLUSION AND FUTURE SCOPE
	8.1. Conclusion
	8.2. Future Scope

	REFERENCES
	ANNEXURE I
	Journal Details:
	03 Paper Title: Revolutionizing Diagnosis: Cloud-Enabled Deep Learning for Lung Tumor Detection and Staging.
	Conference Details:
	Certificate:
	Certificate: (1)
	Certificate: (2)

	ANNEXURE 2

