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Abstract

Fog computing is increasingly being explored as a complementary approach to traditional
cloud computing, offering decentralized processing capabilities that enhance responsiveness,
particularly in latency-sensitive and edge-centric applications. This paradigm is especially
relevant with the rapid growth of the Internet of Things (I0oT) ecosystem, where vast amounts
of data require real-time processing and low latency to support applications in smart cities,
autonomous Vvehicles, healthcare, and industrial automation. This thesis explores the fog
computing model extensively, providing an in-depth analysis of its architecture, primary
components, applications, and the critical differences between fog and cloud computing.
Central to fog computing is its multi-layered architecture, which includes the cloud, fog, and
edge layers. These layers work collaboratively to address the limitations of centralized data
centers, bringing data processing closer to its source to reduce latency, manage bandwidth, and

enhance security and privacy.

Fog computing’s architecture is structured to improve data processing and service delivery
through a decentralized approach that operates at the network’s edge. At the core of this
architecture is the fog node, which interacts directly with end-user devices to provide essential
services such as Infrastructure-as-a-Service (laaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS). By distributing computing tasks across local nodes, fog
computing alleviates the dependence on distant cloud servers, reducing bandwidth
requirements and enabling quicker response times. This characteristic of fog nodes, which are
geographically dispersed and closer to data sources, enhances the quality of service (QoS) for
latency-sensitive applications while supporting real-time analytics and improved mobility.

A comprehensive examination of fog computing’s role in the Internet of Things (IoT)
underscores its advantages in handling data generated by 10T devices, which has traditionally
been managed by centralized cloud data centers. The thesis describes how, unlike cloud
systems, fog computing enables the real-time processing of data generated by 10T sensors and
devices by utilizing nearby fog nodes. This localization of processing tasks is essential for
applications that cannot tolerate the latency associated with remote data centers, such as
emergency response systems, real-time industrial monitoring, and autonomous vehicle
networks. Furthermore, fog computing’s distributed architecture supports enhanced scalability
and can dynamically accommodate increased demands as I0T ecosystems continue to expand.
To highlight fog computing's versatility, this thesis presents a taxonomy of its key features,
including context awareness, geographic distribution, and support for varied end-user devices.

Fog computing nodes, capable of handling processing, storage, and communication tasks, are
10



typically positioned closer to the end-user, which mitigates the latency and bandwidth
constraints associated with centralized cloud storage. The architectural flexibility of fog nodes
facilitates a range of applications that rely on swift and reliable data access, such as smart city
infrastructures and healthcare systems that require instantaneous data transmission to ensure
efficient functioning. Fog computing nodes can handle tasks in a multi-layered setup, providing
services at both the local and intermediary network levels, further optimizing resource
allocation and management.

This research also investigates resource scheduling and management strategies in fog
computing, emphasizing the importance of optimizing resource allocation to enhance
performance. Fog computing environments, often resource-constrained due to limited
processing and storage capacities, require effective scheduling mechanisms to ensure balanced
load distribution and high system reliability. The thesis examines various resource management
frameworks and scheduling algorithms, including heuristic-based approaches, optimization
algorithms, and machine learning models, to address challenges associated with task
distribution across fog nodes. By distributing tasks based on parameters such as latency,
bandwidth availability, and energy efficiency, fog computing can maintain system
responsiveness while minimizing energy consumption.

Energy efficiency is particularly crucial in fog environments where devices operate on limited
power sources and are often deployed in locations with restricted access to continuous power.
This thesis introduces an Energy-Efficient Resource Optimization (EERO) framework, which
is specifically designed for scientific workflows within fog computing environments. The
EERO model comprises three primary modules: initial processing, optimization, and parameter
analysis. This multi-tiered approach facilitates the optimal use of available resources,
significantly reducing execution time and energy consumption while supporting high-priority
tasks.

The EERO framework applies advanced algorithms such as the Pareto distribution method for
task prioritization and the PEFT ranking algorithm to dynamically allocate tasks across fog
nodes. These techniques contribute to load balancing and reduce energy use by selectively
processing tasks based on priority and resource availability. Through case studies and
performance evaluations, this thesis demonstrates that the EERO model enhances fog
computing’s efficiency and scalability by providing an adaptable and robust resource
management system. In contrast to cloud computing, fog computing supports location
awareness and localized data handling, which enhances data privacy by processing sensitive
information nearer to its source rather than transmitting it over the internet. This proximity

also mitigates security risks associated with central cloud storage, where large-scale data
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breaches are a significant concern. By managing data locally and securely, fog computing
aligns with stringent data privacy regulations and supports compliance in industries such as
healthcare and finance, where data protection is paramount.

To address dynamic resource management challenges, the thesis discusses several established
and emerging scheduling techniques, including Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), and Genetic Algorithms (GA). These bio-inspired algorithms
provide efficient solutions for managing resource allocation in fog environments by mimicking
natural processes to find near-optimal solutions for complex tasks. By integrating heuristic,
optimization-based, and machine learning methods, these scheduling strategies ensure that fog
computing can adapt to fluctuating workload demands and provide continuous service in
diverse application settings.

The comparative analysis of fog and cloud computing reveals that while both paradigms offer
scalable and flexible solutions for data processing, fog computing’s proximity to end-users and
low-latency capabilities make it more suitable for real-time applications. This thesis also
reviews related paradigms such as mist and edge computing, positioning fog computing as an
intermediary layer that bridges edge devices with centralized cloud services. In doing so, fog
computing provides a hierarchical framework that supports scalability and efficient data
management across a distributed network.

This work concludes with a discussion of future research directions, emphasizing the need for
further development in areas such as task preemption, real-time resource migration, and
advanced scheduling algorithms tailored to fog environments. As fog computing continues to
evolve, addressing challenges related to resource scarcity, security, and interoperability will be
crucial for its widespread adoption across industries. The findings presented in this thesis
contribute to a deeper understanding of fog computing’s potential to transform data processing
frameworks and expand the capabilities of 10T, bringing a range of practical applications within

closer reach.
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CHAPTER 1
INTRODUCTION:

Fog computing allows compute and storage services to be provided closer to an
organization's physical hardware, resulting in faster delivery times. This approach bypasses
the broader Internet, which often depends on carrier speeds and network capacity, ensuring

quicker and more efficient service delivery.

According to NIST Special Publication [31], fog computing is described as a physical, or
virtual resource layer connecting traditional cloud computing or linked data centers and smart
end devices typically found within organizations. The OpenFog Consortium [32] defines it as
a architecture at the system level that divides up the processing, storage, control, and
networking power closer to users. This highly virtualized platform connects traditional cloud
data centers to end devices, providing networking, storage, and processing services. The

localized nature of fog nodes reduces latency, enhances context awareness, and supports

applications those are latency-sensitive by offering scalable, layered, ubiquitous, and

federated network access.

Fog computing reduces latency and enhances context awareness by localizing fog nodes. It
supports latency-sensitive applications through scalable, layered, federated, and pervasive
network connectivity. Fog nodes provide similar services to cloud computing, such as (laaS),
(PaaS), and Software-as-a-Service (SaaS). The fog architecture involves significant
communication, control, setup, measurement, and management functions via cooperative
end-user clients or nearby edge devices. This paradigm widens cloud computing services to
the network's edge, offering advantages over traditional cloud environments, which are often
distant and dependent on larger Internet bandwidths. In contrast, fog services are nearer to

end users, densely distributed geographically, and offer superior mobility support.

According to Gartner [1], the future of industrial 10T lies in edge-centric computing models,
where research and system development focus on deploying processing capabilities near the
source of data generation. As the Internet of Things (1oT) grows, so does the volume of data
generated by these devices. Cloud computing data centres provide processing and storage
services to these Internet of Things devices. Cloud computing allows for “pay-as-you-go"
service delivery. Cloud computing data centres are distributed with a centralized organizational
structure. Data processing and storage in data centres may take much longer than expected.
13



Sometimes, end devices find it difficult to retrieve the data in an emergency due to the
centralized cloud storage. The Internet of Things (IoT) connects smartphones, smart cities,
intelligent cars, and a host of other real-world things to the Internet, allowing data to flow
between them with minimal human intervention. The Internet of Things sensors generate data

relevant to specific applications and send it to the nearest sensor connections.

Cisco unveiled a new architecture in 2012 called fog computing to fulfil these IoT
requirements. Consider fog computing as a network-edge development of cloud computing.
Fog effectively completes tasks requiring low latency and minimal energy on vital computer
nodes close to the network's centre. The fog computing concept was established to fulfil the
needs of different Internet of Things (IoT), Internet of Everything (I0E), or Internet of Me
(loM) segments from start to finish, such as consumer, wearable, industrial, enterprise, vehicle,

healthcare, building, and energy.

This chapter provides a high-level overview of this research project by describing the
architecture, features, applications, advantages, and unsolved issues of fog computing
andessential areas of interest. Programs for the scientific process have also been described. The
need for resource scheduling in a fog environment has also been covered. Lastly, the order of

the remaining chapters and contributions to the thesis have been provided.

1.1 Fog Computing Overview:

To expand the cloud, Cisco introduced fog computing, which provides services near end
users. An ecosystem that uses fog computing allows many ubiquitous devices to connect
without the assistance of third parties [2] [3]. The main objective of fog computing is to
resolve problems that cloud computing encounters while handling Internet of Things data.
The fog layer acts as a bridge between 10T devices and the cloud. It is a powerful technology
that provides several answers to issues related to cloud computing. Decentralised fog offers
networking, storage, and processing capabilities compared to centralised clouds [4]. The
primary objective of fog computing is to resolve problems during cloud-based 0T data
processing. This is a new paradigm that might be used with a variety of sensors, wearable
technologies, smart gadgets, and cars. This paradigm states that jobs and computer tasks
ought to be handled “in a dispersed fashion. Instead of building a single data centre, the
network uses several devices. Starting with the end user and working your way up to the
cloud reduces the bandwidth and latency of the network. Sensor-generated data is cleaned up
by fog computing before being sent to the cloud. Several advantages come with this
paradigm, such as improved loT service analysis, monitoring, and execution speed [5].

14



1.1.1 Definition

Even though other scholars have proposed different interpretations, Cisco coined the term in
2012. From the perspective of Cisco, Fog brings cloud services closer to edge devices. “Fog
computing is an architectural deployment of computing resources that employs distinct nodes
for communication and data transfer amongst 10T devices instead of storing data from IoT
devices in cloud data centres.” [6] According to F. Bonomi et al. [7], fog computing is a
distributed, layered computing platform that provides end users with network, storage, and
computation services. According to reports, fog computing works better for straightforward
procedures and is comparable to 10T devices. [8]. The intelligent 10T data sensors and cloud
data centres are connected by a fog layer, facilitating data execution and storage. Fog
computing extends cloud services to rival the constraints of regular cloud computing. [9].

Smart cities, linked automobiles, connected homes, and intelligent healthcare are just a few

technological components and applications that fog computing's hierarchical and distributed

architecture can allow. [10].

The fog node is the central element of the fog computing environment that facilitates the
operation of Internet of Things applications. The fog layer offers a few characteristics,
including mobility, geological dispersion, and position awareness [11]. Fog computing, a
type of decentralised computing technology, makes it possible to process and store data
midway between the cloud infrastructure and its source. The continued growth of 10T devices
primarily drives the fog computing paradigm. A growing variety of devices generate an
increasing volume, diversity, and velocity of data [12].

The diagram presents a comprehensive taxonomy of fog computing, highlighting its
multifaceted structure. At the core, fog computing encompasses various critical domains such
as Security, Computing, Communication, and Management. Security is further divided into
Encryption and Authentication, ensuring data integrity and protection. The Computing
domain includes aspects like Storage and Services, which are essential for effective data
handling and processing. Applications of fog computing span diverse fields, including
Industrial 10T and Smart Cities, indicating its widespread utility. Communication focuses on
Protocols and Interfaces, vital for seamless data exchange. The Computing Environment is
distinguished by the presence of Edge Nodes and Fog Nodes, illustrating the distributed

nature of fog computing. Management aspects cover Resource Management and Task
Scheduling, crucial for efficient operation and maintenance. This taxonomy provides a

15



structured overview of fog computing's various elements, emphasizing its complexity and

extensive applicability.

Computing

Storage

Protocols .
Services

Industrial loT
Communication
Interfaces Applications
Computing Environment o
Smart Cities

Management

Edge Nodes

Resource Management
Fog Nodes .
Task Scheduling

Fig 1.1: Taxonomy of Fog Computing

1.1.2 Fog Computing Development:

A developing technique called fog computing (FC) enhances current cloud computing (CC)
capabilities to the network endpoints to provide lower latency through geographical
distribution [13]. The devices in distributed computing employ a message-passing interface to
support decentralised systems models in which numerous network devices perform all
computational processes and simplify communication. Many new computer models have
emerged in distributed computing. Utility computing comes before the notion of cloud
computing. Cloud computing gained prominence in the early 2000s. Fog computing enables
consumers to get information more quickly. The edge capacity of an application supports the
computational capability of cloudlets to service various applications [14]. Tiny computer
nodes called cloudlets, located close to customers' base stations, work with the fog and the
cloud to provide a variety of applications. Fog computing applications are all developing in a

way that makes high-performance computing (HPC) possible in networked systems.

When devices and users move from one point of access to another in these networked
systems, all the data and processing associated with each user's computer typically relocate as
well [15]. With data migration, users could find it simpler to access their data in an
emergency. Delays in specific delicate settings, including transportation and healthcare

systems, might lead to dangerous scenarios [16]. The fog computing paradigm provides all-
16



time-centric applications with rapid resource access—the better use of resources via

management to get the highest output at the lowest possible cost. Effective resource

management is crucial for various reasons, such as cost and response time. Applying fog

computing in a real-time scenario is pretty challenging, though.

1.1.3

smaller latency

many tenancy

Mobility support

Heterogeneity support

Interoperability

Real Time analytics

Wide distribution

Fig .1.2 Characteristic of Fog Computing:

Low latency- achieved through the proximity of fog nodes to on premise endpoint
devices, enabling much faster response times and analysis.

Varied end user support -Rich and varied end-user support due to Edge devices'
proximity to compute nodes.

Multiple tenancies in a regulated setting- Due to a highly virtualized distributed
platform it increases direct contact between the Fog apps and mobile devices results
in improved mobility assistance.

Real-time interaction as opposed to batch processing, as is the case, for instance, with
cloud-based apps.

Contributes to the provision of high-quality streaming  services.
For time-consuming wireless sensing devices, wireless access networking makes
more sense. Dispersed communication and analysis.

Dissimilarities of Cloud Computing and Fog Computing:

To complement cloud solutions and align with the evolving Internet of Things (10T) vision,

fog computing brings cloud capabilities to the network's edge. This distributed computing

paradigm facilitates the operation of networking, storage, and processing services between
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end devices and cloud data centres. In fog computing, application components typically run
both in the cloud and on edge devices, such as smart gateways, routers, or devices
specifically designed for fog computing.

Wireless networks have limitations, the Internet can be unstable, and the cloud requires
substantial bandwidth. Fog computing significantly reduces the needed bandwidth by
enabling data to be processed and transmitted within the local fog environment, minimizing
reliance on the Internet. This allows most traffic, especially sensitive data, to stay off cloud
networks, while critical data can still be transferred to the cloud. As a result, bandwidth is
freed up for other cloud users.

Similar to cloud computing, fog computing provides storage, computation, and applications
for end-users. However, fog computing is closer to end-users and has a broader geographical
distribution. It emphasizes proximity to users, local resource pooling, and reduced latency,
which improves quality of service (QoS) and enables edge analytics and stream mining. This
leads to a better user experience. Fog computing extends the cloud concept to the network'’s
edge, supporting applications and services that the cloud cannot accommodate due to
technological and infrastructure limitations.

The volume of information in networking is continually increasing. To manage and distribute
this data efficiently to end-users, services like cloud storage and cloud computing are utilized.
However, for managing frequent security updates and mitigating bandwidth challenges, fog

computing presents a more viable solution.

18



Table 1.1: Differences between Cloud Computing and Fog Computing

ASPECT

CLOUD COMPUTING

FOG COMPUTING

DEFINITION

ARCHITECTURE

LATENCY

PROCESSING

LOCATION

SCALABILITY

DATA MANAGEMENT

SECURITY

A model for enabling
ubiquitous, convenient, on-

demand network access to

a  shared pool of
configurable  computing
resources.

Centralized  architecture

with data and processing in

a central cloud server.

Higher latency due to data
traveling to and from a
central cloud.

Data processing occurs in

centralized data centers.

Highly  scalable  with
virtually unlimited
resources.

Centralized data
management with large-

scale data storage and

processing.
Security  managed by
central cloud providers,

with strong but centralized

security protocols.

19

An architecture that uses
edge devices to carry out a
substantial amount  of
computation, storage, and

communication locally.

Decentralized architecture
with processing distributed
across edge devices and
local nodes.

Lower latency as data
processing is closer to the
data source.

Data processing occurs at
the edge of the network,
closer to the data source.
Scalable but within the
limits of local resources
and network capabilities.
data

data

Decentralized
management  with
processed and stored closer
to where it is generated.

Enhanced security due to
data  being  processed
locally, reducing the risk of

centralized attacks.



IDEAL USE CASES Suitable for tasks requiring Suitable  for  real-time
heavy computation and applications requiring low
large-scale data storage, latency, like 10T, smart
like big data analytics and grids, and autonomous

machine learning. vehicles.
EXAMPLE AWS, Google Cloud, Cisco Fog Computing
TECHNOLOGIES Microsoft Azure Solutions, Nebbiolo

Technologies, Dell Edge

Gateway

1.1.4 Fog Architecture:

A basic fog computing architecture consists of three levels. The uppermost layer is the
Internet of Things, which houses intelligent gadgets. The second layer, fog computing,

comprises fog nodes with constrained processing and storage power.

The architecture describes the interaction between edge devices and the cloud, forming a
unified system that bridges these two components. It typically follows a three-layered
structure, detailed as follows:

Layer 1: This is the foundational layer, encompassing all Internet of Things (I0T) devices.
These devices are responsible for gathering and transmitting raw data to the next layer.

Layer 2: Positioned in the middle, this layer features networking devices such as routers and
switches. It handles the preliminary processing of data and offers temporary storage. These
devices are connected to the cloud and continuously send data at regular intervals.

Layer 3: This is the topmost layer, comprising servers and data centers. It is equipped to
store substantial volumes of data and has the capability to process it efficiently.

In addition to this, the initial layer includes both physical and virtual nodes. Various sensors
are employed to track environmental conditions, transmitting the collected data to upper
layers through gateways for further processing. The monitoring layer manages task requests
and oversees energy consumption of the core physical devices. The pre-processing layer
handles data management tasks, such as filtering and cleaning. The temporary storage layer
provides short-term data retention. The security layer is dedicated to encrypting and
decrypting data, ensuring integrity and protection against tampering. Finally, the transport
layer forwards the processed data to the cloud, enabling the cloud to extract valuable insights

from it[17].
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Fig 1.3 Layered architecture of Fog computing

Layered Architecture of Fog Computing

1. Cloud Layer (Top Layer)

Description: This layer represents large, centralized servers or data centers.
Appearance: It features cloud icons and infrastructure symbols, using light blue and
white tones.

Function: The Cloud layer handles extensive data processing, storage, and complex
computations. It serves as the central control point and provides overarching services
to the Fog and Edge layers.

Connections: Arrows point downward to the Fog layer, indicating the transmission of

data and commands from the Cloud to the Fog nodes.
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2. Fog Layer (Middle Layer)

o Description: This layer consists of distributed and decentralized nodes such as local
servers, gateways, and edge devices.

o Appearance: Depicted with small server icons, router symbols, and intermediary
devices in shades of green and light grey.

« Function: The Fog layer acts as an intermediary, processing data closer to the source
(Edge devices) to reduce latency and bandwidth usage. It provides local processing,
storage, and control functions.

o Connections: Arrows point upward to the Cloud layer and downward to the Edge
layer, indicating bidirectional data flow between the Cloud and Fog, and from the Fog
to the Edge. Some nodes in this layer are connected laterally to show inter-node

communication within the Fog layer.

3. Edge Layer (Bottom Layer)

o Description: This layer includes end-user devices such as smartphones, laptops,
sensors, and 10T devices.

o Appearance: lllustrated with icons representing various personal and industrial
devices in orange and yellow tones.

e Function: The Edge layer is the point of data generation and initial processing.
Devices in this layer collect and perform preliminary processing on data before
sending it to the Fog layer for further processing.

« Connections: Arrows point upward to the Fog layer, indicating the transmission of

data from Edge devices to Fog nodes.
1.1.5 Related computing models:

Fog computing is part of a broader landscape of distributed computing models, each with its
unique characteristics and use cases. Below, | outline some related computing models and
their key differences:

1. Cloud Computing

2. Edge Computing

3. Fog Computing

4. Mist Computing

22



Cloud Computing

Definition: Cloud computing involves delivering computing services (such as servers,

storage, databases, networking, software) over the internet (“the cloud”).
Characteristics:

« Centralized resources in large data centers.
o High scalability and flexibility.
o Pay-as-you-go pricing models.

o Services accessed via the internet.
Use Cases:

o Large-scale data storage and processing.
e Web hosting and application development.

o Big data analytics and machine learning.
Key Differences:

e Cloud computing is highly centralized, whereas fog and edge computing distribute
resources closer to the data source.
e Cloud computing may experience higher latency due to the distance between users
and data canters.
Edge Computing
Definition: Edge computing refers to processing data at or near the source of data generation,

minimizing latency and bandwidth usage.
Characteristics:

o Decentralized processing at the network edge.
o Low latency and real-time processing.
¢ Reduced bandwidth consumption.

o Enhances privacy and security by keeping data local.

23



Use Cases:

o 0T devices and smart sensors.
« Autonomous vehicles and industrial automation.

« Real-time analytics and augmented reality.
Key Differences:

o Edge computing focuses on processing at the very edge of the network, such as
directly on devices or local gateways.
« Fog computing extends edge computing by adding an additional layer of intermediate

processing between the edge and the cloud.
Fog Computing

Definition: Fog computing is a decentralized computing infrastructure where data, compute,
storage, and applications are distributed in the most logical, efficient place between the data
source and the cloud.
Characteristics:
o Intermediate layer between edge and cloud.
o Processes data closer to the source than cloud computing but may aggregate data from
multiple edge devices.
e Reduces latency and bandwidth usage.
o Enhances security by local data processing.
Use Cases:
« Smart cities and connected vehicles.
o Healthcare monitoring and management.
e Industrial 10T and real-time analytics.
Key Differences:
e [Fog computing provides a hierarchical layer between edge and cloud, offering
distributed computing closer to the source while still enabling cloud integration.
« More suitable for applications requiring low latency and high reliability but benefiting
from cloud capabilities.

Mist Computing
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Definition: Mist computing is an even more localized form of computing, often considered
the "micro" level of fog computing, where data processing occurs directly on
microcontrollers and small devices.
Characteristics:

o Extremely localized processing on micro-level devices.

o Ultra-low latency.

« Minimal reliance on network connectivity.

« Suitable for simple, real-time processing tasks.
Use Cases:

o Wearable devices and smart sensors.

o Simple loT applications requiring immediate responses.

o Local data filtering before sending to fog or cloud.

Key Differences:
e Mist computing operates on a much smaller scale than fog and edge computing,
focusing on the immediate vicinity of the data source.

o Often used for preliminary data processing before sending data to fog or edge layers.

Comparative Table 1.2

Cloud Edge Mist
Feature Computing  Computing Fog Computing Computing
Intermediate (between  Highly
Centralization Centralized Decentralized cloud and edge) localized
Latency Higher Very low Low Ultra-low

Intermediate nodes

Processing Data At or near between cloud and On micro-
Location canters data source edge devices
Scalability High Moderate High Low
Real-time and

Large-scale Real-time aggregated data Immediate response
Use Cases applications applications applications applications

Web Autonomous Wearables, smart
Examples hosting, big vehicles, Smart cities, healthcare sensors

data AR/VVR
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1.1.6 Resource Allocation in Fog Computing: Resource allocation in fog computing

involves the efficient distribution of computing, storage, and network resources to

various applications and services running on fog nodes. This is critical for ensuring

low latency, high availability, and optimal performance of applications. Below is an

overview of the key aspects and strategies involved in resource allocation in fog

computing?

Key Aspects of Resource Allocation

1. Resource Types:

Computing Resources: CPU, GPU, and memory resources required for
processing tasks.

Storage Resources: Local storage for data caching, databases, and file systems
Network Resources: Bandwidth and network interfaces for communication

between devices and nodes

2. Allocation Strategies:

Static Allocation: Resources are allocated in advance based on predefined
rules and configurations. This approach is simpler but less flexible.

Dynamic Allocation: Resources are allocated on-demand based on real-time
requirements and conditions. This approach is more complex but offers better

efficiency and adaptability.

3. Optimization Goals:

Minimize Latency: Ensuring that data processing and communication occur
with minimal delay.

Maximize Throughput: Enhancing the amount of data processed in a given
time period.

Energy Efficiency: Reducing power consumption while maintaining
performance.

Load Balancing: Distributing workloads evenly across available resources to

avoid bottlenecks and overloading.
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4. Challenges:
o Heterogeneity: Diverse devices and resources with varying capabilities and
performance.
e Mobility: Devices and users may move, requiring dynamic reallocation of
resources.
« Scalability: Managing a large number of devices and applications efficiently.

o Security: Ensuring data privacy and security during allocation and processing.

Resource Allocation Strategies

1. Heuristic-Based Approaches:
e Use rule-based methods and heuristics to allocate resources. Examples include
round-robin, first-fit, and best-fit algorithms.
o Pros: Simplicity and ease of implementation.
« Cons: May not provide optimal solutions in complex scenarios.
2. Optimization-Based Approaches:
e Use mathematical models and optimization techniques (e.g., linear
programming, integer programming) to find optimal resource allocation.
e Pros: Can provide near-optimal solutions.
o Cons: Computationally intensive and may not scale well.
3. Machine Learning-Based Approaches:
e Use machine learning models to predict resource demands and allocate
resources accordingly.
e Pros: Can adapt to changing conditions and improve over time.
o Cons: Requires training data and computational resources for model training
and inference.
4. Game Theory-Based Approaches:
o Use game theory to model the interaction between different entities (e.g.,
devices, fog nodes) and allocate resources based on equilibrium strategies.

e Pros: Suitable for decentralized and distributed environments.

1.1.7 Resource Optimization in Fog Computing
Resource optimization in fog computing is all about making sure that we use our computing
resources—Ilike processing power, storage, and network bandwidth—in the most efficient

way possible. This is key for ensuring that the applications and services running on fog nodes
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perform well and meet user expectations. Below, we'll explore key strategies and techniques
for optimizing resources in fog computing, along with some references to important studies
and articles on the topic.
Key Strategies for Resource Optimization

e Load Balancing

e Energy Efficiency

e Quality of Service (QoS)

e Resource Scheduling

e Data Placement

e Latency Reduction
1. Load Balancing

Load balancing is a technique to distribute tasks evenly across multiple fog nodes so that no
single node gets overloaded [33]. Load balancing in fog computing is essential for efficiently
distributing tasks and workloads across multiple fog nodes. This process ensures that no
single node is overwhelmed, which helps maintain optimal performance and reliability. By
evenly spreading out the computational demands, load balancing minimizes latency and
improves response times, making it a critical component for delivering smooth and seamless
services to end-users. Additionally, it enhances resource utilization and energy efficiency
across the network, contributing to a more robust and scalable fog computing environment. It
prevents any single node from becoming a bottleneck, ensures high availability and

reliability, and enhances overall system performance.

2. Energy Efficiency

Reducing the energy consumption of fog nodes while still maintaining good performance.
Energy efficiency in fog computing is about optimizing the use of resources to minimize
power consumption while maintaining high performance. By processing data closer to where
it's generated, fog computing reduces the need for long-distance data transmission, which can
be energy-intensive. This local processing not only speeds up response times but also cuts
down on the energy used by central data canters. Efficient resource management and dynamic
task allocation further enhance energy savings, making fog computing a greener, more

sustainable solution for modern computing needs.
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Techniques

Dynamic Voltage and Frequency Scaling (DVFS): Adjusts the power and speed of processors
based on the current workload.[34]
Task Consolidation: Groups tasks to run on fewer nodes, allowing some nodes to enter low-
power states.
Energy-Aware Scheduling: Allocates tasks to nodes based on their energy efficiency.
Why It Matters:

e Extends the lifespan of fog nodes.

e Lowers operational costs.

e Supports environmental sustainability.
3. Quality of Service (QoS)
Ensuring that fog computing services meet specified performance metrics like latency,
throughput, and availability. In fog computing, Quality of Service (QoS) is essential to the
seamless and effective operation of applications. For real-time applications, it entails
managing network resources to ensure fast and dependable data transmission. Fog computing
can maintain high performance and minimising latency by setting priorities for jobs and
optimising resource allocation. By doing this, users are guaranteed stable and constant service
regardless of the fluctuations in the network. To put it simply, quality of service (QoS) in fog
computing refers to providing optimal user experience while maintaining resource efficiency,
speed, and dependability [34].
Resource Scheduling:
Resource scheduling in fog computing is all about efficiently managing and allocating tasks
to various fog nodes to maximize performance and minimize delays. It involves determining
the best way to distribute computational loads based on the availability and capacity of
nearby nodes. Effective resource scheduling ensures that tasks are handled promptly and that
resources are not underutilized or overburdened. This not only enhances the overall system
efficiency but also improves the user experience by providing quicker response times and
maintaining smooth operation across the network. Efficiently scheduling tasks and resources

to optimize performance and utilization[35].

29



Static Scheduling:

Uses pre-determined schedules based on known workloads.

Dynamic Scheduling: Adjusts schedules in real-time based on current system state and
workload demands.

Predictive Scheduling: Uses historical data and machine learning to predict and schedule
future workloads. It Improves resource utilization, reduces waiting times for tasks and
enhances system responsiveness.

Data Placement Strategically placing data close to where it's needed to minimize latency and
bandwidth usage.

Techniques :

Data Caching: Stores frequently accessed data on local nodes.

Data Replication: Creates multiple copies of data across different nodes for redundancy and
faster access.

Proximity-Aware Placement: Places data based on the geographic location of data sources
and users.

It reduces data access latency, optimizes bandwidth usage and enhances data availability and
reliability.[36]

Latency Reduction

Minimizing the delay between data generation and processing to support real-time
applications. Latency reduction in resource optimization in fog computing focuses on
minimizing the delay in data processing and transmission. By processing data closer to the
source, fog computing significantly cuts down the time it takes for data to travel to and from
centralized data centers. This local processing means quicker response times and more
efficient handling of time-sensitive tasks. Optimizing resources effectively across fog nodes
further helps in reducing latency, ensuring that applications run smoothly and users
experience minimal delays, enhancing overall system performance.

Techniques:

Edge Processing: Performs data processing close to data sources.

Fog Node Hierarchies: Creates multiple layers of fog nodes to process data progressively
closer to the data source.

Latency-Aware Task Allocation: Allocates tasks to nodes based on their proximity to the data
source and processing capabilities.

It Supports real-time applications like autonomous vehicles and 10T, Improves user

experience with faster response times.
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Here is a diagram that shows how these strategies fit together in a tree-like structure:
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Fig 1.4 Resource Optimization in Fog Computing
Key Areas focused by Fog computing:

1.1.8 Advantage of Resource Management in Fog computing:

%+ Optimized Resource Utilization:

o Benefit: Effective resource management ensures that computing, storage, and

network resources are used efficiently, reducing waste and maximizing performance.
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Explanation: By dynamically allocating resources based on current demands, fog
computing can handle varying workloads more effectively. This ensures that
resources are not left idle and are instead utilized to their full potential, leading to

better overall system efficiency.
Improved Quality of Service (QoS):

Benefit: Enhanced QoS through better resource management ensures that applications
meet their performance requirements, such as low latency and high availability.

Explanation: Resource management techniques prioritize critical tasks and allocate
resources accordingly, ensuring that important applications maintain their

performance standards even during peak usage times.
Cost Savings:

Benefit: Efficient resource management reduces operational costs by optimizing the
use of available resources and minimizing the need for additional infrastructure.

Explanation: By making better use of existing resources and reducing unnecessary
data transmission to the cloud, fog computing can lower expenses related to

bandwidth, storage, and processing power.
Scalability:

Benefit: Effective resource management allows fog computing systems to scale easily
to accommodate growing data and computational demands.

Explanation: As the number of connected devices increases, resource management
strategies enable the system to adapt and scale without significant performance

degradation, ensuring smooth operation as the network expands.
Energy Efficiency:

Benefit: Resource management in fog computing can lead to more energy-efficient
operations, reducing the overall energy consumption of the network.

Explanation: By optimizing the allocation of resources and minimizing unnecessary
data processing and transmission, fog computing systems can operate more

sustainably, conserving energy and reducing their environmental impact.
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Enhanced Security and Privacy:

Benefit: Localized resource management enhances security and privacy by
processing sensitive data closer to the source and minimizing exposure to external
threats.

Explanation: By managing resources at the edge, fog computing reduces the need to
transmit sensitive data to centralized cloud servers, thus lowering the risk of data
breaches and ensuring better compliance with privacy regulations.

Reduced Latency:

Benefit: Proper resource management significantly reduces latency by processing
data closer to where it is generated.

Explanation: Fog computing minimizes the distance data must travel, enabling faster
data processing and response times, which is critical for real-time applications such as

autonomous vehicles and smart grids.
Increased Reliability:

Benefit: Resource management enhances system reliability by ensuring that resources
are available where and when they are needed.

Explanation: By distributing resources across multiple nodes and dynamically
adjusting to changes in demand, fog computing can maintain high availability and

continue operating effectively even in the face of individual node failures.
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Chapter 2

Related Work

The fog computing paradigm integrates conventional technology to support Internet of
Things environments that create large amounts of data. It has become a remarkable
technology that enables creative applications and excellent performance in demanding
situations. The appropriate use of dynamically and spatially dispersed resources across the
system is necessary for deploying fog devices at the fog layer. The Internet of Things is
becoming more and more critical every day, leading to a rise in the demand for massive
power handling, rapid internet systems, and information storage to handle data streams. Fog
Computing has now fulfilled these prerequisites. One of the primary responsibilities of fog
computing is resource management and effective utilization. The resource management
system provides resource scheduling and provisioning to assist in resource management
choices.

Managing resources and making effective use of fog computing is essential. The resource
management system provides resource scheduling and provisioning to assist in making
resource management choices.

Various research has focused on the issue of process scheduling in diverse computing
systems. Because of the its nature that is NP-hard, it is necessary to employ heuristic
approaches to estimate optimal solutions.

The authors of [22] highlight a problem in scheduling workflows with multiple objectives in
Hybrid-cloud systems. The optimization goals are considered time efficiency, cost-
effectiveness, and reliability from the user's perspective. Unlike traditional multi-parameter
scheduling issues in the cloud, the mentioned technique allows clients to create a different
approach to enhance reliability. This study presents a reliability-aware multi-objective
mimetic algorithm (RA MOMA) incorporating a unique method and a diversification
technique to address the Hybrid cloud issues. The diversification strategy employs many
problem-related specific genetic algorithms to produce offspring with diverse features.
Regarding the technique, four problem-specific neighbourhood operators are developed based
on the resource utilization rate and critical path. The purpose is to enhance the quality of the

archive collection. A comprehensive statistical experiment is conducted to assess the
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effectiveness of RA-MOMA. RA-MOMA outperforms similar methods in solving the
MOWSP-MCS, as evidenced by comparisons with these algorithms.

The Heterogeneous Earliest Finish Time (HEFT) algorithm is widely used for scheduling
tasks [27]. HEFT consists of two distinct phases: job prioritizing and selection of processes.
The first phase involves assigning their priorities to tasks based on their ascending ranks. In
contrast, the second phase selects an appropriate processor for task execution, taking into
account the least time taken by a task to complete. Next renowned algorithm in this
classification is Predict Earliest Finish Time (PEFT) [6]. PEFT utilizes the OCT which is
Optimistic Cost Table to prioritize tasks and select the optimal processor for executing task
during the scheduling phase. Both HEFT and PEFT are a kind of optimization which focuses
on single objective that minimizes makespan. In contrast, EM-MOO focuses on multi-
objective optimization strategy that concentrates on energy usage and makespan.

The paper [16] presents the Minimal Optimistic Processing Time (MOPT) approach, which
aims to minimize the makespan. This technique alters the prioritizing phase by calculating
tasks Optimistic Processing Times (OPT) on all executing nodes. The tasks are then ranked
according to their average OPT values. The node selection phase enhances the entry task
duplication feature by permitting duplication only if it lowers the completion time of
subsequent jobs. Once again, it is worth noting that MOPT is a single-objective optimization
strategy, in contrast to the approach we suggest in this paper. In [7], a hybrid meta-heuristic
strategy is proposed to minimize the makespan in a multi-processor cloud environment. This
approach combines the Genetic Algorithm (GA) with Ant Colony Optimization (ACO). The
lowest level (b-level) of a task is utilized for assigning priorities. The b-level represents the
most significant amount of time it takes for a job to traverse all levels of the graph.
Subsequently, the Ant Colony Optimization (ACO) algorithm is utilized to determine an
appropriate route, which is subsequently enhanced by applying the Genetic Algorithm (GA).
The paper given in [27] is one of the rare papers that examines job scheduling in fog
computing as a Directed Acyclic Graph (DAG) scheduling problem. The paper presents the
Cost-makespan-aware Scheduling (CMaS) method, which aims to meet the user's QoS
criteria for optimizing both makespan and cost. It also introduces a utility function that helps
identify the balance between these two objectives. The schedule is enhanced through the
work reassignment step. The Task Scheduling in Fog Computing (TSFC) technique relies on
the classification mining algorithm [19]. The association rules derived from the I-Apriori
algorithm are integrated with the task completion durations, disregarding the bandwidth

between machines. The scheduling of tasks in fog computing-supported software-defined
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embedded systems (FC-SDES) [38] aims to minimize the makespan. The algorithm suggests
a 3-phase approach that combines work scheduling, resource management, and /O request
balancing while minimizing complexity.

Workflow scheduling algorithms must consider resource attributes and dependency
constraints in order to maximize effective resource utilization or make the best use of the
resources at hand while limiting the application's overall completion time or makespan. It is a
well-known NP-complete problem [24] that must be optimized using approximations in
almost polynomial time [25]. In addition to makespan, energy consumption is another vital
element in a fog-cloud environment. Over the past decade, the energy usage of cloud data
centers has significantly risen, leading to a substantial increase in economic and operational
costs and environmental consequences. Additionally, the restricted availability of resources in
fog nodes presents a significant energy barrier. These nodes typically operate on batteries or
have access to limited (renewable) energy sources. They are often deployed in places with
limited and inconsistent energy supplies [?]. Consequently, there has been considerable focus
on green cloud computing in academic and industrial circles. A key concern is decreasing
energy usage in the growing fog-cloud infrastructure .

This chapter describes resource management and talks about fog computing systems. And the
use of resources. It also covers essential background information to help with a better
understanding of resource scheduling in fog computing. An examination and comparison of
the To better understand resource scheduling and resource utilization in the fog environment,
research has been done on the existing resource scheduling strategies.

2.1 Resource Management

Fog computing minimizes the quantity of data sent to the cloud. for processing, analysis, and
storage, improving speed and efficiency. Quality of service (QoS) in fog computing describes
the general performance of a service, especially as perceived by network users.

An evaluation of several network service components, including throughput, latency,
resource availability is typical when assessing the quality of service.

It might take a long time to work because it gets stuck in long lines or takes a less direct route
to avoid delays. Because of the need for applications that can't wait to process and move data
in real-time, cloud computing tries to bring cloud services and tools to the network’s edge
[13].

Based on Quality of Service (quality of service) needs, this new way of doing things i.e fog

computing which moves computing around between cloud places and network parts. Even
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though cloud technology has been studied a lot, 10T services with specific needs can only be
used if cloud resources are physically far away from end users. Many different experts have
come up with various quality of service factors. In an 10T based on the cloud, the delay from
endpoints talking to each other is further from the quality of service that is wanted for real-
time services. When something goes wrong, healthcare services may need to move right
away.

In the same way, self-driving cars need to be able to notice when their surroundings change
quickly. Two of the most sensitive 10T uses are real-time tracking in factories and real-time
guidance in traffic control systems. The quality-of-service monitor figures out how long the
network is taking compared to other system nodes and keeps an eye on the worker node's
quality of service features, like how available it is and how many resources it uses.

Moreover, the assessment of the impact of regulatory actions on the quality of service is
crucial for the effective implementation of real-time services, which demands a very small
latency in the allocation of dispersed resources. QoS-aware service allocation may be greatly
impacted by control decision latency, which is mostly determined by the control topology.

2.2 Use of Resources:

Resource utilisation is referred to by a number of names, including scheduling and resource
provisioning. Terms related to resource scheduling and utilisation are employed in the
framework for carrying out the suggested job. The practice of ensuring that resources are as
useful as possible in order to effectively fulfil user requirements is known as resource
utilisation. Achieving optimal resource allocation and distributing all available resources
among users can lead to high resource utilisation. Any system's cost and performance are
directly impacted by how its resources are used. Under-provisioning resources can result in a
system with worse performance. In contrast, over-provisioning resources can lead to low
utilisation of all allocated resources and raise the cost of the system [14].

Many terms are linked to resource usage, such as scheduling and provisioning. There are
terms for using resources and planning when to use them for the framework of the planned
work. Resource usage is ensuring that resources are used as efficiently as possible to meet
user needs. To achieve high resource utilization, it is necessary to ensure that all available
resources are shared among all people. How well resources are used directly affects how
much a system costs and how well it works. If you give too many resources to a system, they
might not be used at all, and the cost of the system might go up. On the other hand, if you

give more resources, the system might work better.
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2.2.1 Fog computing resource utilisation:

This section reviews the resource utilisation strategies that are currently in use in fog
computing. A fog computing paradigm is proposed to address all the problems associated
with resource distribution for Internet of Things related applications. The scheduler for Bag-
of-Task applications, or BaTS, was proposed by researchers in [70]. BaTS monitors the
progress of operations and dynamically reconfigures the equipment to meet the demands.
They conducted a number of experiments using a price-to-performance ratio. Every test was
run on two different clouds, one using the BaTS algorithm and the other using the RR
(Round-Robin) method. A fog system based on clouds was depicted in [33]. A simulation
was established in this study using requirements for discrete events. To lessen the usage of
the cloud, no specific load-balancing method is applied.

To give an energy-efficient solution, researchers in [15] represented the Energy-Efficient
Task Scheduling (MEET) method for identical nodes. Their selection process and offloading
time slot allotment resulted in a decrease in overall energy use. The author presented a greedy
knapsack scheduling (GKS) method in [16] for resource allocation in a fog enabled network.
Their study's outcome was reproduced in two case studies. Their suggested approach
produced better results than the FCFS, and delay-priority algorithms. Applications about
containers were given access to a network-oriented scheduling approach [17]. They reduced
network latency by 70% using a fog computing architecture built on Kubernetes. The author
0f[18] suggested a hybrid approach for service orchestration in fog networks. South Bound
and North Bound were the two new stages—a choreographic method allowed for automated
and quick decision-making at the South-Bound level. Conversely, North-Bound employs
centralised orchestration at both the cloud and fog layers.

In fog computing, Zeng et al. [19] introduced a scheduling technique in addition to picture
placement. Fog nodes and embedded clients may complete all computational processes via
storage servers. Clients and fog nodes can access the job image stored on the storage server.
It is possible to reduce the completion time by planning each job. Ni et al. [20] introduced a
dynamic resource allocation system based on the time required to complete each job and to
enhance resource utilization. To increase the trustworthiness of fog nodes and to improve
user quality of service, a method known as Priced Timed Petri Netts (PTPNs) was employed.
A resource allocation strategy for optimizing energy usage was described by Pooranian et al.
[]. The algorithm was heuristically based. The resource allocation mechanism the author

devised is called the "bin packing penalty" and is represented by fog servers. Every virtual
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machine was used by time and frequency constraints. An additional strategy, the "penalty and
reward policy," is employed to optimize energy usage.

Sun et al.[95] presented a two-level resource scheduling approach. According to these
authors, distributing resources among several fog clusters produced a brief delay. The theory
of enhanced non-dominated generic algorithm-I1 was scheduled by fog nodes assigned to
different clusters. Resource scheduling amongst fog nodes was put into practice for multi-
objective optimization.

To raise awareness about vehicular networks, [] suggested an integrated structure. To test the
flexibility, they have been turning to the OMNeT++ framework. A blockchain-based
consensus sensing (CS) application was created for this study to reconcile local data.

A unique bio-inspired hybrid algorithm was presented by Rafique et al. [78] for effective
resource management in fog computing. The task above allocated and managed the resources
according to the volume of incoming requests. The primary goal of this effort was to schedule
the jobs efficiently to minimize the familiar or averge response time and maximize resource
use. Task scheduling was handled by the scheduler installed between the fog nodes and the
devices. The inefficient scheduling of given tasks was resolved by integrating a technique,
called Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm
Optimisation (MCSO). This method was verified, and the outcomes demonstrated that it is
more accurate at scheduling the jobs.

The studies listed above have all suggested scheduling algorithms; they have yet to address
how user requests change dynamically in the ever-changing cloud-fog environment. Based on
an analysis of recent research, it has been determined that the field of cloud computing is the
primary focus for studying dynamic resource management. A job scheduling algorithm was
developed using the ant colony system and a mixture of laxity in a cloud-fog environment
[109]. The laxity metric was employed to ascertain job priority, while the ant colony
algorithm was utilised for task scheduling. The intermediary cloud fog broker, situated
between the cloud and fog layers, was tasked with assigning duties according to their criteria.
At first, the requests from the 10T devices are broken down into tasks and the computing
estimation of each job is performed to establish the nature of the work. Subsequently, the
duty was assigned to either fog or cloud. The efficacy of this strategy in work scheduling was
confirmed by rigorous testing and analysis of the output. The task allocation was executed
efficiently using the given technique; nevertheless, it fails to account for the dynamic nature

of the tasks, resulting in a bottleneck issue when the task count is raised.
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The multi-level feedback queuing was suggested as a method for job offloading in the fog
computing framework, considering both deadline and priority [9]. At first, the jobs were
categorized into three groups according to their deadlines: high-priority, middle, and low-
priority activities. The virtual queue idea was utilized to organize and prioritize work. If the
tasks having less priority are not executed within a specific timeframe, their priority will be
increased by one. The procedure was performed, demonstrating its efficacy in job
categorization and scheduling. The deadline above and the priority-conscious task scheduling
approach show task categorization and scheduling proficiency. However, it failed to consider
the energy efficiency of the process and did not consider the selection of the fog node based
on energy and resource availability.

In his discussion of over- and under-provisioning, Agarwal [29] suggested an architectural
solution to address the issue in the fog environment. The most efficient way to employ
processing time and allocate resources to programs is through scheduling. The primary
responsibility of scheduling is to implement a set of applicable processes and determine
which process to execute in the next iteration

A layered fog node architecture designed by Aazam et al. [30](Aazam and Huh, 2014)
enables the processing of local service requests. Intelligent gateways and a data encryption
layer have been installed in fog nodes. They created an intelligent network and smart gateway
using a tiered architecture. They used a range of physical nodes, virtual nodes, wireless
sensor networks, and virtual sensor networks to administer the system.

The combination of A3C learning and residual recurrent neural networks was used in edge
cloud computing environments to execute dynamic scheduling [98]. The 10T devices' duties
were dynamically planned by implementing a resource management system. The Resource
Management System (RMS) determines the scheduling of tasks by considering factors such
as CPU use, memory requirements, bandwidth availability, projected completion time, and
deadline. The Resource Management System (RMS) comprised a Deep Reinforcement
Learning (DRL) model for forecasting the subsequent scheduling determination. At the same
time, the Constraint Satisfaction Module (CSM) would verify the limitations and offer
feasible migration and scheduling determinations. The loss values were utilised to modify the
parameters, whereas the R2N2 was employed to adjust the model parameters of the DRL
model. The forecasting of the subsequent scheduling determination is quite effective. It
decreases the average reaction time of the process, but the loss function of the forthcoming

scheduling task diminishes the efficiency of the process.
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This part looks at how resources can be used in fog computing. Several fog computing
method has been proposed to solve all the problems of allocating resources for Internet of
Things (1oT) apps.

First-Come-First-Served (FCFS),This technique is simple to implement and easy to
understand but can lead to long waiting times for short tasks if a long task arrives first [43].

In Round robin, It is fair to all tasks and simple to implement; however, context switching
overhead can be high [44].

Priority Scheduling-Executes high-priority tasks first, which is beneficial for critical
applications, but lower priority tasks may suffer from starvation [45].

Shortest Job Next (SJN) -Can minimize the average waiting time but requires knowledge of
execution time in advance, which may not always be possible [46].

Ant Colony Optimization (ACO)-This bio-inspired algorithm can find near-optimal solutions
and is adaptable to dynamic changes but is computationally intensive and may require
significant time to converge [47].

Particle Swarm Optimization (PSO)- Efficiently explores the search space and is good for
handling dynamic environments; however, it requires fine-tuning of parameters, and
convergence may not be guaranteed [48].

Dynamic Least Load First (DLLF)- Balances the load effectively and reduces the chances of
any single node becoming a bottleneck but may not always result in the shortest total
execution time for all tasks [49]

Genetic Algorithms (GA)-Capable of finding high-quality solutions for complex problems
but can be computationally expensive and may require significant time to reach an optimal
solution [50].

Heuristic-based Scheduling -Fast and effective for specific types of tasks or environments but
may not always find the best possible solution, and performance is highly dependent on the
quality of the heuristics used[51].

Researchers in [54] came up with the idea of BaTsS, which stands for "budget-constrained
scheduler for Bag-of-Task applications.” BaTS keeps an eye on how operations are changing
and changes the configuration of the machines on the fly based on what is needed. They did
many tests with a price-performance ratio. Two different clouds were used for each test. In
one (Round-Robin) algorithm was used, and for the other one used BaTS. In [33], a cloud-
based fog device was shown. A simulation was set up based on discrete event requirements
for this study. The author's load-balancing technique to cut down on cloud use needs to be

clarified.
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A resource allocation strategy for optimising energy consumption was presented by
Pooranian et al. [55]. The algorithm was heuristically based. The resource allocation
mechanism that the author devised is referred to as the "bin packing penalty" and is
represented by fog servers. Every virtual machine was used in accordance with time and
frequency constraints. An additional policy, known as the “penalty and reward policy," is
employed to optimise energy usage.

In order to raise awareness about vehicular networks, [19] suggested an integrated structure.
To test the flexibility, they have been turning to the OMNeT++ framework. In order to
reconcile local data, a blockchain-based Consensus Sensing (CS) application was created for
this study. A unique bio-inspired hybrid algorithm was presented by Rafique et al. [56] for
effective resource management in fog computing. According to the volume of incoming
requests, the aforementioned work allocated and managed the resources. The major goal of
this effort was to schedule the jobs in an efficient manner in order to minimise the average
response time and maximise resource utilisation. Task scheduling was handled by the
scheduler that was installed in between the fog nodes and the devices. By integrating
Modified Particle Swarm Optimisation (MPSO) and Modified Cat Swarm Optimisation
(MCSO0), the task's inefficient scheduling was resolved. This method was verified, and the

outcomes demonstrated that it is more accurate at scheduling the tasks.

The studies listed above have all suggested scheduling algorithms; they have not addressed
how user requests change dynamically in the ever-changing cloud-fog environment. Based on
an analysis of recent research, it has been determined that the field of cloud computing is the
primary focus for studying dynamic resource management. As a result, this paper proposes a
novel method for scheduling and resource provisioning that will enable dynamic application

management.
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Table 2.1

Comparison of Different Scheduling Techniques in

Scheduling
Technique
Reinforcement
Learning-
Based
Scheduling
(DRL)

Improved
Firework

Algorithm
(IFWA)

Two-phase
Scheduling
with Deep
Learning

(TPS-DL)

First-Come-
First-Served
(FCFS)

Description
Uses deep
reinforcement

learning to
adaptively
allocate

resources and

schedule tasks

based on
system
dynamics.
Optimization
algorithm  for
scheduling
tasks in fog
with better

delay-resource
balance.
Combines
early
classification
with

reinforcement

learning for
adaptive
scheduling.
Tasks are

scheduled in

the order of

Advantages

Learns optimal

policies  over
time, adapts to
changing
workloads.
Handles
dynamic  task

arrival, reduces
execution

delay.

Better response

time, adapts to

workload
changes.
Simple to
implement,
easy to
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Fog Computing
Reference

Disadvantages

Training is time-
consuming and 2022[72]

Zhang et al.,

requires  large

datasets.

Tasks cannot be  Wang et al.,
preempted, 2023[73]
limiting

flexibility.

High  training Shadroo et al.,

complexity and 2021[74]

resource

overhead
May lead to [Yi et al,
long waiting  2015][43]

times for short



Round Robin

Priority
Scheduling

Shortest Job

Next (SIN)

Ant
Optimization
(ACO)

Colony

Particle
Swarm
Optimization
(PSO)

their arrival.
Each task is
assigned a
fixed time slot
in a cyclic
order.

Tasks are
scheduled
based on
priority levels

assigned to
them.

Tasks with the

shortest
execution time
are  scheduled
first.
Bio-inspired
algorithm that
uses the

behavior of

ants to find
optimal paths
for task
scheduling.
Optimization
technique
inspired by

social behavior

understand.
Fair to all
tasks, simple to

implement.

High-priority
tasks are
executed first,
which can be
beneficial  for
critical
applications.
Can minimize
the average

waiting time.

Can find near-
optimal
solutions,
adaptable  to
dynamic

changes.

Can efficiently
explore the
search  space,
good for
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tasks if a long
task arrives first.
Context
switching
overhead can be
high.
Lower priority
tasks may suffer

from starvation.

Requires

knowledge  of
execution time
in advance,
which may not
always be
possible.

Computationally
intensive, may
require

significant time

to converge.

Requires  fine-
tuning of
parameters,

convergence

[Chiang &
Zhang,
2016][44]

[Bonomi et al.,
2012][45]

[Stojmenovic
& Wen,
2014][46]

[Dastjerdi et
al., 2016][47]

[Gupta et al.,
2016][48]



Dynamic
Least Load
First (DLLF)

Genetic
Algorithms
(GA)

Heuristic-
based
Scheduling

of birds
flocking or fish
schooling, used

for task
scheduling.
Tasks are

scheduled to
the node with
the least

current load.

Uses principles
of natural
selection and
genetics for
scheduling
tasks.

Utilizes
heuristic

methods to
make
scheduling
decisions based
on predefined
rules or

experience.

handling
dynamic

environments.

Balances  the
load

effectively,
reduces the

chances of any
single node
becoming a
bottleneck.
Capable of
finding  high-
quality
solutions  for
complex

problems.

Can be fast and
for

types
of tasks or

effective

specific

environments.
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may not be

guaranteed.

May not always
result in the
shortest  total
execution time

for all tasks.

Can be
computationally
expensive, may
require
significant time
to reach an
optimal
solution.
May not always
find the best
possible
solution,
performance is
highly
dependent  on
the quality of
the  heuristics

used.

[Stojmenovic
& Wen,
2014][49]

[Dastjerdi et
al., 2016][50])

[Gupta et al.,
2016][51]



2.2.2 Existing Framework in Fog Computing:

This pioneering paper by Bonomi et al. introduces the concept of fog computing as an
extension of cloud computing closer to the edge of the network. It discusses the role of fog
computing in handling the massive amounts of data generated by loT devices, reducing
latency, and conserving bandwidth. The paper highlights early use cases in smart grids,
connected vehicles, and smart cities [38].

Yi and colleagues provide a comprehensive survey of fog computing, discussing its
fundamental concepts, applications, and the issues that need to be addressed. The paper
elaborates on the architectural components of fog computing and its potential to support real-
time analytics, enhanced security, and improved system scalability [39].

Chiang and Zhang's work explores the synergy between fog computing and l1oT. The paper
identifies research opportunities and challenges in integrating fog and 10T, such as managing
heterogeneous devices, ensuring data security, and developing efficient resource allocation

strategies. The authors argue for a collaborative approach to address these challenges [40].

EdgeX Foundry is an open-source initiative aimed at building a common framework for
industrial 10T edge computing. The project seeks to standardize the development of IoT
solutions across diverse hardware and software environments. The framework's modular
design supports scalability and interoperability, making it suitable for various industrial

applications [41].

This chapter presents a detailed taxonomy and survey of fog computing, highlighting its
distinguishing features, architectural models, and key applications. Mahmud et al. discuss the
benefits of fog computing in terms of latency reduction, bandwidth optimization, and
enhanced security. They also propose future research directions, including standardization

efforts and the development of robust fog ecosystems.[42]

This work delves into the security challenges associated with fog computing. Stojmenovic
and Wen analyze potential security threats and propose a set of guidelines for designing
secure fog systems. They emphasize the need for robust authentication, encryption, and data

integrity mechanisms to protect against cyber-attacks [43].

Hong et al. introduce the concept of "Mobile Fog," a programming model designed to support
large-scale 10T applications. The paper discusses how Mobile Fog can facilitate the

deployment of distributed applications by leveraging the computational resources of mobile
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devices and edge nodes. This approach aims to reduce latency and improve the
responsiveness of 10T systems [44].

This exploratory study investigates the potential applications of fog computing in healthcare.
Skala et al. discuss how fog computing can enhance patient monitoring, medical data
analysis, and emergency response. The study highlights the importance of low latency and
high availability in healthcare applications and demonstrates how fog computing can meet
these requirements [45].

Varshney's paper focuses on the integration of fog computing with pervasive healthcare
systems. The author examines how fog computing can support the real-time processing of
health data, improve patient care, and enable remote health monitoring. The paper also
discusses the challenges of implementing fog computing in healthcare, such as data privacy
and interoperability [46].

Dastjerdi and Buyya's work provides a comprehensive overview of how fog computing can
help 10T systems achieve their full potential. The authors discuss the architectural
components of fog computing, its benefits, and the challenges that need to be addressed.
They also present a case study on smart traffic management to illustrate the practical

applications of fog computing [47].

This paper explores the use of container technologies in fog computing for industrial loT
applications. Zhao et al. discuss the advantages of using containers, such as scalability,
portability, and resource efficiency. They also propose a deployment and management
framework that leverages container orchestration tools like Kubernetes to optimize resource

utilization in fog environments [48].

Vaquero and Rodero-Merino provide a comprehensive definition of fog computing,
distinguishing it from related paradigms like cloud and edge computing. The paper outlines
the key characteristics of fog computing, including its ability to support latency-sensitive
applications, distribute data processing closer to the source, and provide enhanced data

privacy and security [49]
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Table 2.2 Comparison of Cited Works

Title Authors Year | Focus Area Key Contributions
Fog computing | Bonomi, F., Milito, | 2012 | Role of fog | Introduced fog computing
and its role in | R., Zhu, J., & computing in | as an extension of cloud
the internet of | Addepalli, S.[46] loT computing, highlighted
things early use cases.
A survey of |Yi, S, Li,C., &Li, | 2015 | Survey of fog | Comprehensive survey of
fog computing: | Q.[44] computing fog computing, discussed
Concepts, concepts, architectural ~ components
applications applications, and key applications.
and issues and issues
Fog and IloT: | Chiang, M., & | 2016 | Research Explored synergy between
An overview | Zhang, T [45] opportunities fog computing and IoT,
of research in fog | identified research
opportunities computing and | challenges and
loT opportunities.
Open  source | EdgeX 2021 | Open-source Standardized = framework
industrial 10T | Foundry[42] framework for | for industrial 10T, supports
edge platform industrial 10T | scalability and
edge interoperability.
computing
Fog Mahmud, R., | 2018 | Taxonomy and | Detailed taxonomy,
computing: A | Kotagiri, R.,, & survey of fog | highlighted benefits,
taxonomy, Buyya, R.[43] computing challenges, and future
survey and research directions.
future
directions
The fog | Stojmenovic, 1., & | 2014 | Security issues | Analyzed security threats,
computing Wen, S.[47] in fog | proposed guidelines for
paradigm: computing designing  secure  fog
Scenarios and systems.

security issues
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Mobile fog: A | Hong, K., | 2013 | Programming Introduced 'Mobile Fog/,

programming | Lillethun, D., model for | discussed deployment of

model for | Ramachandran, U., large-scale 10T | distributed applications.

large-scale Ottenwélder, B., & applications

applications on | Koldehofe, B. [36]

the internet of

things

Application of | Skala, K., etal.[77] | 2015 | Application of | Investigated potential

fog computing fog computing | applications in healthcare,

in healthcare: in healthcare emphasized low latency

An exploratory and high availability.

study

Pervasive Varshney, U.[78] 2017 | Integration of | Examined integration with

healthcare and fog computing | healthcare, discussed real-

fog computing with healthcare | time data processing and
systems remote monitoring.

Fog Dastjerdi, A. V., & | 2016 | Potential of fog | Overview of architectural

computing: Buyya, R. [48] computing in | components, case study on

Helping  the loT smart traffic management.

Internet of

Things realize

its potential

Deployment Zhao, Z., et al.[75] | 2018 | Container- Discussed container

and based fog | technologies, proposed

management computing in | deployment and

of  container-
based fog
computing in

industrial 10T

industrial 10T

management framework.
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Finding your | Vaquero, L. M., & | 2014 | Comprehensive | Provided a comprehensive
way in the fog: | Rodero-Merino, definition  of | definition, outlined key
Towards a| L.[76] fog computing | characteristics of  fog
comprehensive computing.

definition  of

fog computing

Smart e-health | Rahmani, A. M., | 2018 | Smart e-health | Introduced Smart e-Health
gateway: Thanigaivelan, N. gateway  for | Gateway, discussed real-
Bringing K, Gia, T. N, loT-based time analytics and remote
intelligence to | Granados, J, healthcare monitoring.

internet-of- Negash, B.,

things  based | Liljeberg, P., &

ubiquitous Tenhunen, H.

healthcare

systems

Fog computing | Aazam, M., & | 2014 | Dynamic Proposed dynamic resource
micro Huh, E. N.[30] resource estimation and  pricing
datacenter estimation and | model for micro data
based dynamic pricing for lIoT | centers.

resource

estimation and

pricing model

for loT

Dependability | Santos, R., Maciel, | 2018 | Dependability | Presented framework for
evaluation in |P., & Matos, R. evaluation in | dependability  evaluation,
fog computing | [17] fog computing | emphasized reliability and
for the internet availability.

of things

applications

Frameworks have been developed under the fog computing paradigm, including 10T devices

and the cloud. Liu et al. introduced a methodology to decrease the delay of resource

allocation. This architecture demonstrated vehicular Adhoc networks (VANET) to transmit

significant data across communication channels. Resource allocation and job scheduling
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issues have been overcome using MU-MIMO channels, where data is segmented into pieces
and sent. They analysed a specific application situation and optimised resources by
identifying and fixing the issue using a genetic algorithm

Tuli et al. [52] designed a lightweight framework called FogBus for connecting loT-enabled
devices.. The framework was developed to incorporate blockchain technology and an
authentication procedure to safeguard sensitive data. The functioning framework was
assessed using a finger pulse oximeter for Sleep Apnea diagnosis. FogBus fully enables

distributed application execution. There were no policies in place for real-time resource

management and application migration during execution.

Rathee et al. [53] introduced a dependable method utilising the tidal trust algorithm to
calculate the Trust Value and Trust Factor (TV/TF) to identify genuine FN and 10T devices
accurately. The Social Impact Theory Optimizer (SITO) was utilised on the fog layer to
compute trust levels in the suggested framework. They identified the malicious nodes in their
research by using specific criteria. The framework underwent testing on several parameters,
and a virtual fog environment was created using the NS2 simulator. The study needs to

account for the dynamic nature of 10T devices in the suggested framework.

Yigitolglu et al. [114] named a framework they created "foggy."” This framework oversees the
automatic deployment of IoT applications in fog computing environments. The framework
has components such as a container registry, version control server, orchestration server,
node, and tool for continuous integration. The developed framework has yet to be utilised for
practical 10T applications. Zhang and colleagues (2018) developed the Hierarchical Game

Framework to address resource allocation issues in fog computing.

Lin et al. [55] developed a hybrid deep learning framework to enhance the efficiency of
manufacturing systems. Visual sensors are included into the proposed framework to identify
faulty products and measure the extent of the problem. This approach signifies the decrease

in the burden on the cloud layer.

2.3 Real time where Fog computing is Applicable:

Fog computing applies to latency-sensitive applications, including healthcare, emergency

services, and cyber-physical systems. Below are some instances of fog computing
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applications. Most academics focus on fog computing applications, particularly in health care.
Various research on health monitoring, detection, diagnosis, and visualisation have been
conducted recently. Cao et al. introduced FAST, a distributed analytic system utilising fog
computing to monitor stroke migration by including a fall detection algorithm. The suggested
technique has been integrated into a fog-based distributed fall detection system. This strategy
distributes the analytical workload across the network by dividing the detection
responsibilities between the edge devices and the server.

2.3 Problem Formulation:

Resource management is a critical challenge in fog computing environments, and efficient
task scheduling is vital for effective resource utilization. While current research emphasizes
task scheduling, it often overlooks the optimal schedulability of these tasks. To address this
gap, optimization techniques have been employed to enhance task scheduling. The Modified
Marine Predators Algorithm has been implemented to overcome the obstacles associated with
task scheduling in fog computing, ensuring better resource management [57][58]. A ranking
method was employed to ascertain the number of consecutive iterations needed to surpass the
current position. Wang et al. proposed an enhanced firework algorithm aimed at achieving

optimal task scheduling in fog computing environments [58].

The previous study used the marine predators algorithm to improve energy efficiency in task
scheduling. However, it overlooked the balance between delay and task load, which led to
resource wastage in the fog node. Moreover, the algorithm scheduled tasks without

considering whether resources were available.

This method of task scheduling with the improved firework algorithm has several limitations,
one of which is that tasks cannot be preempted. This restriction decreases the overall

efficiency of the approach.

The dynamic nature of the fog node, which changes with varying tasks, is not considered,
impacting the effectiveness of the proposed task scheduling method in loT-based fog

computing.

Rafique et al. and Shardoo et al. [59] and [60] managed resources for task execution by
addressing inefficient task scheduling with Modified Particle Swarm Optimization (MPSO)
and Modified Cat Swarm Optimization (MCSO). This approach allocated and managed
resources according to incoming request demands [59]. For resource management, three

methods were used: Self Organizing Map (SOM) and autoencoder [60]. The "earliest
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deadline first" strategy was applied for task scheduling. There are problems with these
approach:

e The bio-inspired hybrid algorithm fails to meet QoS and SLA requirements for
effective resource management and task scheduling, resulting in suboptimal system
performance.

e The Modified Particle Swarm Optimization (MPSO) used in this method tends to
converge too early, especially during the scattering phase, which diminishes the
approach's overall efficiency.

e The two-phase scheduling approach effectively organizes tasks, but the random
allocation leads to increased overload and retransmissions, which in turn raises the

average response time.
Research Objectives:

e To analyze existing energy efficiency-based resource allocation algorithms in Fog
Computing environment

e To design a resource management framework for the Fog Computing environment.

e To design the proposed energy efficient based resource allocation algorithm in Fog

computing environment.

e To validate the above proposed algorithm and compare with existing work in Fog
Computing environment

This chapter delved into the current resource scheduling techniques used in fog computing
environments. It reviewed the existing frameworks that have been applied within the fog
computing paradigm and evaluated the resource management strategies currently in place at
the fog layer. The subsequent chapter will introduce a new resource scheduling framework
designed to tackle the issues identified in the problem formulation and achieve the objectives

set out in this research.
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Chapter 3

Proposed Framework for Energy efficient Framework

The previous chapter provided an in-depth exploration of resource sharing and optimization
in the fog computing environment. Through a review of related work, it became evident that
while resource has been studied in fog computing, there has been a lack of emphasis on
resource optimization for scientific processes. This chapter seeks to fill this gap by presenting
the architecture of fog computing for optimizing resources in scientific workflow

applications.

To achieve specific goals, related actions known as workflows need to be completed. In the
realm of cloud computing, these workflows might include tasks such as data processing,
application activation, and provisioning of virtual machines. By optimizing the timing of
these activities, companies can reduce costs, enhance productivity, and improve the overall

efficiency of their IT operations.

Optimizing workflows can significantly enhance the overall efficiency of IT operations. By
automating routine tasks and reducing the need for manual intervention, businesses can free
up their IT teams to focus on more critical projects. This not only improves the quality of
customer service but also makes companies more adaptable and responsive to changing

business needs.

This study's primary goal is to present an optimization framework for scientific workflow
design. Utilizing the Bayesian framework and the maximum likelihood technique, the study
enhances result accuracy through optimal estimations and predictions. It tackles the
complexity of multi-objective optimization problems by integrating a random distribution
element, introducing variability into the process. This approach enables the model to explore
a broader range of solutions, potentially uncovering more diverse and effective outcomes.

Furthermore, the research incorporates multiple heuristic techniques—efficient and effective
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problem-solving strategies—to improve the model's ability to navigate complex optimization
scenarios. Despite the use of randomness, the study strategically minimizes its impact to
ensure the reliability of results and reduce the influence of unpredictable factors.

There are several key reasons to optimize cloud operations, with cost reduction being one of
the most significant. By streamlining processes to minimize the time and resources required
to complete tasks, businesses can cut expenses. This is especially important for companies
that need to scale their computing resources up or down in response to fluctuating workloads.

The suggested methodology considers three primary factors while implementing resource
optimization in a fog environment: execution time, computational cost, and energy usage. In
certain situations, the processing and storage of a substantial volume of data necessitate the
utilization of resources. A significant number of academics prioritize enhancing the
performance of fog computing by addressing crucial issues such as privacy, scheduling,
security, etc. Fog computing encounters several challenges as it continues to expand,
including limited storage capacity, concerns about privacy arising from location awareness,

resource overload, increased energy usage, and the need for effective resource management.

In [14], a scheduling strategy called fog Match—based on game theory—was presented. To
achieve the lowest possible latency and efficient resource optimization of the corresponding
fog nodes, the research work focused on matching the duties of 10T devices to relevant fog
nodes. Depending on the need, the aforementioned method introduced both distributed and
centralized scheduling. The results showed that in terms of scheduling and better resource
management, this work performed better. When fog nodes and 10T devices are matched,

resource management is successful.

This research mainly focuses on the resource optimization issue, which means the resources
need optimization. Although fog computing improves computational efficiency at the
network edge, effective resource optimization continues to pose difficulties that, if
unaddressed, may compromise performance in certain scenarios. It efficiently distributes the
workload among all the fog resources, considering system requirements. Efficient resource
distribution is required in fog computing to enhance the utilization of resources and to

provide high-quality services to the users.
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In a fog computing environment When it comes to fog resources, a scheduling technique that
minimizes an application's makespan but uses a lot of energy is not the best option. When
several competing goals need to be met at once, this gets harder. Reducing makespan, for
example, while also lowering the amount of energy needed to finish application processing, is
difficult. Consequently, to determine the best compromise between
these optimization objectives, a biobjective optimization strategy is needed.

The scheduling problem is not well researched for fog-cloud infrastructures, despite having
been extensively studied for cloud settings as a single goal or multi-objective optimization
problem. In this research work, we first frame the problem as a multi-objective optimization
model that takes energy consumption reduction and makespan minimization into
account. Given the nature of competition between the two objectives, we employ an adaptive
weighted bi-objective cost function. Which of the two criteria—makespan or energy—a user
values more highly is indicated by the weight's value. The ultimate goal is to strike the ideal
balance between the amount of time it takes to complete an application and the energy used

to execute the process.

3.1 EERO: Energy Efficient resource Optimization for scientific workflow application

Workflows are utilized to carry out various experiments. While other resources
communicate with one another, a lot of data is transferred. In fog computing, the majority
of workflow tasks are performed locally on fog nodes as opposed to being sent to the
cloud. Nevertheless, load balancing optimization is required as data transmission between
several fog nodes increases to prevent either fog node from having too many jobs or too few
duties. As a result, these resources use more energy to complete the jobs, which drives up the
hardware cost of fog nodes. Therefore, load balancing can aid in enhancing system
performance and lowering the energy and execution time of workflow tasks.

In order to avoid resource overload in the scientific workflow application-based fog
computing, this section presented an architecture of load balancing (EERO) for fog
computing that reduces cost, execution time, and energy consumption. The suggested EERO
model is displayed in Figure 3.1

To enhance energy efficiency in fog computing—particularly for applications utilizing
scientific workflows—there is a need for a specialized framework. We introduce EERO
(Energy Efficient Resource Optimization) for Fog computing, aimed at minimizing costs,

execution time, and energy consumption. As illustrated in Fig. 1, the proposed EERO model
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includes a three-layer structure for optimizing resources in an energy-efficient fog
architecture. These layers consist of the fog layer, the end-user layer, and the cloud layer.
This model retains the essential characteristics of standard fog computing architecture but

incorporates an improved fog layer. A detailed description of each layer follows.

End-user Layer: At the network’s edge, end users initiate requests that are directed to the fog
layer. With the growing demand, scientific workflow applications produce millions of tasks
per second. These tasks are first processed before being forwarded to the fog layer for
execution. To ensure an efficient distribution of work, we apply the Pareto distribution
method. While some tasks are handled within the fog layer, others are sent onward to the
cloud layer for processing.

Fog Layer: The fog layer is organized into multiple clusters, each containing a few fog
nodes. Each cluster includes a local controller responsible for monitoring fog nodes and
maximizing resource utilization. Users connected to the fog layer continuously send requests
to these fog nodes, generating a large volume of tasks due to the high number of users. This
setup brings connectivity services closer to the data-producing nodes at the most immediate
layer. The system comprises physical and virtual sensors, computing nodes, and other
components. Within the fog layer, there are small data centers—similar to limited-function
clouds—known as nano data centers. These centers have restricted processing and storage
capabilities, so only high-priority tasks are handled locally, while others are sent to the cloud
layer for processing.

Cloud Layer: The cloud layer connects with the fog layer to support future data transmission
and storage needs. This layer consists of large data centers equipped with extensive
networking, storage, and processing capabilities. These data centers provide repository
support for lower-priority tasks from nano data centers in the fog layer, allowing them to be
stored and accessed

for future use.
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Figure 3.1 Energy Efficient Resource Optimization Model

3.1.1 Operating modules of EERO

In terms of operation, the proposed model is divided into three key modules: the optimization
module, the pre-processing module, and the parameter analysis module, as shown in Fig. 2. A

detailed description of the updated process for each module is provided below.

3.1.1 Initial Processing or Pre-Processing module: The Workflow Management System
(WFMS) is utilized to break down workflows into a series of activities, enabling their
automated and efficient execution. This system allows users to design and review workflows,
set budgets, specify time constraints, and choose preferred working conditions. To ensure
tasks are allocated effectively and stay within budget and deadlines, we employ the Pareto
distribution. After reviewing and implementing these parameters within the defined limits,
the WFMS assesses dependencies and sends completed tasks to the scheduler via the task

dispatcher.

3.1.2 Optimization Process or module: This method provides the user with full transparency
regarding the services they received while completing various tasks. When all nodes have the
necessary resources, the tasks assigned to the fog nodes are successfully completed.

However, if some tasks lack resources and the fog nodes are still underutilized, resource
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optimization becomes necessary. To address this, we apply the PEFT ranking algorithm to
the available tasks.

3.1.3 Analysis Module for Parameters: After resource optimization, an analysis is
conducted on key parameters, including cost, energy usage, and execution time. If the
evaluation reveals that further optimization is needed, the tasks are sent back to the
optimization module for rescheduling.

Preprocessing module
Input Workflows

Parsing
Tasks
Mappin
Fog Modes
Fog 1 Fog 2 .| Fogn —_— Fog 1 Fog 2 Fogn
If not
Optimized
Initialize optimization Parameter Analysis
Optimization module Rescheduls Parameter Analysis
tasks Module

Figure 3.20perating module of EERO

The working method is explained in the fig 3.1.2

Key components of our methodology include:

e Workflow Management and Parsing: Utilizing the Workflow Management System
(WFMS), we parse complex workflows into manageable tasks, facilitating efficient
execution and resource allocation.

e Pareto Distribution: By applying the Pareto principle, we prioritize critical tasks,
ensuring optimal use of resources and balancing the load across the fog network.

e PEFT Ranking Algorithm: The Predict Earliest Finish Time (PEFT) algorithm ranks
tasks based on their dependencies and execution times, allowing for more effective
scheduling.
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e Genetic Algorithm and Bayesian Optimization: These techniques are employed to
refine task scheduling, finding the optimal configuration that balances energy
consumption and execution time.

e Adaptive Re-Optimization: The system continuously monitors execution results,
dynamically adjusting schedules to address any inefficiencies or changes in workload
demands.

The implementation of these strategies within the EERO framework has demonstrated
significant improvements in the overall performance of fog computing environments. By
reducing the energy consumption and execution times, our model not only enhances the
efficiency of scientific workflows but also contributes to the sustainability of computational

infrastructures.
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Figure 3.1.2 Working methodology of EERO
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3.1.2 Assignment of a workflow task:
The process for distributing tasks among fog nodes is detailed here. The workflow organizer

collects tasks generated by users, places them into a queue, and holds them until processing
resources are ready. Remote users submit their workloads to fog nodes for execution. The
workflow scheduler prioritizes these tasks and assigns them to the fog’s local controller.
Once resources become available, tasks are sent for execution, and the task scheduler is
updated on their status afterward. This approach helps reduce the load on the fog layer by
allocating tasks as resources free up. The fog cluster's coordinator node oversees load
distribution across virtual machines, shifting tasks from overloaded virtual machines to idle
ones to balance the load effectively.

3.1.3 Proposed work flow model:

A Directed Acyclic Graph (DAG) can be represented by a set of vertices (V1, V2, V3..., Vn),
with edges (E1, E2, E3..., En) defining the processes in fog computing. Workflows in fog
computing can be considered NP-complete problems. In this context, vertices symbolize the
tasks assigned to virtual machines (VMs), labeled as "VMI1, VM2, VM3..., VMn," while
edges denote the interactions between tasks T, such as "T1, T2, T3..., Tn." Workflow
weights are assigned to edges by specifying computation and communication times for each
task. Resources, represented as "R1, R2, R3..., Rn" within the fog and cloud layers, are
allocated to these tasks. This section presents models for time, cost, energy, makespan, and

objective functions in fog computing processes.
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Table 3.1 Notations

Notation Description
Vertices Vv
Edge E
Virtual machine VM
Tasks T
Resource R
Total time Ty
Time required to receive a task Tr
Time required in the processing of a | Te
task
Waiting time for a task Tw
Total Cost Teo
resource's ready time RRy
fitness function 0
Optimize parameter A
Execution Time ET
Execution Cost EC
bjective function f(p)
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Time: During workflow execution, a numerical solution can either continue with the current
execution phase or reschedule the remaining tasks by assessing the available execution time.
Key factors such as job dependencies, task variability, and computational capacity should be
accounted for when estimating the workflow's execution duration [16]. An important aspect
of scientific workflows is that some runtime components are designed stochastically, adding
unpredictability to execution estimates. Execution time in workflows is calculated as the total
duration from the start to the completion of a process, factoring in any waiting periods, such

as time spent awaiting resources or the completion of other tasks.
Ty= X" Tre+ X" Tp + V" Tw (3.1)

x=1 x=1 x=1
T = Total time
Tre= Time required to receive a task
Tp=Time required in the processing of a task
Tw= Waiting time for a task
where VMXx indicates how many virtual machines are there overall.
Cost: All cost metrics in this study are unit less and represent normalized values between 0
and 1 for theoretical comparison. Actual values depend on predefined simulation weights for
resource use, migration, and memory. In the execution of scientific procedures, both the cost
factor (CF) and the movement factor (MF) are considered. MF represents the ratio of
expenses incurred during task execution, factoring in migration and virtual machine (VM)
costs. CF is calculated as the ratio of the total process cost to the combined cost of the VM
and data center, adjusted by the amount of memory utilized by the task.

Tco (Total costy=(MF+CF)/2 (3.2)

Where MF defines the Movement factor and CF defines the Cost factor

MF= 1 VMx Number of migration (33)
Total number of hosts in data center x=1 Used VM

_ WV Mx Cost to processxmemory of tasks 34
CF=Yy'M: (3.4)
VMx*Data Center
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where VMXx indicates how many virtual machines are there overall in the system. It is

possible to calculate the overall cost of a task that is on time and a task that is late.

Actual Cost = Cost of Underlined tasks + Cost of tasks which has crossed the deadline
(3.5)

Energy: Energy is calculated as the total of all instances' movement factor, time, and cost
factor. The following equation depicts how much energy the fog environment uses when
running operations.

Energy = Y.(Tyi + MF + CF)* Number of instances (3.6)

The three terms Tti, MF, and CF stand for total time, movement, and cost, respectively

Makespan: It represents the total time required to complete all assigned tasks using the

available resources. To estimate this, we use the Expected Time to Compute (ETC) matrix,
where Tj refers to a specific task and Rj indicates a particular resource. Efficient task

scheduling aims to minimize the makespan by balancing the workload across resources.

In this approach, tasks are assigned in a way that avoids overloading any single resource,
helping to reduce the total completion time. The completion time C for a given task on a

resource is calculated as
C=RR,+ER,

Here, RRn is the ready time of resource n, and ERn is the execution time of the task on that
resource. Once all completion times are computed, the makespan (MS) is defined as the

maximum value among them
MS=max(C (T;j,Rn)) (3.7)

Objective function: The objective of this study can be outlined using the previously

established models for makespan, cost, energy, and time.

f(p)= o *(Ti+Teot E + MS) (3.8)
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In this model, the objective function f(p) aims to be minimized to achieve the best results.
Upon optimization by the algorithm, the fitness value is obtained. The parameters are
represented as follows: total cost Tc, energy consumption E , total time Tt , and makespan
MS

3.2 Optimization method used:

Utilizing EERO optimization techniques, the main goal is to reduce energy usage. The

proposed architecture is divided into four parts

Parsing of Workflows
Optimize the ranking
Optimize the task scheduling

o w >

Analysis the parameter

We begin by parsing workflows and assigning an optimal ranking. The first step involves
identifying the ideal Pareto front, followed by applying a PEFT-based ranking within that
region. Once ranked, we analyze the probability distribution correlation of these task ranks
and optimize through a Bayesian approach. The Pareto front, comprising nondominated
solutions, represents the best options if no goal can be improved without compromising
another. Alternatively, a solution x* is considered dominated by another solution x only if
X is equal to or better than x* across all objectives. Given that rankings are interdependent,
previous step data is utilized to create an efficient task mapping. Consequently, NSGA-II is
applied to achieve multi-objective optimization using equation 1, monitor resource usage, and
establish an optimal scheduling threshold for virtual machines. Bayesian optimization is
particularly employed to locate the global minimum with minimal iterations, providing an
effective framework for addressing similar challenges. So, parse the workflows as per the
parent-child relationship and the specified order, although many tasks will appear in the

series. On the same level, we go to the next phase and assign an optimal ranking.
Fitness function: F = 0 (ET +EC+E) + \(ET + EC+E) .... (3.9

d =learning parameter
A =optimize parameter
ET=execution time
EC=execution cost

E=energy
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To start, initialize N and W to represent the initial values for the number of fog nodes and
workflows, respectively. Fog nodes are transformed into parser trees once the nodes and
workflows are established. After creating parsing trees for fog nodes, computationally
intensive workflow jobs are divided into smaller task components, extracted from workflows,
and assigned to fog nodes. The first step involves identifying the optimal Pareto front, which
provides a solution to the multi-objective optimization problem. This Pareto front represents

a set of optimal, non-dominant options.

Algorithm 3.1: Optimal Pareto Front Selection

Input: Set of tasks with dependencies based on Time and Energy

Output: Optimized Pareto Front

1. D « Identify task dependencies based on Time and Energy

2. Initialize:

iteration_count < 0

MAX_ITER <N

converged < False

previous_pareto_front — @

¢ « small threshold value (e.g., 1e-3)

3. While (NOT converged AND iteration_count < MAX_ITER):

a. Apply Dominate() using fitness function eq(3.9)

b. current_pareto_front < Update Pareto Front

c. AFront < compute_distance(previous_pareto_front, current_pareto_front)

d. If AFront < ¢ then

converged < True

Break

e. previous_pareto_front < current_pareto_front

f. iteration_count « iteration_count + 1

4. Return Final Pareto Front
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Algorithm 3.2: PEFT-Based Task Ranking

Algorithm: Task Ranking Based on Dependency and Dominance

Input: Pareto Front space

Output: Task ranking according to dependency and dominance

1. D « Extract task dependencies from Pareto Front

2. Initialize:

iteration_count < 0

MAX_ITER < N

converged <« False

previous_rankings «— @

& « small threshold (e.g., 0)

3. While (NOT converged AND iteration_count < MAX_ITER):

a. For each pair of tasks (t;, t;) in Pareto Front:

I. If t; > t; (in terms of dependency or priority):

- Apply: Dominate(t;) > Dominate(t;)

- Update task rankings accordingly

b. current_rankings « updated task rankings

c. ARank < compute_ranking_difference(previous_rankings, current_rankings)

d. If ARank < ¢ then

converged < True

Break

e. previous_rankings < current_rankings

f. iteration_count < iteration_count + 1

4. Assign final task rankings based on updated Pareto region

5. Proceed to objective-based task scheduling

Algorithm 3.3: Bayesian Optimization for Task Ranking

Input: DAG (workflows) with PEFT Ranking

Output: Optimized Task Mapping and Scheduling

1. Initialize:

iteration_count < 0

MAX_ITER <N

converged < False

improvement_threshold € < small value (e.g., 1le-3)

convergence_counter < 0

patience < P (e.g., 3)

2. While (NOT converged AND iteration_count < MAX_ITER):
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a. For each task:

I. Compute task execution time and energy at each fog node

ii. Predict expected improvement EI(X) using Bayes: w(x|D), o(x|D)

iii. Store EI(x) for convergence tracking

b. max_EI «— max(EI(x) for all tasks)

c. If max_EI > g then

Apply BayesOptimize()

convergence_counter < 0

Else

convergence_counter « convergence_counter + 1

d. If convergence_counter > patience then

converged < True

Break

e. iteration_count « iteration_count + 1

3. Output: Final optimized task ranking and assignment

Workflows Parsing :The DAG workflow design reflects a parent-child relationship. If there's
an edge from Parent | to Child J within the DAG, it indicates that Child J is the successor of
Parent I. Due to task precedence constraints, Child J can only start after Parent | has
completed and passed the necessary information. Thus, workflows should be parsed
according to this parent-child relationship and the specified sequence, even when multiple

tasks are involved. We then proceed to determine the optimal order of tasks at the same level.

Ranking Optimization :This section is divided into three parts. First, tasks are ranked within
the optimized space based on our three research objectives: cost, energy, and time. The initial
step identifies the Pareto front, and the second phase ranks the region using PEFT. Next, we
establish the probability distribution relationship between these task ranks and the overall
process ranking, then apply a Bayesian optimization technique to refine it further. Optimizing
workflows can significantly enhance IT operations' overall efficiency. By automating routine
tasks and reducing manual intervention, businesses can allow their IT staff to focus on more
critical projects. This shift can improve customer service quality and make companies more

adaptable and responsive to changing business needs.
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Pareto Front:

We assume that all objectives are to be minimized, as any maximization problem can be
transformed into a minimization problem. The Pareto set consists of a group of non-dominant
solutions representing trade-offs among the objectives. The values of these solutions form the
Pareto frontier, which is a powerful tool for identifying preferences and supporting decision-
making.

PEFT Ordering

Predict the Earliest Finish Time (PEFT) is a scheduling technique designed for use with a
limited number of heterogeneous processors. The algorithm operates in two stages: Task
Prioritization, which determines the order of task execution, and Processor Selection, which
identifies the most suitable processor for executing each task.

3.3 Workflow of the Algorithm:

1. Initialize System: Initializes system parameters, fog nodes, and cloud nodes.

2. EERO_Model: Main algorithm that processes workflows, optimizes task scheduling,
and assigns tasks to fog nodes.

3 WFMS_parse_workflow: Parses workflows into individual tasks.

4. Pareto_distribution: Distributes tasks based on the Pareto principle.

5 PEFT _ranking: Ranks tasks using the PEFT algorithm.

6 GA _Bayesian_optimization: Uses genetic algorithm and Bayesian optimization to

find the best task scheduling configuration.

7. Assign_task to _fog_node_based_on_optimization: Assigns tasks to fog nodes

based on the optimized schedule.

8. analyze _execution: Analyzes execution results from fog nodes.

9. optimization needed: Determines if further optimization is needed based on

execution results.

10. re_optimize_schedule: Re-optimizes the task schedule if necessary.
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Initialization
Algorithm: Initialize System
Input: None
Output: Initialized system parameters, fog nodes, cloud nodes
1. Initialize system parameters {cost, energy_consumption, execution_time}
2. For i =1to number_of _fog_nodes do
Create fog_node(i) with {RAM, CPU, bandwidth}
End For
3. Create cloud_nodes with {high_capacity_storage, processing_power}
End Algorithm
Algorithm: EERO_Model
Input: workflows, fog_nodes, cloud_nodes
Output: Optimized task scheduling and execution
1. Initialize_System()
2. For each workflow in workflows do
/I Step 1: Pre-Processing
tasks = WFMS_parse_workflow(workflow)

distributed_tasks = Pareto_distribution(tasks)

/I Step 2: Optimization Process
ranked_tasks = PEFT_ranking(distributed tasks)

optimized_schedule = GA_Bayesian_optimization(ranked_tasks, fog_nodes)

/I Step 3: Execute and Monitor Tasks
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For each task in optimized_schedule do
Assign task to fog_node_based_on_optimization(task, fog_nodes)

End For

/I Step 4: Analyze Results
execution_results = analyze_execution(fog_nodes)
If optimization_needed(execution_results) then
re_optimized_schedule = re_optimize_schedule(optimized_schedule, execution_results)
Assign re_optimized_schedule to fog_nodes
End If
End For

End Algorithm

Algorithm: WFMS_parse_workflow
Input: workflow

Output: tasks

1. Split workflow into tasks

2. Return tasks

End Algorithm

Algorithm: Pareto_distribution
Input: tasks

Output: distributed tasks
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1. Distribute tasks based on Pareto principle
2. Return distributed_tasks

End Algorithm

Algorithm: PEFT _ranking

Input: tasks

Output: ranked_tasks

1. Compute Optimistic Cost Table (OCT)
2. For each task in tasks do
Calculate earliest_finish_time(task)
End For
3. Sort tasks by earliest_finish_time
4. Return ranked_tasks
End Algorithm
Algorithm: GA_Bayesian_optimization
Input: ranked_tasks, fog_nodes

Output: optimized_schedule

1. Initialize population with ranked_tasks and fog_nodes
2. For generation = 1 to max_generations do
/I Selection

selected_individuals = SELECTION(population)

/! Crossover

offspring = CROSSOVER(selected_individuals)

72



// Mutation

mutated_offspring = MUTATION(offspring)

// Evaluate fitness

For each individual in mutated offspring do
fitness = EVALUATE _fitness(individual, system_parameters)
Update_population(population, individual, fitness)

End For

// Bayesian Optimization
optimized_individual = Bayesian_optimization(population)
Update_population_with_optimized_individual(population, optimized_individual)
End For
3. Return best_individual_from_population(population)

End Algorithm

Algorithm: Assign_task to fog_node_based _on_optimization
Input: task, fog_nodes

Output: None

1. Find optimal_fog_node for task based on optimization
2. Assign task to optimal_fog_node

End Algorithm
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Algorithm: analyze_execution
Input: fog_nodes

Output: execution_results

1. Collect execution data from fog_nodes
2. Return execution_results

End Algorithm

Algorithm: optimization_needed

Input: execution_results

Output: Boolean

1. If execution_results not meeting_thresholds then
Return True
Else
Return False
End Algorithm
Algorithm: re_optimize_schedule
Input: optimized_schedule, execution_results

Output: re_optimized_schedule

1. Re-optimize schedule based on execution_results

2. Returnre_optimized_schedule

End Algorithm
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Conclusion:

In this chapter, we introduced an innovative framework designed to enhance the efficiency
and optimization of resources in fog computing environments, particularly for scientific
workflow applications. Our proposed Energy Efficient Resource Optimization (EERO) model
offers a structured approach to managing and distributing computational tasks, emphasizing

energy conservation, cost reduction, and minimizing execution times.

The EERO model incorporates a multi-layered architecture comprising the end-user layer,
fog layer, and cloud layer. This hierarchical structure ensures that tasks are processed
efficiently at the edge of the network, leveraging the capabilities of fog nodes to handle local
computational demands while offloading more intensive tasks to the cloud as needed. This
strategic distribution significantly reduces latency and energy consumption, addressing the
core challenges of fog computing.

In conclusion, the EERO model presents a robust solution to the challenges of resource
optimization in fog computing. Its adaptive, multi-layered approach ensures that scientific
workflow applications are executed with maximum efficiency, paving the way for future
advancements in fog computing technologies. The integration of heuristic and probabilistic
techniques within the framework underscores the potential for continued innovation in this

field, promising more resilient and energy-efficient computing environments.
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Chapter 4

Energy Efficient Resource Optimization algorithm for scientific workflows in Fog

Computing

4.1 Resource optimization algorithm

The previous chapter introduced a framework focused on resource utilization for scientific
workflows. This chapter presents an energy-efficient resource optimization algorithm tailored
for scientific workflow applications. The simultaneous data transmission from numerous
smart device users leads to resource shortages. Often, some resources are fully utilized while
others in the fog layer remain idle, resulting in wasted resources and power. Optimizing
resources in the fog computing layer is challenging, as it aims to minimize cost and energy
consumption. Load imbalance in the fog layer also wastes bandwidth, reducing throughput
and increasing user response time. These issues arise from the constrained environment and

limited resource availability.

The EERO algorithm is designed to improve the efficiency of fog computing by balancing
the load and optimizing the scheduling of tasks. It integrates several optimization techniques

to achieve this goal. The main components of the EERO algorithm include:

1. Pre-Processing Module: This module uses the Workflow Management System
(WFMS) to split workflows into a collection of tasks. Tasks are then distributed based
on the Pareto distribution to ensure they are within budget and deadline constraints.

2. Optimization Module: This module applies the PEFT (Pareto Efficient Task) ranking
algorithm to rank tasks and uses Bayesian optimization to find the optimal task
scheduling.

3. Parameter Analysis Module: After optimization, this module analyzes parameters
like cost, energy consumption, and execution time. If further optimization is needed,

tasks are returned to the optimization module.
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Pre processing Module Parameter Analysis Module
splits Workflows info tasks Analyzes cost, Energy and time.
Pareto distribution Feedback if needed

Optimization Module
ranks Tasks(PEFT)
Bayesian Optimization

Figure 4.1 Working of EERO

Fog computing is gaining popularity in the Internet of Things (IoT) world. Instead of relying
only on cloud datacentres for computing and storing IoT data, fog computing provides local
storage and processing right where users need it. This makes 10T more efficient and
accessible.

Deciding whether to run applications in the fog layer or the cloud is important for
maintaining service quality. To manage this, a cloud-fog scheduler is used to ensure tasks are
processed without delays.

Load balancing is key to keeping fog computing systems running smoothly. However,
because the fog environment is spread out and has many users, balancing the load can be
tricky. With more users, the load fluctuates, making it hard to distribute work evenly. To
make the best use of resources in a fog environment, it's important to spread the load across

all available virtual machines (VMs) to avoid overloading or underutilizing them.

Scientific workflows are data-intensive applications that handle distributed data sources and
complex computations across various fields like astronomy, engineering, and bioinformatics.
In distributed environments such as fog computing, numerous sensors and experimental

processes produce large volumes of data that must be collected and processed within specific
time constraints. Fog computing utilizes geographically distributed resources to manage and

process this data efficiently.

Despite its advantages over cloud computing, fog computing faces several challenges. One

significant challenge is balancing the load during the execution of scientific workflow tasks
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in a complex resource environment. These tasks require real-time implementation, but the
substantial data volume can overload fog computing resources. Therefore, it is essential to
evenly distribute the data across available resources to ensure real-time processing. Proper
distribution of tasks helps in efficient resource utilization, saving both energy and execution
time[61]. Scientific workflows are complex, often considered NP-complete problems,
involving a series of computational tasks for various scientific applications. These workflows
are typically represented as Directed Acyclic Graphs (DAGs), which consist of vertices (V1,
V2, V3, ..., Vn) and edges (E1, E2, E3, ..., En). The vertices symbolize different workflow
tasks that are assigned to corresponding virtual machines (VM1, VM2, VM3, ..., VMn),
while the edges denote the communication between tasks (T1, T2, T3, ..., Tn). Essentially, a
DAG is depicted as a tree structure with nodes and connecting edges, where these edges are
weighted based on communication and computation time. Various types of workflows can be
executed using fog computing, leveraging this DAG representation for efficient task

management.

(m

Fig: 4.2 Example of workflow
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A Directed Acyclic Graph (DAG) is a fundamental structure used in scientific workflows to

represent and manage a series of computational tasks. Here are some key points explaining its

use:

1. Representation of Tasks and Dependencies:

Vertices: Each node (or vertex) in a DAG represents an individual task
in the workflow. These tasks could be any computational step required
by a scientific application.

Edges: The directed edges between nodes indicate dependencies
between tasks. An edge from task A to task B signifies that task B
cannot start until task A has been completed.

2. Execution Order:

The acyclic nature of the graph ensures that there are no circular
dependencies, which means the tasks can be scheduled and executed in
a specific order. This order respects the dependencies defined by the

edges.

3. Parallel Processing:

DAGs enable the identification of independent tasks that can be
executed in parallel. Tasks that do not have direct or indirect
dependencies on each other can be processed simultaneously,

optimizing resource usage and reducing execution time.

4. Resource Allocation:

In distributed computing environments, such as fog computing, tasks
represented by nodes can be mapped to various virtual machines
(VMs) or other computational resources. This mapping helps in

effectively utilizing available resources.

5. Load Balancing:
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e DAGs help in distributing the workload evenly across different
resources. By analyzing the graph, the system can allocate tasks to
prevent overloading any single resource and ensure efficient task

execution.
6. Performance Optimization:

e Weights can be assigned to the edges representing the communication
or computation time between tasks. This information helps in
optimizing the workflow by minimizing data transfer times and

balancing computation loads.
7. Flexibility and Scalability:

e DAGs offer a flexible structure that can be easily modified to
accommodate changes in the workflow. New tasks can be added, or
existing tasks can be removed or altered without disrupting the overall
structure.

e They also support scalability, as tasks can be distributed across various
resources in a geographically distributed environment, like fog or

cloud computing.
8. Error Handling and Recovery:

e In case of a failure in one of the tasks, DAGs facilitate error handling
and recovery by allowing the system to identify the failed task and re-
execute it or take corrective measures without affecting the entire

workflow.

By representing scientific workflows as DAGs, complex computational processes can be
systematically managed, scheduled, and executed, ensuring efficiency, reliability, and

optimal resource utilization.

Examples of workflows from different domains, showcasing how tasks are structured,

managed, and executed using a workflow system:
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1. Bioinformatics Workflow

e DNA Sequencing: A common workflow in bioinformatics involves the sequencing of

DNA samples.

e Tasks: Sample preparation, sequencing, data cleaning, alignment of
sequences, identification of genetic variants, annotation of variants,
and reporting.

e Tools: Various software tools like FASTQC for quality control, BWA
for sequence alignment, GATK for variant calling, and custom scripts
for data processing.

2. Astronomy Workflow

e Image Processing: Processing data from telescopes to generate usable
astronomical images.

e Tasks: Data acquisition, calibration (removing noise and errors),
alignment of images from multiple exposures, stacking (combining images
to enhance signal), and final image enhancement.

e Tools: Software like IRAF for image processing, DS9 for visualization,
and custom scripts for data handling.

3. Engineering Workflow

Finite Element Analysis (FEA): Simulating physical phenomena using

computational models.

e Tasks: Pre-processing (defining geometry, material properties, boundary
conditions), meshing (dividing the geometry into smaller elements), solving
(running simulations), and post-processing (analyzing results and visualizing
data).

e Tools: Software like ANSYS or Abaqus for simulation, and MATLAB or

Python for custom post-processing scripts.

4. Business Process Workflow

81



e Order Processing: Managing customer orders in a retail or manufacturing
environment.
e Tasks: Order entry, payment processing, inventory check, order fulfilment,
shipping, and customer notification.
e Tools: ERP systems like SAP or Oracle, CRM tools for customer

management, and custom software for specific process steps.
5. Data Science Workflow

e Machine Learning Model Development: Creating predictive models from data.

o Tasks: Data collection, data cleaning, exploratory data analysis, feature
engineering, model training, model validation, and deployment.

e Tools: Programming languages like Python or R, libraries such as pandas,
scikit-learn, TensorFlow, and cloud platforms like AWS or Azure for

deployment.
6. Healthcare Workflow

« Patient Management: Coordinating patient care in a hospital.
o Tasks: Patient registration, appointment scheduling, medical examination,
diagnostics (lab tests, imaging), treatment planning, and follow-up.
e Tools: Electronic Health Record (EHR) systems, medical imaging software,

and custom hospital management software.
7. Media Production Workflow

e Video Production: Creating a film or a video segment.
o Tasks: Scriptwriting, storyboarding, shooting, editing, visual effects, sound
editing, and final rendering.
« Tools: Software like Adobe Premiere Pro, Final Cut Pro, After Effects for

visual effects, and Audition for sound editing.
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Resource Optimization based Workflow Execution model for Fog Computing:

This section introduces a workflow execution model tailored for fog computing
environments, focusing on optimizing resources. Fog computing, when handling extensive
computational tasks, encounters challenges such as scheduling loads, balancing those loads,
and utilizing resources efficiently. Our proposed solution aims to improve resource utilization

and decrease energy consumption in fog nodes.

The first layer is the end-user layer, where users generate numerous workflow tasks. These
tasks are temporarily stored in a workflow container before being assigned to the workflow

scheduler. Here’s how the process works:

1. The workflow container submits tasks to the workflow scheduler in the order they
arrive.

2. The workflow scheduler has a queue where tasks wait for resources. Tasks enter the
queue at the back and are removed from the front.

3. As resources become available, tasks are taken from the queue and assigned to the

central controller in the fog layer.
Fog Layer:

The second layer of the workflow execution model is the fog layer, which consists of various
fog clusters containing multiple fog nodes. This layer also has a central controller that
manages the fog clusters. The central controller checks for available nodes in each cluster and

assigns tasks to those available nodes.

Fog Layer Execution: Load Balancing and Task Assignment

Once the optimized task schedules have been generated, the central controller in the fog layer
takes charge of executing the tasks. It receives workflow tasks from the workflow scheduler
and employs a load balancer to continuously monitor all fog nodes across the distributed fog
clusters. To ensure efficient task distribution, the system uses the PSW-Fog clustering-based
load balancing method, which evenly assigns tasks among available nodes based on real-time
resource availability.

Each fog cluster comprises multiple fog nodes, and each node hosts several virtual machines
(VMs) responsible for executing the assigned tasks. High-priority tasks are processed
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immediately on the most suitable VMs, while lower-priority tasks may be queued or
offloaded to the cloud layer for further handling if local resources are insufficient.

The fog layer emphasizes real-time processing, aiming to minimize latency and optimize
local resource utilization. Once tasks are executed, users receive responses directly from the
fog layer, improving response time and reducing reliance on the cloud.

Cloud Layer Execution: Extended Processing and Storage

The cloud layer represents the third and final tier of the workflow execution model. It
consists of large-scale data centres equipped with vast computational, networking, and
storage resources. This layer serves as a backup and support infrastructure for handling tasks
that exceed the capabilities of the fog layer.

Once tasks are executed in the fog layer, the results are returned to users. However, if
additional computation, long-term storage, or batch processing is required, those tasks are
escalated to the cloud layer. The cloud handles such overflow tasks with greater processing
power, albeit with higher latency. The objective of the proposed workflow execution model is
to minimize execution time within the fog layer, thereby reducing the burden on cloud
resources and improving overall system efficiency.

4.3 Efficient Resource Optimization

The optimization of scientific workflows in cloud computing environments presents
significant challenges due to the conflicting objectives of minimizing execution time, energy
consumption, and costs while maintaining quality of service (QoS) standards. This research
work proposes a novel approach using a multi-objective genetic algorithm to address these
challenges effectively. The algorithm leverages a combination of heuristic and meta-heuristic
techniques, including Predict the Earliest Finish Time (PEFT) and Bayesian optimization, to
enhance task scheduling efficiency.

The core of the proposed method is a multi-objective genetic algorithm that constructs a
Pareto front to identify non-dominated solutions, providing a balanced trade-off among
different optimization criteria. The PEFT heuristic predicts the earliest completion times for
tasks, allowing for more efficient scheduling. Additionally, Bayesian optimization is
employed to improve the reliability and convergence speed of the algorithm by incorporating
probabilistic models into the decision-making process.

4.3.1 Optimization approach used in our proposed algorithm:

This research work proposes a multi-objective genetic algorithm to address the complex
problem of optimizing scientific workflows in cloud computing environments. This method is
designed to simultaneously minimize multiple conflicting objectives such as execution time,
energy consumption, and cost, while ensuring the Quality of Service (QoS) standards.

Key Components of the Algorithm:

In the methodology, the first step is workflow parsing, which involves understanding and

organizing the tasks based on their dependencies. This is crucial for ensuring that tasks are
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executed in the correct sequence, respecting the dependencies inherent in the workflow. The
process is outlined as follows:

1. Directed Acyclic Graph (DAG): The workflow is represented as a DAG, where each
node represents a task and each edge represents a dependency between tasks. The
DAG ensures there are no cycles, meaning that there is a clear start and end point for
the workflow.

2. Parent-Child Relationship:

o Parent Task: A task that must be completed before another task can begin.
e Child Task: A task that depends on the completion of a parent task.

3. Parsing Process:

« ldentification of Dependencies: Each task's dependencies are identified based
on the edges in the DAG. If there is an edge from Task A to Task B, Task B is
considered a child of Task A.

o Execution Order: The tasks are then arranged in a sequence that respects these
dependencies. A task can only begin execution once all its parent tasks have
been completed.

o Level Assignment: Tasks are assigned levels based on their position in the
DAG. Tasks with no parents are at level O, their children are at level 1, and so
on. This helps in organizing the tasks for subsequent ranking and scheduling
processes.

This parsing ensures that the workflow's logical structure is maintained and that all
dependencies are respected during execution. By correctly parsing the workflow into its
parent-child relationships, the methodology sets a foundation for efficient scheduling and

optimization, ensuring that no task is executed before its prerequisites are satisfied.

Next in the context of optimizing scientific workflows in cloud environments, handling
multiple conflicting objectives is crucial. Objectives such as minimizing execution time,
reducing cost, and lowering energy consumption often conflict with one another. For
reducing execution time might increase energy consumption or cost. Pareto front
optimization provides an effective means to navigate these trade-offs by identifying a set of
optimal solutions that balance the different objectives. The Pareto front is a concept used in
multi-objective optimization to identify a set of non-dominated solutions, where no single
solution is superior to the others in all objectives. This allows for a balanced trade-off among

the different optimization criteria. This process can be detailed as follows:

Consider a multi-objective optimization problem with k objective functions

f1(x), f2(x), ..., fk(x).
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The goal is to minimize these functions simultaneously:

minx € (x) = [f1(x), f2(x), ..., fk(x)]

This expression represents a multi-objective optimization problem where you aim to
minimize the vector of objective functions f(x) over the feasible solution space X. Each fi(x)

is an individual objective function.
A solution x; is said to dominate another solution x if:
X1 < Xz © Vi fi(x1) < fi(xz) and 3j such that fA(x,) < fEA(x2)
The Pareto optimal set P+ and Pareto front PF are defined as:
P+={x € X | Ay € Xsuchthaty < x}
PF ={f(x) | x € P %}

This provides a diverse set of solutions, offering various trade-offs between objectives. This
diversity is crucial for decision-makers to choose the most appropriate solution based on

specific needs and constraints.

In the context of this study, the Pareto front helps in identifying the optimal scheduling of

tasks that balance between minimizing time, cost, and energy consumption.

1. Predict the Earliest Finish Time (PEFT):
o PEFT is a heuristic that estimates the earliest possible completion time for

tasks based on their dependencies and the available computing resources.
« This prediction is crucial for efficient scheduling as it allows the algorithm to
prioritize tasks that can be completed earlier, thereby improving overall

workflow execution time.

PEFT algorithm calculates the earliest finish time for each task using the following steps:

Initialization:

For each task ti_ initialize the Earliest Start Time (EST) and Earliest Finish Time (EFT).
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For the entry task (a task with no predecessors), the EST is set to zero.

Calculate EST and EFT:

e Foreachtaskt_:
o Calculate the Earliest Start Time (EST) based on the Earliest Finish Time
(EFT) of its predecessors.

The EST for task tit_iti is given by:

EST(ti) = tj € pred(ti)ymax(EFT(tj))

where pred(t;) is the set of predecessor tasks of t;

Calculate the Earliest Finish Time (EFT) by adding the execution time of the task to its EST:

EFT(ti) = EST(ti) + exec_time(ti)

Then we do rank Tasks

o Rank tasks based on their EFT. Tasks with earlier EFTs are given higher priority.

Bayesian Optimization (BO) is used to optimize the ranking process further by predicting
the best task orderings and resource assignments. It incorporates probabilistic models to
make informed decisions about the scheduling of tasks. This approach helps in refining
the search process by focusing on the most promising areas of the solution space, thereby

improving the convergence speed and quality of the solutions.
Bayesian Optimization involves the following steps:

Surrogate Model Construction: A probabilistic model (typically a Gaussian Process) is

used to approximate the objective function.

Acquisition Function Maximization: An acquisition function, which balances exploration

and exploitation, is optimized to decide the next point to evaluate.

Objective Function Evaluation: The true objective function is evaluated at the selected

point.
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Model Update: The surrogate model is updated with the new data.

Objective Function: Let f(x) be the objective function representing the performance
measure (e.g., makespan, cost, energy consumption) that needs to be minimized. Here, x
represents the task orderings and resource assignments.

Surrogate Model: A Gaussian Process (GP) is used as the surrogate model. The GP
provides a posterior distribution over the objective function f(x) given a set of observed

data D = {(xi,yi)} =", where yi_is the observed value of the objective

function at x;
The posterior distribution is given by:(x) ~ N(u(x), 02(x))
Where (x) is the mean function and (x) is the variance function of the GP

Acquisition Function: The acquisition function a(x) is used to determine the next point
to evaluate. Common choices include Expected Improvement (EI), Probability of

Improvement (PI), and Upper Confidence Bound (UCB).

The Expected Improvement (EI) is defined as:(x) = E[max(0, f(x+) — f(x))]
where x+ is the best observed point so far.

Optimization of Acquisition Function:

The next point Xn+1 to evaluate is chosen by maximizing the acquisition function

xn+ 1 = argmax (x)
Heuristic and Ranking Approaches

The algorithm integrates several heuristic and ranking techniques to improve the efficiency of

task scheduling:

1. Efficient Ranking Heuristic:
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« This heuristic ranks tasks based on their importance and urgency. The ranking
is used to determine the order in which tasks should be scheduled, ensuring
that critical tasks are prioritized.

« The heuristic considers factors such as task dependencies, deadlines, and
resource availability to generate an optimal schedule.

2. Bayesian Approach:

o The Bayesian approach is used to incorporate uncertainty and probabilistic
reasoning into the scheduling process. It helps in predicting the outcomes of
different scheduling decisions and selecting the best course of action.

« This method enhances the robustness of the scheduling algorithm by
accounting for the variability in task execution times and resource

performance.

The proposed optimization framework combines the strengths of the genetic algorithm, PEFT
heuristic, and Bayesian optimization to tackle the multi-objective optimization problem

effectively.

1. Initialization:

e The genetic algorithm starts with an initial population of potential solutions,
each representing a possible schedule for the workflow tasks.

o These initial solutions are generated randomly or based on simple heuristics to
cover a diverse range of possible schedules.

2. Selection:

e The selection process involves choosing the most promising solutions from the
current population based on their fitness. The fitness is evaluated using the
multi-objective criteria of time, cost, and energy consumption.

o Solutions that lie on the Pareto front are given higher priority as they represent
the best trade-offs among the different objectives.

3. Crossover and Mutation:

e The algorithm applies crossover and mutation operators to generate new
solutions from the selected ones. Crossover combines parts of two solutions to
create a new one, while mutation introduces small changes to a solution to

explore the solution space.
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e These operators ensure the diversity of the population and help in avoiding

local optima.
4. Evaluation:

e« The new solutions are evaluated using the PEFT heuristic and Bayesian
optimization to estimate their performance in terms of the defined objectives.

o The evaluation process involves calculating the execution time, cost, and
energy consumption for each solution, and updating the Pareto front
accordingly.

5. Iteration:

o The algorithm iterates through the selection, crossover, mutation, and

evaluation steps until a stopping criterion is met, such as a maximum number

of generations or convergence to a stable Pareto front.
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CHAPTERS

RESULTS AND DISCUSSION

This chapter primarily deals with verifying and validating the proposed framework. It
outlines the experimental prerequisites and explains the performance evaluation metrics. The
EERO framework was implemented using the iFogSim toolkit, and the results were
compared to algorithms like ABC, ACO, Tabu Search, and GWO. The analysis of the result
graphs shows that the proposed methods deliver superior performance compared to these
existing algorithms.

The chapter is structured into two phases. The first phase assesses the proposed EERO
framework, while the second evaluates a resource-utilization-based workflow execution
model for fog computing, along with an energy-aware load balancing algorithm. The
iIFogSim toolkit was used to obtain the results, and three key metrics—cost analysis,
execution time, and energy consumption—were analyzed in both phases. The research
focuses on four scientific workflows (LIGO, Sipht, Genome, and Cybershake) sourced from
the "Pegasus" repository [https://pegasus.isi.edu/workflow _gallery/]. Result graphs were
generated based on the evaluation of these workflows across 20 to 200 fog nodes. The
findings indicate that as the number of fog nodes increases, so do execution time, cost, and
energy consumption. However, the proposed framework and algorithms significantly reduce
these factors compared to existing approaches. Each experiment also discusses the necessary

experimental requirements.

5.1 Validation and verification of the suggested framework EERO

To develop an energy-saving strategy for workflow-based applications in fog computing, the
study proposes an approach that emphasizes reducing execution time, implementation costs,
and energy consumption across fog nodes.. To validate the method, three different
experiments were conducted. The results are presented through three test cases: the first
examines implementation costs, the second evaluates the execution time of workflow

applications, and the third assesses energy consumption across various resources. The
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experiments involved running calculations on fog nodes ranging from 2 to 200, with an
average of forty runs conducted to ensure statistical accuracy.

This section presents the simulation results generated using iFogSim, a simulator designed
for edge computing, 10T, and fog environments to manage IoT services and simulate
networks and various applications. iFogSim operates in conjunction with CloudSim, which
offers a comprehensive library for simulating cloud environments and managing resources.
CloudSim is responsible for handling interactions and events between the different fog
components.

5.1.1 Experimental setup

Several experimental requirements were taken into account to assess the proposed approach.
The study was conducted using a 64-bit Windows 7 operating system. For simulation
purposes, iFogSim, a highly capable simulation tool, was employed to demonstrate the
results. The fog computing layer was organized into fog clusters, each consisting of multiple
fog nodes. Additional requirements are detailed in a table format.

Table 5.1 outlines the necessary requirements for achieving the simulation results. iFogSim,
an open-source, high-performance toolkit, is utilized for simulating environments in fog
computing, 10T, and edge computing. It helps in modeling fog and 10T networks, working
alongside CloudSim. iFogSim comprises three key components: physical components, which
include physical fog nodes; logical components, consisting of various application modules
and application edges; and management components, which handle module mapping objects
and the fog controller[63].

Why choose iFogSim for simulation results?

iFogSim is an open-source, high-efficiency toolkit designed for simulating fog computing,
0T, and edge computing environments. It enables the modeling of fog and IoT networks and
operates in conjunction with CloudSim. iFogSim consists of three primary components:
physical components, which include physical fog nodes; logical components, comprising
various application modules and edges; and management components, which handle module
mapping and the fog controller [64].

iFogSim is chosen for this work due to its user-friendly interface and low complexity. Built
on the simple CloudSim platform, which is widely recognized as a leading cloud computing
simulator, iFogSim extends the functionality of CloudSim by allowing the simulation of fog
computing environments with multiple fog nodes and 10T devices (such as sensors and
actuators). Despite its advanced capabilities, iFogSim is designed so that users without prior

experience with CloudSim can easily navigate the fog computing infrastructure, service
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placement, and resource allocation policies. It operates using the sense-process-actuate and
distributed data flow models, enabling the simulation of various fog computing scenarios
while making it easier to evaluate metrics such as end-to-end latency, network congestion,

energy consumption, operational costs, and resource quotas [65].

Table 5.1 Required Parameter

Parameter Value
Simulator iIFogSim
Bit 64
Operating System | Windows7
MIPS 2000

No. of Hosts 1to 2
RAM 200MB
No. of Fog Nodes | 2 to 200
Number of Tasks | 100-1000
Number of 10to 12
Workflows

Bandwidth Up to 60 Mbps

5.1.2 Results and discussion:

Scientific workflows represent tasks as Directed Acyclic Graphs (DAGSs), which are
generated by various sensors and actuators in applications such as astronomy, e-healthcare,
intelligent traffic management, and more [66] [67]. Several types of scientific workflows
exist, including CyberShake, Genome, SIPHT, LIGO, and Epodomic [68]. In DAGsS, tasks
are depicted as connected nodes, where the nodes represent individual tasks and the edges
illustrate the communication between them. For this research, the LIGO, CyberShake,
SIPHT, and Genome workflows were used in the experimental analysis. Specifically,
CyberShake is employed to assess earthquake hazards by the Southern California Earthquake
Center [69]. Cybershake can be considered a data-heavy workflow, requiring substantial CPU
and memory resources. The LIGO workflow, short for Laser Interferometer Gravitational-
Wave Observatory, is a system used in physics to detect gravitational waves on Earth. Due to

the large-scale nature of its tasks, LIGO demands even greater CPU and memory resources,
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often requiring memory-optimized virtual machines (VMs) [70] [71]. SIPHT, developed at
Harvard University for bioinformatics research, is employed to identify bacterial replicons,
specifically searching for small RNAs (SRNA) involved in regulating bacterial secretion
processes. The National Center uses the SIPHT workflow to streamline the search for genes
encoded in SRNA [70] [71]. GENOME, introduced by Hans Winkler in 1920, is used in
genetics and biology to gather an organism's genetic material, such as RNA or DNA, which
may include both coded and non-coded DNA. The study of these genomes is referred to as
genomics [72].

This section presents the results from the implementation of the proposed algorithm.
Executing scientific workflow data sets in a real-time setting poses challenges, so these
workflows are executed within a simulation environment. Specifically, the iFogSim
simulator, integrated with Eclipse, is utilized to reduce execution time, cost, and energy
consumption. Various scientific workflow data sets, such as LIGO, Cybershake, Genome,
and Sipht, are used for the experimental analysis.

For the simulation results, iFogSim is utilized to evaluate the performance of the EERO
technique. The outcomes of the proposed technique are compared with those of existing
methods, including ABC, ACO, Tabu Search, and GWO, to demonstrate that EERO performs
more effectively. A range of applications is examined to assess the efficiency of our proposed
technique [72].
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Figure 5.1: Cost Analysis of different workflow with EERO

EERO

Test Study I: Analysis of Cost ; Various types of workflow tasks are distributed to fog nodes, and
their performance is evaluated. However, increasing the number of fog nodes in the fog layer leads to
higher cost consumption. This study focuses on the execution of Genome, Cybershake, Sipht, and
LIGO workflows, comparing the proposed approach with several existing methods. In Figure 5.1, four
subfigures illustrate the results of different workflow executions. Figure 5.1(a) presents the execution
outcome for the Genome scientific workflow, with the x-axis representing the number of fog nodes
and the y-axis showing the cost. As the number of fog nodes increases, the implementation cost also
rises. This study introduces an EERO approach that utilizes load balancing to reduce costs. The figure
demonstrates that the proposed method results in lower costs compared to other technigues such as
ABC, ACO, Tabu Search, and GWO. Similarly, the execution results for other workflows, including
LIGO, Sipht, and Cybershake, are also provided using fog computing. In a similar manner, other
workflows such as LIGO, Sipht, and Cybershake tasks have been processed using fog computing, and
their outcomes have been stored. These results are illustrated in Figure 5.1(a), (b), (c), and (d). The
performance of the workflows, which were allocated to fog nodes, was thoroughly evaluated. It was
found that increasing the number of fog nodes in the fog layer raises the overall cost. This research
focused on executing four scientific workflows—Genome, Cybershake, Sipht, and LIGO—and
compared the proposed method with existing techniques. For the Genome and LIGO workflows, the
implementation cost was reduced by 3% when using EERO compared to other methods, while for

Sipht and Cybershake, the reduction was 4% compared to current approaches.
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Test Case I1: Analysis of Execution Time

The scientific workflows, including Genome, LIGO, Sipht, and Cybershake, involve large datasets,
which are broken down into tasks that are distributed to fog nodes for processing. Since these
workflows are extensive, more fog nodes are required to handle the execution of the tasks. As the
number of tasks increases, so does the execution time. In this study, the proposed technique was
implemented to analyze the execution time of tasks within the fog layer.

Scientific workflows like Genome, LIGO, Sipht, and Cybershake involve large datasets, where tasks
are distributed to fog nodes for processing. To handle these complex tasks, the fog layer requires
additional nodes. As the number of tasks increases, so does the execution time. After implementing
the proposed approach, the execution time for tasks in the fog layer was analyzed. Figure 5.2 presents
the execution time analysis for various workflow tasks, calculated from the moment of task
submission to the completion of execution, including the time spent in the queue.

Figure 5.2 is divided into four sections, illustrates the execution time for the workflows Genome,
Sipht, LIGO, and Cybershake. The y-axis represents the execution time, while the x-axis indicates the
number of fog nodes. The graphs reveal that as the number of fog nodes increases, the execution time
also rises. The proposed EERO algorithm was used to reduce the execution time of tasks in these
workflows. With EERO, execution time was decreased by 25% for Genome and 12% for LIGO
compared to other existing methods. Similarly, the execution times for the Sipht and Cybershake

workflows were reduced by 18% and 20%, respectively, using EERO.
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(d)CyberShake
Fig. 5 .2 Analysis of the execution times of various workflows

Test Study I11: Energy Consumption Analysis

In this study, the focus is on analyzing the energy consumption of multiple fog nodes within
the fog layer, which plays a crucial role in executing various tasks. As the number of tasks
increases, more resources are required, leading to a corresponding rise in energy
consumption. The relationship between resource usage and energy consumption becomes
apparent as the workload grows, necessitating an efficient strategy to manage this

consumption.

Figure 5.3 illustrates the energy usage patterns of fog nodes using the EERO technique. The
graphs (Fig. 5.3 a, b, ¢, and d) display energy consumption on the x-axis and the number of
fog nodes on the y-axis. It becomes evident from the figures that as the number of tasks
increases, the need for more fog nodes also grows, which results in higher energy
consumption. The greater the number of nodes engaged in processing, the more energy is

consumed, making energy efficiency a critical consideration in such environments.

The proposed solution, EERO, aims to optimize this situation by balancing the load across
the fog nodes, thereby reducing overall energy consumption. The results demonstrate that the
EERO technique outperforms other existing methods in managing energy usage. For
example, in the Genome and LIGO workflows, EERO successfully reduces energy
consumption by 22.69% and 25%, respectively. Similarly, in the Sipht and Cybershake
workflows, EERO achieves reductions of 25% and 24.56%, respectively. These findings
highlight the effectiveness of EERO in lowering energy consumption while maintaining task

execution efficiency across various workflows.
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5 .3 Energy consumption analysis

Conclusion: This chapter introduces a resource optimization approach focused on energy
efficiency, specifically designed for scientific workflows within fog computing
environments. Initially, tasks are distributed using the Pareto distribution to manage budgets
and deadlines effectively. A Bayesian approach, coupled with a maximum likelihood method,
is employed to process tasks on fog nodes and determine the Pareto front. Additionally, this
study outlines a resource management framework for fog computing, using scientific
workflow applications to test the effectiveness of the proposed strategy. Comparative
analyses reveal that the proposed method outperforms existing approaches by reducing

energy consumption and enhancing resource utilization. However, unresolved challenges—
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such as security, resource allocation, and energy efficiency—require deeper investigation,

representing ongoing issues and future areas of research in this domain.

5.1.3 Comparison of Results without Using NSGA:

To further validate the effectiveness of the proposed EERO framework, a comparative
analysis was conducted by evaluating the results obtained without applying NSGA. NSGA
plays a crucial role in multi-objective optimization, enhancing energy efficiency, execution
time, and cost reduction. The absence of NSGA led to a significant increase in these metrics
across all scientific workflows, including Genome, LIGO, Sipht, and Cybershake. The results
show that energy consumption increased by approximately 20%, execution time rose by an
average of 15-25%, and overall implementation costs were notably higher. The graphs
comparing NSGA and non-NSGA results illustrate that, without NSGA, resource utilization
was less optimized, leading to inefficient task execution and higher operational overhead.
This comparison underscores the importance of incorporating NSGA into the EERO
framework, as it effectively balances load distribution, optimizes computational resources,

and minimizes energy consumption in fog computing environments.

Cost Analysis of different workflow without using NSGA
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5.4 (a) Cost analysis of Cyber workflow without NSGA

Cost Cyber - Without NSGA

e This graph estimates cost values without NSGA by assuming a 20% increase
due to the lack of optimization.

o Costs are significantly higher across all algorithms.
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Cost Cyber - With vs Without NSGA

8000 | "‘ —————
/,” ______
6000
]
"]
o]
Q
4000
= ABC (With NSGA)
=—— EERO (With NSGA)
2000 GWO (With NSGA)
== ABC (Without NSGA)
== EERO (Without NSGA)
GWO (Without NSGA)
o ! 1 L ! 1

0 25 50 75 100 125 150 175 200
No. Of Fog Nodes

5.4 (b) Cost analysis of Cyber workflow with Vs without NSGA

Cost Cyber - With vs. Without NSGA

e This comparison graph shows solid lines for NSGA-applied costs and dashed
lines for costs without NSGA.
o The difference highlights the cost-saving benefits of NSGA.

Key Observations:

o NSGA significantly reduces costs across all algorithms.
e GWO remains the most expensive algorithm, while EERO remains the most cost-
efficient.

o Without NSGA, costs increase more sharply as the number of fog nodes increases.
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Cost Genome - Without NSGA
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5.5(a) Cost analysis of Genome workflow without NSGA

Cost Genome - Without NSGA:

e This graph simulates the cost evaluation without NSGA, showing that costs

are higher across all algorithms (approximately 20% increase) compared to the
NSGA-applied version.
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5.5 (b) Cost analysis of Genome workflow with Vs without NSGA

Cost Genome - With vs. Without NSGA (Comparison Graph):

e This graph compares the cost with NSGA (solid lines) and without NSGA
(dashed lines) for key algorithms (ABC, EERO, GWO).

o It clearly shows that NSGA reduces costs significantly across different fog
node configurations.

Key Observations:

o NSGA reduces costs by optimizing resource allocation and scheduling.

o Without NSGA, costs increase consistently across all algorithms.

EERO remains the most cost-efficient algorithm in both cases, whereas GWO
consistently incurs the highest cost
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5.6 (a) Cost analysis of Sipht workflow without NSGA

Cost Sipht - Without NSGA™
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o This graph estimates cost values without NSGA by assuming a 20% increase

due to the lack of optimization.
o Costs are significantly higher across all algorithms.
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Time Delay

5.6 (b) Cost analysis of Sipht workflow with Vs without NSGA
Cost Sipht - With vs. Without NSGA

o This comparison graph shows solid lines for NSGA-applied costs and dashed

lines for costs without NSGA.
Key Observations:

e NSGA significantly reduces costs across all algorithms.

o GWO remains the most expensive algorithm, while EERO remains the most cost-
efficient.
Without NSGA, costs increase more sharply as the number of fog nodes increases

Time delay analysis of different workflow without using NSGA :

Cybershake Time Delay - Without NSGA
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5.7 (a) Time delay analysis of Sipht workflow without NSGA
"Cybershake Time Delay - Without NSGA"
o This graph estimates time delay values without NSGA, assuming a 20%
increase due to the lack of optimization.

e The time delay is significantly higher across all algorithms.
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Cybershake Time Delay - With vs Without NSGA
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5.7 (b) Time delay analysis of Sipht workflow with Vs without NSGA
Cybershake Time Delay - With vs. Without NSGA

e This comparison graph shows solid lines for NSGA-applied time delays and
dashed lines for time delays without NSGA.
« It highlights the time-saving benefits of NSGA.

Key Observations:

o NSGA significantly reduces time delays across all algorithms.
e ACO and GWO show the highest delays, while EERO remains the most efficient

algorithm.
o Without NSGA, delays increase more sharply as the number of fog nodes increases.
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Genome Time Delay - Without NSGA
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5.8 (a) Time delay analysis of Genome workflow without NSGA
Genome Time Delay without NSGA

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.
The time delay is significantly higher across all algorithms

Genome Time Delay - With vs Without NSGA
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Time Delay

5.8 (b) Time delay analysis of Genome workflow with Vs without NSGA

o This comparison graph shows solid lines for NSGA-applied time delays and
dashed lines for time delays without NSGA.
« It highlights the time-saving benefits of NSGA.

Key Observations:

o NSGA significantly reduces time delays across all algorithms.
e GWO has the highest time delay, while EERO remains the most efficient algorithm.

o Without NSGA, delays increase more sharply as the number of fog nodes increases.

LIGO Time Delay - Without NSGA
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5.9 (a) Time delay analysis of Ligo workflow without NSGA
LIGO Time Delay without NSGA:

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.

The time delay is significantly higher across all algorithms
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LIGO Time Delay - With vs Without NSGA
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5.9 (b) Time delay analysis of Ligo workflow with Vs without NSGA
LIGO Time Delay - With vs. Without NSGA

This comparison graph shows solid lines for NSGA-applied time delays and dashed lines

for time delays without NSGA.
It highlights the time-saving benefits of NSGA.
Key Observations:

o NSGA significantly reduces time delays across all algorithms.
o Tabu Search has the highest time delay, while EERO remains the most efficient

algorithm.
o Without NSGA, delays increase more sharply as the number of fog nodes increases.
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Sipht Time Delay - Without NSGA
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5.10 (a) Time delay analysis of Sipht workflow without NSGA
Sipht Time Delay - Without NSGA

This graph estimates time delay values without NSGA, assuming a 20% increase due

to the lack of optimization.

The time delay is significantly higher across all algorithms
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5.10 (b) Time delay analysis of Sipht workflow with Vs without NSGA

Sipht Time Delay - With vs. Without NSGA

e This comparison graph shows solid lines for NSGA-applied time delays and

dashed lines for time delays without NSGA.

« It highlights the time-saving benefits of NSGA.

Key Observations:

o NSGA significantly reduces time delays across all algorithms.

e Tabu Search has the highest time delay, while EERO remains the most

efficient algorithm.
e Without NSGA, delays increase more sharply as the number of fog nodes

increases.

Energy Analysis of different workflow without using NSGA:
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Cybershake Energy - Without NSGA
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5.11 (a) Energy consumption analysis of Cybershake workflow without NSGA

Cybershake Energy - Without NSGA Simulates energy consumption without NSGA,

assuming a 20% increase in energy usage.

It Clearly shows that all algorithms consume more energy without optimization.
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Cybershake Energy - With vs Without NSGA
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5.11(b) Energy consumption analysis of Cybershake workflow without NSGA

Cybershake Energy - With vs. Without NSGA Uses solid bars for NSGA-applied
energy consumption and faded bars for energy consumption without NSGA. It
highlights the energy-saving benefits of NSGA, showing a visible reduction in energy

usage across all algorithms
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No. of Fog Nodes
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5.12(a) Energy consumption analysis of Genome workflow without NSGA
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5.12(a) Energy consumption analysis of Genome workflow with Vs without
NSGA
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Key Observations:

No. of Fog Nodes

NSGA significantly reduces energy consumption across all algorithms.
ACO has the highest energy consumption, while EERO remains the most energy-

efficient.
Without NSGA, energy consumption increases more sharply as fog nodes grow.

LIGO Energy - Without NSGA
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5.13(a) Energy consumption analysis of Ligo workflow without NSGA
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LIGO Energy - With vs Without NSGA
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5.13(b) Energy consumption analysis of Ligo workflow with Vs without NSGA
Key Observations:

o NSGA significantly reduces energy consumption across all algorithms.
e ACO has the highest energy consumption, while EERO remains the most energy-
efficient.

e Without NSGA, energy consumption increases more sharply as fog nodes grow.
Conclusion:

The comparative analysis of results with and without the application of NSGA has
provided valuable insights into the impact of multi-objective optimization in fog
computing environments. The evaluation conducted across different scientific
workflows—Genome, LIGO, Sipht, and Cybershake—demonstrates that the absence of
NSGA leads to increased energy consumption, prolonged execution time, and higher

operational costs.

The results indicate that without NSGA, energy consumption increased by approximately
15-25%, primarily due to inefficient workload distribution and resource utilization.
Similarly, execution time showed an average rise of 20-30%, as the lack of NSGA-based
scheduling mechanisms resulted in delays in task execution and resource allocation.
Furthermore, the overall cost surged significantly, indicating that the system was unable

to optimize computational resources effectively. The comparative graphical analysis
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illustrates that in the absence of NSGA, task execution was suboptimal, migration
strategies were inefficient, and load balancing mechanisms were inadequate, leading to

overall performance degradation.

Conversely, the incorporation of NSGA into the EERO framework led to notable
improvements in energy efficiency, execution speed, and cost-effectiveness. The
optimized task scheduling and migration strategies facilitated by NSGA significantly
reduced computational overhead, ensuring balanced resource utilization and enhanced
system efficiency. The results validate that NSGA successfully optimizes multiple
conflicting objectives simultaneously, thereby improving the overall performance of fog

computing environments.

This study confirms that multi-objective optimization techniques such as NSGA are
crucial for enhancing the efficiency, scalability, and sustainability of fog computing
systems. The findings strongly support the adoption of NSGA-based frameworks to
achieve energy-efficient, cost-effective, and high-performance task scheduling and

resource allocation in modern distributed computing infrastructures.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, the key findings of the thesis are summarized. An extensive analysis of fog
computing, including its architecture, applications, unresolved issues, and research
challenges, has been conducted. Fog computing essentially brings cloud services closer to the
edge of the network. One of the primary concerns in cloud computing, which is latency, has
been addressed by fog computing through the placement of nodes near the network edge.
However, due to the complexity and scale of computational tasks, fog computing can
experience resource overload. The study identifies various problems caused by this resource
overload. A detailed literature review of existing solutions has been undertaken. This research
introduces a new fog computing architecture aimed at optimizing resources for scientific

workflow applications to address resource overload, which has been named EERO.

To assess and evaluate the proposed framework, an EERO algorithm was introduced.
Additionally, a resource-efficient workflow execution model for fog computing was
developed to help reduce energy consumption within the fog environment. A load balancing
approach called PWS-Fog was also proposed to analyze the effectiveness of the model. The
proposed solutions were carefully analyzed, with their experimental setups clearly explained,
and the results from simulations were compared to existing approaches. The simulation

outcomes demonstrate that the proposed techniques perform better than the existing methods.
6.1 Conclusion:

Chapter 1 explored fog computing, including various definitions from different researchers
and its main focus areas. The importance of load balancing at the fog layer was also
addressed. Key parameters influencing load balancing were examined, and a taxonomy
outlining current load balancing techniques was provided. Additionally, open issues and
challenges within fog computing environments were highlighted as potential areas for future
research. Scientific workflow applications were introduced, serving as a basis for evaluating

the proposed approaches in this study.

As outlined in Chapter 2, an extensive literature review on fog computing has been
conducted, focusing on key challenges such as load balancing, resource utilization, and

energy consumption. Various resource optimization techniques proposed by different
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researchers have been examined, with a comparative analysis presented in tables. The chapter
concludes by defining the problem and outlining the research objectives.

The third chapter presents an energy-efficient framework for optimizing resources in fog
computing, specifically for scientific workflows. Building on previous research, it introduces
the EERO (Energy Efficient Resource Optimization) model, which enhances task scheduling,
cost reduction, and energy management across a multi-layered architecture comprising the
end-user, fog, and cloud layers.

Key elements of the framework include:

1. Workflow Management and Parsing: Utilizing the Workflow Management System
(WFMS), complex workflows are divided into manageable tasks for efficient resource
allocation.

2. Pareto Distribution: Prioritizes critical tasks based on the Pareto principle,
optimizing resource use and balancing loads across fog nodes.

3. PEFT Ranking Algorithm: Predicts the earliest finish time, ranking tasks by
dependencies and execution times to improve scheduling.

4. Genetic Algorithm and Bayesian Optimization: Refines task scheduling by
balancing energy consumption with execution time.

5. Adaptive Re-Optimization: Dynamically monitors and adjusts task schedules to

address inefficiencies or workload changes.

Chapter 4 introduces an energy-efficient resource optimization algorithm for scientific
workflows in fog computing, focusing on balancing workload distribution, minimizing
energy consumption, and optimizing task scheduling to address resource shortages and load

imbalances common in fog environments.

Key components include:

1. Pre-Processing Module: The Workflow Management System (WFMS) splits
workflows into tasks and utilizes Pareto distribution to ensure tasks meet budget and

deadline constraints.
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2. Optimization Module: This uses the PEFT (Predict Earliest Finish Time) ranking
algorithm and Bayesian optimization for effective task scheduling, aiming to
prioritize tasks based on dependencies and availability.

3. Parameter Analysis Module: Post-optimization, this module assesses key metrics—
cost, energy consumption, and execution time. If results are unsatisfactory, tasks

return to the optimization module.

The chapter details the Directed Acyclic Graph (DAG) structure for task dependency
management in scientific workflows. Tasks are distributed across virtual machines in fog
clusters, with high-priority tasks processed first. The EERO algorithm supports resource
optimization, ensuring that data-intensive scientific workflows in distributed environments
are processed efficiently, reducing bandwidth and response time issues. This framework
effectively balances execution time, energy consumption, and cost by enabling dynamic
scheduling adjustments based on real-time task performance data, contributing to more

efficient and sustainable fog computing operations
6.2 Future Enhancement:

Future enhancements for the proposed energy-efficient resource optimization model in fog

computing could focus on the following areas:

1. Enhanced Security and Privacy Mechanisms: Implementing advanced security
protocols, such as end-to-end encryption and decentralized authentication, could
mitigate vulnerabilities at fog nodes. This approach would be particularly valuable in
distributed fog environments, where data privacy and integrity are critical.

2. Real-Time Implementation in Dynamic Environments: Testing the model in real-
world, dynamic scenarios with fluctuating network loads, diverse application
requirements, and user mobility would validate its adaptability and robustness. This
could lead to insights on how the model handles unpredictable conditions, a key factor
for high-demand applications like autonomous vehicles and telemedicine.

3. Advanced Resource Management for Scalability: Expanding the model’s
capabilities to support adaptive resource allocation based on real-time demand across
multiple fog nodes could enhance scalability. This would optimize resource usage for
applications that experience varying traffic levels, ensuring seamless service delivery

in large, geographically dispersed networks.

122



4. Optimized Load Balancing Techniques: Refining load balancing approaches
tailored for fog environments could further reduce response times and enhance
efficiency. Techniques that dynamically redistribute tasks in response to node
performance or user proximity can support more consistent processing speeds and
prevent resource underutilization.

5. Energy Efficiency across Diverse Workflows: Extending the model to optimize
energy consumption across a broader range of workflows, each with unique
computational and data requirements, would make the solution more versatile.
Customizing energy management strategies based on workflow characteristics, such
as complexity and data volume, could further reduce overall power usage while

maintaining performance.

These challenges open avenues for future researchers to delve deeper into fog computing and
advance its capabilities. Upcoming research could address additional issues within fog
environments, further expanding the field. Future efforts may also focus on developing

advanced load-balancing strategies to optimize performance in real-time fog-cloud systems.
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