
1

DESIGN AND DEVELOPMENT OF ENERGY

EFFICIENCY BASED RESOURCE ALLOCATION

FRAMEWORK FOR FOG COMPUTING ENVIRONMENT

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

in

Computer Application

By

Satyakam Rahul

Registration Number: 11919193

Supervised By

Dr. Vinay Bhardwaj (23825)

Department of Computer Science &Engineering (Assistant Professor)
Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

 2025

2

DECLARATION

I, hereby declared that the presented work in the thesis entitled “(DESIGN AND

DEVELOPMENT OF ENERGY EFFICIENCY BASED RESOURCE ALLOCATION

FRAMEWORK FOR FOG COMPUTING ENVIRONMENT” in fulfilment of degree of

Doctor of Philosophy (Ph. D.) is outcome of research work carried out by me under the

supervision of Dr. Vinay Bhardwaj, working as Assistant Professor, in the Computer Science

Engineering, School of Computing of Lovely Professional University, Punjab, India. In

keeping with general practice of reporting scientific observations, due acknowledgements have

been made whenever work described here has been based on findings of other investigator.

This work has not been submitted in part or full to any other University or Institute for the

award of any degree.

(Signature of Scholar)

Name of the scholar: Satyakam Rahul

Registration No. : 11919193

Department/school: Computer Application

Lovely Professional University,

Punjab, India

3

CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled DESIGN AND

DEVELOPMENT OF ENERGY EFFICIENCY BASED RESOURCE ALLOCATION

FRAMEWORK FOR FOG COMPUTING ENVIRONMENT submitted in fulfillment of the

requirement for the award of degree of Doctor of Philosophy (Ph.D.) in the _Computer

Applications/ School of Computing, is a research work carried out by Satyakam Rahul,

11919193, is bonafide record of his/her original work carried out under my supervision and

that no part of thesis has been submitted for any other degree, diploma or equivalent course.

(Signature of Supervisor) (Signature of Co-Supervisor)

Name of supervisor: Dr. Vinay Bhardwaj Name of Co-Supervisor:

Designation: Assistant Professor Designation:

Department/school: Computer Science Engineering Department/school:

School of computing

University: Lovely Professional University, Punjab University

4

TABLE OF CONTENTS

List of Tables

List of Figures

1 INTRODUCTION

1.1 Fog computing: Overview .. 1

1.1.1 Definition.. 3

1.1.2 Fog Computing Development ...5

1.1.3 Dissimilarities of Cloud Computing and Fog Computing 6

1.1.4 Fog Architecture ... 8

1.1.5 Related computing models .. 11

1.1.6 Resource Allocation in Fog Computing .. 15

1.1.7 Resource Optimization in Fog Computing .. 16

1.1.8 Advantage of Resource Management in Fog computing 20

2 Related Work

2.1 Resource Management .. 25

2.2 Use of Resources .. 26

2.2.1 Fog computing resource utilisation .. 27

2.2.2 Existing Frame work in Fog Computing… .. 34

2.3 Problem Formulation

3 Proposed Framework for Energy efficient Framework

Energy Efficient resource Optimization for scientific workflow application… 45

3.1.1 Operating modules of EERO .. 47
3.1.2 Assignment of a workflow task ... 49
3.1.3 Proposed work flow model..50

5

3.2 Optimization method used .. 53

3.3 Workflow of the Algorithm ... 56

4 Optimization algorithm for scientific workflows in Fog Computing

4.1 Resource optimization algorithm -- 63

4.2 Example of workflow ……………………………………………. 66

5. Result and Discussion

5.1 Validation and verification of the suggested framework EERO

5.1.1 Experimental setup 79

5.1.2 Results and discussion 80

6. Conclusion and Future Work

6.1 Conclusion 107

6.2 Future Enhancement 109

7. References 111

6

List of Tables

1.1 Differences between Cloud Computing and Fog Computing 15

1.2 Comparative Table 21

2.1 Comparison of Different Scheduling Techniques in Fog Computing 32

2.2 Comparison of Cited Works 35

3.1 Notations 46

5.1 Required Parameter 69

7

List of Figures

1.1 Taxonomy of Fog Computing 16

1.2 Characteristic of Fog Computing 17

1.3 Layered architecture of Fog computing 21

1.4 Resource Optimization in Fog Computing 30

3.1 Energy Efficient Resource Optimization Model 50

3.2 Operating module of EERO 51

3.1.2 Working methodology of EERO 53

4.1 Working of EERO 64

4.2 Example of workflow 66

5.1 Cost Analysis of different workflow with EERO 78

5 .2 Analysis of the execution times of various workflows 81

5 .3 Energy consumption analysis 84

8

List of Abbreviations

IoT Internet of Things

IoE Internet of Everything

RMS Resource Management System

GWO Grey Wolf Optimization

PSO Particle Swarn Optimization

ACO Ant Colony Optimization

SAA Simulated Annealing Approach

DAG Directed Acyclic Graphs

LIGO Laser Interferometer Gravitational Wave Observator

9

Acknowledgement:

I am grateful to all those who have contributed to the completion of this PhD thesis. I would

like to extend my sincere appreciation to Dr. Vinay Bhardwaj for his invaluable guidance

throughout this research endeavour. My supervisor has been a constant source of knowledge,

inspiration, motivation, and encouragement during the entire duration of this research work. I

would also like to acknowledge the management of Lovely Professional University for their

unwavering support and assistance in enabling me to balance my work and research

commitments. The doctoral program at LPU has made it possible for me to pursue my academic

aspirations and enhance my knowledge. Special thanks to the examiners of end-term reports

and the reviewers of journals for their insightful feedback that has helped in enhancing the

quality of my work.

I am deeply grateful to all my teachers who have played a significant role in shaping my

academic journey and skill development since my formative years. My heartfelt thanks to my

parents and my family members for their love, support, and unwavering belief in my abilities,

which has been a constant source of strength in achieving my life goals. I am thankful to my

wife, Sharda, for her unending support throughout my research endeavour.

I would like to express my gratitude to my senior Dr. Mandeep Kaur for her support and

guidance, as well as my friends for their continued encouragement. Lastly, I extend my thanks

to every individual who has provided direct or indirect assistance and motivation during this

challenging task.

10

Abstract

Fog computing is increasingly being explored as a complementary approach to traditional

cloud computing, offering decentralized processing capabilities that enhance responsiveness,

particularly in latency-sensitive and edge-centric applications. This paradigm is especially

relevant with the rapid growth of the Internet of Things (IoT) ecosystem, where vast amounts

of data require real-time processing and low latency to support applications in smart cities,

autonomous vehicles, healthcare, and industrial automation. This thesis explores the fog

computing model extensively, providing an in-depth analysis of its architecture, primary

components, applications, and the critical differences between fog and cloud computing.

Central to fog computing is its multi-layered architecture, which includes the cloud, fog, and

edge layers. These layers work collaboratively to address the limitations of centralized data

centers, bringing data processing closer to its source to reduce latency, manage bandwidth, and

enhance security and privacy.

Fog computing’s architecture is structured to improve data processing and service delivery

through a decentralized approach that operates at the network’s edge. At the core of this

architecture is the fog node, which interacts directly with end-user devices to provide essential

services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS). By distributing computing tasks across local nodes, fog

computing alleviates the dependence on distant cloud servers, reducing bandwidth

requirements and enabling quicker response times. This characteristic of fog nodes, which are

geographically dispersed and closer to data sources, enhances the quality of service (QoS) for

latency-sensitive applications while supporting real-time analytics and improved mobility.

A comprehensive examination of fog computing’s role in the Internet of Things (IoT)

underscores its advantages in handling data generated by IoT devices, which has traditionally

been managed by centralized cloud data centers. The thesis describes how, unlike cloud

systems, fog computing enables the real-time processing of data generated by IoT sensors and

devices by utilizing nearby fog nodes. This localization of processing tasks is essential for

applications that cannot tolerate the latency associated with remote data centers, such as

emergency response systems, real-time industrial monitoring, and autonomous vehicle

networks. Furthermore, fog computing’s distributed architecture supports enhanced scalability

and can dynamically accommodate increased demands as IoT ecosystems continue to expand.

To highlight fog computing's versatility, this thesis presents a taxonomy of its key features,

including context awareness, geographic distribution, and support for varied end-user devices.

Fog computing nodes, capable of handling processing, storage, and communication tasks, are

11

typically positioned closer to the end-user, which mitigates the latency and bandwidth

constraints associated with centralized cloud storage. The architectural flexibility of fog nodes

facilitates a range of applications that rely on swift and reliable data access, such as smart city

infrastructures and healthcare systems that require instantaneous data transmission to ensure

efficient functioning. Fog computing nodes can handle tasks in a multi-layered setup, providing

services at both the local and intermediary network levels, further optimizing resource

allocation and management.

This research also investigates resource scheduling and management strategies in fog

computing, emphasizing the importance of optimizing resource allocation to enhance

performance. Fog computing environments, often resource-constrained due to limited

processing and storage capacities, require effective scheduling mechanisms to ensure balanced

load distribution and high system reliability. The thesis examines various resource management

frameworks and scheduling algorithms, including heuristic-based approaches, optimization

algorithms, and machine learning models, to address challenges associated with task

distribution across fog nodes. By distributing tasks based on parameters such as latency,

bandwidth availability, and energy efficiency, fog computing can maintain system

responsiveness while minimizing energy consumption.

Energy efficiency is particularly crucial in fog environments where devices operate on limited

power sources and are often deployed in locations with restricted access to continuous power.

This thesis introduces an Energy-Efficient Resource Optimization (EERO) framework, which

is specifically designed for scientific workflows within fog computing environments. The

EERO model comprises three primary modules: initial processing, optimization, and parameter

analysis. This multi-tiered approach facilitates the optimal use of available resources,

significantly reducing execution time and energy consumption while supporting high-priority

tasks.

The EERO framework applies advanced algorithms such as the Pareto distribution method for

task prioritization and the PEFT ranking algorithm to dynamically allocate tasks across fog

nodes. These techniques contribute to load balancing and reduce energy use by selectively

processing tasks based on priority and resource availability. Through case studies and

performance evaluations, this thesis demonstrates that the EERO model enhances fog

computing’s efficiency and scalability by providing an adaptable and robust resource

management system. In contrast to cloud computing, fog computing supports location

awareness and localized data handling, which enhances data privacy by processing sensitive

information nearer to its source rather than transmitting it over the internet. This proximity

also mitigates security risks associated with central cloud storage, where large-scale data

12

breaches are a significant concern. By managing data locally and securely, fog computing

aligns with stringent data privacy regulations and supports compliance in industries such as

healthcare and finance, where data protection is paramount.

To address dynamic resource management challenges, the thesis discusses several established

and emerging scheduling techniques, including Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), and Genetic Algorithms (GA). These bio-inspired algorithms

provide efficient solutions for managing resource allocation in fog environments by mimicking

natural processes to find near-optimal solutions for complex tasks. By integrating heuristic,

optimization-based, and machine learning methods, these scheduling strategies ensure that fog

computing can adapt to fluctuating workload demands and provide continuous service in

diverse application settings.

The comparative analysis of fog and cloud computing reveals that while both paradigms offer

scalable and flexible solutions for data processing, fog computing’s proximity to end-users and

low-latency capabilities make it more suitable for real-time applications. This thesis also

reviews related paradigms such as mist and edge computing, positioning fog computing as an

intermediary layer that bridges edge devices with centralized cloud services. In doing so, fog

computing provides a hierarchical framework that supports scalability and efficient data

management across a distributed network.

This work concludes with a discussion of future research directions, emphasizing the need for

further development in areas such as task preemption, real-time resource migration, and

advanced scheduling algorithms tailored to fog environments. As fog computing continues to

evolve, addressing challenges related to resource scarcity, security, and interoperability will be

crucial for its widespread adoption across industries. The findings presented in this thesis

contribute to a deeper understanding of fog computing’s potential to transform data processing

frameworks and expand the capabilities of IoT, bringing a range of practical applications within

closer reach.

13

CHAPTER 1

INTRODUCTION:

Fog computing allows compute and storage services to be provided closer to an

organization's physical hardware, resulting in faster delivery times. This approach bypasses

the broader Internet, which often depends on carrier speeds and network capacity, ensuring

quicker and more efficient service delivery.

According to NIST Special Publication [31], fog computing is described as a physical, or

virtual resource layer connecting traditional cloud computing or linked data centers and smart

end devices typically found within organizations. The OpenFog Consortium [32] defines it as

a architecture at the system level that divides up the processing, storage, control, and

networking power closer to users. This highly virtualized platform connects traditional cloud

data centers to end devices, providing networking, storage, and processing services. The

localized nature of fog nodes reduces latency, enhances context awareness, and supports

applications those are latency-sensitive by offering scalable, layered, ubiquitous, and

federated network access.

Fog computing reduces latency and enhances context awareness by localizing fog nodes. It

supports latency-sensitive applications through scalable, layered, federated, and pervasive

network connectivity. Fog nodes provide similar services to cloud computing, such as (IaaS),

(PaaS), and Software-as-a-Service (SaaS). The fog architecture involves significant

communication, control, setup, measurement, and management functions via cooperative

end-user clients or nearby edge devices. This paradigm widens cloud computing services to

the network's edge, offering advantages over traditional cloud environments, which are often

distant and dependent on larger Internet bandwidths. In contrast, fog services are nearer to

end users, densely distributed geographically, and offer superior mobility support.

According to Gartner [1], the future of industrial IoT lies in edge-centric computing models,

where research and system development focus on deploying processing capabilities near the

source of data generation. As the Internet of Things (IoT) grows, so does the volume of data

generated by these devices. Cloud computing data centres provide processing and storage

services to these Internet of Things devices. Cloud computing allows for "pay-as-you-go"

service delivery. Cloud computing data centres are distributed with a centralized organizational

structure. Data processing and storage in data centres may take much longer than expected.

14

Sometimes, end devices find it difficult to retrieve the data in an emergency due to the

centralized cloud storage. The Internet of Things (IoT) connects smartphones, smart cities,

intelligent cars, and a host of other real-world things to the Internet, allowing data to flow

between them with minimal human intervention. The Internet of Things sensors generate data

relevant to specific applications and send it to the nearest sensor connections.

Cisco unveiled a new architecture in 2012 called fog computing to fulfil these IoT

requirements. Consider fog computing as a network-edge development of cloud computing.

Fog effectively completes tasks requiring low latency and minimal energy on vital computer

nodes close to the network's centre. The fog computing concept was established to fulfil the

needs of different Internet of Things (IoT), Internet of Everything (IoE), or Internet of Me

(IoM) segments from start to finish, such as consumer, wearable, industrial, enterprise, vehicle,

healthcare, building, and energy.

This chapter provides a high-level overview of this research project by describing the

architecture, features, applications, advantages, and unsolved issues of fog computing

andessential areas of interest. Programs for the scientific process have also been described. The

need for resource scheduling in a fog environment has also been covered. Lastly, the order of

the remaining chapters and contributions to the thesis have been provided.

1.1 Fog Computing Overview:

To expand the cloud, Cisco introduced fog computing, which provides services near end

users. An ecosystem that uses fog computing allows many ubiquitous devices to connect

without the assistance of third parties [2] [3]. The main objective of fog computing is to

resolve problems that cloud computing encounters while handling Internet of Things data.

The fog layer acts as a bridge between IoT devices and the cloud. It is a powerful technology

that provides several answers to issues related to cloud computing. Decentralised fog offers

networking, storage, and processing capabilities compared to centralised clouds [4]. The

primary objective of fog computing is to resolve problems during cloud-based IoT data

processing. This is a new paradigm that might be used with a variety of sensors, wearable

technologies, smart gadgets, and cars. This paradigm states that jobs and computer tasks

ought to be handled `in a dispersed fashion. Instead of building a single data centre, the

network uses several devices. Starting with the end user and working your way up to the

cloud reduces the bandwidth and latency of the network. Sensor-generated data is cleaned up

by fog computing before being sent to the cloud. Several advantages come with this

paradigm, such as improved IoT service analysis, monitoring, and execution speed [5].

15

1.1.1 Definition

Even though other scholars have proposed different interpretations, Cisco coined the term in

2012. From the perspective of Cisco, Fog brings cloud services closer to edge devices. “Fog

computing is an architectural deployment of computing resources that employs distinct nodes

for communication and data transfer amongst IoT devices instead of storing data from IoT

devices in cloud data centres.” [6] According to F. Bonomi et al. [7], fog computing is a

distributed, layered computing platform that provides end users with network, storage, and

computation services. According to reports, fog computing works better for straightforward

procedures and is comparable to IoT devices. [8]. The intelligent IoT data sensors and cloud

data centres are connected by a fog layer, facilitating data execution and storage. Fog

computing extends cloud services to rival the constraints of regular cloud computing. [9].

Smart cities, linked automobiles, connected homes, and intelligent healthcare are just a few

technological components and applications that fog computing's hierarchical and distributed

architecture can allow. [10].

The fog node is the central element of the fog computing environment that facilitates the

operation of Internet of Things applications. The fog layer offers a few characteristics,

including mobility, geological dispersion, and position awareness [11]. Fog computing, a

type of decentralised computing technology, makes it possible to process and store data

midway between the cloud infrastructure and its source. The continued growth of IoT devices

primarily drives the fog computing paradigm. A growing variety of devices generate an

increasing volume, diversity, and velocity of data [12].

The diagram presents a comprehensive taxonomy of fog computing, highlighting its

multifaceted structure. At the core, fog computing encompasses various critical domains such

as Security, Computing, Communication, and Management. Security is further divided into

Encryption and Authentication, ensuring data integrity and protection. The Computing

domain includes aspects like Storage and Services, which are essential for effective data

handling and processing. Applications of fog computing span diverse fields, including

Industrial IoT and Smart Cities, indicating its widespread utility. Communication focuses on

Protocols and Interfaces, vital for seamless data exchange. The Computing Environment is

distinguished by the presence of Edge Nodes and Fog Nodes, illustrating the distributed

nature of fog computing. Management aspects cover Resource Management and Task

Scheduling, crucial for efficient operation and maintenance. This taxonomy provides a

16

structured overview of fog computing's various elements, emphasizing its complexity and

extensive applicability.

Fig 1.1: Taxonomy of Fog Computing

1.1.2 Fog Computing Development:

A developing technique called fog computing (FC) enhances current cloud computing (CC)

capabilities to the network endpoints to provide lower latency through geographical

distribution [13]. The devices in distributed computing employ a message-passing interface to

support decentralised systems models in which numerous network devices perform all

computational processes and simplify communication. Many new computer models have

emerged in distributed computing. Utility computing comes before the notion of cloud

computing. Cloud computing gained prominence in the early 2000s. Fog computing enables

consumers to get information more quickly. The edge capacity of an application supports the

computational capability of cloudlets to service various applications [14]. Tiny computer

nodes called cloudlets, located close to customers' base stations, work with the fog and the

cloud to provide a variety of applications. Fog computing applications are all developing in a

way that makes high-performance computing (HPC) possible in networked systems.

When devices and users move from one point of access to another in these networked

systems, all the data and processing associated with each user's computer typically relocate as

well [15]. With data migration, users could find it simpler to access their data in an

emergency. Delays in specific delicate settings, including transportation and healthcare

systems, might lead to dangerous scenarios [16]. The fog computing paradigm provides all-

17

time-centric applications with rapid resource access—the better use of resources via

management to get the highest output at the lowest possible cost. Effective resource

management is crucial for various reasons, such as cost and response time. Applying fog

computing in a real-time scenario is pretty challenging, though.

Fig .1.2 Characteristic of Fog Computing:

 Low latency- achieved through the proximity of fog nodes to on premise endpoint

devices, enabling much faster response times and analysis.

 Varied end user support -Rich and varied end-user support due to Edge devices'

proximity to compute nodes.

 Multiple tenancies in a regulated setting- Due to a highly virtualized distributed

platform it increases direct contact between the Fog apps and mobile devices results

in improved mobility assistance.

 Real-time interaction as opposed to batch processing, as is the case, for instance, with

cloud-based apps.

 Contributes to the provision of high-quality streaming services.

For time-consuming wireless sensing devices, wireless access networking makes

more sense. Dispersed communication and analysis.

1.1.3 Dissimilarities of Cloud Computing and Fog Computing:

To complement cloud solutions and align with the evolving Internet of Things (IoT) vision,

fog computing brings cloud capabilities to the network's edge. This distributed computing

paradigm facilitates the operation of networking, storage, and processing services between

18

end devices and cloud data centres. In fog computing, application components typically run

both in the cloud and on edge devices, such as smart gateways, routers, or devices

specifically designed for fog computing.

Wireless networks have limitations, the Internet can be unstable, and the cloud requires

substantial bandwidth. Fog computing significantly reduces the needed bandwidth by

enabling data to be processed and transmitted within the local fog environment, minimizing

reliance on the Internet. This allows most traffic, especially sensitive data, to stay off cloud

networks, while critical data can still be transferred to the cloud. As a result, bandwidth is

freed up for other cloud users.

Similar to cloud computing, fog computing provides storage, computation, and applications

for end-users. However, fog computing is closer to end-users and has a broader geographical

distribution. It emphasizes proximity to users, local resource pooling, and reduced latency,

which improves quality of service (QoS) and enables edge analytics and stream mining. This

leads to a better user experience. Fog computing extends the cloud concept to the network's

edge, supporting applications and services that the cloud cannot accommodate due to

technological and infrastructure limitations.

The volume of information in networking is continually increasing. To manage and distribute

this data efficiently to end-users, services like cloud storage and cloud computing are utilized.

However, for managing frequent security updates and mitigating bandwidth challenges, fog

computing presents a more viable solution.

19

Table 1.1: Differences between Cloud Computing and Fog Computing

ASPECT CLOUD COMPUTING FOG COMPUTING

DEFINITION A model for enabling

ubiquitous, convenient, on-

demand network access to

a shared pool of

configurable computing

resources.

An architecture that uses

edge devices to carry out a

substantial amount of

computation, storage, and

communication locally.

ARCHITECTURE Centralized architecture

with data and processing in

a central cloud server.

Decentralized architecture

with processing distributed

across edge devices and

local nodes.

LATENCY Higher latency due to data Lower latency as data

 traveling to and from a

central cloud.

processing is closer to the

data source.

PROCESSING

LOCATION

Data processing occurs in

centralized data centers.

Data processing occurs at

the edge of the network,

closer to the data source.

SCALABILITY Highly scalable with

virtually unlimited

resources.

Scalable but within the

limits of local resources

and network capabilities.

DATA MANAGEMENT Centralized data

management with large-

scale data storage and

processing.

Decentralized data

management with data

processed and stored closer

to where it is generated.

SECURITY Security managed by

central cloud providers,

with strong but centralized

security protocols.

Enhanced security due to

data being processed

locally, reducing the risk of

centralized attacks.

20

IDEAL USE CASES Suitable for tasks requiring

heavy computation and

large-scale data storage,

like big data analytics and

machine learning.

Suitable for real-time

applications requiring low

latency, like IoT, smart

grids, and autonomous

vehicles.

EXAMPLE

TECHNOLOGIES

AWS, Google Cloud,

Microsoft Azure

Cisco Fog Computing

Solutions, Nebbiolo

Technologies, Dell Edge

Gateway

1.1.4 Fog Architecture:

A basic fog computing architecture consists of three levels. The uppermost layer is the

Internet of Things, which houses intelligent gadgets. The second layer, fog computing,

comprises fog nodes with constrained processing and storage power.

The architecture describes the interaction between edge devices and the cloud, forming a

unified system that bridges these two components. It typically follows a three-layered

structure, detailed as follows:

Layer 1: This is the foundational layer, encompassing all Internet of Things (IoT) devices.

These devices are responsible for gathering and transmitting raw data to the next layer.

Layer 2: Positioned in the middle, this layer features networking devices such as routers and

switches. It handles the preliminary processing of data and offers temporary storage. These

devices are connected to the cloud and continuously send data at regular intervals.

Layer 3: This is the topmost layer, comprising servers and data centers. It is equipped to

store substantial volumes of data and has the capability to process it efficiently.

In addition to this, the initial layer includes both physical and virtual nodes. Various sensors

are employed to track environmental conditions, transmitting the collected data to upper

layers through gateways for further processing. The monitoring layer manages task requests

and oversees energy consumption of the core physical devices. The pre-processing layer

handles data management tasks, such as filtering and cleaning. The temporary storage layer

provides short-term data retention. The security layer is dedicated to encrypting and

decrypting data, ensuring integrity and protection against tampering. Finally, the transport

layer forwards the processed data to the cloud, enabling the cloud to extract valuable insights

from it[17].

21

Fig 1.3 Layered architecture of Fog computing

Layered Architecture of Fog Computing

1. Cloud Layer (Top Layer)

 Description: This layer represents large, centralized servers or data centers.

 Appearance: It features cloud icons and infrastructure symbols, using light blue and

white tones.

 Function: The Cloud layer handles extensive data processing, storage, and complex

computations. It serves as the central control point and provides overarching services

to the Fog and Edge layers.

 Connections: Arrows point downward to the Fog layer, indicating the transmission of

data and commands from the Cloud to the Fog nodes.

22

2. Fog Layer (Middle Layer)

 Description: This layer consists of distributed and decentralized nodes such as local

servers, gateways, and edge devices.

 Appearance: Depicted with small server icons, router symbols, and intermediary

devices in shades of green and light grey.

 Function: The Fog layer acts as an intermediary, processing data closer to the source

(Edge devices) to reduce latency and bandwidth usage. It provides local processing,

storage, and control functions.

 Connections: Arrows point upward to the Cloud layer and downward to the Edge

layer, indicating bidirectional data flow between the Cloud and Fog, and from the Fog

to the Edge. Some nodes in this layer are connected laterally to show inter-node

communication within the Fog layer.

3. Edge Layer (Bottom Layer)

 Description: This layer includes end-user devices such as smartphones, laptops,

sensors, and IoT devices.

 Appearance: Illustrated with icons representing various personal and industrial

devices in orange and yellow tones.

 Function: The Edge layer is the point of data generation and initial processing.

Devices in this layer collect and perform preliminary processing on data before

sending it to the Fog layer for further processing.

 Connections: Arrows point upward to the Fog layer, indicating the transmission of

data from Edge devices to Fog nodes.

1.1.5 Related computing models:

Fog computing is part of a broader landscape of distributed computing models, each with its

unique characteristics and use cases. Below, I outline some related computing models and

their key differences:

1. Cloud Computing

2. Edge Computing

3. Fog Computing

4. Mist Computing

23

Cloud Computing

Definition: Cloud computing involves delivering computing services (such as servers,

storage, databases, networking, software) over the internet (“the cloud”).

Characteristics:

 Centralized resources in large data centers.

 High scalability and flexibility.

 Pay-as-you-go pricing models.

 Services accessed via the internet.

Use Cases:

 Large-scale data storage and processing.

 Web hosting and application development.

 Big data analytics and machine learning.

Key Differences:

 Cloud computing is highly centralized, whereas fog and edge computing distribute

resources closer to the data source.

 Cloud computing may experience higher latency due to the distance between users

and data canters.

Edge Computing

Definition: Edge computing refers to processing data at or near the source of data generation,

minimizing latency and bandwidth usage.

Characteristics:

 Decentralized processing at the network edge.

 Low latency and real-time processing.

 Reduced bandwidth consumption.

 Enhances privacy and security by keeping data local.

24

Use Cases:

 IoT devices and smart sensors.

 Autonomous vehicles and industrial automation.

 Real-time analytics and augmented reality.

Key Differences:

 Edge computing focuses on processing at the very edge of the network, such as

directly on devices or local gateways.

 Fog computing extends edge computing by adding an additional layer of intermediate

processing between the edge and the cloud.

Fog Computing

Definition: Fog computing is a decentralized computing infrastructure where data, compute,

storage, and applications are distributed in the most logical, efficient place between the data

source and the cloud.

Characteristics:

 Intermediate layer between edge and cloud.

 Processes data closer to the source than cloud computing but may aggregate data from

multiple edge devices.

 Reduces latency and bandwidth usage.

 Enhances security by local data processing.

Use Cases:

 Smart cities and connected vehicles.

 Healthcare monitoring and management.

 Industrial IoT and real-time analytics.

Key Differences:

 Fog computing provides a hierarchical layer between edge and cloud, offering

distributed computing closer to the source while still enabling cloud integration.

 More suitable for applications requiring low latency and high reliability but benefiting

from cloud capabilities.

Mist Computing

25

Definition: Mist computing is an even more localized form of computing, often considered

the "micro" level of fog computing, where data processing occurs directly on

microcontrollers and small devices.

Characteristics:

 Extremely localized processing on micro-level devices.

 Ultra-low latency.

 Minimal reliance on network connectivity.

 Suitable for simple, real-time processing tasks.

Use Cases:

 Wearable devices and smart sensors.

 Simple IoT applications requiring immediate responses.

 Local data filtering before sending to fog or cloud.

Key Differences:

 Mist computing operates on a much smaller scale than fog and edge computing,

focusing on the immediate vicinity of the data source.

 Often used for preliminary data processing before sending data to fog or edge layers.

Comparative Table 1.2

Feature

Cloud

Computing

Edge

Computing

Fog Computing

Mist

Computing

Centralization

Centralized

Decentralized

Intermediate (between

cloud and edge)

Highly

localized

Latency Higher Very low Low Ultra-low

Processing

Location

Data

canters

At or near

data source

Intermediate nodes

between cloud and

edge

On micro-

devices

Scalability High Moderate High Low

Use Cases

Large-scale

applications

Real-time

applications

Real-time and

aggregated data

applications

Immediate response

applications

Examples

Web

hosting, big

Autonomous

vehicles,

Smart cities, healthcare

Wearables, smart

sensors

data AR/VR

26

1.1.6 Resource Allocation in Fog Computing: Resource allocation in fog computing

involves the efficient distribution of computing, storage, and network resources to

various applications and services running on fog nodes. This is critical for ensuring

low latency, high availability, and optimal performance of applications. Below is an

overview of the key aspects and strategies involved in resource allocation in fog

computing?

Key Aspects of Resource Allocation

1. Resource Types:

 Computing Resources: CPU, GPU, and memory resources required for

processing tasks.

 Storage Resources: Local storage for data caching, databases, and file systems

 Network Resources: Bandwidth and network interfaces for communication

between devices and nodes

2. Allocation Strategies:

 Static Allocation: Resources are allocated in advance based on predefined

rules and configurations. This approach is simpler but less flexible. 

 Dynamic Allocation: Resources are allocated on-demand based on real-time

requirements and conditions. This approach is more complex but offers better

efficiency and adaptability.

3. Optimization Goals:

 Minimize Latency: Ensuring that data processing and communication occur

with minimal delay.

 Maximize Throughput: Enhancing the amount of data processed in a given

time period.

 Energy Efficiency: Reducing power consumption while maintaining

performance.

 Load Balancing: Distributing workloads evenly across available resources to

avoid bottlenecks and overloading.

27

4. Challenges:

 Heterogeneity: Diverse devices and resources with varying capabilities and

performance.

 Mobility: Devices and users may move, requiring dynamic reallocation of

resources.

 Scalability: Managing a large number of devices and applications efficiently.

 Security: Ensuring data privacy and security during allocation and processing.

Resource Allocation Strategies

1. Heuristic-Based Approaches:

 Use rule-based methods and heuristics to allocate resources. Examples include

round-robin, first-fit, and best-fit algorithms.

 Pros: Simplicity and ease of implementation.

 Cons: May not provide optimal solutions in complex scenarios.

2. Optimization-Based Approaches:

 Use mathematical models and optimization techniques (e.g., linear

programming, integer programming) to find optimal resource allocation.

 Pros: Can provide near-optimal solutions.

 Cons: Computationally intensive and may not scale well.

3. Machine Learning-Based Approaches:

 Use machine learning models to predict resource demands and allocate

resources accordingly.

 Pros: Can adapt to changing conditions and improve over time.

 Cons: Requires training data and computational resources for model training

and inference.

4. Game Theory-Based Approaches:

 Use game theory to model the interaction between different entities (e.g.,

devices, fog nodes) and allocate resources based on equilibrium strategies.

 Pros: Suitable for decentralized and distributed environments.

1.1.7 Resource Optimization in Fog Computing

Resource optimization in fog computing is all about making sure that we use our computing

resources—like processing power, storage, and network bandwidth—in the most efficient

way possible. This is key for ensuring that the applications and services running on fog nodes

28

perform well and meet user expectations. Below, we'll explore key strategies and techniques

for optimizing resources in fog computing, along with some references to important studies

and articles on the topic.

Key Strategies for Resource Optimization

 Load Balancing

 Energy Efficiency

 Quality of Service (QoS)

 Resource Scheduling

 Data Placement

 Latency Reduction

1. Load Balancing

Load balancing is a technique to distribute tasks evenly across multiple fog nodes so that no

single node gets overloaded [33]. Load balancing in fog computing is essential for efficiently

distributing tasks and workloads across multiple fog nodes. This process ensures that no

single node is overwhelmed, which helps maintain optimal performance and reliability. By

evenly spreading out the computational demands, load balancing minimizes latency and

improves response times, making it a critical component for delivering smooth and seamless

services to end-users. Additionally, it enhances resource utilization and energy efficiency

across the network, contributing to a more robust and scalable fog computing environment. It

prevents any single node from becoming a bottleneck, ensures high availability and

reliability, and enhances overall system performance.

2. Energy Efficiency

Reducing the energy consumption of fog nodes while still maintaining good performance.

Energy efficiency in fog computing is about optimizing the use of resources to minimize

power consumption while maintaining high performance. By processing data closer to where

it's generated, fog computing reduces the need for long-distance data transmission, which can

be energy-intensive. This local processing not only speeds up response times but also cuts

down on the energy used by central data canters. Efficient resource management and dynamic

task allocation further enhance energy savings, making fog computing a greener, more

sustainable solution for modern computing needs.

29

Techniques

Dynamic Voltage and Frequency Scaling (DVFS): Adjusts the power and speed of processors

based on the current workload.[34]

Task Consolidation: Groups tasks to run on fewer nodes, allowing some nodes to enter low-

power states.

Energy-Aware Scheduling: Allocates tasks to nodes based on their energy efficiency.

Why It Matters:

 Extends the lifespan of fog nodes.

 Lowers operational costs.

 Supports environmental sustainability.

3. Quality of Service (QoS)

Ensuring that fog computing services meet specified performance metrics like latency,

throughput, and availability. In fog computing, Quality of Service (QoS) is essential to the

seamless and effective operation of applications. For real-time applications, it entails

managing network resources to ensure fast and dependable data transmission. Fog computing

can maintain high performance and minimising latency by setting priorities for jobs and

optimising resource allocation. By doing this, users are guaranteed stable and constant service

regardless of the fluctuations in the network. To put it simply, quality of service (QoS) in fog

computing refers to providing optimal user experience while maintaining resource efficiency,

speed, and dependability [34].

Resource Scheduling:

Resource scheduling in fog computing is all about efficiently managing and allocating tasks

to various fog nodes to maximize performance and minimize delays. It involves determining

the best way to distribute computational loads based on the availability and capacity of

nearby nodes. Effective resource scheduling ensures that tasks are handled promptly and that

resources are not underutilized or overburdened. This not only enhances the overall system

efficiency but also improves the user experience by providing quicker response times and

maintaining smooth operation across the network. Efficiently scheduling tasks and resources

to optimize performance and utilization[35].

30

Static Scheduling:

Uses pre-determined schedules based on known workloads.

Dynamic Scheduling: Adjusts schedules in real-time based on current system state and

workload demands.

Predictive Scheduling: Uses historical data and machine learning to predict and schedule

future workloads. It Improves resource utilization, reduces waiting times for tasks and

enhances system responsiveness.

Data Placement Strategically placing data close to where it's needed to minimize latency and

bandwidth usage.

Techniques :

Data Caching: Stores frequently accessed data on local nodes.

Data Replication: Creates multiple copies of data across different nodes for redundancy and

faster access.

Proximity-Aware Placement: Places data based on the geographic location of data sources

and users.

It reduces data access latency, optimizes bandwidth usage and enhances data availability and

reliability.[36]

Latency Reduction

Minimizing the delay between data generation and processing to support real-time

applications. Latency reduction in resource optimization in fog computing focuses on

minimizing the delay in data processing and transmission. By processing data closer to the

source, fog computing significantly cuts down the time it takes for data to travel to and from

centralized data centers. This local processing means quicker response times and more

efficient handling of time-sensitive tasks. Optimizing resources effectively across fog nodes

further helps in reducing latency, ensuring that applications run smoothly and users

experience minimal delays, enhancing overall system performance.

Techniques:

Edge Processing: Performs data processing close to data sources.

Fog Node Hierarchies: Creates multiple layers of fog nodes to process data progressively

closer to the data source.

Latency-Aware Task Allocation: Allocates tasks to nodes based on their proximity to the data

source and processing capabilities.

It Supports real-time applications like autonomous vehicles and IoT, Improves user

experience with faster response times.

31

Here is a diagram that shows how these strategies fit together in a tree-like structure:

Fig 1.4 Resource Optimization in Fog Computing

Key Areas focused by Fog computing:

1.1.8 Advantage of Resource Management in Fog computing:

 Optimized Resource Utilization:

 Benefit: Effective resource management ensures that computing, storage, and

network resources are used efficiently, reducing waste and maximizing performance.

32

 Explanation: By dynamically allocating resources based on current demands, fog

computing can handle varying workloads more effectively. This ensures that

resources are not left idle and are instead utilized to their full potential, leading to

better overall system efficiency.

 Improved Quality of Service (QoS):

 Benefit: Enhanced QoS through better resource management ensures that applications

meet their performance requirements, such as low latency and high availability.

 Explanation: Resource management techniques prioritize critical tasks and allocate

resources accordingly, ensuring that important applications maintain their

performance standards even during peak usage times.

 Cost Savings:

 Benefit: Efficient resource management reduces operational costs by optimizing the

use of available resources and minimizing the need for additional infrastructure.

 Explanation: By making better use of existing resources and reducing unnecessary

data transmission to the cloud, fog computing can lower expenses related to

bandwidth, storage, and processing power.

 Scalability:

 Benefit: Effective resource management allows fog computing systems to scale easily

to accommodate growing data and computational demands.

 Explanation: As the number of connected devices increases, resource management

strategies enable the system to adapt and scale without significant performance

degradation, ensuring smooth operation as the network expands.

 Energy Efficiency:

 Benefit: Resource management in fog computing can lead to more energy-efficient

operations, reducing the overall energy consumption of the network.

 Explanation: By optimizing the allocation of resources and minimizing unnecessary

data processing and transmission, fog computing systems can operate more

sustainably, conserving energy and reducing their environmental impact.

33

 Enhanced Security and Privacy:

 Benefit: Localized resource management enhances security and privacy by

processing sensitive data closer to the source and minimizing exposure to external

threats.

 Explanation: By managing resources at the edge, fog computing reduces the need to

transmit sensitive data to centralized cloud servers, thus lowering the risk of data

breaches and ensuring better compliance with privacy regulations.

 Reduced Latency:

 Benefit: Proper resource management significantly reduces latency by processing

data closer to where it is generated.

 Explanation: Fog computing minimizes the distance data must travel, enabling faster

data processing and response times, which is critical for real-time applications such as

autonomous vehicles and smart grids.

 Increased Reliability:

 Benefit: Resource management enhances system reliability by ensuring that resources

are available where and when they are needed.

 Explanation: By distributing resources across multiple nodes and dynamically

adjusting to changes in demand, fog computing can maintain high availability and

continue operating effectively even in the face of individual node failures.

34

Chapter 2

Related Work

The fog computing paradigm integrates conventional technology to support Internet of

Things environments that create large amounts of data. It has become a remarkable

technology that enables creative applications and excellent performance in demanding

situations. The appropriate use of dynamically and spatially dispersed resources across the

system is necessary for deploying fog devices at the fog layer. The Internet of Things is

becoming more and more critical every day, leading to a rise in the demand for massive

power handling, rapid internet systems, and information storage to handle data streams. Fog

Computing has now fulfilled these prerequisites. One of the primary responsibilities of fog

computing is resource management and effective utilization. The resource management

system provides resource scheduling and provisioning to assist in resource management

choices.

Managing resources and making effective use of fog computing is essential. The resource

management system provides resource scheduling and provisioning to assist in making

resource management choices.

Various research has focused on the issue of process scheduling in diverse computing

systems. Because of the its nature that is NP-hard, it is necessary to employ heuristic

approaches to estimate optimal solutions.

The authors of [22] highlight a problem in scheduling workflows with multiple objectives in

Hybrid-cloud systems. The optimization goals are considered time efficiency, cost-

effectiveness, and reliability from the user's perspective. Unlike traditional multi-parameter

scheduling issues in the cloud, the mentioned technique allows clients to create a different

approach to enhance reliability. This study presents a reliability-aware multi-objective

mimetic algorithm (RA MOMA) incorporating a unique method and a diversification

technique to address the Hybrid cloud issues. The diversification strategy employs many

problem-related specific genetic algorithms to produce offspring with diverse features.

Regarding the technique, four problem-specific neighbourhood operators are developed based

on the resource utilization rate and critical path. The purpose is to enhance the quality of the

archive collection. A comprehensive statistical experiment is conducted to assess the

35

effectiveness of RA-MOMA. RA-MOMA outperforms similar methods in solving the

MOWSP-MCS, as evidenced by comparisons with these algorithms.

The Heterogeneous Earliest Finish Time (HEFT) algorithm is widely used for scheduling

tasks [27]. HEFT consists of two distinct phases: job prioritizing and selection of processes.

The first phase involves assigning their priorities to tasks based on their ascending ranks. In

contrast, the second phase selects an appropriate processor for task execution, taking into

account the least time taken by a task to complete. Next renowned algorithm in this

classification is Predict Earliest Finish Time (PEFT) [6]. PEFT utilizes the OCT which is

Optimistic Cost Table to prioritize tasks and select the optimal processor for executing task

during the scheduling phase. Both HEFT and PEFT are a kind of optimization which focuses

on single objective that minimizes makespan. In contrast, EM-MOO focuses on multi-

objective optimization strategy that concentrates on energy usage and makespan.

The paper [16] presents the Minimal Optimistic Processing Time (MOPT) approach, which

aims to minimize the makespan. This technique alters the prioritizing phase by calculating

tasks Optimistic Processing Times (OPT) on all executing nodes. The tasks are then ranked

according to their average OPT values. The node selection phase enhances the entry task

duplication feature by permitting duplication only if it lowers the completion time of

subsequent jobs. Once again, it is worth noting that MOPT is a single-objective optimization

strategy, in contrast to the approach we suggest in this paper. In [7], a hybrid meta-heuristic

strategy is proposed to minimize the makespan in a multi-processor cloud environment. This

approach combines the Genetic Algorithm (GA) with Ant Colony Optimization (ACO). The

lowest level (b-level) of a task is utilized for assigning priorities. The b-level represents the

most significant amount of time it takes for a job to traverse all levels of the graph.

Subsequently, the Ant Colony Optimization (ACO) algorithm is utilized to determine an

appropriate route, which is subsequently enhanced by applying the Genetic Algorithm (GA).

The paper given in [27] is one of the rare papers that examines job scheduling in fog

computing as a Directed Acyclic Graph (DAG) scheduling problem. The paper presents the

Cost-makespan-aware Scheduling (CMaS) method, which aims to meet the user's QoS

criteria for optimizing both makespan and cost. It also introduces a utility function that helps

identify the balance between these two objectives. The schedule is enhanced through the

work reassignment step. The Task Scheduling in Fog Computing (TSFC) technique relies on

the classification mining algorithm [19]. The association rules derived from the I-Apriori

algorithm are integrated with the task completion durations, disregarding the bandwidth

between machines. The scheduling of tasks in fog computing-supported software-defined

36

embedded systems (FC-SDES) [38] aims to minimize the makespan. The algorithm suggests

a 3-phase approach that combines work scheduling, resource management, and I/O request

balancing while minimizing complexity.

Workflow scheduling algorithms must consider resource attributes and dependency

constraints in order to maximize effective resource utilization or make the best use of the

resources at hand while limiting the application's overall completion time or makespan. It is a

well-known NP-complete problem [24] that must be optimized using approximations in

almost polynomial time [25]. In addition to makespan, energy consumption is another vital

element in a fog-cloud environment. Over the past decade, the energy usage of cloud data

centers has significantly risen, leading to a substantial increase in economic and operational

costs and environmental consequences. Additionally, the restricted availability of resources in

fog nodes presents a significant energy barrier. These nodes typically operate on batteries or

have access to limited (renewable) energy sources. They are often deployed in places with

limited and inconsistent energy supplies [?]. Consequently, there has been considerable focus

on green cloud computing in academic and industrial circles. A key concern is decreasing

energy usage in the growing fog-cloud infrastructure .

This chapter describes resource management and talks about fog computing systems. And the

use of resources. It also covers essential background information to help with a better

understanding of resource scheduling in fog computing. An examination and comparison of

the To better understand resource scheduling and resource utilization in the fog environment,

research has been done on the existing resource scheduling strategies.

2.1 Resource Management

Fog computing minimizes the quantity of data sent to the cloud. for processing, analysis, and

storage, improving speed and efficiency. Quality of service (QoS) in fog computing describes

the general performance of a service, especially as perceived by network users.

An evaluation of several network service components, including throughput, latency,

resource availability is typical when assessing the quality of service.

It might take a long time to work because it gets stuck in long lines or takes a less direct route

to avoid delays. Because of the need for applications that can't wait to process and move data

in real-time, cloud computing tries to bring cloud services and tools to the network's edge

[13].

Based on Quality of Service (quality of service) needs, this new way of doing things i.e fog

computing which moves computing around between cloud places and network parts. Even

37

though cloud technology has been studied a lot, IoT services with specific needs can only be

used if cloud resources are physically far away from end users. Many different experts have

come up with various quality of service factors. In an IoT based on the cloud, the delay from

endpoints talking to each other is further from the quality of service that is wanted for real-

time services. When something goes wrong, healthcare services may need to move right

away.

In the same way, self-driving cars need to be able to notice when their surroundings change

quickly. Two of the most sensitive IoT uses are real-time tracking in factories and real-time

guidance in traffic control systems. The quality-of-service monitor figures out how long the

network is taking compared to other system nodes and keeps an eye on the worker node's

quality of service features, like how available it is and how many resources it uses.

Moreover, the assessment of the impact of regulatory actions on the quality of service is

crucial for the effective implementation of real-time services, which demands a very small

latency in the allocation of dispersed resources. QoS-aware service allocation may be greatly

impacted by control decision latency, which is mostly determined by the control topology.

2.2 Use of Resources:

Resource utilisation is referred to by a number of names, including scheduling and resource

provisioning. Terms related to resource scheduling and utilisation are employed in the

framework for carrying out the suggested job. The practice of ensuring that resources are as

useful as possible in order to effectively fulfil user requirements is known as resource

utilisation. Achieving optimal resource allocation and distributing all available resources

among users can lead to high resource utilisation. Any system's cost and performance are

directly impacted by how its resources are used. Under-provisioning resources can result in a

system with worse performance. In contrast, over-provisioning resources can lead to low

utilisation of all allocated resources and raise the cost of the system [14].

Many terms are linked to resource usage, such as scheduling and provisioning. There are

terms for using resources and planning when to use them for the framework of the planned

work. Resource usage is ensuring that resources are used as efficiently as possible to meet

user needs. To achieve high resource utilization, it is necessary to ensure that all available

resources are shared among all people. How well resources are used directly affects how

much a system costs and how well it works. If you give too many resources to a system, they

might not be used at all, and the cost of the system might go up. On the other hand, if you

give more resources, the system might work better.

38

2.2.1 Fog computing resource utilisation:

This section reviews the resource utilisation strategies that are currently in use in fog

computing. A fog computing paradigm is proposed to address all the problems associated

with resource distribution for Internet of Things related applications. The scheduler for Bag-

of-Task applications, or BaTS, was proposed by researchers in [70]. BaTS monitors the

progress of operations and dynamically reconfigures the equipment to meet the demands.

They conducted a number of experiments using a price-to-performance ratio. Every test was

run on two different clouds, one using the BaTS algorithm and the other using the RR

(Round-Robin) method. A fog system based on clouds was depicted in [33]. A simulation

was established in this study using requirements for discrete events. To lessen the usage of

the cloud, no specific load-balancing method is applied.

To give an energy-efficient solution, researchers in [15] represented the Energy-Efficient

Task Scheduling (MEET) method for identical nodes. Their selection process and offloading

time slot allotment resulted in a decrease in overall energy use. The author presented a greedy

knapsack scheduling (GKS) method in [16] for resource allocation in a fog enabled network.

Their study's outcome was reproduced in two case studies. Their suggested approach

produced better results than the FCFS, and delay-priority algorithms. Applications about

containers were given access to a network-oriented scheduling approach [17]. They reduced

network latency by 70% using a fog computing architecture built on Kubernetes. The author

of[18] suggested a hybrid approach for service orchestration in fog networks. South Bound

and North Bound were the two new stages—a choreographic method allowed for automated

and quick decision-making at the South-Bound level. Conversely, North-Bound employs

centralised orchestration at both the cloud and fog layers.

In fog computing, Zeng et al. [19] introduced a scheduling technique in addition to picture

placement. Fog nodes and embedded clients may complete all computational processes via

storage servers. Clients and fog nodes can access the job image stored on the storage server.

It is possible to reduce the completion time by planning each job. Ni et al. [20] introduced a

dynamic resource allocation system based on the time required to complete each job and to

enhance resource utilization. To increase the trustworthiness of fog nodes and to improve

user quality of service, a method known as Priced Timed Petri Netts (PTPNs) was employed.

A resource allocation strategy for optimizing energy usage was described by Pooranian et al.

[]. The algorithm was heuristically based. The resource allocation mechanism the author

devised is called the "bin packing penalty" and is represented by fog servers. Every virtual

39

machine was used by time and frequency constraints. An additional strategy, the "penalty and

reward policy," is employed to optimize energy usage.

Sun et al.[95] presented a two-level resource scheduling approach. According to these

authors, distributing resources among several fog clusters produced a brief delay. The theory

of enhanced non-dominated generic algorithm-II was scheduled by fog nodes assigned to

different clusters. Resource scheduling amongst fog nodes was put into practice for multi-

objective optimization.

To raise awareness about vehicular networks, [] suggested an integrated structure. To test the

flexibility, they have been turning to the OMNeT++ framework. A blockchain-based

consensus sensing (CS) application was created for this study to reconcile local data.

A unique bio-inspired hybrid algorithm was presented by Rafique et al. [78] for effective

resource management in fog computing. The task above allocated and managed the resources

according to the volume of incoming requests. The primary goal of this effort was to schedule

the jobs efficiently to minimize the familiar or averge response time and maximize resource

use. Task scheduling was handled by the scheduler installed between the fog nodes and the

devices. The inefficient scheduling of given tasks was resolved by integrating a technique,

called Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm

Optimisation (MCSO). This method was verified, and the outcomes demonstrated that it is

more accurate at scheduling the jobs.

The studies listed above have all suggested scheduling algorithms; they have yet to address

how user requests change dynamically in the ever-changing cloud-fog environment. Based on

an analysis of recent research, it has been determined that the field of cloud computing is the

primary focus for studying dynamic resource management. A job scheduling algorithm was

developed using the ant colony system and a mixture of laxity in a cloud-fog environment

[109]. The laxity metric was employed to ascertain job priority, while the ant colony

algorithm was utilised for task scheduling. The intermediary cloud fog broker, situated

between the cloud and fog layers, was tasked with assigning duties according to their criteria.

At first, the requests from the IoT devices are broken down into tasks and the computing

estimation of each job is performed to establish the nature of the work. Subsequently, the

duty was assigned to either fog or cloud. The efficacy of this strategy in work scheduling was

confirmed by rigorous testing and analysis of the output. The task allocation was executed

efficiently using the given technique; nevertheless, it fails to account for the dynamic nature

of the tasks, resulting in a bottleneck issue when the task count is raised.

40

The multi-level feedback queuing was suggested as a method for job offloading in the fog

computing framework, considering both deadline and priority [9]. At first, the jobs were

categorized into three groups according to their deadlines: high-priority, middle, and low-

priority activities. The virtual queue idea was utilized to organize and prioritize work. If the

tasks having less priority are not executed within a specific timeframe, their priority will be

increased by one. The procedure was performed, demonstrating its efficacy in job

categorization and scheduling. The deadline above and the priority-conscious task scheduling

approach show task categorization and scheduling proficiency. However, it failed to consider

the energy efficiency of the process and did not consider the selection of the fog node based

on energy and resource availability.

In his discussion of over- and under-provisioning, Agarwal [29] suggested an architectural

solution to address the issue in the fog environment. The most efficient way to employ

processing time and allocate resources to programs is through scheduling. The primary

responsibility of scheduling is to implement a set of applicable processes and determine

which process to execute in the next iteration

A layered fog node architecture designed by Aazam et al. [30](Aazam and Huh, 2014)

enables the processing of local service requests. Intelligent gateways and a data encryption

layer have been installed in fog nodes. They created an intelligent network and smart gateway

using a tiered architecture. They used a range of physical nodes, virtual nodes, wireless

sensor networks, and virtual sensor networks to administer the system.

The combination of A3C learning and residual recurrent neural networks was used in edge

cloud computing environments to execute dynamic scheduling [98]. The IoT devices' duties

were dynamically planned by implementing a resource management system. The Resource

Management System (RMS) determines the scheduling of tasks by considering factors such

as CPU use, memory requirements, bandwidth availability, projected completion time, and

deadline. The Resource Management System (RMS) comprised a Deep Reinforcement

Learning (DRL) model for forecasting the subsequent scheduling determination. At the same

time, the Constraint Satisfaction Module (CSM) would verify the limitations and offer

feasible migration and scheduling determinations. The loss values were utilised to modify the

parameters, whereas the R2N2 was employed to adjust the model parameters of the DRL

model. The forecasting of the subsequent scheduling determination is quite effective. It

decreases the average reaction time of the process, but the loss function of the forthcoming

scheduling task diminishes the efficiency of the process.

41

This part looks at how resources can be used in fog computing. Several fog computing

method has been proposed to solve all the problems of allocating resources for Internet of

Things (IoT) apps.

First-Come-First-Served (FCFS),This technique is simple to implement and easy to

understand but can lead to long waiting times for short tasks if a long task arrives first [43].

In Round robin, It is fair to all tasks and simple to implement; however, context switching

overhead can be high [44].

Priority Scheduling-Executes high-priority tasks first, which is beneficial for critical

applications, but lower priority tasks may suffer from starvation [45].

Shortest Job Next (SJN) -Can minimize the average waiting time but requires knowledge of

execution time in advance, which may not always be possible [46].

Ant Colony Optimization (ACO)-This bio-inspired algorithm can find near-optimal solutions

and is adaptable to dynamic changes but is computationally intensive and may require

significant time to converge [47].

Particle Swarm Optimization (PSO)- Efficiently explores the search space and is good for

handling dynamic environments; however, it requires fine-tuning of parameters, and

convergence may not be guaranteed [48].

Dynamic Least Load First (DLLF)- Balances the load effectively and reduces the chances of

any single node becoming a bottleneck but may not always result in the shortest total

execution time for all tasks [49]

Genetic Algorithms (GA)-Capable of finding high-quality solutions for complex problems

but can be computationally expensive and may require significant time to reach an optimal

solution [50].

Heuristic-based Scheduling -Fast and effective for specific types of tasks or environments but

may not always find the best possible solution, and performance is highly dependent on the

quality of the heuristics used[51].

Researchers in [54] came up with the idea of BaTS, which stands for "budget-constrained

scheduler for Bag-of-Task applications." BaTS keeps an eye on how operations are changing

and changes the configuration of the machines on the fly based on what is needed. They did

many tests with a price-performance ratio. Two different clouds were used for each test. In

one (Round-Robin) algorithm was used, and for the other one used BaTS. In [33], a cloud-

based fog device was shown. A simulation was set up based on discrete event requirements

for this study. The author's load-balancing technique to cut down on cloud use needs to be

clarified.

42

A resource allocation strategy for optimising energy consumption was presented by

Pooranian et al. [55]. The algorithm was heuristically based. The resource allocation

mechanism that the author devised is referred to as the "bin packing penalty" and is

represented by fog servers. Every virtual machine was used in accordance with time and

frequency constraints. An additional policy, known as the "penalty and reward policy," is

employed to optimise energy usage.

In order to raise awareness about vehicular networks, [19] suggested an integrated structure.

To test the flexibility, they have been turning to the OMNeT++ framework. In order to

reconcile local data, a blockchain-based Consensus Sensing (CS) application was created for

this study. A unique bio-inspired hybrid algorithm was presented by Rafique et al. [56] for

effective resource management in fog computing. According to the volume of incoming

requests, the aforementioned work allocated and managed the resources. The major goal of

this effort was to schedule the jobs in an efficient manner in order to minimise the average

response time and maximise resource utilisation. Task scheduling was handled by the

scheduler that was installed in between the fog nodes and the devices. By integrating

Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm Optimisation

(MCSO), the task's inefficient scheduling was resolved. This method was verified, and the

outcomes demonstrated that it is more accurate at scheduling the tasks.

The studies listed above have all suggested scheduling algorithms; they have not addressed

how user requests change dynamically in the ever-changing cloud-fog environment. Based on

an analysis of recent research, it has been determined that the field of cloud computing is the

primary focus for studying dynamic resource management. As a result, this paper proposes a

novel method for scheduling and resource provisioning that will enable dynamic application

management.

43

Table 2.1

Comparison of Different Scheduling Techniques in Fog Computing

Scheduling

Technique

Description Advantages Disadvantages Reference

Reinforcement

Learning-

Based

Scheduling

(DRL)

Uses deep

reinforcement

learning to

adaptively

allocate

resources and

schedule tasks

based on

system

dynamics.

Learns optimal

policies over

time, adapts to

changing

workloads.

Training is time-

consuming and

requires large

datasets.

Zhang et al.,

2022[72]

Improved

Firework

Algorithm

(IFWA)

Optimization

algorithm for

scheduling

tasks in fog

with better

delay-resource

balance.

Handles

dynamic task

arrival, reduces

execution

delay.

Tasks cannot be

preempted,

limiting

flexibility.

Wang et al.,

2023[73]

Two-phase

Scheduling

with Deep

Learning

(TPS-DL)

Combines

early

classification

with

reinforcement

learning for

adaptive

scheduling.

Better response

time, adapts to

workload

changes.

High training

complexity and

resource

overhead

Shadroo et al.,

2021[74]

First-Come-

First-Served

(FCFS)

Tasks are

scheduled in

the order of

Simple to

implement,

easy to

May lead to

long waiting

times for short

[Yi et al.,

2015][43]

44

 their arrival. understand. tasks if a long

task arrives first.

Round Robin Each task is

assigned a

fixed time slot

in a cyclic

order.

Fair to all

tasks, simple to

implement.

Context

switching

overhead can be

high.

[Chiang &

Zhang,

2016][44]

Priority

Scheduling

Tasks are

scheduled

based on

priority levels

assigned to

them.

High-priority

tasks are

executed first,

which can be

beneficial for

critical

applications.

Lower priority

tasks may suffer

from starvation.

[Bonomi et al.,

2012][45]

Shortest Job

Next (SJN)

Tasks with the

shortest

execution time

are scheduled

first.

Can minimize

the average

waiting time.

Requires

knowledge of

execution time

in advance,

which may not

always be

possible.

[Stojmenovic

& Wen,

2014][46]

Ant Colony

Optimization

(ACO)

Bio-inspired

algorithm that

uses the

behavior of

ants to find

optimal paths

for task

scheduling.

Can find near-

optimal

solutions,

adaptable to

dynamic

changes.

Computationally

intensive, may

require

significant time

to converge.

[Dastjerdi et

al., 2016][47]

Particle

Swarm

Optimization

(PSO)

Optimization

technique

inspired by

social behavior

Can efficiently

explore the

search space,

good for

Requires fine-

tuning of

parameters,

convergence

[Gupta et al.,

2016][48]

45

 of birds

flocking or fish

schooling, used

for task

scheduling.

handling

dynamic

environments.

may not be

guaranteed.

Dynamic

Least Load

First (DLLF)

Tasks are

scheduled to

the node with

the least

current load.

Balances the

load

effectively,

reduces the

chances of any

single node

becoming a

bottleneck.

May not always

result in the

shortest total

execution time

for all tasks.

[Stojmenovic

& Wen,

2014][49]

Genetic

Algorithms

(GA)

Uses principles

of natural

selection and

genetics for

scheduling

tasks.

Capable of

finding high-

quality

solutions for

complex

problems.

Can be

computationally

expensive, may

require

significant time

to reach an

optimal

solution.

[Dastjerdi et

al., 2016][50])

Heuristic-

based

Scheduling

Utilizes

heuristic

methods to

make

scheduling

decisions based

on predefined

rules or

experience.

Can be fast and

effective for

specific types

of tasks or

environments.

May not always

find the best

possible

solution,

performance is

highly

dependent on

the quality of

the heuristics

used.

[Gupta et al.,

2016][51]

46

2.2.2 Existing Framework in Fog Computing:

This pioneering paper by Bonomi et al. introduces the concept of fog computing as an

extension of cloud computing closer to the edge of the network. It discusses the role of fog

computing in handling the massive amounts of data generated by IoT devices, reducing

latency, and conserving bandwidth. The paper highlights early use cases in smart grids,

connected vehicles, and smart cities [38].

Yi and colleagues provide a comprehensive survey of fog computing, discussing its

fundamental concepts, applications, and the issues that need to be addressed. The paper

elaborates on the architectural components of fog computing and its potential to support real-

time analytics, enhanced security, and improved system scalability [39].

Chiang and Zhang's work explores the synergy between fog computing and IoT. The paper

identifies research opportunities and challenges in integrating fog and IoT, such as managing

heterogeneous devices, ensuring data security, and developing efficient resource allocation

strategies. The authors argue for a collaborative approach to address these challenges [40].

EdgeX Foundry is an open-source initiative aimed at building a common framework for

industrial IoT edge computing. The project seeks to standardize the development of IoT

solutions across diverse hardware and software environments. The framework's modular

design supports scalability and interoperability, making it suitable for various industrial

applications [41].

This chapter presents a detailed taxonomy and survey of fog computing, highlighting its

distinguishing features, architectural models, and key applications. Mahmud et al. discuss the

benefits of fog computing in terms of latency reduction, bandwidth optimization, and

enhanced security. They also propose future research directions, including standardization

efforts and the development of robust fog ecosystems.[42]

This work delves into the security challenges associated with fog computing. Stojmenovic

and Wen analyze potential security threats and propose a set of guidelines for designing

secure fog systems. They emphasize the need for robust authentication, encryption, and data

integrity mechanisms to protect against cyber-attacks [43].

Hong et al. introduce the concept of "Mobile Fog," a programming model designed to support

large-scale IoT applications. The paper discusses how Mobile Fog can facilitate the

deployment of distributed applications by leveraging the computational resources of mobile

47

devices and edge nodes. This approach aims to reduce latency and improve the

responsiveness of IoT systems [44].

This exploratory study investigates the potential applications of fog computing in healthcare.

Skala et al. discuss how fog computing can enhance patient monitoring, medical data

analysis, and emergency response. The study highlights the importance of low latency and

high availability in healthcare applications and demonstrates how fog computing can meet

these requirements [45].

Varshney's paper focuses on the integration of fog computing with pervasive healthcare

systems. The author examines how fog computing can support the real-time processing of

health data, improve patient care, and enable remote health monitoring. The paper also

discusses the challenges of implementing fog computing in healthcare, such as data privacy

and interoperability [46].

Dastjerdi and Buyya's work provides a comprehensive overview of how fog computing can

help IoT systems achieve their full potential. The authors discuss the architectural

components of fog computing, its benefits, and the challenges that need to be addressed.

They also present a case study on smart traffic management to illustrate the practical

applications of fog computing [47].

This paper explores the use of container technologies in fog computing for industrial IoT

applications. Zhao et al. discuss the advantages of using containers, such as scalability,

portability, and resource efficiency. They also propose a deployment and management

framework that leverages container orchestration tools like Kubernetes to optimize resource

utilization in fog environments [48].

Vaquero and Rodero-Merino provide a comprehensive definition of fog computing,

distinguishing it from related paradigms like cloud and edge computing. The paper outlines

the key characteristics of fog computing, including its ability to support latency-sensitive

applications, distribute data processing closer to the source, and provide enhanced data

privacy and security [49]

48

Table 2.2 Comparison of Cited Works

Title Authors Year Focus Area Key Contributions

Fog computing

and its role in

Bonomi, F., Milito,

R., Zhu, J., &

2012 Role of fog

computing in

Introduced fog computing

as an extension of cloud

the internet of

things

Addepalli, S.[46] IoT computing, highlighted

early use cases.

A survey of

fog computing:

Concepts,

applications

and issues

Yi, S., Li, C., & Li,

Q.[44]

2015 Survey of fog

computing

concepts,

applications,

and issues

Comprehensive survey of

fog computing, discussed

architectural components

and key applications.

Fog and IoT:

An overview

of research

opportunities

Chiang, M., &

Zhang, T [45]

2016 Research

opportunities

in fog

computing and

IoT

Explored synergy between

fog computing and IoT,

identified research

challenges and

opportunities.

Open source

industrial IoT

edge platform

EdgeX

Foundry[42]

2021 Open-source

framework for

industrial IoT

edge

computing

Standardized framework

for industrial IoT, supports

scalability and

interoperability.

Fog

computing: A

taxonomy,

survey and

future

directions

Mahmud, R.,

Kotagiri, R., &

Buyya, R.[43]

2018 Taxonomy and

survey of fog

computing

Detailed taxonomy,

highlighted benefits,

challenges, and future

research directions.

The fog

computing

paradigm:

Scenarios and

security issues

Stojmenovic, I., &

Wen, S.[47]

2014 Security issues

in fog

computing

Analyzed security threats,

proposed guidelines for

designing secure fog

systems.

49

Mobile fog: A

programming

model for

large-scale

applications on

Hong, K.,

Lillethun, D.,

Ramachandran, U.,

Ottenwälder, B., &

Koldehofe, B. [36]

2013 Programming

model for

large-scale IoT

applications

Introduced 'Mobile Fog',

discussed deployment of

distributed applications.

the internet of

things

Application of

fog computing

in healthcare:

An exploratory

study

Skala, K., et al.[77] 2015 Application of

fog computing

in healthcare

Investigated potential

applications in healthcare,

emphasized low latency

and high availability.

Pervasive

healthcare and

fog computing

Varshney, U.[78] 2017 Integration of

fog computing

with healthcare

systems

Examined integration with

healthcare, discussed real-

time data processing and

remote monitoring.

Fog

computing:

Helping the

Internet of

Things realize

its potential

Dastjerdi, A. V., &

Buyya, R. [48]

2016 Potential of fog

computing in

IoT

Overview of architectural

components, case study on

smart traffic management.

Deployment

and

management

of container-

based fog

computing in

industrial IoT

Zhao, Z., et al.[75] 2018 Container-

based fog

computing in

industrial IoT

Discussed container

technologies, proposed

deployment and

management framework.

50

Finding your

way in the fog:

Towards a

comprehensive

definition of

fog computing

Vaquero, L. M., &

Rodero-Merino,

L.[76]

2014 Comprehensive

definition of

fog computing

Provided a comprehensive

definition, outlined key

characteristics of fog

computing.

Smart e-health

gateway:

Bringing

Rahmani, A. M.,

Thanigaivelan, N.

K., Gia, T. N.,

2018 Smart e-health

gateway for

IoT-based

Introduced Smart e-Health

Gateway, discussed real-

time analytics and remote

intelligence to

internet-of-

things based

ubiquitous

healthcare

systems

Granados, J.,

Negash, B.,

Liljeberg, P., &

Tenhunen, H.

 healthcare monitoring.

Fog computing

micro

datacenter

based dynamic

resource

estimation and

pricing model

for IoT

Aazam, M., &

Huh, E. N.[30]

2014 Dynamic

resource

estimation and

pricing for IoT

Proposed dynamic resource

estimation and pricing

model for micro data

centers.

Dependability

evaluation in

fog computing

for the internet

of things

applications

Santos, R., Maciel,

P., & Matos, R.

[17]

2018 Dependability

evaluation in

fog computing

Presented framework for

dependability evaluation,

emphasized reliability and

availability.

Frameworks have been developed under the fog computing paradigm, including IoT devices

and the cloud. Liu et al. introduced a methodology to decrease the delay of resource

allocation. This architecture demonstrated vehicular Adhoc networks (VANET) to transmit

significant data across communication channels. Resource allocation and job scheduling

51

issues have been overcome using MU-MIMO channels, where data is segmented into pieces

and sent. They analysed a specific application situation and optimised resources by

identifying and fixing the issue using a genetic algorithm

Tuli et al. [52] designed a lightweight framework called FogBus for connecting IoT-enabled

devices.. The framework was developed to incorporate blockchain technology and an

authentication procedure to safeguard sensitive data. The functioning framework was

assessed using a finger pulse oximeter for Sleep Apnea diagnosis. FogBus fully enables

distributed application execution. There were no policies in place for real-time resource

management and application migration during execution.

Rathee et al. [53] introduced a dependable method utilising the tidal trust algorithm to

calculate the Trust Value and Trust Factor (TV/TF) to identify genuine FN and IoT devices

accurately. The Social Impact Theory Optimizer (SITO) was utilised on the fog layer to

compute trust levels in the suggested framework. They identified the malicious nodes in their

research by using specific criteria. The framework underwent testing on several parameters,

and a virtual fog environment was created using the NS2 simulator. The study needs to

account for the dynamic nature of IoT devices in the suggested framework.

Yigitolglu et al. [114] named a framework they created "foggy." This framework oversees the

automatic deployment of IoT applications in fog computing environments. The framework

has components such as a container registry, version control server, orchestration server,

node, and tool for continuous integration. The developed framework has yet to be utilised for

practical IoT applications. Zhang and colleagues (2018) developed the Hierarchical Game

Framework to address resource allocation issues in fog computing.

Lin et al. [55] developed a hybrid deep learning framework to enhance the efficiency of

manufacturing systems. Visual sensors are included into the proposed framework to identify

faulty products and measure the extent of the problem. This approach signifies the decrease

in the burden on the cloud layer.

2.3 Real time where Fog computing is Applicable:

Fog computing applies to latency-sensitive applications, including healthcare, emergency

services, and cyber-physical systems. Below are some instances of fog computing

52

applications. Most academics focus on fog computing applications, particularly in health care.

Various research on health monitoring, detection, diagnosis, and visualisation have been

conducted recently. Cao et al. introduced FAST, a distributed analytic system utilising fog

computing to monitor stroke migration by including a fall detection algorithm. The suggested

technique has been integrated into a fog-based distributed fall detection system. This strategy

distributes the analytical workload across the network by dividing the detection

responsibilities between the edge devices and the server.

2.3 Problem Formulation:

Resource management is a critical challenge in fog computing environments, and efficient

task scheduling is vital for effective resource utilization. While current research emphasizes

task scheduling, it often overlooks the optimal schedulability of these tasks. To address this

gap, optimization techniques have been employed to enhance task scheduling. The Modified

Marine Predators Algorithm has been implemented to overcome the obstacles associated with

task scheduling in fog computing, ensuring better resource management [57][58]. A ranking

method was employed to ascertain the number of consecutive iterations needed to surpass the

current position. Wang et al. proposed an enhanced firework algorithm aimed at achieving

optimal task scheduling in fog computing environments [58].

The previous study used the marine predators algorithm to improve energy efficiency in task

scheduling. However, it overlooked the balance between delay and task load, which led to

resource wastage in the fog node. Moreover, the algorithm scheduled tasks without

considering whether resources were available.

This method of task scheduling with the improved firework algorithm has several limitations,

one of which is that tasks cannot be preempted. This restriction decreases the overall

efficiency of the approach.

The dynamic nature of the fog node, which changes with varying tasks, is not considered,

impacting the effectiveness of the proposed task scheduling method in IoT-based fog

computing.

Rafique et al. and Shardoo et al. [59] and [60] managed resources for task execution by

addressing inefficient task scheduling with Modified Particle Swarm Optimization (MPSO)

and Modified Cat Swarm Optimization (MCSO). This approach allocated and managed

resources according to incoming request demands [59]. For resource management, three

methods were used: Self Organizing Map (SOM) and autoencoder [60]. The "earliest

53

deadline first" strategy was applied for task scheduling. There are problems with these

approach:

 The bio-inspired hybrid algorithm fails to meet QoS and SLA requirements for

effective resource management and task scheduling, resulting in suboptimal system

performance.

 The Modified Particle Swarm Optimization (MPSO) used in this method tends to

converge too early, especially during the scattering phase, which diminishes the

approach's overall efficiency.

 The two-phase scheduling approach effectively organizes tasks, but the random

allocation leads to increased overload and retransmissions, which in turn raises the

average response time.

Research Objectives:

 To analyze existing energy efficiency-based resource allocation algorithms in Fog

Computing environment

 To design a resource management framework for the Fog Computing environment.

 To design the proposed energy efficient based resource allocation algorithm in Fog

computing environment.

 To validate the above proposed algorithm and compare with existing work in Fog

Computing environment

This chapter delved into the current resource scheduling techniques used in fog computing

environments. It reviewed the existing frameworks that have been applied within the fog

computing paradigm and evaluated the resource management strategies currently in place at

the fog layer. The subsequent chapter will introduce a new resource scheduling framework

designed to tackle the issues identified in the problem formulation and achieve the objectives

set out in this research.

54

Chapter 3

Proposed Framework for Energy efficient Framework

The previous chapter provided an in-depth exploration of resource sharing and optimization

in the fog computing environment. Through a review of related work, it became evident that

while resource has been studied in fog computing, there has been a lack of emphasis on

resource optimization for scientific processes. This chapter seeks to fill this gap by presenting

the architecture of fog computing for optimizing resources in scientific workflow

applications.

To achieve specific goals, related actions known as workflows need to be completed. In the

realm of cloud computing, these workflows might include tasks such as data processing,

application activation, and provisioning of virtual machines. By optimizing the timing of

these activities, companies can reduce costs, enhance productivity, and improve the overall

efficiency of their IT operations.

Optimizing workflows can significantly enhance the overall efficiency of IT operations. By

automating routine tasks and reducing the need for manual intervention, businesses can free

up their IT teams to focus on more critical projects. This not only improves the quality of

customer service but also makes companies more adaptable and responsive to changing

business needs.

This study's primary goal is to present an optimization framework for scientific workflow

design. Utilizing the Bayesian framework and the maximum likelihood technique, the study

enhances result accuracy through optimal estimations and predictions. It tackles the

complexity of multi-objective optimization problems by integrating a random distribution

element, introducing variability into the process. This approach enables the model to explore

a broader range of solutions, potentially uncovering more diverse and effective outcomes.

Furthermore, the research incorporates multiple heuristic techniques—efficient and effective

55

problem-solving strategies—to improve the model's ability to navigate complex optimization

scenarios. Despite the use of randomness, the study strategically minimizes its impact to

ensure the reliability of results and reduce the influence of unpredictable factors.

There are several key reasons to optimize cloud operations, with cost reduction being one of

the most significant. By streamlining processes to minimize the time and resources required

to complete tasks, businesses can cut expenses. This is especially important for companies

that need to scale their computing resources up or down in response to fluctuating workloads.

The suggested methodology considers three primary factors while implementing resource

optimization in a fog environment: execution time, computational cost, and energy usage. In

certain situations, the processing and storage of a substantial volume of data necessitate the

utilization of resources. A significant number of academics prioritize enhancing the

performance of fog computing by addressing crucial issues such as privacy, scheduling,

security, etc. Fog computing encounters several challenges as it continues to expand,

including limited storage capacity, concerns about privacy arising from location awareness,

resource overload, increased energy usage, and the need for effective resource management.

In [14], a scheduling strategy called fog Match—based on game theory—was presented. To

achieve the lowest possible latency and efficient resource optimization of the corresponding

fog nodes, the research work focused on matching the duties of IoT devices to relevant fog

nodes. Depending on the need, the aforementioned method introduced both distributed and

centralized scheduling. The results showed that in terms of scheduling and better resource

management, this work performed better. When fog nodes and IoT devices are matched,

resource management is successful.

This research mainly focuses on the resource optimization issue, which means the resources

need optimization. Although fog computing improves computational efficiency at the

network edge, effective resource optimization continues to pose difficulties that, if

unaddressed, may compromise performance in certain scenarios. It efficiently distributes the

workload among all the fog resources, considering system requirements. Efficient resource

distribution is required in fog computing to enhance the utilization of resources and to

provide high-quality services to the users.

56

In a fog computing environment When it comes to fog resources, a scheduling technique that

minimizes an application's makespan but uses a lot of energy is not the best option. When

several competing goals need to be met at once, this gets harder. Reducing makespan, for

example, while also lowering the amount of energy needed to finish application processing, is

difficult. Consequently, to determine the best compromise between

these optimization objectives, a biobjective optimization strategy is needed.

The scheduling problem is not well researched for fog-cloud infrastructures, despite having

been extensively studied for cloud settings as a single goal or multi-objective optimization

problem. In this research work, we first frame the problem as a multi-objective optimization

model that takes energy consumption reduction and makespan minimization into

account. Given the nature of competition between the two objectives, we employ an adaptive

weighted bi-objective cost function. Which of the two criteria—makespan or energy—a user

values more highly is indicated by the weight's value. The ultimate goal is to strike the ideal

balance between the amount of time it takes to complete an application and the energy used

to execute the process.

3.1 EERO: Energy Efficient resource Optimization for scientific workflow application

Workflows are utilized to carry out various experiments. While other resources

communicate with one another, a lot of data is transferred. In fog computing, the majority

of workflow tasks are performed locally on fog nodes as opposed to being sent to the

cloud. Nevertheless, load balancing optimization is required as data transmission between

several fog nodes increases to prevent either fog node from having too many jobs or too few

duties. As a result, these resources use more energy to complete the jobs, which drives up the

hardware cost of fog nodes. Therefore, load balancing can aid in enhancing system

performance and lowering the energy and execution time of workflow tasks.

In order to avoid resource overload in the scientific workflow application-based fog

computing, this section presented an architecture of load balancing (EERO) for fog

computing that reduces cost, execution time, and energy consumption. The suggested EERO

model is displayed in Figure 3.1

To enhance energy efficiency in fog computing—particularly for applications utilizing

scientific workflows—there is a need for a specialized framework. We introduce EERO

(Energy Efficient Resource Optimization) for Fog computing, aimed at minimizing costs,

execution time, and energy consumption. As illustrated in Fig. 1, the proposed EERO model

57

includes a three-layer structure for optimizing resources in an energy-efficient fog

architecture. These layers consist of the fog layer, the end-user layer, and the cloud layer.

This model retains the essential characteristics of standard fog computing architecture but

incorporates an improved fog layer. A detailed description of each layer follows.

End-user Layer: At the network’s edge, end users initiate requests that are directed to the fog

layer. With the growing demand, scientific workflow applications produce millions of tasks

per second. These tasks are first processed before being forwarded to the fog layer for

execution. To ensure an efficient distribution of work, we apply the Pareto distribution

method. While some tasks are handled within the fog layer, others are sent onward to the

cloud layer for processing.

Fog Layer: The fog layer is organized into multiple clusters, each containing a few fog

nodes. Each cluster includes a local controller responsible for monitoring fog nodes and

maximizing resource utilization. Users connected to the fog layer continuously send requests

to these fog nodes, generating a large volume of tasks due to the high number of users. This

setup brings connectivity services closer to the data-producing nodes at the most immediate

layer. The system comprises physical and virtual sensors, computing nodes, and other

components. Within the fog layer, there are small data centers—similar to limited-function

clouds—known as nano data centers. These centers have restricted processing and storage

capabilities, so only high-priority tasks are handled locally, while others are sent to the cloud

layer for processing.

Cloud Layer: The cloud layer connects with the fog layer to support future data transmission

and storage needs. This layer consists of large data centers equipped with extensive

networking, storage, and processing capabilities. These data centers provide repository

support for lower-priority tasks from nano data centers in the fog layer, allowing them to be

stored and accessed

for future use.

58

Figure 3.1 Energy Efficient Resource Optimization Model

3.1.1 Operating modules of EERO

In terms of operation, the proposed model is divided into three key modules: the optimization

module, the pre-processing module, and the parameter analysis module, as shown in Fig. 2. A

detailed description of the updated process for each module is provided below.

3.1.1 Initial Processing or Pre-Processing module: The Workflow Management System

(WFMS) is utilized to break down workflows into a series of activities, enabling their

automated and efficient execution. This system allows users to design and review workflows,

set budgets, specify time constraints, and choose preferred working conditions. To ensure

tasks are allocated effectively and stay within budget and deadlines, we employ the Pareto

distribution. After reviewing and implementing these parameters within the defined limits,

the WFMS assesses dependencies and sends completed tasks to the scheduler via the task

dispatcher.

3.1.2 Optimization Process or module: This method provides the user with full transparency

regarding the services they received while completing various tasks. When all nodes have the

necessary resources, the tasks assigned to the fog nodes are successfully completed.

However, if some tasks lack resources and the fog nodes are still underutilized, resource

59

optimization becomes necessary. To address this, we apply the PEFT ranking algorithm to

the available tasks.

3.1.3 Analysis Module for Parameters: After resource optimization, an analysis is

conducted on key parameters, including cost, energy usage, and execution time. If the

evaluation reveals that further optimization is needed, the tasks are sent back to the

optimization module for rescheduling.

Figure 3.2Operating module of EERO

The working method is explained in the fig 3.1.2

Key components of our methodology include:

 Workflow Management and Parsing: Utilizing the Workflow Management System

(WFMS), we parse complex workflows into manageable tasks, facilitating efficient

execution and resource allocation.

 Pareto Distribution: By applying the Pareto principle, we prioritize critical tasks,

ensuring optimal use of resources and balancing the load across the fog network.

 PEFT Ranking Algorithm: The Predict Earliest Finish Time (PEFT) algorithm ranks

tasks based on their dependencies and execution times, allowing for more effective

scheduling.

60

 Genetic Algorithm and Bayesian Optimization: These techniques are employed to

refine task scheduling, finding the optimal configuration that balances energy

consumption and execution time.

 Adaptive Re-Optimization: The system continuously monitors execution results,

dynamically adjusting schedules to address any inefficiencies or changes in workload

demands.

The implementation of these strategies within the EERO framework has demonstrated

significant improvements in the overall performance of fog computing environments. By

reducing the energy consumption and execution times, our model not only enhances the

efficiency of scientific workflows but also contributes to the sustainability of computational

infrastructures.

Figure 3.1.2 Working methodology of EERO

61

3.1.2 Assignment of a workflow task:

The process for distributing tasks among fog nodes is detailed here. The workflow organizer

collects tasks generated by users, places them into a queue, and holds them until processing

resources are ready. Remote users submit their workloads to fog nodes for execution. The

workflow scheduler prioritizes these tasks and assigns them to the fog’s local controller.

Once resources become available, tasks are sent for execution, and the task scheduler is

updated on their status afterward. This approach helps reduce the load on the fog layer by

allocating tasks as resources free up. The fog cluster's coordinator node oversees load

distribution across virtual machines, shifting tasks from overloaded virtual machines to idle

ones to balance the load effectively.

3.1.3 Proposed work flow model:

A Directed Acyclic Graph (DAG) can be represented by a set of vertices (V1, V2, V3…, Vn),

with edges (E1, E2, E3…, En) defining the processes in fog computing. Workflows in fog

computing can be considered NP-complete problems. In this context, vertices symbolize the

tasks assigned to virtual machines (VMs), labeled as "VM1, VM2, VM3…, VMn," while

edges denote the interactions between tasks T, such as "T1, T2, T3…, Tn." Workflow

weights are assigned to edges by specifying computation and communication times for each

task. Resources, represented as "R1, R2, R3…, Rn" within the fog and cloud layers, are

allocated to these tasks. This section presents models for time, cost, energy, makespan, and

objective functions in fog computing processes.

62

Table 3.1 Notations

Notation Description

Vertices V

Edge E

Virtual machine VM

Tasks T

Resource R

Total time 𝑇𝑡𝑖

Time required to receive a task TR

Time required in the processing of a

task

TP

Waiting time for a task Tw

Total Cost Tco

resource's ready time RRn

fitness function 𝜕

Optimize parameter 

Execution Time ET

Execution Cost EC

bjective function f(p)

63

Time: During workflow execution, a numerical solution can either continue with the current

execution phase or reschedule the remaining tasks by assessing the available execution time.

Key factors such as job dependencies, task variability, and computational capacity should be

accounted for when estimating the workflow's execution duration [16]. An important aspect

of scientific workflows is that some runtime components are designed stochastically, adding

unpredictability to execution estimates. Execution time in workflows is calculated as the total

duration from the start to the completion of a process, factoring in any waiting periods, such

as time spent awaiting resources or the completion of other tasks.

𝑇𝑡𝑖 = ∑𝑉𝑀𝑥 𝑇𝑅𝑒 + ∑𝑉𝑀𝑥 𝑇𝑝 + ∑𝑉𝑀𝑥 𝑇𝑤 (3.1)
𝑥=1

𝑇𝑡𝑖 = Total time

𝑥=1 𝑥=1

TRe = Time required to receive a task

TP = Time required in the processing of a task

Tw= Waiting time for a task

where VMx indicates how many virtual machines are there overall.

Cost: All cost metrics in this study are unit less and represent normalized values between 0

and 1 for theoretical comparison. Actual values depend on predefined simulation weights for

resource use, migration, and memory. In the execution of scientific procedures, both the cost

factor (CF) and the movement factor (MF) are considered. MF represents the ratio of

expenses incurred during task execution, factoring in migration and virtual machine (VM)

costs. CF is calculated as the ratio of the total process cost to the combined cost of the VM

and data center, adjusted by the amount of memory utilized by the task.

𝑇𝐶𝑜 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡)=(MF+CF)/2 (3.2)

Where MF defines the Movement factor and CF defines the Cost factor

MF= 1 ∑𝑉𝑀𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 (3.3)
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑠𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑐𝑒𝑛𝑡𝑒𝑟 𝑥=1 𝑈𝑠𝑒𝑑 𝑉𝑀

CF = ∑𝑉𝑀𝑥 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠∗𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

(3.4)

𝑥=1 𝑉𝑀∗𝐷𝑎𝑡𝑎 𝐶𝑒𝑛𝑡𝑒𝑟

64

𝑥=1

where VMx indicates how many virtual machines are there overall in the system. It is

possible to calculate the overall cost of a task that is on time and a task that is late.

Actual Cost = Cost of Underlined tasks + Cost of tasks which has crossed the deadline

(3.5)

Energy: Energy is calculated as the total of all instances' movement factor, time, and cost

factor. The following equation depicts how much energy the fog environment uses when

running operations.

Energy = ∑(𝑇𝑡𝑖 + 𝑀𝐹 + 𝐶𝐹)* Number of instances (3.6)

The three terms Tti, MF, and CF stand for total time, movement, and cost, respectively

Makespan: It represents the total time required to complete all assigned tasks using the

available resources. To estimate this, we use the Expected Time to Compute (ETC) matrix,

where Tj refers to a specific task and Rj indicates a particular resource. Efficient task

scheduling aims to minimize the makespan by balancing the workload across resources.

In this approach, tasks are assigned in a way that avoids overloading any single resource,

helping to reduce the total completion time. The completion time C for a given task on a

resource is calculated as

C=RRn+ERn

Here, RRn is the ready time of resource n, and ERn is the execution time of the task on that

resource. Once all completion times are computed, the makespan (MS) is defined as the

maximum value among them

MS=max(C (Tj,Rn)) (3.7)

Objective function: The objective of this study can be outlined using the previously

established models for makespan, cost, energy, and time.

f(p)= α * (Tti+Tco+ E + MS) (3.8)

65

In this model, the objective function f(p) aims to be minimized to achieve the best results.

Upon optimization by the algorithm, the fitness value is obtained. The parameters are

represented as follows: total cost Tc, energy consumption E , total time Tt , and makespan

MS

3.2 Optimization method used:

Utilizing EERO optimization techniques, the main goal is to reduce energy usage. The

proposed architecture is divided into four parts

A. Parsing of Workflows

B. Optimize the ranking

C. Optimize the task scheduling

D. Analysis the parameter

We begin by parsing workflows and assigning an optimal ranking. The first step involves

identifying the ideal Pareto front, followed by applying a PEFT-based ranking within that

region. Once ranked, we analyze the probability distribution correlation of these task ranks

and optimize through a Bayesian approach. The Pareto front, comprising nondominated

solutions, represents the best options if no goal can be improved without compromising

another. Alternatively, a solution x* is considered dominated by another solution x only if

x is equal to or better than x* across all objectives. Given that rankings are interdependent,

previous step data is utilized to create an efficient task mapping. Consequently, NSGA-II is

applied to achieve multi-objective optimization using equation 1, monitor resource usage, and

establish an optimal scheduling threshold for virtual machines. Bayesian optimization is

particularly employed to locate the global minimum with minimal iterations, providing an

effective framework for addressing similar challenges. So, parse the workflows as per the

parent-child relationship and the specified order, although many tasks will appear in the

series. On the same level, we go to the next phase and assign an optimal ranking.

Fitness function: F = 𝜕 (ET +EC+E) + (ET  EC  E) …. (3.9)

𝜕 =learning parameter

 =optimize parameter

ET=execution time

EC=execution cost

E=energy

66

To start, initialize N and W to represent the initial values for the number of fog nodes and

workflows, respectively. Fog nodes are transformed into parser trees once the nodes and

workflows are established. After creating parsing trees for fog nodes, computationally

intensive workflow jobs are divided into smaller task components, extracted from workflows,

and assigned to fog nodes. The first step involves identifying the optimal Pareto front, which

provides a solution to the multi-objective optimization problem. This Pareto front represents

a set of optimal, non-dominant options.

Algorithm 3.1: Optimal Pareto Front Selection

Input: Set of tasks with dependencies based on Time and Energy

Output: Optimized Pareto Front

1. D ← Identify task dependencies based on Time and Energy

2. Initialize:

iteration_count ← 0

MAX_ITER ← N

converged ← False

previous_pareto_front ← ∅

ε ← small threshold value (e.g., 1e-3)

3. While (NOT converged AND iteration_count < MAX_ITER):

a. Apply Dominate() using fitness function eq(3.9)

b. current_pareto_front ← Update Pareto Front

c. ΔFront ← compute_distance(previous_pareto_front, current_pareto_front)

d. If ΔFront < ε then

converged ← True

Break

e. previous_pareto_front ← current_pareto_front

f. iteration_count ← iteration_count + 1

4. Return Final Pareto Front

67

Algorithm 3.2: PEFT-Based Task Ranking

Algorithm: Task Ranking Based on Dependency and Dominance

Input: Pareto Front space

Output: Task ranking according to dependency and dominance

1. D ← Extract task dependencies from Pareto Front

2. Initialize:

iteration_count ← 0

MAX_ITER ← N

converged ← False

previous_rankings ← ∅
ε ← small threshold (e.g., 0)

3. While (NOT converged AND iteration_count < MAX_ITER):

a. For each pair of tasks (tᵢ, tⱼ) in Pareto Front:

i. If tᵢ > tⱼ (in terms of dependency or priority):

- Apply: Dominate(tᵢ) > Dominate(tⱼ)

- Update task rankings accordingly

b. current_rankings ← updated task rankings

c. ΔRank ← compute_ranking_difference(previous_rankings, current_rankings)

d. If ΔRank ≤ ε then

converged ← True

Break

e. previous_rankings ← current_rankings

f. iteration_count ← iteration_count + 1

4. Assign final task rankings based on updated Pareto region

5. Proceed to objective-based task scheduling

Algorithm 3.3: Bayesian Optimization for Task Ranking

Input: DAG (workflows) with PEFT Ranking

Output: Optimized Task Mapping and Scheduling

1. Initialize:

iteration_count ← 0

MAX_ITER ← N

converged ← False

improvement_threshold ε ← small value (e.g., 1e-3)

convergence_counter ← 0

patience ← P (e.g., 3)

2. While (NOT converged AND iteration_count < MAX_ITER):

68

a. For each task:

i. Compute task execution time and energy at each fog node

ii. Predict expected improvement EI(x) using Bayes: μ(x|D), σ(x|D)

iii. Store EI(x) for convergence tracking

b. max_EI ← max(EI(x) for all tasks)

c. If max_EI > ε then

Apply BayesOptimize()

convergence_counter ← 0

Else

convergence_counter ← convergence_counter + 1

d. If convergence_counter ≥ patience then

converged ← True

Break

e. iteration_count ← iteration_count + 1

3. Output: Final optimized task ranking and assignment

Workflows Parsing :The DAG workflow design reflects a parent-child relationship. If there's

an edge from Parent I to Child J within the DAG, it indicates that Child J is the successor of

Parent I. Due to task precedence constraints, Child J can only start after Parent I has

completed and passed the necessary information. Thus, workflows should be parsed

according to this parent-child relationship and the specified sequence, even when multiple

tasks are involved. We then proceed to determine the optimal order of tasks at the same level.

Ranking Optimization :This section is divided into three parts. First, tasks are ranked within

the optimized space based on our three research objectives: cost, energy, and time. The initial

step identifies the Pareto front, and the second phase ranks the region using PEFT. Next, we

establish the probability distribution relationship between these task ranks and the overall

process ranking, then apply a Bayesian optimization technique to refine it further. Optimizing

workflows can significantly enhance IT operations' overall efficiency. By automating routine

tasks and reducing manual intervention, businesses can allow their IT staff to focus on more

critical projects. This shift can improve customer service quality and make companies more

adaptable and responsive to changing business needs.

69

Pareto Front:

We assume that all objectives are to be minimized, as any maximization problem can be

transformed into a minimization problem. The Pareto set consists of a group of non-dominant

solutions representing trade-offs among the objectives. The values of these solutions form the

Pareto frontier, which is a powerful tool for identifying preferences and supporting decision-

making.

PEFT Ordering

Predict the Earliest Finish Time (PEFT) is a scheduling technique designed for use with a

limited number of heterogeneous processors. The algorithm operates in two stages: Task

Prioritization, which determines the order of task execution, and Processor Selection, which

identifies the most suitable processor for executing each task.

3.3 Workflow of the Algorithm:

1. Initialize System: Initializes system parameters, fog nodes, and cloud nodes.

2. EERO_Model: Main algorithm that processes workflows, optimizes task scheduling,

and assigns tasks to fog nodes.

3. WFMS_parse_workflow: Parses workflows into individual tasks.

4. Pareto_distribution: Distributes tasks based on the Pareto principle.

5. PEFT_ranking: Ranks tasks using the PEFT algorithm.

6. GA_Bayesian_optimization: Uses genetic algorithm and Bayesian optimization to

find the best task scheduling configuration.

7. Assign_task_to_fog_node_based_on_optimization: Assigns tasks to fog nodes

based on the optimized schedule.

8. analyze_execution: Analyzes execution results from fog nodes.

9. optimization needed: Determines if further optimization is needed based on

execution results.

10. re_optimize_schedule: Re-optimizes the task schedule if necessary.

70

Initialization

Algorithm: Initialize System

Input: None

Output: Initialized system parameters, fog nodes, cloud nodes

1. Initialize system parameters {cost, energy_consumption, execution_time}

2. For i = 1 to number_of_fog_nodes do

Create fog_node(i) with {RAM, CPU, bandwidth}

End For

3. Create cloud_nodes with {high_capacity_storage, processing_power}

End Algorithm

Algorithm: EERO_Model

Input: workflows, fog_nodes, cloud_nodes

Output: Optimized task scheduling and execution

1. Initialize_System()

2. For each workflow in workflows do

// Step 1: Pre-Processing

tasks = WFMS_parse_workflow(workflow)

distributed_tasks = Pareto_distribution(tasks)

// Step 2: Optimization Process

ranked_tasks = PEFT_ranking(distributed_tasks)

optimized_schedule = GA_Bayesian_optimization(ranked_tasks, fog_nodes)

// Step 3: Execute and Monitor Tasks

71

For each task in optimized_schedule do

Assign task to fog_node_based_on_optimization(task, fog_nodes)

End For

// Step 4: Analyze Results

execution_results = analyze_execution(fog_nodes)

If optimization_needed(execution_results) then

re_optimized_schedule = re_optimize_schedule(optimized_schedule, execution_results)

Assign re_optimized_schedule to fog_nodes

End If

End For

End Algorithm

Algorithm: WFMS_parse_workflow

Input: workflow

Output: tasks

1. Split workflow into tasks

2. Return tasks

End Algorithm

Algorithm: Pareto_distribution

Input: tasks

Output: distributed_tasks

72

1. Distribute tasks based on Pareto principle

2. Return distributed_tasks

End Algorithm

Algorithm: PEFT_ranking

Input: tasks

Output: ranked_tasks

1. Compute Optimistic Cost Table (OCT)

2. For each task in tasks do

Calculate earliest_finish_time(task)

End For

3. Sort tasks by earliest_finish_time

4. Return ranked_tasks

End Algorithm

Algorithm: GA_Bayesian_optimization

Input: ranked_tasks, fog_nodes

Output: optimized_schedule

1. Initialize population with ranked_tasks and fog_nodes

2. For generation = 1 to max_generations do

// Selection

selected_individuals = SELECTION(population)

// Crossover

offspring = CROSSOVER(selected_individuals)

73

// Mutation

mutated_offspring = MUTATION(offspring)

// Evaluate fitness

For each individual in mutated_offspring do

fitness = EVALUATE_fitness(individual, system_parameters)

Update_population(population, individual, fitness)

End For

// Bayesian Optimization

optimized_individual = Bayesian_optimization(population)

Update_population_with_optimized_individual(population, optimized_individual)

End For

3. Return best_individual_from_population(population)

End Algorithm

Algorithm: Assign_task_to_fog_node_based_on_optimization

Input: task, fog_nodes

Output: None

1. Find optimal_fog_node for task based on optimization

2. Assign task to optimal_fog_node

End Algorithm

74

Algorithm: analyze_execution

Input: fog_nodes

Output: execution_results

1. Collect execution data from fog_nodes

2. Return execution_results

End Algorithm

Algorithm: optimization_needed

Input: execution_results

Output: Boolean

1. If execution_results not meeting_thresholds then

Return True

Else

Return False

End Algorithm

Algorithm: re_optimize_schedule

Input: optimized_schedule, execution_results

Output: re_optimized_schedule

1. Re-optimize schedule based on execution_results

2. Return re_optimized_schedule

End Algorithm

75

Conclusion:

In this chapter, we introduced an innovative framework designed to enhance the efficiency

and optimization of resources in fog computing environments, particularly for scientific

workflow applications. Our proposed Energy Efficient Resource Optimization (EERO) model

offers a structured approach to managing and distributing computational tasks, emphasizing

energy conservation, cost reduction, and minimizing execution times.

The EERO model incorporates a multi-layered architecture comprising the end-user layer,

fog layer, and cloud layer. This hierarchical structure ensures that tasks are processed

efficiently at the edge of the network, leveraging the capabilities of fog nodes to handle local

computational demands while offloading more intensive tasks to the cloud as needed. This

strategic distribution significantly reduces latency and energy consumption, addressing the

core challenges of fog computing.

In conclusion, the EERO model presents a robust solution to the challenges of resource

optimization in fog computing. Its adaptive, multi-layered approach ensures that scientific

workflow applications are executed with maximum efficiency, paving the way for future

advancements in fog computing technologies. The integration of heuristic and probabilistic

techniques within the framework underscores the potential for continued innovation in this

field, promising more resilient and energy-efficient computing environments.

76

Chapter 4

Energy Efficient Resource Optimization algorithm for scientific workflows in Fog

Computing

4.1 Resource optimization algorithm

The previous chapter introduced a framework focused on resource utilization for scientific

workflows. This chapter presents an energy-efficient resource optimization algorithm tailored

for scientific workflow applications. The simultaneous data transmission from numerous

smart device users leads to resource shortages. Often, some resources are fully utilized while

others in the fog layer remain idle, resulting in wasted resources and power. Optimizing

resources in the fog computing layer is challenging, as it aims to minimize cost and energy

consumption. Load imbalance in the fog layer also wastes bandwidth, reducing throughput

and increasing user response time. These issues arise from the constrained environment and

limited resource availability.

The EERO algorithm is designed to improve the efficiency of fog computing by balancing

the load and optimizing the scheduling of tasks. It integrates several optimization techniques

to achieve this goal. The main components of the EERO algorithm include:

1. Pre-Processing Module: This module uses the Workflow Management System

(WFMS) to split workflows into a collection of tasks. Tasks are then distributed based

on the Pareto distribution to ensure they are within budget and deadline constraints.

2. Optimization Module: This module applies the PEFT (Pareto Efficient Task) ranking

algorithm to rank tasks and uses Bayesian optimization to find the optimal task

scheduling.

3. Parameter Analysis Module: After optimization, this module analyzes parameters

like cost, energy consumption, and execution time. If further optimization is needed,

tasks are returned to the optimization module.

77

Figure 4.1 Working of EERO

Fog computing is gaining popularity in the Internet of Things (IoT) world. Instead of relying

only on cloud datacentres for computing and storing IoT data, fog computing provides local

storage and processing right where users need it. This makes IoT more efficient and

accessible.

Deciding whether to run applications in the fog layer or the cloud is important for

maintaining service quality. To manage this, a cloud-fog scheduler is used to ensure tasks are

processed without delays.

Load balancing is key to keeping fog computing systems running smoothly. However,

because the fog environment is spread out and has many users, balancing the load can be

tricky. With more users, the load fluctuates, making it hard to distribute work evenly. To

make the best use of resources in a fog environment, it's important to spread the load across

all available virtual machines (VMs) to avoid overloading or underutilizing them.

Scientific workflows are data-intensive applications that handle distributed data sources and

complex computations across various fields like astronomy, engineering, and bioinformatics.

In distributed environments such as fog computing, numerous sensors and experimental

processes produce large volumes of data that must be collected and processed within specific

time constraints. Fog computing utilizes geographically distributed resources to manage and

process this data efficiently.

Despite its advantages over cloud computing, fog computing faces several challenges. One

significant challenge is balancing the load during the execution of scientific workflow tasks

78

in a complex resource environment. These tasks require real-time implementation, but the

substantial data volume can overload fog computing resources. Therefore, it is essential to

evenly distribute the data across available resources to ensure real-time processing. Proper

distribution of tasks helps in efficient resource utilization, saving both energy and execution

time[61]. Scientific workflows are complex, often considered NP-complete problems,

involving a series of computational tasks for various scientific applications. These workflows

are typically represented as Directed Acyclic Graphs (DAGs), which consist of vertices (V1,

V2, V3, ..., Vn) and edges (E1, E2, E3, ..., En). The vertices symbolize different workflow

tasks that are assigned to corresponding virtual machines (VM1, VM2, VM3, ..., VMn),

while the edges denote the communication between tasks (T1, T2, T3, ..., Tn). Essentially, a

DAG is depicted as a tree structure with nodes and connecting edges, where these edges are

weighted based on communication and computation time. Various types of workflows can be

executed using fog computing, leveraging this DAG representation for efficient task

management.

Fig: 4.2 Example of workflow

79

A Directed Acyclic Graph (DAG) is a fundamental structure used in scientific workflows to

represent and manage a series of computational tasks. Here are some key points explaining its

use:

1. Representation of Tasks and Dependencies:

 Vertices: Each node (or vertex) in a DAG represents an individual task

in the workflow. These tasks could be any computational step required

by a scientific application.

 Edges: The directed edges between nodes indicate dependencies

between tasks. An edge from task A to task B signifies that task B

cannot start until task A has been completed.

2. Execution Order:

 The acyclic nature of the graph ensures that there are no circular

dependencies, which means the tasks can be scheduled and executed in

a specific order. This order respects the dependencies defined by the

edges.

3. Parallel Processing:

 DAGs enable the identification of independent tasks that can be

executed in parallel. Tasks that do not have direct or indirect

dependencies on each other can be processed simultaneously,

optimizing resource usage and reducing execution time.

4. Resource Allocation:

 In distributed computing environments, such as fog computing, tasks

represented by nodes can be mapped to various virtual machines

(VMs) or other computational resources. This mapping helps in

effectively utilizing available resources.

5. Load Balancing:

80

 DAGs help in distributing the workload evenly across different

resources. By analyzing the graph, the system can allocate tasks to

prevent overloading any single resource and ensure efficient task

execution.

6. Performance Optimization:

 Weights can be assigned to the edges representing the communication

or computation time between tasks. This information helps in

optimizing the workflow by minimizing data transfer times and

balancing computation loads.

7. Flexibility and Scalability:

 DAGs offer a flexible structure that can be easily modified to

accommodate changes in the workflow. New tasks can be added, or

existing tasks can be removed or altered without disrupting the overall

structure.

 They also support scalability, as tasks can be distributed across various

resources in a geographically distributed environment, like fog or

cloud computing.

8. Error Handling and Recovery:

 In case of a failure in one of the tasks, DAGs facilitate error handling

and recovery by allowing the system to identify the failed task and re-

execute it or take corrective measures without affecting the entire

workflow.

By representing scientific workflows as DAGs, complex computational processes can be

systematically managed, scheduled, and executed, ensuring efficiency, reliability, and

optimal resource utilization.

Examples of workflows from different domains, showcasing how tasks are structured,

managed, and executed using a workflow system:

81

1. Bioinformatics Workflow

 DNA Sequencing: A common workflow in bioinformatics involves the sequencing of

DNA samples.

 Tasks: Sample preparation, sequencing, data cleaning, alignment of

sequences, identification of genetic variants, annotation of variants,

and reporting.

 Tools: Various software tools like FASTQC for quality control, BWA

for sequence alignment, GATK for variant calling, and custom scripts

for data processing.

2. Astronomy Workflow

 Image Processing: Processing data from telescopes to generate usable

astronomical images.

 Tasks: Data acquisition, calibration (removing noise and errors),

alignment of images from multiple exposures, stacking (combining images

to enhance signal), and final image enhancement.

 Tools: Software like IRAF for image processing, DS9 for visualization,

and custom scripts for data handling.

3. Engineering Workflow

Finite Element Analysis (FEA): Simulating physical phenomena using

computational models.

 Tasks: Pre-processing (defining geometry, material properties, boundary

conditions), meshing (dividing the geometry into smaller elements), solving

(running simulations), and post-processing (analyzing results and visualizing

data).

 Tools: Software like ANSYS or Abaqus for simulation, and MATLAB or

Python for custom post-processing scripts.

4. Business Process Workflow

82

 Order Processing: Managing customer orders in a retail or manufacturing

environment.

 Tasks: Order entry, payment processing, inventory check, order fulfilment,

shipping, and customer notification.

 Tools: ERP systems like SAP or Oracle, CRM tools for customer

management, and custom software for specific process steps.

5. Data Science Workflow

 Machine Learning Model Development: Creating predictive models from data.

 Tasks: Data collection, data cleaning, exploratory data analysis, feature

engineering, model training, model validation, and deployment.

 Tools: Programming languages like Python or R, libraries such as pandas,

scikit-learn, TensorFlow, and cloud platforms like AWS or Azure for

deployment.

6. Healthcare Workflow

 Patient Management: Coordinating patient care in a hospital.

 Tasks: Patient registration, appointment scheduling, medical examination,

diagnostics (lab tests, imaging), treatment planning, and follow-up.

 Tools: Electronic Health Record (EHR) systems, medical imaging software,

and custom hospital management software.

7. Media Production Workflow

 Video Production: Creating a film or a video segment.

 Tasks: Scriptwriting, storyboarding, shooting, editing, visual effects, sound

editing, and final rendering.

 Tools: Software like Adobe Premiere Pro, Final Cut Pro, After Effects for

visual effects, and Audition for sound editing.

83

Resource Optimization based Workflow Execution model for Fog Computing:

This section introduces a workflow execution model tailored for fog computing

environments, focusing on optimizing resources. Fog computing, when handling extensive

computational tasks, encounters challenges such as scheduling loads, balancing those loads,

and utilizing resources efficiently. Our proposed solution aims to improve resource utilization

and decrease energy consumption in fog nodes.

The first layer is the end-user layer, where users generate numerous workflow tasks. These

tasks are temporarily stored in a workflow container before being assigned to the workflow

scheduler. Here’s how the process works:

1. The workflow container submits tasks to the workflow scheduler in the order they

arrive.

2. The workflow scheduler has a queue where tasks wait for resources. Tasks enter the

queue at the back and are removed from the front.

3. As resources become available, tasks are taken from the queue and assigned to the

central controller in the fog layer.

Fog Layer:

The second layer of the workflow execution model is the fog layer, which consists of various

fog clusters containing multiple fog nodes. This layer also has a central controller that

manages the fog clusters. The central controller checks for available nodes in each cluster and

assigns tasks to those available nodes.

Fog Layer Execution: Load Balancing and Task Assignment

Once the optimized task schedules have been generated, the central controller in the fog layer

takes charge of executing the tasks. It receives workflow tasks from the workflow scheduler

and employs a load balancer to continuously monitor all fog nodes across the distributed fog

clusters. To ensure efficient task distribution, the system uses the PSW-Fog clustering-based

load balancing method, which evenly assigns tasks among available nodes based on real-time

resource availability.

Each fog cluster comprises multiple fog nodes, and each node hosts several virtual machines

(VMs) responsible for executing the assigned tasks. High-priority tasks are processed

84

immediately on the most suitable VMs, while lower-priority tasks may be queued or

offloaded to the cloud layer for further handling if local resources are insufficient.

The fog layer emphasizes real-time processing, aiming to minimize latency and optimize

local resource utilization. Once tasks are executed, users receive responses directly from the

fog layer, improving response time and reducing reliance on the cloud.

Cloud Layer Execution: Extended Processing and Storage

The cloud layer represents the third and final tier of the workflow execution model. It

consists of large-scale data centres equipped with vast computational, networking, and

storage resources. This layer serves as a backup and support infrastructure for handling tasks

that exceed the capabilities of the fog layer.

Once tasks are executed in the fog layer, the results are returned to users. However, if

additional computation, long-term storage, or batch processing is required, those tasks are

escalated to the cloud layer. The cloud handles such overflow tasks with greater processing

power, albeit with higher latency. The objective of the proposed workflow execution model is

to minimize execution time within the fog layer, thereby reducing the burden on cloud

resources and improving overall system efficiency.

4.3 Efficient Resource Optimization

The optimization of scientific workflows in cloud computing environments presents

significant challenges due to the conflicting objectives of minimizing execution time, energy

consumption, and costs while maintaining quality of service (QoS) standards. This research

work proposes a novel approach using a multi-objective genetic algorithm to address these

challenges effectively. The algorithm leverages a combination of heuristic and meta-heuristic

techniques, including Predict the Earliest Finish Time (PEFT) and Bayesian optimization, to

enhance task scheduling efficiency.

The core of the proposed method is a multi-objective genetic algorithm that constructs a

Pareto front to identify non-dominated solutions, providing a balanced trade-off among

different optimization criteria. The PEFT heuristic predicts the earliest completion times for

tasks, allowing for more efficient scheduling. Additionally, Bayesian optimization is

employed to improve the reliability and convergence speed of the algorithm by incorporating

probabilistic models into the decision-making process.

4.3.1 Optimization approach used in our proposed algorithm:

This research work proposes a multi-objective genetic algorithm to address the complex

problem of optimizing scientific workflows in cloud computing environments. This method is

designed to simultaneously minimize multiple conflicting objectives such as execution time,

energy consumption, and cost, while ensuring the Quality of Service (QoS) standards.

Key Components of the Algorithm:

In the methodology, the first step is workflow parsing, which involves understanding and

organizing the tasks based on their dependencies. This is crucial for ensuring that tasks are

85

executed in the correct sequence, respecting the dependencies inherent in the workflow. The

process is outlined as follows:

1. Directed Acyclic Graph (DAG): The workflow is represented as a DAG, where each

node represents a task and each edge represents a dependency between tasks. The

DAG ensures there are no cycles, meaning that there is a clear start and end point for

the workflow.

2. Parent-Child Relationship:

 Parent Task: A task that must be completed before another task can begin.

 Child Task: A task that depends on the completion of a parent task.

3. Parsing Process:

 Identification of Dependencies: Each task's dependencies are identified based

on the edges in the DAG. If there is an edge from Task A to Task B, Task B is

considered a child of Task A.

 Execution Order: The tasks are then arranged in a sequence that respects these

dependencies. A task can only begin execution once all its parent tasks have

been completed.

 Level Assignment: Tasks are assigned levels based on their position in the

DAG. Tasks with no parents are at level 0, their children are at level 1, and so

on. This helps in organizing the tasks for subsequent ranking and scheduling

processes.

This parsing ensures that the workflow's logical structure is maintained and that all

dependencies are respected during execution. By correctly parsing the workflow into its

parent-child relationships, the methodology sets a foundation for efficient scheduling and

optimization, ensuring that no task is executed before its prerequisites are satisfied.

Next in the context of optimizing scientific workflows in cloud environments, handling

multiple conflicting objectives is crucial. Objectives such as minimizing execution time,

reducing cost, and lowering energy consumption often conflict with one another. For

reducing execution time might increase energy consumption or cost. Pareto front

optimization provides an effective means to navigate these trade-offs by identifying a set of

optimal solutions that balance the different objectives. The Pareto front is a concept used in

multi-objective optimization to identify a set of non-dominated solutions, where no single

solution is superior to the others in all objectives. This allows for a balanced trade-off among

the different optimization criteria. This process can be detailed as follows:

Consider a multi-objective optimization problem with k objective functions

𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥).

86

The goal is to minimize these functions simultaneously:

𝑚𝑖𝑛𝑥 ∈ (𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]

This expression represents a multi-objective optimization problem where you aim to

minimize the vector of objective functions f(x) over the feasible solution space X. Each fi(x)

is an individual objective function.

A solution 𝑥₁ is said to dominate another solution 𝑥₂ if:

𝑥₁ ≺ 𝑥₂ ⟺ ∀𝑖, 𝑓ᵢ(𝑥₁) ≤ 𝑓ᵢ(𝑥₂) 𝑎𝑛𝑑 ∃𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓ⱼ(𝑥₁) < 𝑓ⱼ(𝑥₂)

The Pareto optimal set P∗ and Pareto front PF are defined as:

𝑃 ∗= { 𝑥 ∈ 𝑋 ∣ ∄𝑦 ∈ 𝑋𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑦 ≺ 𝑥 }

𝑃𝐹 = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑃 ∗}

This provides a diverse set of solutions, offering various trade-offs between objectives. This

diversity is crucial for decision-makers to choose the most appropriate solution based on

specific needs and constraints.

In the context of this study, the Pareto front helps in identifying the optimal scheduling of

tasks that balance between minimizing time, cost, and energy consumption.

1. Predict the Earliest Finish Time (PEFT):

 PEFT is a heuristic that estimates the earliest possible completion time for

tasks based on their dependencies and the available computing resources.

 This prediction is crucial for efficient scheduling as it allows the algorithm to

prioritize tasks that can be completed earlier, thereby improving overall

workflow execution time.

PEFT algorithm calculates the earliest finish time for each task using the following steps:

Initialization:

For each task ti_ initialize the Earliest Start Time (EST) and Earliest Finish Time (EFT).

87

For the entry task (a task with no predecessors), the EST is set to zero.

Calculate EST and EFT:

 For each task ti_:

o Calculate the Earliest Start Time (EST) based on the Earliest Finish Time

(EFT) of its predecessors.

The EST for task tit_iti is given by:

𝐸𝑆𝑇(𝑡𝑖) = 𝑡𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑡𝑖)𝑚𝑎𝑥(𝐸𝐹𝑇(𝑡𝑗))

where pred(ti) is the set of predecessor tasks of ti

Calculate the Earliest Finish Time (EFT) by adding the execution time of the task to its EST:

𝐸𝐹𝑇(𝑡𝑖) = 𝐸𝑆𝑇(𝑡𝑖) + 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒(𝑡𝑖)

Then we do rank Tasks

 Rank tasks based on their EFT. Tasks with earlier EFTs are given higher priority.

Bayesian Optimization (BO) is used to optimize the ranking process further by predicting

the best task orderings and resource assignments. It incorporates probabilistic models to

make informed decisions about the scheduling of tasks. This approach helps in refining

the search process by focusing on the most promising areas of the solution space, thereby

improving the convergence speed and quality of the solutions.

Bayesian Optimization involves the following steps:

Surrogate Model Construction: A probabilistic model (typically a Gaussian Process) is

used to approximate the objective function.

Acquisition Function Maximization: An acquisition function, which balances exploration

and exploitation, is optimized to decide the next point to evaluate.

Objective Function Evaluation: The true objective function is evaluated at the selected

point.

88

1

Model Update: The surrogate model is updated with the new data.

Objective Function: Let f(x) be the objective function representing the performance

measure (e.g., makespan, cost, energy consumption) that needs to be minimized. Here, x

represents the task orderings and resource assignments.

Surrogate Model: A Gaussian Process (GP) is used as the surrogate model. The GP

provides a posterior distribution over the objective function f(x) given a set of observed

data 𝐷 = {(𝑥𝑖, 𝑦𝑖)} = 𝑛
where yi_ is the observed value of the objective

function at xi

The posterior distribution is given by:(𝑥) ∼ 𝑁(𝜇(𝑥), 𝜎2(𝑥))

Where (𝒙) is the mean function and (𝒙) is the variance function of the GP

Acquisition Function: The acquisition function α(x) is used to determine the next point

to evaluate. Common choices include Expected Improvement (EI), Probability of

Improvement (PI), and Upper Confidence Bound (UCB).

The Expected Improvement (EI) is defined as:(𝑥) = 𝐸[𝑚𝑎𝑥(0, 𝑓(𝑥+) − 𝑓(𝑥))]

where x+ is the best observed point so far.

Optimization of Acquisition Function:

The next point Xn+1 to evaluate is chosen by maximizing the acquisition function

𝑥𝑛 + 1 = 𝒂𝒓𝒈𝒎𝒂𝒙 (𝑥)

Heuristic and Ranking Approaches

The algorithm integrates several heuristic and ranking techniques to improve the efficiency of

task scheduling:

1. Efficient Ranking Heuristic:

89

 This heuristic ranks tasks based on their importance and urgency. The ranking

is used to determine the order in which tasks should be scheduled, ensuring

that critical tasks are prioritized.

 The heuristic considers factors such as task dependencies, deadlines, and

resource availability to generate an optimal schedule.

2. Bayesian Approach:

 The Bayesian approach is used to incorporate uncertainty and probabilistic

reasoning into the scheduling process. It helps in predicting the outcomes of

different scheduling decisions and selecting the best course of action.

 This method enhances the robustness of the scheduling algorithm by

accounting for the variability in task execution times and resource

performance.

The proposed optimization framework combines the strengths of the genetic algorithm, PEFT

heuristic, and Bayesian optimization to tackle the multi-objective optimization problem

effectively.

1. Initialization:

 The genetic algorithm starts with an initial population of potential solutions,

each representing a possible schedule for the workflow tasks.

 These initial solutions are generated randomly or based on simple heuristics to

cover a diverse range of possible schedules.

2. Selection:

 The selection process involves choosing the most promising solutions from the

current population based on their fitness. The fitness is evaluated using the

multi-objective criteria of time, cost, and energy consumption.

 Solutions that lie on the Pareto front are given higher priority as they represent

the best trade-offs among the different objectives.

3. Crossover and Mutation:

 The algorithm applies crossover and mutation operators to generate new

solutions from the selected ones. Crossover combines parts of two solutions to

create a new one, while mutation introduces small changes to a solution to

explore the solution space.

90

 These operators ensure the diversity of the population and help in avoiding

local optima.

4. Evaluation:

 The new solutions are evaluated using the PEFT heuristic and Bayesian

optimization to estimate their performance in terms of the defined objectives.

 The evaluation process involves calculating the execution time, cost, and

energy consumption for each solution, and updating the Pareto front

accordingly.

5. Iteration:

 The algorithm iterates through the selection, crossover, mutation, and

evaluation steps until a stopping criterion is met, such as a maximum number

of generations or convergence to a stable Pareto front.

91

CHAPTER 5

RESULTS AND DISCUSSION

This chapter primarily deals with verifying and validating the proposed framework. It

outlines the experimental prerequisites and explains the performance evaluation metrics. The

EERO framework was implemented using the iFogSim toolkit, and the results were

compared to algorithms like ABC, ACO, Tabu Search, and GWO. The analysis of the result

graphs shows that the proposed methods deliver superior performance compared to these

existing algorithms.

The chapter is structured into two phases. The first phase assesses the proposed EERO

framework, while the second evaluates a resource-utilization-based workflow execution

model for fog computing, along with an energy-aware load balancing algorithm. The

iFogSim toolkit was used to obtain the results, and three key metrics—cost analysis,

execution time, and energy consumption—were analyzed in both phases. The research

focuses on four scientific workflows (LIGO, Sipht, Genome, and Cybershake) sourced from

the "Pegasus" repository [https://pegasus.isi.edu/workflow_gallery/]. Result graphs were

generated based on the evaluation of these workflows across 20 to 200 fog nodes. The

findings indicate that as the number of fog nodes increases, so do execution time, cost, and

energy consumption. However, the proposed framework and algorithms significantly reduce

these factors compared to existing approaches. Each experiment also discusses the necessary

experimental requirements.

5.1 Validation and verification of the suggested framework EERO

To develop an energy-saving strategy for workflow-based applications in fog computing, the

study proposes an approach that emphasizes reducing execution time, implementation costs,

and energy consumption across fog nodes.. To validate the method, three different

experiments were conducted. The results are presented through three test cases: the first

examines implementation costs, the second evaluates the execution time of workflow

applications, and the third assesses energy consumption across various resources. The

92

experiments involved running calculations on fog nodes ranging from 2 to 200, with an

average of forty runs conducted to ensure statistical accuracy.

This section presents the simulation results generated using iFogSim, a simulator designed

for edge computing, IoT, and fog environments to manage IoT services and simulate

networks and various applications. iFogSim operates in conjunction with CloudSim, which

offers a comprehensive library for simulating cloud environments and managing resources.

CloudSim is responsible for handling interactions and events between the different fog

components.

5.1.1 Experimental setup

Several experimental requirements were taken into account to assess the proposed approach.

The study was conducted using a 64-bit Windows 7 operating system. For simulation

purposes, iFogSim, a highly capable simulation tool, was employed to demonstrate the

results. The fog computing layer was organized into fog clusters, each consisting of multiple

fog nodes. Additional requirements are detailed in a table format.

Table 5.1 outlines the necessary requirements for achieving the simulation results. iFogSim,

an open-source, high-performance toolkit, is utilized for simulating environments in fog

computing, IoT, and edge computing. It helps in modeling fog and IoT networks, working

alongside CloudSim. iFogSim comprises three key components: physical components, which

include physical fog nodes; logical components, consisting of various application modules

and application edges; and management components, which handle module mapping objects

and the fog controller[63].

Why choose iFogSim for simulation results?

iFogSim is an open-source, high-efficiency toolkit designed for simulating fog computing,

IoT, and edge computing environments. It enables the modeling of fog and IoT networks and

operates in conjunction with CloudSim. iFogSim consists of three primary components:

physical components, which include physical fog nodes; logical components, comprising

various application modules and edges; and management components, which handle module

mapping and the fog controller [64].

iFogSim is chosen for this work due to its user-friendly interface and low complexity. Built

on the simple CloudSim platform, which is widely recognized as a leading cloud computing

simulator, iFogSim extends the functionality of CloudSim by allowing the simulation of fog

computing environments with multiple fog nodes and IoT devices (such as sensors and

actuators). Despite its advanced capabilities, iFogSim is designed so that users without prior

experience with CloudSim can easily navigate the fog computing infrastructure, service

93

placement, and resource allocation policies. It operates using the sense-process-actuate and

distributed data flow models, enabling the simulation of various fog computing scenarios

while making it easier to evaluate metrics such as end-to-end latency, network congestion,

energy consumption, operational costs, and resource quotas [65].

Table 5.1 Required Parameter

Parameter Value

Simulator iFogSim

Bit 64

Operating System Windows7

MIPS 2000

No. of Hosts 1 to 2

RAM 200MB

No. of Fog Nodes 2 to 200

Number of Tasks 100-1000

Number of

Workflows

10 to 12

Bandwidth Up to 60 Mbps

5.1.2 Results and discussion:

Scientific workflows represent tasks as Directed Acyclic Graphs (DAGs), which are

generated by various sensors and actuators in applications such as astronomy, e-healthcare,

intelligent traffic management, and more [66] [67]. Several types of scientific workflows

exist, including CyberShake, Genome, SIPHT, LIGO, and Epodomic [68]. In DAGs, tasks

are depicted as connected nodes, where the nodes represent individual tasks and the edges

illustrate the communication between them. For this research, the LIGO, CyberShake,

SIPHT, and Genome workflows were used in the experimental analysis. Specifically,

CyberShake is employed to assess earthquake hazards by the Southern California Earthquake

Center [69]. Cybershake can be considered a data-heavy workflow, requiring substantial CPU

and memory resources. The LIGO workflow, short for Laser Interferometer Gravitational-

Wave Observatory, is a system used in physics to detect gravitational waves on Earth. Due to

the large-scale nature of its tasks, LIGO demands even greater CPU and memory resources,

94

often requiring memory-optimized virtual machines (VMs) [70] [71]. SIPHT, developed at

Harvard University for bioinformatics research, is employed to identify bacterial replicons,

specifically searching for small RNAs (sRNA) involved in regulating bacterial secretion

processes. The National Center uses the SIPHT workflow to streamline the search for genes

encoded in sRNA [70] [71]. GENOME, introduced by Hans Winkler in 1920, is used in

genetics and biology to gather an organism's genetic material, such as RNA or DNA, which

may include both coded and non-coded DNA. The study of these genomes is referred to as

genomics [72].

This section presents the results from the implementation of the proposed algorithm.

Executing scientific workflow data sets in a real-time setting poses challenges, so these

workflows are executed within a simulation environment. Specifically, the iFogSim

simulator, integrated with Eclipse, is utilized to reduce execution time, cost, and energy

consumption. Various scientific workflow data sets, such as LIGO, Cybershake, Genome,

and Sipht, are used for the experimental analysis.

For the simulation results, iFogSim is utilized to evaluate the performance of the EERO

technique. The outcomes of the proposed technique are compared with those of existing

methods, including ABC, ACO, Tabu Search, and GWO, to demonstrate that EERO performs

more effectively. A range of applications is examined to assess the efficiency of our proposed

technique [72].

(a) Genome

Cost Genome

7000
6000

5000

4000

3000

2000

1000
0

0 20 40 60 80 100 120 140 160 180 200

No. Of Fog Nodes

ABC(Cost) Tabu search(cost) ACO(cost)

GWO(cost) Tabu-GWO-ACO(cost) EERO (COST)

C
os

t

95

(b) Ligo

(c) Sipht

Ligo Cost

8000

7000

6000

5000

4000

3000

2000

1000

0

0 20 40 60 80 100 120 140 160 180 200

No. Of Fog nodes

ABC Tabu ACO GWO Tabu-ACO-GWO EERO

GWO(cost) Tabu-GWO-ACO(cost) EERO (COST)

ACO(cost) Tabu search(cost) ABC(Cost)

80 100 120 140 160 180 200

No. of Fog nodes

60 40 20 0

7000

6000

5000

4000

3000

2000

1000

0

Cost sipht

Co
st

Co

st

96

(d) Cyber Shake

Figure 5.1: Cost Analysis of different workflow with EERO

Test Study I: Analysis of Cost ; Various types of workflow tasks are distributed to fog nodes, and

their performance is evaluated. However, increasing the number of fog nodes in the fog layer leads to

higher cost consumption. This study focuses on the execution of Genome, Cybershake, Sipht, and

LIGO workflows, comparing the proposed approach with several existing methods. In Figure 5.1, four

subfigures illustrate the results of different workflow executions. Figure 5.1(a) presents the execution

outcome for the Genome scientific workflow, with the x-axis representing the number of fog nodes

and the y-axis showing the cost. As the number of fog nodes increases, the implementation cost also

rises. This study introduces an EERO approach that utilizes load balancing to reduce costs. The figure

demonstrates that the proposed method results in lower costs compared to other techniques such as

ABC, ACO, Tabu Search, and GWO. Similarly, the execution results for other workflows, including

LIGO, Sipht, and Cybershake, are also provided using fog computing. In a similar manner, other

workflows such as LIGO, Sipht, and Cybershake tasks have been processed using fog computing, and

their outcomes have been stored. These results are illustrated in Figure 5.1(a), (b), (c), and (d). The

performance of the workflows, which were allocated to fog nodes, was thoroughly evaluated. It was

found that increasing the number of fog nodes in the fog layer raises the overall cost. This research

focused on executing four scientific workflows—Genome, Cybershake, Sipht, and LIGO—and

compared the proposed method with existing techniques. For the Genome and LIGO workflows, the

implementation cost was reduced by 3% when using EERO compared to other methods, while for

Sipht and Cybershake, the reduction was 4% compared to current approaches.

GWO(cost) Tabu-GWO-ACO(cost) EERO

ACO(cost) Tabu search(cost) ABC(Cost)

80 100 120 140 160 180 200

No. Of Fog Nodes

60 40 20 0

8000
7000

6000

5000

4000

3000

2000

1000

0

Cost Cyber
Co

st

97

Test Case II: Analysis of Execution Time

The scientific workflows, including Genome, LIGO, Sipht, and Cybershake, involve large datasets,

which are broken down into tasks that are distributed to fog nodes for processing. Since these

workflows are extensive, more fog nodes are required to handle the execution of the tasks. As the

number of tasks increases, so does the execution time. In this study, the proposed technique was

implemented to analyze the execution time of tasks within the fog layer.

Scientific workflows like Genome, LIGO, Sipht, and Cybershake involve large datasets, where tasks

are distributed to fog nodes for processing. To handle these complex tasks, the fog layer requires

additional nodes. As the number of tasks increases, so does the execution time. After implementing

the proposed approach, the execution time for tasks in the fog layer was analyzed. Figure 5.2 presents

the execution time analysis for various workflow tasks, calculated from the moment of task

submission to the completion of execution, including the time spent in the queue.

Figure 5.2 is divided into four sections, illustrates the execution time for the workflows Genome,

Sipht, LIGO, and Cybershake. The y-axis represents the execution time, while the x-axis indicates the

number of fog nodes. The graphs reveal that as the number of fog nodes increases, the execution time

also rises. The proposed EERO algorithm was used to reduce the execution time of tasks in these

workflows. With EERO, execution time was decreased by 25% for Genome and 12% for LIGO

compared to other existing methods. Similarly, the execution times for the Sipht and Cybershake

workflows were reduced by 18% and 20%, respectively, using EERO.

(a) Genome

ACO(Time delay) GWO(Time delay)

Tabu-GWO-ACO(Time delay) EERO (Time delay)

Tabu search(Time delay) ABC(Time delay)

80 100 120 140 160 180 200

No. Of Fog Nodes

60 40 20 0

6000

5000

4000

3000

2000

1000

0

Genome time delay

Ti
m

e
de

la
y

98

(b) Ligo

(C)Sipht

Tabu-GWO-ACO(Time delay) EERO (Time delay)

Tabu search(Time delay)

GWO(Time delay)

ABC(Time delay)

ACO(Time delay)

80 100 120 140 160 180 200

No. Of Fog Nodes

60 40 20 0

4000

3000

2000

1000

0

LIGO Time delay

Sipht Time Delay

4000

3000

2000

1000

0

0 20 40 60 80 100 120 140 160 180 200

No. Of Fog nodes

ABC(Time delay) Tabu search(Time delay)

ACO(Time delay) GWO(Time delay)

Tabu-GWO-ACO(Time delay) EERO (Time delay)

Cybershake Time Delay

4000

3000

2000

1000

0

0 20 40 60 80 100 120 140 160 180 200

No. Of Fog Nodes

ABC(Time delay) Tabu search(Time delay)

ACO(Time delay) GWO(Time delay)

Tabu-GWO-ACO(Time delay) EERO (Time delay)

Ti
m

e
de

la
y

Ti
m

e
de

la
y

Ti
m

e
D

el
ay

99

(d)CyberShake

Fig. 5 .2 Analysis of the execution times of various workflows

Test Study III: Energy Consumption Analysis

In this study, the focus is on analyzing the energy consumption of multiple fog nodes within

the fog layer, which plays a crucial role in executing various tasks. As the number of tasks

increases, more resources are required, leading to a corresponding rise in energy

consumption. The relationship between resource usage and energy consumption becomes

apparent as the workload grows, necessitating an efficient strategy to manage this

consumption.

Figure 5.3 illustrates the energy usage patterns of fog nodes using the EERO technique. The

graphs (Fig. 5.3 a, b, c, and d) display energy consumption on the x-axis and the number of

fog nodes on the y-axis. It becomes evident from the figures that as the number of tasks

increases, the need for more fog nodes also grows, which results in higher energy

consumption. The greater the number of nodes engaged in processing, the more energy is

consumed, making energy efficiency a critical consideration in such environments.

The proposed solution, EERO, aims to optimize this situation by balancing the load across

the fog nodes, thereby reducing overall energy consumption. The results demonstrate that the

EERO technique outperforms other existing methods in managing energy usage. For

example, in the Genome and LIGO workflows, EERO successfully reduces energy

consumption by 22.69% and 25%, respectively. Similarly, in the Sipht and Cybershake

workflows, EERO achieves reductions of 25% and 24.56%, respectively. These findings

highlight the effectiveness of EERO in lowering energy consumption while maintaining task

execution efficiency across various workflows.

100

(a) Genome

(b) Ligo

Tabu-GWO-ACO(Energy(Kjoule)) Tabu search(Energy(Kjoule))

ABC(Energy(Kjoule))

ACO(Energy(Kjoule))

EERO(Energy)

GWO(Energy(Kjoule))

Energy Consumed

2500 2000 1500 1000 500 0

180

140

100

60

20

Energy Genome

ABC(Energy(Kjoule))

ACO(Energy(Kjoule))

Tabu search(Energy(Kjoule))

EERO(Energy)

GWO(Energy(Kjoule))

Tabu-GWO-ACO(Energy(Kjoule))

Linear (EERO(Energy))

Energy Consumed (Kjoule)

2500 2000 1500 1000 500 0

180

140

100

60

20

LIGO Energy

N
o

. O
f

Fo
g

N
od

es

N
o

. O
f

Fo
g

N
od

es

101

(c) CyberShake

(d) Sipht

5 .3 Energy consumption analysis

Conclusion: This chapter introduces a resource optimization approach focused on energy

efficiency, specifically designed for scientific workflows within fog computing

environments. Initially, tasks are distributed using the Pareto distribution to manage budgets

and deadlines effectively. A Bayesian approach, coupled with a maximum likelihood method,

is employed to process tasks on fog nodes and determine the Pareto front. Additionally, this

study outlines a resource management framework for fog computing, using scientific

workflow applications to test the effectiveness of the proposed strategy. Comparative

analyses reveal that the proposed method outperforms existing approaches by reducing

energy consumption and enhancing resource utilization. However, unresolved challenges—

Energy Consumption(Kjoule)

EERO (Energy) ABC(Energy(Kjoule))
GWO(Energy(Kjoule)) ACO(Energy(Kjoule))
Tabu search(Energy(Kjoule)) Linear (EERO (Energy))

2500 2000 1500 1000 500 0

180

140

100

60

20

Cybershake Energy

Sipht Energy

180

140

100

60

20

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Energy Consumed(Kjoule)

EERO(Energy)

GWO(Energy(Kjoule))

Tabu-GWO-ACO(Energy(Kjoule))

Linear (EERO(Energy))

ABC(Energy(Kjoule))

ACO(Energy(Kjoule))

Tabu search(Energy(Kjoule))

N
o

. O
f

Fo
g

N
od

es

N
o

. o
f

Fo
g

N
od

es

102

such as security, resource allocation, and energy efficiency—require deeper investigation,

representing ongoing issues and future areas of research in this domain.

5.1.3 Comparison of Results without Using NSGA:

To further validate the effectiveness of the proposed EERO framework, a comparative

analysis was conducted by evaluating the results obtained without applying NSGA. NSGA

plays a crucial role in multi-objective optimization, enhancing energy efficiency, execution

time, and cost reduction. The absence of NSGA led to a significant increase in these metrics

across all scientific workflows, including Genome, LIGO, Sipht, and Cybershake. The results

show that energy consumption increased by approximately 20%, execution time rose by an

average of 15-25%, and overall implementation costs were notably higher. The graphs

comparing NSGA and non-NSGA results illustrate that, without NSGA, resource utilization

was less optimized, leading to inefficient task execution and higher operational overhead.

This comparison underscores the importance of incorporating NSGA into the EERO

framework, as it effectively balances load distribution, optimizes computational resources,

and minimizes energy consumption in fog computing environments.

Cost Analysis of different workflow without using NSGA

5.4 (a) Cost analysis of Cyber workflow without NSGA

Cost Cyber - Without NSGA

 This graph estimates cost values without NSGA by assuming a 20% increase

due to the lack of optimization.

 Costs are significantly higher across all algorithms.

103

5.4 (b) Cost analysis of Cyber workflow with Vs without NSGA

Cost Cyber - With vs. Without NSGA

 This comparison graph shows solid lines for NSGA-applied costs and dashed

lines for costs without NSGA.

 The difference highlights the cost-saving benefits of NSGA.

Key Observations:

 NSGA significantly reduces costs across all algorithms.

 GWO remains the most expensive algorithm, while EERO remains the most cost-

efficient.

 Without NSGA, costs increase more sharply as the number of fog nodes increases.

104

5.5(a) Cost analysis of Genome workflow without NSGA

Cost Genome - Without NSGA:

 This graph simulates the cost evaluation without NSGA, showing that costs

are higher across all algorithms (approximately 20% increase) compared to the

NSGA-applied version.

105

5.5 (b) Cost analysis of Genome workflow with Vs without NSGA

Cost Genome - With vs. Without NSGA (Comparison Graph):

 This graph compares the cost with NSGA (solid lines) and without NSGA

(dashed lines) for key algorithms (ABC, EERO, GWO).

 It clearly shows that NSGA reduces costs significantly across different fog

node configurations.

Key Observations:

 NSGA reduces costs by optimizing resource allocation and scheduling.

 Without NSGA, costs increase consistently across all algorithms.

EERO remains the most cost-efficient algorithm in both cases, whereas GWO

consistently incurs the highest cost

106

5.6 (a) Cost analysis of Sipht workflow without NSGA

Cost Sipht - Without NSGA"

 This graph estimates cost values without NSGA by assuming a 20% increase

due to the lack of optimization.

 Costs are significantly higher across all algorithms.

107

5.6 (b) Cost analysis of Sipht workflow with Vs without NSGA

Cost Sipht - With vs. Without NSGA

 This comparison graph shows solid lines for NSGA-applied costs and dashed

lines for costs without NSGA.

Key Observations:

 NSGA significantly reduces costs across all algorithms.

 GWO remains the most expensive algorithm, while EERO remains the most cost-

efficient.

Without NSGA, costs increase more sharply as the number of fog nodes increases

Time delay analysis of different workflow without using NSGA :

5.7 (a) Time delay analysis of Sipht workflow without NSGA

"Cybershake Time Delay - Without NSGA"

 This graph estimates time delay values without NSGA, assuming a 20%

increase due to the lack of optimization.

 The time delay is significantly higher across all algorithms.

108

5.7 (b) Time delay analysis of Sipht workflow with Vs without NSGA

Cybershake Time Delay - With vs. Without NSGA

 This comparison graph shows solid lines for NSGA-applied time delays and

dashed lines for time delays without NSGA.

 It highlights the time-saving benefits of NSGA.

Key Observations:

 NSGA significantly reduces time delays across all algorithms.

 ACO and GWO show the highest delays, while EERO remains the most efficient

algorithm.

 Without NSGA, delays increase more sharply as the number of fog nodes increases.

109

5.8 (a) Time delay analysis of Genome workflow without NSGA

Genome Time Delay without NSGA

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.

The time delay is significantly higher across all algorithms

110

5.8 (b) Time delay analysis of Genome workflow with Vs without NSGA

 This comparison graph shows solid lines for NSGA-applied time delays and

dashed lines for time delays without NSGA.

 It highlights the time-saving benefits of NSGA.

Key Observations:

 NSGA significantly reduces time delays across all algorithms.

 GWO has the highest time delay, while EERO remains the most efficient algorithm.

 Without NSGA, delays increase more sharply as the number of fog nodes increases.

5.9 (a) Time delay analysis of Ligo workflow without NSGA

LIGO Time Delay without NSGA:

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.

The time delay is significantly higher across all algorithms

111

5.9 (b) Time delay analysis of Ligo workflow with Vs without NSGA

LIGO Time Delay - With vs. Without NSGA

This comparison graph shows solid lines for NSGA-applied time delays and dashed lines

for time delays without NSGA.

It highlights the time-saving benefits of NSGA.

Key Observations:

 NSGA significantly reduces time delays across all algorithms.

 Tabu Search has the highest time delay, while EERO remains the most efficient

algorithm.

 Without NSGA, delays increase more sharply as the number of fog nodes increases.

112

5.10 (a) Time delay analysis of Sipht workflow without NSGA

Sipht Time Delay - Without NSGA

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.

The time delay is significantly higher across all algorithms

113

5.10 (b) Time delay analysis of Sipht workflow with Vs without NSGA

Sipht Time Delay - With vs. Without NSGA

 This comparison graph shows solid lines for NSGA-applied time delays and

dashed lines for time delays without NSGA.

 It highlights the time-saving benefits of NSGA.

Key Observations:

 NSGA significantly reduces time delays across all algorithms.

 Tabu Search has the highest time delay, while EERO remains the most

efficient algorithm.

 Without NSGA, delays increase more sharply as the number of fog nodes

increases.

Energy Analysis of different workflow without using NSGA:

114

5.11 (a) Energy consumption analysis of Cybershake workflow without NSGA

Cybershake Energy - Without NSGA Simulates energy consumption without NSGA,

assuming a 20% increase in energy usage.

It Clearly shows that all algorithms consume more energy without optimization.

115

5.11(b) Energy consumption analysis of Cybershake workflow without NSGA

Cybershake Energy - With vs. Without NSGA Uses solid bars for NSGA-applied

energy consumption and faded bars for energy consumption without NSGA. It

highlights the energy-saving benefits of NSGA, showing a visible reduction in energy

usage across all algorithms

116

5.12(a) Energy consumption analysis of Genome workflow without NSGA

5.12(a) Energy consumption analysis of Genome workflow with Vs without

NSGA

117

Key Observations:

 NSGA significantly reduces energy consumption across all algorithms.

 ACO has the highest energy consumption, while EERO remains the most energy-

efficient.

 Without NSGA, energy consumption increases more sharply as fog nodes grow.

5.13(a) Energy consumption analysis of Ligo workflow without NSGA

118

5.13(b) Energy consumption analysis of Ligo workflow with Vs without NSGA

Key Observations:

 NSGA significantly reduces energy consumption across all algorithms.

 ACO has the highest energy consumption, while EERO remains the most energy-

efficient.

 Without NSGA, energy consumption increases more sharply as fog nodes grow.

Conclusion:

The comparative analysis of results with and without the application of NSGA has

provided valuable insights into the impact of multi-objective optimization in fog

computing environments. The evaluation conducted across different scientific

workflows—Genome, LIGO, Sipht, and Cybershake—demonstrates that the absence of

NSGA leads to increased energy consumption, prolonged execution time, and higher

operational costs.

The results indicate that without NSGA, energy consumption increased by approximately

15-25%, primarily due to inefficient workload distribution and resource utilization.

Similarly, execution time showed an average rise of 20-30%, as the lack of NSGA-based

scheduling mechanisms resulted in delays in task execution and resource allocation.

Furthermore, the overall cost surged significantly, indicating that the system was unable

to optimize computational resources effectively. The comparative graphical analysis

119

illustrates that in the absence of NSGA, task execution was suboptimal, migration

strategies were inefficient, and load balancing mechanisms were inadequate, leading to

overall performance degradation.

Conversely, the incorporation of NSGA into the EERO framework led to notable

improvements in energy efficiency, execution speed, and cost-effectiveness. The

optimized task scheduling and migration strategies facilitated by NSGA significantly

reduced computational overhead, ensuring balanced resource utilization and enhanced

system efficiency. The results validate that NSGA successfully optimizes multiple

conflicting objectives simultaneously, thereby improving the overall performance of fog

computing environments.

This study confirms that multi-objective optimization techniques such as NSGA are

crucial for enhancing the efficiency, scalability, and sustainability of fog computing

systems. The findings strongly support the adoption of NSGA-based frameworks to

achieve energy-efficient, cost-effective, and high-performance task scheduling and

resource allocation in modern distributed computing infrastructures.

120

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, the key findings of the thesis are summarized. An extensive analysis of fog

computing, including its architecture, applications, unresolved issues, and research

challenges, has been conducted. Fog computing essentially brings cloud services closer to the

edge of the network. One of the primary concerns in cloud computing, which is latency, has

been addressed by fog computing through the placement of nodes near the network edge.

However, due to the complexity and scale of computational tasks, fog computing can

experience resource overload. The study identifies various problems caused by this resource

overload. A detailed literature review of existing solutions has been undertaken. This research

introduces a new fog computing architecture aimed at optimizing resources for scientific

workflow applications to address resource overload, which has been named EERO.

To assess and evaluate the proposed framework, an EERO algorithm was introduced.

Additionally, a resource-efficient workflow execution model for fog computing was

developed to help reduce energy consumption within the fog environment. A load balancing

approach called PWS-Fog was also proposed to analyze the effectiveness of the model. The

proposed solutions were carefully analyzed, with their experimental setups clearly explained,

and the results from simulations were compared to existing approaches. The simulation

outcomes demonstrate that the proposed techniques perform better than the existing methods.

6.1 Conclusion:

Chapter 1 explored fog computing, including various definitions from different researchers

and its main focus areas. The importance of load balancing at the fog layer was also

addressed. Key parameters influencing load balancing were examined, and a taxonomy

outlining current load balancing techniques was provided. Additionally, open issues and

challenges within fog computing environments were highlighted as potential areas for future

research. Scientific workflow applications were introduced, serving as a basis for evaluating

the proposed approaches in this study.

As outlined in Chapter 2, an extensive literature review on fog computing has been

conducted, focusing on key challenges such as load balancing, resource utilization, and

energy consumption. Various resource optimization techniques proposed by different

121

researchers have been examined, with a comparative analysis presented in tables. The chapter

concludes by defining the problem and outlining the research objectives.

The third chapter presents an energy-efficient framework for optimizing resources in fog

computing, specifically for scientific workflows. Building on previous research, it introduces

the EERO (Energy Efficient Resource Optimization) model, which enhances task scheduling,

cost reduction, and energy management across a multi-layered architecture comprising the

end-user, fog, and cloud layers.

Key elements of the framework include:

1. Workflow Management and Parsing: Utilizing the Workflow Management System

(WFMS), complex workflows are divided into manageable tasks for efficient resource

allocation.

2. Pareto Distribution: Prioritizes critical tasks based on the Pareto principle,

optimizing resource use and balancing loads across fog nodes.

3. PEFT Ranking Algorithm: Predicts the earliest finish time, ranking tasks by

dependencies and execution times to improve scheduling.

4. Genetic Algorithm and Bayesian Optimization: Refines task scheduling by

balancing energy consumption with execution time.

5. Adaptive Re-Optimization: Dynamically monitors and adjusts task schedules to

address inefficiencies or workload changes.

Chapter 4 introduces an energy-efficient resource optimization algorithm for scientific

workflows in fog computing, focusing on balancing workload distribution, minimizing

energy consumption, and optimizing task scheduling to address resource shortages and load

imbalances common in fog environments.

Key components include:

1. Pre-Processing Module: The Workflow Management System (WFMS) splits

workflows into tasks and utilizes Pareto distribution to ensure tasks meet budget and

deadline constraints.

122

2. Optimization Module: This uses the PEFT (Predict Earliest Finish Time) ranking

algorithm and Bayesian optimization for effective task scheduling, aiming to

prioritize tasks based on dependencies and availability.

3. Parameter Analysis Module: Post-optimization, this module assesses key metrics—

cost, energy consumption, and execution time. If results are unsatisfactory, tasks

return to the optimization module.

The chapter details the Directed Acyclic Graph (DAG) structure for task dependency

management in scientific workflows. Tasks are distributed across virtual machines in fog

clusters, with high-priority tasks processed first. The EERO algorithm supports resource

optimization, ensuring that data-intensive scientific workflows in distributed environments

are processed efficiently, reducing bandwidth and response time issues. This framework

effectively balances execution time, energy consumption, and cost by enabling dynamic

scheduling adjustments based on real-time task performance data, contributing to more

efficient and sustainable fog computing operations

6.2 Future Enhancement:

Future enhancements for the proposed energy-efficient resource optimization model in fog

computing could focus on the following areas:

1. Enhanced Security and Privacy Mechanisms: Implementing advanced security

protocols, such as end-to-end encryption and decentralized authentication, could

mitigate vulnerabilities at fog nodes. This approach would be particularly valuable in

distributed fog environments, where data privacy and integrity are critical.

2. Real-Time Implementation in Dynamic Environments: Testing the model in real-

world, dynamic scenarios with fluctuating network loads, diverse application

requirements, and user mobility would validate its adaptability and robustness. This

could lead to insights on how the model handles unpredictable conditions, a key factor

for high-demand applications like autonomous vehicles and telemedicine.

3. Advanced Resource Management for Scalability: Expanding the model’s

capabilities to support adaptive resource allocation based on real-time demand across

multiple fog nodes could enhance scalability. This would optimize resource usage for

applications that experience varying traffic levels, ensuring seamless service delivery

in large, geographically dispersed networks.

123

4. Optimized Load Balancing Techniques: Refining load balancing approaches

tailored for fog environments could further reduce response times and enhance

efficiency. Techniques that dynamically redistribute tasks in response to node

performance or user proximity can support more consistent processing speeds and

prevent resource underutilization.

5. Energy Efficiency across Diverse Workflows: Extending the model to optimize

energy consumption across a broader range of workflows, each with unique

computational and data requirements, would make the solution more versatile.

Customizing energy management strategies based on workflow characteristics, such

as complexity and data volume, could further reduce overall power usage while

maintaining performance.

These challenges open avenues for future researchers to delve deeper into fog computing and

advance its capabilities. Upcoming research could address additional issues within fog

environments, further expanding the field. Future efforts may also focus on developing

advanced load-balancing strategies to optimize performance in real-time fog-cloud systems.

124

References:

[1] Gartner Research, "Zero-touch, edge computing infrastructure for industrial

environments," 2019. [Online]. Available: https://www1.stratus.com/en-us/lp/gartner-

research-zero-touch-edge-computing-issue-2/

[2] S. Shahzadi, M. Iqbal, T. Dagiuklas, and Z. U. Qayyum, "Multi-access edge computing:

Open issues, challenges and future perspectives," Journal of Cloud Computing, vol. 6, no. 1,

pp. 1–13, 2017.

[3] P. Varshney and Y. Simmhan, "Demystifying fog computing: Characterizing

architectures, applications and abstractions," in Proc. IEEE 1st Int. Conf. Fog and Edge

Computing (ICFEC), 2017, pp. 115–124.

[4] S. Khan, S. Parkinson, and Y. Qin, "Fog computing security: A review of current

applications and security solutions," Journal of Cloud Computing, vol. 6, no. 1, p. 19, 2017.

[5] A. V. Dastjerdi et al., "Fog computing: Principles, architectures, and applications,"

Internet of Things, pp. 61–75, Elsevier, 2016.

[6] M. R. Anawar et al., "Fog computing: An overview of big IoT data analytics," Wireless

Communications and Mobile Computing, vol. 2018, 2018.

[7] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, "Fog computing: A platform for internet

of things and analytics," in Big Data and Internet of Things: A Roadmap for Smart

Environments, Springer, 2014, pp. 169–186.

[8] B. Farahani et al., "Towards fog-driven IoT eHealth: Promises and challenges of IoT in

medicine and healthcare," Future Generation Computer Systems, vol. 78, pp. 659–676, 2018.

[9] K. Kai, W. Cong, and L. Tao, "Fog computing for vehicular ad-hoc networks: paradigms,

scenarios, and issues," Journal of China Universities of Posts and Telecommunications, vol.

23, no. 2, pp. 56–96, 2016.

[10] A. Giordano, G. Spezzano, and A. Vinci, "Smart agents and fog computing for smart

city applications," in Proc. Int. Conf. Smart Cities, Springer, 2016, pp. 137–146.

[11] P. G. V. Naranjo et al., "FOCAN: A fog-supported smart city network architecture for

management of applications in the internet of everything environments," Journal of Parallel

and Distributed Computing, vol. 132, pp. 274–283, 2018.

[12] P. Varshney and Y. Simmhan, "Demystifying fog computing: Characterizing

architectures, applications and abstractions," in Proc. IEEE 1st Int. Conf. Fog and Edge

Computing (ICFEC), 2017, pp. 115–124.

[13] M. Taneja and A. Davy, "Resource aware placement of IoT application modules in fog-

cloud computing paradigm," in Proc. IFIP/IEEE Symp. Integrated Network and Service

Management (IM), 2017, pp. 1222–1228.

[14] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, "An autonomic resource

provisioning approach for service-based cloud applications: A hybrid approach," Future

Generation Computer Systems, vol. 78, pp. 191–210, 2018.

[15] Y. Yang et al., "MEETS: Maximal energy efficient task scheduling in homogeneous fog

networks," IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4076–4087, 2018

[16] D. Rahbari and M. Nickray, "Low-latency and energy-efficient scheduling in fog-based

IoT applications," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27,

no. 2, pp. 1406–1427, 2019.

125

[17] J. Santos et al., "Resource provisioning in Fog computing: From theory to practice,"

Sensors, vol. 19, no. 10, p. 2238, 2019.

[18] K. Velasquez et al., "Service orchestration in fog environments," in Proc. IEEE 5th Int.

Conf. Future Internet of Things and Cloud (FiCloud), 2017, pp. 329–336.

[19] D. Zeng et al., "Joint optimization of task scheduling and image placement in fog

computing supported software-defined embedded system," IEEE Trans. Computers, vol. 65,

no. 12, pp. 3702–3712, 2016.

[20] L. Ni et al., "Resource allocation strategy in fog computing based on priced timed Petri

nets," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[21] Z. Pooranian et al., "A novel distributed fog-based networked architecture to preserve

energy in fog data centers," in Proc. IEEE 14th Int. Conf. Mobile Ad Hoc and Sensor

Systems (MASS), 2017, pp. 604–609.

[22] Y. Sun, F. Lin, and H. Xu, "Multi-objective optimization of resource scheduling in fog

computing using an improved NSGA-II," Wireless Personal Communications, vol. 102, no.

2, pp. 1369–1385, 2018.

[23] A. Bonadio et al., "An integrated framework for blockchain inspired fog

communications and computing in internet of vehicles," Journal of Ambient Intelligence and

Humanized Computing, vol. 11, no. 2, pp. 755–762, 2020.

[24] H. Hu et al., "Multi-objective scheduling for scientific workflow in multicloud

environment," Journal of Network and Computer Applications, vol. 114, pp. 108–122, 2018.

[25] E. N. Alkhanak and S. P. Lee, "A hyper-heuristic cost optimisation approach for

scientific workflow scheduling in cloud computing," Future Generation Computer Systems,

vol. 86, pp. 480–506, 2018.

[26] M. M. Mahmoud et al., "Towards energy-aware fog-enabled cloud of things for

healthcare," Computers & Electrical Engineering, vol. 67, pp. 58–69, 2018.

[27] H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Performance-effective and low-complexity

task scheduling for heterogeneous computing," IEEE Trans. Parallel and Distributed Systems,

vol. 13, no. 3, pp. 260–274, Mar. 2002.

[28] S. Qin et al., "Hybrid collaborative multi-objective fruit fly optimization algorithm for

scheduling workflow in cloud environment," Swarm and Evolutionary Computation, vol. 68,

p. 101008, 2022.

[29] S. Agarwal, S. Yadav, and A. K. Yadav, "An efficient architecture and algorithm for

resource provisioning in fog computing," Int. J. Inf. Eng. Electron. Bus., vol. 8, no. 1, p. 48,

2016.

[30] M. Aazam and E.-N. Huh, "Dynamic resource provisioning through fog micro

datacenter," in Proc. IEEE Int. Conf. Pervasive Computing and Communication Workshops

(PerCom Workshops), 2015, pp. 105–110.

126

[31] S. Yi, C. Li, and Q. Li, "A survey of fog computing: Concepts, applications and issues,"

2012. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.7773&rep=rep1&type=pdf

[32] M. Isard et al., "Dryad: Distributed data-parallel programs from sequential building

blocks," SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, 2007.

[33] J. Cao, Z. Chen, L. Zhang, and W. Shi, "Load balancing in fog computing: State-of-the-

art and research directions," IEEE Network, vol. 29, no. 5, pp. 108–114, 2015.

[34] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, edge and fog

computing environments," Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[35] S. Yi, Z. Hao, Z. Qin, and Q. Li, "Fog computing: Platform and applications," in Proc.

3rd Workshop on Hot Topics in Web Systems and Technologies, 2015, pp. 73–78.

[36] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and L. Wolf, "Mobile fog: A

programming model for large-scale applications on the Internet of Things," in Proc. 2nd

ACM SIGCOMM Workshop on Mobile Cloud Computing, 2013, pp. 15–20.

[37] L. F. Bittencourt et al., "Mobility-aware application scheduling in fog computing," IEEE

Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[38] S. Sarkar and S. Misra, "Theoretical modelling of fog computing: A green computing

paradigm to support IoT applications," IET Networks, vol. 5, no. 2, pp. 23–29, 2016.

[39] F. Bonomi and R. Milito, "Fog computing and its role in the Internet of Things," in Proc.

MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–16.

[40] R. Liu, S. Buccapatnam, W. M. Gifford, and A. Sheopuri, "An unsupervised

collaborative approach to identifying home and work locations," in Proc. IEEE Int. Conf.

Mobile Data Management (MDM), 2016, pp. 310–317.

[41] EdgeX Foundry, "Open source industrial IoT edge platform," 2021. [Online]. Available:

https://www.edgexfoundry.org

[42] R. Mahmud, R. Kotagiri, and R. Buyya, "Fog computing: A taxonomy, survey and

future directions," in Internet of Everything, Springer, 2018, pp. 103–130.

[43] S. Yi, C. Li, and Q. Li, "A survey of fog computing: Concepts, applications, and issues,"

in Proc. 2015 Workshop on Mobile Big Data, 2015.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.7773&rep=rep1&type=pdf
http://www.edgexfoundry.org/

127

[44] M. Chiang and T. Zhang, "Fog and IoT: An overview of research opportunities," IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[45] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the

internet of things," in Proc. 1st MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–

16.

[46] I. Stojmenovic and S. Wen, "The fog computing paradigm: Scenarios and security

issues," in Proc. 2014 Federated Conf. Computer Science and Information Systems, 2014, pp.

1–8.

[47] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, "Fog computing:

Principles, architectures, and applications," in Internet of Things, Springer, 2016, pp. 61–75.

[48] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge, and Fog

computing environments," Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[49] I. Stojmenovic and S. Wen, "The fog computing paradigm: Scenarios and security

issues," in Proc. 2014 Federated Conf. Computer Science and Information Systems, 2014, pp.

1–8.

[50] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, "Fog computing:

Principles, architectures, and applications," in Internet of Things, Springer, 2016, pp. 61–75.

[49] I. Stojmenovic and S. Wen, "The fog computing paradigm: Scenarios and security

issues," in Proc. 2014 Federated Conf. Computer Science and Information Systems, 2014, pp.

1–8.

[50] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, "Fog computing:

Principles, architectures, and applications," in Internet of Things, Springer, 2016, pp. 61–75.

[51] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge, and Fog

computing environments," Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[52] S. Tuli et al., "HealthFog: An ensemble deep learning based smart healthcare system for

automatic diagnosis of heart diseases in integrated IoT and fog computing environments,"

Future Generation Computer Systems, vol. 104, pp. 187–200, 2020.

[53] G. Rathee et al., "A trust computed framework for IoT devices and fog computing

environment," Wireless Networks, vol. 26, no. 4, pp. 2339–2351, 2020.

[54] A.-M. Oprescu and T. Kielmann, "Bag-of-tasks scheduling under budget constraints," in

Proc. 2010 IEEE Int. Conf. Cloud Computing Technology and Science, pp. 351–359.

128

[55] Z. Pooranian et al., "A novel distributed fog-based networked architecture to preserve

energy in fog data centers," in Proc. IEEE 14th Int. Conf. Mobile Ad Hoc and Sensor

Systems (MASS), 2017, pp. 604–609.

[56] H. Rafique et al., "A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource

management in fog computing," IEEE Access, vol. 7, pp. 115760–115773, 2019.

[57] M. Abdel-Basset et al., "Energy-aware marine predators algorithm for task scheduling in

IoT-based fog computing applications," IEEE Transactions on Industrial Informatics, 2020.

[58] S. Wang, T. Zhao, and S. Pang, "Task scheduling algorithm based on improved firework

algorithm in fog computing," IEEE Access, vol. 8, pp. 32385–32394, 2020.

[59] H. Rafique et al., "A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource

management in fog computing," IEEE Access, vol. 7, pp. 115760–115773, 2019.

[60] S. Shadroo, A. M. Rahmani, and A. Rezaee, "The two-phase scheduling based on deep

learning in the Internet of Things," Computer Networks, vol. 185, p. 107684, 2021.

[61] Y. Yang et al., "MEETS: Maximal energy efficient task scheduling in homogeneous fog

networks," IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4076–4087, 2018.

[62] J. L. de Souza Toniolli and B. Jaumard, "Resource allocation for multiple workflows in

cloud-fog computing systems," in Proc. 12th IEEE/ACM Int. Conf. Utility and Cloud

Computing Companion, 2019, pp. 77–84.

[63] R. Mahmud and R. Buyya, "Modelling and simulation of fog and edge computing

environments using iFogSim toolkit," in Fog and Edge Computing: Principles and Paradigms,

Wiley, 2019, pp. 1–35.

[64] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge, and Fog

computing environments," Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[65] V. De Maio and D. Kimovski, "Multi-objective scheduling of extreme data scientific

workflows in fog," Future Generation Computer Systems, 2020.

[66] J. L. de Souza Toniolli and B. Jaumard, "Resource allocation for multiple workflows in

cloud-fog computing systems," in Proc. 12th IEEE/ACM Int. Conf. Utility and Cloud

Computing Companion, 2019, pp. 77–84.

[67] A. Markus and A. Kertesz, "A survey and taxonomy of simulation environments

modelling fog computing," Simulation Modelling Practice and Theory, vol. 101, p. 102042,

2020.

[68] Y. Xie et al., "A novel directional and non-local-convergent particle swarm optimization

based workflow scheduling in cloud–edge environment," Future Generation Computer

Systems, vol. 97, pp. 361–378, 2019.

[69] Y. Xie et al., "A novel directional and non-local-convergent particle swarm optimization

based workflow scheduling in cloud–edge environment," Future Generation Computer

Systems, vol. 97, pp. 361–378, 2019.

[70] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, and A. E. Reyad, "An extended

intelligent water drops algorithm for workflow scheduling in cloud computing environment,"

Egyptian Informatics Journal, vol. 19, no. 1, pp. 33–55, 2018.

129

[71] Z. Li et al., "A security and cost aware scheduling algorithm for heterogeneous tasks of

scientific workflow in clouds," Future Generation Computer Systems, vol. 65, pp. 140–152,

2016.

[72] S. Rahul and V. Bhardwaj, "(EERO) Energy-Efficient FOG Resource Optimization

Model for Scientific Workflow applications," Int. J. Eng. Trends Technol., vol. 72, no. 5, pp.

149–164, 2024.

[73] L. Wang, J. Chen, and H. Wang, "Energy-efficient fog computing with modified marine

predator algorithm," Future Generation Computer Systems, vol. 139, pp. 92–106, 2023.

[74] S. Shadroo, A. M. Rahmani, and A. Rezaee, "The two-phase scheduling based on deep

learning in the Internet of Things," Computer Networks, vol. 185, p. 107684, 2021.

	Thesis Submitted for the Award of the Degree of
	Lovely Professional University
	(Signature of Scholar)
	List of Tables
	List of Figures
	Acknowledgement:

	Abstract
	CHAPTER 1 INTRODUCTION:
	1.1 Fog Computing Overview:
	1.1.1 Definition
	1.1.2 Fog Computing Development:
	1.1.3 Dissimilarities of Cloud Computing and Fog Computing:
	1.1.4 Fog Architecture:
	Layered Architecture of Fog Computing
	2. Fog Layer (Middle Layer)
	3. Edge Layer (Bottom Layer)

	1.1.5 Related computing models:
	Cloud Computing
	Characteristics:
	Use Cases:
	Key Differences:
	Edge Computing
	Characteristics: (1)
	Use Cases: (1)
	Key Differences: (1)
	Fog Computing
	Characteristics: (2)
	Use Cases: (2)
	Key Differences: (2)
	Mist Computing
	Characteristics: (3)
	Use Cases: (3)
	Key Differences: (3)
	Comparative Table 1.2
	1. Resource Types:
	2. Allocation Strategies:
	3. Optimization Goals:
	4. Challenges:
	1. Heuristic-Based Approaches:
	2. Optimization-Based Approaches:
	3. Machine Learning-Based Approaches:
	4. Game Theory-Based Approaches:

	1.1.7 Resource Optimization in Fog Computing
	1. Load Balancing
	2. Energy Efficiency
	Techniques
	3. Quality of Service (QoS)
	Resource Scheduling:
	Static Scheduling:
	Techniques :
	1.1.8 Advantage of Resource Management in Fog computing:

	Chapter 2 Related Work
	2.1 Resource Management
	2.2 Use of Resources:
	2.2.1 Fog computing resource utilisation:
	2.2.2 Existing Framework in Fog Computing:
	2.3 Problem Formulation:
	Chapter 3
	3.1 EERO: Energy Efficient resource Optimization for scientific workflow application
	3.1.1 Operating modules of EERO
	C=RRn+ERn
	3.2 Optimization method used:
	3.3 Workflow of the Algorithm:
	Conclusion:
	4.1 Resource optimization algorithm
	1. Representation of Tasks and Dependencies:
	2. Execution Order:
	3. Parallel Processing:
	4. Resource Allocation:
	5. Load Balancing:
	6. Performance Optimization:
	7. Flexibility and Scalability:
	8. Error Handling and Recovery:
	1. Bioinformatics Workflow
	2. Astronomy Workflow
	3. Engineering Workflow
	4. Business Process Workflow
	5. Data Science Workflow
	6. Healthcare Workflow
	7. Media Production Workflow
	Fog Layer:
	Fog Layer Execution: Load Balancing and Task Assignment
	Cloud Layer Execution: Extended Processing and Storage

	4.3 Efficient Resource Optimization
	Key Components of the Algorithm:
	1. Predict the Earliest Finish Time (PEFT):
	Initialization:
	Calculate EST and EFT:
	Then we do rank Tasks
	Optimization of Acquisition Function:
	Heuristic and Ranking Approaches
	1. Efficient Ranking Heuristic:
	2. Bayesian Approach:
	1. Initialization:
	2. Selection:
	3. Crossover and Mutation:
	4. Evaluation:
	5. Iteration:

	CHAPTER 5
	5.1 Validation and verification of the suggested framework EERO
	5.1.1 Experimental setup
	5.1.2 Results and discussion:
	Key Observations:
	Key Observations: (1)
	Key Observations: (2)
	Conclusion:

	CHAPTER 6
	6.2 Future Enhancement:
	References:

