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ABSTRACT

Prostate cancer has a significant impact on men’s health, and is ranked as the deadliest cancer after
skin cancer. It accounts for nearly two-thirds of cancer diagnoses among men, with its prevalence
increasing significantly with age, affecting nearly 60% of men over 65, according to the 2021
SEER Cancer Statistics Review. Nevertheless, the prevalence for this disease is not consistent and
differs from region to region. The highest rates are observed in Northern Europe, North America,
Australia/New Zealand, and the Caribbean (82.8 per 100,000), while much lower rates are seen in

parts of Asia and Africa (as low as 6.4 per 100,000).

Given this global burden and variation, there is an urgent need for effective and accessible
treatment strategies. While the lignans and polyphenols in flaxseeds have shown promising
potential in various cancer treatments and prevention, there appears to be a lack of studies
investigating the potential effects of flax microgreens specifically on prostate cancer. Previous
literature proved that the flax microgreens have a high concentration of phenolic compounds,
superior proteins and free amino acids, and a good fatty acid composition, making them an
important plant source of components that are beneficial to health, but no research has been shown
the anti-cancerous effects of flax microgreens and its bioactive compounds against prostate cancer.
Therefore, this study explores the prospective use of flax microgreens and its bioactive
components as a natural therapeutic source. The current work employs Gas Chromatography Mass
Spectrophotometry, Ultraviolet—visible spectroscopy and High Performance Thin Layer
Chromatography to identify and quantify bioactive compounds from flax microgreens and evaluate

their anti-cancer effects on prostate cancer via in silico, in vitro and in vivo models.

The qualitative screening of the methanolic extract of flax microgreens (MEFM) revealed the
presence of numerous phytochemical constituents such as alkaloids, saponins, flavonoids, steroid,
cardiac glycoside, coumarins, phenolic compounds and chalcones. However, compounds such as
tannins, terpenoids, and emodins were absent in the extract. MEFM exhibited significant
antioxidant activity in a concentration-dependent manner. At a concentration of 1000 pg/mL, the
extract exhibited strong DPPH radical scavenging activity of 84.2%. It also showed significant
metal chelating activity (37% at 500 pg/mL and 38% at 1000 pg/mL) and a reducing power of
0.94% at the highest concentration tested (1000 pg/mL).
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Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified 60 distinct phytochemical
compounds in the extract. These were confirmed based on their retention times, peak areas, peak
heights, and mass spectral fragmentation patterns, matched against known profiles from the

National Institute of Standards and Technology (NIST) library.

In the in silico phase of the study, eight key protein targets associated with prostate cancer were
selected for molecular docking: Aurora A kinase (AURKA), Delta-like ligand 3 (DLL3), N-myc
proto-oncogene protein (N-Myc), Cytotoxic T-lymphocyte antigen 4 (CTLA-4), Sa-Reductase
(5AR), Androgen receptor (AR), Lysine-specific histone demethylase 1A (LSD1), and CD27.
While structural data for most proteins were available in the Protein Data Bank (PDB), Delta-like
ligand 3 (DLL3) lacked a resolved structure and was therefore modeled, analyzed, and validated

using various bioinformatics tools.

Following GC-MS analysis, all identified phytocompounds were subjected to molecular docking
against these eight targets. Ten compounds with a peak area greater than 2.0% and the strongest
binding affinities (ranged from —4.5 to —17.1 kcal/mol) were selected for further screeing. Among
these, four bioactive compounds were selected for post-docking studies based on their strong
binding interactions: 4,4’-methylenebis (2,6-di-tert-butylphenol) (CID8372), 2,5-di-tert-butyl-
1,4-benzoquinone (CID17161), 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapinic acid)
(CID637775) and Oleanolic acid (CID10494).

Among them, 4,4’-methylenebis(2,6-di-tert-butylphenol) (4,4’-M(2,6-DTBP)) showed the
strongest binding affinity across all eight targets (—10.5 to —17.1 kcal/mol), followed by 2,5-di-
tert-butyl-1,4-benzoquinone (2,5-DTBQ) (—6.8 to —11.3 kcal/mol), Sinapinic acid (—6.9 to
—10.7 kcal/mol), and Oleanolic acid (—6.2 to —10.2 kcal/mol).

ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions revealed
favorable pharmacokinetic profiles and low toxicity for all four compounds. Based on these
promising results, 4,4’-M(2,6-DTBP) and 2,5-DTBQ were selected for further identification and
characterization using UV-Vis spectroscopy and HPTLC, followed by validation through (in vitro
and in vivo) studies. To characterize the selected compounds, 4,4’-M(2,6-DTBP) and 2,5-DTBQ
methanolic extract of flax microgreens (MEFM) underwent liquid-liquid partitioning using
solvents of varying polarities (n-hexane, ethyl acetate, n-butanol, and water). UV-VIS analysis

revealed that both compounds were most concentrated in the non-polar fractions. Specifically,
viii



4,4’-M(2,6-DTBP) was present at concentrations of 104.45+6.42 ng/mL in hexane and decreased
progressively in more polar solvents. Similarly, 2,5-DTBQ showed its highest concentration in
hexane (156.36+2.47 pg/mL) and ethyl acetate (130.63+1.65 pg/mL), with lower levels in butanol

and aqueous fractions.

HPTLC analysis confirmed the presence and abundance of these compounds in MEFM, with 4,4°-
M(2,6-DTBP) and 2,5-DTBQ accounting for 100% and 73.90% area percentages, respectively.
The identity of the compounds was verified by comparing the Rf values of the extract with those

of standard compounds, showing a strong match and confirming their specificity in the extract.

In vitro studies demonstrated that the methanolic extract of flax microgreens (MEFM) exhibits
strong cytotoxic activity against PC-3 prostate cancer cell lines, greater than the efficacy of the
standard drug, cisplatin. Among the identified bioactive compounds, 2,5-DTBQ and 4,4’-M(2,6-
DTBP) both showed inhibitory effects on PC-3 cells, with 2,5-DTBQ exhibiting higher
cytotoxicity than 4,4’-M(2,6-DTBP). However, their cytotoxic effects remained moderate when

compared to cisplatin, a commonly used drug in prostate cancer treatment.

The ICso values were recorded as follows: MEFM (377.5 pg/mL), 2,5-DTBQ (875.4 pg/mL),
4,4’-M(2,6-DTBP) (2324.78 ng/mL), and cisplatin (273.97 ng/mL). Despite their high binding
affinities in molecular docking (—11.3 kcal/mol and —17.1 kcal/mol), 2,5-DTBQ and 4,4’-M(2,6-
DTBP) showed relatively weak cytotoxic effects, likely due to quick metabolism, low

bioavailability, poor cellular uptake and the differences between in silico and in vitro conditions.

Apoptosis assays revealed a significant increase in cell death induced by MEFM (41.03%)), 2,5-
DTBQ (26.83%), and 4,4’-M(2,6-DTBP) (22.86%) as compared to untreated controls (3.92%). In
early apoptotic cells, the MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) demonstrated significantly
higher cell death (40.9, 25.7 and 19.5%, respectively), whereas in late apoptotic cells, the cell death
was found to be 0.13, 1.13, and 3.36% respectively. Although these test samples effectively
induced cell death, their potency was still lower than that of cisplatin, a well-established pro-

apoptotic drug in prostate cancer therapy.

In in vivo studies, wisatr rats given MEFM (5000 mg/kg) orally showed no mortality or toxicity.
Therefore, the lethal dose (LDso) of MEFM is considered to be greater than 5000 mg/kg. In
therapeutic assessments, MEFM and its major bioactive compounds (2,5-DTBQ and 4,4’-M(2,6-
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DTBP)) helped prevent body weight loss typically associated with prostate cancer (PC), with
MEFM showing the most promising protective effect. Assessment of prostate weight (PW) and
prostate index (PI) further highlighted MEFM’s effectiveness. MEFM (200 mg/kg) dramatically
decreased prostate weight to 0.89 g and prostate index to 0.37%, achieving inhibition rates of
89.46% and 94.09%, respectively, and these results were found to be closely similar to the effects
of finasteride, the standard treatment. Among the selected compounds, 2,5-DTBQ (20 mg/kg) also
showed strong effects, reducing prostate weight to 0.96 g (inhibition: 81.86%) and prostate index
to 0.44% (inhibition: 81.2%). In contrast, 4,4’-M(2,6-DTBP) (20 mg/kg) had moderate effects,
with prostate weight at 1.17 g and index at 0.52%, corresponding to inhibition rates of 60.73% and
64.62%.

Histopathological analysis of prostate tissues revealed that the disease control group exhibited
significant abnormalities, including prostatic intraepithelial neoplasia (PIN) and disrupted tissue
architecture. Finasteride-treated wistar rats showed a near-complete restoration of normal prostate
histology. MEFM-treated wistar rats displayed notable recovery, with improved glandular
structure, retained basal cell layers, and reduced intraepithelial growth, indicating partial but
promising tissue restoration. Both 2,5-DTBQ and 4,4’-M(2,6-DTBP) groups showed
improvements as well, with 2,5-DTBQ demonstrating better histological recovery than 4,4’-

M(2,6-DTBP).

In conclusion, MEFM shows strong potential as a safe, multi-targeted, plant-derived candidate for
prostate cancer prevention and treatment. Its higher effectiveness compared to isolated bioactive
compounds supports the hypothesis of synergism among the various phytochemicals present in the

whole extract, enhancing its overall therapeutic impact.
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CHAPTER ONE

1.0 INTRODUCTION

Cancer is a complex group of diseases characterized by uncontrolled growth of cells and the ability
of those abnormal cells to spread and invade to nearby tissues and distant parts of the body. This
spreading, called metastasis, is a significant contributor to high mortality rates associated with
many types of cancer (Atmaca et al., 2022). Metastasis make cancer treatment more challenging,
therefore early detection and effective therapy to prevent metastasis is very significant (Rojas-
Armas et al., 2020). Notably, cancer has not only inflicted extensive health significances but also
stands as the 2"¢ most common cause of morbidity worldwide (Salehi et al., 2019; Siegel et al.,
2021). The 2024 reports by the National Center for Health Statistics show that the United States
had 2,001,140 new cancer cases and 611,720 cancer-related deaths. Not all the tumors are
cancerous; some of them are benign and do not invade surrounding tissues or metastasize (Bisoyi,
2022).

Prostate cancer (PCa) is a hereditary disease, and its prevalence rate is more common in men aged
70 years and above. PCa stands out as one of the most prevalent malignancies and the second most
common cancer among men followed by lung cancer in terms of fatality (Ahmed et al., 2024). To
date, the main risk factors concerning prostate cancer are age, family history of the disease, and
ethnicity (Graham et al., 2024). Testosterone controls the normal function of a prostate and its
active stimulation for long time can lead to initiation and promotion of prostate cancer
development (Mukherjee & Gopalakrishnan, 2024). Previous studies have indicated that the
gradual increase in testosterone levels with an increase in age as a significant cause of the
development of BPH (benign prostatic hyperplasia) and even prostate cancer (Xia et al., 2021;
Welén & Damber, 2022). Hospital-based studies have reported prevalence rates ranging from 14%
to 46.4%, with mortality between 15.6% and 64.0% within 6 months to 3 years of diagnosis
(Osegbe et al., 2024). An autopsy-based study also estimated a crude prevalence of 8.8% for
subclinical prostate cancer among Nigerian men aged 40 years and above, increasing with age
(Akinremi et al.,2021). Many obstacles have been placed in the way of the search for an etiological
cause of PCa by the heterogeneity of the gland itself (Mazurakova et al., 2022). There are several

animal models of prostate cancer that are being tested that may be relevant to some stages of the



carcinogenesis or to certain subtypes of prostate cancer with particular genetic defects or biological

abnormalities (Kaushal et al., 2024; Adamiecki et al., 2022).

Globally, medicinal plants are now widely used, and in current years, they have become crucial in
the treatment of various ailments (Nnadi et al., 2021). The side effects of cancer medications have
been traditionally minimized using different plant extracts due to their cost effectiveness, efficacy,
easy accessibility, and preparation. Currently, several anti-cancer drugs have been developed from
plants such as paclitaxel and taxol from Taxus brevifolia, vincristine and vinblastine from
Catharanthus roseus and docetaxel (Taxotere) from 7axus baccata (Matowa et al., 2020). Over
the past decade, considerable attention has been directed toward the use of medicinal plants in
prostate cancer management, and a systematic review of 75 preclinical studies revealed that
numerous plant-derived compounds exert anti-prostate cancer effects by modulating androgen
receptor (AR) and estrogen receptor (ER) signaling, inhibiting cell proliferation, inducing
apoptosis, and causing cell cycle arrest (Mazumder et al., 2022). In West Africa, extracts from
Vernonia amygdalina, Zingiber officinale, and Azadirachta indica have demonstrated cytotoxic
effects against PC-3 and DU-145 prostate cancer cells, further reinforcing the potential of
ethnomedicinal plants as anticancer agents (Kwakye et al., 2025).

Flax is a multipurpose crop in the Linaceae family. The scientific name of flax “usitatissimum”
originated from Latin which means “the most useful” one (Stavropoulos et al., 2023).The health
benefits of flax/flaxseed have drawn the researcher’s attention (Figure 1.1), which include cancer
treatment and prevention (Morris, 2007). The seeds are abundant in lignans, dietary fiber, and
essential fatty acids, and have been demonstrated to have anti-cancerous effects (Kauser et al.,
2024). Secoisolariciresinol glycoside (SDGQG) is the most prevalent lignan of flax, which when
consumed, will be metabolized by the gut microbiota and is known to produce two mammalian
lignans, enterodiol and enterolactone (Chhillar ez al., 2021). Other lignans include isolariciresinol,
anhydrosecoisolariciresinol, matairesinol pinoresinol, and pinoresinol diglucoside (Mueed et al.,
2024). Several experimental studies in the past have documented the importance of flax/flaxseeds
and their phytoconstituents in retarding the progression of different cancers (Chera et al., 2022;
Zare et al., 2022). In addition to flax, microgreens, the young seedlings of vegetables and herbs,
are also rich in vitamins, minerals, polyphenols, and antioxidants, often exceeding the levels found

in mature plants (Kyriacou et al., 2024). Recent studies highlight their anticancer potential, with



green pea, broccoli, and radish microgreens demonstrating the ability to inhibit proliferation,

induce apoptosis, and exert cancer-preventive effects (Pinto et al., 2021; Choe et al., 2023).
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Figure 1.1: Diagrammatic representation of medinal uses of flax lignans

Previous studies have shown that the flaxseeds in the diet reduce the risk of PCa by significantly
decreasing the proliferation effect and the levels of prostate-specific antigen in Wistar rats (Said et
al., 2015; Amorim et al., 2017). According to Johnsson et al. (2009), the flax meal diet
supplemented with seeds of flax showed anti-cancerous activity on colon cancer in rats. It has also
been reported that flax extract containing enterolignans significantly reduced the risk of breast
cancer in subjects. Moreover, research findings by Islam et al. (2023) and Viveky et al. (2015) also
revealed that flaxseed consumption led to a reduction in tumor growth rate in ovarian cancer
subjects thereby exhibiting an anti-proliferative effect. Many lignans found in flaxseed suppress
the important regulatory proteins and alter apoptotic pathways to specifically target cancer cells

(Mueed et al., 2023).



The class of cysteine proteases known as caspases (cysteine aspartyl-specific proteases) cleaves
target proteins to cause apoptosis (Khurana et al., 2024). When apoptotic control is lost, cancer
cells are able to live longer and accumulate, this can lead to angiogenesis, an increase in tumor
growth as well as cell proliferation and differentiation derangement (Haake et al., 2024). Progress
through the four important stages of the cell cycle—GO0/G1, S, G2, and M—is necessary for
proliferation. These phases are controlled by a number of cyclin-dependent kinases, which
function in complex with their cyclin partners to maintain genetic material duplication and cell
division. The cell cycle derangement caused by abnormal expression of key regulatory proteins is

closely linked to the development of tumors (Otto & Sicinski, 2017).

Although lignans and polyphenols in flaxseeds have demonstrated potentiality in the prevention
and treatment of various cancers, research specifically investigating the effects of flax microgreens
on prostate cancer is limited. Previous literature proved that the flax microgreens have a high
content of polyphenols, free amino acids, fatty acid and proteins, making them an important plant
source of components that are beneficial to health (Santin ef al., 2022), but no research has been
shown the anti-cancerous effects of flax microgreens and its bioactive compounds against prostate
cancer. Therefore, this study is designed to identify and characterize phytocompounds from flax
microgreen and evaluate their anti-prostate cancer properties. Figure 1.2 illustrates the mechanism

of flax bioactive compounds in cancer suppression.

/,
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(Proliferation |, Tumor Growth |)

Figure 1.2: Mechanism of flax bioactive compounds in cancer suppression
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In this study, virtual screening through molecular docking, molecular interaction studies, ADMET
and toxicity prediction analysis were utilized aiming to screen the phytocompounds from the flax
microgreens with the inhibitory activity against the target receptors were carried out as previously
described by Feng et al.,, (2021). Flax microgreens were subjected to extraction with methanol
using the cold maceration method, which is a safe, efficient, and cost-effective method for
extracting compounds. Qualitative phytochemical screening of methanolic extract of flax
microgreens were done to determine the phytoconstituents of plant. Antioxidant activity such as
DPPH Scavenging assay, metal chelating potential, and ferric reducing power activity were
evaluated for the plant extracts. A validated GC-MS, UV-Vis, and HPTLC approach was used for
the identification and characterization of the selected compounds. Hence, a fast sample preparation
and a verified identification and quantification method using GC-MS, UV-Vis, and HPTLC were
established.

Additionally, an in vitro approach was used to assess the anti-prostate cancer efficacy of the
extracts, and bioactive compounds on the PC-3 cell lines. The cytotoxicity effects were evaluated
using the MTT assay, and the ICso values were generated from dose-response curve studies. The

Annexin V apoptosis assay was evaluated to understand their mechanism of action.

Furthermore, an in vivo approach was used to evaluate the anticarcinogenic effects of bioactive
compounds and flax microgreens extract on testosterone-induced prostate cancer wistar rats.
Finally, after the assessment of the anticancer efficacy of the methanolic extract of flax
microgreens and its selected bioactive compounds, they may serve as one of the potential solutions
to the current issue of prostate cancer, aligning with the United Nations Sustainable Development
Goals (UNSDGs) 3, 9, 12, and 15 which focus on plant-based cancer therapy, development and
scientific innovation, promoting sustainable production of nutraceuticals and ecological

significance of medicinal plants.



1.1 Hypothesis
1. The herbal formulation made from the flax microgreens exhibit no cytotoxicity against
prostate cancer.
2. The phytoconstituents of flax microgreens exhibit no cytotoxicity against prostate cancer.
3. The identified bioactive compounds from flax microgreens exhibit no cytotoxic effects

against prostate cancer.



1.2 Research aim
This research focuses on identification and characterization of a bioactive compound from flax
microgreens and evaluation of its protective effect against testosterone-induced prostate cancer.

1.3 Objectives of the research

e To assess the effects of bioactive compounds from flax microgreens on druggable target
proteins of prostate cancer via in silico study.

e To identify and characterize the bioactive compound with anti-cancer activity from
flax microgreens.

e To evaluate the anti-prostate cancer effects of bioactive compound and flax microgreens
extract using in vitro approaches.

e To evaluate the anticarcinogenic effects of bioactive compound and flax microgreens

extract on testosterone-induced prostate cancer wistar rats.



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Cancer

Cancer refers to a disease where cells start to grow wildly and invade neighboring tissues. These
cells can even spread to other body parts through the blood and lymph systems. The human body
is made up of trillions of cells, and cancer can begin from any part of the body due to loss of control
in cell growth (Islami ez al., 2021). Normally, our cells grow and split in a highly controlled manner
to create new ones as needed. When cells become aged or damaged, they undergo cell death and
are replaced by new, healthy cells. Cell cycle regulation fails in cancer cells, leading to
uncontrolled cell division and tumor formation. Cancer cells can also affect nearby normal cells
and blood vessels, helping to feed the tumor, which exists in what we call the microenvironment.
This microenvironment includes blood vessels, fibroblasts, lymphocytes, and other elements that
promote the growth of the cancer. For a tumor to grow and become dangerous, it needs to develop
four specific features which include ability to; (a) survive in blood, (b) move, (c) degrade the

extracellular matrix, and (d) establish a new tissue environment for itself (Wang et al., 2018).

Cancer is the second most common cause of mortality rates worldwide annually, followed by
cardiovascular diseases. It remains an obstacle towards increased average life expectancy across
the global countries. Each and every year, a new estimate is published by the American Cancer
Society regarding the number of cases and fatalities from the cancer that are likely to happen within
the United States. Also, the most recent records of cancer incidence, mortality, and survival rates
are obtained from SEER, CDC, NPCR, and the North American Central Cancer Registries (Figure
2.1) (Siegal et al., 2024).

National Center for Health Statistics responsible for mortality data collection. Figure 2.1 explains
that in the United States, there were 2,001,140 new cancer cases and 611,720 deaths caused by
cancer in the year of 2024. From 2009 to 2012, the data collected from the thirteen oldest SEER
registries, there has been a steady increase in overall cancer cases in women while an overall
increase of 3.1% in men was observed due to the increased rate of prostate cancer diagnosis. Since
1991, the rate of death caused by cancer has reduced significantly by more than twenty-three

percent, which can be translated into over 1.7 million lives saved until 2012. However, mortality
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rates continue to rise in cancers of the prostate, pancreas, liver, and uterine corpus (Siegel et al.,

2024).

Estimated New Cases

Breast 310,720 31.97% Prostate 299,010 29.06%
Lung and Bronchus 118,270 12.17% Eentgles; Males Lung and Bronchus 116.310 11.30%
Colon and rectum 71,270 7.33% Colon and rectum 81,540 7.92%
Uterine corps 67880 6.98% Urinary bladder 63,070 6.13%
Melanoma of the skin 41,470 4.27% Melanoma of the skin 59,170 5.75%
Non-Hodgkin lymphoma 36,030 3.71% Kidney & renal pelvis 52,380 5.09%
Pancreas 31,910 3.28% Non-Hodgkin lymphoma 44.590 4.33%
Thyroid 31,520 3.24% Brain & other nervous system 14,420 1.40%
Kidney & renal pelvis 29,230 3.01% Oral cavity & pharynx 41,510 4.03%
Leukemia 26,320 2.71% Leukemia 36.450 3.54%
Urinary bladder 20,120 2.07% Pancreas 34,530 3.36%
Oral cavity & pharynx 16,940 1.74% Liver & intrahepatic bile duct 28,000 2.72%
Myeloma 16,260 1.67% Myeloma 19,520 1.90%
Liver & intrahepatic bile duct 13,630 1.40% Esophagus 17.690 1.72%
Brain & other nervous system 10,980 1.13% Stomach 16,160 1.57%
All sites 972,060 100% All sites 1,029,080 100%

Estimated Deaths

Lung and Bronchus 59.280 20.52% Lung and Bronchus 65,790 20.38%
Breast 42.250 14.62% Females Male Prostate 35,250 10.92%
Pancreas 24,480 8.47% Colon and rectum 28,700 8.89%
Colon and rectum 24,310 8.41% Pancreas 27,270 8.45%
Uterine corpus 13,250 4.59% Liver & intrahepatic bile duct 19,120 5.92%
Ovary 12,740 4.41% Leukemia 13,640 4.23%
Liver & intrahepatic bile duct 10,720 3.71% Esophagus 12,880 3.99%
Leukemia 10,030 3.47% Urinary bladder 12,290 3.81%
Non-Hodgkin lymphoma 8360 2.89% Non-Hodgkin lymphoma 11,780 3.65%
Brain & other nervous systemg(70 2.79% Brain & other nervous system 10,690 3.31%
Myeloma 5.520 1.91% Kidney & renal pelvis 9450 2.93%
Kidney & renal pelvis 4940 1.71% Oral cavity & pharynx 8700 2.70%
Urinary bladder 4550 1.57% Myeloma 7,020 2.17%
Stomach 4390 1.52% Stomach 6490 2.01%
Oral cavity & pharynx 3530 1.22% Melanoma of the skin 5430 1.68%
All sites 288,920 100% All sites 322,800 100%

Figure 2.1: The fifteen most prevalent cancer types for estimated new cases and deaths by sex in
the United States, 2024 (Siegel et al., 2024). Estimates are rounded to the nearest ten. Excludes

basal cell and squamous cell skin cancers and in situ carcinomas, except for urinary bladder.

2.2 Prostate cancer and its prevalence
Prostate cancer means the existence of cancer within the prostate gland, which is a part of the male

reproductive system. It is also called carcinoma of the prostate. There are various types of prostate
9



cancer ranges from slow-growing to relatively fast-growing cancer (Mbah-Omeje ef al., 2022).
Prostate cancer frequently metastasizes to the bones and lymph nodes, a progression that
significantly contributes to disease severity and poor clinical outcomes (Samarzija, 2021). Mostly
prostate cancer shows no symptoms in the earlier stages, but late on it may cause symptoms like
blood in the urine, trouble urinating, and back or pelvic pain. Benign prostatic hyperplasia is one
of the conditions that has the potential to show some of these signs. Other advanced symptoms
include weakness due to low levels of red blood cells (Stewart and Wild, 2014). The majority of
prostate cancer patients are diagnosed exclusively on the basis of increased PSA concentration in
plasma (PSA>4ng/mL). PSA is a glycoprotein that is produced in the prostate tissue. It is advised
that patients undergo a tissue biopsy to confirm if the cancer is present because some men were

found to have elevated PSA levels but not cancer.

2.2.1 International status

According to the SEER Cancer Statistics Review 2018, prostate cancer is the cancer with highest
rate of diagnosis in men, with frequent cases around 2 out of 3 men across the globe, which is 118
out of 185 of the total countries in the world. The occurrence rates of the disease are almost 60%
in men aged 65 and older (Siegel ef al., 2018). The prevalence for this disease however is not
consistent and differs from region to region. In particular, Northern Europe, Australia/New
Zealand, the Caribbean, and Northern America have the highest rates of prostate cancer at 82.8 per
100,000 population. In contrast, some parts of Asia and Africa saw the lowest rate of just 6.4 per
100,000. Prostate cancer mortality rate vary significantly worldwide (Ferlay er al., 2019).
According to Ferlay et al. (2019), the lowest cancer incidence rates were observed in Asia,
specifically in Northern Africa (5.8), South-Central Asia (3.3), East Asia (4.7), and Southeast Asia
(5.4). An International Agency for Research on Cancer projected that, the aging and growing
global population will cause the burden of prostate cancer (PCa) to increase to 1.7 million new

cases and 499000 new deaths by 2030.

2.2.2 National status

One of the most common malignancies identified among Indian men living in cities is prostate
cancer. Between 2012 and 2016, 11,340 cases of prostate cancer were documented across 28
Population-Based Cancer Registries (PBCRs). Urban registries accounted for 77.5% of these

cases, while mixed registries with over 40% urban population contributed approximately 17.2%.
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Notably, the Age-Adjusted Incidence Rates (AAR) per 100,000 males were highest in Delhi (11.8),
followed by Kamrup Urban (10.9), and Mumbai (9.7) (Figure 2.2). Northeastern registries with
the exception of Kamrup urban had an AAR that was lower than the rest of the regions. Regarding
prostate cancer development risk, the ratio is 1 in 42 for the cumulative risk for Delhi and 1 in 47
for ‘Kamrup Urban.” Whereas, in West Arunachal, this ratio stood at 1 in 462, which is significantly
lower (Sankarapillai ef al., 2024).
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Figure 2.2: Total number of prostate cancer cases registered with an incidence rate of >5 per
100,000 across 28 Population-Based Cancer Registries (PBCRs) under the National Cancer
Registry Programme from 2012 to 2016. AAR = Age-Adjusted Incidence Rate.

2.3 Prostate gland

The prostate gland, a vital component of the male reproductive system, is shaped like a walnut
(Figure 2.3). The average weight of the prostate in adult men usually ranges between 7 to 16
grams, while its mean weight is standardized at 11 grams. In a prostate exam, this gland can be felt

11



underneath the urinary bladder (Leissner & Tisell, 1979; Thompson, 2022). The main function of
the prostate is to secrete prostatic fluid, which is an important component of semen. The prostatic
fluid is what makes a man fertile so it becomes extremely essential in terms of reproduction. The
gland responsible for this surrounds the urethra at the bladder neck which connects to the bladder
and completes the lower urinary tract (Young ef al., 2013; Vasquez, 2014; Al-Ankoshy ef al.,
2021).

Seminal
vesicle

Testicle

Urethra Prostate

Figure 2.3: Anatomical Structure of the Prostate Gland in the Male Reproductive System (adapted
and drawn by the author from [Sharma et al., 2017; Obukohwo et al., 2021]).

2.4 Types of prostate cancer

Prostate cancer primarily originates in the glandular cells and exhibits a wide range of behaviors,
from slow-growing to highly aggressive types. The main types are the summarized in the Table
2.1 below:

Table 2.1: Types of prostate cancer

Type of Prostate | Description Reference(s)
Cancer
Prostatic Most common type (90-95% of cases); originates in the | Siripurapu et al. (2023)
Adenocarcinoma peripheral zone. Grows slowly, often curable if detected
early.
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Small Cell Carcinoma

Aggressive, PSA levels remain unchanged, made of small
round cells. Hard to detect, can only found at advanced

stages.

Furtado et al (2011);

Abusnina et al. (2018)

Squamous Cell

Carcinoma

Aggressive non-glandular type; does not raise PSA levels.

Rare and similar to small cell carcinoma.

Nadal et al. (2014); Palmieri
et al. (2022)

Prostatic Sarcomas

Very rare (<0.1% of cases); affects men aged 35-60.
Originates from connective, lymphatic, or vascular tissue

in the prostate.

Cancer Research Society

(2016); Erul ef al. (2026)

Transitional Cell

Carcinomas

Rare type; arises from tumors originating in the urethra or

bladder.

Ifeanyi (2018); Manini &
Lépez (2020)

2.5 Etiology and risk factors of prostate cancer

Prostate cancer incidence and prevalence among the male population are continuously rising

around the globe. Its precise cause (etiology) is not known, but like other types of cancer, it has a

genetic, environmental, and lifestyle basis. As it is for most common cancers, the cause of PC is

still not clear despite extensive and ongoing research efforts to elucidate its underlying

mechanisms. Old age, family history, hereditary factors, and ethnicity are particularly understood

associated risks for prostate cancer (Ng, 2021). Epidemiological studies have linked the onset of

prostate cancer to factors such as diet, lifestyle, obesity, inflammation, high blood sugar levels,

infections, and being exposed to chemicals or ionizing agents (radiation). (Sieminska & Baran,

2022; Ko et al., 2025). The etiology and risk factors of prostate cancer are summarize in the Table

2.2 below:

Table 2.2: Etiology and risk factors of prostate cancer

Etiological Factor | Description References

/ Risk Factor

Age PC is most common in elderly men; risk increases after | Rawla (2019)
40 in Black men and for white men without family
history, it rises beyond age 50.

Ethnicity Higher incidence in African-American men; attributed | Rawla (2019); Rebbeck (2017)
to both biological and socioeconomic factors.
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Family History

20% of PC patients have a family history; genetic
background may account for 5% of cases. Risk

increases with high-penetrance alleles.

Mohler et al. (2016); Rawla

(2019); Muller et al. (2013)

Genetic Mutations

Heritable mutations contribute ~10% of PC cases.
Notable genes: HPC1, HOXB13, BRCA1/2, PALB2,
CHEK2, RAD51D, ATM, MLH1, MSH2, MSH6,
PMS?2 (Lynch Syndrome).

Eeles et al. (2008); Rawla (2019);
Chen et al. (2003); Gallagher et al.
(2010); Camp & Tavtigian (2002).

Diet — General

High consumption of saturated fat from animals is
linked to an elevated risk of PC via metabolic and

hormonal pathways.

Narita ef al. (2019); Aronson et al.
(2010); Rawla (2019)

High dairy/calcium intake (>2000 mg/day) linked to

increased PC risk.

Zhao et al. (2023); Koh et al.
(2016); Rawla (2019)

Processed/red meat intake correlates with PC

incidence and mortality.

Koh et al. (2016); Nouri-Majd et
al. (2022); Rohrmann et al. (2007)

Cruciferous vegetables reduce PC risk due to their

abundance of phytochemicals with anticancer activity.

Watson et al. (2013); Singh et al.
(2005); Rawla (2019)

Lycopene, the major carotenoid in tomatoes, acts as a
potent antioxidant and plays a significant role in
suppressing molecular pathways associated with

carcinogenesis.

Liu et al. (2008); Ivanenkov et al.
(2014); Liadi (2024)

2.6 Types and treatment of prostate cancer

Prostate cancer treatment involves a range of approaches based on the cancer stage, patient health,

and personal preferences, which include Active surveillance, suitable for low-risk, localized

prostate cancers and involves routine monitoring through PSA tests and biopsies (UCLA Health

system, 2009; Bott ef al., 2003). Surgery is employed to remove the prostate and surrounding

tissues, with incontinence (stress, overflow, and urge) being a common postoperative issue (Silva

et al., 2014; American Cancer society, 2023). Radiation therapy includes radiation from external

beam and brachytherapy, both targeting cancer cells by damaging their DNA (Song et al., 2022;

Kazemi et al., 2023). Hormone therapy, which blocks or lowers testosterone, includes methods

like orchiectomy, LHRH agonists and antagonists, androgen receptor inhibitors, and androgen

synthesis inhibitors. These slow tumor growth, with some drugs offering reversible options or

fewer cardiac side effects (Cancer Research UK, 2014; Desai et al., 2021; Kumar et al., 2023).
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Chemotherapy is often used when prostate cancer spreads and becomes resistant to hormone
therapy, delivering drugs systemically to kill cancer cells (Charalambous & Kouta, 2016; Nader et
al., 2018). Immunotherapy, which is typically saved for more advanced instances, strengthens
the immune system to target cancer cells, although it might have negative side effects like fever
and exhaustion (Silva et al., 2020; Okwundu et al., 2021). Phytocompounds also show promise

for decreasing the side effects and improving treatment efficacy.

2.7 Prostate cancer target proteins

A druggable target refers to a biomolecule that acts as a key regulator in the metabolic pathway. It
regulates the key regulatory step and it is usually specific for that disease. Interactions that typically
happens between protein-protein and protein-nucleic acid interactions, which leads to the
amplification of signals and/or alteration of metabolic processes, has a major impact on how an
illness develops (Mandal & Mandal, 2009). It may be possible to stop or slow the spread of prostate
cancer to other areas of the body by targeting a particular protein that is frequently overexpressed
in the disease. The important prostate cancer target proteins include Aurora A kinase (AURKA)
(Otto et al., 2009), delta-like ligand 3 (DLL3) (Rudin et al., 2017), N-myc proto-oncogene protein
(N-Myc) (Gustafson et al., 2014), Cytotoxic T-lymphocyte antigen 4 (CTLA-4) (Yu et al., 2011),
50-Reductase (5AR) (Aggarwal et al, 2010; Schmidt & Tindall, 2011; Robitaille & Langlois,
2020), Lysine-specific histone demethylase 1A (LSD1) (Niwa et al., 2020), Androgen receptor
(AR) (Liss & Thompson, 2018), and CD27 (Liu et al., 2021).

2.7.1 Aurora A kinase (AURKA)

Aurora A kinase (AURKA) functions as a serine/threonine protein phosphorylating enzyme for
cell cycle control, predominantly, in mitotic spindle assembly and centrosome maturation
(Nikonova ef al., 2013). AURKA dysregulation demonstrates a link to different types of cancer
with prostate cancer among them. AURKA overexpression in cells leads to worsening cancer
features which results in faster metastasis and lower life expectancy. Because of its function in
oncogenesis, this makes it a compelling therapeutic target for the treatment of prostate cancer. By
facilitating the G2/M transition and mitotic spindle assembly, AURKA contributes to the
uncontrolled proliferation of cancer cells. Also, AURKA interacts with the AR pathway, an

important driver in the progress to castration-resistant prostate cancer (CRPC). This interaction
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underscores the potential of AURKA as therapeutic target in CRPC (Zerdan et al., 2025; Du et al.,
2021).

A selective AURKA inhibitor such as Alisertib (MLN8237) and VX-680 (Tozasertib) have
shown promising preclinical and clinical activity by inducing apoptosis and cell cycle arrest.
Identifying newly bioactive compounds that demonstrate anti-tumor effects by targeting AURKA-
mediated pathways will be of great importance (Durlacher et al., 2016; Khushbu, 2024).

2.7.2 Delta-like ligand 3 (DLL3)

The Notch signaling pathway inhibition through Delta-like ligand 3 (DLL3) triggers its activity to
neuroendocrine tumors (Chou et al., 2023). Recent evidence shows that Delta-like ligand 3 (DLL3)
plays a role in aggressive prostate cancer where it affects neuroendocrine prostate cancer (NEPC)
(Patel et al., 2019). Given its selective expression in tumor cells and limited presence in normal
tissues, DLL3 has become a promising therapeutic target for prostate cancer. A DLL3-targeting
ADC initially developed for SCLC, demonstrating cytotoxic effects by delivering a DNA-
damaging payload to DLL3-positive cells (Patel et al., 2023). Preclinical studies are evaluating
DLL3 as a druggable target for CAR T-cell treatment in neuroendocrine tumors, including NEPC
(Patel et al., 2019).

2.7.3 N-Myc proto-oncogene protein (N-Myc)

MYCN gene encoded the protein called the “N-Myc proto-oncogene protein (N-Myc)” functions
as one of the MYC family of transcription factors which control cell division, proliferation and
apoptosis (Kouroukli et al., 2024). Experts have discovered that N-Myc serves as a key factor in
the development of neuroendocrine prostate cancer (NEPC) while continuing to be recognized
mostly for its link to neuroblastoma (Lee et al., 2016). Targeting N-Myc emerges as a modern
strategy to advance the development of novel treatments for prostate cancer. Research has proven
that aberrant expression of N-Myc act as an essential NEPC driver that enables cell transformations
and therapeutic resistance (Dardenne ef al., 2016). NEPC presents increased N-Myc expression
that results in loss AR dependency and allows the cancer to adapt to androgen-deprivation
therapies (Chang ef al., 2017). The N-Myc stability results from Aurora A kinase activity which
allows alisertib inhibitors to demonstrate tumor-suppressing properties. The development of

combination therapies is required by integration of N-Myc inhibitors with current treatments like
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chemotherapy and immunotherapy to enhance treatment success (Chang et al., 2017; Beltran et

al., 2020).

2.7.4 Cytotoxic T-lymphocyte antigen 4 (CTLA-4)

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an immune checkpoint receptor; it functions as an
essential component for T-cell suppression together with maintaining the immune homeostasis
(Scalapino & Daikh, 2008). CTLA-4 competes against the CD28 co-stimulatory receptor for
binding with B7-1 (CD80) and B7-2 (CD86) antigens expressed by antigen-presenting cells thus
reducing T-cell proliferation and immune response (Qureshi et al., 2011). CTLA-4 functions as an
important therapy target for cancer immunotherapy because of its immunosuppressive properties
especially in prostate cancer therapy despite the barriers to immune evasion (Jafari et al., 2020).
Research shows that advanced prostate cancer patients with elevated CTLA-4 levels become
resistant to chemotherapy and ADT (androgen deprivation therapy). The combined treatment of
CTLA-4 and PD-1/PD-L1 inhibitors shows enhanced tumor immune response in prostate cancer
patients (Rotte, 2019). Scientific research explores therapeutic strategies that combine immune
checkpoint inhibitors with conventional prostate cancer treatments to enhance patient response

(Rotte, 2019; Cheng et al., 2024).
2.7.5 Sa-Reductase (SAR)

Sa-Reductase (5AR) serves as a significant metabolic enzyme which performs the conversion of
testosterone to its more potent derivative, dihydrotestosterone (DHT) (Brito, 2016; Raith et al.,
2023). Studies have intensively explored SAR as a therapeutic target for prostate cancer treatment
due to its importance in prostate development and cancer progression (Hsu et al., 2011). Medical
researchers have proposed blocking SAR activity as a strategy to decrease androgen stimulation
because it slow down tumor progression management (Watson et al., 2015; Raith et al., 2023).

Several 5AR inhibitors (SARIs) were established and studied for their potential in prostate cancer:

o Finasteride: A selective inhibitor of SAR type 2, shown to reduce prostate volume and
lower PSA (prostate-specific antigen) levels but with limited efficacy in high-grade PC
(Vaselkiv et al., 2022; Yang et al., 2024).
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o Dutasteride: Inhibits both SAR type 1 and type 2, leading to more significant suppression
of DHT production compared to finasteride, with studies suggesting a retarded risk of PC
development (Yang et al., 2024).

e Combination Therapies: Combining SARIs with ADT (androgen deprivation therapy)
has been explored to enhance therapeutic effects and delay progression to CRPC (Pippione

etal.,, 2011; Yang et al., 2024).

2.7.6 Androgen receptor (AR)

The androgen receptor acts as a transcription factor that requires activation by ligands to control
prostate cancer development. The androgen receptor relies on testosterone together with
dihydrotestosterone (DHT) for activation which drives prostate cell exponential growth (Silva et
al., 2024; Obinata et al., 2024). Targeting AR signaling represents a vital therapeutic approach in
prostate cancer cases especially those classified as advanced as well as CRPC. Medical scientists
have developed three distinct AR inhibitors that used in CRPC treatment including darolutamide,
enzalutamide and apalutamide (Ferraldeschi et al., 2015; Kim et al, 2021). Additionally
abiraterone acetate functions as a CYP17 inhibitor intratumoral androgen level reduction (Reid et

al., 2008; Jacob et al., 2021).

2.7.7 Lysine-specific histone demethylase 1A (LSD1)

Lysine-specific histone demethylase 1A (LSD1) is a FAD-dependent enzyme that control
epigenetics through dual demethylating functions on H3K4 and H3K9 (Kim ef al., 2021). LSD1
maintains crucial functions within biological processes which include gene transcription and
chromatin remodeling and advances studies link it to treatment responses in prostate cancer, due
its role in managing androgen receptor signals and tumor growth (Cucchiara et al., 2017; Perillo
et al., 2020). The treatment of prostate cancer by inhibiting LSD1 involves the use of ORY-1001
along with GSK2879552 as small-molecule inhibitors alongside therapeutic strategies that
combine the AR inhibitors such as enzalutamide and immune checkpoint inhibitors to improve

results (Harris et al., 2022; Maylin et al., 2024).
2.7.8 CD27

CD27 functions as a member of TNFRSF7 family receptors which activates T cells and controls

immune system regulation according to Starzer ef al. (2019). Adaptive immunity depends on CD27
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which exists primarily on T and B cells while natural killer cells also express this protein (Zhang
et al., 2020). CD27 has established itself as a promising immunotherapeutic target in cancer
treatment because of its immune regulatory functions which apply to prostate cancer (Starzer et
al., 2019). CD27-targeted therapies, including agonist antibodies like varlilumab, are being
explored for enhancing anti-tumor immunity in prostate cancer, particularly in combination with
checkpoint inhibitors, androgen deprivation therapy (ADT), and co-stimulatory pathway targeting
for synergistic therapeutic effects (Li-Zhen et al., 2015; Butt et al., 2019; Starzer et al., 2019).

2.8 Medicinal plants used as a management of prostate cancer

Natural products serve as renowned origins for developing pharmaceutical compounds utilized to
treat several human ailments such as cancers (Chopra & Dhingra, 2021). Approximately 11,14,000
extracts have been tested for anticancer efficacy from 35,000 plant samples obtained by the NCI
(National Cancer Institute) from 20 different countries (Singh et al., 2020). Over 3025 plant
species has been documented to contain antitumor properties (Hartwell, 1982; Asma et al., 2022).
Natural compounds, especially those found in food serve as primary components in developing
novel chemopreventive agents based on research conducted by Surh (2005) and George et al.,
(2021). Ethnobotanical and ethnopharmacological data can support more economical drug
discovery programs because they offer better benefits in identifying prospective anticancer
molecules than traditional plant species screening methods (Albuquerque ef al., 2014). In instance,
certain types of cancer and heart diseases can be prevented by phytochemicals. The understanding
of cancer etiology has made it clear that blocking DNA damage while simultaneously promoting
DNA repair through predominant cell proliferation inhibition would reduce the occurrence of
cancer. There are many anticancer plants which might provide useful sources for the development
of drugs which can be used in the treatment of cancer (Koklesova et al., 2020; George et al., 2021,

Ashong, 2024).

2.9 Flax

Flax (Linum usitatissimum L.) had been grown 30,000 years ago and generally known as pale flax
(Fu, 2023). It is one of the most significant crops grown and used by the ancestors. This flax has
been widely used for fiber and oil production (Pavagada, 2013). Flax, as a highly branched plants,

has been used to enhance flower production and thereby and thereby optimize seed yield. In animal
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and human nutrition, flax has so many health-related properties and can be used to cure different

diseases (Cullis, 2019).

2.9.1. Taxonomy and genetics

Linum usitatissimum is a family of Linaceae and it has more than 200 species which includes
about 14 genera. L. usitatissimum is a herbaceous which cultivated once in a year. Flax is a self-
pollinating plant with a roughly 370 Mb genome (Ragupathy et al., 2011). The flax taxonomy is

as follows:
e Kingdom: Plantae
e Subkingdom: Tracheobionta
e Superdivision: Spermatophyta
o Division: Magnoliophyta
e Class: Magnoliopsida
e Subclass: Rosidae
e Order: Linales
e Family: Linaceae
e Genus: Linum L.
e Species: Linum usitatissimum L. (Akter et al., 2019; Pansare ef al., 2020)

2.9.2 Flax microgreens

Young, delicate greens known as microgreens are taken and sold at the first true leaf stage, which
include cotyledons (seed leaves), first true leaves and stem. The cultivation of microgreens had
been increased very rapidly since late 1980s due to its health significance (Stavropoulos et al.,
2019). Microgreens can be grown from practically any type of grain, herb, or vegetable seed, even
those from untamed species. Microgreens have entered the market and gained popularity due to
their initial true leaves having higher nutrient concentrations than their mature leaf counterparts

(Samuolien¢ et al., 2019).
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Additionally, it has been proven that flax microgreens are highly nutritious and attention has been
paid for its consumption (Puccinelli et al., 2022). Several studies have been shown that the flax

microgreens contain higher antioxidant content, important micronutrients (Zn, Mn, and Fe), water-

soluble vitamins, amino acid, fatty acids and proteins as compared to flaxseeds (Santin et al.,

2022).

Figure 2.4: Flaxseeds and flax microgreens

2.9.3. Important components in flax

Flax has nutritionally important components which include; dietary fiber, phytoestrogens, high-
quality protein and high content of alpha-linolenic acid (ALA). It contains about 55 % ALA, 35 %
fiber and 28-30 % protein (Kajla et al., 2015; Haque et al., 2024). Flaxseed is the major source of
lignan-Secoisolariciresinol glycoside (SDG) and it also contains other lignans, namely

lariciresinol, matairesinol, pinoresinol and yatein (Dmitriev ef al., 2021; Chhillar et al., 2021).

2.9.4 Major polyphenols in flax

Polyphenols are naturally occurring compounds that offer various health benefits beyond their
antioxidant properties (Rana et al., 2022). Research indicates that diets rich in polyphenols may
help prevent the development of several chronic diseases, including diabetes mellitus, cancer,
neurodegenerative disorders, and cardiovascular conditions. (Gasmi et al., 2022; Rudrapal et al.,

2022).
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2.9.4.1 Lignans

Lignans are the most prevalent polyphenols in flax/flaxseed with secoisolariciresinol diglucoside
(SDG) as the major lignan (Zanwar et al., 2014), other lignans include isolariciresinol, matairesinol
pinoresinol, pinoresinol diglucoside and anhydrosecoisolariciresinol (Sicilia et al., 2003; Mueed
et al., 2024; Thomas et al., 2024). SDG is a plant lignan metabolized by intestinal microbiota to
enterodiol (ED) and enterolactone (EL), which have phytoestrogenic activity and potentially help
prevent hormone-related cancers (Silva et al., 2019). The level of SDG in flaxseed varies from 0.6

to 1.8 gram per 100 gram (Prasad, 2013).

2.9.4.2 Phenolic acids (PAs)

PAs, specifically hydroxycinnamic acids and hydroxybenzoic including p-coumaric acid, ferulic
acid, and caffeic acid, are present in flaxseeds (Huang et al, 2024). Additionally, according to
research carried by Cullis, (2019) proved that flax leaf contain caffeic glucosides, ferulic, p-
coumaric, hydroxy-3-methylglutaric acid (HMGA), herbacetin 3,8-O-diglucosid, sinapic acids and
glucosides. These phenolic acids have high total antioxidant capacity and act as synergists

alongside other antioxidants, improving the overall antioxidant capacity of flax extracts (Li et al.,

2019).

2.9.4.3 Flavonoids
Flax also possesses trace levels of flavonoids such as herbacetin and kaempferol derivatives (Gai
et al., 2023). While not as prevalent as lignans, flavonoids make up part of the anti-inflammatory

and cardioprotective responses seen with consumption of flaxseed (Duarte ef al., 2025).

2.9.5 Anticancer activities of polyphenols

Polyphenols are bioactive compounds present in plant-based foods rich in antioxidants and having
anti-inflammatory activities. These compounds are capable of scavenging free radicals which can
damage various cell components leading to mutations and cancer (Zhang et al., 2022). Beside
having antioxidant activities, polyphenols alter important enzymes and signaling pathways
involved in cellular growth and division. By changing these molecular mechanisms, polyphenols
help restrain the triggering, encouraging, and advance features of cancer (Lewandowska et al.,

2016; Chairez-Ramirez et al., 2021).

Earlier study revealed that polyphenols like flavonoids, lignans, and phenolic acids can cause

programmed cell death in certain cancer cells, prevent angiogenesis and limit the cancer’s spread
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(Hazafa et al., 2022). For instance, flaxseed contains lignans which have shown good results in
combating hormone-sensitive malignancies especially breast and prostate cancers, these
characteristics suggest polyphenols could have cancer preventive properties and serve as possible
complementary treatment to standard cancer therapies which would enhance the management of

cancer in a more natural and non-toxic way (Briguglio et al., 2020; Stepien et al., 2025).

P-coumaric acid, a phenolic acid found in flax, has been shown to inhibit cell proliferation in colon
cancer through its antioxidant action and ability to reduce DNA damage (Tehami et al., 2023).
Ferulic acid, another phenolic compound, suppresses tumor growth in breast, liver, and colon
cancers by inducing apoptosis and enhancing the effects of chemotherapy (Gadelmawla et al.,
2022; Helmy et al., 2022; Abdulal et al., 2024). Caffeic acid also shows anti-proliferative
properties in lung and colon cancers, mainly through inhibition of cancer-promoting signaling
pathways (Chiang ef al., 2914; Alam et al., 2022). Additionally, flavonoids like kaempferol and
herbacetin inhibit proliferation and angiogenesis in cancers such as ovarian, pancreatic, and lung
cancer, contributing to their potential as supportive agents in cancer treatment (Luo et al., 2009;
Morais et al., 2024). Together, these flax-derived polyphenols offer targeted anti-proliferative

effects across a range of cancer types.

2.9.6 1dentified bioactive compounds

Polyphenols are naturally occurring phenols having many other health benefits apart from their
antioxidant activity (Rana et al., 2022). Previous studies have indicated that polyphenol-rich diets
prevent the development of certain diseases, including diabetes mellitus, cancers,
neurodegenerative diseases, and cardiovascular diseases (Gasmi et al., 2022; Rudrapal et al.,
2022). A compound known as 4,4’-methylenebis (2,6-di-tert-butylphenol) [4,4’-M(2,6-DTBP)] is
a member of polyphenols synthesized in plants through a shikimate/phenylpropanoid pathway,
which leads to the formation of different polyphenolic compounds involved in plant defense,
antioxidant activity, and other biological functions (Sharma et al., 2019; Samec et al., 2021; Boyle
et al., 2012). A number of studies have demonstrated a vast array of biological activities of 2,4-di-
tert-butyl-butyl phenol (2,4-DTBP), a derivative of 4,4’-M(2,6-DTBP), including antibacterial,
anti-inflammatory, antifungal, antioxidant, and anti-cancer activities (Aravinth et al, 2023;

Dalawai et al., 2023).
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Figure 2.5: Chemical structure of 4,4’-methylenebis(2,6-di-tert-butylphenol).

Quinones are naturally occurring secondary metabolites that are found in microbes, plants, and
other organisms (Thomson RH, 1997). Since ancient times, people have been using quinones for
pharmaceutical applications, including antimalarial, antimicrobial, and antitumor. According to
Mumtaz et al. (2025), these free radical scavengers can serve as protective agents against a number
of illnesses, including diabetes, rheumatoid arthritis, atherosclerosis, and cancer. 2,5-DTBQ is a
bioactive compound that belongs to the family of benzoquinones. It has various properties that

make it of interest in phytochemistry and pharmacology (Gopal ef al., 2013).

O  CHs
CHs
HaC
HeC O

Figure 2.6: Chemical structure of 2,5-di-tert-butyl-1,4-benzoquinone
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2.10 Biochemistry of cell death and apoptotic signaling

Cell death is essential for development, tissue maintenance, and preventing disease, with apoptosis
being one of the most well characterized forms of programmed cell death, particularly relevant in
cancer research. Apoptosis occurs through two main mechanisms: the intrinsic (mitochondrial)
and extrinsic (death receptor) pathways (Figure 2.7). The intrinsic pathway is triggered by internal
stressors such as DNA damage, oxidative stress, and oncogene activation, and is regulated by the
Bcl-2 family of proteins, pro-apoptotic members like Bax and Bak promote mitochondrial outer
membrane permeabilization (MOMP), while anti-apoptotic proteins such as Bcl-2 and Bcel-xL
inhibit it. Once cytochrome c is released into the cytosol, it associates with Apaf-1 and procaspase-
9 to assemble the apoptosome, leading to activation of caspase-9 and then the executioner caspases
(caspase-3, -6, -7) (Chaudhry et al., 2022; Kari et al., 2022; Westaby et al., 2022; Mustafa et al.,
2024). The extrinsic pathway is initiated by extracellular ligands such as FasL, TNF-a, or TRAIL
binding to their respective death receptors (e.g., Fas/CD95, TNFR), which recruit adaptor proteins
like FADD to form the death-inducing signaling complex (DISC) to activate caspase-8. Caspase-
8 then directly activates executioner caspases or cleaves Bid, thereby linking to the mitochondrial
pathway (Tian et al., 2024). Both pathways converge on the executioner caspases, leading to
hallmark apoptotic changes: cell shrinkage, membrane blebbing, DNA fragmentation, and

apoptotic body formation.

In prostate cancer (PCa), apoptotic signaling is often dysregulated. Overexpression of anti-
apoptotic proteins such as Bcl-2 family members, mutations or inactivation of tumor suppressor
p53, and altered death receptor signaling contribute to evasion of apoptosis and disease
progression, particularly in castrate-resistant prostate cancer (CRPC) (Westaby et al., 2022).
Recent reviews and studies have highlighted therapeutic opportunities by targeting intrinsic
pathway components, such as BH3-mimetics, modulators of Bcl-2/Bcl-xL/MCL-1, and agents
restoring p53 function or enhancing mitochondrial outer membrane permeabilization to overcome
resistance mechanisms (Helal ez al., 2023; Saddam et al., 2024; Tian et al., 2024). Flaxseed and
its phytochemicals have also been explored for their capacity to promote apoptosis via
mitochondrial pathways in prostate cancer cells, showing increased expression of Bax, caspase-3
and other pro-apoptotic factors in treated cell lines (HPLC phenolic profile study, Linum

usitatissimum in LNCaP)
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Figure 2.7: Apoptotic signaling pathways
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CHAPTER THREE
3.0 MATERIAL AND METHODS

3.1 Chemicals/ reagents

4,4'-Methylenebis(2,6-di-tert-butylphenol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were
procured from Sigma-Aldrich, St. Louis, MO, USA. Dulbecco's Modified Eagle's Medium
(DMEM), Fetal Bovine Serum (FBS), Phosphate Buffered Saline (DPBS), Trypsin-EDTA
solution, and MTT reagent were obtained from MP Biomedicals, Germany. Dimethyl Sulfoxide
(DMSO), Propidium lodide (PI), Methanol (HPLC grade), and HPTLC Silica Gel 60 F2s4 Plates
were purchased from Merck, Darmstadt, Germany. The Annexin V-AbFluor™ 488 Apoptosis
Detection Kit (KTA0002) was acquired from Abbkine Scientific Co., Ltd (Abbkine, Inc., USA).

3.2.1 Plant material and growth conditions

Flax seeds were purchased from a Phagwara Market, located in Phagwara, Punjab, India. The trays
were filled with coco peat and the flaxseeds were sprinkled evenly and thickly over it. The
flaxseeds were misted gently with plant sprayer to avoid over watering and preventing the seed
from being displaced. The trays were placed in a warm and well-lit area (Hi-Tech polyhouse 26°C
to 30°C during daytime and 15°C to 18°C in night) to avoid direct sunlight as it can dry out the
coco peat. The coco peat's moisture level was checked daily and misted carefully to avoid
overwatering. The microgreens were harvested by cutting them just above the surface of the coco

peat with clean scissors.

3.2.2 Collection and identification of plant materials

Flax microgreens were collected from Hi-Tech Polyhouse (equipped with fan pad system for
cooling, thermo-regulation and misting facility for maintaining humidity inside chamber), Lovely
Professional University (LPU) Phagwara, Punjab-India. Its identity was authenticated by a
Professor in Plant Taxonomy, Kebbi State University of Science and Technology Aliero
(KSUSTA) Dr. Dharmendra Singh, with voucher specimen number (KSUSTA/PSB/H/Voucher
No: 657) deposited in the herbarium of the institute. The collected microgreens were washed to

make them free from cocopeat and shade dried at room temperature.
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3.2.3 Extraction using the cold maceration method

50 grams of powdered flax microgreen were extracted with 250 ml of methanol using the cold
maceration technique. The mixture was kept for 24 hours in a stopped container, then it was filtered
using No. 1 Whatmann filter paper (Vargas-madriz et al., 2020). The filtrate was concentrated
using a rotary evaporator and freeze-dried using a lyophilizer. The dried methanolic extract was
further extracted using solvents of different polarity (n-hexane, ethyl acetate, n-butanol, and water)
(Ho et al., 2019). The concentrated extracts were stored at —4 °C for subsequent analysis. The

percentage yield of each extract was calculated using the following formula:

Percentage yield (%) = [Weight of solvent free extract (g)] X100
Weight of dried plant (g)

3.3 Preliminary phytochemical screening

The methanolic extract of flax microgreens (MEFM) were subjected to qualitative phytochemical
analysis in order to establish distinct phytoconstituent profiles, as stated by (Riaz et al., 2018;
Usman et al., 2020). MEFM was accurately weighed and subsequently dissolved in its
corresponding parent solvents to attain a concentration of 10 mg/ml, equivalent to a stock solution
containing 1% extract (w/v). Table 3.1 presents the standardized preparation facilitated the

execution of various tests, each conducted independently on the MEFM.

Table 3.1: Phytochemical screening of MEFM

S/N Test Procedure Positive Result References
3.3.1 | Alkaloids 1 mL of 1% HCI + 3 mL MEFM + White or cream Usman et al.,
(Meyer’s Test) few drops of potassium mercuric precipitate 2020; Rajasree et
iodide. al, 2021
3.3.2 | Saponins 0.5 mL MEFM + 2 mL distilled Persistent froth > 10 Usman et al.,
water; shaken vigorously. mins 2020; Rajasree et
al., 2021
3.3.3 | Tannins 2-3 mL MEFM + few drops of 5% Dark green (condensed), | Riaz et al., 2018;
ferric chloride. Blue-black Usman et al.,
(hydrolysable) 2020
3.3.4 | Flavonoids MEFM + small amount of NaOH. Yellow color fades with Usman et al.,
weak acid 2020; Rajasree et
al., 2021
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vigorously for 5 min.

3.3.5 | Steroids 500 mg MEFM + 2 mL glacial Blue-green color Rajasree et al.,
(Liebermann’s acetic acid + 1 drop conc. H2SOa. 2021
Test)
3.3.6 | Terpenoids 5 mL MEFM + 2 mL chloroform + | Reddish-brown layer Velavan, 2015;
(Salkowski Test) 3 mL conc. H2SOa. Usman et al.,
2020
3.3.7 | Glycosides 50 mg MEFM hydrolyzed with Red color at interface Rajasree et al.,
(Borntrager’s conc. HCI (2 hrs), filtered, 2 mL 2021
Test) hydrolysate + 3 mL chloroform,
shaken; layer + 10% NHa.
3.3.8 | Coumarins 2 mL MEFM + 3 mL of 10% Yellow color Velavan, 2015
NaOH.
3.3.9 | Phenols (Ferric MEFM + 3—4 drops of ferric Bluish-black color Riaz et al., 2018;
Chloride Test) chloride. Usman et al.,
2020
3.3.10 | Chalcones 0.5 g MEFM + 2 mL ammonium Reddish color Velavan, 2015
hydroxide.
3.3.11 | Emodins MEFM + 2 mL ammonium Red coloration Velavan, 2015
hydroxide + 3 mL benzene.
3.3.12 | Quinones 2 mL MEFM + conc. H2SOs; shaken | Red coloration Riaz et al., 2018;

Usman et al.,

2020

3.4 Antioxidant activity

3.4.1 The DPPH scavenging assay

A DPPH scavenging assay was used to estimate the extracts' free radical scavenging activity

(Reddy, 2013; Rajasree et al., 2021). The methanol was used to prepare 0.1 mM DPPH solution,

and 1.6 mL of methanol extract at different concentrations (62.5—1000pg/mL) was added to 2.4

mL of DPPH solution. The mixture was thoroughly vortexed and incubated in the dark at room

temperature for 30 minutes. Then, its absorbance was measured at 517 nm using

spectrophotometry. The following formula was to determine the % DPPH scavenging activity:

%DPPH scavenging activity = (Absorbance of control — Absorbance of the sample) x 100

Absorbance of control
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The ICso value was determined by plotting the percentage of inhibition against the concentration.
Each concentration was tested in triplicate to ensure accuracy and reproducibility (Rajasree et al.,

2021).

3.4.2 Determination of metal chelating potential
The metal chelating activity of MEFM was assessed following the method described by Chew et
al. (2009). An Fe**-ferrozine complex (0.1 mM FeSOs and 0.25 mM of ferrozine) was added into

0.2 mL of the extract at different concentrations (62.5 — 1000pug/mL). The mixture was incubated
for 10 min at RT, and the absorbance was recorded at 562 nm. Positive control (EDTA).

3.4.3 Ferric reducing power activity

The reduction of iron (III) to iron (II) by the antioxidant compounds involves single electron
transfer via a redox reaction mechanism and can be studied using ferric reducing power (Santos-
Sanchez et al., 2019). 2.5 mL of phosphate buffer (pH 6.6) was added to both extract and standard
(ascorbic acid) at different concentrations of 62.5, 125, 250, 500, and 1000png/mL each. A 2.5 mL
aliquot of 1% potassium ferricyanide was added to the resulting solutions, which were then heated
at 50°C for 20 min. Subsequently, TCA (2.5 mL) was added and spinned at 2,000 rpm for 10 min.
After collecting the supernatant, dH>0 (1 mL) and 0.1% FeCls (250 pL) were added. The solution's
absorbance (700 nm) was recorded. The color of the sample in the reducing power assay changes
from yellow to green or blue depending on the antioxidant’s reducing ability, with higher
absorbance values indicating stronger reducing power (Koksal ef al., 2011; Rajasree et al., 2021;

Perumal et al., 2024).

3.4.4 Gas chromatography—mass spectrometry analysis

The Shimadzu (GCMS-TQ8040 NX) Gas Chromatograph was used for the GC-MS study. It was
connected to a Perkin Elmer Turbomass 5.1 mass detector Turbo mass gold with an Elite - 1 (100%
Dimethyl poly siloxane) capillary column measuring 30 m x 0.25 mm ID x 0.25 um. The
temperature of the instrument was initially set to 50°C, and it remained there for three minutes.
The oven temperature was increased at the rate of 10°C/min, rosed up to 300°C and maintained
for 8 min. Injection port temperature was ensured at 250°C and helium flow rate at 1.02 ml/min.
The 1onization voltage was 70 eV. The split mode of injection for the samples was 10:1. The range
of the mass spectral scan was 34 -600 (m/z). It kept the interface temperature at 310°C and the ion

source temperature at 240°C. The MS start time was 4 min, and end time was 37 min with solvent
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cut time of 4 min. The contents of phytochemicals present in the test sample were identified based
on the comparison peak area, peak height, retention time (min) and mass spectral patterns with
those spectral database of authentic compounds stored in the National Institute of Standards and

Technology (NIST) library (Linstrom & Mallard, n.d.).

3.5 In silico studies
3.5.1 Protein modeling studies of delta-like ligand 3 (DLL3)

3.5.1.1 Delta-like ligand 3 sequence recovery

The delta-like ligand 3 (DLL3) sequence of humans was obtained in FASTA format from the
UniprotKB database with sequence identity (ID: QINYJ7) (UniProt Consortium, 2019). The
ExPASy ProtParam server were used to compute the physicochemical properties of protein
sequence which include molecular weight (MW), isoelectric point (pl), instability index (II), total
number of amino acids residues, grand average hydropathy (GRAVY), extinction coefficient, and
aliphatic index (ai) (Sahay et al., 2020). The InterPro server and Conserved Domain Database
(CDD) of the NCBI were used to confirm the protein domains and functional sites after they were
identified using the Prosite database (Sigrist et al., 2012; Lu et al., 2020). PSSpred and SOPMA
online tools were used to study and analyze the structural features of the Delta-Like Ligand 3
(DLL3) (Joshi et al., 2023). The protein conformation was selected viz. alpha-helix, beta-sheet,
coil and turn, window width and similarity threshold were maintained at 17 and 8, respectively,
whereas 50 output with used for SOPMA. The transmembrane regions were identified using
TMHMM 2.0 (Luo et al., 2023). Important features like solvent accessibility, amino acid
arrangement, secondary structure, and its composition were assessed using the PredictProtein
server. The buried hydrophobic and exposed hydrophilic regions reflected the solvent accessibility

(Yachdav et al., 2014).

3.5.1.2 Protein modeling

The SWISS-MODEL online software was used to generate 3D structure of protein target (DLL3)
(Waterhouse ef al., 2018). Comparative protein modeling is carried out by the SWISS-MODEL
using fragment-based assembly and local similarity search. Protein threading, homology modeling
and ab-initio are the protein modeling techniques used by the SWISS-MODEL. After
superimposing the two created models, a standard deviation and distance plot were produced.

Ramachandran plot analysis was used to study the stereochemical characteristics of the modeled
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protein (Park et al., 2023). The overall structural quality of the modelled DLL3 was obtained using
SAVES v6.0 server with PROCHECK, VERIFY 3D, and PROVE (Joshi et al., 2023). The UCSF
Chimera 1.13.1was used to generate publication-quality images and structural analysis (Pettersen

et al., 2004).

3.5.1.3 Molecular docking study

A molecular docking simulation was used to study the protein-ligand interaction using PyRx tool
which is a virtual screening tool that employs Vina as well as Autodock 4.2 (Verma et al., 2023;
Dallakyan & Olson, 2015). The phytochemicals and three FDA approved drugs in .sdf format were
obtained from the PubChem database (www.pubchem.com) and converted into .pdbqt format
before running docking (Lawal ef al., 2020; Gulati et al., 2023). The 3D structure of target proteins

was download from the protein databank (http://www.rscb.org/pdb) and using grid box analysis, the

active site was manually predicted (Verma et al., 2023). Protein configurations were improved by
removing extraneous water molecules and the only area essential for binding with ligands was
kept. The optimal geometries for docking scenarios were obtained by ligand optimization. The
docking begins as soon as the ligands and proteins are ready. In this stage, the ligands were bound
into the active side of the protein and the binding affinity was measured. Through PyRx AutoDock
Vina simulations, the binding affinity strengths and patterns were attained, and protein-ligand
interaction were understood and identified. After docking search is completed, then Protein-Ligand
interaction profiler (PLIP), PyMOL and LigPlot software were used to study protein-ligand
interactions in the pdb format preparations (Spackman et al., 2021; Verma et al., 2022; Kumar et
al., 2024). The ligand's binding strength were determined using a negative score (kcal/mol) (Ortiz
etal., 2019):

K = eAGRT
Where: AG = Gibbs free energy; R = (1.985 x 107 kcal/mol/K); T = (298.15 K)

3.5.1.4 ADME properties and toxicity prediction
ADMETIab 3.0 online (https://admetlab3.scbdd.com/server/evaluationCal) (Duan et al., 2023) and

ProTox-3.0 online software (https://tox.charite.de/protox3/index.php?site) (Banerjee et al., 2024)

prediction tools were used to study the physicochemical properties, lipophilicity, water solubility,

pharmacokinetics, drug-likeness and toxicity prediction, violations of Veber's rule (Veber et al.,
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2002), violations of Lipinski's rule of five (Lipinski et al., 1997), with only one violation accepted

in the case of variables (Kaur et al., 2022).

3.6 Isolation and identification of bioactive compounds
3.6.1 UV-Visible spectroscopy

3.6.1.1 Preparation of standard

100pg/ml stock solution was prepared by adding 100 ml of solvent (hexane) into 10 mg of standard
in a volumetric flask. The various concentrations of 1, 2, 3, 4, 5, 6, and 7 pg/ml were prepared by
withdrawing 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 ml of solutions from the stock solution and diluting
them to 10 ml with hexane. The same methodology was applied for the remaining solvents (ethyl

acetate, butanol, and water) (Kadam et al., 2018).

3.6.1.2 Determination of maximum wavelength by UV-VIS spectroscopy
Standard solution (5 pg/ml) was scanned at a wavelength of 200-800 nm using UV-VIS
spectrophotometer. For the hexane, ethyl acetate, butanol, and water solutions, respective solvents

were utilized as blanks (Behera et al., 2012; Kadam et al., 2018).

3.6.1.3 Preparation of standard calibration curve by UV-VIS spectroscopy

The absorbance of a standard solution prepared from stock solutions of various solvents (hexane,
ethyl acetate, butanol, and water) in the concentration range of 1-7pg/ml was measured in triplicate
in order to obtain the standard calibration curve. The absorbance was plotted against concentration

for the calibration curve (Kadam et al., 2018).

3.6.1.4 Preparation of test solution for UV-VIS spectroscopy

To prepare 10pg/ml of extract solutions, 1 mg of extract from each solvent (hexane, ethyl acetate,
butanol, and water) was carefully weighed, transferred into a 100 mL conical flask, and the
respective solvents were added up to the mark. The absorbance of resultant solutions was analyzed

in different solvents (Kadam et al., 2018).
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3.6.2 HPTLC analysis

3.6.2.1 Preparation of standard solution
I mg/mL of stock was prepared by dissolving the 6 mg of standard compound in 6 mL of methanol.
Consequently, 1 mL of the stock solution was added to 10 mL of methanol to obtain 0.1 mg/mL

solutions (Muhammad & Pandey, 2024).

3.6.2.2 Test samples (Extract) preparation

To achieve 1 mg/mL of methanolic extract solution, extract (10 mg) was added into methanol (10
mL). Membrane filter (0.22 mm) was used to filter the resultant solution (Muhammad & Pandey,

2024).

3.6.2.3 HPTLC setup conditions and instrumentation

HPTLC was conducted on a silica gel 60 £254 (3.0 x 10 cm; Merck, Germany) HPTLC plate. The
plate was kept in a mobile phase automated development chamber containing solvents in a ratio
of 20:2.5:0.5:2 (ethyl acetate: methanol: formic acid: water), respectively. Using an automated
spray applicator with a 100 uL syringe, 10.0 uL of both extract and the standard solution (4,4’-
M(2,6-DTBP)) with a concentration of 1 mg/mL was applied to the plates in the form of 6.0 mm
bands at the rate of 150 nl/s. The CAMAG-Linomat IV was used for sample application, and its
settings were as follows: application rate of 150 nl/s, band length of 6.0 mm, distance between
bands 10 mm, distance from the bottom of the plate measuring 8.0 mm, and distance from the plate
side edge of 5 mm. WIN CATS program version 1.4.6.2002 was used to densitometrically evaluate
the bands using CAMAG TLC Scanner 3. The following were the settings for the scanner:
(Scanning rate: 20 mm/s; Slit dimension: 4.00 x 0.30 mm; Mode: absorption/reflection;
monochromator band width: 30 nm at an optimum wavelength of 515). The retention factor (Rf)
value was calculated by comparing the peak of the isolated component from the extract to that of
the standards. The calibration curves were used to determine the target compound's concentration

(Adhikari & Saha, 2022; Adhikari et al., 2025).

3.7 in vitro studies

3.7.1 Cell viability assay
The PC-3 cell lines were collected from National Centre for Cell Science (NCCS), Pune. The cells

were cultured in DMEM supplemented with 10% FBS, 200ul of the cell suspension (approx.
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10,000 cells) was added into 96-well plates and the plate was incubated at 37°C and 5% CO>
atmosphere for 24 h. After 24 h, the spent medium was replaced with medium containing the test
samples at various concentrations (62.5—1000 pg/ml) and incubated in CO; incubator at 37°C, and
5% COs for 24 h.

After this incubation, the drug-containing media were aspirated, and 100 uL of MTT solution
(5 mg/mL in PBS) was added to each well. The plate was then incubated at 37 °C for 4 hours.
Then, DMSO (100 puL) was added to each well to solubilise formazan crystals, and the contents
were mixed gently. After ensuring complete solubilization at room temperature, the absorbance
was measured at 570 nm and 630 nm using a microplate reader. The percentage of cell viability
was calculated using the following formula, and the ICso was calculated from the dose-response
curve (Mosmann, 1983; Shastry et al., 2021). The percentage cell viability was calculated using
formula below:

Cell Viability (%) = (Abs of treated — Abs of blank)
ell Viability (%) = (Abs of treated — Abs of blank) X 100

3.7.2 Annexin V apoptosis assay by flow cytometry

The PC-3 cells were cultured in a 6-well plate at a density of 3 x 10° cells/2 ml and incubated in a
CO2 incubator overnight at 37°C for 24 h. The old media were removed, and the cells were washed
with 1 ml 1X PBS. Fresh media containing test compounds at different concentrations were added
and incubated for 24 h. One of the wells was left untreated, which served as a negative control. At
the end of the treatment, the cells were harvested directly into the centrifuge tubes (5 ml) and
washed with PBS (500 pl). The PBS was removed and replaced with trypsin-EDTA solution (200
pl). Incubate for 3-4 minutes at 37°C. The cell suspension was transferred directly into the
centrifuge tubes and centrifuged at 300 % g for five minutes at 25°C. The supernatant was discarded
and the cells were resuspended in 500 pl annexin V binding buffer. After adding Annexin V-FITC
(5 pl) and PI (2 pl), they were well combined and left to sit at room temperature in the dark for 15
minutes. After adding an additional 500 pl of annexin V binding buffer, the samples were subjected

to flow cytometry analysis (Elasbali et al., 2022; Shalal & Irayyif, 2023).
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3.8 In vivo study

The anticancer effects of 2,5-DTBQ, 4,4'-M(2,6-DTBP), and MEFM were further confirmed

through animal model research using an adult male wistar rats in good health as the animal model.

3.8.1. Experimental animal

In the present study, male wistar rats weighing between 190 and 230 g were kept in cages made of
polypropylene. The Committee for the Purpose of Control and Supervision of Experiments on
Animals (CPCSEA) established guidelines that were followed in all experimental operations.
Before the study started, we received ethical approval (Approval Number:
UMYUCAUC/2024/49). For 14 days before the trial, the wistar rats were acclimated to standard
laboratory conditions, which included a 12-hour photoperiodic cycle, 21-25°C, and 45-65%
humidity. During the research, the wistar rats received a regular food and unrestricted access to

water.

3.8.2 Acute toxicity study of MEFM

The acute toxic effects of MEFM were evaluated according to the method of Lorke (1983). In the
initial phase, the wistar rats of both sexes were grouped into three, each consisting of three rats,
and administered the extract orally at doses (10, 100, and 1000 mg/kg). They were observed for
24 h for any signs of toxicity. In the subsequent phase, three wistar rats per group received the
same extract at higher doses (1600, 2900, and 5000 mg/kg) orally, and were monitored for 24 h
for MEFM toxicity or any other signs. As no deaths were observed after both phases I and II, the
LDso of MEFM was assumed to be greater than 5000 mg/kg.

3.8.3 Prostate cancer induction and experimental design

The male wistar rats were weighed before the commencement of the experiment, on the first day
of treatment, and on the day of sacrifice. The wistar rats (n=5) were grouped randomly into six
groups, as described in Table 3.2. Prostate cancer was induced by subcutaneous administration of
testosterone (5 mg/kg) dissolved in corn oil for 28 days, as previously described by Joshi et al.
(2023). The experimental groups (3—6) were administered doses orally only once in a day for 21
sequential days as follows: 10 mg/kg of finasteride, 20 mg/kg of 4,4°-M(2,6-DTBP), 20 mg/kg of
2,5-DTBQ, and 200 mg/kg of MEFM.
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Table 3.2: Animal grouping and experimental design

Group Group category Injection of Smg/kg of testosterone in corn Treatment (Gavage)  References
oil (Joshi et al., 2023; Prasad et al., 2007 )
Group1  Normal - Distilled water (Joshi et al., 2023; Prasad et al., 2007)
Group 2  Disease + Distilled water (Joshi et al., 2023; Prasad et al., 2007)
Group 3  Standard drug (Finasteride) + 10 mg/kg (Akbari et al.,2021)
Group 4  Group treated with 4,4’-M(2,6-DTBP) + 20mg/kg (Mariko et al., 2019)
Group 5  Group treated with 2,5-DTBQ + 20mg/kg (Matsuo et al., 1984)
Group 6  Group treated with extract (MEFM) + 200 mg/kg Grudzinska et al.,2023)
Key:

compounds. They received only distilled water via gavage and served as the baseline.

Group 1 (Normal control): This group consisted of healthy, untreated rats that did not receive testosterone or any test

¢ Group 2 (Disease control): Rats in this group received testosterone in corn oil to induce prostate cancer but no treatment, serving

as the disease model.

e Group 3 (Standard drug — Finasteride): Rats received testosterone plus 10 mg/kg finasteride to serve as the positive control.

e Groups 4-6 (Treatment groups): Rats received testosterone plus the respective test compounds: 4,4’-M(2,6-DTBP), 2,5-

DTBQ, and methanolic extract of flax microgreens (MEFM) at specified doses.
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3.8.4 Assessment of body weight (BW), prostate weight (PW), and prostatic index (PI)

The initial and final body weight of each individual wistar rat was recorded on the first and last
day of the experiment, respectively. Prostate weights (PW) were recorded for all groups. The
Prostatic Index (PI), representing the prostate weight to body weight ratio, was calculated for each
group. Additionally, the percentage inhibition of prostate weight and inhibition of the prostatic

index were determined using the formulas below (Hongcai ef al., 2018; Uroko et al., 2022):

Prostate index =  Prostate weight
Body weights

Treatment group — Normal control

% of prostate growth inhibition = 100 - X 100

Negative control — Normal control

2.8.5 Biochemical and histological analyses

On the 49th day of the study, Wistar rats were fasted overnight prior to sample collection. Blood
was drawn from the retro-orbital plexus under appropriate anesthesia. Following blood collection,
the animals were humanely sacrificed, and the prostate glands were immediately dissected,

weighed, and prepared for subsequent analyses.

Biochemical analyses: Blood samples were centrifuged at 5,000 x g for 20 minutes to separate
the serum. The serum was then used to determine testosterone levels and prostate-specific antigen

(PSA) concentrations.

Histological analyses: Prostate tissues were fixed in 10% formalin and sent to the Neuroscience
and Bioinformatics Unit, Department of Human Anatomy, Ahmadu Bello University, Zaria,
Nigeria. Histological sections were prepared and stained for microscopic examination. Images
were analyzed and captured by an expert anatomist, Dr. Akinyemi Ademola. Evaluations were
conducted under magnifications of 40x (scale bar = 100 um) and 60x (scale bar = 50 pum),

revealing structural details of the prostate tissue across experimental groups.
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3.8.6 Statistical analysis

Data were expressed as Mean + Standard deviation (SD). Evaluations between group results were
performed using a one-way ANOVA test, followed by a t-test. A p-value of less than 0.05 was
considered statistically significant. All statistical analyses were conducted using GraphPad Prism

Software (GraphPad Software Inc., United States).
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION

4.1 Flax microgreens and growth conditions

The flax microgreens were grown by sowing the flaxseeds in cocopeat at Hi-Tech Polyhouse
Lovely Professional University (LPU). The flaxseeds germination time was about 8 days under
controlled conditions (26°C to 30°C during daytime and 15°C to 18°C at night). Figure 4.1
presents well grown flax microgreens in a highly controlled environment called "Hi-Tech
Polyhouse" at Lovely Professional University (LPU). Following their growth, extraction of

phytochemicals from flax microgreens using methanol showed good yield (33%).

Figure 4.1: Well grown flax microgreens under controlled conditions in Hi-Tech Polyhouse

facility.

4.2 Qualitative screening tests of the methanolic extract of flax microgreens

The qualitative analysis of the methanolic extract of flax microgreens showed the presence of
numerous phytochemical constituents such as alkaloids, saponins, flavonoids, steroid, cardiac
glycoside, coumarins, phenolic compounds and chalcones whereas Tannins, Terpenoids, Emodins

were absent as shown in Table 4.1, which agrees to the finding of Monica & Joseph (2016) and
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Hanaa et al. (2017), who found that methanolic extracts of flaxseed contain steroids, terpenoids,

tannins, alkaloids, glycosides, flavonoids, phenols anthocyanins and emodins.

Table 4.1: Qualitative chemical tests of the methanolic extract of flax microgreens

S/N Phytochemicals Analysis  Results
1. Alkaloids +VE
2. Saponins +VE
3. Tannins -VE
4. Flavonoids +VE
5. Steroid +VE
6. Terpenoids +VE
7. Cardiac glycoside +VE
8. Coumarins +VE
9. Phenolic compounds +VE
10. Chalcones +VE
11. Emodin -VE

Note. +VE = present, -VE = absent

4.3 Antioxidant activity

4.3.1 DPPH scavenging activity

This is a widely used technique for determining a plant extract's potential for antioxidant activity.
DPPH donates hydrogen ions to molecules in their oxidized form, acting as a free radical scavenger
or an antioxidant (Monica & Joseph, 2016; Girish et al., 2023). The result of the DPPH scavenging
activity of MEFM is presented in Figure 4.2. The extracts exhibited a concentration dependent
increase in scavenging activity. At 1000 pg/mL concentration, the MEFM exhibited higher DPPH
radical scavenging activity of 84.2%. Though MEFM exhibited DPPH radical scavenging activity,
it 1s significantly (p < 0.001) less effective than ascorbic acid at all tested concentrations. The
current results agreed with the report by Alachaher ef al. (2018), which indicates that the DPPH
scavenging capacity of methanolic and butanolic extracts of L. usitatissimum was 93.1% and
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96.2%, respectively, at 800 pg/mL. According to the results of Hanaa ef al. (2017), the aqueous
methanol (70%) extract of flaxseeds exhibited a maximum level of inhibition of 62.10%, which is
significantly higher than the current findings. This might be attributed to the fact that aqueous

methanol (70%) is more polar and it can extract a good amount of phenolic compounds.
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Figure 4.2: DPPH scavenging activity of MEFM compared to ascorbic acid control. Data
presented as the mean and standard deviation (mean = SD) in triplicate. Mean values (bar graphs),
Standard deviation (vertical lines), Asterisk (***) above the bars is statistically significance (P

<0.001).

4.3.2 Metal chelating activity

Transient metal ion chelation is involved in the scavenging of reactive oxygen species by binding
transition metals like iron and copper, thereby preventing them from catalyzing harmful ROS-
generating reactions such as the Fenton reaction (Fucassi ef al., 2014; Zhang et al., 2024). Figure
4.3 presents the metal chelating capacity of MEFM using EDTA as the standard control. Both the
standard and the extract were tested at different concentrations (62.5, 125, 250, 500, and
1000pg/mL). At 500 and 1000pg/mL concentrations, the MEFM exhibited significant chelating
activity of 37% and 38%, respectively. Although MEFM exhibited metal chelating activity, it is

significantly (p < 0.001) less effective than EDTA at all tested concentrations. Previous research
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had proven that metal chelating activity plays protective effects against oxidative damage caused

by metal catalysed decomposition reactions (Gulcin & Alwasel, 2022).
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Figure 4.3: Metal chelating activity of MEFM compared to EDTA as control. Data presented as
the mean and standard deviation (mean + SD) in triplicate. Mean values (bar graphs), Standard

deviation (vertical lines), Asterisk (***) above the bars is statistically significance (P <0.001).

4.3.3 Reducing power assay

The ferric reducing antioxidant potentials of the plant extracts were represented as FRAP values
(Esguerra et al., 2024). Figure 4.4 represents the reducing power assay of MEFM. The ascorbic
acid standard and the extract were tested at various concentrations (62.5, 125, 250, 500, and
1000pg/mL). The extracts exhibited a concentration-dependent increase in reducing power
activity. At 1000 pg/mL concentration, the MEFM exhibited reducing power activity of 0.94%.
While MEFM exhibited reducing power activity, it was significantly (p < 0.001) less effective than
ascorbic acid at all tested concentrations. These findings align with those of Ouis and Hariri (2023),
who reported that the methanolic extract of flaxseeds demonstrated high reducing power activity,
suggesting its potential applications in the food and pharmaceutical industries. Antioxidants
prevent biological system damage by scavenging chelating agents, reducing agents, singlet oxygen

molecules, and enhancing the activity of antioxidant enzymes (Zanwar ef al., 2011; Dumanovi¢ et
43



al.,2021). One of the most significant indicators of a compound's possible antioxidant activity is
its capacity to reduce oxidative damage (Munteanu & Apetrei, 2021). The presence of reductones
is typically linked to the reducing capacity as it was reported to inhibit the peroxide formation

(Ouis & Hariri, 2023).

L8 m MEFM = Ascobic acid

1.6 -
1.4 -
1.2 -

P values
=

< 0.8
L 0.6 -
0.4
0.2

R

Control 62.25 125 250 500 1000
Concentration (ug/ml)

Figure 4.4: Reducing power assay of MEFM compared to ascorbic acid control. Data presented
as the mean and standard deviation (mean + SD) in triplicate. Mean values (bar graphs), Standard
deviation (vertical lines), Asterisk (***) above the bars is statistically significance (P <0.001),

Asterisk (***) above the bars is statistically significance (P <0.001).

4.4 GC-MS profiling of methanolic extract of flax microgreens

A total of 60 chromatogram peaks were identified from methanolic extract of flax microgreens
which correspond to the bioactive compounds and were recognized by relating their retention time,
peak area (%), peak height (%) and mass spectral fragmentation patterns to that of the known
compounds described by the National Institute of Standards and Technology (NIST) library.
According to research conducted by Farag ef al. (2021), 28 phytochemicals were identified from
flaxseed whereas the current study revealed 60 different phytocompounds from flax microgreens.

The total ion chromatogram is presented in Figure 4.5. Table 4.2 presents the phytocompounds
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along with their corresponding molecular formula, retention time (RT), molecular weight (MW),

and peak area (%).

Table 4.2: Bioactive compounds found in methanolic extract of flax microgreens.

SN RT Compound  Compound names Molecular ~ Molecular Peak
cIb: Formula Weight area (%)
1 4,188 534410 3-Heptafluorobutyroxypentadecane CigHuF/0, 4244 1.18
2 4.588 7976 2-Methylpyrazine CsHsN> 94.11 0.10
3 4.763 111244 2-Methyl-N-(2 methylpropyl)propan-1-imine CgHi7N 127.23 0.33
4 6.431 10413 4-Hydroxybutanoic acid C4Hs03 104.10 0.08
5 6.492 7938 2,6-Dimethylpyrazine CeHsN2 108.14 0.07
6 7.427 7974 2-Methylpiperidine CeHisN 99.17 0.15
7 7.710 137584 1-(2-Methylprop-1-enyl)pyrrolidine CgHisN 125.21 0.19
8 8.524 18372057 But-3-enyl (E)-2-methylbut-2-enoate CoH1402 154.21 0.37
9 8.954 558410 1-(3-Methylbut-3-enyl)pyrrolidine CoHi7N 139.24 0.15
10  10.482 5364729 Prop-2-enyl (E)-2-methylbut-2-enoate CsH120, 140.18 0.25
11 11.453 119838 3,5-Dihydroxy-6-methyl-2,3-dihydropyran-4-  CeHgOq4 144.12 1.03
one

12 11.950 5367771 [(2)-2,5-Dimethylhex-3-enyl] formate CoH160> 156.22 0.21
13 14.608 332 4-Ethenyl-2-methoxyphenol CoH1002 150.17 0.37
14 15.804 83742 1,3-Bis(ethenyl)imidazolidin-2-one C7H10N20 138.17 0.11
15 17.082 5988 Sucrose C12H22011 342.3 1.48
16  17.255 91737510 Methyl 4-methoxy-2-trimethylsilyloxybenzoate = Ci2H1504Si 254.35 0.67
17 17562 5373219 2-(1-Hydroxybut-2-enylidene)cyclohexanone Ci1oH1402 166.22 010

18 17.604 530729 Tridec-2-ynyl 2,6-difluorobenzoate CaoH26F20,  336.4 0.13
19 17831 7311 2,4-Ditert-butylphenol C14H20 206.32 0.49
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https://pubchem.ncbi.nlm.nih.gov/compound/534410
https://pubchem.ncbi.nlm.nih.gov/#query=C19H31F7O2
https://pubchem.ncbi.nlm.nih.gov/compound/7976
https://pubchem.ncbi.nlm.nih.gov/#query=C5H6N2
https://pubchem.ncbi.nlm.nih.gov/compound/111244
https://pubchem.ncbi.nlm.nih.gov/#query=C8H17N
https://pubchem.ncbi.nlm.nih.gov/compound/10413
https://pubchem.ncbi.nlm.nih.gov/#query=C4H8O3
https://pubchem.ncbi.nlm.nih.gov/compound/7938
https://pubchem.ncbi.nlm.nih.gov/#query=C6H8N2
https://pubchem.ncbi.nlm.nih.gov/compound/7974
https://pubchem.ncbi.nlm.nih.gov/#query=C6H13N
https://pubchem.ncbi.nlm.nih.gov/compound/137584
https://pubchem.ncbi.nlm.nih.gov/#query=C8H15N
https://pubchem.ncbi.nlm.nih.gov/compound/18372057
https://pubchem.ncbi.nlm.nih.gov/#query=C9H14O2
https://pubchem.ncbi.nlm.nih.gov/compound/558410
https://pubchem.ncbi.nlm.nih.gov/#query=C9H17N
https://pubchem.ncbi.nlm.nih.gov/compound/5364729
https://pubchem.ncbi.nlm.nih.gov/#query=C8H12O2
https://pubchem.ncbi.nlm.nih.gov/compound/119838
https://pubchem.ncbi.nlm.nih.gov/#query=C6H8O4
https://pubchem.ncbi.nlm.nih.gov/compound/5367771
https://pubchem.ncbi.nlm.nih.gov/#query=C9H16O2
https://pubchem.ncbi.nlm.nih.gov/compound/332
https://pubchem.ncbi.nlm.nih.gov/#query=C9H10O2
https://pubchem.ncbi.nlm.nih.gov/compound/83742
https://pubchem.ncbi.nlm.nih.gov/#query=C7H10N2O
https://pubchem.ncbi.nlm.nih.gov/compound/5988
https://pubchem.ncbi.nlm.nih.gov/#query=C12H22O11
https://pubchem.ncbi.nlm.nih.gov/compound/91737510
https://pubchem.ncbi.nlm.nih.gov/#query=C12H18O4Si
https://pubchem.ncbi.nlm.nih.gov/compound/5373219
https://pubchem.ncbi.nlm.nih.gov/#query=C10H14O2
https://pubchem.ncbi.nlm.nih.gov/compound/530729
https://pubchem.ncbi.nlm.nih.gov/#query=C20H26F2O2
https://pubchem.ncbi.nlm.nih.gov/compound/7311
https://pubchem.ncbi.nlm.nih.gov/#query=C14H22O
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https://pubchem.ncbi.nlm.nih.gov/compound/267716
https://pubchem.ncbi.nlm.nih.gov/#query=C14H22N2O2S
https://pubchem.ncbi.nlm.nih.gov/compound/35960
https://pubchem.ncbi.nlm.nih.gov/#query=C10H12O3
https://pubchem.ncbi.nlm.nih.gov/compound/545303
https://pubchem.ncbi.nlm.nih.gov/#query=C17H24O3
https://pubchem.ncbi.nlm.nih.gov/compound/91719722
https://pubchem.ncbi.nlm.nih.gov/#query=C18H26O4
https://pubchem.ncbi.nlm.nih.gov/compound/3026
https://pubchem.ncbi.nlm.nih.gov/#query=C16H22O4
https://pubchem.ncbi.nlm.nih.gov/compound/96009
https://pubchem.ncbi.nlm.nih.gov/#query=C8H8O3
https://pubchem.ncbi.nlm.nih.gov/compound/91691499
https://pubchem.ncbi.nlm.nih.gov/#query=C23H48O
https://pubchem.ncbi.nlm.nih.gov/compound/985
https://pubchem.ncbi.nlm.nih.gov/#query=C16H32O2
https://pubchem.ncbi.nlm.nih.gov/compound/7427
https://pubchem.ncbi.nlm.nih.gov/#query=C12H22O11
https://pubchem.ncbi.nlm.nih.gov/#query=C17H24O3
https://pubchem.ncbi.nlm.nih.gov/compound/64947
https://pubchem.ncbi.nlm.nih.gov/#query=C7H14O6
https://pubchem.ncbi.nlm.nih.gov/#query=C24H42O7
https://pubchem.ncbi.nlm.nih.gov/compound/54018957
https://pubchem.ncbi.nlm.nih.gov/#query=C20H40O3
https://pubchem.ncbi.nlm.nih.gov/#query=C11H14O4
https://pubchem.ncbi.nlm.nih.gov/compound/101715
https://pubchem.ncbi.nlm.nih.gov/#query=C6H12O5
https://pubchem.ncbi.nlm.nih.gov/compound/5281
https://pubchem.ncbi.nlm.nih.gov/#query=C18H36O2
https://pubchem.ncbi.nlm.nih.gov/compound/9546746
https://pubchem.ncbi.nlm.nih.gov/#query=C39H72NO8P
https://pubchem.ncbi.nlm.nih.gov/compound/5280435
https://pubchem.ncbi.nlm.nih.gov/#query=C20H40O
https://pubchem.ncbi.nlm.nih.gov/compound/5280450
https://pubchem.ncbi.nlm.nih.gov/#query=C18H32O2
https://pubchem.ncbi.nlm.nih.gov/compound/5280934
https://pubchem.ncbi.nlm.nih.gov/#query=C18H30O2
https://pubchem.ncbi.nlm.nih.gov/compound/521846
https://pubchem.ncbi.nlm.nih.gov/#query=C54H110
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RT: Retention Time
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https://pubchem.ncbi.nlm.nih.gov/compound/532617
https://pubchem.ncbi.nlm.nih.gov/#query=C16H26OSi
https://pubchem.ncbi.nlm.nih.gov/compound/11747713
https://pubchem.ncbi.nlm.nih.gov/#query=C20H32
https://pubchem.ncbi.nlm.nih.gov/#query=C12H26O2
https://pubchem.ncbi.nlm.nih.gov/compound/547838
https://pubchem.ncbi.nlm.nih.gov/#query=C12H26O2
https://pubchem.ncbi.nlm.nih.gov/compound/6230
https://pubchem.ncbi.nlm.nih.gov/#query=C20H26O2
https://pubchem.ncbi.nlm.nih.gov/compound/42956
https://pubchem.ncbi.nlm.nih.gov/#query=C24H48O2
https://pubchem.ncbi.nlm.nih.gov/compound/8343
https://pubchem.ncbi.nlm.nih.gov/#query=C24H38O4
https://pubchem.ncbi.nlm.nih.gov/compound/191964
https://pubchem.ncbi.nlm.nih.gov/#query=C24H38O4
https://pubchem.ncbi.nlm.nih.gov/compound/8089
https://pubchem.ncbi.nlm.nih.gov/#query=C30H62
https://pubchem.ncbi.nlm.nih.gov/compound/11008
https://pubchem.ncbi.nlm.nih.gov/#query=C32H66
https://pubchem.ncbi.nlm.nih.gov/compound/589198
https://pubchem.ncbi.nlm.nih.gov/#query=C26H52O2
https://pubchem.ncbi.nlm.nih.gov/compound/22932
https://pubchem.ncbi.nlm.nih.gov/#query=C24H38O4
https://pubchem.ncbi.nlm.nih.gov/compound/91735525
https://pubchem.ncbi.nlm.nih.gov/#query=C21H32O4
https://pubchem.ncbi.nlm.nih.gov/compound/117981
https://pubchem.ncbi.nlm.nih.gov/#query=C24H50S2
https://pubchem.ncbi.nlm.nih.gov/compound/638072
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50
https://pubchem.ncbi.nlm.nih.gov/compound/181087
https://pubchem.ncbi.nlm.nih.gov/#query=C12H6Cl4O
https://pubchem.ncbi.nlm.nih.gov/compound/11002708
https://pubchem.ncbi.nlm.nih.gov/#query=C20H18O6
https://pubchem.ncbi.nlm.nih.gov/compound/290541
https://pubchem.ncbi.nlm.nih.gov/#query=C20H22O4
https://pubchem.ncbi.nlm.nih.gov/compound/91691425
https://pubchem.ncbi.nlm.nih.gov/#query=C29H50O3
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Figure 4.5: GC-MS chromatogram
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4.5 Molecular docking screening and bioactive compound selection process

GC-MS analysis result revealed that the MEFM contain several phytocompounds that exhibit

various phytochemical activities. The prostate cancer target molecules were identified after

intensive literature searches, focusing on key signaling pathways, molecular markers, and

therapeutic targets associated with the disease. For pre-docking screening, all phytocompounds

were docked against the eight (8) prostate cancer target proteins and their binding affinities were

recorded (Table S1) (See appendix). Figure 4.6 shows the molecular docking screening and

selection process of bioactive compounds for further study. Table 4.3 presents the bioactive

compounds with higher peak area (higher than 2.0%) along with their corresponding molecular

formula, retention time (RT), molecular weight (MW), and peak area (%).
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Figure 4.6: Molecular docking screening and bioactive compound selection process

Table 4.3: Flax microgreen’s bioactive compounds with highest percentage.

SN RT Compound Compound names Molecular Molecular Peak
CID: . area (%)
Formula Weight
1 21.824 985 n-Hexadecanoic acid C16H32202 256.42 4.27
2 23.460 17161 2,5-Di-tert-butyl-1,4-benzoquinone C17H2403 276.4 4.33
3 23.756 64947 (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6- C7H1406 194.18 13.01

methoxyoxane-3,4,5-triol
4 24.091 54725318 L-Ascorbic acid, 6-octadecanoate Co4H4,07 442.6 5.21

5 24510 637775 3,5-Dimethoxy-4-hydroxycinnamic ~ acid Ci1H1,0s 224.21 3.21

(Sinapinic acid)
6 25.911 5280435 Phytol C20H400 296.5 3.22

7 27.872 10494 Oleanolic acid C30H4503 456.7 2.40
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https://pubchem.ncbi.nlm.nih.gov/compound/985
https://pubchem.ncbi.nlm.nih.gov/#query=C16H32O2
https://pubchem.ncbi.nlm.nih.gov/#query=C17H24O3
https://pubchem.ncbi.nlm.nih.gov/compound/64947
https://pubchem.ncbi.nlm.nih.gov/#query=C7H14O6
https://pubchem.ncbi.nlm.nih.gov/#query=C24H42O7
https://pubchem.ncbi.nlm.nih.gov/#query=C11H14O4
https://pubchem.ncbi.nlm.nih.gov/compound/5280435
https://pubchem.ncbi.nlm.nih.gov/#query=C20H40O
https://pubchem.ncbi.nlm.nih.gov/#query=C12H26O2

8 29.695 191964 Bis(2-propylpentyl) benzene-1,2- C24H3304 390.6 4.19

dicarboxylate
9 31.038 8372 4,4’-Methylenebis (2,6-di-tert-butylphenol)  Cy9H440; 424.7 2.74

10 32875 638072 Squalene CaoHso 410.7 4.62

RT: Retention time

4.6 Prostate cancer target proteins

It may be possible to stop or slow the spread of PCa to other areas of the body by targeting a
particular protein that is frequently overexpressed in the disease. The important PCa target proteins
include Aurora A kinase (AURKA) (Otto et al., 2009), DLL3 (Rudin et al., 2017), N-myc proto-
oncogene protein (N-Myc) (Gustafson et al., 2014), Cytotoxic T-lymphocyte antigen 4 (CTLA-4)
(Yu et al., 2011), 5 « -Reductase (5AR) ) (Robitaille & Langlois, 2020; Schmidt & Tindall, 2011),
Androgen receptor (AR) (Liss & Thompson, 2018), Lysine-specific histone demethylase 1A
(LSD1) (Niwa et al., 2020), and CD27 (Liu et al., 2021). The structure of all the target proteins
except DLL3 was available and downloaded from PDB (http://www.rscb.org/pdb). Therefore, the
modeling studies, sequence analysis, selection, and validation of DLL3 were done using different

bioinformatic tools.

4.7 Protein modeling studies and sequence analysis of delta-like protein 3 (DLL3)

The structure of DLL3 is not available on PDB database. Therefore, the Delta-Like Ligand 3
(DLL3) sequence of humans was retrieved in FASTA format from the protein sequence and
functional information database (UniprotKB) with sequence identity (ID: QINYJ7). The ExPASy
ProtParam server was used to compute the physicochemical properties of query sequence and
tabulated in Table 4.4. The result shows isoelectric point (pl), Aliphatic Index (Al), Instability
Index (1) and GRAVY value of query protein (DLL3) was 7.590, 66.540, 53.730 and -0.1870
respectively which corroborate with the findings of Joshi BP ez al. (2023). The isoelectric point
(pl) shows the acidity or basicity nature of the protein. With a wider temperature range, the query
protein's greater Aliphatic Index (Al) demonstrates its stability. The hydrophilic nature of the
protein is indicated by the negative GRAVY values for protein.
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https://pubchem.ncbi.nlm.nih.gov/compound/191964
https://pubchem.ncbi.nlm.nih.gov/#query=C24H38O4
https://pubchem.ncbi.nlm.nih.gov/compound/638072
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50

Table 4.4: The physicochemical parameters of DLLS3.

Physicochemical parameters DLL3

UniprotKB Accession Number Uniprot ID: QINYJ7
Length of amino acid sequence 592.0

Protein pl 7.590

Protein Il 53.730

Protein Al 66.540

GRAVY value -0.1870

The InterPro and CDD of the NCBI were used to confirm the protein domains and functional sites
after they were identified using the Prosite database. Tables (4.5 and 4.6) present the domain,
profile, and patterns found for DLL3's characteristic functionalities. Six conserved EGF-like
domains were found by both Prosite, InterPro and CDD, which is in line with the DLL3's function
and the body of existing literatures. Table 4.6 also illustrates the amino acid sequences for each of
the six EGF 3 domains, along with their respective disulfide bond positions. Figure 4.7 presents
the sequence logo which helps in visualizing the cysteine residue position for disulfide bond in the

EGF domain.

Table 4.5: Identified Domains from the sequence.

Database Accession number Identified Domains

Prosite PS50026 EGF 3

CDD cd00054 Calcium-binding EGF-like domain (EGF_CA)
pfam07657 N terminus of Notch ligand C2-like domain (MNNL)
pfam00008 EGF-like domain (EGF).
smart00051 Delta serrate ligand (DSL)

InterPro IPRO13032 EGF-like, conserved site (EGF_CS)
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https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=pfam07657
https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=pfam00008
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=smart00051

Table 4.6: Prosite result shows the structure, sequence position and disulfide bond between amino

acids in domains.

Protein Domain Sequence Amino acid sequence Disulfide bond

Name Name Position between AA

Delta-like ~ EGF 3  216-249 APLVCRAGCSPEHGFCEQPGECRCLEGW  220-231, 224-237,

. 239-248
ligand 3 TGPLCT

274-310 GPGPCDGNPCANGGSCSETPRSFECTCP 278-289, 283-298,

300-309
RGFYGLRCE

312-351 SGVTCADGPCFNGGLCVGGADPDSAYIC  316-327, 321-339,

341-350
HCPPGFQGSNCE

353-389 RVDRCSLQPCRNGGLCLDLGHALRCRCR  357-367, 362-377,

379-388
AGFAGPRCE

391-427 DLDDCAGRACANGGTCVEGGGAHRCSC  395-406, 400-415,
417-426
ALGFGGRDCR

429-465 RADPCAARPCAHGGRCYAHFSGLVCACA 433-444, 438-453,

455-464
PGYMGARCE
5+ PS50026
4
=
& 5 |
1-
: ool - (e
L CALTIEEL B B EEERRET TR EE R TS T E

Figure 4.7: Sequence Logo for DLL-3 domain

52



PSSpred and SOPMA online tools were used to study and analyze the structural features of the
Delta-Like Ligand 3 as shown in Table 4.7 and Figure 4.8. The result of SOPMA is comparable
with that of PSSpred prediction. The secondary structure of Delta-Like Ligand 3 shows the
extended strands, beta turns, alpha helix, and domination of random coils. The PredictProtein
server shows a very high percentage of turns and coils for Delta-Like Ligand 3 whereas the

presence of strands and helix was significantly lower.

Table 4.7: Prediction of DLL3 secondary structure using SOPMA online tool.

Delta-Like Ligand 3 (QINYJ7) Structural features of DLL3 (%)
a-helix 09.55
310-helix 00.00
n-helix 00.00
B-bridge 00.00
Extended-strand 14.89
B-turn 04.53
Bend-region 00.00
Random-coil 71.04
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Figure 4.8: Prediction of DLL3 secondary structure using SOPMA online tool.

According to the solvent accessibility analysis, 45.31%, 41.10%, and 13.59% of DLL3 regions are

buried, exposed to solvent, and intermediate regions, respectively. The result from DeepTMHMM

1.0.24 revealed that the predicted amino acids in signal, extracellular, transmembrane, and

cytoplasmic regions were 1-26, 27-491, 492-513, and 514-618, respectively, (Table 4.8 and 4.9)

which agrees with the findings of Joshi et al. (2023) of about 70%. This can be attributed due to

DeepTMHMM 1.0.24 server updation.

Table 4.8: Prediction of the DLL3 domain locations using DeepTMHMM 1.0.24

Transmembrane prediction software

Location of domain

Sequence position

DeepTMHMM 1.0.24 prediction of the DLL3

domain locations

Signal
Extracellular region
Transmembrane Helix region

Cytoplasmic region

1-26

27-491

492 - 513

514 -618
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Figure 4.9: Transmembrane helix prediction of DLL-3 using DeepTMHMM (1.0.24)

4.8 Homology modeling and validation

Figure 4.10 presents the accurate prediction of the C2, DSL, and EGF domains generated from
the SWISS-MODEL server. Newly modelled protein subjected to additional analysis viz;
Ramachandran plot analysis, distance plot standard deviation, RMSD values, secondary structure,
cytoplasmic and transmembrane helix prediction. Figure 4.10 also presents the sequence
alignment between Human DLL3 and Delta-like protein 1(DLL1). The template used for modeling
of Delta-like ligand 3 protein was crystal structure of Delta-like ligand (DLL1) with PDB ID
(4XBM). The reliability and quality of the generated model were determined. Figure 4.11 presents
the homology modeled structure of Human DLL3. The quality of built protein was further
evaluated using PROVE and PROCHECK server. Protein residues are categorized using the
Ramachandran plot according to their areas in the quadra plot and the ¢ and y angles of the protein
backbone. Glycine is represented by triangles in the quadra plot, while other amino acids are
represented by squares. The yellow and red areas represent the allowed and most allowed regions,
respectively. The Ramachandran plot of both (query and template sequences) of protein which
have been generated using SWISS MODEL is shown in the Figure 4.12. Red regions on the
Ramachandran plot represent the most favored and allowed conformations for amino acid residues.

Black dots show the actual positions of residues, indicating whether they lie within allowed or
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disallowed regions. Table 4.9 shows the 0.6% of amino acids residues were in the disallowed
region. Figure 4.13 presents ERRAT plot in chain A & B of modelled DLL3 protein. The ERRAT
plot also shows some of the regions with high error, these results suggest the need for model
refinement. After completion of three iterations of loop refinement there is no residue in the
ERRAT plot displays high error and ~99% residues are present in generously allowed regions in
the plot. The atomic calculation in form of z-score from PROVE server indicates the quality of the
modelled protein structure (Table 4.10).
Target MVSPRESGEESOTVILALIFLPOTRPAGVEELOIHSFGPGPGPGAPRSPCSARLPCRLFFRVCLK 65
QNYJ7.1.4 MVSPRESGECSOTVICALDFLPOTRPAGVFELOTHSEGPGPGPGAPRSPCSARLPKRLEFRVCIK 65
{TEQPGAPAPDLPLPDGLLQVPFRDAWPGTFSFITETWREE 130
QPGAPAPDLPLPDGILLOVPERDAWPGITESFITETWREE 130
Target LGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYRARCEPPAVGTACTRLCRPRS 195

QINYJ7.1A LGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRESYRARCEPPAVGTACTIRLCRPRS 195

Target APSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSP 260
Q9NYJ7.1LA APSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRELEGWTIGPLCTVRVSTSSICLSP 26

Target
QINYJ7.1.A

Target RGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFENGG 325§
QINYJ7.LA RGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCENSGVTCADGPCFNGG 335

Target LCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEH 390
QINYJ7.1.A [LCVGGADPDSAYICHCPPGFOGSNCEKRVDRCSLQPCRNGGLCLDLGHAILRCRCRAGFAGPRCEH 390
Target DLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCAC 455
QINYJ7.1A DLDDCAGRACANGGTCVEGGGAHRICSCALGFGGRDCRERADPCAARPCAHGGRCVANFSGLVCAC 435
Target APGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPALGLLVAAGVAGAALLLVHVRRRGH 520
QINYJ7.1.A APGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPALGLLVAAGVAGAALLLVHVIRRRGH 530
Target SQDAGSRLLAGTPEPSVHALPDALNNLRTQEGSGDGPSSSVDWNRPEDVDPQGIYVISAPSIYAR 585
QINYJ7.1.A SQDAGSRLLAGTPEPSVHALPDALNNLRTQEGSGDGPSSSVOWNRPEDVDOPQGIVISAPSIVAR 585
l 618

618

Target EWA
QINYJ7.LA

Figure 4.10: Aligment between Human DLL3 and Delta-like protein 1(DLL1)

Figure 4.11: Homology modeled structure of Human DLL3
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Figure 4.12: Ramachandran map of QINYJ7 (Query sequence) and Template sequence model

Table 4.9: PROCHECK tool generates a Ramachandran plot for the final DLL3 models.

Percentage (%)

Modeling Protein  Accession Regions of amino acid residues

Server Name Number

Swiss Model DLL3 QINYJ7 Amino acids in the most favoured region 82.20
Amino acids in generously allowed region 1.90
Amino acids in additionally allowed region 15.30
Amino acids in disallowed region 0.60
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Figure 4.13: ERRAT Plot for each loop (chain A & B) modelled structure.

Table 4.10: PROVE analysis for the DLL3 model.

Protein (Accession Number) Z-score information Value(s)

Delta-like ligand 3 (QINYJ7) Average (mean) 0.751
Standard deviation 1.391
Root Mean Square (RMS) 1.580

4.9 Molecular docking analysis

Eight (8) target proteins were downloaded from the PDB database (PDB id: 4XMB.2, 30SK.1,
4J8M, 6KGM, 5G1X, 7BW1, 3L3X, and 7KXO0), and using grid box analysis, the binding pocket
was manually predicted (Lawal et al., 2020). The phytocompounds in .sdf format were obtained

from the PubChem database and converted into .pdbqt format (Gulati et al., 2023). The molecular
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docking screening was done using the PyRx software (Verma et al., 2023; Dallakyan & Olson,
2015). Table 4.11 presents the docking result of ten (10) bioactive compounds with peak area
above 2.0% against eight (8) prostate cancer target proteins. The binding affinities ranged from
—4.5 to —17.1 Kcal/mol across the docking result. Out of this ten (10) bioactive compounds only
four (4) compounds with their pubchem ID (CID10494, CID17161, CID637775, CID8372) were
selected for post docking study.

Table 4.11: Molecular docking result of selected bioactive compounds of flax microgreens

against prostate cancer target proteins.

Target proteins (PDB ID)

SN Compound DLL3 CTLA-4 CD27  AURKA N-Myc 5AR AR LSD1
CID: (4xmb.2)  (3osk.1) (Tkxo)  (4j8m)  (Sixo.l) (Tbwl) (313x)  (6kgm)

1 1049 6.2 7.2 9.1 6.1 6.2 -10.2 71 -10.2
2 17161 -6.8 8.2 -10.7 8.4 -6.7 -11.3 74 98

3 191964 -6.6 -5.8 -6.6 7.7 5.9 -8.5 79 85

4 5280435 6.5 6.1 7.9 7.1 6.1 8.0 6.7  -8.8

5 54725318 -47 5.1 5.6 6.7 4.0 7.7 6.1 7.1

6 637775 6.9 715 9.1 9.3 7.9 -10.7 85 9.8

7 638072 45 5.4 -7.0 6.6 4.0 -8.0 78 -7.8

8 64947 4.6 4.9 6.3 -6.1 -47 6.4 -6.1 -6.5

9 8372 -11.5 -10.5 -13.3 -14.5 -10.6 -15.8 149 -17.1
10 985 5.0 4.7 6.0 6.2 4.7 6.6 70 -6.8

4.9.1 Binding affinities of selected bioactive compounds (CID10494, CID17161, CID637775,
and CID8372) and FDA approved drugs (Flutamide) across target proteins

Molecular docking studies were performed to evaluate the binding affinities of four selected
bioactive compounds (CID8372, CID17161, CID637775, and CID10494) against eight key
prostate cancer target proteins, using Flutamide (CID3397), an FDA-approved drug, as the
reference standard (Ito & Sadar, 2018). According to Table 4.12, CID8372 (4,4’-methylenebis(2,6-

59



di-tert-butylphenol)) exhibited the strongest binding affinities ranging from —10.5 to —17.1
kcal/mol. It showed particularly high binding toward LSDI (—17.1 kcal/mol), AR (—14.9
kcal/mol), and 5AR (—15.8 kcal/mol), surpassing the binding affinity of flutamide (—10.5 kcal/mol)
as well as established AR and 5AR inhibitors such as enzalutamide and finasteride (Saah et al.,
2023; Rao et al., 2015). As shown in Table 4.13, CID17161 (2,5-di-tert-butyl-1,4-benzoquinone)
also demonstrated favorable binding affinities, with the highest affinity observed for SAR (—11.3
kcal/mol), higher than the flutamide and aligning closely with known AR inhibitors (Ito & Sadar,
2018; Saah et al., 2023). Table 4.14 presents CID637775 (Sinapinic acid), which revealed strong
interaction with SAR (—10.7 kcal/mol) and AR (—8.5 kcal/mol), indicating its potential as a
competitive inhibitor relative to finasteride and enzalutamide (Rao et al., 2015; Saah et al., 2023).
Lastly, Table 4.15 shows that CID10494 (Oleanolic acid) had binding affinities ranging from —6.2
to —10.2 kcal/mol, with notable values for SAR (—10.2 kcal/mol) and AR (=7.1 kcal/mol), which
are comparable to those of flutamide and traditional prostate cancer therapies (Ito & Sadar, 2018;
Rao et al., 2015). These findings highlight the promising multi-target potential of the selected
bioactive compounds, particularly CID8372 as effective natural alternatives or adjuncts in prostate

cancer treatment.

4.9.2 Half maximal inhibitory concentration (ICso) prediction (CID10494, CID17161,
CID637775, CID8372) and FDA approved drugs (Flutamide)

The ICso value prediction was done to quantitatively measure the concentration of compound
required to produce half maximum inhibition to a given biological process and is universally used
to symbolize the inhibitory effect of compounds (Cheng et al., 2023). The predicted ICso value for
the studied compound, 4,4’-M(2,6-DTBP) (CID8372), ranged from 0.0003 to 14.80 nM (Table
4.12). It demonstrated the strongest inhibitory potential against the LSD1 target with ICso value of
just 0.0003 nM, while exhibiting the weakest inhibition against the N-Myc target protein, with an
ICs0 of 14.80 nM. The predicted 1Cso value for the 2,5-DTBQ (CID17161), ranged from 0.005 to
12.49 uM (Table 4.13). It demonstrated the strongest inhibitory potential against the SAR target
with ICso value of 0.005 pM, while exhibiting the lowest possible inhibition against the N-Myc
target protein with an ICso of 12.49 uM. The predicted ICso value for the 3,5-dimethoxy-4-
hydroxycinnamic acid (CID637775), ranged from 0.015 to 9.813 uM (Table 4.14). It demonstrated
the highest inhibitory potential against the SAR target with an ICso value of just 0.015 uM, while
exhibiting the weakest inhibition against the DLL3 target protein with an ICso of 9.813 uM. The
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predicted ICso value for the oleanolic acid (CID637775) was in a range of 0.034 to 31.583 uM
(Table 4.15). It demonstrated the highest inhibitory potential against the SAR and LSDI1 targets
with an ICso of 0.034 uM, while exhibiting the lowest inhibition against AURKA target protein
with 31.583 uM. In comparison to the control FDA drug (flutamide), the 4,4’-M(2,6-DTBP) shows
the predicted I1Cso value higher than that of control FDA drugs whereas the 2,5-DTBQ, Sinapinic

acid, and oleanolic acid show ICso almost same/similar to that of standard drug.

4.9.3 Protein—ligand interactions of CID10494, CID17161, CID637775, CID8372 against
prostate cancer target proteins

Studying the mechanism of action through protein-ligand interactions is highly important. These
interactions involve different forces, which include electrostatic, hydrogen bonding, and
hydrophobic interactions. The positive results cannot be achieved from binding affinity alone
(Laskowski & Swindells, 2011). However, by considering the amino acid residues involved in the
protein-ligand interaction can support the docking results and enhance their overall credibility. The
results show that the amino acid residues favorably interact with the 4,4’-M(2,6-DTBP), 2,5-
DTBAQ, sinapinic acid, and oleanolic acid compounds at the target proteins' active sites in Tables
4.12, 4.13, 4.14 and 4.15 respectively. Hydrogen bonds and hydrophobic interactions show that
this ligand positively interacts with the binding site of the enzyme; this could possibly lead to
enzyme inhibition, which is necessary in drug design by targeting the specific receptor. The
protein-ligand interaction stabilized the ligand to perfectly fit into the binding pocket of the target
proteins. 3D representations of protein-ligand interactions are illustrated in Figures 4.14—4.21

(PLIP online server) (Rosario-Ferreira ef al., 2021; Dhiani ef al., 2022).
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Table 4.12: Binding affinities, ICso values, and interaction residues of 4,4’-M(2,6-DTBP) (CID8372) and FDA approved drugs

(Flutamide) across target proteins.

Protein CID8372 Flutamide CID8372 Flutamide CID8372-AA Residues
(kcal/mol)  (kcal/mol) ICso ICso H-bond Hydrophobic interactions
DLL3 (4xmb.2) -8.9 -6.8 306.60nM  10.555 uM GLUG681A, PRO682A, VAL684A, VALG6S5A,

HIS714A, VAL715A, TRP718A, LEU744A,
ALAT48A, ARG752A.

CTLA-4 (3o0sk.1) -10.5 -6.8 15.40 nM 10.555 uM  PRO282A LEUI39A, VALI147A, ALA160A, LEUI194A,
ALA213A, LEU263A, ALA281A.

AURKA (4j8m) -14.6 -8.4 0.021 nM 0.712 uM ARGI95B PHE199B, PHE202B, TYR220B.

LSD1 (6kgm) -17.1 -10.2 0.0003nM  0.034 pM TYRS1A PRO61A, GLU62A, TYRSIA, VALSSA,
GLN86A, THRE9B.

N-Mye (5G1X) -10.7 -1.5 14.80 nM 3.245 M ASP555A VAL333A, THR335A, PHES38A, LEUG659A,
TYR761A, ALAS09A, THRS810A.

5AR (7BW1) -15.8 9.4 0.0027nM  0.132 uM GLUS7A, ASN193A.  TYR33A, TRP53A, TYR98A, ASNI93A,
PHE194A, PHE216A, PHE223A, LEU224A.

AR (3L3X) -14.9 -10.5 0.012 nM 0.021 uM CLY150A, CYSI151A, LEU145C, PHE147A, HIS148B, THRI152AB,
THRI152A, ALA154C. ILE153A, ILE153C, ALA154B, ALA154C.

CD27 (7KX0) -13.3 -8.6 0.180 nM 0.508 uM LEUI2A LEUI2A, ALA86B, THR89B, ILE117B.
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Table 4.13: Binding affinities, ICso values, and interaction residues of 2,5-DTBQ (CID17161) and FDA approved drugs (Flutamide)

across target proteins

Protein CID17161 Flutamide CID17161 Flutamide CID17161-AA Residues
(kealimoh) — (keal/mol)  ICso ICs0 H-bond Hydrophobic interactions

DLL3 (4xmb.2) -6.8 -6.8 10.555 uM  10.555pM  ARGI195B PHEI191B, ARGI193B, PHE199B,
TYR220B.

CTLA-4 (30sk.1) -8.2 -6.8 0.862 uM 10.555uM LEUI12B VALI10B, ALA86A, THR89A, ILE117A.

AURKA (4j8m) -8.4 -8.4 0.712 uM 0712 uM = —--- ALA160A, LEU194A, LEU210A.

LSD1 (6kgm) -9.8 -10.2 0.112 uM 0.034 uyM =~ ——---- TYR761A, VALS11A.

N-Myc (5G1X) -6.7 -7.5 12490 yM  3.245uM  ARGI195B. PHEI191B, ARGI193B, PHE199B,
TYR220B.

5AR (7BW1) -11.3 -9.4 0.005 uM 0.132uM - TRPS3A, TYRO98A, PHE194A,

PHE223A, LEU224A.

AR (3L3X) -7.4 -10.5 3.823 yM  0.021 uM PHE764A. LEU701A, LEU704A, LEU707A,
MET749A, PHE764A.

CD27 (7KX0) -10.7 -8.6 0.015 pM 0.508 pM ALA154B LEU145C, ALA154B.
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Table 4.14: Binding affinities, ICso values, and interaction residues of sinapinic acid (CID637775) and FDA approved drugs (Flutamide)

across target proteins

Protein CID637775 Flutamide = CID637775 Flutamide CID637775-AA Residues
(kcal/mol) (kcal/mol)  ICso ICso H-bond Hydrophobic interactions

DLL3 (4xmb.2) -6.9 -6.8 9.813 uM 10.555 uM ARG195B, ALA198B, PHEI199B
ALA198B, THR222B

CTLA-4 (3o0sk.1) -1.5 -6.8 3.245 uM 10.555 uM THR89B, VAL116B, ASP118B, LEUI12A, ALA86B, ILE117B.
GLUI120B

AURKA (4j8m) 9.3 -8.4 0.197 uM 0.712 uM LYS162A, GLU181A, GLUI181A, PHE275A.
GLNI185A, ASP274A, PHE275A

LSD1 (6kgm) -9.8 -10.2 0.067 uM 0.034 uM LEU659A, TRP751A, ALA331A, TYR761A.
VALSI11A.

N-Mye (5G1X) -7.9 -1.5 2.982 uM 3.245 uM ARG195B, ALA198B, PHEI199B.
THR222B.

5AR (7BW1) -10.7 9.4 0.015 uM 0.132 uM TYR33A, ASN160A, ASN193A. TRP53A, LEU224A.

AR (3L3X) -8.5 -10.5 0.681 uM 0.021 pM GLY683A, ARG752A. PRO682A, VAL715A, ALAT48A,

LYS808A.
CD27 (7KX0) 9.1 -8.6 0219 uM 0508 uM e HIS148B, CYSI151A, THRI152B,

THR152C.
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Table 4.15: Binding affinities, ICso values, and interaction residues of oleanolic acid (CID10494) and FDA approved drugs
(Flutamide) across target proteins

Protein CID10494  Flutamide CID1049 Flutamide CID1049-AA Residues
(kcal/mol)
(keal/mol) — 1Cso ICs0 H-bond Hydrophobic interactions
DLL3 (4xmb.2) -6.2 -6.8 24812 uM  10.555 uM THR222B PHE199B, TYR220B.
CTLA-4 (30sk.1) -7.2 -6.8 4.617 uM 10.555 uM GLU120B LEUI2A, ILEI17A.
AURKA (4j8m) -6.1 -8.4 31.583 uM  0.712 uM ARG220A VAL147A,  ALAI160A, LEUI1%A,

TYP212A, THR217A, LEU263A.

LSD1 6kgm) -10.2 -10.2 0.034 uM 0.034 uM MET332A, VAL333A  ALA331A, THR335A, TYR761A,
THRS810A.

N-Myec (5G1X) -6.2 -7.5 24812 pM 3245pM = e PRO61A, TYR81A, GLN86B, GLN90B.

S5AR (7BW1) -10.2 9.4 0.034 uM 0.132 uM GLUS57A, ARGY94A, TRP53A, LEUILIA, ARGI114A,

ARGI114A. PHE118A, PHE216A, PHE219A,

PHE223A, LEU224A.

AR (3L3X) 7.1 -10.5 5251 uM  0.021 uM TRP751A GLU681A, PRO682A,  VALT7ISA,
TRP728A, LEU744A, MET745A,
ALA748A, ARG752A,  PHES04A,
LYSS08A.

CD27 (7KX0) 9.1 -8.6 0.219 uyM 0.508 uM HIS148B, GLY150B, LEU145A, LEU145B, THRI152C,
THR152B, SER155A  ILE153B, ALA154C.
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Figure 4.14: 3D Docking pose interactions of DLL3 with bioactive compounds viz; (A)
CID8372, (B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.15: 3D Docking pose interactions of CTLA-4 with bioactive compounds viz; (A)
CID8372, (B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.16: 3D Docking pose interactions of AURKA with bioactive compounds viz; (A)
CID8372, (B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.17: 3D Docking pose interactions of LSD1 with bioactive compounds viz; (A) CID8372,
(B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.18: 3D Docking pose interactions of N-Myc with bioactive compounds viz; (A)
CID8372, (B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.19: 3D Docking pose interactions of 5AR with bioactive compounds viz; (A) CID8372,
(B) CID10494, (C) CID17161, and (D) CID637771.
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Figure 4.20: 3D Docking pose interactions of AR with bioactive compounds viz; (A) CID8372,
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Figure 4.21: 3D Docking pose interactions of CD27 with bioactive compounds viz; (A) CID8372,
(B) CID10494, (C) CID17161, and (D) CID637771.
69



4.10 ADME/T properties prediction

ADMETIab 3.0 and ProTox-3.0 online tools were used to get the ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) properties. The ADMET parameters evaluated
for the 4,4’-M(2,6-DTBP), 2,5-DTBQ, sinapinic acid, and oleanolic acid were acute oral toxicity,
blood-brain barrier, carcinogenicity, nutritional toxicity, hepatotoxicity, nephrotoxicity,
neurotoxicity, cytochrome P450 inhibitors isoforms (CYP inhibitors), hepatotoxicity, human ether-
a-go-go-related gene inhibition (hERG), human intestinal absorption, human oral bioavailability,
and P-glycoprotein inhibitor (P-gpi) (Tables 4.16 and 4.17). The results indicate that the
compounds have strong oral bioavailability in humans, high gastrointestinal absorption, and good
blood-brain barrier permeation. Lipinski's rule of five and Veber's filter were used to study the
bioavailability of 4,4’-M(2,6-DTBP), 2,5-DTBQ, sinapinic acid, and oleanolic acid. According to
Lipinski's rule of five, compounds with an octanol/water partition coefficient (LogPo/w) of less
than five, a molecular weight (MW) of less than 500, H-bond acceptors (n-HBA) less than ten, and
less than five H-bond donors (n-HBD) were predicted to exhibit favorable bioavailability (Lipinski
et al., 1997). Additional parameters were expanded by the Veber rule to include topological polar
surface area with values of 79.89-109.35 (preferably TPSA <140 A2) and rotatable bonds
(preferably n-ROTB < 10) (Veber et al., 2002). The Egan rule considered good bioavailability for
compounds with (TPSA <132 A? and -1 < LogP < 6) (Srivastava et al., 2022). The studied
compound obeyed Lipinski’s rule of five as well as Veber’s filter and exhibited favorable

bioavailability.

According to the toxicity prediction study (Table 4.17), the 4,4’-M(2,6-DTBP), 2,5-DTBQ,
sinapinic acid, and oleanolic acid compounds were classified as class VI, V, IV and IV respectively,
and showed no acute oral toxicity. This suggests that these compounds have reduced the oral
toxicity and is not broken down in the gastrointestinal tract before reaching their target (Finch &
Pillans, 2014). Furthermore, these compounds are non-hepatotoxic, non-nutritional toxic, non-
nephrotoxic, non-neurotoxic, and an inhibitor of the hERG. In the case of metabolism, the
compounds are an inhibitor of most of the CYP450 isoforms, with the exception of CYP3A4,
CYP2D6, and CYP2EL. If a compound is a non-inhibitor of cytochrome P450, it will not hinder
the biotransformation and will remain longer in systemic circulation, which can lead to increased
drug potency and prolonged therapeutic effects (Cheng et al., 2012). ProTox-3.0 prediction tool

generated a toxicity radar chart that presents a visual summary of the 4,4’-M(2,6-DTBP)’s possible
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toxicity targets, including toxicity class, Ames toxicity, hepatotoxicity, neurotoxicity,
nephrotoxicity, oral rat acute toxicity (LDso), mutagenicity, carcinogenicity, and others in

comparison to the average for similar classes of chemicals.

Table 4.16: Drug-likeness, lipophilicity and physicochemical properties

Compound ID MW TPSA n-HBD n-HBA n-ROTB MRef LogP L.V V.V Pre. LDso

(g/mol (mg/kg)
CIDS8372 424.66 40.46 2 2 6 137.02 7.306 0 0 24,000
CID17161 220.31 34.14 0 2 2 66.23 4.131 0 0 2400
CID637775 224.21 75.99 2 5 4 58.12 1.68 0 0 1772
CID10494 456.7 57.53 2 3 1 136.65 7.23 0 0 2000

Note. [a] MW: molecular weight (<500, expressed as Dalton); [b] TPSA: Topological polar surface
area (A2 ); [c] n-HBD: number of hydrogen bond donors (<5); [d] n-HBA: number of hydrogen
bond acceptors (<10); [e] n-ROTB: number of rotatable bonds; [f] M Ref: molar refractivity (40—
230); [f] LogP: logarithm of partition coefficient (<5) of compound between n-octanol and water;

[g] LV: Lipinski’s violation; [h] V.V= Veber’s violation; [i] Pre. LD50: Predicted LD50.

Table 4.17: Toxicity prediction of CID8372, CID17161, CID637771 and CID10494 using

ProTox-3.0 online tool

Compound ID
Acute oral toxicity
Blood-Brain Barrier
Nutritional toxicity
Carcinogenicity
Hepatotoxicity
Nephrotoxicity
Neurotoxicity
GI- Absorption
Human Oral
Bioavailability
p-glycoprotein inhibitor
hERG inhibitor
CYP1A2-inhibitor
CYP2C19 inhibitor
CYP2(9 inhibitor
CYP2D6 inhibitor
CYP3A4 inhibitor
CYP2ET1 inhibitor

+
+
1
+
1
+
+
+
+
+
1

CID8372 Class VI

+
1

1
+
+

1

1

1
+

1

1

1

CID17161 Class V
CID637775 ClassIV  + - - - + - + - + + - - - - - _

CID10494 ClassIV  + + + + - - + - + - - - - - - -

Note. [a] + = active; [b] - = inactive
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4.11 UV-VIS quantification

4.11.1 Determination of A_max values and linearity

Table 4.18 presents the wavelength corresponding to maximum absorbance (A_max) of 4,4’-
M(2,6-DTBP) and 2,5-DTBQ in solvents of different polarity. The A_max values for 4,4’-M(2,6-
DTBP) in different solvents were as follows: 210 nm in hexane, 275 nm in ethyl acetate, 210 nm
in butanol, and 240 nm in water. For 2,5-DTBQ, the A_max values were 235 nm in hexane, 265
nm in ethyl acetate, 275 nm in butanol, and 310 nm in water. The different A max values across
various solvents indicated the possible solvent effects on the electronic structure of bioactive
compounds. The current findings of A_max agreed with that of Fihtengolts (1969), which shows
that 4,4°-M(2,6-DTBP) absorbed best at a wavelength of 270 nm. Table 4.19 presents the UV-
Visible spectroscopy linearity of standard bioactive compounds (4,4’-M(2,6-DTBP) and 2,5-
DTBQ) in different solvents. In order to calculate the correlation coefficient and regression
equation for the standard values of studied compounds, the UV calibration curves were plotted as

absorbance versus concentration, as illustrated in Figure 4.22.

Table 4.18: . _Max for 4,4’-M(2,6-DTBP) and 2,5-DTBQ in different solvents.

Standard compounds (5 pg/ml) A_max for 4,4’°-M(2,6-DTBP) A _max for 2,5-DTBQ (nm)
(nm)

Hexane 210 235

Ethyl acetate 275 265

Butanol 210 275

Distilled H,O 240 310
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Table 4.19: UV-Visible spectroscopy linearity of 4,4’-M(2,6-DTBP) and 2,5-DTBQ in different solvents

Conc. (ug/ml) Absorbance in Hexane = Absorbance in Ethyl acetate  Absorbance in Butanol Absorbance in water

4,4-M(2,6- 2,5-DTBQ 4,4-M(2,6- 2,5-DTBQ 4,4-M(2,6- 2,5-DTBQ 4,4-M(2,6- 2,5-DTBQ

DTBP) DTBP) DTBP) DTBP)

1 0.0802 0.0408 0.1276 0.0338 0.3188 0.0418 0.6188 0.0058
2 0.1024 0.0528 0.1585 0.0647 0.3979 0.0493 0.8979 0.0102
3 0.1175 0.0857 0.1874 0.0946 0.5574 0.0752 1.1574 0.0124
4 0.1351 0.1141 0.2134 0.1325 0.7102 0.1192 1.5102 0.0129
5 0.1572 0.1463 0.2518 0.1824 0.8533 0.1724 1.8533 0.0162
6 0.1858 0.1751 0.2757 0.1845 1.0351 0.1787 2.2351 0.0178
7 0.2104 0.2013 0.3033 0.2402 1213 0.2202 2.513 0.021
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Figure 4.22: UV-VIS linearity graph for 4,4’-M(2,6-DTBP) in (A) Hexane, (B) Ethyl acetate,
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4.11.2 Analysis of extract fractions

The MEFM was subjected to liquid-liquid partition using solvents of different polarities, viz.,
hexane, ethyl acetate, butanol, and water. This further extraction was done in order to determine
in which solvent the studied bioactive compounds “4,4’-M(2,6-DTBP) and 2,5-DTBQ” will be in
higher concentration. The absorbance of the test solutions, namely n-hexane, ethyl acetate, n-
butanol, and aqueous fractions, was measured at 210, 275, 210, and 240 nm for 4,4’-M(2,6-DTBP)
and at 235, 265, 275, and 310 nm for 2,5-DTBQ, respectively. The concentration of bioactive
compounds in these extract fractions was determined using the calibration curve method. As shown
in the Table 4.20, the concentrations of the phytocompounds. For 4,4’-M(2,6-DTBP) were found
to be 104.45+6.42, 49.25+2.90, 12.53+0.79, and 8.56+0.38 pg/ml in n-hexane, ethyl acetate, n-
butanol, and aqueous fractions, respectively. Similarly, the concentrations of 2,5-DTBQ in
different solvent fractions were found to be 156.36+2.47 pg/ml in-hexane, 130.63+1.65 pg/ml in
ethyl acetate, 9.04+1.21 pg/ml in n-butanol, and 6.344+0.61 pg/ml in aqueous. These findings
indicate that both compounds are hydrophobic in nature, as they exhibit higher concentrations in
nonpolar solvents and lower concentrations in polar solvents. This information is crucial for
selecting appropriate solvents for extraction and purification of those compounds from plant
sources. The UV-VIS absorption spectra of 4,4’-M(2,6-DTBP) and 2,5-DTBQ in different solvents

are presented in Figures 4.24 and 4.25, respectively.

Table 4.20: UV-Vis quantification of 4,4’-M(2,6-DTBP) and 2,5-DTBQ from MEFM in

different sub fraction

Methanolic Extract sub-fractions 4,4’-M(2,6-DTBP) 2,5-DTBQ

A_max (nm) Conc. (ng/ml) A_max (nm) Conc. (ng/ml)
Hexane fraction 210 104.4546.42"*" 235 156.36+2.47""
Ethyl acetate fraction 275 49.25+2.90™ 265 130.63+£1.65™
Butanol fraction 210 12.5340.79" 275 9.04+1.21"
Aqueous fraction 240 8.56+0.38" 310 6.3440.61"

Note: Values are expressed as Mean £ SD, n = 3. *p <0.05, **p <0.01, ***p <0.001
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Figure 4.24: (A) UV-Vis absorption spectra of 2,5-DTBQ at the same concentration in different
solvent fractions—(A) Hexane, (B) Ethyl acetate, (C) Butanol, and (D) Water
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Figure 4.25: (A) UV-Vis absorption spectra of 2,5-DTBQ at the same concentration in different
solvent fractions—(A) Hexane, (B) Ethyl acetate, (C) Butanol, and (D) Water
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4.12 HPTLC analysis

The optimum mobile phase development for the bioactive compounds separation were achieved
by using the solvent system of ethyl acetate: methanol: formic acid: water [20:2.5:0.5:2 (v/v)] as
shown in the HPTLC fingerprint (Figure 4.26). The HPTLC analysis of MEFM revealed the
presence of 4,4’-M(2,6-DTBP) and 2,5-DTBQ in a higher concentration. The chromatograms and
peak tables were generated by scanning at 515 nm for 4,4’-M(2,6-DTBP) and 254 nm for 2,5-
DTBQ. Figures (4.27 and 4.29) present the densitometry graphs, illustrating the isolation of 4,4’-
M(2,6-DTBP) and 2,5-DTBQ from MEFM, respectively. The HPTLC fingerprint revealed that
4,4’-M(2,6-DTBP) and 2,5-DTBQ were abundantly present in MEFM, with an area percentage of
100% (Table 21) and 73.90% (Table 22), respectively. Figures (4.28 and 4.30) display the 3D
and overlay of the chromatograms of all tracks, showing the detected bioactive compounds. The
Rf (retention factor) values, peak area, peak height, and percentage area of the compound are
depicted in (Tables 21 and 22). The specificity of the 4,4’-M(2,6-DTBP) and 2,5-DTBQ
compounds in the extract was confirmed by comparison between the extract's Rf values and those
of the standards, and the values were found to be similar. The clear separation of phytocompounds

from MEFM are shown by these results, which proved the specificity of the technique used.
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Table 4.21: HPTLC peak table of 4,4’-M(2,6-DTBP) and MEFM

Tract Peak Start Rf Start Height MaxRf Maxheight Max% End Rf End height Area  area% Assigned substance
1 1 0.72 11.0 0.76 446.3 100.00 0.80 0.40 14617.2 100.00 4,4'-M(2,6-DTBP)
2 1 0.72 23 0.78 196.5 100.00 0.80 12.3 7919.9 100.00 4,4'- M(2,6-DTBP)
Table 4.22: HPTLC peak table of 2,5-DTBQ and MEFM

Tract Peak Start Rf Start Height MaxRf  Maxheight Max % End Rf End height Area  area% Assigned substance
1 1 0.71 8.7 0.82 419.2 83.81 0.92 0.5 26719.2  95.15 2,5-DTBQ

2 1 0.72 28.3 0.82 251.3 35.33 0.93 1.1 22391.5  73.90 2,5-DTBQ
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Figure 4.26: HPTLC fingerprinting of (A) 4,4’-M(2,6-DTBP) and (B) 2,5-DTBQ from MEFM
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Figure 4.27: Densitometry graph showing isolation of 4,4’-M(2,6-DTBP) from MEFM
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Figure 4.28: (A) 3D Chromatogram of 4,4°-M(2,6-DTBP) from extract and standard. (B) Overlay
of HPTLC chromatogram of all tracks.
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Figure 4.29: Densitometry graph showing isolation of 2,5-DTBQ from MEFM
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Figure 4.30: (A) 3D Chromatogram of 2,5-DTBQ from extract and standard. (B) Overlay of
HPTLC chromatogram of all tracks.

4.13 In vitro Studies

4.13.1 Cell viability assay

A popular colorimetric method for determining cell viability and cytotoxicity is the MTT assay. It
works by assessing the metabolic activity of living cells, where mitochondrial dehydrogenases
reduce  MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into purple
formazan crystals. This reduction is primarily facilitated by mitochondrial dehydrogenase
enzymes, with succinate dehydrogenase playing a significant role. The intensity of the purple
color, measured spectrophotometrically at 570 nm, correlates with the number of viable cells
(Karatop et al., 2022; Kumar et al., 2023). The cytotoxicity effects of the MEFM, 2,5-DTBQ, 4,4°-
M(2,6-DTBP), and cisplatin (standard drug) against PC-3 were evaluated using the MTT assay
(Figure 4.31), and the ICso values were generated from dose-response curve studies. The MEFM
exhibits strong cytotoxic effect against cell lines, greater than the efficacy of the standard drug.
Among the identified bioactive compounds, 2,5-DTBQ and 4,4’-M(2,6-DTBP) both demonstrate
inhibitory effects on PC-3 cell lines. Notably, 2,5-DTBQ exhibits higher cytotoxicity compared to
4,4°-M(2,6-DTBP). However, the inhibitory activity of both compounds remains moderate when
compared to the standard drug cisplatin, which is commonly used in prostate cancer treatment.

The ICso values for the MEFM, 2,5-DTBQ, 4,4’-M(2,6-DTBP) and cisplatin were determined
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using nonlinear regression analysis in Microsoft Excel. The ICso values of MEFM, 2,5-DTBQ,
4,4°-M(2,6-DTBP), and cisplatin were recorded as 377.5 pg/mL (95% CI: 377.48-377.52 pg/mL;
R?=10.918), 875.4 pg/mL (95% CI: 831-919.23 pg/mL; R? = 0.9415), 2324.78 pg/mL (95% CIL:
2324.74-2324.82 pg/mL; R*=0.9742), and 273.97 pg/mL (95% CI: 273.94-274.00 png/mL; R* =
0.9908), respectively, as presented in Table 4.23. 4,4’-M(2,6-DTBP) and 2,5-DTBQ indicated
lower potency compared to MEFM and cisplatin. These results suggest that MEFM and cisplatin
exhibit a more potent anticancer effect due to their nonlinear sigmoidal response, while 2,5-DTBQ
and 4,4’-M(2,6-DTBP) follow a linear response, requiring higher concentrations to achieve
significant cytotoxicity. Even though 2,5-DTBQ and 4,4’-M(2,6-DTBP) show the high binding
energies of —11.3 and —17.1 kcal/mol, respectively, they exhibit weak cytotoxicity, which is
probably due to quick metabolism, low bioavailability, and poor cellular uptake. The reduced
effectiveness may result from efflux via drug transporters, poor apoptosis activation, and the
differences between in silico and in vitro conditions. The combination of the standard drug along
with those bioactive compounds will enhance cytotoxicity in PC-3 cell lines. Figure 4.32
illusterates that MEFM, 2,5-DTBQ, 4,4’-M(2,6-DTBP), and cisplatin induced cellular shrinkage
and caused morphological damages in PC-3 cell lines. According to Zhou et al. (2020), Linum
usitatissimum (flaxseed) significantly inhibits the proliferation and invasion of human prostate
cancer cells in vitro. This highlights its potential as a therapeutic or preventive agent against
prostate cancer. Mueed et al. (2023) reported that flaxseed lignans induced cell death and G0/G1
cell cycle arrest in human prostate PC-3 cancer cells by suppressing a key oncogenic signaling

pathway.
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Figure 4.31: MTT assay showing dose—response curves of PC-3 prostate cancer cells (3 x 10%)

incubated and exposed to varying concentrations of MEFM, 2,5-DTBQ, 4,4’-M(2,6-DTBP), and

Cisplatin (standard). Data are presented as mean + SD from three independent experiments.

Table 4.23: 1Cso and 95% CI values of cell proliferation inhibition of MEFM, 2,5-DTBQ, 4.,4’-

M(2,6-DTBP), and cisplatin

PC-3 Cell lines

ICso (ng/mL) 95% Confidence Interval (ng/mL
MEFM 377.5 377.48 —377.52
2,5-DTBQ 875.4 831.61 —919.23

44°-M(2,6-DTBP)  2324.78

Cisplatin 273.97

2324.74 — 2324.82

273.94 - 274.00
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MEFM (1000 pg/ml)

Fig. 4.32: Morphological changes in PC-3 cell lines after 24 h of treatment. (A) Untreated control,
(B) MEFM, (C) 2,5-DTBQ, (D) 4,4’-M(2,6-DTBP), and (E) Cisplatin. Treated groups show
reduced cell density and altered morphology compared to the control. Scale bar = 50 um; average

cell size ranges between 12-20 pm.

4.13.2 Annexin apoptotic assay

The annexin V apoptosis assay can identify and count apoptotic cells by recognizing
phosphatidylserine (PS) proteins that are exposed at the cell membrane surface through its
fluorescent labeling and flow cytometry measurements to differentiate live, early apoptotic, and
late apoptotic cells (Khalef et al., 2024). To understand the mode of action of the MEFM and its
bioactive compound, the annexin V apoptosis assay was performed. The apoptotic assay of the
untreated, MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) bioactive compounds is presented in Table
4.24. MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) exhibited a significantly increased total
apoptosis of 41.03, 26.83, and 22.86%, respectively, compared to untreated cell lines (3.92%). In

early apoptotic cells, the MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) demonstrated significantly
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higher cell death (40.9, 25.7, and 19.5%, respectively), whereas in late apoptotic cells, the cell
death was found to be 0.13, 1.13, and 3.36%, respectively (Table 4.24). Although these test
samples effectively induced cell death, their potency is lower compared to cisplatin, a standard
PC-3 cell line's apoptotic inducer (Huang et al., 2021). These results indicate that these
phytocompounds were effective in inducing cell death during the early apoptosis stage, but their
efficiency in destroying cells decreased during the late apoptosis stage. Analysis of cell apoptosis
in MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) after 24 h incubation in PC-3 cell lines is depicted
in Figure 4.33. The results clearly demonstrate that MEFM exhibited a significantly higher
apoptotic effect compared to the bioactive compounds. This enhanced effect may be attributed to

the diverse array of bioactive compounds present in MEFM derived from flax microgreens.

Table 4.24: Percentage of cells after MEFM, 2,5-DTBQ, and 4,4’-M(2,6-DTBP) treatment
(Annexin V Apoptosis Assay)

Sample Name Geometric mean fluorescence
% of Cells intensity (MFI) of AbFlour 488
Annexin V (FL1-A parameter)
Live Early Late Debris  Total
Apoptotic  Apoptotic apoptosis
Control (Untreated) 95.8 3.86 0.063 0.28 3.92 2002
MEFM 58.9 40.9 0.13 0.1 41.03 7934
2,5-DTBQ 71.2 25.7 1.13 1.99 26.83 5186
4,4’>-M(2,6-DTBP) 72.4 195 3.36 4.73 22.86 5620
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Figure 4.33: Annexin V Apoptosis Assay conducted on PC-3 cells under different treatment
conditions: (A) Untreated control, (B) MEFM-treated, (C) 2,5-DTBQ-treated, and (D) 4,4’-M(2,6-
DTBP)-treated cells

4.14 In vivo study

4.14.1 Acute toxicity

The acute toxicity test results of the methanolic extract of flax microgreens (MEFM) on wistar rats
showed no death or any toxicity sign in the rats at the highest dose of 5000 mg/kg. Thus, the lethal
dose of MEFM was found to be greater than 5000 mg/kg.

4.14.2 Effects of MEFM and its bioactive compounds on wistar rats body weight
The results from Table 4.25 indicate that prostate cancer (PC) induction significantly reduced the

body weight gain (BWG) in male wistar rats, as clearly seen in the disease control group

(BWG:16.37+1.64 g) compared to the normal control group (BWG: 46.19+2.78 g). The group
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treated with the standard drug (finasteride: 10 mg/kg) showed improvement in recovery from the
disease by increasing in body weight gain (BWG: 27.19+£2.67 g). Among the tested bioactive
compounds, 2,5-DTBQ (20 mg/kg) showed a significant higher effect (BWG: 19.72+1.73 g) than
4,4’-M(2,6-DTBP) (BWG: 23.68+8.25 g). The MEFM (200 mg/kg) exhibited significant recovery
with a BWG: 25.52+5.57 g; however, it had significantly lower BWG when compared with the
finasteride. This suggests that MEFM and its bioactive compounds may have therapeutic potential
in alleviating PC-induced weight loss, with MEFM showing the most promising results as
compared to its bioactive compounds. This is in agreement with the reports of Uroko et al. (2022)
and Joshi et al. (2023), who reported a reduction in body weight could be attributed to loss of

appetite because of discomfort caused by induction of PC.

Table 4.25: Effects of MEFM and its selected bioactive compounds on wistar rats body weight

Treatment IBW (g) FBW (g) BWG (g)
Normal control 185.90 £2.72 233.1542.57 46.19+2.78™
Disease control 188.80 £2.61 204.54+2.82 16.37+1.64
Finasteride (10 mg/kg) 200.95 +3.09 228.14+4.91 27.19+2.67"
4,4’-M(2,6-DTBP) (20 mg/kg) 204.58 +2.96 223.21+3.45 19.72+1.73"
2,5-DTBQ (20 mg/kg) 198.32 +5.28 221.04+3.70 23.68+8.25"
MEFM (200 mg/kg) 216.56 +3.12 242.08+5.34 25.52+5.57"

Note: Values are expressed as Mean £ SD, n = 5 per group. *p <0.05, **p <0.01, ***p <0.001 vs. Negative control

group

4.14.3 Effects of MEFM and its bioactive compounds on the prostate weight (PW)

The weight of the prostate glands in each group was compared with that of the normal group
(vehicle group). Rats' prostate weight was considerably higher after testosterone (5 mg/kg)
treatment than in the control group. The results presented in Table 4.26 illustrate the effects of
MEFM and its bioactive compounds on prostate weight (PW), Prostate Index (PI), percentage of
prostate growth inhibition, and ), percentage of prostate index inhibition in PC-induced wistar rats.
The results indicate that there is significantly increased prostate weight in the negative control
(1.76 g) compared to the normal control (0.79 g), confirming the prostate enlargement due to

cancer. The standard drug (finasteride: 10 mg/kg) reversed this enlargement effectively by
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reducing the prostate weight to 0.78 g with nearly complete inhibition (100.81%), which is almost
similar to normal control. It also significantly decreased the prostate index to 0.34%, with

inhibition percentages of 100.81% for prostate weight and 99.34% for the prostate index.

Among the test samples, MEFM (200 mg/kg) showed the highest effectiveness, closer to
finasteride, reducing prostate weight to 0.89 g and prostate index to 0.37%. The inhibition
percentages are 89.46% for prostate weight and 94.09% for the prostate index. 2,5-DTBQ (20
mg/kg) demonstrated stronger effects, reducing prostate weight to 0.96 g and prostate index to
0.44%, with inhibition rates of 81.86% and 81.2%, respectively. On the other hand, 4,4’-M(2,6-
DTBP) (20 mg/kg) showed moderate efficacy, reducing prostate weight to 1.17 g and the prostate
index to 0.52%, with inhibition rates of 60.73% and 64.62%, respectively. The observed increase
in prostate weight may be due to uncontrolled proliferation of cellular components within the
prostate tissue (Akbari et al., 2021). This observation aligns with Joshi et al. (2023), who identified
prostate weight increase as a significant biomarker of prostate cancer. Consequently, numerous
studies have evaluated the inhibitory effects of various substances on prostate cancer development

by measuring changes in prostate weight.

Table 4.26: Effects of MEFM and its selected bioactive compounds on prostate weight and relative

prostate weight

Treatment % of Prostate % of Prostate
Prostate weight Prostate Index  growth inhibition  Index Inhibition
(9) (%) (%) (%)

Normal control 0.794006™  eeeeee el

Negative control 176403 e

Finasteride (10 mg/kg) 0.78+0.09™" 0.34+0.03™" 100.81 99.34

4,4-M(2,6-DTBP) (20 mghkg) 1 7. 15~ 0.52+0.06™ 60.73 64.62

2,5-DTBQ (20 mg/kg) 0.96+0.10™ 0.44+0.05™ 81.86 81.2

MEFM (200 mg/kg) 0.89+0.13™ 0.37+0.06™ 89.46 94.09

Note: Values are expressed as Mean = SD, n =5 per group. *p <0.05, **p <0.01, ***p <0.001 vs. Negative control

group
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4.14.4 Effects on serum level of testosterone and prostate specific antigen (PSA).

Testosterone and prostate-specific antigen (PSA) levels are commonly evaluated in the context of
prostate disorders and are considered important markers for prostate cancer. Figure 4.34 shows
that the disease control group has significantly higher testosterone levels (28.9975 pg/mL)
compared to the normal control group (16.375 pg/mL). The group treated with the standard drug
(finasteride) effectively reduces the testosterone levels close to normal (16 pg/mL). Among the
tested compounds, 2,5-DTBQ and 4,4’-M(2,6-DTBP) demonstrated testosterone-lowering effects,
with mean concentrations of 16.223 pg/mL and 17.555 pg/mL, respectively, compared to
finasteride. MEFM showed a strong reduction to 14.504 pg/mL, which is significantly lower than
the normal control group. These findings suggested that MEFM and its bioactive compounds have
the potential to counteract disease-induced testosterone elevation, particularly MEFM which has

greater efficacy than the standard treatment.

The results presented in Figure 4.35 indicate a significant increase (P<0.05) in prostate-specific
antigen (PSA) levels in the disease control group (8.596 pg/mL) compared to the normal control
group (1.7 pg/mL). Finasteride treatment reduces PSA levels effectively to 1.6526 pg/mL, near-
normal levels. Similarly, the test compounds 4,4’-M(2,6-DTBP), 2,5-DTBQ, and MEFM lower
PSA levels to 1.5678, 1.65, and 1.5348 pg/mL, respectively. The results indicate all the tested
compounds exhibit PSA-lowering effects compared to finasteride, with the extract showing the
highest reduction. According to the findings of Abd-Alhussen et al. (2024), the oral administration
of flaxseeds ethanolic extract effectively decreased prostate gland weight, prostate index and
serum PSA levels in testosterone-induced benign prostatic hyperplasia. The lignan-rich flaxseed
hull extract dose-dependently prevented TP-induced prostate enlargement in rats, with higher
enterolactone levels correlating with extract dose, suggesting its potential in BPH prevention

(Bisson et al., 2019).
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Figure 4.34: Effect of MEFM and its bioactive compounds on serum testosterone level in
Testosterone-induced PC wistar rats. NC: Normal control, DC: Disease control, SDC: standard
drug control (Finasteride). n=5, Data are shown in triplicate as mean = SD. Mean values (bar
graphs), Standard deviation (vertical lines). Mean values (bar graphs), Standard deviation (vertical

lines). Asterisk (***) above the bars is statistically significance (P <0.001) compared to the

Disease Control (DC) group.
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Figure 4.35: Effect of MEFM and its bioactive compounds on Prostate Specific Antigen (PSA)
level in Testosterone-induced PC wistar rats. NC: Normal control, DC: Disease control, SDC:
standard drug control (Finasteride). n=5, Data are shown in triplicate as mean + SD. Mean values
(bar graphs), Standard deviation (vertical lines). Mean values (bar graphs), Standard deviation
(vertical lines). Asterisk (***) above the bars is statistically significance (P <0.001) compared to

the Disease Control (DC) group.

4.14.2 Histopathology results of prostate

The Figure 4.36 presents the histopathological evaluation of prostate tissues (magnification 40x%,
scale bar = 100 pum; 60x%, scale bar = 50 um), revealed significant differences across the
experimental groups. Normal control rats showed healthy and well-organized glandular structures
of the prostate, while the disease control group showed distinct abnormalities such as prostatic
intraepithelial neoplasia (PIN) architectural patterns characterized by the loss of basal epithelial
cells and disrupted tissue architecture, indicating prostate enlargement. Treatment with finasteride
substantially restored normal histology, showing closely resembling that of the normal group. A
reduced intraepithelial development, slightly elevated chromatin content, and better-retained
cytoplasmic content were all notable signs of the MEFM-treated group's partial recovery. The
groups treated with 2,5-DTBQ and 4,4’-M(2,6-DTBP) also showed improvement, though to a

lesser extent, with 2,5-DTBQ performing better than 4,4’-M(2,6-DTBP).
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Figure 4.36: Prostate tissue histopathological analysis: (A) Normal control group, (B) Disease
control group, and treatment groups: (C) Standard drug control (Finasteride: 10 mg/kg), (D) 4,4’-

M(2,6-DTBP) (20 mg/kg), (E) 2,5-DTBQ (20 mg/kg), and (F) MEFM (200 mg/kg) for 21 days.
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CHAPTER FIVE

5.0 Summary, conclusion and recommendations

5.1 Summary

Prostate cancer's significant impact on men's health, ranking as the deadliest cancer after skin
cancer, underscores the importance of exploring potential treatments and preventive measures.
Almost two-thirds of the cancers diagnosed among men are prostate cancer. As of the 2018 SEER
Cancer Statistics Review, the prevalence rate is nearly 60% in men over 65 years. While the lignans
and polyphenols in flaxseeds have shown promising potential in preventing and treating various
types of cancers, there appears to be a lack of studies investigating the potential effects of flax
microgreens specifically on prostate cancer. Previous literature proved that the flax microgreens
have a high concentration of phenolic compounds, superior proteins and free amino acids, and a
good fatty acid composition, making them an important plant source of components that are
beneficial to health, but no research has been shown the anti-cancerous effects of flax microgreens
and its bioactive compounds against prostate cancer. Therefore, this study addresses that gap by
evaluating the therapeutic potential of flax microgreens and their bioactive compounds using a
multi-faceted approach including Gas Chromatography-Mass Spectrometry (GC-MS), UV-visible
spectroscopy, High Performance Thin Layer Chromatography (HPTLC), and both in silico, in

vitro, and in vivo models.

Qualitative phytochemical screening of the methanolic extract of flax microgreens (MEFM)
revealed a broad spectrum of bioactive compounds, including alkaloids, saponins, flavonoids,
steroids, phenolics, and others, although tannins, terpenoids, and emodins were absent. The extract
demonstrated robust antioxidant activity in a dose-dependent manner, with DPPH radical
scavenging reaching 84.2% at 1000 pg/mL. It also showed considerable metal-chelating and

reducing power capabilities.

GC-MS analysis identified 60 distinct phytochemicals in the extract. These compounds were
subsequently evaluated through molecular docking against eight prostate cancer-related protein
targets (AURKA, DLL3, N-Myc, CTLA-4, 5AR, AR, LSDI, and CD27). Among bioactive
compounds, 4,4’-M(2,6-DTBP) demonstrated the highest binding affinity across all protein

targets, followed closely by 2,5-DTBQ and they were selected for further studies. These two best
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active compounds were further identified and characterized using UV-Vis and HPTLC methods.
Both were most concentrated in non-polar fractions, with hexane extracts showing the highest
levels. HPTLC analysis confirmed their presence, with 4,4’-M(2,6-DTBP) and 2,5-DTBQ

accounting for 100% and 73.9% of the compound areas, respectively.

In vitro cytotoxicity testing against PC-3 prostate cancer cell lines showed that MEFM had greater
anticancer activity than the standard drug, cisplatin. Among the identified compounds, 2,5-DTBQ
exhibited stronger activity than 4,4’-M(2,6-DTBP), although both were less potent than cisplatin
overall. The ICso values further reflected this trend: MEFM (377.5 pg/mL), 2,5-DTBQ (875.4
pg/mL), 4,4’-M(2,6-DTBP) (2324.78 pg/mL), and cisplatin (273.97 pg/mL). The discrepancy
between docking and in vitro results may be attributed to differences in bioavailability, metabolic
stability, and cellular uptake. Apoptosis assays confirmed that MEFM and the identified
compounds induced significant cell death compared to controls, though their potency was still
lower than cisplatin. MEFM induced 41.03% apoptosis, while 2,5-DTBQ and 4,4’-M(2,6-DTBP)
induced 26.83% and 22.86%, respectively. The early apoptosis phase accounted for the majority
of cell death in all treated groups.

In vivo study, acute toxicity testing showed no toxicity for MEFM at a dose of 5000 mg/kg.
Therapeuticallyy, MEFM and its major compounds significantly mitigated prostate cancer signs
symptoms in rat models. MEFM showed the most distinct protective effects by reducing the
prostate weight and prostate index by over 89% and 94%, respectively, results comparable to those
achieved by finasteride, the standard treatment. 2,5-DTBQ also performed well, while 4,4’-M(2,6-
DTBP) had a moderate effect. Histopathological analysis supported these findings. MEFM-treated
wistar rats showed considerable tissue recovery, with more normalized glandular structures and
reduced signs of neoplasia. While both selected compounds improved histological profiles, 2,5-
DTBQ again showed greater efficacy than 4,4’-M(2,6-DTBP). The assessment of the anticancer
efficacy of the methanolic extract of flax microgreens and its selected bioactive compounds may
serve as one of the potential solutions to the current issue of prostate cancer, aligning with the
United Nations Sustainable Development Goals (UNSDGs) 3, 9, 12, and 15 which focus on plant-
based cancer therapy, development and scientific innovation, promoting sustainable production of
nutraceuticals and ecological significance of medicinal plants. Figure 5.1 illustrates the summary

of the thesis workflow and findings.
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5.2 Conclusion

This study provides compelling evidence supporting the therapeutic potential of flax microgreens,
specifically their methanolic extract (MEFM), as a novel, plant-based candidate for prostate cancer
(PC) prevention and treatment. Given the global burden of prostate cancer as one of the most
prevalent and deadliest malignancies among men, especially in aging populations, the urgent
demand for alternative and complementary therapies remains unfulfilled. This work explores a
comprehensive approach by integrating phytochemical analysis, in silico modeling, and both in
vitro and in vivo validations to investigate the efficacy of MEFM and its key bioactive constituents

as shown in figure 5.2.

Phytochemical screening revealed that MEFM is rich in diverse classes of bioactive compounds,
including flavonoids, phenolics, saponins, and alkaloids, many of which are known for their
antioxidant and anticancer properties. Antioxidant assays confirmed that MEFM possesses robust
free radical scavenging, metal-chelating, and reducing capabilities, highlighting its potential to

reduce oxidative stress, a known contributor to carcinogenesis.

Through Gas Chromatography-Mass Spectrometry (GC-MS), 60 distinct phytochemicals were
identified, among which 4,4’-M(2,6-DTBP) and 2,5-DTBQ emerged as prominent candidates
based on their abundance and strong binding affinities to key prostate cancer targets. Molecular
docking studies against eight prostate cancer-related proteins revealed strong interactions,
particularly for 4,4’-M(2,6-DTBP), highlighting its multi-targeted potential. /n silico ADME/T

analysis also predicted favorable pharmacokinetic and safety profiles for these compounds.

UV-Vis and HPTLC analyses confirmed the presence and abundance of these two bioactive
compounds in MEFM, particularly in non-polar solvent fractions. Despite their strong in silico
binding affinities, in vitro cytotoxicity studies using PC-3 prostate cancer cell lines demonstrated
that the whole MEFM exhibited greater cytotoxic potential (ICso = 377.5 pg/mL) than the isolated
compounds 2,5-DTBQ (ICso = 875.4 pg/mL) and 4,4’-M(2,6-DTBP) (ICso = 2324.78 pug/mL).
Apoptotic assays validated these findings, showing significantly higher early apoptosis induction

by MEFM compared to its individual components. These outcomes recommend that the higher
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efficacy of MEFM may be attributed to synergistic interactions among its multiple

phytochemicals, enhancing its biological activity.

In vivo studies further confirmed MEFM's therapeutic promise. Acute toxicity testing revealed
that MEFM is well-tolerated at doses up to 5000 mg/kg, confirming its safety profile. In the context
of prostate cancer mode, MEFM effectively prevented weight loss and significantly reduced
prostate weight and index to levels nearly equivalent to finasteride, the standard clinical drug. Also,
histopathological evaluations showed that MEFM treatment helped restore prostate glandular
architecture and cellular integrity, indicating real biological recovery. While 2,5-DTBQ and 4,4°-
M(2,6-DTBP) also demonstrated therapeutic effects, they were consistently less effective than the

full extract.

From the result obtained, it can be concluded that, MEFM shows strong potential as a safe, multi-
targeted, plant-derived candidate for prostate cancer prevention and treatment. Its higher
effectiveness compared to isolated bioactive compounds supports the hypothesis of synergism
among the various phytochemicals present in the whole extract, enhancing its overall therapeutic

impact.
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5.3 Recommendations

Based on the findings presented in this study, the following recommendations were raised:
1. Pharmacokinetics and bioavailability studies:

Despite promising in silico and in vitro results, the relatively moderate cytotoxicity of 2,5-
DTBQ and 4,4’-M(2,6-DTBP) in vitro suggests a need for deeper investigation into their
pharmacokinetics. Future studies should focus on evaluating their absorption, distribution,
metabolism, and excretion (ADME) profiles in vivo to understand their bioavailability and

systemic behavior.
2. Formulation and delivery optimization:

To overcome limitations such as poor cellular uptake or rapid metabolism, advanced drug
delivery systems (e.g., nano-formulations, liposomes, or polymer-based carriers) should be
explored to enhance the bioavailability and therapeutic efficacy of MEFM and its bioactive

compounds.
3. Mechanistic pathway analysis:

While apoptosis assays confirmed the cytotoxic nature of MEFM and its compounds, further
molecular studies are needed to elucidate the exact pathways involved in inducing apoptosis
(e.g., caspase activation, mitochondrial membrane potential disruption, or ROS-mediated

pathways).
4. Long-term in vivo efficacy and safety trials:

Conduct extended in vivo studies to assess long-term safety, organ-specific toxicity, and
sustained efficacy of MEFM in different prostate cancer models, including hormone-

independent or metastatic PC models.
5. Clinical translation and human trials:

Given the extract’s favorable safety profile, future research should move toward preclinical
and clinical trial phases. Pilot human studies would help assess tolerability, optimal dosing,

and therapeutic potential in patients at different stages of prostate cancer.
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6. Target validation and CRISPR-based studies:

Molecular docking indicated strong interactions with key prostate cancer targets. CRISPR or
siRNA gene-silencing techniques can be employed to validate these targets in cellular systems,

confirming the biological relevance of MEFM—protein interactions.
7. Metabolomics and proteomics approaches:

Incorporating omics technologies will allow comprehensive profiling of metabolic and
proteomic changes induced by MEFM treatment, providing a systems-level understanding of

its mode of action and identifying potential biomarkers for therapeutic response.

8. Future studies should employ complementary assays such as scratch wound, LDH
membrane-leak, ROS measurement, and marker expression to provide deeper mechanistic
insights and strengthen the translational relevance of MEFM and its bioactive compounds

in prostate cancer therapy.
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APPENDICES

Appendix-I
Molecular docking result of flax microgreens bioactive compounds against prostate cancer target proteins.

Target proteins (PDB ID)

SN Compound DLL3 CTLA-4 CD27 AURKA  N-Myc 5AR AR LSD1
CID: (4xmb.2) (Bosk.l) = (Tkxo) = (4j8m) (5ixo.1) (Tbwl)  (313x)  (6kgm)
1 534410 5.0 5.7 7.3 -8.0 6.5 -8.3 8.3 8.7
2 7976 3.0 3.0 4.1 43 3.3 4.0 45 45
3 111244 3.0 3.5 45 48 3.6 49 5.6 5.1
4 10413 32 3.0 4.0 42 3.5 42 45 45
5 7938 32 34 4.8 47 37 45 4.9 -5.0
6 7974 2.8 3.1 3.8 5.4 3.5 44 4.0 4.7
7 137584 2.9 3.3 4.1 -49 3.5 -48 5.6 -5.0
8 18372057 3.1 3.7 4.7 5.1 -4.1 5.1 5.7 -5.0
9 558410 32 3.5 45 4.6 39 5.0 6.1 5.4
10 5364729 32 3.5 45 49 39 5.0 5.4 5.3
11 119838 3.9 3.9 5.5 52 -4.0 5.6 -8.1 5.8
12 5367771 33 3.5 4.8 44 4.0 54 -6.1 5.5
13 332 3.8 45 5.2 5.5 4.6 6.2 6.2 6.4
14 83742 3.6 3.5 4.8 43 3.7 49 5.6 5.4
15 5988 -5.4 49 7.9 5.4 44 72 7.1 -6.9
16 91737510 4.1 3.7 6.5 -6.1 52 5.3 6.9 -8.1
17~ 5373219 42 48 5.9 5.8 49 6.6 6.0 7.0
18 530729 3.9 49 6.6 -6.1 5.1 -8.0 6.7 7.5
19 7311 43 5.1 -6.6 -6.1 5.1 77 6.6 7.1
20 267716 5.5 5.3 6.3 6.5 5.3 7.8 7.6 -8.0
21 35960 4.1 43 5.6 5.2 43 5.9 5.6 6.3
22 545303 5.0 5.7 7.8 6.5 5.1 8.2 3.6 8.2
23 91719722 4.1 5.1 6.2 5.9 49 7.7 6.7 7.1
24 3026 4.1 4.6 -6.4 6.4 4.8 7.0 6.2 72
25 96009 3.9 4.0 5.3 5.5 4.4 5.7 6.4 6.2
26 91691499 4.4 4.6 5.7 6.6 5.2 6.4 6.2 6.8
27 985 5.0 47 -6.0 6.2 47 6.6 7.0 -6.8
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28
29
30
31
32
33
34
35
36
37
38
39
40
1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7427
17161
64947

54725318
54018957
637775
101715
5281
9546746
5280435
5280450
5280934
521846
532617
11747713
10494
547838

6230
42956

8343

191964

8089
11008

8372

589198
22932
91735525
117981
638072
181087
11002708
290541
91691425

5.9
-6.8
4.6
4.7
43
6.9
4.4
43
42
6.5
3.5
32
2.6
42
4.8
-6.2
3.9
5.2
3.3
5.1
6.6
3.9
3.0
115
45
5.0
3.8
5.4
4.5
5.3
-5.8
4.4

5.2
8.2
49
5.1
4.7
7.5
4.5
4.4
4.6
6.1
47
4.6
3.6
5.4
5.8
7.2
4.1
6.6
42
6.1
5.8
5.3
3.9
-10.5
4.5
5.4
49
5.7
5.4
7.0
6.7
6.7

-8.1
-10.7
-6.3
-5.6
-5.7
9.1
-5.7
-5.6
-4.9
-7.9
-6.3
-6.1
-2.0
-5.0
-7.6
9.1
-5.2
-7.0
-5.5
-7.0
-6.6
-6.7
-6.0
-13.3
-5.8
-6.6
-6.5
-5.9
-7.0
-9.5
-7.6
-2.8
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5.6
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8.5
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5.9
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-10.6

4.5
6.0
5.2
5.9
4.0
6.6
6.4
6.0

77
-11.3
-6.4
77
6.4
-10.7
-5.8
-6.6
-8.0
-8.0
-6.8
74
7.3
7.6
-8.0
-10.2
6.0
-10.7
-6.6
-8.8
8.5
-8.0
6.5
-15.8
6.7
-8.1
7.1
-8.7
-8.0
-10.2
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6.4

5.8
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-6.1
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6.5
7.6
6.7
-6.6
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4.7
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6.9
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6.1
8.9
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7.7
6.2
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-6.8
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-7.5
-6.2

-6.6
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-6.5
-7.1
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-17.1
-7.3
9.1
-1.5
-8.6
-7.8
-10.2
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Ome of the most common types of cancer 1s prostate cancer (PCa) and its prevalence rate is incregsing in old men of
~T70 years. In pharmacotherapy, nanral compounds and their souctural analozs have been nsed for cancer reatment.
Several smdies have demonstrated the therapeufic potential of Limum usitgissimum, commonly knoamn as flax, in
treating varous cancers. However, the specific mechanisme by which flax-derived compounds act on PCa remain
unclear. This smdy sims fo fill this gap by idenfifying and evalusting the bioactve compounds n fax microgTesns.
The GCMS analysis was camied o using a Shimadm (GCMS-TQB040 NX). The instnument fenperaiume was
z2t from 50°C up to 300°C for 37 mmutﬁhng;\'\ealﬁlﬂﬂ‘nwmlpeakm The moleqular docking smdies were
cammiad out wsing AuteDock tools 4.2 vemion software. The ADMET properties were predicted and snslyzed
using SWISSADME online (hitpc/waww swissadme ch’) and ProTox-3.0 online (hitps://oor charite de proboss/
index php7site) prediction tools. GC-MS analysis idenufied 58 phytocompounds in the methanolic exiracts of flax
microgreens. Among these, CIDI1002708 and CID20054] exhibited the highest binding affinities to PCa target
proteins. The ADMEST remlt shows the compomnids have low toicity snd specific metabolic chamsctenistics. Taking
into acconnt, the results of molemalar dockine snd ADMET evaliaton, it can be concluded that CIDI 1002708 and
CID29054]1 hold promise as novel inhibitors for the treament of PCa. The curent results can further be validated
vig in vitro and i vive stodies.
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HPTLC QUANTIFICATION OF 4,4'-METHYLENESIZ(2,6-DI-TERT-BUTYLPHENOL) IN FLAX MICROGREEN EXTRACTS AND ITS ANTICANCER POTENTIALAGAINST PROSTAT...
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ABSTRACT

Objective: This research aimed to evaluate the antioxidant activity of methanolic extract of flax microgreens (MEFM), to identify and
quantify 4.4'-Methylenebis (2,6-Di-tert-butyiphenol) [4.4-M{2.6-DTEP)] using GC-ME and HPTLC, and assess its inhibitory activity
apainst prostate cancar.

Methods: fn vitro anfioxidant actvity was determined by 2,2-Diphenyl-2-picryl-hydrazyl (DFPH) scawenging activity. 4.4'-M{2.6-
DTBP) was identified and quantified by Gas Chromatography-Mass Spectrometry (GC-MS) and High Performance Thin Layer
Chromatography (HFTLC) analysis. The docking simulation had been camied out in PyRx 0.8 sofiware. Towicity studies were
performed using ADMETIab 3.0 and ProTox 3.0 prediction tools, respectively. The cylotoxic effects and induction of apopiofic cell
death by MEFM and 44-MZ6-DTBP) on PC-3 cell Enes were assessed by MTT{3-{4 5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) and annexin ' apoplosis assays, respectively.

Results: The HPFTLC fingerprint confirmed the presence of 4,.4-M(2,6-DTBP) in the MEFM and indicated its existence in high
content. 4,4-M{2.8-DTBP) exhibited the highest binding energies (-17.1 keal/mol) and favorable interactions agaimst prostate cancer
target protens. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) and tozicity prediction studies revealed
that this 4 4*-M{2,8-DTBF) compound had low toxicity and distinct metabolic properties. The MEFM showed strong growth inhibition
against PC-3 (ICg;: 377.5 pgiml). whereas 4,4-M(2,8-DTBF) exhibited weak growth inhibition {ICgy: 2324.78 pg'mi). The annexin V
assay revealed that the MEFM and 4.4'-M|2,6-DTBP) significantly increased total apoptosis to 41.03% and 22.86%, respectively. in
early apoptofic cells, the MEFM and 4,4-M{2,8-DTBF) caused 40.8% and 18.5% cell death, while in late apoptotic celis, cell death
was found to be 0.13% and 3.36%, respectvely.

Conclusion: The exiract and its binacte o d ate anticancer potential, but in vive studies are required to further

L3

evaluate efficacy, metabolism, and toxicity m a living system.
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DEPARTMENT OF PLANT SCp:NCE AND BIOTECHNOLOGY

NO: F (VOUCHER-SPECIMEN-KSUSTA/psp11/VOUCHER NO: 657) DATE: 2-7-2024

VOUCHER-SPECIMEN & IDENTIFICATION CERTIFICATE
This is to certify that Dr. Gurmeen Rakhra, 3 yculty in the department of Biochemistry, School
of Pioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144001,
India submitted the specimen in our PBS herparium Kebbi State University of Science and
Technology Aliero. The specimen has been identified by undersigned on the basis of

morphological characters. The following voucher specimen was issued below:

S/N | species names Family | Date of Locality Voucher specimen
collection number

01. | Linum usitatissimum | Linaceae | 14/11/2023 | Hi-Tech Polyhouse, | KSUSTA/PSB/H/Voucher
Lovely Professional | No: 657

University (LPU)
Phagwara, Punjab-
India

Prof. Dharmendra St
HOD
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