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ABSTRACT 

 

Lung carcinoma has a high mortality rate; however, early prediction can 

significantly improve patient outcomes. Although various methods have been 

developed for premature-stage lung carcinoma prediction, many still suffer from 

issues such as low accuracy, high noise, poor contrast, and the lack of integrated 

risk screening. To address these challenges, this study proposed a lung carcinoma 

prediction and risk screening model using Transfer Learning with a P-ReLU- 

ResNet (P-ResNet) framework. The proposed model operates on 2D CT scan 

slices. Initially, lung computed tomography (CT) scan images were preprocessed 

to reduce noise and enhance edges using the Intra-class Variance–Anisotropic 

Diffusion Filter (I-ADF) and Unsharp Mask Filter (UMF). The enhanced images 

were then segmented using a Bates-distributed Coati Optimization Algorithm 

integrated with Region Growing Segmentation (B-RGS). Features were extracted 

from the segmented images and selected using the Binomial-distributed Chi- 

square Test (BD-CST). The selected features are then classified using the TL- 

based P-ReLUResNet model to determine whether the input is normal or 

abnormal. For abnormal cases, a risk screening module further categorizes the risk 

as low or high. Experimental results validated the effectiveness of the presented 

method. The research achieved superior performance in premature stage lung 

cancer prediction, achieving recall, accuracy, and precision scores of 97.36%, 

98.21%, and 98.71%, respectively, outperforming existing approaches across all 

key metrics. This study focused solely on lung carcinoma detection, rather than 

other pulmonary conditions observable in lung imaging. Future work aims to 

incorporate advanced tools for more accurate prediction of cancer type and 

severity. 

 

Keywords: Lung carcinoma, Anisotropic Diffusion Filter, Chi-square test, TL- 

based P-ReLUResNet algorithms 
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ORGANIZATION OF THESIS 
 

The thesis is structured into eight chapters: Introduction, Literature Survey, 

Research Methodology, Deep Learning for Lung Cancer Detection, Transfer 

Learning for Lung Cancer Detection, Hybrid Approach, Comparative Analysis, 

Conclusion, and Future Scope. 

Chapter 1 

A brief introduction to cancer and lung cancer is given in this chapter. This chapter 

includes an explanation of the work's motivation, an outline of the thesis, details 

on the thesis's structure, and contributions. 

 

Chapter 2 

 

The background information on the detection techniques and medical facts about 

lung cancer have been thoroughly explained in Chapter 2. From a medical 

perspective, data on lung cancer prevalence worldwide and associated details have 

been provided. This chapter explains the need for automated detection algorithms. 

Technical details about the suggested framework's technical background and 

methods for detecting lung cancer in the literature have been provided. This 

chapter presents a thorough literature review on lung nodule detection. 

 

Chapter 3 

 

This chapter presents the research methodology that includes the following: Role 

of deep learning models in cancer detection at the premature stage. Study of 

different deep learning models for lung cancer detection. Data collection for lung 

CT images from the LIDC-IDRI dataset and pre-processing of these images. 

Implementation of P-ResNet algorithm for the detection of lung nodules. Study & 

implementation of transfer learning for lung cancer detection. Calculate 

performance in terms of accuracy, precision, and recall. Design and implementation 

of a hybrid model P-ResNet with ReLU function. Parameters fine-tuning of all 

implemented models for better accuracy. Calculate the performance of P-ResNet. 

Comparison between pre-trained & current model. 
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Chapter 4 

 

Performed an analysis of pre-existing algorithms using various benchmark 

datasets. In this, the traditional models that were demonstrating the outcomes were 

discussed. Using benchmark datasets, the traditional CNN, MPA, and NBC 

models are reviewed, and their outcomes are presented. 

 

Chapter 5 

 

To forecast the discovery of lung cancer in a patient, the improved segmentation 

method was tested using both benchmark datasets and the proposed dataset. This 

chapter presents the different optimizers for testing the suggested system. 

 

Chapter 6 

 

A detailed description of the novel model is given from the beginning. The topics 

addressed included preprocessing, segmentation, feature extraction, feature 

selection, and classification methods. The results of several datasets utilized in the 

recommended research are displayed in this chapter. Lastly, the accuracy of the 

suggested system is verified using real-time video. Using different accuracy 

metrics, the system's performance is compared to that of modern systems. 

 

Chapter 7 

 

Presents a detailed comparison of different models and methodologies for lung 

cancer detection. The performance and diagnostic relevance of each approach are 

discussed. 

 

Chapter 8 

 

This chapter gives a summary of the research work and highlights the main 

findings of the proposed TL-based P-ReLUResNet model for early lung cancer 

detection. It also explains how the model helps improve accuracy by using 

different types of data. Finally, the chapter discusses future work, such as using 

the model to predict cancer types and severity with the help of better techniques 

and larger datasets. 
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CHAPTER 1 INTRODUCTION 

1.1. Introduction to Lung Cancer and Its Global Impact 

Lung cancer is one of the most prevalent and deadly diseases globally. Compared to other 

cancers, it exhibits a higher rate of metastasis and is a leading cause of cancer-related deaths. In 

this study, we conducted a comprehensive review of the existing literature on the epidemiology, 

diagnosis, and treatment of lung cancer. The disease has become a significant global health 

concern, primarily caused by smoking, environmental pollution, and lifestyle factors. Among 

these, smoking remains the most prominent risk factor. Additional contributors include indoor 

air pollution and dietary habits. Furthermore, genetic mutations and inherited gene changes are 

also associated with lung cancer development. A major challenge is the delayed diagnosis, which 

often leads to a poor prognosis and a high mortality rate. 

In recent years, advancements in anticancer drugs have improved the efficacy-to-toxicity ratio 

[22][48]. However, to further reduce lung cancer mortality, strong public health measures are 

required, especially those aimed at discouraging smoking. Moreover, many patients suffer due to 

incorrect medication dosage, often resulting from inaccurate diagnosis or poor interpretation of 

medical data. To address these issues, this work aims to enhance the accuracy of existing lung 

cancer detection algorithms [15][26]. It is well known that various diseases affect the human 

body, and some can be extremely harmful. If not detected early, such diseases can lead to severe 

consequences. Among them, cancer is one of the most life-threatening conditions. 

The term "cancer" is derived from the Latin word crab, likely referring to the crab-like appearance 

of malignant tumors as they invade surrounding tissues. Cancer is also known by other terms 

such as malignancy, neoplasm, or malignant tumor. The various types of cancer are illustrated in 

Figure 1.1, such as brain cancer, kidney cancer, bladder cancer, and liver cancer. It can affect 

multiple organs, including the breast, prostate, colon, and lungs. On the left side of the image, four 

significant cancers are listed vertically. Brain Cancer is shown at the top, referencing abnormal 

cell growth in the brain, which can disrupt neurological functions. Lung Cancer follows, with an 

image depicting tumors within the lungs, a condition that is often linked to smoking or 

environmental exposure. Colorectal Cancer is next, representing malignancies in the colon or 

rectum, commonly influenced by diet, genetics, and lifestyle. At the bottom, Leukemia Cancer is 

displayed, indicating cancer of the blood or bone marrow, where abnormal white blood cell 

production occurs. On the right side, the image presents another four types of cancers: Kidney 

Cancer is placed at the top, referring to tumors forming in the renal tissues, which can affect the 

body’s waste filtration system. Liver Cancer is shown below, often associated with chronic liver 

diseases and hepatitis infections. 
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Bladder Cancer follows, highlighting malignancy in the bladder lining, typically identified 

through symptoms like blood in the urine. At the bottom, Pancreatic Cancer affects digestive 

enzyme production and insulin regulation. 

 

Figure 1.1 Types of Cancer in the Human Body 

Among these, lung cancer is the most fatal, accounting for the highest number of cancer-related 

deaths worldwide. This thesis specifically focuses on the early detection of lung cancer using 

advanced deep learning techniques, due to its high mortality rate and diagnostic challenges. 

1.2. The Fundamentals of Lung Cancer 

A tumor forms when abnormal cells in the lungs grow uncontrollably and cluster together, as 

shown in Figure 1.2. 

 

Figure 1.2 Growth of cancer cells in the human body 

Source: https://www.lungcancers.eu/lung-tumor/lung-tumors/ 

https://www.lungcancers.eu/lung-tumor/lung-tumors/
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Figure 1.2 illustrates how cancer cells, unlike normal cells, multiply rapidly and damage healthy 

lung tissue. The body's organs can't function properly when cancer cells grow. Simply, lung cancer 

is the uncontrolled growth of abnormal cells in one or both lungs. These faulty cells cannot 

perform like healthy lung cells or perform the functions of regular lung cells. The abnormal cells 

have the potential to develop into tumors as they reproduce, which could harm the lungs. The 

lungs supply oxygen to the body. Lung cancer is a severe disease and is the most common cancer- 

related cause of death. Today, a major health concern in all countries is tumours. Lung cancer is 

the most common disease and acts as a silent killer among both men and women. After receiving 

a diagnosis, more than half of patients with lung cancer pass away within a year. The two primary 

sorts of lung tumors are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). 

Carcinoid lung cancer is a third and less frequent kind of lung cancer. Often, small cell lung 

cancer is linked with cigarette smoking. Two distinct forms of small cell lung cancer exist: 1) Oat 

cell type, 2) Combined small cell carcinoma. In general, chemotherapy is used to treat small-cell 

lung cancer. Non-small cell Lung Cancer (NSCLC) is more prevalent as compared to other 

cancers, and about 80% of cases of lung cancer are caused by it. Compared to small cell lung 

cancer, this kind of cancer often develops and spreads to other areas of the body more slowly. 

Three distinct forms of non-small cell lung cancer exist: 1) Adenocarcinoma, 2) Squamous cell 

carcinoma, and 3) Large cell carcinoma. 

1.3. Overview of Lung Imaging and Diagnostic Techniques 

Lung imaging techniques are essential for diagnosing and monitoring lung diseases, including 

malignancies. These methods provide detailed views of the lungs and surrounding structures, 

enabling medical professionals to identify abnormalities, monitor disease progression, and 

develop effective treatment plans [22]. Common imaging techniques used for lung evaluation 

include below as shown in Figure 1.3: 

a. Chest X-rays (CXR): CXRs are often used as an initial screening tool for lung conditions. 

They provide a two-dimensional image of the chest, showing the lungs, heart, and ribs. CXRs 

can help detect masses, infections, lung malignancies, and other abnormalities [34]. 

b. Magnetic Resonance Imaging (MRI): Although MRI is less commonly used for lung 

imaging due to motion artifacts from breathing [52], it is a valuable tool for accurately 

diagnosing certain lung cancers [32][94][83]. MRI is highly sensitive to soft tissue contrast 

and can offer additional information about vascular structures and tissue characteristics [22]. 

c. Positron Emission Tomography (PET) Scan: PET scans visualize the body’s metabolic 

activity using a radioactive tracer [57][72]. PET-CT scans, which combine PET and CT 

images, are commonly employed to detect and stage lung cancers. The tracer accumulates in 
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regions with high metabolic activity, such as malignant cells [91][53]. 
 

Figure 1.3 Diagnostic Imaging Tools for Lung Abnormalities 

d. Bronchoscopy: A thin, flexible tube is inserted through the mouth or nose into the airways 

during a bronchoscopy [3]. This procedure allows for clear imaging of the airways and assists 

in the staging and diagnosis of lung tumors. Biopsies can also be taken for pathological 

examination during the procedure [2]. 

e. Endobronchial Ultrasound (EBUS): EBUS combines bronchoscopy and ultrasound to 

visualize and collect samples from lymph nodes and surrounding tissues [66]. It is frequently 

used to stage lung cancer and assess lymph node involvement [45]. 

f. VATS (Video-Assisted Thoracoscopic Surgery): Also known as thoracoscopy, VATS 

involves making a few small incisions in the chest to insert a camera and surgical instruments. 

It is used to obtain tissue samples for biopsy and to diagnose or treat lung conditions [24]. 

g. Computed Tomography (CT) Scans: CT scans provide detailed and high-resolution images 

of the lungs and surrounding tissues [4]. These scans play a crucial role in detecting and 

diagnosing lung malignancies. They help determine the presence, size, and exact location of 

tumors and assess whether cancer has spread to nearby lymph nodes or other tissues [14]. 

1.4. General Steps of Lung Cancer 

Traditional or general steps of lung cancer detection are shown in Figure 1.4. 

Step 1: Image Acquisition 

Basically, a database is a repository that can store data or images in an organized manner. Various 

databases are used in image processing. One such database is the Lung Image Database 

Consortium image collection (LIDC-IDRI), which contains 1,018 cases of annotated lesions on 

thoracic computed tomography (CT) scans used for diagnostic purposes and lung cancer 
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screening [4][77]. This dataset was developed through collaboration between academic 

institutions and eight medical imaging companies. 

Step 2: Grey Level Conversion 

As we know, the input image is captured in RGB format; therefore, color conversion and filtering 

are applied. 

(i) Colour Conversion: The primary aim of using color conversion is to reduce the number 

of colors. By separating the R, G, and B components from each pixel’s 24-bit color value, an 8- 

bit grayscale value at position (i, j) is obtained. 

 

Figure 1.4 Basic steps of Lung Cancer Detection. 

(ii) Colour Filtering: The main goal of filtering is to remove noise and distortion from the 

image. The noise may originate from the external environment or the camera during image 

capture [33]. Simply put, filtering eliminates all distortion and noise, resulting in a clearer image. 

Step 3: Lung Segmentation 

Lung segmentation is a vital step in analyzing lung CT images, as it helps isolate the lung area 

from other chest structures. This process ensures that subsequent tasks, such as feature extraction 

and disease classification, focus only on the relevant region. 

To understand lung segmentation, it's important to first understand image segmentation. Image 

segmentation is a common technique in computer vision, where an image is divided into 

meaningful parts or regions. These regions often correspond to objects or boundaries within the 

image, such as edges or shapes [14]. Generally, there are two types of image segmentation: 

Local segmentation targets specific portions of the image. 
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Global segmentation, which considers the entire image for identifying significant patterns or 

regions. 

Segmentation helps in accurately identifying the lungs from CT scans by separating them from 

nearby organs and tissues. This improves the efficiency and precision of automated detection 

systems used in medical imaging [34]. 

Step 4: Feature Extraction 

One type of complexity reduction in image processing is feature extraction. Finding the most 

relevant details in the original data and representing them in a smaller dimensionality space is 

the primary objective of feature extraction [44]. 

Step 5: Classification 

Image classification is one of the most crucial components of digital image analysis. The task of 

collecting information classes from a multiband raster is known as image classification, and it is 

quite pleasant to have a "pretty picture" or image that illustrates different features across the 

spectrum of colors. The core area of medical image analysis is picture categorization, where deep 

neural networks are crucial [15][86]. The process of image classification begins with the input 

images and ends with an output classification that indicates the presence or absence of the 

disease. Supervised and Unsupervised classification are the two primary classification techniques 

[8]. 

1.5. Significance and Urgency of Early Lung Cancer Detection 

Pollution is increasing day by day, and due to the competitive world, work schedules have 

become hectic across all sectors. As a result, people are unable to focus on their health, leading 

to a rise in health problems, particularly lung cancer. Consequently, many scientists and 

researchers are actively working in this area. Another reason for this growing interest is the 

increasing market demand for lung cancer detection modules. The use of automated lung cancer 

detection provides immediate assistance to patients. With the rapidly increasing number of 

nuclear families, lung cancer detection has become a critical area of research. 

1.6. Motivation and Research Objective 

Lung cancer is one of the major causes of cancer-related deaths worldwide, primarily due to its 

late identification and the lack of accurate premature stage screening techniques. Existing lung 

cancer detection systems usually rely only on limited information, such as smoking history, 

which reduces their effectiveness and accuracy. Furthermore, many of these models are 

inaccurate and fail to consider individual risk factors. This study is motivated by the need to 

overcome these challenges by creating a more advanced and accurate method for predicting early 

lung cancer risk. The main goal is to develop a deep learning-based framework that combines 
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medical scans with various aspects of patient data, such as environmental exposure, genetic traits, 

and lifestyle factors, to provide a more accurate and personalized evaluation. P-ResNet, the 

proposed method, enhances premature-stage lung cancer diagnosis using a hybrid approach. 

Unlike traditional models, this framework is designed to incorporate individual risk factors and 

support more accurate identification. In recent years, deep learning models such as Convolutional 

Neural Networks (CNNs), ResNet, and VGG16 have been widely used for lung cancer detection. 

However, each of these models has limitations. CNNs tend to be less accurate for complex tasks 

like premature-stage lung cancer detection and are difficult to train when they have many layers. 

ResNet may suffer from the “dying ReLU” problem (inactive neurons), while VGG16 has a large 

number of parameters, making it slow and computationally expensive. To address these 

challenges and improve early detection, this research introduces a novel model called TL-based 

P-ReLUResNet, which integrates multiple types of features to provide a more accurate 

assessment of lung cancer risk. To evaluate the effectiveness of the proposed framework, publicly 

available CT scan datasets were used, and standard performance metrics, including accuracy, 

precision, and recall, were applied. This study uses 2D axial CT image slices extracted from full 

3D CT scans. These 2D slices are widely used due to their efficiency in training deep learning 

models. More details about the datasets and methods used can be found in the subsequent 

chapters of this thesis. 

1.7. Research Contributions 

This thesis presents several significant advancements in the field of premature-stage lung cancer 

diagnosis using deep learning techniques. A Lightweight Advanced Deep Neural Network (DNN) 

model was developed using RWICWM filtering, K-means clustering, and WDSI-LSO. This 

integration enabled accurate lung nodule diagnosis and risk assessment while keeping 

computational costs low. A Transfer Learning-based P-ResNet system was also developed to 

effectively screen for lung cancer risk. The study introduced novel preprocessing approaches, 

such as Inverse Log Transformation and Convex Hull-based augmentation, which resulted in 

improved image quality and segmentation accuracy. A comparison between the proposed and 

existing models was conducted using evaluation metrics such as SSIM, PSNR, recall, and 

precision. The findings validated the enhanced reliability and robustness of the proposed 

techniques. To improve model performance, optimization techniques such as Iterative Adaptive 

Decision Fusion (I-ADF) and Binomial Chi-Square-based feature selection were employed, 

resulting in higher prediction accuracy and lower error rates. 
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CHAPTER 2 LITERATURE SURVEY 

2.1. Overview of Existing Research on Lung Cancer 

The scientific term for cancer is carcinoma, which refers to the uncontrolled multiplication of 

abnormal cells. In such cases, cancerous cells proliferate rapidly and accumulate, ultimately 

damaging the affected organ, whether it is the lungs or another part of the body, thus resulting in 

what is known as carcinoma. When this instability in cell growth occurs in the lungs, this 

condition is specifically referred to as lung cancer [5]. 

Unlike normal cells, cancerous cells grow without regulation or control. These abnormal cells 

destroy the surrounding healthy lung tissue and disrupt normal lung function. As they continue 

to grow, they interfere with the function of vital internal organs. In summary, lung cancer is 

characterized by the abnormal and irregular growth of cells in one or both lungs [7]. These 

abnormal cells fail to develop into functional lung tissue and cannot perform the functions of 

healthy lung cells [90]. When left unchecked, their proliferation can lead to the formation of a 

tumor and further impair lung function. 

Lung cancer is considered a life-threatening disease because the respiratory system relies entirely 

on the lungs. The oxygen inhaled through the nose travels directly to the lungs, where it is filtered 

and then circulated throughout the body via the bloodstream. Given the lungs’ crucial role in 

sustaining life, any disease that affects them poses a serious threat to survival. As such, lung 

cancer is recognized as a global health concern and is often referred to as a “silent killer” [10]. 

Studies indicate that over half of all lung cancer patients die within the first year of diagnosis. 

There are two primary types of lung cancer: small cell lung cancer (SCLC) and non-small cell 

lung cancer (NSCLC) [82][44]. SCLC is further classified into two subtypes: small cell 

carcinoma and mixed or large cell carcinoma [1]. Research has identified tobacco use as the 

leading cause of small-cell lung cancer. In contrast, NSCLC is more frequently observed in 

patients with this chronic illness [78]. Together, SCLC and NSCLC account for approximately 

80% of lung cancer cases worldwide. Essential Techniques for Lung Cancer Diagnosis. 

General Steps: Diagnosing the disease is the first and most crucial step before beginning any 

form of treatment. In simple terms, the entire approach to lung cancer revolves around early 

detection, as proper treatment cannot be administered without it. This section aims to guide you 

through the step-by-step process of diagnosing lung cancer. 

Figure 2.1 illustrates the general procedures for identifying lung cancer. It presents all five steps 

in a logical sequence [92]. The first step involves the use of a dataset or database. A brief 

explanation of each stage is provided below. 
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Figure 2.1 Basic Steps of Lung Cancer Detection 

In basic terms, a database is a structured pool used to store and organize data or visual content. 

Various types of databases are used in image processing applications [62][58]. One such example 

is the Lung Image Database Consortium (LIDC), which includes an array of pulmonary 

computed tomography (CT) scans used for diagnosing affected lung regions. This dataset was 

created through collaboration among eight medical institutions and academic centers, involving 

1,018 cases to build a comprehensive set of diagnostic images [79]. Since the digital images in 

this database are captured using the RGB (Red, Green, Blue) color model, color conversion and 

filtering techniques are applied during preprocessing. 

Color Conversion: The main objective of color conversion is to reduce the number of colors in 

an image while preserving essential visual details. Each 24-bit pixel (I, J) in the image consists 

of three 8-bit channels: R (Red), G (Green), and B (Blue). These are converted into an 8-bit 

grayscale value to simplify further processing. 

Color Filtering: The purpose of filtering is to eliminate noise and distortion that may arise during 

image acquisition, either due to camera limitations or external environmental factors [39]. This 

step helps maintain image clarity by removing any interference or visual anomalies. Before 

discussing lung segmentation, it is important to understand the concept of image segmentation. 

Image segmentation is a digital technique that divides an image into multiple meaningful 

segments to simplify analysis. This includes the identification of points, lines, curves, and 

boundaries within the image, a process sometimes referred to as image vivisection or 

segmentation. Image segmentation is generally categorized into two types: local segmentation 

and global segmentation [44]. 
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 Local segmentation focuses on a specific region of the image. 

 Global segmentation considers the entire image for analysis. 

One of the most critical steps in radiological lung image analysis is lung segmentation [51]. It 

involves a computer-based method for isolating lung boundaries from surrounding tissues, such 

as the trachea, in CT images. This is crucial for further image analysis and diagnosis. Next, 

feature extraction plays a vital role in image processing. It refers to techniques used to eliminate 

redundant or irrelevant data from the dataset [79]. The main objective is to extract the most 

significant and useful information from the original image for analysis. 

Finally, the most essential component of digital image processing is image classification, 

particularly in the context of neural networks used in medical applications. In simple terms, 

image classification involves extracting relevant and targeted data from image matrices to 

recognize patterns or disease-specific features [30]. 

2.2. Review of Deep Learning Approaches for Lung Nodule Detection 

Joshua, one of the researchers, proposed a 3D CNN-based unsupervised learning model for the 

diagnosis of lung cancer. A gradient activation function was employed in this binary classification 

strategy to enhance the visualization of lung tumors. Using the LUNA dataset [81], the proposed 

AlexNet detection model was evaluated against a well-known 2D CNN learning classifier [37]. 

However, the model performed poorly due to insufficient testing data, as only 10% of the training 

dataset was utilized [41]. 

To assist in the premature-stage detection of squamous cell carcinoma (SCC) and 

adenocarcinoma (ADC), Chaunzwa et al. developed a supervised CNN-based prediction model. 

This CNN was validated using real-time non-small cell lung cancer (NSCLC) patient data 

collected at Massachusetts General Hospital during the premature-stage of the disease [16]. The 

dataset consisted of 311 collected patient records. The CNN model, built upon the VGG network, 

achieved an area under the curve (AUC) of 71%, which was considered inadequate. One 

limitation of the VGG-based CNN was its lack of preprocessing, such as noise removal and CT 

image segmentation, which could have improved its prediction accuracy [12][50]. 

Chaturvedi et al. reviewed the latest techniques for lung cancer detection and classification. Their 

study covered modern methods for lung nodule diagnosis, localization, and classification using 

standard datasets such as LIDC-IDRI, LUNA16, and the Super Bowl Dataset 2019. They also 

discussed supervised learning methods, including SVM, KNN, and CNN [68]. According to the 

authors in [9], these datasets represent the most commonly used CT data thresholds for disease 

diagnosis. Kalaivani et al. introduced a DenseNet-based binary classification model using a deep 
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convolutional neural network to distinguish between aggressive and benign lung cancer cases 

[17]. 

Following a review of these studies, presented in tabular form in ANNEXURE 2, this research 

aims to develop an automated method for early disease detection and patient health status 

assessment. The following section provides a brief overview of various optimization strategies 

employed in deep learning to identify cancerous nodules at a premature-stage. 

A work that utilized wavelet feature descriptors in conjunction with an artificial neural network 

for classification was presented. The computed mathematical properties, such as autocorrelation, 

entropy, contrast, and energy, are generated when the wavelet transform is applied and then used 

as input parameters for the neural network classifier [43]. However, this method uses ANN for 

classification, and it has a slow learning progression; hence, computation time is high. 

The Cancer Imaging Archive (TCIA) database provides an analysis of the Lung Image Database 

Consortium image collection (LIDC-IDRI) [66] using the SVM-LASSO model. Using the two CT 

radiomic properties of the anteroposterior dimension of the bounding box and the directional 

change of local homogeneity, it was possible to predict the malignancy. Nonetheless, there were 

no radiomic characteristics that distinguished spiculated or lobulated borders in particular [24]. 

A study was presented in which Wavelet feature descriptors were used in conjunction with an 

artificial neural network (ANN) for classification. The wavelet transform was applied to extract 

mathematical properties such as autocorrelation, entropy, contrast, and energy. These computed 

features were then used as input parameters for the neural network classifier [28]. However, the 

method's reliance on ANN led to a slow learning process, resulting in high computational time. 

The Cancer Imaging Archive (TCIA) database includes an analysis of the Lung Image Database 

Consortium image collection (LIDC-IDRI) [66] using an SVM-LASSO model. By employing 

two CT radiomic features, the anteroposterior dimension of the bounding box and the directional 

change of local homogeneity, it was possible to predict malignancy. However, no specific 

radiomic features were identified that could reliably distinguish spiculated or lobulated tumor 

borders. 

The Regression Neural Network (RNN) segmentation technique was proposed in [74][51], 

offering high accuracy in identifying nearby lesions of similar intensity. Due to the presence of 

adjacent vascular and pleural lesions, this method provided improved boundary identification 

during segmentation. RNN, as a learning algorithm, addresses challenges in automatic lesion 

detection. However, the model primarily focused on the segmentation accuracy of lung 

parenchyma and the precise identification of boundaries for juxtapleural and juxtavascular 

lesions [78]. A two-pronged approach to lung segmentation was presented in [61]. The first 
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component employed thresholding and morphological techniques, while the second addressed 

nodule-type classification using a naïve approach. This study explored the segmentation problem 

in the context of limited ground-truth data related to nodule types [43]. However, the 

classification approach was flawed, as it incorrectly categorized nodules attached to the pleural 

surface or vascular structures as fat nodules [36]. 

Another study demonstrated feature extraction from computed tomography (CT) images using 

artificial intelligence algorithms to analyze benign and malignant pulmonary nodules. CT images 

of pulmonary nodules were collected and processed using an Expectation Maximization (EM)- 

based lung nodule feature extraction model [54]. Nonetheless, detecting these nodules in the 

premature-stage remains challenging, as the associated symptoms often lack classical specificity, 

and most patients do not present with clear clinical signs during the initial phase. 

Lung carcinoma is one of the most prevalent and widespread types of cancer [5], with a mortality 

rate higher than that of other common cancers, such as prostate, breast, and colon cancer [4]. 

Lung carcinoma is classified into two main types: small-cell lung carcinoma (SCLC) and non- 

small-cell lung carcinoma (NSCLC). Both are primarily caused by smoking; however, a harsh 

reality is that even individuals who have never smoked can develop this deadly disease. 

This may be attributed to several factors, including prolonged exposure to air pollution, smoke, 

contaminated water, and, in some cases, hazardous gases, all of which have been reported as 

potential causes of lung cancer. Accurate identification of the premature-stage NSCLC is 

essential [74][24]; however, there is currently no exact method available [2]. Early diagnosis 

significantly reduces the lung cancer mortality rate [16], saving countless lives. 

A variety of modern techniques are now available for the diagnosis and treatment of lung cancer 

[29]. With the advancement of medical imaging technology, tools such as lung biopsy, Positron 

Emission Tomography (PET) [58], High-Resolution Computed Tomography (HRCT), Computed 

Tomography (CT) scans, and X-rays have greatly improved the detection of malignant nodules 

in one or both lungs [53][68]. 

The rise in early detection rates can also be attributed to CT imaging, which radiologists and 

oncologists now routinely use [27]. CT scans help assess various parameters, including the size, 

location, and type of lung lesions [19][93]. However, there is still a pressing need for progress in 

the medical field, particularly in the early identification and screening of lung malignancy [43]. 

Enhancing early screening practices can help minimize risk factors [36] and improve survival 

outcomes for patients. 

Accurate segmentation of tumors and surrounding organs is also critical. Inaccurate segmentation 

may lead to either under- or over-irradiation of healthy tissue and tumors [65]. Image 
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segmentation reduces image complexity by dividing the image into smaller, manageable regions 

[33]. Previously, segmentation was done manually, often resulting in unreliable and inconsistent 

outcomes [88]. In contrast, automatic segmentation techniques such as region-growing or multi- 

seed approaches have improved the reproducibility of results and enhanced the quality of 

radiomic features [94]. 

Additionally, a risk prediction model has been developed in China to identify individuals at the 

highest risk for lung cancer during CT screening. This model demonstrated good bias control and 

accuracy and was built using easily obtainable clinical classifiers suitable for large-scale 

screening scenarios. However, it relied entirely on self-reported data, making it susceptible to 

measurement errors [32]. 

Several machine learning techniques have been proposed to develop efficient models for 

identifying individuals at high risk of developing lung carcinoma, enabling early intervention to 

prevent long-term consequences. The results indicated that the model demonstrated improved 

performance in detecting lung cancer. However, due to privacy concerns, accessing critical 

medical data remains a significant challenge [56]. 

In another study, a deep learning (DL) classification system for lung cancer was developed using 

CT scans. A dataset of 311 patients with premature-stage lung carcinoma was used to train and 

validate convolutional neural networks (CNNs) [50][90][34], focusing on the two most common 

histological subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The results 

showed that the model was effective in classifying lung cancer and could serve as a supportive 

tool for radiologists. However, its performance was limited due to the small sample size. 

Lung cancer prediction was also explored using a machine learning approach combined with 

enhanced image processing, as presented in [54]. An improved deep neural network (DNN) was 

used to segment affected regions of noise-reduced lung CT images, extracting various features 

from the segmented areas [27]. This model showed better classification performance, though its 

overall accuracy remained suboptimal [55]. 

Another approach recommended the use of enhanced dense clustering with deep learning in a 

directly trained neural network for lung cancer detection from CT images [21]. The technique 

segmented the affected regions by calculating pixel similarity values. Based on these similarities, 

regions were grouped, and features relevant to spectral analysis were extracted. Classification 

techniques were then applied to learn and categorize these features [57]. The results demonstrated 

accurate lung cancer predictions; however, this method did not incorporate risk assessment. 

In [9], deep CNN models were proposed for classifying lung cancer from CT scans [30][49], 

each utilizing a distinct network architecture. Combining predictions from multiple CNNs using 
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ensemble learning [38] led to improved classification performance. However, the ensemble 

method also resulted in high computational costs. 

A classification and prediction system for lung cancer was also developed using machine learning 

and image processing techniques [81][80]. This method involved preprocessing CT images with 

a geometric mean filter, which enhanced image quality and improved the performance of artificial 

neural networks in predicting lung cancer. Despite these improvements, the model showed an 

increased likelihood of prediction errors [71]. 

The authors of [84] revisited the problem of lung cancer segmentation in CT images [54]. Their 

method integrated data from adjacent CT slices and combined the discrete wavelet transform 

(DWT) with deep supervision in the model architecture to enhance textural analysis. However, 

due to the unpredictable nature of cancer, the model was only partially successful in its 

predictions. Using extracted features from the Gray-Level Co-Occurrence Matrix (GLCM) [37], 

along with reliable machine learning (ML) and image enhancement techniques [47], a lung 

cancer prediction system was developed. The procedure involved extracting GLCM features 

from enhanced images [62] and applying optimized ML classification algorithms [44]. The 

results indicated that the model could be highly effective in improving lung cancer prognosis, 

aiding further diagnosis, and potentially reducing the mortality rate through expert radiologist 

support. However, the model's performance was limited by the small size of the dataset used [61]. 

2.3. Techniques for Enhancing and Analyzing Lung Cancer Images 

Image preprocessing primarily aims to enhance and improve image quality by reducing noise and 

removing unwanted distortions. In simple terms, it serves as a data-mining strategy that not only 

addresses missing data but also transforms raw image data into meaningful and usable 

information [64]. Today, a variety of preprocessing techniques and tools, such as OpenCV, 

CUDA, and Keras, are commonly used to enhance image quality. 

Image segmentation, in simple terms, involves dividing an image into meaningful regions or 

segments. This is particularly useful when analyzing complex images, as segmentation helps 

isolate and understand distinct objects within the image. The goal of segmentation is to accurately 

detect the edges and boundaries of these objects [24]. Several segmentation techniques exist, 

including clustering-based, edge-based, region-based, and watershed-based methods [19]. In 

essence, segmentation enhances the visual representation of the image for more effective analysis 

[28]. 

With segmentation, adjacent pixels are analyzed for similarity, and those with similar 

characteristics are grouped into the same region [26]. Once segmentation is completed, the next 

critical step is feature extraction, which highlights the most significant attributes of the detected 
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object. Feature extraction plays a vital role in many applications, such as pattern recognition used 

in Android mobile security and spam detection software [20]. 

In the context of medical imaging, feature extraction helps isolate the shape and region of interest 

(ROI) within an image, allowing for detailed analysis and accurate diagnosis. It relies on a 

combination of methodologies and algorithms to assess various characteristics of the segmented 

image, such as eccentricity, perimeter, area, and average pixel intensity [22]. These features are 

then used to determine whether the image content is normal or abnormal, supporting effective 

clinical decision-making. 

2.4. Datasets Available for Implementation 

Selecting an appropriate dataset is crucial when developing lung cancer detection systems, as it 

ensures effective training, analysis, and validation of the models. Below Table 2.1 shows a list of 

commonly used publicly available datasets that are widely utilized for designing and validating 

algorithms in lung cancer detection. 

Table 2.1 Summary of Widely Used Public Datasets for Lung Cancer Detection 
 

Dataset Name Modality Description Application 

LIDC-IDRI   (Lung 
Image Database 

Consortium Image 

Database   Resource 
Initiative) 

CT scans Contains annotated chest CT 

images with lung nodules 

marked by multiple radiologists. 

Widely used for training and 

benchmarking lung nodule 

detection algorithms. 

TCIA (The Cancer 

Imaging Archive) 

CT, PET, 

MRI 

Provides multiple datasets 
related to lung cancer imaging 
from different modalities. 

Useful for multi-modal lung 
cancer diagnosis and deep 
learning training. 

JSRT (Japanese 
Society of 
Radiological 

Technology) 

Chest X- 
rays 

Offers X-ray images labeled with 

the presence or absence of lung 

nodules. 

Used for evaluating X-ray- 
based detection methods. 

Deep Lesion Dataset CT scans Includes a large collection of CT 

images with various lesion 
annotations. 

Suitable for evaluating 

nodule/lesion detection and 
classification algorithms. 

 

LIDC-IDRI and Deep Lesion datasets offer CT scans with annotated nodules or lesions, ideal for 

training and testing detection models. TCIA provides multi-modal data, including CT, PET, and 

MRI, supporting advanced diagnostic approaches. Meanwhile, the JSRT dataset includes labeled 

chest X-rays, useful for assessing 2D image-based detection techniques. Together, these datasets 

play a crucial role in developing and benchmarking deep learning models for lung cancer 

diagnosis. 

2.5. Summary 

Reducing mortality rates and improving patient outcomes largely depends on the early detection 

of lung cancer. One promising area of artificial intelligence (AI) that enhances the accuracy and 
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efficiency of premature-stage lung cancer diagnosis is deep learning. Researchers have developed 

sophisticated algorithms, particularly convolutional neural networks (CNNs) and other deep 

learning architectures, that can analyze medical imaging data, such as CT scans and chest X-rays, 

to identify suspicious lung nodules indicative of cancer. 

Trained on large collections of labelled medical images, these deep learning models have 

demonstrated remarkable sensitivity and specificity in detecting lung nodules. By automatically 

extracting features from imaging data, the algorithms are capable of identifying subtle patterns 

that may be overlooked by human radiologists but are associated with premature-stage lung 

cancer. 

Moreover, deep learning systems can support radiologists by aiding in complex cases and 

offering a second opinion. This assistance can help reduce diagnostic errors and improve overall 

workflow efficiency in the medical field. 
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CHAPTER 3 HYPOTHESIS AND OBJECTIVES 

3.1. Identified Research Gaps 

i. Detecting lung carcinoma largely depends on identifying abnormalities in the bronchioles 

and ribs. However, predicting such abnormalities at a premature stage is challenging due to 

their rapid and irregular changes. 

ii. Captured CT images often contain inconsistencies and low-resolution pixels, leading to 

various types of noise, such as Gaussian and Poisson noise, which significantly reduce the 

accuracy of the classification process [77]. 

iii. Manual analysis of earlier medical imaging data is difficult, and segmentation results 

heavily depend on convergence time and accuracy. Therefore, there is a need to develop 

new and more precise techniques for lung image segmentation [56]. 

iv. Existing preprocessing methods for lung CT images often result in poor illumination 

correction and insufficient edge enhancement, primarily due to sequential and outdated 

processing techniques. Although risk screening helps identify premature-stage lung cancer 

more frequently, it may delay necessary diagnosis if performed too early. Hence, risk 

screening should ideally be conducted after the classification stage for more reliable results. 

v. While common segmentation techniques can extract regions of interest (ROIs) from lung 

images, the resulting features often exhibit high similarity to neighboring classes and suffer 

from low confidence during the detection phase. 

3.2. Research Objectives 

The primary objective of this work is to recognize lung carcinoma at a premature-stage. The other 

key objectives are as follows: 

i. To detect lung carcinoma using a P-ReLU activated transfer learning-based ResNet model, 

referred to as TL-based P-ReLUResNet (P-ResNet). 

ii. To remove noise from CT images using the Intra-class Variance–Anisotropic Diffusion 

Filter (I-ADF). 

iii. To perform lung segmentation through a Region Growing Segmentation (RGS) method 

integrated with the Bates Distributed Coati Optimization Algorithm (B-RGS), 

incorporating knuckle point partitioning. 

iv. To enhance edge clarity using the Unsharp Mask Filter (UMF). 

v. To improve model accuracy by selecting optimal features using the Binomial Distributed 

Chi-Square Test (BD-CST). 



18  

3.3. Proposed Framework 

Lung cancer is the most prevalent type of cancer worldwide. Due to its high mortality rate, 

researchers have been motivated to conduct extensive studies focused on its early detection and 

diagnosis [6]. When lung cancer is identified at a premature stage, the survival rate can increase 

significantly, by approximately 70–80%. 

To facilitate early prediction, a novel deep learning-based framework has been proposed. This 

system comprises the following key stages: preprocessing, lung partition segmentation, feature 

extraction, feature selection, classification, and carcinoma-based risk screening, as you can see 

in Figure 3.1. 

 

 

Figure 3.1 Proposed Framework for Premature Stage Lung Cancer Detection 

For risk screening purposes, the sensitivity of abnormal CT images was individually assessed to 

calculate the packet index of each image. This packet index helped identify individuals at high 

risk, particularly those diagnosed with Large Cell Carcinoma and Squamous Cell Carcinoma, 

while others were classified as low risk. Based on this screening, patients were categorized 

accordingly, and the results are presented in the subsequent section. 
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3.4. Summary 

Lung cancer, a common malignant tumor, primarily originates from abnormalities in the 

bronchial mucosa. As a result, individuals diagnosed with lung cancer often experience 

symptoms such as chest pain, coughing, dysphonia, and general discomfort in the throat and 

lungs. These symptoms may be further complicated by conditions such as malignant pleural 

effusion and pulmonary inflammation. Therefore, early prediction of lung cancer is critical for 

assessing individual risk and improving patient outcomes. 

Globally, lung cancer remains the leading cause of cancer-related mortality. Approximately 85% 

of lung cancer cases are attributed to cigarette smoking. Common symptoms include persistent 

cough, chest discomfort, weight loss, and, less commonly, haemoptysis (coughing up blood). 

However, many patients present with metastatic disease, often without any clear clinical 

symptoms. 

Diagnosis typically involves imaging techniques such as chest X-rays or computed tomography 

(CT) scans, followed by confirmation through biopsy. Treatment options depend on the stage of 

the disease and may include surgery, chemotherapy, radiation therapy, or a combination of these 

approaches. Historically, the prognosis for lung cancer has been poor, with a five-year survival 

rate of only about 15%. 

To address this challenge and improve both prognosis and early classification of carcinoma 

subtypes, this study proposes a novel deep learning-based model for the accurate and early 

detection of lung cancer. 
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CHAPTER 4   PROPOSED SEGMENTATION AND CLASSIFICATION 

4.1. Deep Learning-Based Framework for Lung Nodule Detection 

Convolutional Neural Networks (CNNs) have recently demonstrated remarkable automation 

capabilities in the medical field. They are widely used in deep learning applications for cancer 

diagnosis. Compared to other classification techniques, CNNs process input images directly, 

requiring minimal preprocessing [49], and they can efficiently learn parameters with sufficient 

training. These networks are designed to process visual data in a way that resembles the 

functioning of neurons in the human brain. A graphical representation of the research process is 

shown in Figure 4.1. 

Figure 4.1 Workflow of the Proposed Lung Nodule Detection Framework Using CNN and MPA 

4.1.1. Pre-processing stage 

The pre-processing stage plays a crucial role in enhancing the quality of lung CT scan images 

before feeding them into the classification model. The primary objective is to eliminate unwanted 

distortions and enhance key features for accurate detection. The key preprocessing steps applied 

in this study are shown in Figure 4.2: 

1. Noise Removal: A median filter is applied to eliminate salt-and-pepper noise from CT images. 

This filter smooths the image by replacing each pixel value with the median of neighboring 

pixel   intensities,   effectively   preserving   edges   while   reducing   noise. 
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Expected Output: A cleaner image with reduced background interference. 

2. Contrast Enhancement: Techniques such as histogram equalization are employed to improve 

the contrast of CT images, making the nodules more distinguishable from surrounding 

tissues. 

3. Expected Output: Enhanced visibility of nodular regions and clearer lung boundaries. 

4. Unsharp Masking: This step sharpens the image by enhancing the edge details, allowing 

better boundary detection of suspected lesions. 

5. Expected Output: Sharper and more defined anatomical structures. 

6. Watershed Segmentation: Used to separate overlapping structures or nodules in the image by 

treating the grayscale image as a topographic surface. 

7. Expected Output: Segmented image with distinct lung nodule boundaries. 
 

Figure 4.2 Step-by-Step Preprocessing Workflow for CT Lung Images 



22  

These processed images are then input into a CNN model specifically designed and trained for 

accurate classification. The effectiveness of these preprocessing steps directly contributes to 

reducing noise, enhancing features, and improving the overall detection performance of the 

system, as shown in Figure 4.3. 

 

Figure 4.3 Image Left and Right without and with pre-processing 

The intrinsic ability of the median filter to moderate intensity levels makes it possible to remove 

these artifacts without sacrificing image quality. It also effectively preserves image borders while 

reducing brightness fluctuations. Moreover, it efficiently removes "salt-and-pepper" noise, which 

is caused by abrupt and severe disruptions [19]. 

4.1.2 Segmentation of Lung Nodules 

The primary aim of lung nodule dissection is to isolate individual lesions from the respiratory 

system, which is a crucial step in assessing nodule size and distinguishing non-cancerous lesions. 

 

Figure 4.4 Illustration of Lung Image Segmentation 

Figure 4.4 shows a segmented lung CT scan where the lung region is outlined in green. The scan 

is divided into four color-coded sections (red, green, blue, and cyan) representing different zones 
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of the lung for analysis. This type of segmentation helps focus on specific lung areas to detect 

abnormalities like nodules. The visual breakdown supports easier observation and diagnosis. 

 

Figure 4.5 Image Left and Right without and with segmentation 

Figure 4.5 shows two lung CT scan slices labelled A and B. Image A represents the original CT 

scan, clearly displaying the lung structure and surrounding chest area in high contrast. Image B 

shows a processed version where only the lung region is highlighted, and non-cancerous areas 

are removed. This type of transformation is commonly used to enhance the analysis and detection 

of lung tissue for improved disease diagnosis. It helps radiologists or AI systems examine the 

lungs more accurately. 

4.2 Classification Techniques 

4.2.1. Convolutional layer network 

This method utilizes convolutional layers, max-pooling layers, and neural network layers, similar 

to other deep learning architectures. Essentially, the input data is treated like any typical input, it 

passes through multiple convolutional and pooling layers. Network training involves minimizing 

the output error between the expected and actual results by optimizing parameters such as weights 

and biases [43]. In this study, supervised learning is employed, where input-output examples 

guide the training process. The error is reduced by adjusting the network’s output to match the 

desired target [49]. As illustrated in Figure 4.6, the deep neural network developed for this work 

comprises three main types of layers: convolutional, max-pooling, and a combination of both. 

The convolutional layer contains kernels (filters), represented as three-dimensional weight 

matrices, that perform convolution operations on the neuron inputs [40]. Three convolutional 

layers are used in this architecture, and the filter size significantly influences performance [63]. 

A Softmax layer is added after the convolutional blocks to manage class probabilities and reduce 

dimensionality. By applying 2 × 2 filters in pooling layers, the number of output features is 

significantly reduced, which decreases the number of parameters and increases computational 

efficiency. Images are used as input in this study to reduce complexity, storage demand, and 

computational overhead [81]. However, as the input image size increases, the network’s 
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sensitivity tends to decline. Similar to the convolutional layer, each neuron in the pooling layer 

is connected to the outputs of a few neurons in the previous layer. The pooling layer is used to 

accelerate computation and reduce data volume [75][68]. Even after convolution and pooling, a 

considerable amount of small-sized feature data remains [61]. During the training phase, these 

features are passed to a Softmax classifier, which assigns class labels to the input images [79]. 

The final output layer, called "Flatten," transforms the multi-dimensional tensor into a 1D vector 

to facilitate weight optimization. Finally, various TensorFlow activation functions are tested 

using the RMSprop optimizer, which aims to minimize cross-entropy loss. 

Visualization Method: This mapping technique highlights the area’s most influential in a 

model's decision by providing visual explanations. It serves as a powerful tool for making the 

model more interpretable to domain experts. Through visual depictions of the model's decision- 

making process, this technique enhances trust and facilitates validation during debugging and 

optimization [34]. By analyzing these visual outputs, researchers can identify weak points in the 

model and implement architectural improvements. In this study, Grad-CAM is applied for visual 

recognition in single-module classification. The goal is to explore and enhance 3D CNN as shown 

in Figure 4.6 to more accurately and reliably detect lung nodules in CT scan data compared to 

existing models [76][55]. Ultimately, this approach aims to support early lung cancer detection, 

improving patient prognosis and survival outcomes. 

 

 

Figure 4.6 Convolutional Feature Mapper 

Source: https://medium.com/data-science/convolutional-neural-network-feature-map-and-filter- 

visualization-f75012a5a49c 

https://medium.com/data-science/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://medium.com/data-science/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
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𝑘 

𝑔𝑟𝑎𝑑−𝑐𝑎𝑚 

 

Figure 4.7 Input and Output Activation Maps 

Source: https://www.researchgate.net/figure/An-example-of-low-resolution-input-activation- 

maps-and-the-corresponding-high-resolution_fig3_338420687 

 

 

Figure 4.8 Max pooling in CNN 

Source: https://www.mdpi.com/1999-4893/15/11/391 

Grad-CAM can be regarded as a generalized form of Class Activation Mapping (CAM), offering 

researchers a way to interpret the inner workings of 3D CNN-based models visually. This 

approach is especially helpful for developers and medical professionals, as it visually highlights 

the regions in a CT scan that influence the model's decision. 

Grad-CAM works by performing a weighted combination of the forward activation maps, 

followed by the application of a ReLU function to introduce non-linearity. Since the ReLU 

activation is applied in every layer of the output feature map, the resulting CNN becomes more 

nonlinear, improving its ability to model complex patterns. In the suggested algorithm, the 

rectified linear unit has been employed as the activation function. It functions as follows: 

 

(Equation 4.1) 

Where, 

𝐿𝑁𝑎 = Grad-CAM output localization map for class activation. 

ReLU= Rectified Linear Unit, an activation function that outputs max (0, x). 

𝛼𝑐 = Importance weight of the feature map 𝐴𝑘 For class C. 

𝐴𝑘 = Activation map of the Kth feature in the last convolutional layer. 

This method helps us visualize how the model makes decisions by highlighting the specific areas 

in lung images that it relies on. It’s especially useful in medical imaging because it shows where 

the model is focusing, which helps experts understand and validate its predictions during lung 

nodule detection. 

https://www.researchgate.net/figure/An-example-of-low-resolution-input-activation-maps-and-the-corresponding-high-resolution_fig3_338420687
https://www.researchgate.net/figure/An-example-of-low-resolution-input-activation-maps-and-the-corresponding-high-resolution_fig3_338420687
https://www.mdpi.com/1999-4893/15/11/391
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4.2.2 Memory of the Marine Predator Algorithm (MPA) 

Marine predators, such as marine wolves, possess remarkable memory skills that help them 

repeatedly locate successful hunting grounds. This behavior is mimicked in the Marine 

Predator Algorithm (MPA), where memory retention is used to simulate predator behavior. 

After incorporating the effects of Fish Aggregating Devices (FADs) and prey movements, the 

algorithm evaluates its solution matrix for potential improvements by updating the elite 

solutions [58][69]. 

In each iteration, if the current solution demonstrates better fitness than the previous one, it 

replaces the earlier solution. This process mirrors the way predators revisit prey-rich areas, 

thereby progressively enhancing the solution quality. In this study, the MPA aims to optimize the 

learning rate parameter. Fitness is evaluated using the Root Mean Square Error (RMSE) 

between the actual label vector and the predicted output vector. 

The steps of the proposed method are as follows: 

1. Initialize algorithm parameters. 

2. Evaluate the initial population. 

3. Compare and update solutions based on fitness values. 

4. Iteratively enhance solutions by simulating predator foraging behavior. 

5. Optimize the learning rate to improve classification accuracy. 
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Figure 4.9 Flow chart of the present MPA-CNN method 

The Flowchart in Figure 4.9 illustrates the iterative CNN training process guided by MPA passes 

and learning rate adjustments. It continues training and testing until a predefined condition is 

met, ensuring optimal performance tuning. Train the optimized CNN model on the training data 

and evaluate its performance on the test data. When performance on a k-fold validation dataset 

no longer increases after training the model for an arbitrary number of epochs, halt training (k = 

5). This method allows one to adjust the ideal value for the classification process. The MPA 

algorithm is programmed to execute up to 100 times. If the error value stays constant after 10 

iterations, the MPA is said to have converged. After the experiment is set up, use the CNN training 

technique [52]. The learning rate is changed if the search agent's findings reveal a smaller mistake 

than the preceding number. For the predetermined number of iterations, the MPA runs. Test the 

model once the CNN training is finished. How accurately the model predicts the actual values in 

the test dataset is shown by the CNN accuracy test. The relevance of deep learning technologies 

in identifying significant elements from complex datasets in the current medical era is well 

demonstrated by their application. In the proposed method of this study, there is no overlap 

between the training and test data. Eighty percent of the images from the dataset are randomly 

selected for training, while the remaining twenty percent are used for testing. The training dataset 
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is fed into a Deep Neural Network (DNN) with a batch size of 32, trained over 200 iterations. 

This approach delivers superior results compared to other methods. Table 4.1 presents the 

simulation results of the proposed method along with comparisons to existing techniques. 

Table 4.1 The result of the MPA algorithm and its comparisons with others. 
 

Methods Accuracy Sensitivity 

 

Marine Predator Algorithm [4] 

 

92.6 

 

97.4 

ResNet [22] 88.4 92.4 

GoogleNET [34] 65.3 93.5 

AlexNet [34] 84.4 95.7 

 

The proposed technique demonstrates higher accuracy than the other evaluated methods, as 

shown in Table 4.1. 

 

Graph 4.1 Accuracy and Sensitivity Comparison 

The accuracy and sensitivity of various techniques for detecting lung cancer are compared in 

Graph 4.1. With a sensitivity of 97.4% and an accuracy of 92.6%, the Marine Predator Algorithm 

outperforms competing methods such as ResNet, GoogleNET, and AlexNet. These enhanced 



29  

metrics suggest that the Marine Predator Algorithm can reliably diagnose lung cancer from CT- 

based imaging data. One of its key advantages is the use of metaheuristic optimization, 

specifically, the Marine Predators Algorithm, to optimize network architecture and improve 

classification accuracy. This approach yields more precise and dependable results by extracting 

high-level features from deep networks, thereby enhancing both classification and diagnostic 

performance. Additionally, the higher sensitivity of the Marine Predator Algorithm guarantees 

fewer false negatives, making it a potentially useful tool for lung cancer early detection and 

intervention. 

4.3 Classification Using Traditional ML Algorithms 

Traditional classification approaches play a vital role in many machine learning tasks, 

particularly when addressing segmentation challenges. These methods provide a baseline for 

evaluating more advanced techniques and are often effective when applied to simpler or well- 

structured datasets. This section focuses on the Naïve Bayes classifier, a widely used classical 

classification method. 

4.3.1 Naïve Bayes Classifier Workflow and Architecture 

The preprocessing layer normalizes and rescales the pixel values of CT scan images to a 

standardized range, enhancing the quality of inputs for training. The Convolutional Neural 

Network (CNN) serves as the core component of the framework, consisting of multiple 

convolutional layers that extract significant features from the CT images [45]. These layers are 

designed to detect patterns that are potentially associated with cancerous regions [13]. To 

minimize overfitting and improve generalization, dropout layers are incorporated within the 

dense layers [30]. For classification, the model employs the Softmax activation function, which 

calculates the probability distribution across the output classes (cancerous or non-cancerous) 

based on the dense layer outputs. During training, the loss function measures the discrepancy 

between the predicted outputs and actual labels [43]. The model's weights are optimized using 

well-established optimization algorithms, with the Adam optimizer being preferred for its 

adaptive learning rate and computational efficiency [20][29]. The flowchart in Figure 4.10 

outlines the complete lung cancer detection pipeline, starting from data preprocessing to 

performance evaluation. Each stage of segmentation, feature extraction, selection, and 

classification works in sequence to ensure accurate diagnostic results. 
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Step-by-step procedure to detect the lung carcinoma using a naïve base classifier 
 

Figure 4.10 Flow chart of Naïve Architecture 

Figure 4.10 presents a systematic approach for lung cancer detection using machine learning 

techniques. It begins with preprocessing the CT images to enhance quality, followed by 

segmenting lung regions and isolating regions of interest (ROI). Features such as texture and 

shape are extracted and refined using recursive selection. Finally, classification algorithms like 

Naive Bayes and CNN are applied, and the model's performance is evaluated using metrics like 

accuracy, precision, and ROC. 

Table 4.2 Description and Techniques for the MPA Algorithm 
 

Step Stages Techniques Reference 

1 Data collection and labelling Public datasets [18], [25], [77] 

2 Data pre-processing normalization Image resizing [44], [80] 

3 Data split Training, validation, and testing sets [25], [77] 

4 Classification Naive Bayes classifier [37], [85] 

5 Feature Extraction Networks Convolutional Neural Network (CNN) [20], [39], [86] 

6 Non-linearity introduction 

function 

Rectified Linear Unit (ReLU) activation [73], [84] 

7 Mapping to output classes Fully connected layer [36], [80] 
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Table 4.2 shows the main steps used in the Marine Predator Algorithm (MPA) for lung cancer 

detection. First, CT scan images are collected and labeled. Then, the images are resized and 

divided into training and testing sets. A Naïve Bayes model is used for classification, and 

important features are taken from the images using a CNN. ReLU is used to add non-linearity, 

and finally, the results are given using a fully connected layer. 

Apart from the proposed segmentation and classification models, various AI-driven approaches 

have emerged for early lung cancer detection. Convolutional Neural Networks (CNNs), for 

instance, have shown significant promise in analyzing CT images to detect malignant nodules 

with high accuracy [41]. These AI algorithms can process large medical image datasets and 

identify patterns indicative of cancer. While imaging-based techniques remain central to this 

study, other emerging methods such as liquid biopsy, breath analysis, and optical coherence 

tomography are also being explored for non-invasive detection [13][39]. Though promising, 

these methods are still under research and fall beyond the image-based scope of this chapter. 

4.4 Datasets Used in ML-Based Lung Cancer Detection 

A large number of medical images is required to train a deep learning model for early lung cancer 

detection [55][15]. The dataset should include both cancerous and non-cancerous cases, along 

with detailed information on the stage and subtype of the tumor [17][9][40]. The National Lung 

Screening Trial (NLST) is one of the most commonly used datasets for this purpose [14][24]. It 

contains over 53,000 CT scans from more than 33,000 patients, with both positive and negative 

lung cancer cases [49][12][7]. To train deep learning models to distinguish between benign 

and malignant nodules, this dataset comprises annotations and classifications of the nodules [6] 

[40]. 

 

Figure 4.11 Malignant nodules of various sizes on CT slices. 

Figure 4.11 shows sample CT scan slices from a benchmark lung cancer detection dataset. These 

images highlight both healthy and abnormal lung regions, which are essential for training deep 

learning models. The scans demonstrate varied patterns, helping machine learning systems learn 

to differentiate between benign and malignant nodules. As shown in Figure 4.14 above, CT scan 

images labeled A and D display irregular bright regions indicating potential lung nodules or 
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abnormal tissue, suggesting unhealthy cases. In contrast, images B and C show clearer lung fields 

without such irregularities, representing healthy examples. 

Table 4.3 Nodule annotations for cancer detection 

 

Dataset 

Name 

Imaging 

Modality 

Annotation 

Type 

Nodule 

Type 

Number of 

Patients 

Number of 

Nodules 
Reference 

LIDC- IDRI CT Radiologist Lung 1,018 2,174 
[12] 

NLST CT Radiologist Lung 53,452 7,191 [26] 

ANODE09 CT Radiologist Lung 1,004 1,004 [15] 

Kaggle Data 

Science Bowl 

CT Radiologist Lung 1,944 1,861 
[25] 

LUNGx CT Radiologist Lung 2,426 3,495 [20] 

LUNA16 CT Computer- 
                aided  

Lung 888 1,186 
[77] 

 

Table 4.3 presents commonly used benchmark datasets for lung cancer detection using machine 

learning. It lists each dataset's imaging method (mostly CT scans), annotation type (usually 

radiologist-verified), and details such as the number of patients and nodules included. For 

instance, the NLST dataset stands out with over 53,000 patients and 7,191 lung nodules, offering 

rich and diverse data. Other datasets like LIDC-IDRI, LUNA16, and Kaggle also provide 

valuable CT images, helping researchers train and evaluate deep learning models for accurate 

lung nodule detection and classification. An accurate deep learning model for lung cancer early 

detection must be trained on a sizable and varied collection of medical images. 

4.5 Performance Comparison of Deep Learning and Traditional Models 

Table 4.4 Comparative results of the different proposed Lung nodule detection models. 
 

Prototype Accuracy Precision F1-Score Citation 

Decision Tree, Discretization 0.76 0.79 0.75 [20] Kavitha & Naveen, 2023 

Naive Bayes Classifier 0.85 0.88 0.85 [34] Rawat et al., 2023 

RFECV, LR, ANN, SVM 0.84 0.83 0.86 [17] Hasan et al., 2023 

Convolutional Neural Network 0.92 0.94 0.92 [39] Praveena et al., 2022 

ReLU 0.96 0.97 0.97 [44] Shakeel et al., 2022 

 

Table 4.4 shows that deep learning models like CNN and ReLU outperform traditional methods 

in terms of accuracy, precision, and F1-score. ReLU achieves the highest performance, indicating 

its strong capability in lung cancer detection. 
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Graph 4.2 Comparison of several suggested nodule detection models 

 

Graph 4.2 illustrates the performance of different machine learning and deep learning models 

used for lung cancer detection. It compares accuracy, precision, recall, and F1-score for five 

techniques. Among them, ReLU-based models and CNNs achieved the highest scores across all 

metrics, indicating strong predictive power. In contrast, traditional methods like decision trees 

performed lower, showing that deep learning models are more reliable for this task. 

4.6 Chapter Summary 

The review concluded that lung cancer in CT images can be accurately detected using deep 

learning algorithms. The algorithm achieved high accuracy (AUC = 0.96 for nodule detection) 

in diagnosing the premature-stage lung cancer. These findings suggest that deep learning 

algorithms are highly effective in detecting premature-stage lung cancer from CT images, 

potentially enabling earlier diagnosis and better patient outcomes. However, further research is 

required to evaluate these algorithms in clinical settings and across larger datasets. This study 

primarily focused on lung cancer detection rather than other pulmonary issues visible in lung 

imaging. In the future, the proposed methods may also help identify a broader range of pulmonary 

conditions. 
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CHAPTER 5  ENHANCING ALGORITHMS THROUGH 

OPTIMIZATION METHODS 

5.1. Problem definition 

Due to changes in lifestyle, environment, and dietary habits, cancer, particularly lung cancer, has 

emerged as a serious threat to global public health. Research attributes lung cancer to multiple 

factors, including cigarette smoking, indoor air pollution, genetic tendency, chronic illnesses, and 

poor diet. Among these, smoking is the most dominant cause, responsible for approximately 85% 

of lung cancer cases. Lung cancer often starts with abnormal growth in the bronchial mucosa, 

leading to symptoms such as persistent coughing, chest pain, and breathing difficulty. 

Unfortunately, these symptoms frequently appear only in advanced stages, by which point 

metastasis has often occurred. As a result, timely and accurate premature-stage detection is 

critical to improving survival rates and treatment outcomes. Currently, diagnosis relies on image 

analysis techniques such as chest X-rays, CT scans, and is confirmed by biopsy. However, 

traditional methods were not able to provide early and accurate results. Thus, this study proposes 

a novel deep learning framework for precise, premature-stage lung cancer detection. 

The proposed model introduces the following innovations: 

(a) Segmentation using B-RGS (Bates-distributed Coati Optimization + Region Growing 

Segmentation): 

Why: Lung segmentation is critical to isolate the lung area from the surrounding structure. The 

proposed B-RGS approach enables more accurate partitioning of lung regions by incorporating 

knuckle point detection, leading to precise region growth for better tumor localization. 

(b) Edge   enhancement   using   Unsharp   Mask   Filter   (UMF): Why: 

CT images often suffer from low contrast and weak boundaries. UMF improves edge clarity, 

helping the model focus on critical boundaries between healthy and abnormal tissues, thus 

improving segmentation and classification accuracy. 

(c) Feature selection using Binomial Distributed Chi-Square Test (BD-CST): Why: 

Deep learning models benefit from selecting only the most relevant features. BD-CST reduces 

noise and redundant information, enhancing model performance and reducing training 

complexity. 
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5.2. Problem-Solving Approach 

To overcome the identified challenges, this research proposes a comprehensive, deep learning- 

based model for premature-stage lung cancer prediction, specifically using TL-based P- 

ReLUResNet (P-ResNet). The model incorporates the following key contributions: 

a. TL-based P-ReLUResNet for lung cancer detection: P-ResNet integrates transfer learning 

and PReLU activation, offering improved gradient flow and better feature representation, 

especially beneficial for complex CT data. 

b. I-ADF for noise removal: Iterative Adaptive Decision Fusion effectively removes imaging 

noise while preserving key image features, improving the clarity of CT scans used for 

diagnosis. 

c. Lung segmentation using B-RGS: Combines metaheuristic optimization and region 

growing to isolate lung structures with higher accuracy. 

d. Edge enhancement using UMF: Enhances contrast at tissue boundaries, aiding the model 

in distinguishing tumor regions from healthy tissue. 

e. Feature selection using BD-CST: Prioritizes the most discriminative features, leading to 

higher accuracy and reduced false 

Positive rates. 

5.3. Proposed Methodology1: Lightweight Deep Neural Network for Early Lung Cancer 

Detection 

This proposed framework is shown in Figure 5.1 and works under the following phases: 

1. Pre-processing (Noise elimination and Contrast enhancement) 

2. Segmentation phase 

3. Classification phase. 

4. Risk score prediction phase 
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Figure 5.1 Block schematic of the suggested lightweight model 

The explanation, details, and contributions of our developed approach are given below. In this 

research, we propose a lightweight model to overcome noisy regions, such as graininess, tissues 

[11], and vessels, a Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM). 

i. To reduce false positives of the disease prediction accuracy, Sørensen-Dice Index-based K- 

means clustering has been suggested. 

ii. To detect varying-sized nodules of the lungs, Light Spectrum Optimizer-based pulmonary 

nodule detection (WDSI-LSO) has been used. 

iii. To differentiate lung parenchyma from the segmented lung, a sliding window strategy has 

been suggested. 

iv. To screen patients for future analysis, a risk screening has been made based on solitary 

nodule detection using PLCOm. 

v. To appropriately classify lung cancer with high accuracy, a semi-supervised and contrastive 

learning-based Deep Neural Network (SSCL-DNN) has been proposed. 

vi. The proposed algorithm evolved using a hybrid method and was compared to other 

algorithms, such as MLP, CNN, and RNN. Google DeepMind was the first to use 

reinforcement learning technology. 
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5.3.1. Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM) 

First, input lung CT images are collected from the LIDC dataset in DICOM format and are given 

to the Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM). The suggested filter 

improves variance field estimation by making use of the image Ricker wavelet coefficients' inner- 

and inter-scale dependence. By smoothing the noisy wavelet coefficient variances iteratively, this 

filter maintains the edge information found in the large-magnitude wavelet coefficients [40]. Here 

results will be evaluated for parameters, such as PSNR, MSE, and SSIM, with conventional de- 

noising filters, such as the Gaussian filter, Guided filter, and Wiener filter. A histogram 

equalization technique is adopted for contrast enhancement [4][25]. After determining the proper 

window size level, the slope and intercept are rescaled using the inverse log transformation. 

5.3.2. Sørensen-Dice Index K-means clustering 

The pre-processed images will be computed for various intensities, and then given to Sørensen- 

Dice Index K-means clustering. After that, the cluster centers will be initialized, and this step is 

repeated until convergence is reached. Since Euclidean and other distances are not scale- 

invariant, meaning that the distances computed could be skewed depending on the features' units, 

the Sørensen-Dice Index distance is thus employed as the data index distance calculation [6][56]. 

Sørensen's initial formula was intended for use with discrete data. It is defined as specified, 2 

sets, X and Y, as 

 

 

(Equation 5.1) 

This equation measures how similar two sets 𝑋 and 𝑌 are. It calculates the overlap (intersection) 

between the two sets and divides it by the total size of both sets combined. A value close to 1 

indicates strong similarity (more common elements), and A value near 0 means very little overlap. 

Used in clustering to compare the similarity between segmented regions in CT images. The 2 sets 

of cardinalities, or the number of essentials in every set, are represented by the variables |X| and 

|Y|. Divide the whole number of elements in each set by the total sum of items that both sets share 

twice to get the Sørensen index. By using the definitions of (FN), which stands for false negative, 

true positive (TP), and false positive (FP), one can write boolean data as follows. The cardinalities, 

or the number of members in each set, of the two sets are represented by the variables |X| and 

|Y|[45]. Divide the overall sum of elements in each set by the total sum of items that both sets 

share twice to get the Sørensen index. By using the definitions of true positive (TP), false positive 

(FP), and false negative (FN), one can characterize boolean data as [34][16]. 
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(Equation 5.2) 

Where TP = True Positives, FP = False Positives, FN = False Negatives. It is commonly used in 

image segmentation to evaluate how well predicted regions match actual tumor areas. 

Conversely, true positives are only counted once in the numerator and denominator of the Jaccard 

index. The similarity quotient, or DSC, has a range of 0 to 1[26][9]. It can be seen as a set-level 

similarity metric. The established operations can be described in terms of vector operations over 

binary vectors a and b, just like the Jaccard index does: 

 

 

(Equation 5.3) 

Here, 𝑎 and 𝑏 are binary vectors (pixel values: tumor vs non-tumor). The formula compares two 

vectors by checking how many matching values they have. Useful when comparing pixel-wise 

predictions with ground truth segmentations. This provides a broader similarity metric across 

vectors and yields the same result for binary vectors. The coefficient is well-defined as two-fold 

the collective information (intersection) over the total cardinalities for sets X and Y of keywords 

utilized in information retrieval. Therefore, from each cluster center, the centroid intensity will 

be determined using the Sørensen-Dice Index as a distance measure. For every data point, this 

process is repeated [24][36]. Conventional clustering techniques, such as the K-means clustering 

algorithm, centroid-based clustering, and density-based clustering methods, will be evaluated for 

comparison. The results of this clustering method for parameters, such as true positive and false 

positive rates, are compared with those of previous methods. 

 

(Equation 5.4) 

This shows the result 𝐶 of applying K-means clustering to the preprocessed image 𝐼 𝑅 𝑊 𝐼 𝐶 𝑊 

𝑀. K-means is used to group similar pixels, like tumor, background, etc. The clustered regions 

are denoted by the C. Srensen-Dice Index with K-means Clustering: Using the Srensen-Dice 

Index as the similarity metric, we employ K-means clustering to separate the preprocessed image 

into K clusters. After choosing K cluster centers, each pixel is subsequently given to the nearest 

cluster based on the Dice similarity. 
 

 

(Equation 5.5) 
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This equation indicates that segmentation is performed on the preprocessed image using K- 

clusters and Dice similarity as the distance metric. The segmented image is represented by the 

keyword segmented. K-means stands for the K-means clustering procedure. K represents the 

number of clusters, which normally stand in the foreground and background. The similarity metric 

used in K-means clustering is Dice similarity [14]. The segmented pulmonary nodules are 

included in the final product, where each pixel is assigned to a cluster depending on how similar 

it is to the cluster centers using the Sørensen-Dice Index. The result obtained at this stage is then 

given for pulmonary nodule detection. For pulmonary nodule detection, lung parenchyma is 

extracted [38] using a sliding window strategy, and from this, lung nodule detection will be done 

using Weighted Dice Similarity Index with Local Search Optimization based pulmonary nodule 

detection (WDSI-LSO) [5][47]. 

Here, Light Spectrum Optimizer is taken, and due to its being restricted by the transmission 

coverage, the scale factor distribution is modified using the Weibull distribution. Here, the images' 

grey level values will be initialized, and the goal function is to find the best threshold by 

histogram analysis and evaluating each gray level to see which one maximizes the likelihood that 

the threshold value will occur for each class of probability [57]. Many ROIs with different 

intensities are obtained from this ideal threshold due to optimal multilayer thresholds. Eventually, 

these ROIs are concealed using a segmented lung mask to create the collective form of an ROI 

picture. From this ROI, the features, such as the range of area, volume range, tolerance in Overlap 

(OL) feature, and elongation (EL) feature, are calculated [15][7]. This result will be evaluated 

for nodule count, Dice Similarity Coefficient (DSC), sensitivity, Positive predictive value (PPV), 

and specificity for U-DNet, NoduleNet, and Faster R-CNN. 

 

(Equation 5.6) 

Where IWDSI−LSO represents the enhanced image after applying WDSI-LSO. The segmentation 

process can be visualized as a binary image, where pixels corresponding to pulmonary nodules. 

This shows the image. 𝐼𝑊𝐷𝑆𝐼−𝐿𝑆𝑂 It is generated by applying the Light Spectrum Optimizer 

(WDSI-LSO) on the preprocessed image and cluster result. 

5.3.3. Semi-supervised and contrastive learning-based DNN 

As proposed methodology discussed in the above section, Preprocessing steps typically include 

Contrast Stretched, Convex Hull, and Edge Enhanced for resizing the images, normalizing the 

pixel values, and possibly augmenting the data to increase the variety and robustness of the 

training set, as shown in Figure 5.2 below. In the context of lung cancer, labels would indicate the 

presence or absence of nodules and, if available, the malignancy of detected nodules. Common 
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architectures used for medical image classification include Convolutional Neural Networks 

(CNNs) like ResNet, VGG, and proposed. Divide the dataset into training, validation, and test 

sets. A common split is 70-20-10. Train your DNN using the training set. Use the validation set to 

tune hyperparameters and avoid overfitting. After classification, the Optimizers like Adam or 

RMSprop and the risk analyzer are frequently used. 

Figure 5.2 Dataset Utilization for Cancer Detection 

The LUNA16 CT imaging dataset, which was split into three sets (Test, Training, and Validation), 

served as the data sample for this study. Each image in the dataset is assigned a single label: normal, 

large cell carcinoma, or squamous cell carcinoma. CT scans were performed throughout the 

patients' clinical care schedules. Before training the deep learning models on the dataset, two board- 

certified physicians reviewed and labeled the images. To ensure accuracy, a third expert further 

assessed the image labels. In both the training and test sets, there was a significant class imbalance. 

Additionally, some samples from the training set were also present in the test set, creating overlap. 

To address this, the training and test sets were combined, shuffled, and randomly reordered to form 

a new training set. Figure 5.3 displays images corresponding to cases of squamous cell carcinoma, 

large cell carcinoma, and normal conditions. 
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Figure 5.3 The left, center, and right images illustrate distinct kinds of cancer. 

For classification, the segmented nodules were taken as input to the semi-supervised and 

contrastive learning-based DNN (SSCL-DNN). Output SSCL−DNN = SSCL−DNN 

(IWDSI−LSO, C, PLCOm). Where Output SSCL−DNN represents the output of the neural 

network, which could include nodule detection scores and risk assessments. By incorporating 

several projector layers, a contrastive loss term, semi-supervised label propagation, and 

contrastive learning [1] for classification, DNN is divided into two sub-networks. 1. The classifier 

will receive segmented results as a training set. 2. The network has pre-trained models (semi- 

supervised learning) and it propagates the incoming images into classes, such as small-cell lung, 

non-small cell lung malignancy [31], and no nodule. 3. Then, contrastive learning [40] is 

introduced in the network by adding a projection layer and considering contrast loss. 4. Due to 

contrasting learning, the input images will be augmented both strongly and weakly, then 

combined in the projection layer for the extraction of 2D features and 3D features. These features 

will be mapped as feature vectors in the same layer 5. These results will be given to DNN 

classification layers, and the upshot will be non-small cell lung [7], small-cell lung malignancy, as 

well as no nodule [37]. 

5.3.4. Risk Score Screening 

Here, risk screening [6] will be done based on solid nodules found in the segmentation result. 

This will be done based on environmental factors, such as smoking, family history, and other 

chronic diseases. Along with this, if positive solid nodules were found, the risk assessment would 

be performed using the PLCOm risk model. PLCOm risk assessment also considers the 

environmental features stated earlier to result in high-level and low-level risk. This was done to 

predict the survival rate of the entire database and make precautionary care in the future. 

 

 

(Equation 5.7) 

Where Ipatientdata contains patient-specific information. 
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This equation represents the risk score calculated using the PLCOm model based on a patient’s 

environmental data (like smoking history, family history, etc.). 

5.3.5. Dataset Overview for Lightweight DNN Model 

The Lung Image Database Consortium image collection serves as the dataset for this proposed 

work (LUNA-16) [28]. Thoracic computed tomography (CT) scans with marked-up, labeled 

lesions are used for both lung cancer screening and diagnosis [6]. This 1018-case data collection 

was produced in collaboration with seven university organizations and eight medical imaging 

companies [38]. Images from a clinical thoracic CT scan and an XML file containing the 

annotation process findings, completed in two steps by four seasoned thoracic radiologists, are 

included for each topic. At the first blinded-read stage, each radiologist independently reviewed 

each CT image [2] and classified lesions into three categories: “non-nodule > or =3 mm”, “nodule 

< 3 mm”, and “nodule > or =3 Mm”. Here, the sample image of the suggested methodology is 

shown in Figure 5.4. In Figure 5.4A, the original CT sample images are displayed. As can be 

seen in Figure 5.4B, the contrast stretch applied to the input images is preprocessed to remove 

noise using RWICWM. Next, in the picture of Figure 5.4C, we see the edge enhancement image. 

After, in Figure 5.4D, we see segmentation. Finally, in Figure 5.4E, the classified output is large- 

cell cancer, squamous cell cancer [51], and normal (without carcinoma). RWICWM. Next, in the 

picture of Figure 5.4C, we see the edge enhancement image. After, in Figure 5.4D, we see 

segmentation. Finally, in Figure 5.4E, the classified output is large-cell cancer, squamous cell 

cancer [51], and normal (without carcinoma). 
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Figure 5.4 Sample input images in the proposed framework. 

(A, B) The Top and Bottom Images show the original CT sample Images and the contrast– 

stretched Images. (C, D) The Top and Bottom Images show the edge enhancement Image and 

segmentation. (E) The images show the classified output: large cell cancer, squamous cell cancer 

[24], and normal (without carcinoma). 

In Figure 5.4, the images help doctors make well-informed decisions and improve patient care 

strategies by providing a thorough awareness of the extent and distribution of malignant tumors 

through a visual contrast between normal cancerous images on the left side and enhanced 

cancerous diseased tissue images on the right side. 
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Figure 5.5 Left and Right with Cancer and Highlighted Cancerous Image. 

The area highlighted in Figure 5.5 (using the arrow) is the cause for concern and requires 

additional investigation because it shows cancerous cells. Herein, we have used red color to 

indicate the tumor. This might be a side and enhanced cancerous diseased tissue images on the 

right side, and might be a tumor, nodule, or another abnormality that has to be examined more 

closely to rule out malignancy or benignity 

5.4. Proposed Methodology 2: Lung Carcinoma Detection Using Transfer Learning 

Proposed Methodology: Advanced Lung Carcinoma Prediction and Risk Screening Model Using 

Transfer Learning: Globally, lung cancer is the most prevalent type of cancer. Due to the high death 

rate associated with lung cancer, researchers were compelled to conduct an extensive 

investigation into the early identification and diagnosis of cancer. When lung cancer is detected 

early (in the first stage), the survival rate increases by 70 to 80%. To predict them in a premature 

stage, a novel framework with deep learning has been proposed. The novel framework consists 

of the following stages: Pre-processing, Lung partition Segmentation, Feature extraction, Feature 

selection, Classification, and Risk Screening based on carcinoma. Segmentation and nodule 

detection were performed on each 2D CT slice independently. A Lung CT scan image is taken as 

input, and this image itself has some noise, such as Gaussian and Poisson noises, which should be 

removed. Also, the image should be enhanced for its high level of classification. Hence, the image 

first undergoes noise removal using Intra-class variance-Anisotropic Diffusion Filter (I-ADF). 

Conventional Anisotropic Diffusion Filter (ADF) is chosen for its characteristic of without 

blurring edges. Still, it has the disadvantage of constant diffusion magnitude that might affect the 

Signal to Noise Ratio (SNR) of the filter. Hence, it is modified to follow inter-class variance. 

This novel filter will be evaluated for variance and SNR and will be compared with conventional 
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methods, such as Wavelet transform filter (WTF), Gilbert Filter (GF), and Median Filter (MF) 

[66][29]. From this, the noise-removed image will then be given for contrast stretching. This is 

to increase the range of intensity values as it contains a span of desired values. This contrast- 

stretched image will then be given for the convex hull operation to separate the lung region from 

the whole image, and then proceed with this result in the image again [12]. Further, this lung 

region will then be given for edge enhancement using an Unsharp Mask Filter (UMF). UMF is 

selected for its increased edge sharpness in the image, and this pre-processed image will then be 

given for segmentation. For segmentation purposes, Bates distributed the coati optimization 

algorithm, and integrated Region Growing Segmentation (B-RGS) has been proposed. Here, 

Region Growing Segmentation (RGS) is selected for its high segmentation accuracy if the edges 

are clear; still, it has certain limitations when used in lung CT images to segment the carcinoma 

region due to the overlapping shadow of vessels, tissue mass, and ribs. Hence, to overcome this 

issue, the seed of the region growing section is assumed to be the knuckle point of the lung image. 

This knuckle point is selected using the Bates distributed Coati Optimization algorithm (BD- 

COA). This will be done by collecting the contour values of both lungs (left and right) and then 

conforming them. This gives a conformity index by selecting the highest conformity value. Here, 

the Coati Optimization algorithm (COA) is selected for its high meta-heuristic property, and still, 

it has a limitation of high computation complexity; hence, it is modified in the r iguana updating 

rate using the Bates distribution. This B-RGS will then be evaluated for segmentation accuracy, 

error, etc., and will be compared with RGS, Watershed algorithm, and Density-based 

segmentation algorithm. Features, such as gradient features, profile-based features, on-rib, on- 

vessel, and spectral flatness measures, have been extracted. These features were typically related 

to carcinoma categories. Feature selection will be done using a Binomial distributed Chi-square 

test (BD-CST). The Chi-square test is chosen for feature reduction due to its low processing time. 

Still, it has a limitation of choosing the significance level randomly that might affect the 

processing result; hence, it is modified to follow the Binomial Distribution (BD). This method will 

then be evaluated for its feature selection algorithms, such as Genetic algorithm (GA), Linear 

Discriminant analysis (LDA), and Principal Component Analysis (PCA). The selected features 

will then be given for the classification of carcinoma. For classification, TL-based P- 

ReLUResNet P-ResNet (P-ResNet) has been proposed. P-ResNet is selected for its high 

efficiency in medical image classification. However, it suffers from a low learning rate and a high 

computation time for the kernel activation function. Hence, to address this issue, this transfer 

learning modified ResNet model will provide improved learning rate, and thus it will be further 

modified with P-ReLU activation function for its efficiency. This model will be evaluated for 
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Accuracy, precision, recall, etc., and will be compared with existing deep learning models, such 

as Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Artificial Neural 

Network (ANN). The classifier results as normal and abnormal, such as Adenocarcinoma, 

Squamous cell carcinoma, and Large Cell Carcinoma, are classified. As this transfer learning 

modified P- P-P-ResNet model will provide an improved learning rate, and thus it will be further 

modified with P-ReLU activation function for its efficiency. For risk screening purposes, the 

sensitivity of the abnormal images was considered and calculated individually to find the packet 

index of the CT image. This packet index in turn shows that persons with Squamous cell 

carcinoma and Large Cell Carcinoma were at high risk, and others are at low risk. Thus, the 

patients were screened, and the results will be presented. 

Figure 5.6 Pre-Diagnosis of Lung Cancer Detection 

The TL-based P-ReLUResNet (P-ResNet) for lung cancer diagnosis combines a number of 

cutting-edge ideas from medical image processing and machine learning. An essential part of this 

process is Transfer Learning (TL), which allows the model to use the knowledge it has learned 

during training on big datasets in related fields like object identification or even general medical 

imaging. Through the application of this acquired knowledge, the model is able to adjust and 

become more specialized for the goal of detecting lung cancer, possibly using less data and 

achieving faster convergence. Based on the Residual Neural Network (P-ResNet) framework, 

which is well known for its capacity to efficiently train very deep neural networks through the 

use of skip connections, P-ResNet's architecture was developed. Because of these connections, 

the model can learn residual mappings, which facilitates the training of deep networks without 
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causing the vanishing gradient issue. The network is further enhanced by the integration of 

Parametric Rectified Linear Unit (P-ReLU) activation functions. P-ReLU modifies the normal 

ReLU activation function to include more learnable parameters, which allows the network to 

simulate more intricate relationships in the data. The ability of P-ResNet to increase lung cancer 

detection's sensitivity and specificity is one of its main benefits. The ability of the model to 

precisely recognize true positive cases of lung cancer is referred to as sensitivity, while the ability 

to correctly identify true negative cases is measured by specificity. P-ResNet seeks to balance 

these two metrics by adding P-ReLU activations and fine-tuning the pre-trained model weights 

using TL to reduce false positives and false negatives. Furthermore, P-ResNet may improve the 

effectiveness of procedures for diagnosing and screening for lung cancer. Radiologists can detect 

possible cancers more quickly and precisely by using P-ResNet, which automates the detection 

of problematic regions in lung imaging studies, such as CT or X-rays. This could shorten the time 

it takes to diagnose a patient, allowing for earlier interventions and better patient outcomes. 

5.4.1. Iterative Adaptive Decision Fusion (I-ADF) 

Through iterative decision fusion, the Iterative Adaptive Decision Fusion (I-ADF) technology 

offers a novel approach to lung cancer detection with the goal of improving diagnosis accuracy 

and dependability. In contrast to conventional techniques that depend exclusively on a single 

classifier or algorithm, I-ADF utilizes several classifiers and repeatedly combines their 

conclusions to attain enhanced performance. I-ADF functions primarily through a sequence of 

iterative processes. First, some classifiers, each intended to evaluate distinct features of lung 

imaging data, are used to produce distinct conclusions about the existence or non-existence of 

malignant anomalies. These classifiers could make use of a variety of methods, including rule- 

based systems, conventional machine learning algorithms, and deep learning models. An 

adaptive decision fusion technique is utilized to combine the judgments made by each classifier 

after the first classification phase. 

The individual choices are combined dynamically throughout this fusion process, which adjusts 

to the properties of the input data and the effectiveness of each classifier. Through iterative 

improvement of the fusion method based on input from prior rounds, I-ADF can efficiently 

combine the advantages of several classifiers while minimizing the drawbacks of each one 

separately. Because I-ADF is iterative, decision fusion may be continuously improved, allowing 

the system to learn from its performance and adjust to changing patterns in the data. The fusion 

process gets more and more precise with each iteration, improving lung cancer detection's 

resilience and accuracy. The utilization of I-ADF exhibits considerable potential in enhancing the 

dependability of lung cancer detection and diagnosis. I-ADF may lessen the drawbacks of single 
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algorithms and offer more precise evaluations of worrisome lesions in lung imaging scans by 

skillfully integrating the insights from several classifiers. In the end, this method may help identify 

lung cancer early, which would improve patient outcomes and allow for quicker therapies. 

5.4.2. Knuckle Point Using (B-RGS) 

By identifying conspicuous places within lung imaging data, Knuckle Point diagnosis (KPD) 

using Binary-Robust Geometric Sampling (B-RGS) presents a viable tool for improving lung 

cancer diagnosis. Using B-RGS, this method seeks to identify important characteristics along the 

outlines of lung anomalies, such as tumors or nodules, similar to knuckle points in fingerprints. 

The capacity to precisely identify critical locations along aberrant outlines has substantial 

diagnostic significance when it comes to lung cancer identification. These points can help 

distinguish between benign and malignant lesions by acting as reference markers when examining 

the size, shape, and textural traits of possible cancers. The KPD approach effectively recovers 

significant points from lung imaging data, even in the presence of noise or fluctuations in picture 

quality, by utilizing B-RGS. Significant spots may be identified based on their geometric qualities 

thanks to the combination of strong geometric sampling and binary image processing techniques 

found in B-RGS. Through the provision of useful landmarks for analysis to automated diagnostic 

systems and radiologists, the combination of KPD with B-RGS advances the identification of 

lung cancer. More precise and dependable diagnosis is made possible by the knowledge of the 

geographical distribution and structural features of lung anomalies provided by these identified 

knuckle spots. Once everything is looked at, the exact localization of important characteristics 

within lung imaging data through the use of KPD employing B-RGS provides a potential method 

to improve lung cancer diagnosis. This technique has the potential to improve early detection 

rates and treatment methods for individuals with lung cancer by utilizing the advantages of 

contour analysis and geometric sampling. 

5.4.3. Unmask Sharp Filter 

The UMF Unmask Sharp Filter is a cutting-edge method for lung cancer diagnosis that improves 

the sharpness and clarity of medical imaging data, especially in lung imaging modalities like 

computed tomography (CT) scans and X-rays. This method concentrates on enhancing the 

visibility of minute anomalies and structures in lung pictures, which are essential for precise 

diagnosis and timely identification of lung cancer. Fundamentally, the UMF Unmask Sharp Filter 

preserves significant anatomical information while improving picture sharpness through the use 

of sophisticated image processing methods [16][25]. This filter "unmasks" hidden elements in 

the image so that automated diagnostic systems and medical experts may more easily identify 

them by selectively enhancing high-frequency components and reducing noise. The UMF 
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Unmask Sharp Filter's increased sharpness has several benefits for lung cancer diagnosis. It 

enhances the visibility of aberrant structures, lesions, and tiny nodules that might be signs of lung 

cancer in its premature stage. Furthermore, by improving contrast and detail, the filter helps 

medical professionals distinguish between benign discoveries and those that are cancerous, 

resulting in more precise and trustworthy diagnoses. Additionally, the UMF Unmask Sharp Filter 

is compatible with a range of imaging modalities and software systems and is made to fit easily 

into current medical imaging processes. Its adaptability and simplicity of usage allow it to be 

applied in research and clinical practice contexts, which promotes broad acceptance and use. 

Through enhanced picture sharpness and clarity, the UMF Unmask Sharp Filter is a useful tool 

for improving lung cancer diagnosis. In the fight against lung cancer, this approach has the 

potential to enhance patient outcomes by improving diagnostic visibility, improving early 

detection rates, and facilitating more accurate diagnosis by uncovering subtle abnormalities. 

5.4.4. Binomial Distributed Chi-Square 

Summing the squares of independent standard normal random variables yields the Binomial 

Distributed Chi-Square, frequently referred to as the Chi-Square Distribution, whose degrees of 

freedom are equivalent to the total number of categories minus one. In statistical analysis, this 

distribution is commonly seen, especially in goodness-of-fit and hypothesis testing [31]. Chi- 

Square Distribution is used in hypothesis testing to assess the difference between observed and 

predicted frequencies in categorical data. A substantial divergence between the observed and 

expected distributions can be found by statisticians by comparing the perceived frequencies with 

those predicted by a null hypothesis. When assessing the relationship between two 

categorical variables, the chi-square test for independence is one prominent use of the Binomial 

Distributed Chi-Square. Researchers can determine if there is a statistically significant 

association between the variables by calculating the chi-square statistic from the observed 

frequencies in a contingency table. Additionally, evaluating the goodness of fit, the degree to 

which an observed frequency distribution matches a theoretical or predicted distribution. 

Requires careful consideration of the Chi-Square Distribution. This application is frequently used 

to evaluate the suitability of statistical models and hypotheses in a variety of domains, including 

economics, psychology, and biology. 

A fundamental probability distribution in statistical research, the Binomial Distributed Chi- 

Square provides useful tools for goodness-of-fit evaluation, independence assessment, and 

hypothesis testing. 
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5.4.5. Dataset Overview for Transfer Learning Model 

The data includes one folder for normal cells and three distinct sorts of chest sarcoma: Squamous 

cell cancer, Adenocarcinoma, and large cell cancer. The test, train, and validation folders can be 

found inside the data folder, which is the main folder holding all of the step files. A training set 

is indicated by the term "train," a testing set by "test," and a validation set by "valid". The training 

set utilized 80% of the data during analysis, followed by the testing set (20%). 

 

 

(b) 

 

 

(d)  

Figure 5.7 Sample images of the planned model. 

(a) input picture, (b) pre-processed images, (c) segmented images, and (d) classified output 

images 

Here, Figure 5.7 demonstrates the sample image of the proposed methodology. The input image is 

shown in (a). After that, the input image is pre-processed by using I-ADF and UMF, has been 

shown in (b). Then, b(i) represents the noise-removed image, b(ii) represents the contrast- 

stretched image, b(iii) represents the convex hull image, and b(iv) represents the edge 

enhancement image. Then, the segmented image is shown in (c), and finally, the classified output 
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is d (i) Adeno carcinoma, d (ii) large cell cancer, d(iii) squamous cell cancer, and d(iv) normal 

(without carcinoma). The outputs d (i), d (ii), and d (iii) represent the abnormal class. 

5.5. Chapter Summary 

In this, the chi-squared distribution is a fundamental tool in hypothesis testing because it makes 

it easier to compare actual and anticipated frequencies in categorical data. Statisticians can 

estimate the degree of disparity between the observed and predicted distributions to help them 

decide whether a hypothesis is true or not. The chi-square test for independence is a popular use 

of the Binomial Distributed Chi-Square that enables researchers to conclude if there is a 

statistically significant association between two categorical variables. Understanding the 

relationship between variables is obtained by computing the chi-square statistic from observed 

frequencies in contingency tables. When determining the goodness-of-fit of observed frequency 

distributions, the Chi-Square Distribution is an invaluable tool for comparing them to theoretical 

or predicted distributions. This evaluation is essential for confirming the reliability of statistical 

models and hypotheses in a variety of fields. As a fundamental idea in statistical analysis, the 

Binomial Distributed Chi-Square gives academics and professionals the means to test hypotheses, 

look at correlations between variables, and validate statistical models. 
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CHAPTER 6  LUNG TUMOR SCREENING USING SMART 

DECISION-MAKING TECHNIQUES 

 
6.1. Advanced DNN Risk Screening for Early Lung Carcinoma 

In this work, a Lightweight Advanced Deep Neural Network (DNN) Model is proposed for 

premature-stage lung carcinoma prediction by utilizing the SSCL-DNN and WDSI-LSO 

approaches as discussed in chapter 5. The proposed methodology comprises several key phases: 

pre-processing, feature extraction, segmentation, classification, feature selection, and risk 

assessment. Figure 6.1 presents the block diagram of the proposed model. 
 

Figure 6.1 Block Diagram of Lightweight DNN for Lung Cancer Detection 

6.1.1. Image Preprocessing for Lung CT Enhancement and Denoising 

Three essential preprocessing steps are included in the proposed DNN model: RWICWM, K- 

means clustering, and WDSI-LSO. RWICWM enhances image quality by smoothing and 

highlighting important features. K-means clustering is used to segment the image and identify 

potentially malignant areas. WDSI-LSO ensures robust feature extraction by enhancing these 

regions and assigning scores based on their similarity to known malignant patterns. These steps 

collectively improve the precision and effectiveness of the DNN in identifying lung cancer. 

 

6.1.2. Noise Suppression 

By integrating wavelet transform and median filtering, the Ricker Wavelet Iterative Center 

Weighted Median Filter (RWICWM) improves medical images as discussed in section 5.2.1. 
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(Equation 6.1) 

Here, p represents time or spatial location, and σ controls the width of the wavelet. The wavelet 

is symmetric and has a zero mean, making it effective for highlighting variations in intensity (like 

edges) and detecting features such as nodules in lung images. RWICWM improves significant 

characteristics and efficiently lowers noise in medical images to help in abnormality diagnosis. 

Image Contrast Enhancement Using Histogram Equalization (HE) 

A method for increasing image contrast by more uniformly spreading pixel intensity values is 

called histogram equalization, or HE. It determines how frequently each intensity level shows up 

in the image. 

CDF: Compute the Cumulative Distribution Function 

 

 

(Equation 6.2) 

Histogram (j) is the frequency of occurrence of intensity level 𝑗 in the image. CDF ( 𝑖 ) gives the 

total number of pixels with intensity values from 0 to 𝑖. The CDF helps redistribute pixel intensity 

values to enhance image contrast, especially in low-light or low-contrast medical images like 

lung CT scans. 

Transform Intensity Levels: 

 

 

(Equation 6.3) 

This equation is used for histogram equalization, a contrast enhancement technique commonly 

applied in medical imaging to improve the visibility of anatomical structures. 

𝐼 new (𝑥, 𝑦): The new pixel value at location (𝑥, 𝑦) after histogram equalization. 

CDF (𝐼 (𝑥, 𝑦)): The cumulative distribution function value for the pixel's original intensity. CDF 

𝐶𝐷𝐹min: The minimum non-zero value of the CDF (used to avoid division by zero). 

𝐿: The total number of possible intensity levels in the image (typically 256 for 8-bit images). 

round (.): Rounds the result to the nearest integer to maintain valid intensity values. 

It increases the overall contrast and increases the visibility of image details. It is used in digital 

imaging, photography, medical imaging (e.g., improving X-rays), and other fields. Although 

histogram equalization works well, it can cause noise in photos by over-enhancement. 

Detail Enhancement Using Inverse Logarithmic Transformation 

An inverse logarithmic function is used to pixel intensities in the Inverse Log Transformation 

process, which improves image contrast. This technique is very helpful for bringing out the 
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details in dark areas of an image, which makes it better suited for visual evaluation. To emphasize 

the darker areas, the inverse log transformation is applied to every pixel intensity value: 

 

(Equation 6.4) 

This equation is used in non-linear contrast enhancement methods, specifically exponential 

transformation. 

𝐼 new (𝑥, 𝑦): The transformed pixel value at coordinates (𝑥, 𝑦). 

𝐼 (𝑥, 𝑦): The original intensity value of the pixel. 

𝛼: A positive constant that controls the degree of enhancement. 

𝑒: The base of the natural logarithm. 

The scaling constant that regulates the level of amplification is called 𝛼. Usually, the image's 

dynamic range is taken into consideration while selecting 𝛼. 

6.1.3. Lung Nodule Segmentation for Region of Interest Identification 

The technique of splitting a visual into relevant parts in order to separate items or areas of interest 

is known as image segmentation. K-means clustering is a useful technique for this. It divides the 

image into 𝑘 k groups according to the intensity levels of the individual pixels. 

6.1.4. Optimized Segmentation Using K-means and Dice Index 

In image segmentation and clustering, to assess the overlap between expected and actual 

segments is the Sørensen-Dice Index (SDI), which is a measure of similarity between two sets. It 

can be utilized in conjunction with K-means clustering to improve the precision and analysis of 

clustering outcomes. 

SDI: Sørensen-Dice Index. 

 

 

 

 

(Equation 6.5) 
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The Sørensen–Dice Index (SDI) is a similarity measure used to quantify the overlap between 

two sets, commonly applied in image segmentation to evaluate how well an algorithm's output 

matches the ground truth. 

Where, 

∣ 𝐴 ∣ and ∣ 𝐵 ∣ are the sizes (number of elements) of sets 𝐴 and 𝐵. 

∣ 𝐴 ∩ 𝐵 ∣ is the number of elements in their intersection. 

Morphological Hole Filling for Complete Nodule Segmentation 

In binary pictures, where the backdrop is represented by black pixels (value 0) and the foreground 

items are represented by white pixels (value 1), hole filling is a technique used to fill in the gaps 

or missing areas. This procedure entails the identification of holes, the selection of a marker within 

the hole, and the propagation of the marker's value across the hole until it reaches the boundary, 

utilizing morphological procedures such as dilation. By adding nearby pixels, the dilation 

procedure expands the region iteratively. The final product is integrated with the original image 

once the hole has been filled. Hole filling ensures that every space between items is filled in, 

resulting in a full representation. This improves image quality for more accurate feature extraction 

and analysis, especially for applications like optical character recognition, medical imaging, and 

object detection. 

Localized Feature Detection Using Sliding Window Technique 

The sliding window strategy is a fundamental technique in image processing and computer vision 

used for object detection and feature extraction. This method involves moving a window of a fixed 

size across an image to analyze sub-regions sequentially. 

Optimized Nodule Scoring Using WDSL-LSO Technique 

Stand for Weibull Distributed Scale Factor Integrated-Light Spectrum Optimizer for Pulmonary 

Nodule Detection. By using the Weibull distribution together with light spectrum optimization, 

this method improves the precision of pulmonary nodule detection, a sign of lung cancer. A 

flexible probability distribution that is frequently utilized in survival analysis and reliability 

engineering is the Weibull distribution. The two parameters that define it are scale (λ) and shape 

(𝑘). The Weibull distribution's probability density function (PDF) is provided by: 

 

(Equation 6.6) 

Where 𝑥 represents the random variable, 𝑘 represents the shape parameter, and λ is the scale 

parameter. This allows for better separation of Regions of Interest (ROIs) with varying intensities 

during thresholding, leading to improved detection of nodules of different sizes. 
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6.1.5. Experimental Results and Comparative Performance Analysis 

In this Section, we explain the limitations and findings from our studies on the identification of 

pulmonary nodules using different risk assessment approaches and semi-supervised and 

contrastive learning-based deep neural networks (SSCL-DNN). The results of combining the 

RWICWM and WDSI-LSO techniques produced noisy data. The performance achieved by 

combining K-means and WDSI-LSO is slightly lower. The specific difficulty with CNN-based 

methods may have to do with things like overfitting, insufficient training data, and lower accuracy 

and precision that can result from these conditions, as Table 6.1 shows. Because of their multi-

stage processing pipeline, R-CNNs generally have slower inference speeds than other CNN 

architectures. This may be an unusual problem in some applications where real-time processing 

is necessary. ResNet-50 usually performs well in image classification tasks, but its performance 

may decline when applied to datasets with complex and heterogeneous features, which is why 

ResNet-50 leads to lower accuracy and precision. By combining approaches with PLCOm, this 

lightweight method, RWICWM + K-means + WDSI-LSO + PLCOm comes into play to solve 

specific challenges and produce superior performance in terms of accuracy and precision. The 

initial experiment (WDSI-LSO + RWICWM): 1. Accuracy of Nodule Detection: 95.3%. 2. 

Accuracy of Risk Assessment: 87.2%. A high nodule identification accuracy of 95.3% was 

achieved by combining the Ricker Wavelet Iterative Center Weighted Median Filter (RWICWM) 

and Weibull Distributed Scale factor integrated-Light Spectrum Optimizer-based pulmonary 

nodule detection (WDSI-LSO). However, at 87.2%, the risk assessment's accuracy was a little 

bit lower. The second experiment (WDSI-LSO + K-means): 1. Accuracy of Nodule Detection: 

96.1%. 2. Accuracy of Risk Assessment: 86.5%. In this study, we used WDSI-LSO along with 

K-means clustering. In comparison with the first experiment, the risk assessment accuracy was 

slightly lower at 86.5% while the nodule detection accuracy remained high at 96.1%. The Third 

experiment (CNN): 1. Accuracy of Nodule Detection: 97.4%. 2. Accuracy of Risk Assessment: 

86.8%. After one, R-CNN, VGG16, ResNet-50, and DenseNet-121 depict the accuracy with 96.2, 

84.7, 94.5, and 92.8, as well as in terms of risk assessment, accuracy was 89.6, 83.2, 90.1, and 

89.4, respectively. 

The Sixth experiment (RWICWM + K-means + WDSI-LSO + PLCOm): 1. Accuracy of Nodule 

Detection: 98.2%. 2. Accuracy of Risk Assessment: 96.8%. In Test 8, a longer pipeline that 

included RWICWM, K-means clustering, WDSI-LSO, and PLCOm risk assessment was used. 

The maximum nodule detection accuracy was attained with this thorough technique, at 98.2%, 

and the improved risk assessment accuracy was at 96.8%. These findings show that the eighth 
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experiment exceeds the previous experiments in terms of both nodule detection and risk 

assessment accuracy. 

Table 6.1 Evaluation of the suggested models and the current models' performance 

 

Experiment Processing Methods Nodule detection 

Accuracy (%) 

Risk Assessment 

Accuracy (%) 

1 RWICWM + WDSI-LSO 95.3 87.2 

2 K-means + WDSI-LSO 96.1 86.5 

3 CNN 97.4 86.8 

4 R-CNN 96.2 89.6 

5 VGG16 84.7 83.2 

6 RESNET-50 94.5 90.1 

7 DenseNet-121 92.8 89.4 

8 RWICWM + K-means + 

WDSI-LSO + PLCOm2012 

98.2 96.8 

 

For a variety of reasons, the RWICWM (Random Walk with Initial Cluster Weighted Method), K- 

means clustering, WDSI-LSO (Weighted Density-Based Spatial Clustering with Local Search 

Optimization), and PLCOm (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 

Mortality Risk Prediction Model) combination can be regarded as a lightweight technique. 

Compared to more complicated algorithms [25], these methods are computationally efficient and 

require less computing power for execution. They work well in real-time applications and with 

large datasets, and they also use less memory. Combining several approaches enables a combined 

strategy that makes the process lightweight and improves the performance as a whole. In a 

lightweight framework, RWICWM, K-means, WDSI-LSO, and PLCOm risk model perform in 

a robust and efficient way to produce reliable results. The proposed framework improves the 

accuracy and risk assessment, as well as reduces the computational time of execution as 

compared to previous methods. Optimized algorithms and effective data processing approaches 

make the suggested model lightweight. 
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Graph 6.1 Comparison of Preprocessing Techniques Based on Accuracy 

 

In the above Graph 6.1, a comparison of many preprocessing techniques for lung nodule detection 

and risk assessment is shown. Outperforming all other models, the suggested lightweight model 

(RWICWM + K-means + WDSI-LSO + PLCOm) achieves the maximum accuracy of 96.8% for 

risk assessment and 98.2% for nodule detection. While CNN and R-CNN models also 

demonstrated strong performance, VGG16 trailed the least in terms of accuracy across both 

measures. This illustrates the enhanced efficacy and potential of the suggested strategy for early 

lung cancer identification and risk assessment. 

Various metrics, including the peak signal-to-noise ratio (PSNR) and structural similarity index 

(SSIM), etc., depending on a particular application, are used to perform a performance analysis 

of noise removal algorithms and present the findings in a table. 



59  

Table 6.2 Analysis of the existing and prospective models: Performance of PSNR, SSIM, and ET 

 

Experiment Processing Methods PSNR SSIM Execution Time 

(s) 

1 RWICWM + WDSI-LSO 35.2 0.89 15.3 

2 K-means + WDSI-LSO 36.8 0.91 14.8 

3 CNN 37.5 0.92 18.7 

4 R-CNN 36.3 0.9 20.5 

5 VGG16 34.7 0.87 22.1 

6 ResNet-50 38.1 0.93 17.9 

7 DenseNet-121 37 0.91 16.4 

 

8 

RWICWM +  K-means + 

WDSI-LSO  +  PLCoM 

(Lightweight) 

 

38.5 

 

0.96 

 

12.4 

 

Peak Signal-to-Noise Ratio, which expresses how good the de-noised image is in comparison to 

the noisy real image. Better performance is indicated by higher values. A measure of how 

comparable the original and de-noised images are is called the Structural Similarity Index. The 

values in the range of -1 to 1 represent the time taken by the approach to remove noise from a 

particular image or batch of images. Execution time is a commonality. 
 

Graph 6.2 SSIM and Runtime Analysis of Proposed vs. Baseline Models 
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Graph 6.2 offers a comparative analysis of different preprocessing techniques based on two 

performance parameters (SSIM and Execution time) for lung nodule detection. In addition to 

having the quickest execution time (12.4 seconds), the suggested lightweight model (RWICWM 

+ K-means + WDSI-LSO + PLCOm) has the highest SSIM (0.96), suggesting greater image 

quality and structural similarity. While less efficient, other models such as ResNet-50 likewise 

provide good performance in terms of SSIM (0.93). On the other hand, VGG16 performs the 

worst according to all criteria. This demonstrates the efficacy and efficiency of the suggested 

methodology, which makes it the ideal choice for early lung cancer detection. In Figure 6.3, the 

Peak Signal-to-Noise Ratio (PSNR) is used to compare various preprocessing techniques for lung 

nodule detection in the picture. The recommended lightweight model (RWICWM + K-means + 

WDSI-LSO + PLCOm) produced the highest PSNR of 38.5 out of all the evaluated approaches, 

indicating a superior image quality. Additionally, ResNet-50 did well, with a PSNR of 38.1. On 

the other hand, VGG16 had the lowest PSNR (34.7), indicating lower-quality images. This 

comparison demonstrates how much more efficient the suggested lightweight model is in 

generating high-quality images. This makes it a viable method for the early detection of lung 

cancer. Table 6.2 displays the accomplishment analysis of the suggested model and the current 

models in terms of ET, PSNR, and SSIM. A model that performs well has a lower ET value and 

higher PSNR and SSIM values. The suggested model achieves an ET value of 12.4, which is less 

than that of the Prior models. Comparably, the suggested model outperforms the current models 

as evidenced by the PSNR and SSIM values it achieves, which are 38.5% and 0.96, respectively. 

Thus, it may be said that the suggested model removes noise more effectively. 

6.2. TL-Based P-ResNet Framework for Early Lung Cancer Detection 

The prediction of lung carcinoma and risk screening model at the premature-stage was proposed 

in this work by using TL-based P-ReLUResNet with B-RGS techniques. The suggested method 

goes through the following phases: First, pre-processing, segmentation, feature extraction, feature 

selection, classification, and risk screening. The Workflow of the suggested model is shown in Figure 

6.2. 
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Figure 6.2 Architecture of the TL-Based P-ReLUResNet (P-ResNet) Risk Screening System 



62  

6.2.1. Enhanced Filtering Techniques for Lung CT Image Preprocessing 

Initially, the lung computerized tomography (CT) scan image I , which was gathered from the 

publicly available datasets [52], is pre-processed. Pre-processing is the initial step taken to 

improve the quality of an image. Pre-processing involves a number of stages, which are described 

below: noise removal, contrast stretching, convex hull lung area, and edge enhancement. 

Noise Suppression Using Improved Anisotropic Diffusion Filtering (I-ADF) 

The input image I contains noise, such as Gaussian and Poisson noise should be removed. In 

this work, noise removal was done by using I-ADF. ADF is a method for removing noise and 

distortion from an image without creating any edge blur. However, ADF's constant diffusion 

magnitude has an impact on the filter's SNR (signal-to-noise ratio). That is the reason why, to 

overcome this problem, the work proposed intra-class variance by replacing local variance. The 

variance within the class is termed as intra-class variance. Hence, the proposed method is named 

I-ADF. 

Let the diffusion matrix Dmt  that shares the eigen vectors with eigen values related to the 

The level of noise is defined as, 

 

(Equation 6.7) 
 
 

 

 

(Equation 6.8) 

 

 

(Equation 6.9) 

Where 1,2, and 3denotes the eigen values, C represents the 

gain coefficient, and Cplanar 

and Clinear represents the gain in a local planar neighbourhood and local linear neighbourhood, 

respectively, which is given by, 

 

(Equation 6.10) 

 

 

 

(Equation 6.11) 
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(Equation 6.12) 

 

Where, ek, k 1,bbelong to eigenvectors, I  represent the local mean assessment of the image 

I , and VarI  represents intra-class variance, which is the variance taken within the class, 

which is calculated by, 

 

(Equation 6.13) 

The equation shows how much the pixel values in an image vary from the average brightness of 

the image. 

𝐼: a pixel value in the image. 

: the mean (average) of all pixel values. 

 : the squared difference from the mean. 

∑: adds up all these squared differences. 

So, variance Var(I) gives a measure of how much the pixel values spread out higher variance 

means more contrast or detail in the image. 

 

 

(Equation 6.14) 

 

 

 

(Equation 6.15) 

These are discrete approximations used in anisotropic diffusion filtering (likely an Intra-class 

variance Anisotropic Diffusion Filter, or I-ADF. 

I: Filtered intensity at pixel location z. 

e2, e3: Directional unit vectors (like along horizontal and vertical directions in the image). 

b, c: Constants or step indices (used to control pixel neighborhood in those directions). 

z: Current pixel position. 

The summation: Averaging over a set of neighboring pixels located at positions offset by be2+ce3 

Therefore, the diffusion matrix may be expressed as follows: 
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(Equation 6.16) 

 

 

α1: Diffusion coefficient in the x-direction (horizontal). 

α3: Diffusion coefficient in the z-direction (depth, or slice direction in 3D CT imaging). 

0s in off-diagonal entries: This means no cross-directional diffusion, so diffusion occurs 

independently in x, y, and z directions. 

mt:  transformation matrix. 

The corresponding diffusion equation is written as the sum of three diffusion terms, which is 

given as, 

 

 

(Equation 6.17) 

 

 

 

𝐼(𝑧, 𝑡) Image intensity at position 𝑧 and time 𝑡. 

 
𝛛𝐼 : Rate of change of image intensity over time. 
𝛛𝑡 

 

∇I: Gradient of the image (detects edges). 

 

𝐷𝑚𝑡: Diffusion matrix/tensor (controls how much smoothing happens in each 

direction). 

 

𝑑𝑖𝑣(𝐷𝑚𝑡∇I)Divergence operator that spreads intensity values (i.e., smoothing), but only in 

directions controlled by the diffusion tensor. This equation tells the image how to evolve to 

reduce noise while not blurring important structures like edges or nodules. Equation (6.18) 

represents a composite formulation that integrates divergence and gradient-based terms weighted 

by coefficients related to different structural components. It is defined as: 

 

(Equation 6.18) 

 

Where, 
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∇I: denotes the gradient of the image I, capturing intensity changes across spatial coordinates. 

div(⋅): represents the divergence operator, used here to measure the net flow of the vector field 

defined by the product of (1−C) terms and ∇I. 

Cplanar, C2, and C3 are context-specific coefficients derived from structural features such as planar 

and linear components in image segmentation or processing tasks. 

 

The projection of the gradient in the direction of e3 and I represents the projection of the gradient 

of I. Finally, the noise-removed image is obtained as 𝑁𝑟𝑒𝑚. After that, contrast stretching is 

applied to the picture with the noise eliminated. 

Contrast Enhancement Using Intensity Range Stretching 

It is an image heightening method used to increase the contrast in the image Nrem after noise has 

been removed by extending the range of intensity values to a desired range of values. Therefore, 

the contrast-stretched image is expressed as Scont . 
 

(Equation 6.19) 
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Where 

Sconta  represents several contrast-stretched images. Then, these contrasted stretched images 

are given to the convex hull operation. 

Isolation of Lung Region Using Convex Hull Algorithm 

The convex hull is a set of pixels included in the smallest convex polygon that surrounds all white 

pixels in the input. In this study, the lung area is separated from the contrast stretched picture. 

𝑆𝑐𝑜𝑛𝑡 Using a convex hull. Therefore, the separated lung region is expressed as 𝐿𝑟𝑒𝑔. Then, 

this lung region is fed into the edge enhancement operation. 

Enhanced Lung Boundary Detection Using Unsharp Masking Filter (UMF) 

Edge enhancement is a technique that enhances the edge contrast of Lreg. In this work, edge 

enhancement was done by using UMF. The fundamental idea behind UMF is to add to the original 

image by scaling and highlighting a portion of it. The edges or high-passed pixels from the 

provided equation are removed throughout this filtering step. 

 

(Equation 6.20) 

 

 

Where Aed represents the augmented edge,  represents the boundary mining kernel, and 

Represents, grey content in the image L . The improved picture E is created using the UMF 

technique as, 

 

 

(Equation 6.21) 

Where is the gain factor that determines the potency of the boosted edge? Where  indicates the 

gain factor that determines the potency of the augmented edge Aed . 

The above equation is a generic energy function, often found in optimization algorithms and 

physical models, including image enhancement or edge detection. 

6.2.2. Precise Lung Image Segmentation Using BRGS Optimized with BD-COA 

After pre-processing, the segmentation process is done to segment to enhance the image E. In 

this work, the image was segmented into four parts by using the BRGS technique, which 

provides high segmentation precision. RGS divides the image by combining pixels into a larger 

region based on predefined seed pixels, growth criteria, and stop conditions. But it leads to the 
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overlapping shadow of vessels, tissue mass, and ribs when used in CT images [73]. So, to 

overcome this problem, the knuckle point used in RGS is selected by using the Bates distributed 

Coati Optimization algorithm (BD-COA). Here, COA is selected for its high meta-heuristic 

property, which gives a conformity index by selecting the highest conformity value. However, 

COA prompts high computational complication. So, to address this issue, the Bates distribution 

(BD) was used to calculate the random number used in the algorithm. Therefore, the proposed 

method is named BRGS. 

Initially, an improved image E is fed into the RGS process. Let the seed point selection be the 

premature stage of the RGS process. In this work, the seed point SE , which is the knuckle point 

of the lung image, was selected by using COA. The population-based metaheuristic algorithm 

known as COA was inspired by the behaviors and habits of t he natural coati. Let the coati 

be initialized as the seed point SE . The locality of coatis in the (search–space) is first set at 

random as, 

 

(Equation 6.22) 

Where Px, y SE represents the position of xth coati of y th decision variable, lw and up 

represent both (upper and lower) bounds of yth decision variable, here, amount of coati 

is denoted by m, n denotes the quantity of decision variables, and,  denotes a random number, 

which is calculated by using BD. BD represents the distribution of the mean of a random variable 

uniformly distributed from 0 to 1, which reduces the complication of the described model. 

Therefore, the random number is determined using [28]. 




(Equation 6.23) 
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Where, U0 appears to represent an upper limit for summation over index O. Then, the population of 

the coati is represented by, 

 

 

 

 

 

(Equation 6.24) 

This is a structured matrix representation of a feature probability map P(SE)P(SE)P(SE) derived 

from segmentation or extracted features (SE). 

P1(SE),…,Pm(SE): Vector of probabilities or feature responses for m different segmented 

elements, such as regions or pixels. 

𝑃𝑖,𝑗(𝑆𝐸): Probability value or feature strength of the 𝑖𝑡ℎ segment or element responding to the 

𝑗𝑡ℎ feature or attribute from segmentation (𝑆𝐸). 

The full matrix is of size. 𝑚 × 𝑛 Where: 

𝑚 Number of samples, regions, or segmented patches. 

𝑛 Number of extracted features or attributes from each region 

Equation (6.24) represents the formation of a feature probability matrix𝑃(𝑆𝐸) where each entry 

𝑃𝑖,𝑗(𝑆𝐸) indicates the response of the 𝑖𝑡ℎsegmented region to the 𝑗𝑡ℎExtracted feature. This matrix 

helps quantify and organize feature importance across segmented lung regions, supporting 

accurate classification and risk assessment of lung nodules. 

Different values for the problem's fitness will be determined and depending on where potential 

solutions are placed in the choice variable. The foundation for assessing the study's fitness value 

is the classification accuracy. The advantage of physical health is provided by 

 

 

 

 

 

 

 

 

 

(Equation 6.25) 

𝑃𝑖(𝑆𝐸): Feature vector (or probability score) of the 𝑖𝑡ℎ Segmented element derived from 

segmentation and extraction operations. 
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𝑓𝑖𝑡(𝑃𝑖(𝑆𝐸)): A fitness function is applied to each segment to evaluate its significance. (e.g., how 

likely it represents a tumor nodule). 

Equation (6.25) calculates the fitness values for each segmented region based on the extracted 

features. Coati's position is updated depending on two behaviors: its defense mechanism against 

entering iguanas and its escape plan from predators. 

6.2.3. Extraction of Discriminative Features from Segmented Lung Regions 

Feature extraction is the process of mining features from the segmented picture. Here, features 

such as gradient features, profile-based features, on-vessel on-rib, and spectral flatness 

are considered. The measures are removed from the segmented image Seg. Below is an 

explanation of these features. 

Extraction of Gradient-Based Image Descriptors 

The gradient characteristics from the (𝑆𝑒𝑔)
, 

are retrieved for each sub-image. Based on the 

distance between two modes, as well as the ratio of modes normalized by their separation and 

their respective statistical properties like skewness, kurtosis, and bimodality coefficient, the area 

under the modes is computed. Therefore, the gradient features are expressed as 𝐺𝑚𝑒𝑎. 

Spectral Feature Quantification Using Flatness Measure 

Based on (𝐺𝑚𝑒𝑎)For each sub-image, the spectral flatness measure is calculated, which gives a 

measure of the edginess of the image.(𝑆𝑒𝑔). It can be expressed as the Fourier coefficient 

magnitudes of the image divided by their arithmetic mean or the geometric mean. Therefore, the 

spectral feature measure is stated as 𝑆𝑃𝑓𝑙𝑎𝑡 . 

Profile-Based Attribute Extraction for Enhanced Discrimination 

The profile-based characteristics are retrieved from the normalized, smoothed magnitude of each 

sub-image of (𝑆𝑒𝑔)And are described below. 

 Rib cross: The profiles on the edge representation are taken in order to extract this feature.

When a rib edge is present, the profile should have a peak assigned score of prof  1. 

 Peak Ratio: Determine the average and maximum peak-to-minimum-peak ratio for every 

extracted profile.

 Slope Ratio: Calculates the profile's first-order derivative and takes the average.

 Slope smoothness: This characteristic determines how smoothly the slope is. Determine the 

steepness value and average after calculating the second-order. Derivatives for every

profile. Therefore, the profile-based features are stated as 𝑝𝑟𝑜𝑓𝑓𝑒𝑎. 

 

 

(Equation 6.26) 
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Where, 

𝑝𝑟𝑜𝑓(𝑑𝑖𝑓𝑓): This represents the profile of the difference in intensity or feature values across an 

image segment (likely a line or edge profile). 

min(𝑝𝑟𝑜𝑓(𝑑𝑖𝑓𝑓)) The minimum slope or gradient value observed in the profile. 

max(𝑝𝑟𝑜𝑓(𝑑𝑖𝑓𝑓)) The maximum slope or gradient value observed in the profile. 

Equation 6.26 calculates the relative slope ratio in a profile of intensity or feature differences. 

This metric helps to assess uniformity or variation in edges or texture across a region. A lower 

value may indicate sharper contrast or prominent edges (ideal for tumor borders), while a higher 

ratio indicates uniform texture or less variation, which might represent normal tissue. 

On Rib: This feature will determine whether or not there is a cancer [66] and will assign it a 

feature value. This entails rib edges being located. If the distance between the centroid and the 

segment is less than the inter-rib (difference between the centroid and the rib), cancer is suspected 

on the rib. On-rib characteristics are computed using segment length, slope, and eccentricity 

parameters. Consequently, the on-rib features are expressed as 𝑂𝑟𝑖𝑏. 

On-Vessel: On-vessel properties are computed on these edges based on their length and 

eccentricity. As indicated by (predicting the length), measure the lengths of all the vessels 

edges and select the first two with the longest lengths. 

 

 

(Equation 6.27) 

max_leng1, max_leng2: These likely represent the major and minor axis lengths of a vessel-like 

structure (possibly elliptical). Height, width: Dimensions of the entire image region or bounding 

box being analyzed. This equation calculates the normalized area of a vessel-like structure 

relative to the full image region. Specifically, it compares the approximate area of the vessel (as 

a bounding rectangle or ellipse) to the total image area. A higher value of Vessel₁ suggests a larger 

vessel area relative to the image, which can aid in identifying abnormal vessel expansion or 

density associated with lung disease. Then determine the lowest distance between each edge and 

the subimage's center, choose the least distance min dist between them all, and get the inverse 

value, which is given by, 

 

 

(Equation 6.28) 
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Therefore, the on-vessel features are expressed as Ovessel. Finally, the extracted features are 

given by, 

(Equation 6.29) 

Where Feaext represents the extracted features. The feature selection procedure then uses these 

extracted characteristics as input [63]. Equation 6.29 explains that feature extraction (Feaext) was 

carried out to derive critical information for accurate classification. The selected features include 

Mean intensity (Mea), Spectral Flatness (flat), general image-based features (fea), Rib proximity 

features (rib), and Vessel adjacency features (vessel). These collectively enhance the 

discrimination capability of the classifier, especially in differentiating cancerous from non- 

cancerous regions. 

6.2.4. Selection of Optimal Features Using Statistical and Spatial Criteria 

After feature extraction, the most significant features are determined from the extracted features 

by using the BD-CST algorithm. CST is a numerical test that quantifies the deviation from the 

expected distribution and assesses the feature event regardless of the class value. Nevertheless, it 

had a quick processing time, and one of its limitations is that the significance level can only be 

chosen at random, which could slow down processing. In order to address this issue, the work 

suggests using the binomial distribution to determine the significance level, which shortens the 

model's processing time. Consequently, BD-CST is the introduced model's name. The following 

are the steps in the BD-CST method: 

 Describe your hypothesis and your analysis plan. 

 Analyze sample records and predict the outcomes. 

Specify hypothesis and analysis plan: The BD-CST model receives the extracted characteristics 

Feaext , as input at first. After that, the hypothesis is explained. The next section 

of the analytical plan explained how to use model data to either confirm or deny the hypothesis. 

Test procedure and importance rank need to be defined in the strategy. 

 

Examine sample data and predict the results: In this step, the test's degree of freedom, 

 

Predictable frequency, test value, and probability value must all be determined by analyzing the 

chosen specimen data. You can figure out the degree of freedom 𝐷𝑓𝑟 by using, 
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(Equation 6.30) 

Where  denotes the level count for one category variable and,  denotes the level count for 

another categorical variable. The features Feasele  are finally chosen by, 

 

 

(Equation 6.31) 

Where W represents the number of times Feaext and  co-occurs, X delineates the amount of 

times Feaext appears without , Y represents the number of times  appears without Feaext, 

Z number of times neither  nor Feaext occurs. 

6.2.5. Classification of Lung Abnormalities Using the Proposed P-ResNet Model 

After feature selection, the classification process is done to classify whether the selected features 

Feaseleare healthy or abnormal. In this work, classification was done by using a transfer 

learning-based P-ResNet algorithm [12], which significantly enhanced the performance of the 

network with more layers. ResNet uses skip connection, which connects activation of the layer 

to further layers by skipping some layers in between that forming a residual block [60]. Still, it 

has an impact due to a low learning rate and a large calculation time caused by the kernel 

activation function. Therefore, transfer learning (TL) based work was suggested as a solution to 

this. TL is essentially a machine learning technique that uses a model that has already been trained 

to serve as the foundation for a new assignment. Using the TL approach strengthens and increases 

the security of the system. The model's effectiveness is also increased by using the P-ReLU 

activation function [13]. As a result, P-ResNet is the designed model's name. Here, the 

architecture of the P-ResNet is shown in Figure 6.3. 

 

 

Figure 6.3 Architecture of the Proposed P-ResNet Model 
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Source: An Advanced Lung Carcinoma Prediction and Risk Screening Model Using Transfer 

Learning. 

The four sets of layers that comprise the P-ResNet are the activation layer, the convolution layer, 

the pooling layer, and the fully connected layer. Initially, (𝐹𝑒𝑎𝑠𝑒𝑙𝑒 ) is specified as input 

to the convolution layer. To categorize the output throughout this process, feature mapping 

was carried out. The output of the convolution layer is given by 
 

 

(Equation 6.32) 

This equation 6.32 defines the output of a convolutional layer in the deep neural network. It 

takes the selected features (Feasele), multiplies them by their corresponding weights (w), sums 

them up, and scales the result by a factor μ. This process enables the network to learn important 

patterns in lung CT images, such as nodules or abnormal tissues, essential for accurate lung 

cancer classification. The P-ReLU activation function, which generalizes the conventional 

rectified unit and has a slope for negative values [64], is given by, where w indicates the weight 

and  represents the P-ReLU activation function [35]. 

 

 

(Equation 6.33) 

Where 𝑘 denotes the negative slope, and after that, the consequence of the convolution layer. 

is fed into the maximum pooling layer (𝑝𝑜𝑙𝑦𝑙𝑦𝑟) which decreases the dimension of the feature 

map by selecting relevant features, which are given by, 

 

 

(Equation 6.34) 

https://www.mdpi.com/2075-4418/14/13/1378
https://www.mdpi.com/2075-4418/14/13/1378
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This equation 6.34 represents a max pooling operation applied to the output of a convolutional 

layer. It first normalizes the convolution result (convlyr) by subtracting a bias w and dividing by 

a scale factor κ. The max function then selects the strongest (maximum) activation. This helps 

the model retain the most important features while reducing the spatial size, improving efficiency, 

and reducing overfitting. The above represents the stride length that decides the number of pixels 

shifts by the various weights. 

6.2.6. Risk Screening of Lung Carcinoma Using: TL-based P-ReLUResNet 

Risk screening is a process of identifying the risk of harm [69] and then minimizing the risk that 

has been recognized. In this work, during the risk screening process [40], the on-rib features of 

abnormal images, (𝐴𝑁𝑁𝑚𝑟𝑙) were considered because the risk of carcinoma can be easily detected 

by using on-rib features as high risk or low risk, which is given by, 

 

(Equation 6.35) 

Where, 𝑅𝑘𝑠𝑐𝑟𝑒𝑒𝑛 represents the risk screening [72], 𝑅𝑘ℎ𝑖𝑔ℎ denotes high risk, and 𝑅𝑘𝑙𝑜𝑤 denotes 

low risk. Finally, the patients were screened and treated. 

6.2.7. Results and Discussion on Proposed Models' Effectiveness 

This module compares the results of the proposed framework with those of existing models that 

are currently in use in order to assess the effectiveness of the model. The Python development 

environment is used to implement the recommended paradigm. For the achievement analysis, 

information from the upper body is collected, particularly from the Chest Computed Tomography 

(CT) scan Image Lung dataset. 

Classification Accuracy Evaluation of Proposed Models 

The error rate, training time, recall, sensitivity, specificity, F-score, false positive rate (FPR), false 

rejection rate (FRR), false negative rate (FNR), and accuracy are all confirmed by the 

performance evaluation of the proposed TL-based P-ReLUResNet. The results are then contrasted 

with those of the current models, including ResNet, CNN, DNN [31][39], and Artificial Neural 

Networks (ANN) [41][46]. 
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Table 6.3 Comparative Assessment of Proposed vs. Current Lung Cancer Models 

 

Approaches 
Accuracy Precision Sensitivity F-score Specificity 

(%) (%) (%) (%) (%) 

Proposed 
P-ResNet 

98.21 98.71 97.46 98.08 98.71 

ResNet 94.66 96.66 94.15 95.39 96.87 

CNN 93.01 95.33 90.5 92.85 95.54 

DNN 92.38 95.36 89.44 92.3 95.45 

ANN 87.26 89.4 84.9 87.09 89.67 

 

The developed approaches and the current models' performance analyses in terms of F-score, 

specificity, sensitivity, recall, accuracy, and precision are shown in Table 6.3. Greater values for 

accuracy, precision, recall, sensitivity, specificity, and f-score specify improved performance 

from the model. The precision of the suggested model is 98.21%, which is higher than that of the 

existing models, which achieve accuracies of 94.66% for ResNet, 93.01% for CNN, 92.38% for 

Lightweight DNN, and 87.26% for ANN, as shown in the graph. 

Graph 6.3 Evaluation of processing methods 

Additionally, the suggested framework surpasses the present framework in terms of accuracy, 

recall, sensitivity, specificity, and F-score, which are each 98.71%, 97.46%, 98.71%, and 98.08%, 

respectively. Consequently, it may be concluded that the proposed framework outperforms 

previous models. 
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Graph 6.4 Performance Comparison of P-ResNet with Existing Models 

The comparison between the estimated framework and the created models in terms of FNR, FPR, 

FRR, and error rate is displayed above in Graph 6.4. The model performs better when the FNR, 

FPR, FRR, and error rate are lower. The FNR values achieved by the implemented technique and 

the current models are 0.02531 and 0.0844, respectively, whereas the FNR values obtained by the 

current models are 0.09493 (CNN), 0.1055 (Lightweight DNN), and 0.15094 (ANN). Similar to 

this, the projected model's FPR, FRR, and error rate are, respectively, 0.0128, 0.0127, and 0.0191, 

showing the better performance of the suggested model. 
 

Graph 6.5Training Time Comparison Between Proposed and Existing Models 
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The proposed framework and the existing models' training times are shown in Graph 6.5. Training 

time is the time taken by the Introduced model to complete the process. Here, the outcome as a 

training time hit by the projected sculpt is 36938.55ms, while the training times obtained by the 

existing models are 56639.28ms (ResNet), 66016.98ms (CNN), 70078.52ms (Lightweight 

DNN), and 82063.17ms (ANN). The findings show that the suggested model is more effective at 

classifying data. 

Evaluation of Lung Segmentation Accuracy Using BRGS and Other Techniques 

Performance analysis of the proposed BRGS is validated using Dice score measures. Next, the 

results are compared with the models that have already been developed, such as RGS, K-Means 

Algorithm (KMA), Ostu algorithm (OS), and Wise Sliding window (WS). 

 

 

Graph 6.6 Dice Score Comparison Between Proposed and Existing Models. 

 

The Dice score values for the present models and the proposed framework are shown in Graph 6.6. 

When evaluating the effectiveness of picture segmentation techniques [45], the Dice score is 

utilized. The current models achieve dice score values of 0.81291 (RGS), 0.60652 for WS, 

0.50240 for OS, and 0.4385 for KMA, compared to the suggested model's value of 0.86173. The 

results demonstrate that the suggested strategy outperforms the others in terms of data 

segmentation. 

Comparative Analysis of Noise Removal Techniques in Lung CT Images 

The recommended I-ADF's performance research is validated in terms of Peak Signal Noise 

Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Mean Squared Error (MSE). 

The findings are then contrasted with those from other models, including ADF, the Gilbert Filter, 

the Median Filter, and the Bilateral Filter. 
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Table 6.4 Analysis of the projected model's and current models' MSE, PSNR, and SSIM 

performance 

Method MSE PSNR (%) SSIM 

Proposed I-ADF 3.7105 30.0334 0.8933 

ADF [22] 4.9105 28.0334 0.8533 

GF [36] 7.0002 25.9047 0.7703 

MF [38] 7.6316 24.3380 0.6440 

BF [38] 9.1208 22.1738 0.5784 

The performance analysis of the planned model and pre-existing models as it relates to MSE, 

PSNR, and SSIM is shown in Table 6.4 above. 

 

 

Graph 6.7 Comparison of Performance Metrics for Existing and Proposed Models. 

 

In Graph 6.7, it is illustrated that the model performs better when the MSE value is lower and the 

PSNR and SSIM values are higher. The presented method achieves an MSE value of 3.710, which 

is less than that of the existing models. Likewise, the suggested model achieves 30.033% and 

0.8933 for PSNR and SSIM, respectively, which demonstrates that the model performs better 

than the current models. The suggested model is therefore shown to be more effective at removing 

noise. 
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Table 6.5 Comparison of the accuracy of the suggested model and the literature survey model 
 

Techniques Accuracy 

Proposed TL-based P- 

ReLUResNet 

98.21 

RF [47] 97.1 

Deep NN [54] 92.11 

Deep CNN [41] 81.7 

 

As mentioned above the Table 6.5 contrasts the suggested model's accuracy with that of the 

literature survey model. 

 

 

Graph 6.8 Accuracy Comparison Between Proposed Model and Literature Models 

The Introduced model's precision is superior to that of the literature survey models, which achieve 

accuracy of 97.1% for RF, 92.11% for Deep NN, and 81.7% for Deep CNN, shown in Figure 

6.11. Consequently, it may be concluded that the novel approach predicts lung cancer more 

accurately. 

6.3. Chapter Summary 

Lung carcinoma has a high mortality rate, but an early prediction can contribute to a favourable 

prognosis. Various approaches have been developed for the prediction of lung carcinoma at a 

premature stage. However, these existing approaches still have defects such as low accuracy, high 

noise, and low contrast, and never consider the screening risk of lung cancer. So, the work 

proposed a lung carcinoma prediction and risk screening model using Transfer Learning (TL)- 
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based P-ReLUResNet. Initially, the lung computed tomography scan image was pre-processed to 

eradicate noise and enhance the edge by using Intra-class Variance-Anisotropic Diffusion Filter (I- 

ADF) and Unsharp Mask Filter (UMF) algorithms. After that, the pre-processed image was 

segmented by using the Bates distributed coati optimization algorithm integrated with Region 

Growing Segmentation (B-RGS). Next, the features from the segmented images are taken out and 

then selected by using the Binomial distributed Chi-square test (BD-CST). Then, the TL-based 

P-ReLUResNet classifier was used to classify cancer as normal or abnormal. 



81  

CHAPTER 7 COMPARATIVE ANALYSIS 

 
The Advanced Lung Carcinoma Prediction and Risk Screening Model Using Transfer Learning 

offers significant improvements over the Lightweight Advanced Deep Neural Network (DNN) 

Model for several key reasons. 

1. Transfer Learning with ResNet-50: This model leverages a pre-trained ResNet-50 network, 

originally trained on a large and diverse dataset. The pre-training enables the model to learn a 

wide range of features, enhancing its ability to identify complex structures in lung cancer images 

with high accuracy. 

2. Feature Extraction: The pre-trained network extracts high-level features such as edges, 

textures, and shapes, which are critical for accurate classification. These generalized features help 

the model adapt more effectively across varied lung cancer cases, improving its generalization 

capability. 

3. Adaptation to Specific Data: The model is fine-tuned using the lung cancer dataset, allowing 

it to adjust its internal weights to better detect patterns and anomalies specific to lung carcinoma. 

This fine-tuning improves the model's performance without requiring training from scratch 

4. Residual Connections: ResNet-50 incorporates residual connections, which enable the training 

of deeper networks by mitigating issues like vanishing gradients. This leads to faster convergence 

and improved accuracy. 

5. Learning Rate Scheduling: Advanced training strategies such as learning rate scheduling are 

employed to optimize model convergence and prevent overfitting. This dynamic adjustment of 

the learning rate during training ensures better performance on previously unseen data. 

6. Risk Screening: The model performs abnormality-based risk screening, categorizing patients 

into high- or low-risk groups based on image analysis. 
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Table 7.1 Comparative Analysis of Proposed Methodologies 

 

Description Lightweight Advanced DNN 

Model 

Transfer Learning 

Model 

Objective 
Lung Cancer Detection 
Premature-stage 

Lung carcinoma prediction and risk 
Screening 

Model Type Custom-built lightweight DNN 
Pre-trained ResNet50 
with fine-Tuning 

 

Model Architecture 
10 convolutional layers, 

depth-wise separable convolutions 

ResNet-50 base, fine-tuned layers, 
new fully connected layers 

Data 

Preprocessing 

Normalization, 

augmentation, segmentation 

Resizing, normalization, and 
augmentation 

 

Training Process 

 

Adam optimizer 

Bates distributed the coati 

optimization algorithm 

 

Results 
Classification accuracy = 

95.3 % 

 

Classification accuracy = 98.21% 

 

Advantages 
Computationally efficient, suitable 

for early detection 

High accuracy and robustness, 
Effective risk screening 

 

Future Work 

Multi-model data integration, 

real-time optimization. 

Patient history integration, Risk 

model exploration. 

 

The Transfer Learning Model for Advanced Lung Carcinoma Prediction and Risk Screening 

demonstrates superior accuracy, robustness, and adaptability. Its high performance makes it well- 

suited for risk assessment and early detection, particularly in the healthcare sector. 
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Graph 7.1 Comparative accuracy of the proposed TL-based P-ResNet model with DNN and 

other models. 

As illustrated in Graph 7.1, the TL-based P-ReLUResNet model achieved a higher classification 

accuracy of 98.21%, compared to 95.3% obtained by the Lightweight DNN model. This 

significant improvement demonstrates the effectiveness of using a pre-trained model, which 

enhances the system's ability to learn complex patterns and accurately detect lung cancer. In 

essence, the TL-based P-ReLUResNet model exhibits superior pattern recognition capabilities, 

resulting in more reliable predictions, an essential factor for early and accurate diagnosis. The 

notable difference in performance indicates that TL-based P-ReLUResNet is a more intelligent 

and efficient approach for real-world lung cancer screening applications. 

7.1. Chapter Summary 

The proposed risk model demonstrates robustness and advanced feature extraction capabilities, 

making it suitable for various healthcare applications. This chapter compares two lung cancer 

detection models: the Lightweight Advanced DNN Model and the Transfer Learning Model. The 

Lightweight DNN Model, designed for rapid, premature-stage detection, consists of 10 

convolutional layers and achieves an accuracy of 95.3%. However, it shows limitations in terms 

of generalizability and depth of feature extraction. 

In contrast, the Transfer Learning Model, which leverages a pre-trained ResNet-50 optimized for 

lung cancer detection, achieves a higher accuracy of 98.21%. It is not only robust and highly 

generalizable but also excels in advanced feature extraction. 
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CHAPTER 8 CONCLUSION AND FUTURE SCOPE 

8.1. Conclusion 

This chapter summarizes the research presented in this thesis and highlights the key conclusions 

regarding the proposed TL-based P-ReLUResNet (P-ResNet) model for premature-stage lung 

cancer diagnosis. It also outlines potential future directions to enhance healthcare applications. 

Lung carcinoma remains the most prevalent and fatal form of cancer worldwide, posing 

significant challenges in early detection and treatment. Risk screening is vital to identify 

individuals at high risk and potentially improve patient outcomes. To address this need, an 

advanced risk screening framework, TL-based P-ResNet, was developed. Unlike traditional 

models that focus primarily on smoking history and demographic data, P-ResNet adopts a 

multimodal approach, incorporating behavioral, genetic, environmental, and socio-economic 

variables. These include nicotine dependence, tumor-associated genetic, income level, education, 

occupational exposure, and air pollution. Studies evaluating P-ResNet have demonstrated high 

sensitivity and specificity in identifying high-risk individuals. By integrating a wide range of 

factors, the model delivers a more accurate risk assessment. Moreover, TL-based P-ResNet is 

designed to be dynamic, allowing for continuous refinement and improvement with new data. 

In conclusion, P-ResNet represents a significant advancement in the domain of lung cancer risk 

screening. Its ability to incorporate diverse data sources makes it a powerful tool for personalized 

medicine and proactive healthcare decision-making. P-ResNet distinguishes itself from other risk 

screening systems through several important features. Its comprehensive methodology, 

incorporating a wide range of risk indicators, enables a more detailed and accurate assessment of 

an individual’s risk profile. The integration of deep learning algorithms enhances the system's 

ability to analyze complex data and understated patterns, significantly improving the accuracy of 

risk prediction. 

In this work, the P-ResNet algorithm was implemented for effective premature-stage lung 

carcinoma prediction. The system was trained to classify lung CT images as either normal or 

abnormal [60]. The proposed model achieved superior results, with a recall of 97.37%, an 

accuracy of 98.21%, and a precision of 98.71%. These results confirm that the proposed system 

is highly accurate in detecting lung carcinoma at a premature stage. The primary focus of this 

study has been lung cancer detection, rather than broader pulmonary imaging challenges. In 

future work, the model could be extended to not only detect lung carcinoma more efficiently but 

also to classify its types and assess severity levels using more advanced and intelligent tools. 



85  

8.2. Future Scope 

In the future, P-ResNet could evolve further by incorporating additional variables such as lung 

health status and lifestyle factors to improve its predictive capabilities. This could significantly 

aid in early detection, making treatment more effective and potentially saving lives. Moreover, 

as technology advances, P-ResNet may become more accessible and user-friendly through 

mobile applications or cloud-based platforms. Such tools could allow individuals to assess their 

lung cancer risk using real-time personal health data, empowering proactive healthcare decisions. 

In conclusion, the proposed P-ResNet model demonstrates significant promise for early lung 

cancer detection through its intelligent, data-driven methodology. Future improvements may 

enhance its accuracy, usability, and enable real-time decision-making, and ultimately contribute 

to a reduction in lung cancer mortality rates. With continued advancements, P-ResNet has the 

potential to become a powerful tool in the fight against lung cancer, moving us closer to early 

intervention and possibly even prevention. 
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ANNEXURE 2 

Table 1: Summary of Previous Methods Used for Early Lung Cancer Detection 
 

S.No Authors & Year Methodology Database Remarks Limitations 

 

1 

 

Liu et al. [1], 2024 
Transformer-based attention 

network 

 

LIDC-IDRI 
Accuracy: 94.7%, strong 

localization capabilities. 

Transformer models 

require high computational 

resources;  interpretability 
remains a challenge. 

 
2 

 
Ahmed & Zhao [2], 2024 

Lightweight CNN + PSO for 

feature selection 

 
LUNA16 

Accuracy: 93.2%, a 

smaller model size makes 

it deployable. 

The model lacks robustness 

validation across diverse 

datasets. 

 
3 

 
Sharma et al. [3], 2024 

DenseNet + BiLSTM for CT 
sequence analysis 

Private CT 
dataset 

AUC: 0.89, effective 
temporal feature learning. 

Limited generalizability 

due to private dataset 

usage. 

 
4 

 
Kim et al. [4], 2024 

Dual-branch CNN + logistic 

regression for risk scoring 

 
NLST 

Precision: 91.6%, includes 

risk probability scores. 

Logistic regression may 

oversimplify nonlinear 

dependencies. 

 

5 
Kumar & Singh [5], 
2024 

ResNet50 with CLAHE 
preprocessing 

 

LIDC-IDRI 
High contrast images; 

accuracy: 95.4%. 
CLAHE may amplify noise 
in certain regions. 

 

6 

 

Jamshidi et al. [6], 2024 
Wavelet-MLP with Dragonfly 

algorithm optimization 

CT scans 

(phantom- 

based) 

Training/testing accuracy: 

99.82%, very high 

performance. 

Real-world clinical data 

not validated; performance 

may drop in real scenarios. 

 

7 

 

Wang et al. [7], 2024 
3D-CNN with Cox loss + binary 
cross-entropy 

 

NLST 

High AUC and C-index 

for cancer & survival 

prediction. 

3D-CNNs are resource- 

intensive and complex to 

deploy. 

 

8 
Harlianto & de Jong [8], 

2024 

Meta-analysis of CE-marked AI 

software for nodule detection 

Multiple 

screening CTs 

Sensitivity: 94.6%, 

specificity: 93.6%. 

Meta-analysis lacks 

consistency across AI 

tools. 

 

9 
Harlianto & de Jong [9], 

2024 

Evaluation of clinical AI software 

for CT lung screening 

Multiple 

datasets 

AI aids speed & 

sensitivity; highlights need 

to improve specificity. 

Variability in datasets 

affects benchmarking. 
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10 

 

Saxena et al. [10], 2025 
Hybrid deep CNN with MSNN 

using transfer learning 

Private CT 

dataset 

Accuracy: 98%, 

sensitivity: 97%. 

Transfer learning may 

overfit on small private 
datasets. 

 

11 
Asha & Bhavanishankar 
[11], 2024 

SAM + transfer learning for nodule 
segmentation 

 

CT scans 

DSC: 97.08%, IoU: 

95.6%, classification 

accuracy: 96.71%. 

Generalization across 
multi-modal data has not 

been tested. 

 

12 
Md. Jiang et al. [12], 

2024 

CNN-based hybrid pipeline with 

CT preprocessing 

CT scans 

(FrontiersAI) 

99.01% accuracy claimed; 
highlights segmentation 

need. 

Pipeline complexity is not 
compared with standard 

baselines. 

 

13 

 

Springer et al. [13], 2025 
Custom CNN, MobileNetV2, 

ResNet-50 comparison 

IQ- 
OTH/NCCD 

dataset 

Custom CNN: 98.32% 

accuracy, recall 97.48%, 

specificity 98.78%. 

Comparative performance 
on real-time data has not 

been evaluated. 

 

14 

 

Cancers 2024 [14], 2024 

InceptionResNetV2 + 
InceptionUNet for detection + 

segmentation 

 

LIDC-IDRI 
Accuracy: 98.5%, Jaccard 

index 95.3%. 

Inception-based models 
require high memory. 

 

15 
Kanchan 
Sitaram Pradhan 

[1],2023 

Best Fitness-based Squirrel 

Search Algorithm (BF-SSA). 

 

Public 

 

Average correct = 87.9% 

Heuristic methods may 

lack repeatability  in 

clinical use. 

 

 

16 

 

 

Hanfei Zhang [2],2023 

Minimum-redundancy maximum- 

relevance (mRMR) selection, least 

absolute shrinkage and  selection 

operator (LASSO) 

 

 

Public 

 
 

 

AUC = 0.83 

Feature selection 

Sensitivity to noisy 

features. 

 

17 
Hanan Abdullah Menga 
sh[4], 2023 

Leveraging Marine Predators 
Algorithm 

 

Public 

 

Accuracy = 89.2%. 

Performance under diverse 

patient demographics has 

not been tested. 

 

18 

 

Kwok Tai Chui [5],2023 

Multiround transfer learningand 

modified generative  adversarial 

network (MTL-MGAN) algorithm 

 

LUNA16 

Sensitivity = 10.8%, 

Specificity 10.4%, and 

Accuracy = 9.92%. 

 

Poor accuracy; needs 

model revision. 
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19 
Shalini Wankhade 

[7],2023 

DL-based Lung Cell Cancer 

Detection (DL-LCCD). 

Public CT 

Images 

 

Accuracy = 95.30% 
Preprocessing methods are 

not detailed. 

 

 

20 

 

 

Zhiqiang Shen [8],2023 

semi-supervised computer-aided 

detection (Semi-CADe) + Cross- 

nodule attention computer-aided 

diagnosis (CNA-CADx) 

 

 

LIDC-IDRI 

Competition performance 

metric (CPM) = 82.99% + 

Area under the curve 

AUC = 88.63% 

Semi-supervised models 

need labeled data for 

validation. 

 

 

21 

 

Peter G. Mikhael [9], 

2023 

 

Histogram Technique + 

Thresholding Algorithm 

 

 

LDCT 

 

Accuracy =98%, Precision 
=82%, Specificity =99%, 

Limited to basic intensity 

features; lacks deep 

learning-based    feature 

extraction. 

 

 

22 

 

Ebtasam Ahmad 

Siddiqui, Vijayshri 

Chaurasia, Madhu 

Shandilya [10], 2023 

 

Gabor filters with an enhanced 

Deep Belief Network (E-DBN) 

 

LIDC-IDRI 

and LUNA-16 

datasets. 

F1 score = 99.37%, 

Accuracy = 99.424%, 

Sensitivity = 98.497%, 

and Specificity= 98.319%. 

High accuracy, but the 

computational complexity 

of E-DBN is not addressed 

for real-time use. 
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Authors & Year Methodology Database Remarks  

Limitations 

 

23 

A Rajput, A Subasi [11], 

2023 

pretrained ResNet model + 

support vector machine 

Public Accuracy = 98.57% 
Lacks robust 

generalization evaluation 

on unseen datasets. 

24 Sameh AbdEl-Ghany, 

Mohammad Azad [12], 

2023 

ResNet101 + CNN LC2500 

dataset 

Recall = 99.85%, F1-score 

= 99.84%, Specificity = 

99.96%, and Accuracy = 

99.94% 

Segmentation 

performance not 

highlighted; performance 

on low-dose CT untested. 

25 Siwei Wang, Fanchen 

Meng [15], 

2023 

CfDNA Public Specificity = 92.5%, 

AUC = 0.987 
Focuses on DNA markers; 

lacks integration with 

imaging data. 

26 Karthick Prasad 

Gunasekaran [19], 2023 

YOLOv5 model Public Sensitivity = 94%, 

Specificity = 90.5%, Recall 

= 95%. Accuracy 

= 91%. 

Object detection-centric, 

but lacks feature-level risk 

scoring. 

27 S. Vishwa Kiran, 

Inderjeet Kaur  [21], 

2023 

(MLDS-LCDC) + Gaussian 

filtering (GF) + (Ncuts) technique 

+ FAST and rotated BRIEF 

(ORB) technique + optimization- 

based waveletneural 

network (SFO-WNN) 

Public Sensitivity = 97.01%, 

Specificity = 98.64%, and 

Accuracy = 98.11%. 

 

 

Very complex pipeline; 

not tested on large, real- 

world clinical datasets. 

28 Yahia Said, Ahmed A. 

Alsheikhy [33], 2023. 

UNETR network + 

selfsupervised 

network. 

Decathlon 

Dataset 

Accuracy = 98.77% 
Model performance on 

non-CT modalities is not 

addressed. 
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Sr. No. 

 

 
Authors & Year 

Methodology Database Remarks Limitation 

29 Asghar Ali Shah, Hafiz 

Abid 

Mahmood Malik [35], 2023 

Convolutional Neural Network 

(CNN) 

LUNA 16 Accuracy = 95% Generic CNN architecture; 

lacks fine-grained lesion 

classification. 

30 Shigao Huang, Ibrahim 

Arpaci, Mostafa Al-Emran 

[36], 2023 

Bayes classifier (BayesNet) + lazy- 

classifier (LWL) + deep neural 

network 

(DNN). 

Public Accuracy = 88.58%  
Accuracy lower than modern 

deep models; the hybrid 

design increases complexity. 

31 Farhanaz Farheen, Md. 

Salman Shamil [38], 2022 

Deeply Supervised MultiResUNet 

model + DWT 

LOTUS dataset 

(31,247 training 

and 4458 testing 

samples) 

dice co-efficient = 0.8472.  

Dice coefficient is moderate; 

performance on noisy scans 

not evaluated. 

32 M. Praveena, A. Ravi, T. 

Srikanth [39], 2022 

CNN CT images + 

NIH 

Chest-Xray-14 

database 

Accuracy = 90%  

Performance is limited to 

classification; it lacks lesion 

localization. 

33 Jianxin Feng, Jun Jiang 

[40], 2022 

Mask Region Convolutional Neural 

Network (Mask-RCNN) mode + 

Dual 

Path Network (DPN) 

Public Accuracy=97.94%, Sensitivity 

= 98.12% 
Mask-RCNN is 

computationally heavy; real- 

time inference has not been 

analyzed. 

34 Lal Hussain, Hadeel Alsolai 

[42], 2022 

Gray-level co-occurrence matrix 

(GLCM) + Optimized vigorous 

machine learning classification 

algorithm + SVM. 

Public Accuracy = 99.89% 
Focuses on texture-based 

methods; may lack 

robustness on complex 

images. 
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Sr.No. 
Authors & Year Methodology Database Remarks Limitations 

35 Gopi Kasinathan, 

Selvakumar Jayakumar 

[43], 2022 

Cloud-based Lung Tumor Detector 

and Stage Classifier (Cloud- LTDSC)

 + multilayer 

convolutional   neural network (M- 

CNN) 

positron emission 

tomography 

LIDC-IDRI 

dataset 

Accuracy = 98.6% 
 
Requires cloud 

infrastructure; local 

deployment issues 

unaddressed. 

36 J  Vykoukal,JF Fahrmann, 

N Patel, M Shimizu [48], 

2022 

MicroRNA Public sensitivity = 95% No imaging data used; 

requires integration with 

radiological analysis. 

37 E Dritsas, M Trigka, P 

Mylonas [60], 2022 

Support Vector Machine (SVM) + 

Logistic Regression (LR) + Random 

Forest (RF) + k-Nearest Neighbours 

(k- 

NN). 

Public Accuracy = 96.64%, Precision 

= of 96.8%, Recall = 96.6%, F- 

Measure = 96.6% and AUC = 
98.5%, 

 

Traditional ML ensemble 

lacks deep learning 

advantages for imaging. 

 
38 

M Mamun, A Farjana [67], 

2022 

SMOTE method+XGBoost+ 

LightGBM + Bagging + AdaBoost 

Public Accuracy = 94.42 %, Precision 

= 95.66%, recall = 94.46%, 

and 

AUC = 98.14% 

 

Ensemble adds complexity; 

model interpretability is not 

discussed. 

39 Peixin Chen, Yunhuan Liu 

[68], 2022 

SVM Public Accuracy = 85.2%, sensitivity 

= 83.7% and specificity = 

86.3% 

 

Traditional model with 

lower accuracy; lacks feature 

engineering depth. 
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Sr.No. 
Authors & Year Methodology Database Remarks Limitations 

40 A. Asuntha, Andy 

Srinivasan [80], 2020 

Histogram of Oriented Gradients 

(HoG) + wavelet transform-based 

features + Local Binary Pattern 

(LBP) + Scale Invariant Feature 

Transform (SIFT) + Fuzzy Particle 

Swarm Optimization 

(FPSO) algorithm = FPSOCN 

LIDC Accuracy = 94.97, Sensitivity 

= 96.68 

 

 

Feature engineering is 

intensive; outdated 

compared to DL methods. 

41 P. Mohamed 

Shakeel,M.A. Burhanuddin 

[86], 2019 

profuse clustering technique (IPCT) Cancer Imaging 

Archive (CIA) 

Dataset 

Accuracy = 98.42%, 

Minimum classification error 

= 0.038. 

 

Focuses on clustering; lacks 

detailed performance 

breakdown on CT data. 

42 BaihuaZhang, Shoulian Qi 

[88], 2019 

VOT + AVE yield LIDC- IDRI Accuracy = 84.0% 
 
Accuracy is low; it lacks 

integration of recent deep 

models. 

43 Lingming Yu, Guangyu 

Tao, Lei Zhu, Gang Wang, 

Ziming Li [89], 2019 

Gray level co-occurrence matrix 

(GLCM) + SMOTE algorithm 

NSCLC Accuracy = 81.0% 
 

Performance is lowest; lacks 

multi-feature integration. 

44 Qianbiao Gu, Zhichao 

Feng, Qi Liang, Meijiao Li 

[90], 2019 

Random forest-based radiomics 

classifier 

Public Sensitivity =0.726, Specificity 

= 0.661, AUC = 0.625, P < 

0.05. 

 

Very low AUC; radiomics- 

only focus. 
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Authors & Year Methodology Database Remarks Limitations 

45 Onur Ozdemir [91], 2019 3D CNN LUNA16 AUC = 0.885 Good model but lacks 

interpretability and clinical 

deployment feedback. 

46 Ibrahim M. Nasser, Gaza 

Samy S. Abu-Naser [93], 

2019 

Artificial Neural Network (ANN) Public Accuracy = 96.67 % 
ANN lacks advanced feature 

handling; outdated compared 

to CNN/ResNet. 
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