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Abstract 

Fog computing is increasingly being explored as a complementary approach to traditional 

cloud computing, offering decentralized processing capabilities that enhance responsiveness, 

particularly in latency-sensitive and edge-centric applications. This paradigm is especially 

relevant with the rapid growth of the Internet of Things (IoT) ecosystem, where vast amounts 

of data require real-time processing and low latency to support applications in smart cities, 

autonomous vehicles, healthcare, and industrial automation. This thesis explores the fog 

computing model extensively, providing an in-depth analysis of its architecture, primary 

components, applications, and the critical differences between fog and cloud computing. 

Central to fog computing is its multi-layered architecture, which includes the cloud, fog, and 

edge layers. These layers work collaboratively to address the limitations of centralized data 

centers, bringing data processing closer to its source to reduce latency, manage bandwidth, and 

enhance security and privacy. 

 

Fog computing’s architecture is structured to improve data processing and service delivery 

through a decentralized approach that operates at the network’s edge. At the core of this 

architecture is the fog node, which interacts directly with end-user devices to provide essential 

services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and 

Software-as-a-Service (SaaS). By distributing computing tasks across local nodes, fog 

computing alleviates the dependence on distant cloud servers, reducing bandwidth 

requirements and enabling quicker response times. This characteristic of fog nodes, which are 

geographically dispersed and closer to data sources, enhances the quality of service (QoS) for 

latency-sensitive applications while supporting real-time analytics and improved mobility. 

A comprehensive examination of fog computing’s role in the Internet of Things (IoT) 

underscores its advantages in handling data generated by IoT devices, which has traditionally 

been managed by centralized cloud data centers. The thesis describes how, unlike cloud 

systems, fog computing enables the real-time processing of data generated by IoT sensors and 

devices by utilizing nearby fog nodes. This localization of processing tasks is essential for 

applications that cannot tolerate the latency associated with remote data centers, such as 

emergency response systems, real-time industrial monitoring, and autonomous vehicle 

networks. Furthermore, fog computing’s distributed architecture supports enhanced scalability 

and can dynamically accommodate increased demands as IoT ecosystems continue to expand. 

To highlight fog computing's versatility, this thesis presents a taxonomy of its key features, 

including context awareness, geographic distribution, and support for varied end-user devices. 

Fog computing nodes, capable of handling processing, storage, and communication tasks, are 



11  

typically positioned closer to the end-user, which mitigates the latency and bandwidth 

constraints associated with centralized cloud storage. The architectural flexibility of fog nodes 

facilitates a range of applications that rely on swift and reliable data access, such as smart city 

infrastructures and healthcare systems that require instantaneous data transmission to ensure 

efficient functioning. Fog computing nodes can handle tasks in a multi-layered setup, providing 

services at both the local and intermediary network levels, further optimizing resource 

allocation and management. 

This research also investigates resource scheduling and management strategies in fog 

computing, emphasizing the importance of optimizing resource allocation to enhance 

performance. Fog computing environments, often resource-constrained due to limited 

processing and storage capacities, require effective scheduling mechanisms to ensure balanced 

load distribution and high system reliability. The thesis examines various resource management 

frameworks and scheduling algorithms, including heuristic-based approaches, optimization 

algorithms, and machine learning models, to address challenges associated with task 

distribution across fog nodes. By distributing tasks based on parameters such as latency, 

bandwidth availability, and energy efficiency, fog computing can maintain system 

responsiveness while minimizing energy consumption. 

Energy efficiency is particularly crucial in fog environments where devices operate on limited 

power sources and are often deployed in locations with restricted access to continuous power. 

This thesis introduces an Energy-Efficient Resource Optimization (EERO) framework, which 

is specifically designed for scientific workflows within fog computing environments. The 

EERO model comprises three primary modules: initial processing, optimization, and parameter 

analysis. This multi-tiered approach facilitates the optimal use of available resources, 

significantly reducing execution time and energy consumption while supporting high-priority 

tasks. 

The EERO framework applies advanced algorithms such as the Pareto distribution method for 

task prioritization and the PEFT ranking algorithm to dynamically allocate tasks across fog 

nodes. These techniques contribute to load balancing and reduce energy use by selectively 

processing tasks based on priority and resource availability. Through case studies and 

performance evaluations, this thesis demonstrates that the EERO model enhances fog 

computing’s efficiency and scalability by providing an adaptable and robust resource 

management system. In contrast to cloud computing, fog computing supports location 

awareness and localized data handling, which enhances data privacy by processing sensitive 

information nearer to its source rather than transmitting it over the internet. This proximity 

also mitigates security risks associated with central cloud storage, where large-scale data 
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breaches are a significant concern. By managing data locally and securely, fog computing 

aligns with stringent data privacy regulations and supports compliance in industries such as 

healthcare and finance, where data protection is paramount. 

To address dynamic resource management challenges, the thesis discusses several established 

and emerging scheduling techniques, including Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO), and Genetic Algorithms (GA). These bio-inspired algorithms 

provide efficient solutions for managing resource allocation in fog environments by mimicking 

natural processes to find near-optimal solutions for complex tasks. By integrating heuristic, 

optimization-based, and machine learning methods, these scheduling strategies ensure that fog 

computing can adapt to fluctuating workload demands and provide continuous service in 

diverse application settings. 

The comparative analysis of fog and cloud computing reveals that while both paradigms offer 

scalable and flexible solutions for data processing, fog computing’s proximity to end-users and 

low-latency capabilities make it more suitable for real-time applications. This thesis also 

reviews related paradigms such as mist and edge computing, positioning fog computing as an 

intermediary layer that bridges edge devices with centralized cloud services. In doing so, fog 

computing provides a hierarchical framework that supports scalability and efficient data 

management across a distributed network. 

This work concludes with a discussion of future research directions, emphasizing the need for 

further development in areas such as task preemption, real-time resource migration, and 

advanced scheduling algorithms tailored to fog environments. As fog computing continues to 

evolve, addressing challenges related to resource scarcity, security, and interoperability will be 

crucial for its widespread adoption across industries. The findings presented in this thesis 

contribute to a deeper understanding of fog computing’s potential to transform data processing 

frameworks and expand the capabilities of IoT, bringing a range of practical applications within 

closer reach. 
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CHAPTER 1 

INTRODUCTION: 

Fog computing allows compute and storage services to be provided closer to an 

organization's physical hardware, resulting in faster delivery times. This approach bypasses 

the broader Internet, which often depends on carrier speeds and network capacity, ensuring 

quicker and more efficient service delivery. 

According to NIST Special Publication [31], fog computing is described as a physical, or 

virtual resource layer connecting traditional cloud computing or linked data centers and smart 

end devices typically found within organizations. The OpenFog Consortium [32] defines it as 

a architecture at the system level that divides up the processing, storage, control, and 

networking power closer to users. This highly virtualized platform connects traditional cloud 

data centers to end devices, providing networking, storage, and processing services. The 

localized nature of fog nodes reduces latency, enhances context awareness, and supports 

applications those are latency-sensitive by offering scalable, layered, ubiquitous, and 

federated network access. 

Fog computing reduces latency and enhances context awareness by localizing fog nodes. It 

supports latency-sensitive applications through scalable, layered, federated, and pervasive 

network connectivity. Fog nodes provide similar services to cloud computing, such as (IaaS), 

(PaaS), and Software-as-a-Service (SaaS). The fog architecture involves significant 

communication, control, setup, measurement, and management functions via cooperative 

end-user clients or nearby edge devices. This paradigm widens cloud computing services to 

the network's edge, offering advantages over traditional cloud environments, which are often 

distant and dependent on larger Internet bandwidths. In contrast, fog services are nearer to 

end users, densely distributed geographically, and offer superior mobility support. 

According to Gartner [1], the future of industrial IoT lies in edge-centric computing models, 

where research and system development focus on deploying processing capabilities near the 

source of data generation. As the Internet of Things (IoT) grows, so does the volume of data 

generated by these devices. Cloud computing data centres provide processing and storage 

services to these Internet of Things devices. Cloud computing allows for "pay-as-you-go" 

service delivery. Cloud computing data centres are distributed with a centralized organizational 

structure. Data processing and storage in data centres may take much longer than expected. 
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Sometimes, end devices find it difficult to retrieve the data in an emergency due to the 

centralized cloud storage. The Internet of Things (IoT) connects smartphones, smart cities, 

intelligent cars, and a host of other real-world things to the Internet, allowing data to flow 

between them with minimal human intervention. The Internet of Things sensors generate data 

relevant to specific applications and send it to the nearest sensor connections. 

Cisco unveiled a new architecture in 2012 called fog computing to fulfil these IoT 

requirements. Consider fog computing as a network-edge development of cloud computing. 

Fog effectively completes tasks requiring low latency and minimal energy on vital computer 

nodes close to the network's centre. The fog computing concept was established to fulfil the 

needs of different Internet of Things (IoT), Internet of Everything (IoE), or Internet of Me 

(IoM) segments from start to finish, such as consumer, wearable, industrial, enterprise, vehicle, 

healthcare, building, and energy. 

This chapter provides a high-level overview of this research project by describing the 

architecture, features, applications, advantages, and unsolved issues of fog computing 

andessential areas of interest. Programs for the scientific process have also been described. The 

need for resource scheduling in a fog environment has also been covered. Lastly, the order of 

the remaining chapters and contributions to the thesis have been provided. 

1.1 Fog Computing Overview: 

To expand the cloud, Cisco introduced fog computing, which provides services near end 

users. An ecosystem that uses fog computing allows many ubiquitous devices to connect 

without the assistance of third parties [2] [3]. The main objective of fog computing is to 

resolve problems that cloud computing encounters while handling Internet of Things data. 

The fog layer acts as a bridge between IoT devices and the cloud. It is a powerful technology 

that provides several answers to issues related to cloud computing. Decentralised fog offers 

networking, storage, and processing capabilities compared to centralised clouds [4]. The 

primary objective of fog computing is to resolve problems during cloud-based IoT data 

processing. This is a new paradigm that might be used with a variety of sensors, wearable 

technologies, smart gadgets, and cars. This paradigm states that jobs and computer tasks 

ought to be handled `in a dispersed fashion. Instead of building a single data centre, the 

network uses several devices. Starting with the end user and working your way up to the 

cloud reduces the bandwidth and latency of the network. Sensor-generated data is cleaned up 

by fog computing before being sent to the cloud. Several advantages come with this 

paradigm, such as improved IoT service analysis, monitoring, and execution speed [5]. 
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1.1.1 Definition 

Even though other scholars have proposed different interpretations, Cisco coined the term in 

2012. From the perspective of Cisco, Fog brings cloud services closer to edge devices. “Fog 

computing is an architectural deployment of computing resources that employs distinct nodes 

for communication and data transfer amongst IoT devices instead of storing data from IoT 

devices in cloud data centres.” [6] According to F. Bonomi et al. [7], fog computing is a 

distributed, layered computing platform that provides end users with network, storage, and 

computation services. According to reports, fog computing works better for straightforward 

procedures and is comparable to IoT devices. [8]. The intelligent IoT data sensors and cloud 

data centres are connected by a fog layer, facilitating data execution and storage. Fog 

computing extends cloud services to rival the constraints of regular cloud computing. [9]. 

Smart cities, linked automobiles, connected homes, and intelligent healthcare are just a few 

technological components and applications that fog computing's hierarchical and distributed 

architecture can allow. [10]. 

The fog node is the central element of the fog computing environment that facilitates the 

operation of Internet of Things applications. The fog layer offers a few characteristics, 

including mobility, geological dispersion, and position awareness [11]. Fog computing, a 

type of decentralised computing technology, makes it possible to process and store data 

midway between the cloud infrastructure and its source. The continued growth of IoT devices 

primarily drives the fog computing paradigm. A growing variety of devices generate an 

increasing volume, diversity, and velocity of data [12]. 

The diagram presents a comprehensive taxonomy of fog computing, highlighting its 

multifaceted structure. At the core, fog computing encompasses various critical domains such 

as Security, Computing, Communication, and Management. Security is further divided into 

Encryption and Authentication, ensuring data integrity and protection. The Computing 

domain includes aspects like Storage and Services, which are essential for effective data 

handling and processing. Applications of fog computing span diverse fields, including 

Industrial IoT and Smart Cities, indicating its widespread utility. Communication focuses on 

Protocols and Interfaces, vital for seamless data exchange. The Computing Environment is 

distinguished by the presence of Edge Nodes and Fog Nodes, illustrating the distributed 

nature of fog computing. Management aspects cover Resource Management and Task 

Scheduling, crucial for efficient operation and maintenance. This taxonomy provides a 
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structured overview of fog computing's various elements, emphasizing its complexity and 

extensive applicability. 

 

Fig 1.1: Taxonomy of Fog Computing 

 

1.1.2 Fog Computing Development: 

A developing technique called fog computing (FC) enhances current cloud computing (CC) 

capabilities to the network endpoints to provide lower latency through geographical 

distribution [13]. The devices in distributed computing employ a message-passing interface to 

support decentralised systems models in which numerous network devices perform all 

computational processes and simplify communication. Many new computer models have 

emerged in distributed computing. Utility computing comes before the notion of cloud 

computing. Cloud computing gained prominence in the early 2000s. Fog computing enables 

consumers to get information more quickly. The edge capacity of an application supports the 

computational capability of cloudlets to service various applications [14]. Tiny computer 

nodes called cloudlets, located close to customers' base stations, work with the fog and the 

cloud to provide a variety of applications. Fog computing applications are all developing in a 

way that makes high-performance computing (HPC) possible in networked systems. 

When devices and users move from one point of access to another in these networked 

systems, all the data and processing associated with each user's computer typically relocate as 

well [15]. With data migration, users could find it simpler to access their data in an 

emergency. Delays in specific delicate settings, including transportation and healthcare 

systems, might lead to dangerous scenarios [16]. The fog computing paradigm provides all- 
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time-centric applications with rapid resource access—the better use of resources via 

management to get the highest output at the lowest possible cost. Effective resource 

management is crucial for various reasons, such as cost and response time. Applying fog 

computing in a real-time scenario is pretty challenging, though. 

 

 

Fig .1.2 Characteristic of Fog Computing: 

 

 Low latency- achieved through the proximity of fog nodes to on premise endpoint 

devices, enabling much faster response times and analysis.

 Varied end user support -Rich and varied end-user support due to Edge devices' 

proximity to compute nodes.

 Multiple tenancies in a regulated setting- Due to a highly virtualized distributed 

platform it increases direct contact between the Fog apps and mobile devices results 

in improved mobility assistance.

 Real-time interaction as opposed to batch processing, as is the case, for instance, with 

cloud-based apps.

 Contributes  to  the  provision  of  high-quality  streaming  services. 

For time-consuming wireless sensing devices, wireless access networking makes 

more sense. Dispersed communication and analysis.

 

1.1.3 Dissimilarities of Cloud Computing and Fog Computing: 

 
To complement cloud solutions and align with the evolving Internet of Things (IoT) vision, 

fog computing brings cloud capabilities to the network's edge. This distributed computing 

paradigm facilitates the operation of networking, storage, and processing services between 
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end devices and cloud data centres. In fog computing, application components typically run 

both in the cloud and on edge devices, such as smart gateways, routers, or devices 

specifically designed for fog computing. 

Wireless networks have limitations, the Internet can be unstable, and the cloud requires 

substantial bandwidth. Fog computing significantly reduces the needed bandwidth by 

enabling data to be processed and transmitted within the local fog environment, minimizing 

reliance on the Internet. This allows most traffic, especially sensitive data, to stay off cloud 

networks, while critical data can still be transferred to the cloud. As a result, bandwidth is 

freed up for other cloud users. 

Similar to cloud computing, fog computing provides storage, computation, and applications 

for end-users. However, fog computing is closer to end-users and has a broader geographical 

distribution. It emphasizes proximity to users, local resource pooling, and reduced latency, 

which improves quality of service (QoS) and enables edge analytics and stream mining. This 

leads to a better user experience. Fog computing extends the cloud concept to the network's 

edge, supporting applications and services that the cloud cannot accommodate due to 

technological and infrastructure limitations. 

The volume of information in networking is continually increasing. To manage and distribute 

this data efficiently to end-users, services like cloud storage and cloud computing are utilized. 

However, for managing frequent security updates and mitigating bandwidth challenges, fog 

computing presents a more viable solution. 



19  

 

Table 1.1: Differences between Cloud Computing and Fog Computing 

 

ASPECT CLOUD COMPUTING FOG COMPUTING 

DEFINITION A model for enabling 

ubiquitous, convenient, on- 

demand network access to 

a shared pool of 

configurable computing 

resources. 

An architecture that uses 

edge devices to carry out a 

substantial amount of 

computation, storage, and 

communication locally. 

ARCHITECTURE Centralized architecture 

with data and processing in 

a central cloud server. 

Decentralized architecture 

with processing distributed 

across  edge  devices  and 

local nodes. 

LATENCY Higher latency due to data Lower latency as data 

 traveling  to  and  from  a 

central cloud. 

processing is closer to the 

data source. 

PROCESSING 

LOCATION 

Data processing occurs in 

centralized data centers. 

Data processing occurs at 

the edge of the network, 

closer to the data source. 

SCALABILITY Highly scalable with 

virtually unlimited 

resources. 

Scalable but within the 

limits of local resources 

and network capabilities. 

DATA MANAGEMENT Centralized data 

management with large- 

scale  data  storage  and 

processing. 

Decentralized data 

management with data 

processed and stored closer 

to where it is generated. 

SECURITY Security managed by 

central cloud providers, 

with strong but centralized 

security protocols. 

Enhanced security due to 

data being processed 

locally, reducing the risk of 

centralized attacks. 



20  

IDEAL USE CASES Suitable for tasks requiring 

heavy computation and 

large-scale data storage, 

like big data analytics and 

machine learning. 

Suitable for real-time 

applications requiring low 

latency, like IoT, smart 

grids,  and  autonomous 

vehicles. 

EXAMPLE 

TECHNOLOGIES 

AWS, Google Cloud, 

Microsoft Azure 

Cisco Fog Computing 

Solutions, Nebbiolo 

Technologies,  Dell  Edge 

Gateway 

 

1.1.4 Fog Architecture: 

A basic fog computing architecture consists of three levels. The uppermost layer is the 

Internet of Things, which houses intelligent gadgets. The second layer, fog computing, 

comprises fog nodes with constrained processing and storage power. 

The architecture describes the interaction between edge devices and the cloud, forming a 

unified system that bridges these two components. It typically follows a three-layered 

structure, detailed as follows: 

Layer 1: This is the foundational layer, encompassing all Internet of Things (IoT) devices. 

These devices are responsible for gathering and transmitting raw data to the next layer. 

Layer 2: Positioned in the middle, this layer features networking devices such as routers and 

switches. It handles the preliminary processing of data and offers temporary storage. These 

devices are connected to the cloud and continuously send data at regular intervals. 

Layer 3: This is the topmost layer, comprising servers and data centers. It is equipped to 

store substantial volumes of data and has the capability to process it efficiently. 

In addition to this, the initial layer includes both physical and virtual nodes. Various sensors 

are employed to track environmental conditions, transmitting the collected data to upper 

layers through gateways for further processing. The monitoring layer manages task requests 

and oversees energy consumption of the core physical devices. The pre-processing layer 

handles data management tasks, such as filtering and cleaning. The temporary storage layer 

provides short-term data retention. The security layer is dedicated to encrypting and 

decrypting data, ensuring integrity and protection against tampering. Finally, the transport 

layer forwards the processed data to the cloud, enabling the cloud to extract valuable insights 

from it[17]. 
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Fig 1.3 Layered architecture of Fog computing 

 

Layered Architecture of Fog Computing 

1. Cloud Layer (Top Layer) 

 Description: This layer represents large, centralized servers or data centers. 

 Appearance: It features cloud icons and infrastructure symbols, using light blue and 

white tones. 

 Function: The Cloud layer handles extensive data processing, storage, and complex 

computations. It serves as the central control point and provides overarching services 

to the Fog and Edge layers. 

 Connections: Arrows point downward to the Fog layer, indicating the transmission of 

data and commands from the Cloud to the Fog nodes. 
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2. Fog Layer (Middle Layer) 

 Description: This layer consists of distributed and decentralized nodes such as local 

servers, gateways, and edge devices. 

 Appearance: Depicted with small server icons, router symbols, and intermediary 

devices in shades of green and light grey. 

 Function: The Fog layer acts as an intermediary, processing data closer to the source 

(Edge devices) to reduce latency and bandwidth usage. It provides local processing, 

storage, and control functions. 

 Connections: Arrows point upward to the Cloud layer and downward to the Edge 

layer, indicating bidirectional data flow between the Cloud and Fog, and from the Fog 

to the Edge. Some nodes in this layer are connected laterally to show inter-node 

communication within the Fog layer. 

 

3. Edge Layer (Bottom Layer) 

 

 Description: This layer includes end-user devices such as smartphones, laptops, 

sensors, and IoT devices. 

 Appearance: Illustrated with icons representing various personal and industrial 

devices in orange and yellow tones. 

 Function: The Edge layer is the point of data generation and initial processing. 

Devices in this layer collect and perform preliminary processing on data before 

sending it to the Fog layer for further processing. 

 Connections: Arrows point upward to the Fog layer, indicating the transmission of 

data from Edge devices to Fog nodes. 

 

1.1.5 Related computing models: 

 
Fog computing is part of a broader landscape of distributed computing models, each with its 

unique characteristics and use cases. Below, I outline some related computing models and 

their key differences: 

1. Cloud Computing 

2. Edge Computing 

3. Fog Computing 

4. Mist Computing 
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Cloud Computing 

 
Definition: Cloud computing involves delivering computing services (such as servers, 

storage, databases, networking, software) over the internet (“the cloud”). 

 

Characteristics: 

 

 Centralized resources in large data centers. 

 High scalability and flexibility. 

 Pay-as-you-go pricing models. 

 Services accessed via the internet. 

 

Use Cases: 

 

 Large-scale data storage and processing. 

 Web hosting and application development. 

 Big data analytics and machine learning. 

 

Key Differences: 

 

 Cloud computing is highly centralized, whereas fog and edge computing distribute 

resources closer to the data source. 

 Cloud computing may experience higher latency due to the distance between users 

and data canters. 

Edge Computing 

Definition: Edge computing refers to processing data at or near the source of data generation, 

minimizing latency and bandwidth usage. 

 

Characteristics: 

 

 Decentralized processing at the network edge. 

 Low latency and real-time processing. 

 Reduced bandwidth consumption. 

 Enhances privacy and security by keeping data local. 
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Use Cases: 

 

 IoT devices and smart sensors. 

 Autonomous vehicles and industrial automation. 

 Real-time analytics and augmented reality. 

 

Key Differences: 

 

 Edge computing focuses on processing at the very edge of the network, such as 

directly on devices or local gateways. 

 Fog computing extends edge computing by adding an additional layer of intermediate 

processing between the edge and the cloud. 

 

Fog Computing 

 

Definition: Fog computing is a decentralized computing infrastructure where data, compute, 

storage, and applications are distributed in the most logical, efficient place between the data 

source and the cloud. 

Characteristics: 

 Intermediate layer between edge and cloud. 

 Processes data closer to the source than cloud computing but may aggregate data from 

multiple edge devices. 

 Reduces latency and bandwidth usage. 

 Enhances security by local data processing. 

Use Cases: 

 Smart cities and connected vehicles. 

 Healthcare monitoring and management. 

 Industrial IoT and real-time analytics. 

Key Differences: 

 Fog computing provides a hierarchical layer between edge and cloud, offering 

distributed computing closer to the source while still enabling cloud integration. 

 More suitable for applications requiring low latency and high reliability but benefiting 

from cloud capabilities. 

Mist Computing 
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Definition: Mist computing is an even more localized form of computing, often considered 

the "micro" level of fog computing, where data processing occurs directly on 

microcontrollers and small devices. 

Characteristics: 

 Extremely localized processing on micro-level devices. 

 Ultra-low latency. 

 Minimal reliance on network connectivity. 

 Suitable for simple, real-time processing tasks. 

Use Cases: 

 Wearable devices and smart sensors. 

 Simple IoT applications requiring immediate responses. 

 Local data filtering before sending to fog or cloud. 

 

 

Key Differences: 

 Mist computing operates on a much smaller scale than fog and edge computing, 

focusing on the immediate vicinity of the data source. 

 Often used for preliminary data processing before sending data to fog or edge layers. 

 

Comparative Table 1.2 

 

Feature 

Cloud 

Computing 

Edge 

Computing 
 

Fog Computing 

Mist 

Computing 

 

Centralization 
 

Centralized 
 

Decentralized 

Intermediate (between 

cloud and edge) 

Highly 

localized 

Latency Higher Very low Low Ultra-low 

Processing 

Location 

Data 

canters 

At or near 

data source 

Intermediate nodes 

between cloud and 

edge 

On micro- 

devices 

Scalability High Moderate High Low 

 

 

Use Cases 

Large-scale 

applications 

Real-time 

applications 

Real-time and 

aggregated data 

applications 

Immediate response 

applications 

 

Examples 

Web 

hosting, big 

Autonomous 

vehicles, 
 

Smart cities, healthcare 

Wearables, smart 

sensors 

data AR/VR 
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1.1.6 Resource Allocation in Fog Computing: Resource allocation in fog computing 

involves the efficient distribution of computing, storage, and network resources to 

various applications and services running on fog nodes. This is critical for ensuring 

low latency, high availability, and optimal performance of applications. Below is an 

overview of the key aspects and strategies involved in resource allocation in fog 

computing? 

 

Key Aspects of Resource Allocation 

 

1. Resource Types: 

 

 Computing Resources: CPU, GPU, and memory resources required for 

processing tasks.

 Storage Resources: Local storage for data caching, databases, and file systems

 Network Resources: Bandwidth and network interfaces for communication 

between devices and nodes

 

2. Allocation Strategies: 

 Static Allocation: Resources are allocated in advance based on predefined 

rules and configurations. This approach is simpler but less flexible. 

 Dynamic Allocation: Resources are allocated on-demand based on real-time 

requirements and conditions. This approach is more complex but offers better 

efficiency and adaptability.

3. Optimization Goals: 

 Minimize Latency: Ensuring that data processing and communication occur 

with minimal delay.

 Maximize Throughput: Enhancing the amount of data processed in a given 

time period.

 Energy Efficiency: Reducing power consumption while maintaining 

performance.

 Load Balancing: Distributing workloads evenly across available resources to 

avoid bottlenecks and overloading.
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4. Challenges: 

 Heterogeneity: Diverse devices and resources with varying capabilities and 

performance.

 Mobility: Devices and users may move, requiring dynamic reallocation of 

resources.

 Scalability: Managing a large number of devices and applications efficiently.

 Security: Ensuring data privacy and security during allocation and processing.

 

Resource Allocation Strategies 

 

1. Heuristic-Based Approaches: 

 Use rule-based methods and heuristics to allocate resources. Examples include 

round-robin, first-fit, and best-fit algorithms. 

 Pros: Simplicity and ease of implementation. 

 Cons: May not provide optimal solutions in complex scenarios. 

2. Optimization-Based Approaches: 

 Use mathematical models and optimization techniques (e.g., linear 

programming, integer programming) to find optimal resource allocation. 

 Pros: Can provide near-optimal solutions. 

 Cons: Computationally intensive and may not scale well. 

3. Machine Learning-Based Approaches: 

 Use machine learning models to predict resource demands and allocate 

resources accordingly. 

 Pros: Can adapt to changing conditions and improve over time. 

 Cons: Requires training data and computational resources for model training 

and inference. 

4. Game Theory-Based Approaches: 

 Use game theory to model the interaction between different entities (e.g., 

devices, fog nodes) and allocate resources based on equilibrium strategies. 

 Pros: Suitable for decentralized and distributed environments. 

 

1.1.7 Resource Optimization in Fog Computing 

Resource optimization in fog computing is all about making sure that we use our computing 

resources—like processing power, storage, and network bandwidth—in the most efficient 

way possible. This is key for ensuring that the applications and services running on fog nodes 
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perform well and meet user expectations. Below, we'll explore key strategies and techniques 

for optimizing resources in fog computing, along with some references to important studies 

and articles on the topic. 

Key Strategies for Resource Optimization 

 Load Balancing

 Energy Efficiency

 Quality of Service (QoS)

 Resource Scheduling

 Data Placement

 Latency Reduction

 

1. Load Balancing 

 

Load balancing is a technique to distribute tasks evenly across multiple fog nodes so that no 

single node gets overloaded [33]. Load balancing in fog computing is essential for efficiently 

distributing tasks and workloads across multiple fog nodes. This process ensures that no 

single node is overwhelmed, which helps maintain optimal performance and reliability. By 

evenly spreading out the computational demands, load balancing minimizes latency and 

improves response times, making it a critical component for delivering smooth and seamless 

services to end-users. Additionally, it enhances resource utilization and energy efficiency 

across the network, contributing to a more robust and scalable fog computing environment. It 

prevents any single node from becoming a bottleneck, ensures high availability and 

reliability, and enhances overall system performance. 

 

2. Energy Efficiency 

 

Reducing the energy consumption of fog nodes while still maintaining good performance. 

Energy efficiency in fog computing is about optimizing the use of resources to minimize 

power consumption while maintaining high performance. By processing data closer to where 

it's generated, fog computing reduces the need for long-distance data transmission, which can 

be energy-intensive. This local processing not only speeds up response times but also cuts 

down on the energy used by central data canters. Efficient resource management and dynamic 

task allocation further enhance energy savings, making fog computing a greener, more 

sustainable solution for modern computing needs. 



29  

 

Techniques 

 

Dynamic Voltage and Frequency Scaling (DVFS): Adjusts the power and speed of processors 

based on the current workload.[34] 

Task Consolidation: Groups tasks to run on fewer nodes, allowing some nodes to enter low- 

power states. 

Energy-Aware Scheduling: Allocates tasks to nodes based on their energy efficiency. 

Why It Matters: 

 Extends the lifespan of fog nodes. 

 Lowers operational costs. 

 Supports environmental sustainability. 

3. Quality of Service (QoS) 

Ensuring that fog computing services meet specified performance metrics like latency, 

throughput, and availability. In fog computing, Quality of Service (QoS) is essential to the 

seamless and effective operation of applications. For real-time applications, it entails 

managing network resources to ensure fast and dependable data transmission. Fog computing 

can maintain high performance and minimising latency by setting priorities for jobs and 

optimising resource allocation. By doing this, users are guaranteed stable and constant service 

regardless of the fluctuations in the network. To put it simply, quality of service (QoS) in fog 

computing refers to providing optimal user experience while maintaining resource efficiency, 

speed, and dependability [34]. 

Resource Scheduling: 

Resource scheduling in fog computing is all about efficiently managing and allocating tasks 

to various fog nodes to maximize performance and minimize delays. It involves determining 

the best way to distribute computational loads based on the availability and capacity of 

nearby nodes. Effective resource scheduling ensures that tasks are handled promptly and that 

resources are not underutilized or overburdened. This not only enhances the overall system 

efficiency but also improves the user experience by providing quicker response times and 

maintaining smooth operation across the network. Efficiently scheduling tasks and resources 

to optimize performance and utilization[35]. 
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Static Scheduling: 

Uses pre-determined schedules based on known workloads. 

Dynamic Scheduling: Adjusts schedules in real-time based on current system state and 

workload demands. 

Predictive Scheduling: Uses historical data and machine learning to predict and schedule 

future workloads. It Improves resource utilization, reduces waiting times for tasks and 

enhances system responsiveness. 

Data Placement Strategically placing data close to where it's needed to minimize latency and 

bandwidth usage. 

Techniques : 

Data Caching: Stores frequently accessed data on local nodes. 

Data Replication: Creates multiple copies of data across different nodes for redundancy and 

faster access. 

Proximity-Aware Placement: Places data based on the geographic location of data sources 

and users. 

It reduces data access latency, optimizes bandwidth usage and enhances data availability and 

reliability.[36] 

Latency Reduction 

Minimizing the delay between data generation and processing to support real-time 

applications. Latency reduction in resource optimization in fog computing focuses on 

minimizing the delay in data processing and transmission. By processing data closer to the 

source, fog computing significantly cuts down the time it takes for data to travel to and from 

centralized data centers. This local processing means quicker response times and more 

efficient handling of time-sensitive tasks. Optimizing resources effectively across fog nodes 

further helps in reducing latency, ensuring that applications run smoothly and users 

experience minimal delays, enhancing overall system performance. 

Techniques: 

Edge Processing: Performs data processing close to data sources. 

Fog Node Hierarchies: Creates multiple layers of fog nodes to process data progressively 

closer to the data source. 

Latency-Aware Task Allocation: Allocates tasks to nodes based on their proximity to the data 

source and processing capabilities. 

It Supports real-time applications like autonomous vehicles and IoT, Improves user 

experience with faster response times.
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Here is a diagram that shows how these strategies fit together in a tree-like structure: 
 

 

Fig 1.4 Resource Optimization in Fog Computing 

Key Areas focused by Fog computing: 

1.1.8 Advantage of Resource Management in Fog computing: 

 

 Optimized Resource Utilization: 

 

 Benefit: Effective resource management ensures that computing, storage, and 

network resources are used efficiently, reducing waste and maximizing performance. 
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 Explanation: By dynamically allocating resources based on current demands, fog 

computing can handle varying workloads more effectively. This ensures that 

resources are not left idle and are instead utilized to their full potential, leading to 

better overall system efficiency. 

 

 Improved Quality of Service (QoS): 

 

 Benefit: Enhanced QoS through better resource management ensures that applications 

meet their performance requirements, such as low latency and high availability. 

 Explanation: Resource management techniques prioritize critical tasks and allocate 

resources accordingly, ensuring that important applications maintain their 

performance standards even during peak usage times. 

 

 Cost Savings: 

 

 Benefit: Efficient resource management reduces operational costs by optimizing the 

use of available resources and minimizing the need for additional infrastructure. 

 Explanation: By making better use of existing resources and reducing unnecessary 

data transmission to the cloud, fog computing can lower expenses related to 

bandwidth, storage, and processing power. 

 

 Scalability: 

 

 Benefit: Effective resource management allows fog computing systems to scale easily 

to accommodate growing data and computational demands. 

 Explanation: As the number of connected devices increases, resource management 

strategies enable the system to adapt and scale without significant performance 

degradation, ensuring smooth operation as the network expands. 

 

 Energy Efficiency: 

 

 Benefit: Resource management in fog computing can lead to more energy-efficient 

operations, reducing the overall energy consumption of the network. 

 Explanation: By optimizing the allocation of resources and minimizing unnecessary 

data processing and transmission, fog computing systems can operate more 

sustainably, conserving energy and reducing their environmental impact. 
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 Enhanced Security and Privacy: 

 

 Benefit: Localized resource management enhances security and privacy by 

processing sensitive data closer to the source and minimizing exposure to external 

threats. 

 Explanation: By managing resources at the edge, fog computing reduces the need to 

transmit sensitive data to centralized cloud servers, thus lowering the risk of data 

breaches and ensuring better compliance with privacy regulations. 

 

 Reduced Latency: 

 

 Benefit: Proper resource management significantly reduces latency by processing 

data closer to where it is generated. 

 Explanation: Fog computing minimizes the distance data must travel, enabling faster 

data processing and response times, which is critical for real-time applications such as 

autonomous vehicles and smart grids. 

 

 Increased Reliability: 

 

 Benefit: Resource management enhances system reliability by ensuring that resources 

are available where and when they are needed. 

 Explanation: By distributing resources across multiple nodes and dynamically 

adjusting to changes in demand, fog computing can maintain high availability and 

continue operating effectively even in the face of individual node failures.
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Chapter 2 

Related Work 

The fog computing paradigm integrates conventional technology to support Internet of 

Things environments that create large amounts of data. It has become a remarkable 

technology that enables creative applications and excellent performance in demanding 

situations. The appropriate use of dynamically and spatially dispersed resources across the 

system is necessary for deploying fog devices at the fog layer. The Internet of Things is 

becoming more and more critical every day, leading to a rise in the demand for massive 

power handling, rapid internet systems, and information storage to handle data streams. Fog 

Computing has now fulfilled these prerequisites. One of the primary responsibilities of fog 

computing is resource management and effective utilization. The resource management 

system provides resource scheduling and provisioning to assist in resource management 

choices. 

Managing resources and making effective use of fog computing is essential. The resource 

management system provides resource scheduling and provisioning to assist in making 

resource management choices. 

Various research has focused on the issue of process scheduling in diverse computing 

systems. Because of the its nature that is NP-hard, it is necessary to employ heuristic 

approaches to estimate optimal solutions. 

The authors of [22] highlight a problem in scheduling workflows with multiple objectives in 

Hybrid-cloud systems. The optimization goals are considered time efficiency, cost- 

effectiveness, and reliability from the user's perspective. Unlike traditional multi-parameter 

scheduling issues in the cloud, the mentioned technique allows clients to create a different 

approach to enhance reliability. This study presents a reliability-aware multi-objective 

mimetic algorithm (RA MOMA) incorporating a unique method and a diversification 

technique to address the Hybrid cloud issues. The diversification strategy employs many 

problem-related specific genetic algorithms to produce offspring with diverse features. 

Regarding the technique, four problem-specific neighbourhood operators are developed based 

on the resource utilization rate and critical path. The purpose is to enhance the quality of the 

archive collection. A comprehensive statistical experiment is conducted to assess the 
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effectiveness of RA-MOMA. RA-MOMA outperforms similar methods in solving the 

MOWSP-MCS, as evidenced by comparisons with these algorithms. 

The Heterogeneous Earliest Finish Time (HEFT) algorithm is widely used for scheduling 

tasks [27]. HEFT consists of two distinct phases: job prioritizing and selection of processes. 

The first phase involves assigning their priorities to tasks based on their ascending ranks. In 

contrast, the second phase selects an appropriate processor for task execution, taking into 

account the least time taken by a task to complete. Next renowned algorithm in this 

classification is Predict Earliest Finish Time (PEFT) [6]. PEFT utilizes the OCT which is 

Optimistic Cost Table to prioritize tasks and select the optimal processor for executing task 

during the scheduling phase. Both HEFT and PEFT are a kind of optimization which focuses 

on single objective that minimizes makespan. In contrast, EM-MOO focuses on multi- 

objective optimization strategy that concentrates on energy usage and makespan. 

The paper [16] presents the Minimal Optimistic Processing Time (MOPT) approach, which 

aims to minimize the makespan. This technique alters the prioritizing phase by calculating 

tasks Optimistic Processing Times (OPT) on all executing nodes. The tasks are then ranked 

according to their average OPT values. The node selection phase enhances the entry task 

duplication feature by permitting duplication only if it lowers the completion time of 

subsequent jobs. Once again, it is worth noting that MOPT is a single-objective optimization 

strategy, in contrast to the approach we suggest in this paper. In [7], a hybrid meta-heuristic 

strategy is proposed to minimize the makespan in a multi-processor cloud environment. This 

approach combines the Genetic Algorithm (GA) with Ant Colony Optimization (ACO). The 

lowest level (b-level) of a task is utilized for assigning priorities. The b-level represents the 

most significant amount of time it takes for a job to traverse all levels of the graph. 

Subsequently, the Ant Colony Optimization (ACO) algorithm is utilized to determine an 

appropriate route, which is subsequently enhanced by applying the Genetic Algorithm (GA). 

The paper given in [27] is one of the rare papers that examines job scheduling in fog 

computing as a Directed Acyclic Graph (DAG) scheduling problem. The paper presents the 

Cost-makespan-aware Scheduling (CMaS) method, which aims to meet the user's QoS 

criteria for optimizing both makespan and cost. It also introduces a utility function that helps 

identify the balance between these two objectives. The schedule is enhanced through the 

work reassignment step. The Task Scheduling in Fog Computing (TSFC) technique relies on 

the classification mining algorithm [19]. The association rules derived from the I-Apriori 

algorithm are integrated with the task completion durations, disregarding the bandwidth 

between machines. The scheduling of tasks in fog computing-supported software-defined 
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embedded systems (FC-SDES) [38] aims to minimize the makespan. The algorithm suggests 

a 3-phase approach that combines work scheduling, resource management, and I/O request 

balancing while minimizing complexity. 

Workflow scheduling algorithms must consider resource attributes and dependency 

constraints in order to maximize effective resource utilization or make the best use of the 

resources at hand while limiting the application's overall completion time or makespan. It is a 

well-known NP-complete problem [24] that must be optimized using approximations in 

almost polynomial time [25]. In addition to makespan, energy consumption is another vital 

element in a fog-cloud environment. Over the past decade, the energy usage of cloud data 

centers has significantly risen, leading to a substantial increase in economic and operational 

costs and environmental consequences. Additionally, the restricted availability of resources in 

fog nodes presents a significant energy barrier. These nodes typically operate on batteries or 

have access to limited (renewable) energy sources. They are often deployed in places with 

limited and inconsistent energy supplies [?]. Consequently, there has been considerable focus 

on green cloud computing in academic and industrial circles. A key concern is decreasing 

energy usage in the growing fog-cloud infrastructure . 

This chapter describes resource management and talks about fog computing systems. And the 

use of resources. It also covers essential background information to help with a better 

understanding of resource scheduling in fog computing. An examination and comparison of 

the To better understand resource scheduling and resource utilization in the fog environment, 

research has been done on the existing resource scheduling strategies. 

2.1 Resource Management 

Fog computing minimizes the quantity of data sent to the cloud. for processing, analysis, and 

storage, improving speed and efficiency. Quality of service (QoS) in fog computing describes 

the general performance of a service, especially as perceived by network users. 

An evaluation of several network service components, including throughput, latency, 

resource availability is typical when assessing the quality of service. 

It might take a long time to work because it gets stuck in long lines or takes a less direct route 

to avoid delays. Because of the need for applications that can't wait to process and move data 

in real-time, cloud computing tries to bring cloud services and tools to the network's edge 

[13]. 

Based on Quality of Service (quality of service) needs, this new way of doing things i.e fog 

computing which moves computing around between cloud places and network parts. Even 
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though cloud technology has been studied a lot, IoT services with specific needs can only be 

used if cloud resources are physically far away from end users. Many different experts have 

come up with various quality of service factors. In an IoT based on the cloud, the delay from 

endpoints talking to each other is further from the quality of service that is wanted for real- 

time services. When something goes wrong, healthcare services may need to move right 

away. 

In the same way, self-driving cars need to be able to notice when their surroundings change 

quickly. Two of the most sensitive IoT uses are real-time tracking in factories and real-time 

guidance in traffic control systems. The quality-of-service monitor figures out how long the 

network is taking compared to other system nodes and keeps an eye on the worker node's 

quality of service features, like how available it is and how many resources it uses. 

Moreover, the assessment of the impact of regulatory actions on the quality of service is 

crucial for the effective implementation of real-time services, which demands a very small 

latency in the allocation of dispersed resources. QoS-aware service allocation may be greatly 

impacted by control decision latency, which is mostly determined by the control topology. 

2.2 Use of Resources: 

Resource utilisation is referred to by a number of names, including scheduling and resource 

provisioning. Terms related to resource scheduling and utilisation are employed in the 

framework for carrying out the suggested job. The practice of ensuring that resources are as 

useful as possible in order to effectively fulfil user requirements is known as resource 

utilisation. Achieving optimal resource allocation and distributing all available resources 

among users can lead to high resource utilisation. Any system's cost and performance are 

directly impacted by how its resources are used. Under-provisioning resources can result in a 

system with worse performance. In contrast, over-provisioning resources can lead to low 

utilisation of all allocated resources and raise the cost of the system [14]. 

Many terms are linked to resource usage, such as scheduling and provisioning. There are 

terms for using resources and planning when to use them for the framework of the planned 

work. Resource usage is ensuring that resources are used as efficiently as possible to meet 

user needs. To achieve high resource utilization, it is necessary to ensure that all available 

resources are shared among all people. How well resources are used directly affects how 

much a system costs and how well it works. If you give too many resources to a system, they 

might not be used at all, and the cost of the system might go up. On the other hand, if you 

give more resources, the system might work better. 
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2.2.1 Fog computing resource utilisation: 

This section reviews the resource utilisation strategies that are currently in use in fog 

computing. A fog computing paradigm is proposed to address all the problems associated 

with resource distribution for Internet of Things related applications. The scheduler for Bag- 

of-Task applications, or BaTS, was proposed by researchers in [70]. BaTS monitors the 

progress of operations and dynamically reconfigures the equipment to meet the demands. 

They conducted a number of experiments using a price-to-performance ratio. Every test was 

run on two different clouds, one using the BaTS algorithm and the other using the RR 

(Round-Robin) method. A fog system based on clouds was depicted in [33]. A simulation 

was established in this study using requirements for discrete events. To lessen the usage of 

the cloud, no specific load-balancing method is applied. 

To give an energy-efficient solution, researchers in [15] represented the Energy-Efficient 

Task Scheduling (MEET) method for identical nodes. Their selection process and offloading 

time slot allotment resulted in a decrease in overall energy use. The author presented a greedy 

knapsack scheduling (GKS) method in [16] for resource allocation in a fog enabled network. 

Their study's outcome was reproduced in two case studies. Their suggested approach 

produced better results than the FCFS, and delay-priority algorithms. Applications about 

containers were given access to a network-oriented scheduling approach [17]. They reduced 

network latency by 70% using a fog computing architecture built on Kubernetes. The author 

of[18] suggested a hybrid approach for service orchestration in fog networks. South Bound 

and North Bound were the two new stages—a choreographic method allowed for automated 

and quick decision-making at the South-Bound level. Conversely, North-Bound employs 

centralised orchestration at both the cloud and fog layers. 

In fog computing, Zeng et al. [19] introduced a scheduling technique in addition to picture 

placement. Fog nodes and embedded clients may complete all computational processes via 

storage servers. Clients and fog nodes can access the job image stored on the storage server. 

It is possible to reduce the completion time by planning each job. Ni et al. [20] introduced a 

dynamic resource allocation system based on the time required to complete each job and to 

enhance resource utilization. To increase the trustworthiness of fog nodes and to improve 

user quality of service, a method known as Priced Timed Petri Netts (PTPNs) was employed. 

A resource allocation strategy for optimizing energy usage was described by Pooranian et al. 

[]. The algorithm was heuristically based. The resource allocation mechanism the author 

devised is called the "bin packing penalty" and is represented by fog servers. Every virtual 
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machine was used by time and frequency constraints. An additional strategy, the "penalty and 

reward policy," is employed to optimize energy usage. 

Sun et al.[95] presented a two-level resource scheduling approach. According to these 

authors, distributing resources among several fog clusters produced a brief delay. The theory 

of enhanced non-dominated generic algorithm-II was scheduled by fog nodes assigned to 

different clusters. Resource scheduling amongst fog nodes was put into practice for multi- 

objective optimization. 

To raise awareness about vehicular networks, [] suggested an integrated structure. To test the 

flexibility, they have been turning to the OMNeT++ framework. A blockchain-based 

consensus sensing (CS) application was created for this study to reconcile local data. 

A unique bio-inspired hybrid algorithm was presented by Rafique et al. [78] for effective 

resource management in fog computing. The task above allocated and managed the resources 

according to the volume of incoming requests. The primary goal of this effort was to schedule 

the jobs efficiently to minimize the familiar or averge response time and maximize resource 

use. Task scheduling was handled by the scheduler installed between the fog nodes and the 

devices. The inefficient scheduling of given tasks was resolved by integrating a technique, 

called Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm 

Optimisation (MCSO). This method was verified, and the outcomes demonstrated that it is 

more accurate at scheduling the jobs. 

The studies listed above have all suggested scheduling algorithms; they have yet to address 

how user requests change dynamically in the ever-changing cloud-fog environment. Based on 

an analysis of recent research, it has been determined that the field of cloud computing is the 

primary focus for studying dynamic resource management. A job scheduling algorithm was 

developed using the ant colony system and a mixture of laxity in a cloud-fog environment 

[109]. The laxity metric was employed to ascertain job priority, while the ant colony 

algorithm was utilised for task scheduling. The intermediary cloud fog broker, situated 

between the cloud and fog layers, was tasked with assigning duties according to their criteria. 

At first, the requests from the IoT devices are broken down into tasks and the computing 

estimation of each job is performed to establish the nature of the work. Subsequently, the 

duty was assigned to either fog or cloud. The efficacy of this strategy in work scheduling was 

confirmed by rigorous testing and analysis of the output. The task allocation was executed 

efficiently using the given technique; nevertheless, it fails to account for the dynamic nature 

of the tasks, resulting in a bottleneck issue when the task count is raised. 
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The multi-level feedback queuing was suggested as a method for job offloading in the fog 

computing framework, considering both deadline and priority [9]. At first, the jobs were 

categorized into three groups according to their deadlines: high-priority, middle, and low- 

priority activities. The virtual queue idea was utilized to organize and prioritize work. If the 

tasks having less priority are not executed within a specific timeframe, their priority will be 

increased by one. The procedure was performed, demonstrating its efficacy in job 

categorization and scheduling. The deadline above and the priority-conscious task scheduling 

approach show task categorization and scheduling proficiency. However, it failed to consider 

the energy efficiency of the process and did not consider the selection of the fog node based 

on energy and resource availability. 

In his discussion of over- and under-provisioning, Agarwal [29] suggested an architectural 

solution to address the issue in the fog environment. The most efficient way to employ 

processing time and allocate resources to programs is through scheduling. The primary 

responsibility of scheduling is to implement a set of applicable processes and determine 

which process to execute in the next iteration 

A layered fog node architecture designed by Aazam et al. [30](Aazam and Huh, 2014) 

enables the processing of local service requests. Intelligent gateways and a data encryption 

layer have been installed in fog nodes. They created an intelligent network and smart gateway 

using a tiered architecture. They used a range of physical nodes, virtual nodes, wireless 

sensor networks, and virtual sensor networks to administer the system. 

The combination of A3C learning and residual recurrent neural networks was used in edge 

cloud computing environments to execute dynamic scheduling [98]. The IoT devices' duties 

were dynamically planned by implementing a resource management system. The Resource 

Management System (RMS) determines the scheduling of tasks by considering factors such 

as CPU use, memory requirements, bandwidth availability, projected completion time, and 

deadline. The Resource Management System (RMS) comprised a Deep Reinforcement 

Learning (DRL) model for forecasting the subsequent scheduling determination. At the same 

time, the Constraint Satisfaction Module (CSM) would verify the limitations and offer 

feasible migration and scheduling determinations. The loss values were utilised to modify the 

parameters, whereas the R2N2 was employed to adjust the model parameters of the DRL 

model. The forecasting of the subsequent scheduling determination is quite effective. It 

decreases the average reaction time of the process, but the loss function of the forthcoming 

scheduling task diminishes the efficiency of the process. 
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This part looks at how resources can be used in fog computing. Several fog computing 

method has been proposed to solve all the problems of allocating resources for Internet of 

Things (IoT) apps. 

First-Come-First-Served (FCFS),This technique is simple to implement and easy to 

understand but can lead to long waiting times for short tasks if a long task arrives first [43]. 

In Round robin, It is fair to all tasks and simple to implement; however, context switching 

overhead can be high [44]. 

Priority Scheduling-Executes high-priority tasks first, which is beneficial for critical 

applications, but lower priority tasks may suffer from starvation [45]. 

Shortest Job Next (SJN) -Can minimize the average waiting time but requires knowledge of 

execution time in advance, which may not always be possible [46]. 

Ant Colony Optimization (ACO)-This bio-inspired algorithm can find near-optimal solutions 

and is adaptable to dynamic changes but is computationally intensive and may require 

significant time to converge [47]. 

Particle Swarm Optimization (PSO)- Efficiently explores the search space and is good for 

handling dynamic environments; however, it requires fine-tuning of parameters, and 

convergence may not be guaranteed [48]. 

Dynamic Least Load First (DLLF)- Balances the load effectively and reduces the chances of 

any single node becoming a bottleneck but may not always result in the shortest total 

execution time for all tasks [49] 

Genetic Algorithms (GA)-Capable of finding high-quality solutions for complex problems 

but can be computationally expensive and may require significant time to reach an optimal 

solution [50]. 

Heuristic-based Scheduling -Fast and effective for specific types of tasks or environments but 

may not always find the best possible solution, and performance is highly dependent on the 

quality of the heuristics used[51]. 

Researchers in [54] came up with the idea of BaTS, which stands for "budget-constrained 

scheduler for Bag-of-Task applications." BaTS keeps an eye on how operations are changing 

and changes the configuration of the machines on the fly based on what is needed. They did 

many tests with a price-performance ratio. Two different clouds were used for each test. In 

one (Round-Robin) algorithm was used, and for the other one used BaTS. In [33], a cloud- 

based fog device was shown. A simulation was set up based on discrete event requirements 

for this study. The author's load-balancing technique to cut down on cloud use needs to be 

clarified. 
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A resource allocation strategy for optimising energy consumption was presented by 

Pooranian et al. [55]. The algorithm was heuristically based. The resource allocation 

mechanism that the author devised is referred to as the "bin packing penalty" and is 

represented by fog servers. Every virtual machine was used in accordance with time and 

frequency constraints. An additional policy, known as the "penalty and reward policy," is 

employed to optimise energy usage. 

In order to raise awareness about vehicular networks, [19] suggested an integrated structure. 

To test the flexibility, they have been turning to the OMNeT++ framework. In order to 

reconcile local data, a blockchain-based Consensus Sensing (CS) application was created for 

this study. A unique bio-inspired hybrid algorithm was presented by Rafique et al. [56] for 

effective resource management in fog computing. According to the volume of incoming 

requests, the aforementioned work allocated and managed the resources. The major goal of 

this effort was to schedule the jobs in an efficient manner in order to minimise the average 

response time and maximise resource utilisation. Task scheduling was handled by the 

scheduler that was installed in between the fog nodes and the devices. By integrating 

Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm Optimisation 

(MCSO), the task's inefficient scheduling was resolved. This method was verified, and the 

outcomes demonstrated that it is more accurate at scheduling the tasks. 

 

The studies listed above have all suggested scheduling algorithms; they have not addressed 

how user requests change dynamically in the ever-changing cloud-fog environment. Based on 

an analysis of recent research, it has been determined that the field of cloud computing is the 

primary focus for studying dynamic resource management. As a result, this paper proposes a 

novel method for scheduling and resource provisioning that will enable dynamic application 

management. 
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Table 2.1 

Comparison of Different Scheduling Techniques in Fog Computing 
 

 

Scheduling 

Technique 

Description Advantages Disadvantages Reference 

Reinforcement 

Learning- 

Based 

Scheduling 

(DRL) 

Uses deep 

reinforcement 

learning    to 

adaptively 

allocate 

resources  and 

schedule tasks 

based   on 

system 

dynamics. 

Learns optimal 

policies over 

time, adapts to 

changing 

workloads. 

Training is time- 

consuming and 

requires large 

datasets. 

Zhang et al., 

2022[72] 

Improved 

Firework 

Algorithm 

(IFWA) 

Optimization 

algorithm   for 

scheduling 

tasks in  fog 

with  better 

delay-resource 

balance. 

Handles 

dynamic task 

arrival, reduces 

execution 

delay. 

Tasks cannot be 

preempted, 

limiting 

flexibility. 

Wang et al., 

2023[73] 

Two-phase 

Scheduling 

with Deep 

Learning 

(TPS-DL) 

Combines 

early 

classification 

with 

reinforcement 

learning for 

adaptive 

scheduling. 

Better response 

time, adapts to 

workload 

changes. 

High training 

complexity and 

resource 

overhead 

Shadroo et al., 

2021[74] 

First-Come- 

First-Served 

(FCFS) 

Tasks are 

scheduled  in 

the order of 

Simple to 

implement, 

easy to 

May lead to 

long  waiting 

times for short 

[Yi et al., 

2015][43] 
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 their arrival. understand. tasks if a long 

task arrives first. 

 

Round Robin Each task is 

assigned a 

fixed time slot 

in  a  cyclic 

order. 

Fair to all 

tasks, simple to 

implement. 

Context 

switching 

overhead can be 

high. 

[Chiang & 

Zhang, 

2016][44] 

Priority 

Scheduling 

Tasks  are 

scheduled 

based   on 

priority levels 

assigned    to 

them. 

High-priority 

tasks  are 

executed first, 

which can be 

beneficial   for 

critical 

applications. 

Lower priority 

tasks may suffer 

from starvation. 

[Bonomi et al., 

2012][45] 

Shortest Job 

Next (SJN) 

Tasks with the 

shortest 

execution time 

are scheduled 

first. 

Can minimize 

the average 

waiting time. 

Requires 

knowledge   of 

execution time 

in advance, 

which may not 

always   be 

possible. 

[Stojmenovic 

& Wen, 

2014][46] 

Ant Colony 

Optimization 

(ACO) 

Bio-inspired 

algorithm that 

uses  the 

behavior of 

ants to find 

optimal paths 

for task 

scheduling. 

Can find near- 

optimal 

solutions, 

adaptable to 

dynamic 

changes. 

Computationally 

intensive, may 

require 

significant time 

to converge. 

[Dastjerdi et 

al., 2016][47] 

Particle 

Swarm 

Optimization 

(PSO) 

Optimization 

technique 

inspired by 

social behavior 

Can efficiently 

explore the 

search space, 

good for 

Requires fine- 

tuning of 

parameters, 

convergence 

[Gupta et al., 

2016][48] 
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 of birds 

flocking or fish 

schooling, used 

for task 

scheduling. 

handling 

dynamic 

environments. 

may not be 

guaranteed. 

 

Dynamic 

Least Load 

First (DLLF) 

Tasks are 

scheduled to 

the node with 

the least 

current load. 

Balances  the 

load 

effectively, 

reduces  the 

chances of any 

single node 

becoming   a 

bottleneck. 

May not always 

result in the 

shortest total 

execution time 

for all tasks. 

[Stojmenovic 

& Wen, 

2014][49] 

Genetic 

Algorithms 

(GA) 

Uses principles 

of natural 

selection  and 

genetics for 

scheduling 

tasks. 

Capable of 

finding high- 

quality 

solutions  for 

complex 

problems. 

Can be 

computationally 

expensive, may 

require 

significant time 

to reach an 

optimal 

solution. 

[Dastjerdi et 

al., 2016][50]) 

Heuristic- 

based 

Scheduling 

Utilizes 

heuristic 

methods  to 

make 

scheduling 

decisions based 

on predefined 

rules  or 

experience. 

Can be fast and 

effective for 

specific types 

of tasks or 

environments. 

May not always 

find  the best 

possible 

solution, 

performance    is 

highly 

dependent  on 

the quality   of 

the   heuristics 

used. 

[Gupta et al., 

2016][51] 
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2.2.2 Existing Framework in Fog Computing: 

This pioneering paper by Bonomi et al. introduces the concept of fog computing as an 

extension of cloud computing closer to the edge of the network. It discusses the role of fog 

computing in handling the massive amounts of data generated by IoT devices, reducing 

latency, and conserving bandwidth. The paper highlights early use cases in smart grids, 

connected vehicles, and smart cities [38]. 

Yi and colleagues provide a comprehensive survey of fog computing, discussing its 

fundamental concepts, applications, and the issues that need to be addressed. The paper 

elaborates on the architectural components of fog computing and its potential to support real- 

time analytics, enhanced security, and improved system scalability [39]. 

Chiang and Zhang's work explores the synergy between fog computing and IoT. The paper 

identifies research opportunities and challenges in integrating fog and IoT, such as managing 

heterogeneous devices, ensuring data security, and developing efficient resource allocation 

strategies. The authors argue for a collaborative approach to address these challenges [40]. 

EdgeX Foundry is an open-source initiative aimed at building a common framework for 

industrial IoT edge computing. The project seeks to standardize the development of IoT 

solutions across diverse hardware and software environments. The framework's modular 

design supports scalability and interoperability, making it suitable for various industrial 

applications [41]. 

This chapter presents a detailed taxonomy and survey of fog computing, highlighting its 

distinguishing features, architectural models, and key applications. Mahmud et al. discuss the 

benefits of fog computing in terms of latency reduction, bandwidth optimization, and 

enhanced security. They also propose future research directions, including standardization 

efforts and the development of robust fog ecosystems.[42] 

This work delves into the security challenges associated with fog computing. Stojmenovic 

and Wen analyze potential security threats and propose a set of guidelines for designing 

secure fog systems. They emphasize the need for robust authentication, encryption, and data 

integrity mechanisms to protect against cyber-attacks [43]. 

Hong et al. introduce the concept of "Mobile Fog," a programming model designed to support 

large-scale IoT applications. The paper discusses how Mobile Fog can facilitate the 

deployment of distributed applications by leveraging the computational resources of mobile 
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devices and edge nodes. This approach aims to reduce latency and improve the 

responsiveness of IoT systems [44]. 

This exploratory study investigates the potential applications of fog computing in healthcare. 

Skala et al. discuss how fog computing can enhance patient monitoring, medical data 

analysis, and emergency response. The study highlights the importance of low latency and 

high availability in healthcare applications and demonstrates how fog computing can meet 

these requirements [45]. 

Varshney's paper focuses on the integration of fog computing with pervasive healthcare 

systems. The author examines how fog computing can support the real-time processing of 

health data, improve patient care, and enable remote health monitoring. The paper also 

discusses the challenges of implementing fog computing in healthcare, such as data privacy 

and interoperability [46]. 

Dastjerdi and Buyya's work provides a comprehensive overview of how fog computing can 

help IoT systems achieve their full potential. The authors discuss the architectural 

components of fog computing, its benefits, and the challenges that need to be addressed. 

They also present a case study on smart traffic management to illustrate the practical 

applications of fog computing [47]. 

This paper explores the use of container technologies in fog computing for industrial IoT 

applications. Zhao et al. discuss the advantages of using containers, such as scalability, 

portability, and resource efficiency. They also propose a deployment and management 

framework that leverages container orchestration tools like Kubernetes to optimize resource 

utilization in fog environments [48]. 

Vaquero and Rodero-Merino provide a comprehensive definition of fog computing, 

distinguishing it from related paradigms like cloud and edge computing. The paper outlines 

the key characteristics of fog computing, including its ability to support latency-sensitive 

applications, distribute data processing closer to the source, and provide enhanced data 

privacy and security [49] 
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Table 2.2 Comparison of Cited Works 
 

Title Authors Year Focus Area Key Contributions 

Fog computing 

and its role in 

Bonomi, F., Milito, 

R., Zhu, J., & 

2012 Role of fog 

computing in 

Introduced fog computing 

as an extension of cloud 

the internet of 

things 

Addepalli, S.[46]  IoT computing, highlighted 

early use cases. 

A survey of 

fog computing: 

Concepts, 

applications 

and issues 

Yi, S., Li, C., & Li, 

Q.[44] 

2015 Survey of fog 

computing 

concepts, 

applications, 

and issues 

Comprehensive survey of 

fog computing, discussed 

architectural components 

and key applications. 

Fog and IoT: 

An overview 

of research 

opportunities 

Chiang, M., & 

Zhang, T [45] 

2016 Research 

opportunities 

in fog 

computing and 

IoT 

Explored synergy between 

fog computing and IoT, 

identified research 

challenges and 

opportunities. 

Open source 

industrial IoT 

edge platform 

EdgeX 

Foundry[42] 

2021 Open-source 

framework for 

industrial IoT 

edge 

computing 

Standardized framework 

for industrial IoT, supports 

scalability and 

interoperability. 

Fog 

computing:  A 

taxonomy, 

survey and 

future 

directions 

Mahmud, R., 

Kotagiri, R., & 

Buyya, R.[43] 

2018 Taxonomy and 

survey of fog 

computing 

Detailed taxonomy, 

highlighted benefits, 

challenges, and future 

research directions. 

The fog 

computing 

paradigm: 

Scenarios  and 

security issues 

Stojmenovic, I., & 

Wen, S.[47] 

2014 Security issues 

in fog 

computing 

Analyzed security threats, 

proposed guidelines for 

designing secure fog 

systems. 
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Mobile fog: A 

programming 

model for 

large-scale 

applications on 

Hong, K., 

Lillethun, D., 

Ramachandran, U., 

Ottenwälder, B., & 

Koldehofe, B. [36] 

2013 Programming 

model for 

large-scale IoT 

applications 

Introduced 'Mobile Fog', 

discussed deployment of 

distributed applications. 

the internet of 

things 

    

Application of 

fog computing 

in healthcare: 

An exploratory 

study 

Skala, K., et al.[77] 2015 Application of 

fog computing 

in healthcare 

Investigated potential 

applications in healthcare, 

emphasized low latency 

and high availability. 

Pervasive 

healthcare and 

fog computing 

Varshney, U.[78] 2017 Integration of 

fog computing 

with healthcare 

systems 

Examined integration with 

healthcare, discussed real- 

time data processing and 

remote monitoring. 

Fog 

computing: 

Helping the 

Internet of 

Things realize 

its potential 

Dastjerdi, A. V., & 

Buyya, R. [48] 

2016 Potential of fog 

computing in 

IoT 

Overview of architectural 

components, case study on 

smart traffic management. 

Deployment 

and 

management 

of container- 

based fog 

computing  in 

industrial IoT 

Zhao, Z., et al.[75] 2018 Container- 

based fog 

computing  in 

industrial IoT 

Discussed container 

technologies, proposed 

deployment and 

management framework. 



50  

Finding your 

way in the fog: 

Towards a 

comprehensive 

definition   of 

fog computing 

Vaquero, L. M., & 

Rodero-Merino, 

L.[76] 

2014 Comprehensive 

definition of 

fog computing 

Provided a comprehensive 

definition, outlined key 

characteristics of fog 

computing. 

Smart e-health 

gateway: 

Bringing 

Rahmani, A. M., 

Thanigaivelan,  N. 

K., Gia, T. N., 

2018 Smart e-health 

gateway for 

IoT-based 

Introduced Smart e-Health 

Gateway, discussed real- 

time analytics and remote 

intelligence to 

internet-of- 

things based 

ubiquitous 

healthcare 

systems 

Granados, J., 

Negash, B., 

Liljeberg, P., & 

Tenhunen, H. 

 healthcare monitoring. 

Fog computing 

micro 

datacenter 

based dynamic 

resource 

estimation and 

pricing  model 

for IoT 

Aazam, M., & 

Huh, E. N.[30] 

2014 Dynamic 

resource 

estimation and 

pricing for IoT 

Proposed dynamic resource 

estimation and pricing 

model for micro data 

centers. 

Dependability 

evaluation in 

fog computing 

for the internet 

of things 

applications 

Santos, R., Maciel, 

P., & Matos, R. 

[17] 

2018 Dependability 

evaluation in 

fog computing 

Presented framework for 

dependability evaluation, 

emphasized reliability and 

availability. 

 

Frameworks have been developed under the fog computing paradigm, including IoT devices 

and the cloud. Liu et al. introduced a methodology to decrease the delay of resource 

allocation. This architecture demonstrated vehicular Adhoc networks (VANET) to transmit 

significant data across communication channels. Resource allocation and job scheduling 
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issues have been overcome using MU-MIMO channels, where data is segmented into pieces 

and sent. They analysed a specific application situation and optimised resources by 

identifying and fixing the issue using a genetic algorithm 

Tuli et al. [52] designed a lightweight framework called FogBus for connecting IoT-enabled 

devices.. The framework was developed to incorporate blockchain technology and an 

authentication procedure to safeguard sensitive data. The functioning framework was 

assessed using a finger pulse oximeter for Sleep Apnea diagnosis. FogBus fully enables 

 

distributed application execution. There were no policies in place for real-time resource 

management and application migration during execution. 

Rathee et al. [53] introduced a dependable method utilising the tidal trust algorithm to 

calculate the Trust Value and Trust Factor (TV/TF) to identify genuine FN and IoT devices 

accurately. The Social Impact Theory Optimizer (SITO) was utilised on the fog layer to 

compute trust levels in the suggested framework. They identified the malicious nodes in their 

research by using specific criteria. The framework underwent testing on several parameters, 

and a virtual fog environment was created using the NS2 simulator. The study needs to 

account for the dynamic nature of IoT devices in the suggested framework. 

Yigitolglu et al. [114] named a framework they created "foggy." This framework oversees the 

automatic deployment of IoT applications in fog computing environments. The framework 

has components such as a container registry, version control server, orchestration server, 

node, and tool for continuous integration. The developed framework has yet to be utilised for 

practical IoT applications. Zhang and colleagues (2018) developed the Hierarchical Game 

Framework to address resource allocation issues in fog computing. 

Lin et al. [55] developed a hybrid deep learning framework to enhance the efficiency of 

manufacturing systems. Visual sensors are included into the proposed framework to identify 

faulty products and measure the extent of the problem. This approach signifies the decrease 

in the burden on the cloud layer. 

 

2.3 Real time where Fog computing is Applicable: 

 

Fog computing applies to latency-sensitive applications, including healthcare, emergency 

services, and cyber-physical systems. Below are some instances of fog computing 
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applications. Most academics focus on fog computing applications, particularly in health care. 

Various research on health monitoring, detection, diagnosis, and visualisation have been 

conducted recently. Cao et al. introduced FAST, a distributed analytic system utilising fog 

computing to monitor stroke migration by including a fall detection algorithm. The suggested 

technique has been integrated into a fog-based distributed fall detection system. This strategy 

distributes the analytical workload across the network by dividing the detection 

responsibilities between the edge devices and the server. 

2.3 Problem Formulation: 

Resource management is a critical challenge in fog computing environments, and efficient 

task scheduling is vital for effective resource utilization. While current research emphasizes 

task scheduling, it often overlooks the optimal schedulability of these tasks. To address this 

gap, optimization techniques have been employed to enhance task scheduling. The Modified 

Marine Predators Algorithm has been implemented to overcome the obstacles associated with 

task scheduling in fog computing, ensuring better resource management [57][58]. A ranking 

method was employed to ascertain the number of consecutive iterations needed to surpass the 

current position. Wang et al. proposed an enhanced firework algorithm aimed at achieving 

optimal task scheduling in fog computing environments [58]. 

The previous study used the marine predators algorithm to improve energy efficiency in task 

scheduling. However, it overlooked the balance between delay and task load, which led to 

resource wastage in the fog node. Moreover, the algorithm scheduled tasks without 

considering whether resources were available. 

This method of task scheduling with the improved firework algorithm has several limitations, 

one of which is that tasks cannot be preempted. This restriction decreases the overall 

efficiency of the approach. 

The dynamic nature of the fog node, which changes with varying tasks, is not considered, 

impacting the effectiveness of the proposed task scheduling method in IoT-based fog 

computing. 

Rafique et al. and Shardoo et al. [59] and [60] managed resources for task execution by 

addressing inefficient task scheduling with Modified Particle Swarm Optimization (MPSO) 

and Modified Cat Swarm Optimization (MCSO). This approach allocated and managed 

resources according to incoming request demands [59]. For resource management, three 

methods were used: Self Organizing Map (SOM) and autoencoder [60]. The "earliest 
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deadline first" strategy was applied for task scheduling. There are problems with these 

approach: 

 The bio-inspired hybrid algorithm fails to meet QoS and SLA requirements for 

effective resource management and task scheduling, resulting in suboptimal system 

performance. 

 The Modified Particle Swarm Optimization (MPSO) used in this method tends to 

converge too early, especially during the scattering phase, which diminishes the 

approach's overall efficiency. 

 The two-phase scheduling approach effectively organizes tasks, but the random 

allocation leads to increased overload and retransmissions, which in turn raises the 

average response time. 

Research Objectives: 

 

 To analyze existing energy efficiency-based resource allocation algorithms in Fog 

Computing environment 

 To design a resource management framework for the Fog Computing environment. 

 

 To design the proposed energy efficient based resource allocation algorithm in Fog 

computing environment. 

 To validate the above proposed algorithm and compare with existing work in Fog 

Computing environment 

This chapter delved into the current resource scheduling techniques used in fog computing 

environments. It reviewed the existing frameworks that have been applied within the fog 

computing paradigm and evaluated the resource management strategies currently in place at 

the fog layer. The subsequent chapter will introduce a new resource scheduling framework 

designed to tackle the issues identified in the problem formulation and achieve the objectives 

set out in this research. 

 



54  

Chapter 3 

Proposed Framework for Energy efficient Framework 

The previous chapter provided an in-depth exploration of resource sharing and optimization 

in the fog computing environment. Through a review of related work, it became evident that 

while resource has been studied in fog computing, there has been a lack of emphasis on 

resource optimization for scientific processes. This chapter seeks to fill this gap by presenting 

the architecture of fog computing for optimizing resources in scientific workflow 

applications. 

To achieve specific goals, related actions known as workflows need to be completed. In the 

realm of cloud computing, these workflows might include tasks such as data processing, 

application activation, and provisioning of virtual machines. By optimizing the timing of 

these activities, companies can reduce costs, enhance productivity, and improve the overall 

efficiency of their IT operations. 

Optimizing workflows can significantly enhance the overall efficiency of IT operations. By 

automating routine tasks and reducing the need for manual intervention, businesses can free 

up their IT teams to focus on more critical projects. This not only improves the quality of 

customer service but also makes companies more adaptable and responsive to changing 

business needs. 

This study's primary goal is to present an optimization framework for scientific workflow 

design. Utilizing the Bayesian framework and the maximum likelihood technique, the study 

enhances result accuracy through optimal estimations and predictions. It tackles the 

complexity of multi-objective optimization problems by integrating a random distribution 

element, introducing variability into the process. This approach enables the model to explore 

a broader range of solutions, potentially uncovering more diverse and effective outcomes. 

Furthermore, the research incorporates multiple heuristic techniques—efficient and effective 
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problem-solving strategies—to improve the model's ability to navigate complex optimization 

scenarios. Despite the use of randomness, the study strategically minimizes its impact to 

ensure the reliability of results and reduce the influence of unpredictable factors. 

 

 

There are several key reasons to optimize cloud operations, with cost reduction being one of 

the most significant. By streamlining processes to minimize the time and resources required 

to complete tasks, businesses can cut expenses. This is especially important for companies 

that need to scale their computing resources up or down in response to fluctuating workloads. 

The suggested methodology considers three primary factors while implementing resource 

optimization in a fog environment: execution time, computational cost, and energy usage. In 

certain situations, the processing and storage of a substantial volume of data necessitate the 

utilization of resources. A significant number of academics prioritize enhancing the 

performance of fog computing by addressing crucial issues such as privacy, scheduling, 

security, etc. Fog computing encounters several challenges as it continues to expand, 

including limited storage capacity, concerns about privacy arising from location awareness, 

resource overload, increased energy usage, and the need for effective resource management. 

In [14], a scheduling strategy called fog Match—based on game theory—was presented. To 

achieve the lowest possible latency and efficient resource optimization of the corresponding 

fog nodes, the research work focused on matching the duties of IoT devices to relevant fog 

nodes. Depending on the need, the aforementioned method introduced both distributed and 

centralized scheduling. The results showed that in terms of scheduling and better resource 

management, this work performed better. When fog nodes and IoT devices are matched, 

resource management is successful. 

This research mainly focuses on the resource optimization issue, which means the resources 

need optimization. Although fog computing improves computational efficiency at the 

network edge, effective resource optimization continues to pose difficulties that, if 

unaddressed, may compromise performance in certain scenarios. It efficiently distributes the 

workload among all the fog resources, considering system requirements. Efficient resource 

distribution is required in fog computing to enhance the utilization of resources and to 

provide high-quality services to the users. 
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In a fog computing environment When it comes to fog resources, a scheduling technique that 

minimizes an application's makespan but uses a lot of energy is not the best option. When 

several competing goals need to be met at once, this gets harder. Reducing makespan, for 

example, while also lowering the amount of energy needed to finish application processing, is 

difficult. Consequently,   to   determine   the   best   compromise   between 

these optimization objectives, a biobjective optimization strategy is needed. 

The scheduling problem is not well researched for fog-cloud infrastructures, despite having 

been extensively studied for cloud settings as a single goal or multi-objective optimization 

problem. In this research work, we first frame the problem as a multi-objective optimization 

model that takes energy consumption reduction and makespan minimization into 

account. Given the nature of competition between the two objectives, we employ an adaptive 

weighted bi-objective cost function. Which of the two criteria—makespan or energy—a user 

values more highly is indicated by the weight's value. The ultimate goal is to strike the ideal 

balance between the amount of time it takes to complete an application and the energy used 

to execute the process. 

 

 

3.1 EERO: Energy Efficient resource Optimization for scientific workflow application 

 

Workflows are utilized to carry out various experiments. While other resources 

communicate with one another, a lot of data is transferred. In fog computing, the majority 

of workflow tasks are performed locally on fog nodes as opposed to being sent to the 

cloud. Nevertheless, load balancing optimization is required as data transmission between 

several fog nodes increases to prevent either fog node from having too many jobs or too few 

duties. As a result, these resources use more energy to complete the jobs, which drives up the 

hardware cost of fog nodes. Therefore, load balancing can aid in enhancing system 

performance and lowering the energy and execution time of workflow tasks. 

In order to avoid resource overload in the scientific workflow application-based fog 

computing, this section presented an architecture of load balancing (EERO) for fog 

computing that reduces cost, execution time, and energy consumption. The suggested EERO 

model is displayed in Figure 3.1 

To enhance energy efficiency in fog computing—particularly for applications utilizing 

scientific workflows—there is a need for a specialized framework. We introduce EERO 

(Energy Efficient Resource Optimization) for Fog computing, aimed at minimizing costs, 

execution time, and energy consumption. As illustrated in Fig. 1, the proposed EERO model 
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includes a three-layer structure for optimizing resources in an energy-efficient fog 

architecture. These layers consist of the fog layer, the end-user layer, and the cloud layer. 

This model retains the essential characteristics of standard fog computing architecture but 

incorporates an improved fog layer. A detailed description of each layer follows. 

 

End-user Layer: At the network’s edge, end users initiate requests that are directed to the fog 

layer. With the growing demand, scientific workflow applications produce millions of tasks 

per second. These tasks are first processed before being forwarded to the fog layer for 

execution. To ensure an efficient distribution of work, we apply the Pareto distribution 

method. While some tasks are handled within the fog layer, others are sent onward to the 

cloud layer for processing. 

Fog Layer: The fog layer is organized into multiple clusters, each containing a few fog 

nodes. Each cluster includes a local controller responsible for monitoring fog nodes and 

maximizing resource utilization. Users connected to the fog layer continuously send requests 

to these fog nodes, generating a large volume of tasks due to the high number of users. This 

setup brings connectivity services closer to the data-producing nodes at the most immediate 

layer. The system comprises physical and virtual sensors, computing nodes, and other 

components. Within the fog layer, there are small data centers—similar to limited-function 

clouds—known as nano data centers. These centers have restricted processing and storage 

capabilities, so only high-priority tasks are handled locally, while others are sent to the cloud 

layer for processing. 

Cloud Layer: The cloud layer connects with the fog layer to support future data transmission 

and storage needs. This layer consists of large data centers equipped with extensive 

networking, storage, and processing capabilities. These data centers provide repository 

support for lower-priority tasks from nano data centers in the fog layer, allowing them to be 

stored and accessed 

for future use. 
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Figure 3.1 Energy Efficient Resource Optimization Model 

 

3.1.1 Operating modules of EERO 

 

In terms of operation, the proposed model is divided into three key modules: the optimization 

module, the pre-processing module, and the parameter analysis module, as shown in Fig. 2. A 

detailed description of the updated process for each module is provided below. 

 

3.1.1 Initial Processing or Pre-Processing module: The Workflow Management System 

(WFMS) is utilized to break down workflows into a series of activities, enabling their 

automated and efficient execution. This system allows users to design and review workflows, 

set budgets, specify time constraints, and choose preferred working conditions. To ensure 

tasks are allocated effectively and stay within budget and deadlines, we employ the Pareto 

distribution. After reviewing and implementing these parameters within the defined limits, 

the WFMS assesses dependencies and sends completed tasks to the scheduler via the task 

dispatcher. 

 

3.1.2 Optimization Process or module: This method provides the user with full transparency 

regarding the services they received while completing various tasks. When all nodes have the 

necessary resources, the tasks assigned to the fog nodes are successfully completed. 

However, if some tasks lack resources and the fog nodes are still underutilized, resource 
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optimization becomes necessary. To address this, we apply the PEFT ranking algorithm to 

the available tasks. 

 

3.1.3 Analysis Module for Parameters: After resource optimization, an analysis is 

conducted on key parameters, including cost, energy usage, and execution time. If the 

evaluation reveals that further optimization is needed, the tasks are sent back to the 

optimization module for rescheduling. 

 

 

Figure 3.2Operating module of EERO 

The working method is explained in the fig 3.1.2 

Key components of our methodology include: 

 

 Workflow Management and Parsing: Utilizing the Workflow Management System 

(WFMS), we parse complex workflows into manageable tasks, facilitating efficient 

execution and resource allocation. 

 Pareto Distribution: By applying the Pareto principle, we prioritize critical tasks, 

ensuring optimal use of resources and balancing the load across the fog network. 

 PEFT Ranking Algorithm: The Predict Earliest Finish Time (PEFT) algorithm ranks 

tasks based on their dependencies and execution times, allowing for more effective 

scheduling. 
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 Genetic Algorithm and Bayesian Optimization: These techniques are employed to 

refine task scheduling, finding the optimal configuration that balances energy 

consumption and execution time. 

 Adaptive Re-Optimization: The system continuously monitors execution results, 

dynamically adjusting schedules to address any inefficiencies or changes in workload 

demands. 

 

 

The implementation of these strategies within the EERO framework has demonstrated 

significant improvements in the overall performance of fog computing environments. By 

reducing the energy consumption and execution times, our model not only enhances the 

efficiency of scientific workflows but also contributes to the sustainability of computational 

infrastructures. 

 

 

 

Figure 3.1.2 Working methodology of EERO
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3.1.2 Assignment of a workflow task: 

The process for distributing tasks among fog nodes is detailed here. The workflow organizer 

collects tasks generated by users, places them into a queue, and holds them until processing 

resources are ready. Remote users submit their workloads to fog nodes for execution. The 

workflow scheduler prioritizes these tasks and assigns them to the fog’s local controller. 

Once resources become available, tasks are sent for execution, and the task scheduler is 

updated on their status afterward. This approach helps reduce the load on the fog layer by 

allocating tasks as resources free up. The fog cluster's coordinator node oversees load 

distribution across virtual machines, shifting tasks from overloaded virtual machines to idle 

ones to balance the load effectively. 

3.1.3 Proposed work flow model:  

A Directed Acyclic Graph (DAG) can be represented by a set of vertices (V1, V2, V3…, Vn), 

with edges (E1, E2, E3…, En) defining the processes in fog computing. Workflows in fog 

computing can be considered NP-complete problems. In this context, vertices symbolize the 

tasks assigned to virtual machines (VMs), labeled as "VM1, VM2, VM3…, VMn," while 

edges denote the interactions between tasks T, such as "T1, T2, T3…, Tn." Workflow 

weights are assigned to edges by specifying computation and communication times for each 

task. Resources, represented as "R1, R2, R3…, Rn" within the fog and cloud layers, are 

allocated to these tasks. This section presents models for time, cost, energy, makespan, and 

objective functions in fog computing processes. 
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Table 3.1 Notations 

 

Notation Description 

Vertices V 

Edge E 

Virtual machine VM 

Tasks T 

Resource R 

Total time 𝑇𝑡𝑖 

Time required to receive a task TR 

Time required in the processing of a 

task 

TP 

Waiting time for a task Tw 

Total Cost Tco 

resource's ready time RRn 

fitness function 𝜕 

Optimize parameter 

Execution Time ET 

Execution Cost EC 

bjective function f(p) 
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Time: During workflow execution, a numerical solution can either continue with the current 

execution phase or reschedule the remaining tasks by assessing the available execution time. 

Key factors such as job dependencies, task variability, and computational capacity should be 

accounted for when estimating the workflow's execution duration [16]. An important aspect 

of scientific workflows is that some runtime components are designed stochastically, adding 

unpredictability to execution estimates. Execution time in workflows is calculated as the total 

duration from the start to the completion of a process, factoring in any waiting periods, such 

as time spent awaiting resources or the completion of other tasks. 

 

𝑇𝑡𝑖 = ∑𝑉𝑀𝑥 𝑇𝑅𝑒 + ∑𝑉𝑀𝑥 𝑇𝑝 + ∑𝑉𝑀𝑥 𝑇𝑤 (3.1) 
𝑥=1 

 

𝑇𝑡𝑖 = Total time 

𝑥=1 𝑥=1 

TRe = Time required to receive a task 

 

TP = Time required in the processing of a task 

Tw= Waiting time for a task 

where VMx indicates how many virtual machines are there overall. 

 

Cost: All cost metrics in this study are unit less and represent normalized values between 0 

and 1 for theoretical comparison. Actual values depend on predefined simulation weights for 

resource use, migration, and memory. In the execution of scientific procedures, both the cost 

factor (CF) and the movement factor (MF) are considered. MF represents the ratio of 

expenses incurred during task execution, factoring in migration and virtual machine (VM) 

costs. CF is calculated as the ratio of the total process cost to the combined cost of the VM 

and data center, adjusted by the amount of memory utilized by the task. 

 

𝑇𝐶𝑜 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡)=(MF+CF)/2 (3.2) 

 

Where MF defines the Movement factor and CF defines the Cost factor 
 

MF= 1 ∑𝑉𝑀𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 (3.3) 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑠𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑐𝑒𝑛𝑡𝑒𝑟 𝑥=1 𝑈𝑠𝑒𝑑 𝑉𝑀 

CF = ∑𝑉𝑀𝑥 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠∗𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 
 

 
 

 
(3.4) 

𝑥=1 𝑉𝑀∗𝐷𝑎𝑡𝑎 𝐶𝑒𝑛𝑡𝑒𝑟 
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𝑥=1 

where VMx indicates how many virtual machines are there overall in the system. It is 

possible to calculate the overall cost of a task that is on time and a task that is late. 

 

Actual Cost = Cost of Underlined tasks + Cost of tasks which has crossed the deadline 

(3.5) 

 

 

 

 

Energy: Energy is calculated as the total of all instances' movement factor, time, and cost 

factor. The following equation depicts how much energy the fog environment uses when 

running operations. 

 

Energy = ∑(𝑇𝑡𝑖 + 𝑀𝐹 + 𝐶𝐹)* Number of instances (3.6) 

 

The three terms Tti, MF, and CF stand for total time, movement, and cost, respectively 

 

Makespan: It represents the total time required to complete all assigned tasks using the 

available resources. To estimate this, we use the Expected Time to Compute (ETC) matrix, 

where Tj refers to a specific task and Rj indicates a particular resource. Efficient task 

scheduling aims to minimize the makespan by balancing the workload across resources. 

In this approach, tasks are assigned in a way that avoids overloading any single resource, 

helping to reduce the total completion time. The completion time C for a given task on a 

resource is calculated as 

 

C=RRn+ERn 

 
Here, RRn is the ready time of resource n, and ERn is the execution time of the task on that 

resource. Once all completion times are computed, the makespan (MS) is defined as the 

maximum value among them 

 

MS=max(C (Tj,Rn)) (3.7) 

 

Objective function: The objective of this study can be outlined using the previously 

established models for makespan, cost, energy, and time. 

 

f(p)= α * (Tti+Tco+ E + MS) (3.8) 
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In this model, the objective function f(p) aims to be minimized to achieve the best results. 

Upon optimization by the algorithm, the fitness value is obtained. The parameters are 

represented as follows: total cost Tc, energy consumption E , total time Tt , and makespan 

MS 

 

3.2 Optimization method used: 

Utilizing EERO optimization techniques, the main goal is to reduce energy usage. The 

proposed architecture is divided into four parts 

 

A. Parsing of Workflows 

B. Optimize the ranking 

C. Optimize the task scheduling 

D. Analysis the parameter 

 

We begin by parsing workflows and assigning an optimal ranking. The first step involves 

identifying the ideal Pareto front, followed by applying a PEFT-based ranking within that 

region. Once ranked, we analyze the probability distribution correlation of these task ranks 

and optimize through a Bayesian approach. The Pareto front, comprising nondominated 

solutions, represents the best options if no goal can be improved without compromising 

another. Alternatively, a solution x* is considered dominated by another solution x only if 

x is equal to or better than x* across all objectives. Given that rankings are interdependent, 

previous step data is utilized to create an efficient task mapping. Consequently, NSGA-II is 

applied to achieve multi-objective optimization using equation 1, monitor resource usage, and 

establish an optimal scheduling threshold for virtual machines. Bayesian optimization is 

particularly employed to locate the global minimum with minimal iterations, providing an 

effective framework for addressing similar challenges. So, parse the workflows as per the 

parent-child relationship and the specified order, although many tasks will appear in the 

series. On the same level, we go to the next phase and assign an optimal ranking. 

Fitness function: F = 𝜕 (ET +EC+E) + (ET  EC  E) ….   (3.9) 

 

𝜕 =learning parameter 

 =optimize parameter 

ET=execution time 

EC=execution cost 

E=energy 
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To start, initialize N and W to represent the initial values for the number of fog nodes and 

workflows, respectively. Fog nodes are transformed into parser trees once the nodes and 

workflows are established. After creating parsing trees for fog nodes, computationally 

intensive workflow jobs are divided into smaller task components, extracted from workflows, 

and assigned to fog nodes. The first step involves identifying the optimal Pareto front, which 

provides a solution to the multi-objective optimization problem. This Pareto front represents 

a set of optimal, non-dominant options. 

Algorithm 3.1: Optimal Pareto Front Selection 
 

 

Input: Set of tasks with dependencies based on Time and Energy 

Output: Optimized Pareto Front 

1. D ← Identify task dependencies based on Time and Energy 

2. Initialize: 

iteration_count ← 0 

MAX_ITER ← N 

converged ← False 

previous_pareto_front ← ∅ 

ε ← small threshold value (e.g., 1e-3) 

3. While (NOT converged AND iteration_count < MAX_ITER): 

a. Apply Dominate() using fitness function eq(3.9) 

b. current_pareto_front ← Update Pareto Front 

c. ΔFront ← compute_distance(previous_pareto_front, current_pareto_front) 

d. If ΔFront < ε then 

converged ← True 

Break 

e. previous_pareto_front ← current_pareto_front 

f. iteration_count ← iteration_count + 1 

4. Return Final Pareto Front 
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Algorithm 3.2: PEFT-Based Task Ranking 
 

 

Algorithm: Task Ranking Based on Dependency and Dominance 

Input: Pareto Front space 

Output: Task ranking according to dependency and dominance 

1. D ← Extract task dependencies from Pareto Front 

2. Initialize: 

iteration_count ← 0 

MAX_ITER ← N 

converged ← False 

previous_rankings ← ∅ 
ε ← small threshold (e.g., 0) 

3. While (NOT converged AND iteration_count < MAX_ITER): 

a. For each pair of tasks (tᵢ, tⱼ) in Pareto Front: 

i. If tᵢ > tⱼ (in terms of dependency or priority): 

- Apply: Dominate(tᵢ) > Dominate(tⱼ) 

- Update task rankings accordingly 

b. current_rankings ← updated task rankings 

c. ΔRank ← compute_ranking_difference(previous_rankings, current_rankings) 

d. If ΔRank ≤ ε then 

converged ← True 

Break 

e. previous_rankings ← current_rankings 

f. iteration_count ← iteration_count + 1 

4. Assign final task rankings based on updated Pareto region 

5. Proceed to objective-based task scheduling 

 

 

 

Algorithm 3.3: Bayesian Optimization for Task Ranking 

 

Input: DAG (workflows) with PEFT Ranking 

Output: Optimized Task Mapping and Scheduling 

1. Initialize: 

iteration_count ← 0 

MAX_ITER ← N 

converged ← False 

improvement_threshold ε ← small value (e.g., 1e-3) 

convergence_counter ← 0 

patience ← P (e.g., 3) 

2. While (NOT converged AND iteration_count < MAX_ITER): 
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a. For each task: 

i. Compute task execution time and energy at each fog node 

ii. Predict expected improvement EI(x) using Bayes: μ(x|D), σ(x|D) 

iii. Store EI(x) for convergence tracking 

b. max_EI ← max(EI(x) for all tasks) 

c. If max_EI > ε then 

Apply BayesOptimize() 

convergence_counter ← 0 

Else 

convergence_counter ← convergence_counter + 1 

d. If convergence_counter ≥ patience then 

converged ← True 

Break 

e. iteration_count ← iteration_count + 1 

3. Output: Final optimized task ranking and assignment 

 

Workflows Parsing :The DAG workflow design reflects a parent-child relationship. If there's 

an edge from Parent I to Child J within the DAG, it indicates that Child J is the successor of 

Parent I. Due to task precedence constraints, Child J can only start after Parent I has 

completed and passed the necessary information. Thus, workflows should be parsed 

according to this parent-child relationship and the specified sequence, even when multiple 

tasks are involved. We then proceed to determine the optimal order of tasks at the same level. 

 

Ranking Optimization :This section is divided into three parts. First, tasks are ranked within 

the optimized space based on our three research objectives: cost, energy, and time. The initial 

step identifies the Pareto front, and the second phase ranks the region using PEFT. Next, we 

establish the probability distribution relationship between these task ranks and the overall 

process ranking, then apply a Bayesian optimization technique to refine it further. Optimizing 

workflows can significantly enhance IT operations' overall efficiency. By automating routine 

tasks and reducing manual intervention, businesses can allow their IT staff to focus on more 

critical projects. This shift can improve customer service quality and make companies more 

adaptable and responsive to changing business needs. 
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Pareto Front: 

 

We assume that all objectives are to be minimized, as any maximization problem can be 

transformed into a minimization problem. The Pareto set consists of a group of non-dominant 

solutions representing trade-offs among the objectives. The values of these solutions form the 

Pareto frontier, which is a powerful tool for identifying preferences and supporting decision- 

making. 

 

PEFT Ordering 

 

Predict the Earliest Finish Time (PEFT) is a scheduling technique designed for use with a 

limited number of heterogeneous processors. The algorithm operates in two stages: Task 

Prioritization, which determines the order of task execution, and Processor Selection, which 

identifies the most suitable processor for executing each task. 

 

3.3 Workflow of the Algorithm: 

 

1. Initialize System: Initializes system parameters, fog nodes, and cloud nodes. 

2. EERO_Model: Main algorithm that processes workflows, optimizes task scheduling, 

and assigns tasks to fog nodes. 

3. WFMS_parse_workflow: Parses workflows into individual tasks. 

4. Pareto_distribution: Distributes tasks based on the Pareto principle. 

5. PEFT_ranking: Ranks tasks using the PEFT algorithm. 

6. GA_Bayesian_optimization: Uses genetic algorithm and Bayesian optimization to 

find the best task scheduling configuration. 

7. Assign_task_to_fog_node_based_on_optimization: Assigns tasks to fog nodes 

based on the optimized schedule. 

8. analyze_execution: Analyzes execution results from fog nodes. 

9. optimization needed: Determines if further optimization is needed based on 

execution results. 

10. re_optimize_schedule: Re-optimizes the task schedule if necessary. 
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Initialization 

 

Algorithm: Initialize System 

Input: None 

Output: Initialized system parameters, fog nodes, cloud nodes 

 

1. Initialize system parameters {cost, energy_consumption, execution_time} 

 

2. For i = 1 to number_of_fog_nodes do 

 

Create fog_node(i) with {RAM, CPU, bandwidth} 

End For 

3. Create cloud_nodes with {high_capacity_storage, processing_power} 

End Algorithm 

Algorithm: EERO_Model 

 

Input: workflows, fog_nodes, cloud_nodes 

Output: Optimized task scheduling and execution 

1. Initialize_System() 

 

2. For each workflow in workflows do 

 

// Step 1: Pre-Processing 

 

tasks = WFMS_parse_workflow(workflow) 

distributed_tasks = Pareto_distribution(tasks) 

 

 

// Step 2: Optimization Process 

 

ranked_tasks = PEFT_ranking(distributed_tasks) 

 

optimized_schedule = GA_Bayesian_optimization(ranked_tasks, fog_nodes) 

 

 

 

// Step 3: Execute and Monitor Tasks 
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For each task in optimized_schedule do 

 

Assign task to fog_node_based_on_optimization(task, fog_nodes) 

End For 

 

 

// Step 4: Analyze Results 

 

execution_results = analyze_execution(fog_nodes) 

 

If optimization_needed(execution_results) then 

 

re_optimized_schedule = re_optimize_schedule(optimized_schedule, execution_results) 

Assign re_optimized_schedule to fog_nodes 

End If 

End For 

End Algorithm 
 

 

 

Algorithm: WFMS_parse_workflow 

Input: workflow 

Output: tasks 

 

 

 

1. Split workflow into tasks 

 

2. Return tasks 

End Algorithm 

Algorithm: Pareto_distribution 

Input: tasks 

Output: distributed_tasks 
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1. Distribute tasks based on Pareto principle 

 

2. Return distributed_tasks 

End Algorithm 

Algorithm: PEFT_ranking 

Input: tasks 

Output: ranked_tasks 
 

 

1. Compute Optimistic Cost Table (OCT) 

 

2. For each task in tasks do 

 

Calculate earliest_finish_time(task) 

End For 

3. Sort tasks by earliest_finish_time 

 

4. Return ranked_tasks 

End Algorithm 

Algorithm: GA_Bayesian_optimization 

Input: ranked_tasks, fog_nodes 

Output: optimized_schedule 
 

 

 

1. Initialize population with ranked_tasks and fog_nodes 

 

2. For generation = 1 to max_generations do 

 

// Selection 

 

selected_individuals = SELECTION(population) 

 

 

 

// Crossover 

 

offspring = CROSSOVER(selected_individuals) 
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// Mutation 

 

mutated_offspring = MUTATION(offspring) 

 

 

 

// Evaluate fitness 

 

For each individual in mutated_offspring do 

 

fitness = EVALUATE_fitness(individual, system_parameters) 

Update_population(population, individual, fitness) 

End For 
 

 

 

// Bayesian Optimization 

 

optimized_individual = Bayesian_optimization(population) 

Update_population_with_optimized_individual(population, optimized_individual) 

End For 

 

3. Return best_individual_from_population(population) 

End Algorithm 

 

 

Algorithm: Assign_task_to_fog_node_based_on_optimization 

Input: task, fog_nodes 

Output: None 
 

 

 

1. Find optimal_fog_node for task based on optimization 

 

2. Assign task to optimal_fog_node 

End Algorithm 
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Algorithm: analyze_execution 

Input: fog_nodes 

Output: execution_results 
 

 

 

1. Collect execution data from fog_nodes 

 

2. Return execution_results 

End Algorithm 

Algorithm: optimization_needed 

Input: execution_results 

Output: Boolean 
 

 

 

1. If execution_results not meeting_thresholds then 

Return True 

Else 

 

Return False 

End Algorithm 

Algorithm: re_optimize_schedule 

 

Input: optimized_schedule, execution_results 

Output: re_optimized_schedule 

 

 

1. Re-optimize schedule based on execution_results 

 

2. Return re_optimized_schedule 

End Algorithm 
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Conclusion: 

 

 

In this chapter, we introduced an innovative framework designed to enhance the efficiency 

and optimization of resources in fog computing environments, particularly for scientific 

workflow applications. Our proposed Energy Efficient Resource Optimization (EERO) model 

offers a structured approach to managing and distributing computational tasks, emphasizing 

energy conservation, cost reduction, and minimizing execution times. 

 

The EERO model incorporates a multi-layered architecture comprising the end-user layer, 

fog layer, and cloud layer. This hierarchical structure ensures that tasks are processed 

efficiently at the edge of the network, leveraging the capabilities of fog nodes to handle local 

computational demands while offloading more intensive tasks to the cloud as needed. This 

strategic distribution significantly reduces latency and energy consumption, addressing the 

core challenges of fog computing. 

 

In conclusion, the EERO model presents a robust solution to the challenges of resource 

optimization in fog computing. Its adaptive, multi-layered approach ensures that scientific 

workflow applications are executed with maximum efficiency, paving the way for future 

advancements in fog computing technologies. The integration of heuristic and probabilistic 

techniques within the framework underscores the potential for continued innovation in this 

field, promising more resilient and energy-efficient computing environments. 
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Chapter 4 

 

Energy Efficient Resource Optimization algorithm for scientific workflows in Fog 

Computing 

 

4.1 Resource optimization algorithm 

The previous chapter introduced a framework focused on resource utilization for scientific 

workflows. This chapter presents an energy-efficient resource optimization algorithm tailored 

for scientific workflow applications. The simultaneous data transmission from numerous 

smart device users leads to resource shortages. Often, some resources are fully utilized while 

others in the fog layer remain idle, resulting in wasted resources and power. Optimizing 

resources in the fog computing layer is challenging, as it aims to minimize cost and energy 

consumption. Load imbalance in the fog layer also wastes bandwidth, reducing throughput 

and increasing user response time. These issues arise from the constrained environment and 

limited resource availability. 

 

The EERO algorithm is designed to improve the efficiency of fog computing by balancing 

the load and optimizing the scheduling of tasks. It integrates several optimization techniques 

to achieve this goal. The main components of the EERO algorithm include: 

 

1. Pre-Processing Module: This module uses the Workflow Management System 

(WFMS) to split workflows into a collection of tasks. Tasks are then distributed based 

on the Pareto distribution to ensure they are within budget and deadline constraints. 

2. Optimization Module: This module applies the PEFT (Pareto Efficient Task) ranking 

algorithm to rank tasks and uses Bayesian optimization to find the optimal task 

scheduling. 

3. Parameter Analysis Module: After optimization, this module analyzes parameters 

like cost, energy consumption, and execution time. If further optimization is needed, 

tasks are returned to the optimization module. 



77  

 

 

Figure 4.1 Working of EERO 

 

 

Fog computing is gaining popularity in the Internet of Things (IoT) world. Instead of relying 

only on cloud datacentres for computing and storing IoT data, fog computing provides local 

storage and processing right where users need it. This makes IoT more efficient and 

accessible. 

Deciding whether to run applications in the fog layer or the cloud is important for 

maintaining service quality. To manage this, a cloud-fog scheduler is used to ensure tasks are 

processed without delays. 

Load balancing is key to keeping fog computing systems running smoothly. However, 

because the fog environment is spread out and has many users, balancing the load can be 

tricky. With more users, the load fluctuates, making it hard to distribute work evenly. To 

make the best use of resources in a fog environment, it's important to spread the load across 

all available virtual machines (VMs) to avoid overloading or underutilizing them. 

 

Scientific workflows are data-intensive applications that handle distributed data sources and 

complex computations across various fields like astronomy, engineering, and bioinformatics. 

In distributed environments such as fog computing, numerous sensors and experimental 

processes produce large volumes of data that must be collected and processed within specific 

time constraints. Fog computing utilizes geographically distributed resources to manage and 

process this data efficiently. 

 

Despite its advantages over cloud computing, fog computing faces several challenges. One 

significant challenge is balancing the load during the execution of scientific workflow tasks 
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in a complex resource environment. These tasks require real-time implementation, but the 

substantial data volume can overload fog computing resources. Therefore, it is essential to 

evenly distribute the data across available resources to ensure real-time processing. Proper 

distribution of tasks helps in efficient resource utilization, saving both energy and execution 

time[61]. Scientific workflows are complex, often considered NP-complete problems, 

involving a series of computational tasks for various scientific applications. These workflows 

are typically represented as Directed Acyclic Graphs (DAGs), which consist of vertices (V1, 

V2, V3, ..., Vn) and edges (E1, E2, E3, ..., En). The vertices symbolize different workflow 

tasks that are assigned to corresponding virtual machines (VM1, VM2, VM3, ..., VMn), 

while the edges denote the communication between tasks (T1, T2, T3, ..., Tn). Essentially, a 

DAG is depicted as a tree structure with nodes and connecting edges, where these edges are 

weighted based on communication and computation time. Various types of workflows can be 

executed using fog computing, leveraging this DAG representation for efficient task 

management. 

 

 

 

 

 

 

Fig: 4.2 Example of workflow 
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A Directed Acyclic Graph (DAG) is a fundamental structure used in scientific workflows to 

represent and manage a series of computational tasks. Here are some key points explaining its 

use: 

 

1. Representation of Tasks and Dependencies: 

 

 Vertices: Each node (or vertex) in a DAG represents an individual task 

in the workflow. These tasks could be any computational step required 

by a scientific application. 

 Edges: The directed edges between nodes indicate dependencies 

between tasks. An edge from task A to task B signifies that task B 

cannot start until task A has been completed. 

 

2. Execution Order: 

 

 The acyclic nature of the graph ensures that there are no circular 

dependencies, which means the tasks can be scheduled and executed in 

a specific order. This order respects the dependencies defined by the 

edges. 

 

3. Parallel Processing: 

 

 DAGs enable the identification of independent tasks that can be 

executed in parallel. Tasks that do not have direct or indirect 

dependencies on each other can be processed simultaneously, 

optimizing resource usage and reducing execution time. 

 

4. Resource Allocation: 

 

 In distributed computing environments, such as fog computing, tasks 

represented by nodes can be mapped to various virtual machines 

(VMs) or other computational resources. This mapping helps in 

effectively utilizing available resources. 

 

5. Load Balancing: 
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 DAGs help in distributing the workload evenly across different 

resources. By analyzing the graph, the system can allocate tasks to 

prevent overloading any single resource and ensure efficient task 

execution. 

 

6. Performance Optimization: 

 

 Weights can be assigned to the edges representing the communication 

or computation time between tasks. This information helps in 

optimizing the workflow by minimizing data transfer times and 

balancing computation loads. 

 

7. Flexibility and Scalability: 

 

 DAGs offer a flexible structure that can be easily modified to 

accommodate changes in the workflow. New tasks can be added, or 

existing tasks can be removed or altered without disrupting the overall 

structure. 

 They also support scalability, as tasks can be distributed across various 

resources in a geographically distributed environment, like fog or 

cloud computing. 

 

8. Error Handling and Recovery: 

 

 In case of a failure in one of the tasks, DAGs facilitate error handling 

and recovery by allowing the system to identify the failed task and re- 

execute it or take corrective measures without affecting the entire 

workflow. 

 

By representing scientific workflows as DAGs, complex computational processes can be 

systematically managed, scheduled, and executed, ensuring efficiency, reliability, and 

optimal resource utilization. 

 

Examples of workflows from different domains, showcasing how tasks are structured, 

managed, and executed using a workflow system: 



81  

1. Bioinformatics Workflow 

 

 DNA Sequencing: A common workflow in bioinformatics involves the sequencing of 

DNA samples.

 

 Tasks: Sample preparation, sequencing, data cleaning, alignment of 

sequences, identification of genetic variants, annotation of variants, 

and reporting.

 Tools: Various software tools like FASTQC for quality control, BWA 

for sequence alignment, GATK for variant calling, and custom scripts 

for data processing.

 

2. Astronomy Workflow 

 

 Image Processing: Processing data from telescopes to generate usable 

astronomical images.

 Tasks: Data acquisition, calibration (removing noise and errors), 

alignment of images from multiple exposures, stacking (combining images 

to enhance signal), and final image enhancement.

 Tools: Software like IRAF for image processing, DS9 for visualization, 

and custom scripts for data handling.

 

3. Engineering Workflow 

 

Finite Element Analysis (FEA): Simulating physical phenomena using 

computational models. 

 

 Tasks: Pre-processing (defining geometry, material properties, boundary 

conditions), meshing (dividing the geometry into smaller elements), solving 

(running simulations), and post-processing (analyzing results and visualizing 

data).

 Tools: Software like ANSYS or Abaqus for simulation, and MATLAB or 

Python for custom post-processing scripts.

 

4. Business Process Workflow 
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 Order Processing: Managing customer orders in a retail or manufacturing 

environment.

 Tasks: Order entry, payment processing, inventory check, order fulfilment, 

shipping, and customer notification.

 Tools: ERP systems like SAP or Oracle, CRM tools for customer 

management, and custom software for specific process steps.

 

5. Data Science Workflow 

 

 Machine Learning Model Development: Creating predictive models from data.

 

 

 

 Tasks: Data collection, data cleaning, exploratory data analysis, feature 

engineering, model training, model validation, and deployment.

 Tools: Programming languages like Python or R, libraries such as pandas, 

scikit-learn, TensorFlow, and cloud platforms like AWS or Azure for 

deployment.

 

6. Healthcare Workflow 

 

 Patient Management: Coordinating patient care in a hospital.

 Tasks: Patient registration, appointment scheduling, medical examination, 

diagnostics (lab tests, imaging), treatment planning, and follow-up.

 Tools: Electronic Health Record (EHR) systems, medical imaging software, 

and custom hospital management software.

 

7. Media Production Workflow 

 

 Video Production: Creating a film or a video segment.

 Tasks: Scriptwriting, storyboarding, shooting, editing, visual effects, sound 

editing, and final rendering.

 Tools: Software like Adobe Premiere Pro, Final Cut Pro, After Effects for 

visual effects, and Audition for sound editing.
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Resource Optimization based Workflow Execution model for Fog Computing: 

 

This section introduces a workflow execution model tailored for fog computing 

environments, focusing on optimizing resources. Fog computing, when handling extensive 

computational tasks, encounters challenges such as scheduling loads, balancing those loads, 

and utilizing resources efficiently. Our proposed solution aims to improve resource utilization 

and decrease energy consumption in fog nodes. 

 

The first layer is the end-user layer, where users generate numerous workflow tasks. These 

tasks are temporarily stored in a workflow container before being assigned to the workflow 

scheduler. Here’s how the process works: 

 

1. The workflow container submits tasks to the workflow scheduler in the order they 

arrive. 

2. The workflow scheduler has a queue where tasks wait for resources. Tasks enter the 

queue at the back and are removed from the front. 

3. As resources become available, tasks are taken from the queue and assigned to the 

central controller in the fog layer. 

 

Fog Layer: 

 

The second layer of the workflow execution model is the fog layer, which consists of various 

fog clusters containing multiple fog nodes. This layer also has a central controller that 

manages the fog clusters. The central controller checks for available nodes in each cluster and 

assigns tasks to those available nodes. 

 

Fog Layer Execution: Load Balancing and Task Assignment 

 

Once the optimized task schedules have been generated, the central controller in the fog layer 

takes charge of executing the tasks. It receives workflow tasks from the workflow scheduler 

and employs a load balancer to continuously monitor all fog nodes across the distributed fog 

clusters. To ensure efficient task distribution, the system uses the PSW-Fog clustering-based 

load balancing method, which evenly assigns tasks among available nodes based on real-time 

resource availability. 

 

Each fog cluster comprises multiple fog nodes, and each node hosts several virtual machines 

(VMs) responsible for executing the assigned tasks. High-priority tasks are processed 
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immediately on the most suitable VMs, while lower-priority tasks may be queued or 

offloaded to the cloud layer for further handling if local resources are insufficient. 

 

The fog layer emphasizes real-time processing, aiming to minimize latency and optimize 

local resource utilization. Once tasks are executed, users receive responses directly from the 

fog layer, improving response time and reducing reliance on the cloud. 

 

Cloud Layer Execution: Extended Processing and Storage 

 

The cloud layer represents the third and final tier of the workflow execution model. It 

consists of large-scale data centres equipped with vast computational, networking, and 

storage resources. This layer serves as a backup and support infrastructure for handling tasks 

that exceed the capabilities of the fog layer. 

 

Once tasks are executed in the fog layer, the results are returned to users. However, if 

additional computation, long-term storage, or batch processing is required, those tasks are 

escalated to the cloud layer. The cloud handles such overflow tasks with greater processing 

power, albeit with higher latency. The objective of the proposed workflow execution model is 

to minimize execution time within the fog layer, thereby reducing the burden on cloud 

resources and improving overall system efficiency. 

 

4.3 Efficient Resource Optimization 

The optimization of scientific workflows in cloud computing environments presents 

significant challenges due to the conflicting objectives of minimizing execution time, energy 

consumption, and costs while maintaining quality of service (QoS) standards. This research 

work proposes a novel approach using a multi-objective genetic algorithm to address these 

challenges effectively. The algorithm leverages a combination of heuristic and meta-heuristic 

techniques, including Predict the Earliest Finish Time (PEFT) and Bayesian optimization, to 

enhance task scheduling efficiency. 

 

The core of the proposed method is a multi-objective genetic algorithm that constructs a 

Pareto front to identify non-dominated solutions, providing a balanced trade-off among 

different optimization criteria. The PEFT heuristic predicts the earliest completion times for 

tasks, allowing for more efficient scheduling. Additionally, Bayesian optimization is 

employed to improve the reliability and convergence speed of the algorithm by incorporating 

probabilistic models into the decision-making process. 

 

4.3.1 Optimization approach used in our proposed algorithm: 

 

This research work proposes a multi-objective genetic algorithm to address the complex 

problem of optimizing scientific workflows in cloud computing environments. This method is 

designed to simultaneously minimize multiple conflicting objectives such as execution time, 

energy consumption, and cost, while ensuring the Quality of Service (QoS) standards. 

 

Key Components of the Algorithm: 

 

In the methodology, the first step is workflow parsing, which involves understanding and 

organizing the tasks based on their dependencies. This is crucial for ensuring that tasks are 
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executed in the correct sequence, respecting the dependencies inherent in the workflow. The 

process is outlined as follows: 

 

1. Directed Acyclic Graph (DAG): The workflow is represented as a DAG, where each 

node represents a task and each edge represents a dependency between tasks. The 

DAG ensures there are no cycles, meaning that there is a clear start and end point for 

the workflow. 

2. Parent-Child Relationship: 

 Parent Task: A task that must be completed before another task can begin. 

 Child Task: A task that depends on the completion of a parent task. 

 

 

 

3. Parsing Process: 

 Identification of Dependencies: Each task's dependencies are identified based 

on the edges in the DAG. If there is an edge from Task A to Task B, Task B is 

considered a child of Task A. 

 Execution Order: The tasks are then arranged in a sequence that respects these 

dependencies. A task can only begin execution once all its parent tasks have 

been completed. 

 Level Assignment: Tasks are assigned levels based on their position in the 

DAG. Tasks with no parents are at level 0, their children are at level 1, and so 

on. This helps in organizing the tasks for subsequent ranking and scheduling 

processes. 

 

This parsing ensures that the workflow's logical structure is maintained and that all 

dependencies are respected during execution. By correctly parsing the workflow into its 

parent-child relationships, the methodology sets a foundation for efficient scheduling and 

optimization, ensuring that no task is executed before its prerequisites are satisfied. 

 

Next in the context of optimizing scientific workflows in cloud environments, handling 

multiple conflicting objectives is crucial. Objectives such as minimizing execution time, 

reducing cost, and lowering energy consumption often conflict with one another. For 

reducing execution time might increase energy consumption or cost. Pareto front 

optimization provides an effective means to navigate these trade-offs by identifying a set of 

optimal solutions that balance the different objectives. The Pareto front is a concept used in 

multi-objective optimization to identify a set of non-dominated solutions, where no single 

solution is superior to the others in all objectives. This allows for a balanced trade-off among 

the different optimization criteria. This process can be detailed as follows: 

 

Consider a multi-objective optimization problem with k objective functions 

 

𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥). 
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The goal is to minimize these functions simultaneously: 

 

𝑚𝑖𝑛𝑥 ∈ (𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)] 

 
This expression represents a multi-objective optimization problem where you aim to 

minimize the vector of objective functions f(x) over the feasible solution space X. Each fi(x) 

is an individual objective function. 

 

A solution 𝑥₁ is said to dominate another solution 𝑥₂ if: 

 

𝑥₁ ≺ 𝑥₂ ⟺ ∀𝑖, 𝑓ᵢ(𝑥₁) ≤ 𝑓ᵢ(𝑥₂) 𝑎𝑛𝑑 ∃𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓ⱼ(𝑥₁) < 𝑓ⱼ(𝑥₂) 

 
The Pareto optimal set P∗ and Pareto front PF are defined as: 

 

𝑃 ∗= { 𝑥 ∈ 𝑋 ∣ ∄𝑦 ∈ 𝑋𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑦 ≺ 𝑥 } 

 
𝑃𝐹 = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑃 ∗} 

 
This provides a diverse set of solutions, offering various trade-offs between objectives. This 

diversity is crucial for decision-makers to choose the most appropriate solution based on 

specific needs and constraints. 

 

In the context of this study, the Pareto front helps in identifying the optimal scheduling of 

tasks that balance between minimizing time, cost, and energy consumption. 

 

1. Predict the Earliest Finish Time (PEFT): 

 PEFT is a heuristic that estimates the earliest possible completion time for 

tasks based on their dependencies and the available computing resources. 

 This prediction is crucial for efficient scheduling as it allows the algorithm to 

prioritize tasks that can be completed earlier, thereby improving overall 

workflow execution time. 

 

PEFT algorithm calculates the earliest finish time for each task using the following steps: 

 

Initialization: 

 

For each task ti_ initialize the Earliest Start Time (EST) and Earliest Finish Time (EFT). 
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For the entry task (a task with no predecessors), the EST is set to zero. 

 

Calculate EST and EFT: 

 

 For each task ti_:

o Calculate the Earliest Start Time (EST) based on the Earliest Finish Time 

(EFT) of its predecessors. 

 

The EST for task tit_iti is given by: 

 

𝐸𝑆𝑇(𝑡𝑖) = 𝑡𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑡𝑖)𝑚𝑎𝑥(𝐸𝐹𝑇(𝑡𝑗)) 

 
where pred(ti) is the set of predecessor tasks of ti 

 

Calculate the Earliest Finish Time (EFT) by adding the execution time of the task to its EST: 

 

𝐸𝐹𝑇(𝑡𝑖) = 𝐸𝑆𝑇(𝑡𝑖) + 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒(𝑡𝑖) 

 
Then we do rank Tasks 

 

 Rank tasks based on their EFT. Tasks with earlier EFTs are given higher priority.

 

Bayesian Optimization (BO) is used to optimize the ranking process further by predicting 

the best task orderings and resource assignments. It incorporates probabilistic models to 

make informed decisions about the scheduling of tasks. This approach helps in refining 

the search process by focusing on the most promising areas of the solution space, thereby 

improving the convergence speed and quality of the solutions. 

 

Bayesian Optimization involves the following steps: 

 

Surrogate Model Construction: A probabilistic model (typically a Gaussian Process) is 

used to approximate the objective function. 

 

Acquisition Function Maximization: An acquisition function, which balances exploration 

and exploitation, is optimized to decide the next point to evaluate. 

 

Objective Function Evaluation: The true objective function is evaluated at the selected 

point. 
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1 

Model Update: The surrogate model is updated with the new data. 

 

Objective Function: Let f(x) be the objective function representing the performance 

measure (e.g., makespan, cost, energy consumption) that needs to be minimized. Here, x 

represents the task orderings and resource assignments. 

 

Surrogate Model: A Gaussian Process (GP) is used as the surrogate model. The GP 

provides a posterior distribution over the objective function f(x) given a set of observed 

data 𝐷 = {(𝑥𝑖, 𝑦𝑖)} = 𝑛   
where yi_  is the observed value of the objective 

function at xi 

 

The posterior distribution is given by:(𝑥) ∼ 𝑁(𝜇(𝑥), 𝜎2(𝑥)) 

 
Where (𝒙) is the mean function and (𝒙) is the variance function of the GP 

 

Acquisition Function: The acquisition function α(x) is used to determine the next point 

to evaluate. Common choices include Expected Improvement (EI), Probability of 

Improvement (PI), and Upper Confidence Bound (UCB). 

 

The Expected Improvement (EI) is defined as:(𝑥) = 𝐸[𝑚𝑎𝑥(0, 𝑓(𝑥+) − 𝑓(𝑥))] 

 
where x+ is the best observed point so far. 

 

Optimization of Acquisition Function: 

 

The next point Xn+1 to evaluate is chosen by maximizing the acquisition function 

 

 

𝑥𝑛 + 1 = 𝒂𝒓𝒈𝒎𝒂𝒙 (𝑥) 

 
Heuristic and Ranking Approaches 

 

The algorithm integrates several heuristic and ranking techniques to improve the efficiency of 

task scheduling: 

 

1. Efficient Ranking Heuristic: 
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 This heuristic ranks tasks based on their importance and urgency. The ranking 

is used to determine the order in which tasks should be scheduled, ensuring 

that critical tasks are prioritized. 

 The heuristic considers factors such as task dependencies, deadlines, and 

resource availability to generate an optimal schedule. 

2. Bayesian Approach: 

 The Bayesian approach is used to incorporate uncertainty and probabilistic 

reasoning into the scheduling process. It helps in predicting the outcomes of 

different scheduling decisions and selecting the best course of action. 

 This method enhances the robustness of the scheduling algorithm by 

accounting for the variability in task execution times and resource 

performance. 

The proposed optimization framework combines the strengths of the genetic algorithm, PEFT 

heuristic, and Bayesian optimization to tackle the multi-objective optimization problem 

effectively. 

 

1. Initialization: 

 The genetic algorithm starts with an initial population of potential solutions, 

each representing a possible schedule for the workflow tasks. 

 These initial solutions are generated randomly or based on simple heuristics to 

cover a diverse range of possible schedules. 

2. Selection: 

 The selection process involves choosing the most promising solutions from the 

current population based on their fitness. The fitness is evaluated using the 

multi-objective criteria of time, cost, and energy consumption. 

 Solutions that lie on the Pareto front are given higher priority as they represent 

the best trade-offs among the different objectives. 

3. Crossover and Mutation: 

 The algorithm applies crossover and mutation operators to generate new 

solutions from the selected ones. Crossover combines parts of two solutions to 

create a new one, while mutation introduces small changes to a solution to 

explore the solution space. 
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 These operators ensure the diversity of the population and help in avoiding 

local optima. 

4. Evaluation: 

 The new solutions are evaluated using the PEFT heuristic and Bayesian 

optimization to estimate their performance in terms of the defined objectives. 

 The evaluation process involves calculating the execution time, cost, and 

energy consumption for each solution, and updating the Pareto front 

accordingly. 

5. Iteration: 

 The algorithm iterates through the selection, crossover, mutation, and 

evaluation steps until a stopping criterion is met, such as a maximum number 

of generations or convergence to a stable Pareto front. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 
This chapter primarily deals with verifying and validating the proposed framework. It 

outlines the experimental prerequisites and explains the performance evaluation metrics. The 

EERO framework was implemented using the iFogSim toolkit, and the results were 

compared to algorithms like ABC, ACO, Tabu Search, and GWO. The analysis of the result 

graphs shows that the proposed methods deliver superior performance compared to these 

existing algorithms. 

The chapter is structured into two phases. The first phase assesses the proposed EERO 

framework, while the second evaluates a resource-utilization-based workflow execution 

model for fog computing, along with an energy-aware load balancing algorithm. The 

iFogSim toolkit was used to obtain the results, and three key metrics—cost analysis, 

execution time, and energy consumption—were analyzed in both phases. The research 

focuses on four scientific workflows (LIGO, Sipht, Genome, and Cybershake) sourced from 

the "Pegasus" repository [https://pegasus.isi.edu/workflow_gallery/]. Result graphs were 

generated based on the evaluation of these workflows across 20 to 200 fog nodes. The 

findings indicate that as the number of fog nodes increases, so do execution time, cost, and 

energy consumption. However, the proposed framework and algorithms significantly reduce 

these factors compared to existing approaches. Each experiment also discusses the necessary 

experimental requirements. 

 

5.1 Validation and verification of the suggested framework EERO 

 

To develop an energy-saving strategy for workflow-based applications in fog computing, the 

study proposes an approach that emphasizes reducing execution time, implementation costs, 

and energy consumption across fog nodes.. To validate the method, three different 

experiments were conducted. The results are presented through three test cases: the first 

examines implementation costs, the second evaluates the execution time of workflow 

applications, and the third assesses energy consumption across various resources. The 
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experiments involved running calculations on fog nodes ranging from 2 to 200, with an 

average of forty runs conducted to ensure statistical accuracy. 

This section presents the simulation results generated using iFogSim, a simulator designed 

for edge computing, IoT, and fog environments to manage IoT services and simulate 

networks and various applications. iFogSim operates in conjunction with CloudSim, which 

offers a comprehensive library for simulating cloud environments and managing resources. 

CloudSim is responsible for handling interactions and events between the different fog 

components. 

5.1.1 Experimental setup 

Several experimental requirements were taken into account to assess the proposed approach. 

The study was conducted using a 64-bit Windows 7 operating system. For simulation 

purposes, iFogSim, a highly capable simulation tool, was employed to demonstrate the 

results. The fog computing layer was organized into fog clusters, each consisting of multiple 

fog nodes. Additional requirements are detailed in a table format. 

Table 5.1 outlines the necessary requirements for achieving the simulation results. iFogSim, 

an open-source, high-performance toolkit, is utilized for simulating environments in fog 

computing, IoT, and edge computing. It helps in modeling fog and IoT networks, working 

alongside CloudSim. iFogSim comprises three key components: physical components, which 

include physical fog nodes; logical components, consisting of various application modules 

and application edges; and management components, which handle module mapping objects 

and the fog controller[63]. 

Why choose iFogSim for simulation results? 

iFogSim is an open-source, high-efficiency toolkit designed for simulating fog computing, 

IoT, and edge computing environments. It enables the modeling of fog and IoT networks and 

operates in conjunction with CloudSim. iFogSim consists of three primary components: 

physical components, which include physical fog nodes; logical components, comprising 

various application modules and edges; and management components, which handle module 

mapping and the fog controller [64]. 

iFogSim is chosen for this work due to its user-friendly interface and low complexity. Built 

on the simple CloudSim platform, which is widely recognized as a leading cloud computing 

simulator, iFogSim extends the functionality of CloudSim by allowing the simulation of fog 

computing environments with multiple fog nodes and IoT devices (such as sensors and 

actuators). Despite its advanced capabilities, iFogSim is designed so that users without prior 

experience with CloudSim can easily navigate the fog computing infrastructure, service 
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placement, and resource allocation policies. It operates using the sense-process-actuate and 

distributed data flow models, enabling the simulation of various fog computing scenarios 

while making it easier to evaluate metrics such as end-to-end latency, network congestion, 

energy consumption, operational costs, and resource quotas [65]. 

 

Table 5.1 Required Parameter 
 

Parameter Value 

Simulator iFogSim 

Bit 64 

Operating System Windows7 

MIPS 2000 

No. of Hosts 1 to 2 

RAM 200MB 

No. of Fog Nodes 2 to 200 

Number of Tasks 100-1000 

Number of 

Workflows 

10 to 12 

Bandwidth Up to 60 Mbps 

 

 

5.1.2 Results and discussion: 

Scientific workflows represent tasks as Directed Acyclic Graphs (DAGs), which are 

generated by various sensors and actuators in applications such as astronomy, e-healthcare, 

intelligent traffic management, and more [66] [67]. Several types of scientific workflows 

exist, including CyberShake, Genome, SIPHT, LIGO, and Epodomic [68]. In DAGs, tasks 

are depicted as connected nodes, where the nodes represent individual tasks and the edges 

illustrate the communication between them. For this research, the LIGO, CyberShake, 

SIPHT, and Genome workflows were used in the experimental analysis. Specifically, 

CyberShake is employed to assess earthquake hazards by the Southern California Earthquake 

Center [69]. Cybershake can be considered a data-heavy workflow, requiring substantial CPU 

and memory resources. The LIGO workflow, short for Laser Interferometer Gravitational- 

Wave Observatory, is a system used in physics to detect gravitational waves on Earth. Due to 

the large-scale nature of its tasks, LIGO demands even greater CPU and memory resources, 
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often requiring memory-optimized virtual machines (VMs) [70] [71]. SIPHT, developed at 

Harvard University for bioinformatics research, is employed to identify bacterial replicons, 

specifically searching for small RNAs (sRNA) involved in regulating bacterial secretion 

processes. The National Center uses the SIPHT workflow to streamline the search for genes 

encoded in sRNA [70] [71]. GENOME, introduced by Hans Winkler in 1920, is used in 

genetics and biology to gather an organism's genetic material, such as RNA or DNA, which 

may include both coded and non-coded DNA. The study of these genomes is referred to as 

genomics [72]. 

This section presents the results from the implementation of the proposed algorithm. 

Executing scientific workflow data sets in a real-time setting poses challenges, so these 

workflows are executed within a simulation environment. Specifically, the iFogSim 

simulator, integrated with Eclipse, is utilized to reduce execution time, cost, and energy 

consumption. Various scientific workflow data sets, such as LIGO, Cybershake, Genome, 

and Sipht, are used for the experimental analysis. 

For the simulation results, iFogSim is utilized to evaluate the performance of the EERO 

technique. The outcomes of the proposed technique are compared with those of existing 

methods, including ABC, ACO, Tabu Search, and GWO, to demonstrate that EERO performs 

more effectively. A range of applications is examined to assess the efficiency of our proposed 

technique [72]. 
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(d) Cyber Shake 

Figure 5.1: Cost Analysis of different workflow with EERO 

Test Study I: Analysis of Cost ; Various types of workflow tasks are distributed to fog nodes, and 

their performance is evaluated. However, increasing the number of fog nodes in the fog layer leads to 

higher cost consumption. This study focuses on the execution of Genome, Cybershake, Sipht, and 

LIGO workflows, comparing the proposed approach with several existing methods. In Figure 5.1, four 

subfigures illustrate the results of different workflow executions. Figure 5.1(a) presents the execution 

outcome for the Genome scientific workflow, with the x-axis representing the number of fog nodes 

and the y-axis showing the cost. As the number of fog nodes increases, the implementation cost also 

rises. This study introduces an EERO approach that utilizes load balancing to reduce costs. The figure 

demonstrates that the proposed method results in lower costs compared to other techniques such as 
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LIGO, Sipht, and Cybershake, are also provided using fog computing. In a similar manner, other 

workflows such as LIGO, Sipht, and Cybershake tasks have been processed using fog computing, and 

their outcomes have been stored. These results are illustrated in Figure 5.1(a), (b), (c), and (d). The 

performance of the workflows, which were allocated to fog nodes, was thoroughly evaluated. It was 

found that increasing the number of fog nodes in the fog layer raises the overall cost. This research 

focused on executing four scientific workflows—Genome, Cybershake, Sipht, and LIGO—and 

compared the proposed method with existing techniques. For the Genome and LIGO workflows, the 

implementation cost was reduced by 3% when using EERO compared to other methods, while for 

Sipht and Cybershake, the reduction was 4% compared to current approaches. 
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Test Case II: Analysis of Execution Time 

The scientific workflows, including Genome, LIGO, Sipht, and Cybershake, involve large datasets, 

which are broken down into tasks that are distributed to fog nodes for processing. Since these 

workflows are extensive, more fog nodes are required to handle the execution of the tasks. As the 

number of tasks increases, so does the execution time. In this study, the proposed technique was 

implemented to analyze the execution time of tasks within the fog layer. 

Scientific workflows like Genome, LIGO, Sipht, and Cybershake involve large datasets, where tasks 

are distributed to fog nodes for processing. To handle these complex tasks, the fog layer requires 

additional nodes. As the number of tasks increases, so does the execution time. After implementing 

the proposed approach, the execution time for tasks in the fog layer was analyzed. Figure 5.2 presents 

the execution time analysis for various workflow tasks, calculated from the moment of task 

submission to the completion of execution, including the time spent in the queue. 

Figure 5.2 is divided into four sections, illustrates the execution time for the workflows Genome, 

Sipht, LIGO, and Cybershake. The y-axis represents the execution time, while the x-axis indicates the 

number of fog nodes. The graphs reveal that as the number of fog nodes increases, the execution time 

also rises. The proposed EERO algorithm was used to reduce the execution time of tasks in these 

workflows. With EERO, execution time was decreased by 25% for Genome and 12% for LIGO 

compared to other existing methods. Similarly, the execution times for the Sipht and Cybershake 

workflows were reduced by 18% and 20%, respectively, using EERO. 
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(d)CyberShake 

Fig. 5 .2 Analysis of the execution times of various workflows 

Test Study III: Energy Consumption Analysis 

In this study, the focus is on analyzing the energy consumption of multiple fog nodes within 

the fog layer, which plays a crucial role in executing various tasks. As the number of tasks 

increases, more resources are required, leading to a corresponding rise in energy 

consumption. The relationship between resource usage and energy consumption becomes 

apparent as the workload grows, necessitating an efficient strategy to manage this 

consumption. 

 

Figure 5.3 illustrates the energy usage patterns of fog nodes using the EERO technique. The 

graphs (Fig. 5.3 a, b, c, and d) display energy consumption on the x-axis and the number of 

fog nodes on the y-axis. It becomes evident from the figures that as the number of tasks 

increases, the need for more fog nodes also grows, which results in higher energy 

consumption. The greater the number of nodes engaged in processing, the more energy is 

consumed, making energy efficiency a critical consideration in such environments. 

 

The proposed solution, EERO, aims to optimize this situation by balancing the load across 

the fog nodes, thereby reducing overall energy consumption. The results demonstrate that the 

EERO technique outperforms other existing methods in managing energy usage. For 

example, in the Genome and LIGO workflows, EERO successfully reduces energy 

consumption by 22.69% and 25%, respectively. Similarly, in the Sipht and Cybershake 

workflows, EERO achieves reductions of 25% and 24.56%, respectively. These findings 

highlight the effectiveness of EERO in lowering energy consumption while maintaining task 

execution efficiency across various workflows. 
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5 .3 Energy consumption analysis 

Conclusion: This chapter introduces a resource optimization approach focused on energy 

efficiency, specifically designed for scientific workflows within fog computing 

environments. Initially, tasks are distributed using the Pareto distribution to manage budgets 

and deadlines effectively. A Bayesian approach, coupled with a maximum likelihood method, 

is employed to process tasks on fog nodes and determine the Pareto front. Additionally, this 

study outlines a resource management framework for fog computing, using scientific 

workflow applications to test the effectiveness of the proposed strategy. Comparative 

analyses reveal that the proposed method outperforms existing approaches by reducing 

energy consumption and enhancing resource utilization. However, unresolved challenges— 
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such as security, resource allocation, and energy efficiency—require deeper investigation, 

representing ongoing issues and future areas of research in this domain. 

 

5.1.3 Comparison of Results without Using NSGA: 

To further validate the effectiveness of the proposed EERO framework, a comparative 

analysis was conducted by evaluating the results obtained without applying NSGA. NSGA 

plays a crucial role in multi-objective optimization, enhancing energy efficiency, execution 

time, and cost reduction. The absence of NSGA led to a significant increase in these metrics 

across all scientific workflows, including Genome, LIGO, Sipht, and Cybershake. The results 

show that energy consumption increased by approximately 20%, execution time rose by an 

average of 15-25%, and overall implementation costs were notably higher. The graphs 

comparing NSGA and non-NSGA results illustrate that, without NSGA, resource utilization 

was less optimized, leading to inefficient task execution and higher operational overhead. 

This comparison underscores the importance of incorporating NSGA into the EERO 

framework, as it effectively balances load distribution, optimizes computational resources, 

and minimizes energy consumption in fog computing environments. 

 
Cost Analysis of different workflow without using NSGA 

 

5.4 (a) Cost analysis of Cyber workflow without NSGA 

 

 

 

Cost Cyber - Without NSGA 

 

 This graph estimates cost values without NSGA by assuming a 20% increase 

due to the lack of optimization. 

 Costs are significantly higher across all algorithms. 
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5.4 (b) Cost analysis of Cyber workflow with Vs without NSGA 

 

 

Cost Cyber - With vs. Without NSGA 

 

 This comparison graph shows solid lines for NSGA-applied costs and dashed 

lines for costs without NSGA. 

 The difference highlights the cost-saving benefits of NSGA. 

Key Observations: 

 NSGA significantly reduces costs across all algorithms. 

 GWO remains the most expensive algorithm, while EERO remains the most cost- 

efficient. 

 Without NSGA, costs increase more sharply as the number of fog nodes increases. 
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5.5(a) Cost analysis of Genome workflow without NSGA 

Cost Genome - Without NSGA: 

 This graph simulates the cost evaluation without NSGA, showing that costs 

are higher across all algorithms (approximately 20% increase) compared to the 

NSGA-applied version. 
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5.5 (b) Cost analysis of Genome workflow with Vs without NSGA 

Cost Genome - With vs. Without NSGA (Comparison Graph): 

 This graph compares the cost with NSGA (solid lines) and without NSGA 

(dashed lines) for key algorithms (ABC, EERO, GWO). 

 It clearly shows that NSGA reduces costs significantly across different fog 

node configurations. 

 

 

Key Observations: 

 

 NSGA reduces costs by optimizing resource allocation and scheduling. 

 Without NSGA, costs increase consistently across all algorithms. 

EERO remains the most cost-efficient algorithm in both cases, whereas GWO 

consistently incurs the highest cost 
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5.6 (a) Cost analysis of Sipht workflow without NSGA 

Cost Sipht - Without NSGA" 

 This graph estimates cost values without NSGA by assuming a 20% increase 

due to the lack of optimization. 

 Costs are significantly higher across all algorithms. 
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5.6 (b) Cost analysis of Sipht workflow with Vs without NSGA 

Cost Sipht - With vs. Without NSGA 

 This comparison graph shows solid lines for NSGA-applied costs and dashed 

lines for costs without NSGA. 

 

Key Observations: 

 

 NSGA significantly reduces costs across all algorithms. 

 GWO remains the most expensive algorithm, while EERO remains the most cost- 

efficient. 

Without NSGA, costs increase more sharply as the number of fog nodes increases 

 
Time delay analysis of different workflow without using NSGA : 

 

 

 

5.7 (a) Time delay analysis of Sipht workflow without NSGA 

"Cybershake Time Delay - Without NSGA" 

 This graph estimates time delay values without NSGA, assuming a 20% 

increase due to the lack of optimization. 

 The time delay is significantly higher across all algorithms. 
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5.7 (b) Time delay analysis of Sipht workflow with Vs without NSGA 

Cybershake Time Delay - With vs. Without NSGA 

 This comparison graph shows solid lines for NSGA-applied time delays and 

dashed lines for time delays without NSGA. 

 It highlights the time-saving benefits of NSGA. 

Key Observations: 

 NSGA significantly reduces time delays across all algorithms. 

 ACO and GWO show the highest delays, while EERO remains the most efficient 

algorithm. 

 Without NSGA, delays increase more sharply as the number of fog nodes increases. 
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5.8 (a) Time delay analysis of Genome workflow without NSGA 

Genome Time Delay without NSGA 

This graph estimates time delay values without NSGA, assuming a 20% increase due 

to the lack of optimization. 

 

The time delay is significantly higher across all algorithms 
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5.8 (b) Time delay analysis of Genome workflow with Vs without NSGA 

 

 

 

 

 This comparison graph shows solid lines for NSGA-applied time delays and 

dashed lines for time delays without NSGA. 

 It highlights the time-saving benefits of NSGA. 

Key Observations: 

 NSGA significantly reduces time delays across all algorithms. 

 GWO has the highest time delay, while EERO remains the most efficient algorithm. 

 Without NSGA, delays increase more sharply as the number of fog nodes increases. 
 

 

 

5.9 (a) Time delay analysis of Ligo workflow without NSGA 

LIGO Time Delay without NSGA: 

This graph estimates time delay values without NSGA, assuming a 20% increase due 

to the lack of optimization. 

 

The time delay is significantly higher across all algorithms 
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5.9 (b) Time delay analysis of Ligo workflow with Vs without NSGA 

LIGO Time Delay - With vs. Without NSGA 

This comparison graph shows solid lines for NSGA-applied time delays and dashed lines 

for time delays without NSGA. 

 

It highlights the time-saving benefits of NSGA. 

Key Observations: 

 NSGA significantly reduces time delays across all algorithms. 

 Tabu Search has the highest time delay, while EERO remains the most efficient 

algorithm. 

 Without NSGA, delays increase more sharply as the number of fog nodes increases. 
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5.10 (a) Time delay analysis of Sipht workflow without NSGA 

Sipht Time Delay - Without NSGA 

This graph estimates time delay values without NSGA, assuming a 20% increase due 

to the lack of optimization. 

 

The time delay is significantly higher across all algorithms 
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5.10 (b) Time delay analysis of Sipht workflow with Vs without NSGA 

Sipht Time Delay - With vs. Without NSGA 

 This comparison graph shows solid lines for NSGA-applied time delays and 

dashed lines for time delays without NSGA. 

 It highlights the time-saving benefits of NSGA. 

 

Key Observations: 

 
 NSGA significantly reduces time delays across all algorithms. 

 Tabu Search has the highest time delay, while EERO remains the most 

efficient algorithm. 

 Without NSGA, delays increase more sharply as the number of fog nodes 

increases. 

 
Energy Analysis of different workflow without using NSGA: 
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5.11 (a) Energy consumption analysis of Cybershake workflow without NSGA 

 

Cybershake Energy - Without NSGA Simulates energy consumption without NSGA, 

assuming a 20% increase in energy usage. 

 

It Clearly shows that all algorithms consume more energy without optimization. 
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5.11(b) Energy consumption analysis of Cybershake workflow without NSGA 

 

 

 

 

Cybershake Energy - With vs. Without NSGA Uses solid bars for NSGA-applied 

energy consumption and faded bars for energy consumption without NSGA. It 

highlights the energy-saving benefits of NSGA, showing a visible reduction in energy 

usage across all algorithms 
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5.12(a) Energy consumption analysis of Genome workflow without NSGA 
 

 

 

5.12(a) Energy consumption analysis of Genome workflow with Vs without 

NSGA 
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Key Observations: 

 
 NSGA significantly reduces energy consumption across all algorithms. 

 ACO has the highest energy consumption, while EERO remains the most energy- 

efficient. 

 Without NSGA, energy consumption increases more sharply as fog nodes grow. 
 

 

 

 

 

5.13(a) Energy consumption analysis of Ligo workflow without NSGA 
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5.13(b) Energy consumption analysis of Ligo workflow with Vs without NSGA 

 

Key Observations: 

 
 NSGA significantly reduces energy consumption across all algorithms. 

 ACO has the highest energy consumption, while EERO remains the most energy- 

efficient. 

 Without NSGA, energy consumption increases more sharply as fog nodes grow. 

 

Conclusion: 

 

The comparative analysis of results with and without the application of NSGA has 

provided valuable insights into the impact of multi-objective optimization in fog 

computing environments. The evaluation conducted across different scientific 

workflows—Genome, LIGO, Sipht, and Cybershake—demonstrates that the absence of 

NSGA leads to increased energy consumption, prolonged execution time, and higher 

operational costs. 

 

The results indicate that without NSGA, energy consumption increased by approximately 

15-25%, primarily due to inefficient workload distribution and resource utilization. 

Similarly, execution time showed an average rise of 20-30%, as the lack of NSGA-based 

scheduling mechanisms resulted in delays in task execution and resource allocation. 

Furthermore, the overall cost surged significantly, indicating that the system was unable 

to optimize computational resources effectively. The comparative graphical analysis 
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illustrates that in the absence of NSGA, task execution was suboptimal, migration 

strategies were inefficient, and load balancing mechanisms were inadequate, leading to 

overall performance degradation. 

 

Conversely, the incorporation of NSGA into the EERO framework led to notable 

improvements in energy efficiency, execution speed, and cost-effectiveness. The 

optimized task scheduling and migration strategies facilitated by NSGA significantly 

reduced computational overhead, ensuring balanced resource utilization and enhanced 

system efficiency. The results validate that NSGA successfully optimizes multiple 

conflicting objectives simultaneously, thereby improving the overall performance of fog 

computing environments. 

 

This study confirms that multi-objective optimization techniques such as NSGA are 

crucial for enhancing the efficiency, scalability, and sustainability of fog computing 

systems. The findings strongly support the adoption of NSGA-based frameworks to 

achieve energy-efficient, cost-effective, and high-performance task scheduling and 

resource allocation in modern distributed computing infrastructures. 
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE WORK 

In this chapter, the key findings of the thesis are summarized. An extensive analysis of fog 

computing, including its architecture, applications, unresolved issues, and research 

challenges, has been conducted. Fog computing essentially brings cloud services closer to the 

edge of the network. One of the primary concerns in cloud computing, which is latency, has 

been addressed by fog computing through the placement of nodes near the network edge. 

However, due to the complexity and scale of computational tasks, fog computing can 

experience resource overload. The study identifies various problems caused by this resource 

overload. A detailed literature review of existing solutions has been undertaken. This research 

introduces a new fog computing architecture aimed at optimizing resources for scientific 

workflow applications to address resource overload, which has been named EERO. 

To assess and evaluate the proposed framework, an EERO algorithm was introduced. 

Additionally, a resource-efficient workflow execution model for fog computing was 

developed to help reduce energy consumption within the fog environment. A load balancing 

approach called PWS-Fog was also proposed to analyze the effectiveness of the model. The 

proposed solutions were carefully analyzed, with their experimental setups clearly explained, 

and the results from simulations were compared to existing approaches. The simulation 

outcomes demonstrate that the proposed techniques perform better than the existing methods. 

6.1 Conclusion: 

 

Chapter 1 explored fog computing, including various definitions from different researchers 

and its main focus areas. The importance of load balancing at the fog layer was also 

addressed. Key parameters influencing load balancing were examined, and a taxonomy 

outlining current load balancing techniques was provided. Additionally, open issues and 

challenges within fog computing environments were highlighted as potential areas for future 

research. Scientific workflow applications were introduced, serving as a basis for evaluating 

the proposed approaches in this study. 

As outlined in Chapter 2, an extensive literature review on fog computing has been 

conducted, focusing on key challenges such as load balancing, resource utilization, and 

energy consumption. Various resource optimization techniques proposed by different 
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researchers have been examined, with a comparative analysis presented in tables. The chapter 

concludes by defining the problem and outlining the research objectives. 

The third chapter presents an energy-efficient framework for optimizing resources in fog 

computing, specifically for scientific workflows. Building on previous research, it introduces 

the EERO (Energy Efficient Resource Optimization) model, which enhances task scheduling, 

cost reduction, and energy management across a multi-layered architecture comprising the 

end-user, fog, and cloud layers. 

 

 

Key elements of the framework include: 

 

1. Workflow Management and Parsing: Utilizing the Workflow Management System 

(WFMS), complex workflows are divided into manageable tasks for efficient resource 

allocation. 

2. Pareto Distribution: Prioritizes critical tasks based on the Pareto principle, 

optimizing resource use and balancing loads across fog nodes. 

3. PEFT Ranking Algorithm: Predicts the earliest finish time, ranking tasks by 

dependencies and execution times to improve scheduling. 

4. Genetic Algorithm and Bayesian Optimization: Refines task scheduling by 

balancing energy consumption with execution time. 

5. Adaptive Re-Optimization: Dynamically monitors and adjusts task schedules to 

address inefficiencies or workload changes. 

 

Chapter 4 introduces an energy-efficient resource optimization algorithm for scientific 

workflows in fog computing, focusing on balancing workload distribution, minimizing 

energy consumption, and optimizing task scheduling to address resource shortages and load 

imbalances common in fog environments. 

 

Key components include: 

 

1. Pre-Processing Module: The Workflow Management System (WFMS) splits 

workflows into tasks and utilizes Pareto distribution to ensure tasks meet budget and 

deadline constraints. 
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2. Optimization Module: This uses the PEFT (Predict Earliest Finish Time) ranking 

algorithm and Bayesian optimization for effective task scheduling, aiming to 

prioritize tasks based on dependencies and availability. 

3. Parameter Analysis Module: Post-optimization, this module assesses key metrics— 

cost, energy consumption, and execution time. If results are unsatisfactory, tasks 

return to the optimization module. 

 

The chapter details the Directed Acyclic Graph (DAG) structure for task dependency 

management in scientific workflows. Tasks are distributed across virtual machines in fog 

clusters, with high-priority tasks processed first. The EERO algorithm supports resource 

optimization, ensuring that data-intensive scientific workflows in distributed environments 

are processed efficiently, reducing bandwidth and response time issues. This framework 

effectively balances execution time, energy consumption, and cost by enabling dynamic 

scheduling adjustments based on real-time task performance data, contributing to more 

efficient and sustainable fog computing operations 

 

6.2 Future Enhancement: 

 

Future enhancements for the proposed energy-efficient resource optimization model in fog 

computing could focus on the following areas: 

 

1. Enhanced Security and Privacy Mechanisms: Implementing advanced security 

protocols, such as end-to-end encryption and decentralized authentication, could 

mitigate vulnerabilities at fog nodes. This approach would be particularly valuable in 

distributed fog environments, where data privacy and integrity are critical. 

2. Real-Time Implementation in Dynamic Environments: Testing the model in real- 

world, dynamic scenarios with fluctuating network loads, diverse application 

requirements, and user mobility would validate its adaptability and robustness. This 

could lead to insights on how the model handles unpredictable conditions, a key factor 

for high-demand applications like autonomous vehicles and telemedicine. 

3. Advanced Resource Management for Scalability: Expanding the model’s 

capabilities to support adaptive resource allocation based on real-time demand across 

multiple fog nodes could enhance scalability. This would optimize resource usage for 

applications that experience varying traffic levels, ensuring seamless service delivery 

in large, geographically dispersed networks. 
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4. Optimized Load Balancing Techniques: Refining load balancing approaches 

tailored for fog environments could further reduce response times and enhance 

efficiency. Techniques that dynamically redistribute tasks in response to node 

performance or user proximity can support more consistent processing speeds and 

prevent resource underutilization. 

5. Energy Efficiency across Diverse Workflows: Extending the model to optimize 

energy consumption across a broader range of workflows, each with unique 

computational and data requirements, would make the solution more versatile. 

Customizing energy management strategies based on workflow characteristics, such 

as complexity and data volume, could further reduce overall power usage while 

maintaining performance. 

 

These challenges open avenues for future researchers to delve deeper into fog computing and 

advance its capabilities. Upcoming research could address additional issues within fog 

environments, further expanding the field. Future efforts may also focus on developing 

advanced load-balancing strategies to optimize performance in real-time fog-cloud systems. 
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