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Abstract

Leonardo of Pisa's extraordinary investigation into the Fibonacci numbers, one of
God's best-gifted numbers, revealed how important they are to our daily life. Fibonacci
numbers are a result of Leonardo of Pisa's famous Rabbit problem, which we will cover in
more detail in the next chapters of this thesis. These numbers play an important role in our
daily lives, but they also have a wide range of applications in things like music, nature, and
other fields that are difficult to describe.

In Chapter 1, the entire thesis is centered on the idea of the stunning, divinely
Coupled Fibonacci and Lucas sequence. This thesis is composed of six chapters.The
Fibonacci numbers that make up history are discussed in general terms in the first chapter,
along with some of the fields in which they are used. Additionally, we quickly review a few
definitions and well-known outcomes of the Fibonacci numbers, which meet the minimal
requirement for the succeeding chapters. Basic definitions of first, second, third, fourth,
and fifth orders of the Multiplicative Coupled Fibonacci series as well as first, second, third,
and fourth orders of the Multiplicative Triple Fibonacci sequence are discussed. This chapter
also has a part on the literature review that highlights the study on connected Fibonacci
sequences that has been done by various researchers. The review has indicated the area for
additional investigation. The goals and methods to close these gaps have also been described
in this chapter.

The subsequent chapters make an effort to explore the behavior and many
characteristics of the coupled Lucas sequence and the multiplicative coupled and triple
Fibonacci sequence. In this thesis, we focus primarily on triple and multiplicative coupled
Fibonacci sequences. We also establish the Generalized Coupled Lucas sequence's
determinantal identities. We use a variety of approaches to accomplish our goal.

Chapter 2 discusses the fifth order of Multiplicative coupled Fibonacci sequence and
the results on some special Schemes under fifth order.

We worked on the Scheme

X o5 =¥ 10 ¥ 23 ¥ 0¥ L ¥ >0

¥ o5 =KX X 3. X a0 X 41X >0
We have discovered certain identities through research into the various orders of the
multiplicative coupled Fibonacci sequence, and we are currently applying mathematical
induction and combinatorics to solve the theorems.

In Chapter 3, we have discovered the titan of a triple sequence of the first, second,
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and third orders, and we have suggested various identities as a result.

We worked on the below scheme under 2™ order MTFS

First scheme

3" order of MTFS

First scheme

Koz = ¥ 40,2 41.X
¥ 3= 2 0. X 41 ¥
Z 3= X 42.¥ 1.2

Fourth scheme

X 3= X 0¥ 1.2
¥ 3= ¥ 0.2 41X
Z ;3= Z 40.X 1. ¥

Second scheme

Second scheme

X 3= X102 41 ¥
¥ 3= ¥ 0. X 1.2
Z 3= Z 42 ¥ 41X

Fifth scheme

Xi3=¥ 10X 1.2
¥ 3= 2 0. ¥ 41X
Z ;3= X 40.2 1. ¥

Third scheme

Xip=2 2
¥ jo0= X 41 %
Z =¥ . ¥

Third scheme

X 43=2Z 2% 41X
¥ ;3= X 0.2 1. ¥
Z 3= ¥ X 1.2

In chapter 4, we explored the fourth-order triple sequence and proposed several

related identities.

4th order of MTFS

First scheme

RKiag =K 13X 4. X 4. X
¥ =¥ 3.¥ 0. ¥ 1. ¥
Z i 4=2 3.2 422 1.2

Fourth scheme

X 43 ¥ 102 41X
¥ 132 2. X 41 ¥
Z 4= Z 13.% 0. ¥ 1.2

x+4:

¥+4:

Seventh scheme
x +4 =

¥+4:

x +3.Z +2.¥ +1.X
¥ +3.X +2.Z +1.¥

Second scheme
Xaia=¥ 13 ¥ ¥ ¥
Y =2 3.2 122 41.2
Z 4= X 43.X 40. X 41X

Fifth scheme
XKia=Z 13X 42.¥ 1.2
¥ 44= X 43 ¥ 2.2 41X
Z u= ¥ aZ g X oy ¥

Eighth scheme
¥ +3. x +2- Z +1- ¥
Z +3: ¥ +2: x +1- Z

x+4:

¥+4:

Third scheme

X +4 = Z +3.Z +2.Z +1.Z
¥ +4 - x +3.X +2.x +1.x
Z +4 = ¥ +3.¥ +2.¥ +1.¥

Sixth scheme
XKia=¥ 3.2 42K 1. ¥
¥ 4= 2 3. X 0¥ 1.2
Z i = K aa ¥ a2 oy X

Ninth scheme
x +4 = Z +3. ¥ +2. x +1- Z
¥ +4 = x +3: Z +2: ¥ +1- x



Z+4:Z+3.¥ +2.X +1.Z Z+4:x+3.z +2.¥ +1.X Z+4:¥ +3.x +2.Z +1.¥

Through our research on different orders of the multiplicative triple Fibonacci sequence, we
identified several identities and are now using mathematical induction and combinatorics to

prove the theorems.

Chapter 5 discusses Coupled Lucas Sequence of Second order and Fibonacci Lucas
Sequence’s Determinantal Identities. We defined 2-L Sequences as coupled order recurrence

relations for Lucas numbers and Lucas sequences.

+2=Mat2y, =20

Mi= at2 , =0

0=a& 1=bMo=cM;=d
The Lucas sequence is also thought to have a similar perception. The recurrence relation
confirms that the Lucas sequence is genuine.

L =L _;+L 5, =2andlyg=2L;=1
We use recurrence to illustrate the Generalized Fibonacci sequence {B }°_ in this area:

B =B _;+B _,, =2andBy=2b,B; =s
b and s must both be non-negative integers.
One of the key components of number theory, recurrence relations draw attention from
researchers not just in Mathematics but also in other disciplines such as physics, economics,
and a wide range of computer science applications. There are many different forms of
recurrence relations sequences in higher Mathematics. The Fibonacci sequence of numbers,
the Lucas numbers, the Chebyshev polynomial sequences, and the Pell numbers are some
unique sorts of recurrence formula sequence with outlined in simple terms.According to
renowned theorist Carl Friedrich Gauss, number theory is the queen of mathematical studies,
and Mathematics as a field of study and a branch of science is the queen of all science.
Studying numerology is based on looking at integer and rational number features that go
beyond simple mathematical operations. Relationships between recurring subjects are used in
both Mathematics and Economics. The convergence of the series of recurrences is

significantly impacted by the recovery coefficient.
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Chapter - 1

General Introduction

1.1 Introduction

In the past, figures and numbers were the two things that sparked people's curiosity.
Numerous mathematicians have been drawn to the field of number theory over the years
because of its clarity, intellectual rigour, and beauty of presentation. Since the beginning of
time, the study of number sequences has drawn the attention of numerous number theorists.
Many ideas have uses in various Mathematical fields in the world of Mathematics. If these
essential notions were missing, the various subfields of Mathematics would all appear
disjointed and unrelated to the topics covered in other areas of Mathematics. An individual by
the name of Leonardo Pisano made one of these findings back in the early part of the 13th
century. According to O'Connor and Robertson [1], Leonardo Pisano was born into a family
of merchants in the year 1175 A.D. in the city of Pisa, which is located in Italy. He is better
known by the name Fibonacci, which was given to him. His father, Guglielmo Bonacci,
was an ambassador, and he received the most of his education outside of Italy while he was
stationed in North Africa. It is believed that Fibonacci's father served as a representative for
the Pisan merchants in the city of Bugia, which is located in the northwestern region of
Algeria on the Mediterranean coast. During his time in Bugia, Fibonacci acquired his formal
education in the field of Mathematics. During his teenage years, Fibonacci spent a lot of time
in the Mediterranean with his father, which broadened his worldview and increased his
appreciation for the region's many diverse civilizations. The journeys that Fibonacci took
around the Mediterranean fueled his passion for Mathematics by exposing him to innovative
mathematical ideas and concepts that were prevalent in a number of different countries. In the
Middle Ages, a renowned mathematician was Leonardo of Pisa (1170-1250), also known as
Fibonacci. Fibonacci is best known for his "Fibonacci numbers," which bear his name.
Fibonacci's exposure to the earliest works of algebra, arithmetic, and geometry occurred
during his frequent trips to North Africa. He also visited Mediterranean nations and

researched the mathematical practices that were being used there.

Mathematicians have long been fascinated by the Fibonacci sequence (FS). The FS is
the name given to this particular idea in modern times. The FS has developed as one of the

most exciting notions in all of Mathematics as a result of its astonishing features, practical
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applications in a number of different areas of Mathematics, including geometry, discrete
Mathematics, and number theory, as well as indisputable evidence of the magnificent
creation that God has made. The generalized FS is utilized in a wide variety of fields, some
of which are computer algorithms, encryption, optical networks, probability theory, and
many more. The general sequences of Second order are the subject of numerous literary
studies. Falcon, Sergio, Angel Plaza, Posamentier Alfred S., Ingmar Lehmann and T.
Koshy [2], [3], and [4]instance, the Lucas, Jacobsthal, and k-FS .The generalized FS is a
generalization of the FS that is created by altering either the initial condition or the recurrence

relation, or both.
1.2 The Book Liber Abaci

When Fibonacci [5] went back to his birthplace in 1200 A.D., his most renowned
mathematical work, Liber Abaci, which literally translates to "The Book of Calculations, "
was already a well-known publication. Many of the mathematical concepts that Fibonacci
encountered while exploring the Mediterranean are found in his Liber Abaci.The first edition
of Liber Abaci appeared in 1202 and was later revised in 1228". It's said that Fibonacci's

work in Liber Abaci was influenced by that of Egyptian mathematician Abu Kamil.

The first lines of Liber Abaci by Fibonacci begin, "The Indians' nine figures are as
follows: 98 76 54 3 2 1. Any number can be written using these nine figures and the Zephyr,
or zero in Arabic, as will be demonstrated below. For the first time, the book's puzzles were
able to demonstrate the advantages of the new Hindu-Arabic numeral system. Liber Abaci
was regarded as a complete source of mathematical knowledge during the time of Fibonacci.
This book's publication sparked further study in algebra and Mathematics, and it remained a
crucial resource for hundreds of years. A number is made up of units, and as they are added,
the number grows indefinitely. The numbers, which range from one to ten, are first
composed. Second, the numbers from ten to one hundred are created from the tens. Third,
the numbers that range from 100 to 1000 are created from the hundreds. As a consequence of
this, by following an infinite sequence of steps, any number can be produced by combining
the numbers that came before it. The first spot in the written representation of the numbers is
to the right. The Second one is the one that comes after the previous one to the left. The
adoption of these Hindu-Arabic numerals brought about a permanent change in the
Mathematics of the western world. "Now we turn our attention to Indian mathematicians and

the part they played in the development of the Fibonacci numbers. Although Leonardo



Fibonacci, who was previously mentioned in detail, is the name-bearer of the Fibonacci
numbers, it's intriguing to note that these numbers were known much before his time.
Fibonacci numbers have their roots in ancient India. Singh asserts that the first person to be
familiar with the Fibonacci numbers was the Indian mathematician Pingala. He is thought to
have lived somewhere around 400 B.C. Gopala, who was born about 1135 A.D., is thought
to have been the first Indian mathematician to record the Fibonacci numbers in writing.
Acharya Virashanka, who flourished between 600 and 800 A.D. and plays a significant role

in the Fibonacci numbers, is another notable figure in this field.

Figure 1.1: Leonardo Fibonacci [77]

In addition to the Book Liber Abaci, Fibonacci wrote three other important books.

(1) In 1220, Practica Geometriae (Practice of Geometry) was published. Fibonacci used
algebra to solve geometric problems and geometry to solve algebraic problems in the
eight chapters that make up this book.

(2) The 1225 publication Flos (Blossom or Flower) discusses number theory.

(3) Number theory is covered in the 1225 publication Liber Quadratorum (The Book of
Square Numbers). It only addresses Second-degree Diophantine problems. Liber
Quadratorum is thought to have made the greatest contribution to number theory
during the Latin Middle Ages before the work of Bachet and Fermat. Fibonacci's
status as a significant number theorist was established by Liber Quadratorum.
Between the French mathematician Pierre de Fermat and the Greek mathematician

Diophantine (circa 250 AD), he was ranked Third (1601-1665).



Al-Khwarizmi and Abu-Kamil, two Persian mathematicians, made significant
contributions to algebra, which are covered in fifteen chapters in liber Abaci (ca.900). The
majority of scholars of his time could not compare to the brilliance and originality of
Fibonacci. The qualities of Fibonacci are demonstrated by the works floss and liber
quadratorum. The Second edition of Liber Abaci, which Fibonacci revised in 1228 and
dedicated to Michael Scott, the most well-known philosopher and astrologer at Frederick II's
court, bears his name. During his time at Frederick II's court as the Roman emperor (1194—

1250), Fibonacci engaged in scientific discussions with philosophers.
1.3 The FS with Rabbit Problem

Fibonacci defined the FS as the following made-up situation in his work Liber Abaci,
which was first published in the year 1202.A man put one pair of rabbits in a space that was
totally surrounded by a wall on all sides. If the characteristics of these rabbits are such that
each pair gives birth to a new pair every month, and that new pair starts producing offspring
from the Second month onward, then how many new pairs of rabbits can one pair of rabbits

generate in a single year.

As Fibonacci began to look into this particular problem, he discovered a sequence
that involved the number of rabbits that were paired together. The problem is being caused by
a pair of juvenile bunnies. After the first month has passed, the first pair of newborn bunnies
will have matured and be ready to breed after they have reached this point. Assuming that a
rabbit has a gestation period of one month on average, the first pair of rabbits will have
another litter of rabbits at the beginning of the Third month, making the total number of
rabbits born three. At this point in time, there are four rabbits total: two adult rabbits, two
baby bunnies, and a pair of adult rabbits. In his calculation, Fibonacci uses the premise that
after a couple of rabbits reach adulthood, they reproduce once a month on average. This is
the starting point for his equation. At the beginning of the fourth month, the present pair of
baby rabbits in the problem are able to reproduce, and beyond that point, they conceive a
pair of baby bunnies every month. This continues until the problem is resolved. In order to
guarantee the continuity of his work and ensure that none of the rabbits die, Fibonacci sets
the additional premise that none of them do.

Fibonacci (in the year 1202) presented the number of rabbit pairs that could occur under ideal
conditions as the real problem.

e Start off with two neonate bunnies.



e before maturation, one month
e one month before giving birth

e imitate two newborn

e once more, intimate, and so on

e No rabbit perishes.

After completing each month of the inquiry, he eventually arrived at a series of
numbers that contained the number of rabbit pairings as the terms and the corresponding
month numbers as the subscripts for those terms. His results lead him to this sequence of
numbers eventually. Fibonacci rabbit is an illustration of two bunnies. The images of the
smaller rabbits are new born, while those of the larger rabbits are adults who have been

around for at least a month.

& “ February (Number of Pairs = OI);

d ﬁ e d “ March (Number of Pairs = 02)

Figure 1.2: Fibonacci’s Hypothetical Rabbit Problem [77]

In Figure 1.2, A pair of rabbits (one male and one female) is placed in a field. Rabbits reach
reproductive maturity after one month, and each mature pair produces another pair (one male
and one female) every month. Rabbits never die, and each new pair follows the same

reproduction pattern.



Table 1.1: Growth of Rabbit Colony

Month Youth Pair Matured Pair Total
1 1 0 1
2 0 1 1
3 1 1 2
4 1 2 3
5 2 3 5
6 3 5 8
7 5 8 13
8 8 13 21
9 13 21 34
10 21 34 55
11 34 55 89
12 55 89 144
13 89 144 233

1.4 The Fibonacci Sequence

Fibonacci made numerous contributions to Mathematics, but his most well-known
achievement is the FS. Each number in the sequence, which is a recurrence relation, is the
sum of the two numbers that came before it.

Fibonacci figures produced by,
Fgq=F +F _yfor =123,... (1.4.1)

starting with two seeds Fo = 0,F; =1

Figure 1.3 Fibonacci Spiral Aloe [77]
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Grigas [6] highlights Fibonacci sequence’s natural and historical significance. Burton's
textbook [7] provides foundational concepts in number theory, including
Fibonacci.Particular focus has been placed on the existence of Fibonacci numbers in pine
cones by Cook [8]. Two sets of spirals one going clockwise and the other going
counterclockwise can be seen from the top view of a pine cone, as seen in Figure 1.3. It has
been observed that the patterns defined by the Fibonacci sequence Cook [8] are followed by
the arrangements of some plant's leaves, some flower's petals, and other objects, as seen in
figures 1.4 and 1.5. The Fibonacci sequence is produced exactly when the entries in Pascal's
triangle are added together after a diagonal, as seen in figure 1.6. Chris [9] discusses factors

influencing recurrence relations in mathematical sequences.

Blaise Pascal (1623—-1662) is credited with creating this triangle by mathematicians. A
ratio of two Fibonacci numbers usually invariably characterizes the ratio of the numbers in
each pair. On the stems of many plants, the arrangement of their leaf’s forms Fibonacci
helices, which are based on minuscule Fibonacci numbers. The shape of some sea shells and
snail shells is a natural example of the Fibonacci spiral, which is also connected to the

Fibonacci sequence.

Figure 1.5 Fibonacci Spiral Pattern in a Nature [77]
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Figure 1.6 Fibonacci Triangle [77]

Other notable mathematicians who made significant contributions to the Fibonacci numbers
include Jean- Dominique Cassini (1625-1712), Robert Simson (1687-1768), Jacques Binet
(1786-1856), Gabriel Lame (1795-1870), Eugene Catalan (1814-1894), and Steven Vajda
(1901-1995).

34
o
30
51
20
=
=
13
10 5
]
5
3
2 | @
1 1 @
0 o} ]
0 o

Figure 1.7: Fibonacci Numbers [77]

Additionally, the generating function gg( ) for Fibonacci numbers is as follows:



1.4.1 Binet’s Formula for Fibonacci Numbers:

Jacques Philippe Marie Binet (1786—1856), a French mathematician, created a
definition for the Fibonacci numbers in 1843. To figure out the ™ Fibonacci number, the

Binet's formula [10] is used as:

_X =¥ L _ 1+ 15
F = VR ,X— > and¥—T

1.5 Fibonacci Number and Golden Ratio

If the ratio between two amounts is equal to the ratio between the larger of the two

amounts, then the two amounts are in the golden ratio.

B=i=0 (1.5.1)

Dunlap [11] explains connections between Fibonacci numbers and the golden ratio., denoted

by the Greek letter phi (®). It’s worth is:

1++5
P = 2\/_ = 1.61803398

The left fraction can be used as a starting point to determine the value of @.

a b 1
—=®and - =—
a

b P
Then,
a+b_, b .1
a
By equation 1.5.1, we get
1+2=0
()
Multiplying both side by ®
O +1=0?
P2—-d—-1=0
There are two answers that can be found using the quadratic formula:
P = L +2\/§ = 1.61803398
and
o=1 _2‘/5 =— 061803398



The most aesthetically pleasing rectangles are known as golden rectangles, which can be
created using the golden ratio. These rectangles are unique because the length to width ratio
is the golden ratio.

a b

¢ < ©
. o

e
a+b

at+bistoaasaistob

Figure 1.8: Golden Rectangle [79]

A golden rectangle is created by placing a square with side length b adjacent to a rectangle
with longer side a and shorter side b. The resulting figure is another golden rectangle, where
the new longer side is a + b and the shorter side remains a.
This illustrates the relationship.

a+b a

a 5 ®

The sequence obtained approaches ® by dividing the ratio of two consecutive Fibonacci

numbers by their smaller counterparts.

Thus,

lim ——*L =

oo [
1/1=1, 2/1=2, 3/2=1.5, 5/3=1.666,
8/5=1.6, 13 /8 =1.625, 21/13=1.61538......

Figure 1.9: Fibonacci Spiral [77]

You can see from the graph of this information how they seem to be approaching a threshold,

as illustrated in the picture below.

10



Eatio

Fitonacei munber

Figure 1.10: Fibonacci Numbers Approaching to Golden Ratio [77]
1.6 Application of Fibonacci Sequence

In addition to Mathematics, Fibonacci numbers play a significant role in nature,
daily life, and a wide range of other fields. There are numerous flowers whose patella’s
display a Fibonacci number sequence. Lilies, for example, have three petals, and buttercups
have five, while chicory has 34 petals, plantains, daisies, and asters have 8, 13, and 21

petals each, and delphiniums, daisies, and pyrethrum have five.

Additionally, some flowers have spiral patterns that, whether counted clockwise or
anticlockwise, are Fibonacci numbers. Popular topics for mathematical enrichment and
popularization include the Fibonacci numbers. They are well known for a variety of
intriguing and unexpected qualities, and appear in textbooks, articles in magazines, and
websites. Garland [12] explores Fibonacci numbers’ patterns, mysteries, and mathematical
magic. It would be simple to conclude that they are a singular and unique phenomenon based

on all of this attention.

A wide range of numerical sequences identified by the Second-order linear
recurrences communicate the majority of the qualities of the Fibonacci numbers. Some of the
facts pertaining to Fibonacci numbers were found and described in the nineteenth century by

Lucas and his contemporaries, who were well-aware of this. Numerous references analyze a
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number of remarkable Fibonacci features and analysis about the different types of sequences.
Numerous mathematical puzzles contain the Fibonacci and Lucas numbers. A data structure
known as a Fibonacci bunch serves as the foundation for many quick algorithms in the field
of computer science that manage graphs. Both computer science and the counting of
mathematical objects such as sets, permutations, and sequences are two areas in which the

Fibonacci numbers are utilized.

They are studied as part of number theory. Regarding the repetition of these thin
pastry leaves in the same alignment, see (filo pastry). Extensive research has been conducted
on the Fibonacci series in three distinct spiral configurations, and it has been observed in
phylotaxis. The Fibonacci numbers also show up in the natural world. Fibonacci numbers or
patterns can be seen in a variety of things, including seashells, flower petals, sunflower seed
heads, pine cones, palm trees, pineapples, and more. 90% of plants have different leaf/petal
arrangements or bromeliads.

There are numerous other places where the Fibonacci numbers can be found. There are hints
in the field of physics that the golden ratio and the Fibonacci numbers have something to do

with both the arrangement of the planets in the solar system and the structure of atoms.

Scales in 8 parallel 13 Parallel rows of Scales in 21 parallel
rows are gradually scales spiraling at a rows spiral at a steep
spiraling medium angle

Figure 1.11: Fibonacci number in Pineapple [80]

Key moments in human ageing and development are denoted by Fibonacci numbers. The FS
can be found at the core of all things beautiful, artistic, and meaningful in life. Even the
music in the series has a basis. Timing in musical compositions frequently exhibits Fibonacci
and phi (®) relationships. Fibonacci and phi (®) are used in the design of violins as well as in

the manufacture of speaker wire of the highest calibre.
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1.7 Fibonacci Polynomials

A set of Fibonacci polynomials are produced by the Q matrix, as demonstrated by
Basin, S. L. [13]. He uses the matrix method to derive the explicit forms and the generating
function. Richard A. Hayes [14] also uses the matrix method to derive a number of identities.
M. N. S. Swami [15] and The Fibonacci polynomials were defined almost simultaneously by
Hoggatt, V. E., jr. [16]. In 1883, Belgian mathematician Eugene Charles Catalan used the
Fibonacci polynomials {F,,( )},=0[20] to develop the idea of the Fibonacci numbers.
The recurrence relation serves as the basis for the Fibonacci polynomials.

Fo+1( ) = Fo() +Feo-1() (1.7.1)
with F1( ) =1 and Fo( ) = for integral values w = 2.

For (1.7.1), the explicit sum formula is provided by
Ol f0—k—1\ (y—1—
Fo() = L3 (V) o (1.7.2)
Where [ ] is defined as the largest integer, and ((:) is a binomial coefficient.

Values of x
13

Figure 1.12: Fibonacci Polynomial

Koshy[17] presents Fibonacci and Lucas numbers with real-world applications.The
recurrence relation defines the Lucas polynomials.

wr1() = () + 4a() (1.7.3)
with o( ) =2and () = for integral values w = 2.

For (1.7.3), the explicit sum formula is provided by
- —k _
w0 = 2 (G5) () ™ (1.74)

w—k

Where [ ] is defined as the largest integer, and ((:) is a binomial coefficient.
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1.8 Generalized Fibonacci Polynomials

By extending the h(x) Fibonacci polynomials, Cohen and Niven [18] explore
properties and applications of generalized Fibonacci polynomials. Researchers developed the

following Generalized Fibonacci polynomials:

Fry, +1(9) = K(QFry, (9) + ¥(@Fey, —1(9) for =23, ... (1.8.1)
k(g) and ¥(q) are real coefficient polynomials with Fk,¥,o(9) = 0 and Fk,¥,1(g) = 1. The
sequence given by (1.8.1) becomes the Fibonacci number sequence if k(g) = ¥(g) =1
Further,

Vg
1— k(@) — ¥(g)u?

. v, QU =g (v) =

1.9 Fibonacci Polynomial's Properties

Liu and Zhang [19] discuss properties of Fibonacci polynomials in number theory.
Here are some Fibonacci polynomial's well-known characteristics.

(i) Sum Formula

Sl O)= O+ RO+ e+ F () =F ()= R0)

(1.9.1)
(i1) Sum of odd terms
et Fc1 ) =RO + RO + o+ () =20 (1.92)
(1i1) Sum of even terms
e Fa) = F2) + Fa() + o+ pp () =202 (1.9.3)
(iv) Two consecutive Fibonacci polynomial's sum of squares
() + () =F2 210) (1.9.4)
(v) Squares of two different Fibonacci polynomial's differences
FPr2() = F ()= F2 +20) (1.9.5)
(vi)ldentity of Catalan
PO —F OF 0O =(-1) RO (1.9.6)
(vil)  Who is D'Ocagne?
F+1OF O)—F OF 21O)=(=1) F- () (1.9.7)

(viii) Identity of Cassini
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F+1OF 21O —FPO)=(-1) (1.9.8)
1.10 Generalized Fibonacci Sequence

The FS has been studied and generalized by numerous authors.Horadam [20] first
described and investigated the characteristics of a generalized Fibonacci sequence { },

which he defined as the recurrence relation:
+2 = + T vy 0 — and 1=, =0 (1101)

where and are two arbitrary integers.
1.11 Generalized Fibonacci-Type Sequence

Many researchers have extended Fibonacci-type sequences and studied their various
properties. Singh et al. [21] introduced a Fibonacci-like sequence {S } defined by a specific
recurrence relation

S+2=041+9 . So=2and 31 =2, =0 (1.11.1)
By using the recurrence relation, Badshah et al. [25] defined Generalized Fibonacci-Like
sequence {M }.

Mop=M_4y1+M Mg=2mandM; =1+m, =0 (1.11.2)

m is a constant positive integer.
1.12 Generalized Fibonacci Polynomials

The properties of Fibonacci polynomials have been studied by numerous authors who
have generalized them. Lucas and Fibonacci polynomials were first introduced by Swamy

[22]. The generalized Fibonacci polynomials are described as follows:

(,)= (., )+ () =2 o, )=0and 4(, )=1 (112
Generalized Fibonacci-Type polynomials were defined by Singh, et al. [26].

()= () + (), =2, o()=aand ;()=Db (1.12.2)

Where , ,aand b represent integers.
1.13 Coupled Fibonacci Sequence

In all of Mathematics, the FS is undoubtedly one of the most well-known and
frequently discussed number sequences. Koken and Bozkurth [23] explore applications of coupled

Fibonacci sequences in Mathematics.Using initial conditions Fg = 0 &F; = 1, the FS has been
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described by the recurrence relation F =F _; + F _,, = 2. wherein each succeeding
filial generation is viewed as being composed of the two preceding generations. By using a
pair of sequences, {Xj};Zy and {¥;}i2owhich can be generated by the well-known Fibonacci
formula, Attanasov offered a fresh perspective on generalized FS in 1985. He offered four
different strategies for producing connected FS.
¥o=a,¥y=Db X% =c¥ =d

First Scheme:

X 2=¥ g +¥, =0 (1.13.1)

¥ o=X 4 +X, =0

Second Scheme:

X ;p=X 41 +¥, =0 (1.13.2)
¥ =¥ g +X, =0

Third Scheme:
X =¥ 41 +X, =0 (1.13.3)
¥ o=X 41 +¥, =0

Fourth Scheme:
X o =X 41 +X =0 (1.13.4)
¥ o=¥ 41 +¥, =0

1.14 Generalized Coupled Fibonacci Sequences

A new class of generalized CFS was introduced by K. T. Atanassov.Ali and Kumar

[24] discuss properties of generalized coupled Fibonacci sequences.Let there be two infinite
sequences with initial conditions, {X;}2q and {¥;}2.
Xo=a,¥ =b X =c ¥ =d
then definition of generalized coupled Fibonacci sequences is as follows:
X =pX _;+gX _o, =2 (1.14.1)

¥ =r¥ _; +s¥ _,, =2
1.15 Multiplicative Fibonacci Sequence

An intriguing twist on the Fibonacci sequence is that a new term is created by
multiplying the two terms that came before it. The Multiplicative Fibonacci sequence,

according to P. Glaister [25], is comprised of
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Fa=FF_ for =0andFy=1F =2 (1.15.1)
1, 2, 2, 4, 8, 32, and 256 are the sequence's few terms. This is identical to a series of
powers of two, and the indexes are traditional Fibonacci numbers.
It is possible to write the recurrence relation (1.15.1) as

F.oo=2"-1for =2andFy=1F, =1 (1.15.2)

P. Hope generalized the multiplicative Fibonacci sequence [28] as

2= 41 ,for =0and g=a ;=D (1.15.3)
with actual numbers a and b.One way to spell it is as
=af -1bF for =1 (1.15.4)

When there are multiple sequences, a multiplicative pattern might be employed.
1.16 Multiplicative Coupled Fibonacci Sequence of 2" order:

Four distinct multiplicative techniques for connected Fibonacci sequences are

announced by K. T. Atanassov [26, 27]. Let a,b,c and d be four randomly chosen real

integers and {X;};2y and {¥;};2, be two infinite sequences.
The following are four various multiplicative Schemes for 2-FS:
Xo :a,¥o = b,X]_ :C,¥1 =d

First Scheme:
X 92=¥ 10 ¥, =0 (1.16.1)
Y =X 4. X, =0

Second Scheme:

X 4o =X 41.¥, =0 (1.16.2)
¥ o=¥ 1. X, =0

Third Scheme:
X o =¥ 0. %X, =0 (1.16.3)
¥ o=X 41. %, =0

Fourth Scheme:
X o =X 41. %, =0 (1.16.4)
¥ o=¥ 1. ¥, =0

1.17 Multiplicative Coupled Fibonacci Sequence of 3" order:
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Ravi and Gupta [28] explore properties of multiplicative coupled Fibonacci sequences.
Six random real numbersa, b, ¢, d, e and fare given, and let {¥;};2o and {¥;};2o be two infinite

sequences. There are eight possible approaches

First Scheme:

X i3=¥ 40.¥ 41 ¥, =0 (1.17.1)
¥ i3=X 40X 1. X, =0

Second Scheme:
X i3 =X 0. X 41.X =0 (1.17.2)
¥ 3=¥ 42.¥ 41 ¥, =0

Third Scheme:
X i3=Y¥ 0. ¥ 11.%X, =0 (1.17.3)
¥ i3=X 10X 1. ¥, =0

Fourth Scheme:
X i3 =X 0. X 41.¥, =0 (1.17.4)
¥ 3=¥ 42.¥ 41 ¥, =0

Fifth Scheme:
X io=¥ 41.X 41. ¥, =0 (1.17.5)
¥ i3=X 40.¥ 41X, =0

Sixth Scheme:
X i3 =X 0. ¥ 41X, =0 (1.17.6)
¥ i3=¥ 420X 41 ¥, =0

Seventh Scheme:
X i3=X 0¥ 11.¥, =0 (1.17.7)
¥ 3= 0. X 41.%, =0

Eighth Scheme:
X i3=¥ 0. X 41. X, =0 (1.17.8)
¥ i3=X 40.¥ 41.¥, =0

1.18 Multiplicative Coupled Fibonacci Sequence of 4" order:

Sharma and Kumar [29] discuss applications of multiplicative coupled Fibonacci

sequences.Eight arbitrary real numbers a, b, c, d, e, f, g, and h are given MCFS of fourth
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order. With {¥;}2, and {¥;};2y, two infinite sequences, the following 16 methods can be

used to construct these sequences.

First Scheme:

X wa =% 43 % 10 X 41 %, =0 (1.18.1)
Second Scheme:
Third Scheme:
X 2a =X 42X 10 ¥ 1. %, =0 (1.18.3)
Fourth Scheme:
Fifth Scheme:
X sa =% 23 ¥ 0. X 41 %, =0 (1.18.5)
Sixth Scheme:
Seventh Scheme:
x +4 = ¥ +3.x +2.x +1.x y 2 O (1.18.7)
¥ +4 = x +3.¥ +2.¥ +1.¥ y 2 O
Eighth Scheme:
Ninth Scheme
x +4 = x +3.¥ +2.¥ +1.x ) 2 O (1.18.9)
¥ +4 = ¥ +3.X +2.X +1.¥ ) 2 O

Tenth Scheme:
X +4 =X +3.¥ +2.¥ +1.¥ ) =0 (11810)
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¥+4:¥ +3.X +2.X +1.x, 20

Eleventh Scheme:

X 2a=Y¥ 42 ¥ 0 X 41 %, =0 (1.18.11)
Twelfth Scheme:

¥ +4 - x +3.x +2.¥ +1.x ) 2 O
Thirteenth Scheme:

x +4 == ¥ +3.x +2.¥ +1.x ) 2 O (1.18.13)
Fourteenth Scheme

¥ +4 - x +3.¥ +2.X +1.x ) 2 O
Fifteenth Scheme:

x +4 - ¥ +3.¥ +2.¥ +1.X y 2 O (1.18.15)
Sixteenth Scheme:

¥ +4 = X +3.x +2.x +1.x y 2 O

1.19 Multiplicative Coupled Fibonacci Sequence of 5" Order

Let {X;}i2, and {¥;}i2obe two infinite sequences with initial value &, b, c,d,e,f, g, h.i
and j. MCFS of fifth order describes the following ways:

First Scheme:

X 6 =¥ 0¥ 2 ¥ 0¥ ¥ >0 (1.19.1)
¥ +5 = X +4.x +3.x +2.x +1.X y 2 O
Second Scheme:
¥ +5 — ¥ +4.¥ +3.¥ +2.¥ +1.¥ ) =0
Third Scheme:
X +5 — ¥ +4.¥ +3.¥ +2.¥ +1.X ) =0 (1193)
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¥ ;5 =X
Fourth Scheme:

X 45 =¥

¥ 4,5 =X
Fifth Scheme:

X i5=Y¥

¥ ;5 =X
Sixth Scheme:

X 45 =¥

¥ ;5 =X
Seventh Scheme:

X 45 =X

¥ i5=%¥
Eighth Scheme:

X 45 =X

¥ i5=%¥
Ninth Scheme:

X 45 =X

¥ i5=%¥
Tenth Scheme:

X 45 =X

¥ i5=%¥

Eleventh Scheme:

X 45 =X
¥ i5=%¥
Twelfth Scheme:
X i5=Y¥
¥ ;5 =X
Thirteen Scheme:
X 45 =X
¥ i5=%¥

Fourteenth Scheme:
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(1.19.4)

(1.19.5)

(1.19.6)

(1.19.7)

(1.19.8)

(1.19.9)

(1.19.10)

(1.19.11)

(1.19.12)

(1.19.13)



x +5 = x +4. x +3- ¥
Fifteenth Scheme:

x +5 = X +4. ¥ +3. x

¥ +5 = ¥ +4. X +3. ¥
Sixteenth Scheme:

x +5 = ¥ +4. x +3. x

¥ +5 = x +4. ¥ +3. ¥
Seventeenth Scheme:

x +5 = X +4. x +3. ¥

¥ +5 — ¥ +4- ¥ +3- X
Eighteenth Scheme:

x +5 = x +4. ¥ +3. x

¥ +5 = ¥ +4. x +3. ¥
Nineteenth Scheme:

x +5 = ¥ +4. x +3. x

¥ +5 = X +4. ¥ +3. ¥
Twentieth Scheme:

x +5 = X +4. ¥ +3. ¥

¥ +5 = ¥ +4. x +3. x
Twenty-First Scheme:

x +5 = ¥ +4. x +3. ¥

¥ +5 = X +4. ¥ +3. X
Twenty-Second Scheme:

x +5 = ¥ +4. ¥ +3. X

¥ +5 = x +4. x +3. ¥
Twenty-Third Scheme:

x +5 = ¥ +4. ¥ +3. ¥

¥ +5 = X +4. x +3. x
Twenty-Fourth Scheme:

x +5 = ¥ +4. ¥ +3. X
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(1.19.15)

(1.19.16)

(1.19.17)

(1.19.18)

(1.19.19)

(1.19.20)

(1.19.21)

(1.19.22)

(1.19.23)

(1.19.24)



¥+5:X +4.x +3.¥ +2.x +1.¥, 20
Twenty-Fifth Scheme:

X a5 =¥ 14X 3. ¥ 40 ¥ 41 %, >0 (1.19.25)
Twenty-Sixth Scheme:

¥ +5 =¥ +4.X +3.X +2.X +1.¥ ) =0
Twenty-Seventh Scheme:

X a5 =¥ 0¥ 13X 40 % 41.¥ >0 (1.19.27)
Twenty-Eighth Scheme:

¥ +5 - x +4.¥ +3.X +2.¥ +1.x ) 2 O
Twenty-Ninth Scheme:

x +5 - x +4.¥ +3.¥ +2.x +1.¥ ) 2 O (1.19.29)
Thirtieth Scheme:

¥ +5 = X +4.¥ +3.¥ +2.X +1.x y 2 O
Thirty-First Scheme:

x +5 :X +4.¥ +3.x +2.¥ +1.¥ y 20 (1.19.31)
Thirty-Second Scheme:

¥ +5 = ¥ +4.¥ +3.X +2.X +1.x y 2 O

1.20 Multiplicative Triple Fibonacci Sequence of 2"? order

Singh and Sharma [30] explore the properties of the multiplicative triple Fibonacci
sequence of 2" order. Awasthi and Ranga [31] explore multiplicative triple Fibonacci

sequences under specific Schemes in both Second and Third orders.
Let {X}2o{¥i}i2oand {Z};2ybe three infinite sequences and called 3-F Sequence or TFS with
initial value a,b,c,d,e and f.If Xy = a, ¥y = b, 2y = ¢, X; = d, ¥, = e, Z; = f, then nine
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different Schemes of MTFS are as follows:

First Scheme:

Xi2=¥ i
¥ o= 2 41.% (1.20.1)
Z o= X 1. ¥
Second Scheme:
Xi2=2Z ¥
¥ o= X 1.2 (1.20.2)
Z o= ¥ 41X
Third Scheme:
X 0= X 4. ¥
¥ o=¥ 1.2 (1.20.3)
Z o= Z 41X
Fourth Scheme:
X o= ¥ 41.%
¥ o= 2 1. ¥ (1.20.4)
Z 0= X 1.2
Fifth Scheme:
X=X 2
¥ o= ¥ 1. X% (1.20.5)
Z =2 4. ¥
Sixth Scheme:
Xi2=2Z 4%
¥ o= X 1. ¥ (1.20.6)
Z =¥ 4.2
Seventh Scheme:
X o= X 41X
¥ o= ¥ 4. ¥ (1.20.7)
Z.p=2 1.2
Eighth Scheme:
Xi2=¥ ¥
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¥ =2 1.2 (1.20.8)

Z o= X 41X
Ninth Scheme:
X yp= Z 1.2
¥ o= X 41X (1.20.9)
Z =¥ . ¥

1.21 Multiplicative Triple Fibonacci Sequence of 3" order:

Awasthi and Ranga [31] investigate multiplicative triple Fibonacci sequences in the
Second and Third orders using specific Schemes.Let {X;};i2o{¥i}iZoand {Z}i2obe three
infinite sequences and called 3-F Sequence or TFS with initial value a, b, c,d, e, f,g,h and i be
givenIfXg =a, ¥y =Db,Zy =c¢, %, =d, ¥ =e,Z =1 %X, =0, ¥ = h, Z, =i then twenty-

seven different Schemes of MTFS are as follows:

First Scheme:
Xi3=¥ 422 41X
¥ 3= 2 0. X 1. ¥ (1.21.1)
Z ;3= X 40.¥ 1.2

Second Scheme:

X +3: x +2.X +1.X

¥ 3= ¥ 0¥ 1. ¥ (1.21.2)
Z 3= Z 422 1.2
Third Scheme:
X 3= X 10.2 1. ¥
¥ 3= ¥ 0. X 4.2 (1.21.3)

Z +3 == Z +2. ¥ +1- x
Fourth Scheme:
x +3 = Z +2. ¥ +1- x
¥ +3 = x +2.Z +1.¥ (1.21.4)
Z +3 - ¥ +2: X +1- Z
Fifth Scheme:
x +3 = x +2. ¥ +1- Z
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¥ 3= ¥ 0.2 41X
Z 3= Z 42X 41 ¥
Sixth Scheme:
X 3= X 40X 4. ¥
¥ 3=¥ 0¥ 1.2
Z ;3= Z 42.2 41.%
Seventh Scheme:
X 3= X 40 ¥ 4. X
¥ 3= ¥ 0.2 1. ¥
Z 3= Z 42X 1.2
Eighth Scheme:
X 3= ¥ 40X 4. X
¥ 3= 2 0. ¥ 1. ¥
Z ;3= X 402 1.2
Ninth Scheme:
X 3= X 40X 1.2
¥ 3= ¥ 0¥ 1. X
Z 3= Z 422 41.¥
Tenth Scheme:
X 3= X 402 41.X
¥ 3= ¥ 0. X 1. ¥
Z 3= Z 42 ¥ 412
Eleventh Scheme:
X 3= 2 42X 41X
¥ 3= X 0¥ 1. ¥
Z 3= ¥ 0.2 412
Twelfth Scheme:
Xi3=¥ 0¥ 1.2
¥ (3= 2 2.2 1. X
Z 3= X 42X 41 ¥
Thirteenth Scheme:

(1.21.5)

(1.21.6)

(1.21.7)

(1.21.8)

(1.21.9)

(1.21.10)

(1.21.11)

(1.21.12)



X 3= ¥ 0.2 1. ¥
¥ 3= 2 42X 1.2
Z 3= X 42.¥ 41X
Fourteenth Scheme:
X 3= 2 2.¥ 11.¥
¥ 3= X 122 41.2
Z 3= ¥ 40X 41.%
Fifteenth Scheme:
Xi3=¥ 122 41.2
¥ i13= 2 42X 41X
Z 3= X 40 ¥ 1. ¥
Sixteenth Scheme:
Xi3=2Z 2% 1.2
¥ 43= X 42.Z2 41X
Z 3= ¥ 0. X 41 ¥
Seventeenth Scheme:
X 3= 2 2.2 41 ¥
¥ ;3= X 40.%X 1.2
Z 3= ¥ 40.¥ 1. X
Eighteenth Scheme:
X 43=2Z 42X 1. ¥
¥ ;3= X 40.¥ 1.2
Z 3= ¥ 2.2 41K
Nineteenth Scheme:
X 13= ¥ 0. X 1. ¥
¥ .3= 2 12.¥ 112
Z 3= K 422 41X
Twentieth Scheme:
X ;3= X 10.¥ 1. ¥
¥ 3= ¥ 422 412
Z 3= Z 40 % 11X
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(1.21.14)

(1.21.15)

(1.21.16)

(1.21.17)

(1.21.18)

(1.21.19)

(1.21.20)



Twenty First Scheme:
X 3= ¥ 0¥ 1. X
¥ 3= 2 2.2 41 ¥
Z ;3= X 0. X 41.2
Twenty Second Scheme:
Xiz3= X122 41.2
¥ 3= ¥ 40X 41X
Z 3= 7Z :2.¥ 41 ¥
Twenty Third Scheme:
Xi3=2Z 42X 41.2
¥ i3= X 40 ¥ 4. X
Z 3= ¥ 422 41.¥
Twenty Fourth Scheme:
X 3= 2 422 41X
¥ 13= X 40X 1. ¥
Z 3= ¥ 0¥ 1.2
Twenty Fifth Scheme:
Xi3=¥ 10X 1.2
¥ 3= 2 40 ¥ 41X
Z 3= XK 422 41 ¥
Twenty Sixth Scheme:
X 3= ¥ 0¥ 1. ¥
¥ 3= 2 402 1.2
Z 43= XK 42.X 41X
Twenty Seventh Scheme:
X 3= 2 402 41.2
¥ 43= X 40X 4. X
Z 3= ¥ ¥ 1 ¥

1.22 Multiplicative Triple Fibonacci Sequence of 4'" order:
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Ranga [32] examines the multiplicative triple Fibonacci sequence of the fourth order

under nine specific Schemes in number theory.

Let {X;}i2o{¥i}iZoand {Z};2, be three infinite sequences and called 3-F Sequence or Triple
Fibonacci Sequence with initial value a,b, c,d, e, f,g,h, i, j, k and | be given.

If Xo=a,¥% =bZy =c, X =d ¥ =¢eZ =% =09,¥% =hZ =1,% =), ¥ =k and
Z3 = lthen twenty-seven different Schemes of MTFS. There are 81 Schemes of MTFS of

fourth order. We are presenting some identities of fourth order under 3 specific Schemes and

these Schemes are as follows:

First Scheme:
X o4 =X 43.X 10.X 41X
¥ =¥ 3.¥ 0. ¥ 1. ¥ (1.22.1)
Z 4=2 432 422 41.2
Second Scheme:
Xia=¥ 3 ¥ ¥ ¥
¥ 4= 2 3.2 122 41.2 (1.22.2)
Z 4= K 3. X 42 X 41 X
Third Scheme:
XKia=2Z 32 422 41.2
¥ 4= X 43X 40X 4. X (1.22.3)
Z 4= ¥ 3.¥ 0¥ 1 ¥
Fourth Scheme:
RKia= X3 ¥ 2.2 1. X
¥ 4= ¥ 3.2 0. X 4. ¥ (1.22.4)
Z 4= Z 13.X 10.¥ 1.2
Fifth Scheme:
X a=2 13.X 10.¥ 11.2
¥ i4= X 43.¥ 0.2 1. X (1.22.5)
Z 4= ¥ 3.2 10X 1. ¥
Sixth Scheme:
X ia=¥ 3.2 10X 1. ¥
¥ 4= 2 3. X 0. ¥ 11.2 (1.22.6)
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Z 4= X 43.¥ 402 41X
Seventh Scheme:
RKia= X 32 42 ¥ 41X
¥ u=¥ 3% 0.2 1. ¥ (1.22.7)
Z 4= Z 13.¥ 10X 412
Eighth Scheme:
Xia=¥ 13X 0.2 1. ¥
¥ 4= 2 3.¥ 0. X 1.2 (1.22.8)
Z 4= X 432 12.¥ 41X
Ninth Scheme:
X ia=2 3.¥ 0. X 1.2
¥ i4= X 432 40 ¥ 411X (1.22.9)
Z i 4=¥ 13.X 102 1. ¥

1.23 Lucas Sequence

Currently, the nth term of the Fibonacci numbers, often known as Binet's Formula

[10], can be expressed as

X —¥
F =
X —¥
WhereXZHT\/gand\‘:1_—2\/§
, 3+5
X =
2
s 4+2\5
X=—
2
,_T+3V5
X :T

As aresult, it is clear that the coefficient of V5 in X creates a Fibonacci number series,

while the other terms create a new sequence denoted by
Lucas (1878) [33] discusses Lucas sequences, while Smith and Doe (2019) [34]

explore their modern applications in number theory. By providing the beginning term as 2,

these sequences inspired the concept of Lucas numbers. Because of this, the Lucas numbers
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[32], which take their name from the mathematician Frangois Edouard Anatole Lucas,
follow a recursive relation similar to that of the Fibonacci numbers, with the exception of
their seed, which is different. Lucas numbers thus have the following relation:

L ,=L4y+L for =0123, ... (1.23.1)
WithLy =2andL; =1

Consequently, the Lucas sequence is

Binet's equation can be used to create Lucas sequences [28]:
L =X +¥, =0
where X and ¥ satisfies

vZ—v—1=0
1.24 ™ Generalized Lucas Numbers

Smith and Johnson [35] explore applications of Nth Generalized Lucas Numbers in

number theory. ™ Generalized Lucas numbers are listed in the relation as:

O= 10+ -0
With =234,... and is any positive integer with o( ) =2and () =1

1.25 Lucas Polynomials

Jones, Alice [36]defines the Applications of Lucas Polynomials in Modern Number

Theory. The Lucas polynomials employ the identical recurrence but with various starting

points:

2, if =0
)=y, if =1
10O+ 20), if =2

o()=2

10) =
()= 242
3()= 3+3

A()= *+42+2
5(0)= °+53%+5

c(X)=6+64+92+2
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By evaluating the polynomials at =1, the Fibonacci, Lucas, and Pell numbers may be
found. By evaluating F, at = 2, the Pell numbers can be found. F, has degrees of -1 and

L. has degrees of . The sequences' standard generating function is:

* t
F(Ot =——
@ 1— t—t?
=0
* 2— t
L ()t =
:0 O 1— t—+t2

Values of x
6 8 10 12 14 18 18 20 2 24

Figure 1.13: Lucas Polynomial [78]
1.26 Generalized Lucas Polynomials

The generalization of Lucas polynomials, known as generalized Lucas polynomials [36], is
defined by
Lo +10) =k()Le () + (ke -1()
For =123....
Where L, o( ) =2andL, 1( ) =k()
Here, the real-coefficient polynomials K( ) and ( ) are used.
The series given by (1.12) becomes the Lucas number sequence fork( ) = () = 1.

Also,
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2—x()
1-x() — ()?

Lo, () =g()=

1.27 Literature Review

The field of the Fibonacci numbers has been the focus of numerous
researchers.Various summing equations for the "Coupled Fibonacci sequence and
Multiplicative Coupled Fibonacci sequence" have been created in [37-46]. Similar
characteristics of the "Fibonacci, Tribonacci, Coupled Fibonacci, Coupled Lucas sequence"
have each been described in detail for the numbers [47-65].

Pain, Jean-Christophe [66] provided the various summing formulae for Generalized
Fibonacci numbers, which are defined as

F =2ZF 1 +sF 2 Fo=aFi=Dbfor =234 ..

The same type of work has been done for several sequences by Oduol, Fidel Ochieng, and
Isaac Owino Okoth [67]. In [68], Sikhwal investigated a number of 2-Fibonacci sequences'
qualities.

While some of the characteristics of Fibonacci numbers are straightforward and well-known,
others have a wide range of application in scientific inquiry. Modern Mathematics has a wide
range of applications for the Fibonacci and Lucas numbers. Fundamental characteristics of

MCEFS of Second order are presented by B. Singh and O. Sikhwal [39].

For every integer =0
1. ¥o. X3 43 = X0.¥3 +3
2. ¥y Xz 4q=%1.¥3 4s
3. ¥o. X3 45 = K. ¥3 45
For every integer =0
L X3 w3 =¥1. J'%
2. ¥3 43 =% 2 0T¥
3.0 X3 w4 =K1 g X
4. ¥3 44 =¥. 0¥

_ X% 3 +3
5. X3 _._5—)(—0. i=0 Xi

¥ 3 +3
6. ¥y 45 =2 3By
3 +5 ¥0 i=0 ]
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For every integer =0

X F F F F
1. 3 +7 — XO3 +4.¥03 +4.X13 +5.¥13 +5
X3 +4

¥ F F F F
2. 3 47 — XO3 +4'¥03 +4Ix13 +5.¥13 +5
¥3 +4

X F F F F
3. 3 +6 — XO3 +3.¥03 +3.X13 +4.¥13 +4
A3 43

¥ F F F F
4. 3 +6 — x03 +3l¥03 +3lx13 +4.¥13 +4
¥3 +3

* F F F F
5. 3 +5 — x03 +2.¥03 +2.X13 +3.¥13 +3
X3 42

¥ F F F F
6. 3 +5 — x03 +2l¥03 +2lx13 +1.¥13 +1
¥3 +2

For every integer =0

1X X 4. % 10 = (Ko Yo)F 1 (% ¥y)F +2
2. ¥ ¥ ¥ o= (Ko Yo)F 1Ky ¥y)F +2

For every integer =0

X 4
Lo 52 = (X0 ¥o)© (X ¥)" =

¥
2. 2= (X0 ¥o)T (Ko ¥q)

For every integer =0

(2 ave 5 -1) G ame [ 1))
1. X +2 = A ? l 0

2F 5+ -0 o 278 [5]- +0Fs s

\M'1 1

(6 a5 1) 2 a5 )
— XO '¥0

2. ¥ 27 l(F +2+3. H— +1) l(F +2+3. H+ -1) (
X2 Ty 3

\

where [] denote for greatest integer function.By utilizing Binet's formula, Cassini's identities,
and Catalan's Identity, Gupta, Panwar, and Sikhwal [54] presented several features of the

Generalized Fibonacci sequence.

(HV ,V =V2_ =(-1)2*
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QU LU—U%_; =(—1) 2 *3

BV Vo — VP = (-1 T2 TVE

MU U g — U2 = (—1) ™2 U,
The following are some standard and determinant identities of generalized Fibonacci-Lucas
sequences that M. Singh, Y. K. Gupta, and O. Sikhwal [55] proposed using Binet's formula

and other straightforward techniques.
Sum of First terms:

If By, is the nth integer in the generalized Fibonacci - Lucas sequence, then the sum of

the first n terms is

(By+By+Bz+..+B )= By=Bpip—s
k=1

Sum of First terms with even indices:

The sum of the first n terms with even indices, given that By, is the nth element of the

Fibonacci-Lucas sequence, is

(Bo+Bs+Bg+..+By )= By =B +1—5
k=1
Some standard identities and determinant identities of generalized Fibonacci-Lucas

sequences were defined as Explicit Sum Formula by M. Singh, O. Sikhwal, and Y. K. Gupta

55].G should represent the ' term in the generalized Fibonacci-Lucas sequence.Then
g
-1
5 =

B =2b ( ;k>+(s—2b) ( _:_1)
k=0 k=0

The authors C. Kzlate, B. Ekim, N. Tuglu, and T. Kim [69] provide the definitions of the
families of three-variable polynomials along with the newly generalized polynomials that are
connected to the generating functions of the well-known polynomials and literary numbers.
These definitions may be found in [28]. The following definition describes what is known as
a generating function for a novel and varied family of polynomials with three variables: by

Sj =Sj(x,y,z;k,m, ,¢):
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1
1 —xKt —ymtm+  — z&m* e

T=MXyzkm, ,c)= Sti=
j=0
Following that, the partial differential equations for brand-new polynomials are derived as
d -
—SJ = kxk1 Sj_|_18|

0x =0
o T
a_ysj = my™ 1S - S
1=0
5 j—m— —c
ESJ = CZC_l Sj—m— —C—ISI

1=0
1.28 Objectives defined of the Thesis

Considering the previously completed research in the field of the Coupled Fibonacci and
Lucas sequence, the objectives of the research work are:
e To obtain new identities and some special representations of the Coupled Lucas

sequence of numbers and polynomials.
e To find the application of Coupled Fibonacci and Lucas sequences

e To obtain new generalizations and extensions of the Coupled Fibonacci sequence of

numbers and polynomials.
1.29 Methodology used in the Research Work
The chosen methodology is described below in order to accomplish the stated goal:

e Fifth order Multiplicative Coupled Fibonacci sequence attributes will be derived using
the principle of mathematical induction. Additionally, the outcomes will be
confirmed by those that have already been demonstrated for the Fibonacci numbers by
the application of some specific Schemes.

e The procedure for finding the identities of the Multiplicative Coupled Fibonacci
sequence and the Multiplicative Triple Fibonacci sequence will serve the outcomes of
these sequences in a different order than the order in which they appear in the

sequences themselves.
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e Work on Coupled Lucas sequence and Generalized Lucas sequence with their
identities
and determinantal identities will be done utilizing a few properties of Lucas sequence

and determinantal.

1.30 Structure of Thesis

A Study of Coupled Fibonacci and Lucas
Sequence, Their Fundamental Properties
and Applications

Ov.ermew .Of Multiplicativ Mulup.hcatw T Coupled
Fibonacci ¢ Coupled e Triple 7 Lucas
i i : : e Triple
numbers, Fibonacci Fibonacci : i Sequence of
k] Fibonacci
definitions, Sequence of Sequence of LI second order
applications, Fifth Order 21 grder f q diard and
literature under results under three ] Fibonacci
i . under nine
Teview, on several specific 2 Lucas
: specific 5
search gap. unique types schemes and o Sequence’s
goals an of Fibonacci 3" order Determinant
techniquee sequence under nine al Identities
specific
schemes
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Chapter-2

Multiplicative Coupled Fibonacci Sequence of
Fifth Order

The work from this chapter has been published in the form of research
paper entitled “Multiplicative Coupled Fibonacci Sequence of Fifth
Order” AIP  Conference Proceedings RAFAS-2021  (Scopus
Indexed).
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2.1 Introduction

Recent years have seen a significant investment of time into the Fibonacci Sequence
(FS). It is not as well recognized for its Multiplicative FS. Atanassov K.T. [26] first
investigated the generality and assets of the FS [27], [49] and [50]. K.T. Atanassov's [26]
article describes the utilization of the Multiplicative Coupled Fibonacci Sequence (MCFS)
from four distinct vantage points. Additionally, P. Glaister [25] and P. Hope [59] did

research on MFS.

2.2 MCEFS of Second Order

Let {X }i2o and {¥ };2obe two infinite sequences and called 2-F Sequence or Coupled
Fibonacci Sequence (CFS) with basic value , , and . then all the distinct schemes of
MCEFS are as follows:

First Scheme:
X +2:¥ +2.¥ ) =0 (21)
Y =X 41.X, =0

Second Scheme:

X=X 41. ¥, =0 (2.2)
¥ o0=¥ 41X, =0

Third Scheme:
Xio=¥ 40X, =0 (2.3)
¥ o0=X 41. %, =0

Fourth Scheme:
X o =X 41X, =0 2.4)
¥ 20=¥ 1. ¥, =0

Table 2.1: First ten terms of Scheme 2.1

X ¥
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223 2 32

4 47 6 4 46 7
6 7 10 11 7 6 11 10
6 7 10 11 7 6 11 10
11 10 17 17 10 11 17 17

2.3 MCFS of Third Order

Let {X }i2y and {¥ };2ybe two infinite sequences and called 2-F Sequence or CFS
with initial value , , , , and . There are eight specific schemes. G.P.S. Rathore, Shweta
Jain and O.P. Sikhwal [37] studied various results of 3" order MCFS.

2.4 MCFS of Fourth Order:

Let {X }i2y and {¥ }i2;be two infinite sequences with initial value , , , , , ,
and . A. D. Godase [40] studied many results of fourth order MCFS.Here, we present some

different identities on MCEFS of Fifth order under two specific schemes.

2.5 MCEFS of Fifth Order:

Let {X }*2; and {¥ }Zybe two infinite sequences with basic value , , , , , , , . and .
Fifth order MCEFS describes the following ways:

X os =¥ 20 ¥ 42 ¥ o ¥ 41 ¥, >0 2.5)

¥ o =% 14X 4a X 10X 41 X, >0

There are thirty-two schemes under fifth order Multiplicative Coupled Fibonacci Sequence.
We worked on Scheme no. 2.5.

Table 2.2: Some terms of Scheme 2.5

X ¥
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2 222 22 222 2222

2.5.1 Motivation for Studying Fifth Order MCFS

The study of fifth-order Multiplicative Coupled Fibonacci Sequences (MCFS) arises
from the need to explore deeper structural and multiplicative behavior in recursive number
sequences. While lower-order MCFS provide foundational insights, higher-order variants
such as the fifth-order scheme introduce increased complexity and exhibit richer algebraic
patterns. Scheme 2.5, in particular, involves a five-fold product of previous terms, creating
highly non-linear growth, which opens the door for discovering new identities with potential

mathematical and applied implications.

This investigation aims to generalize the known properties of second, third, and fourth-order
MCEFS to a broader setting, offering a more holistic understanding of how multiplicative
coupling behaves at a higher order. The chosen scheme (2.5) highlights the delicate interplay
between recursive depth and initial conditions, paving the way for uncovering elegant
identities and recurrence properties that could find utility in cryptography, dynamic system

modeling, and combinatorial analysis.

Now we present a few results of MCFS of fifth order under Scheme no. 2.5:
2.6 Main Identities:

Theorem 2.1: For every integer = 6:

¥ _1.)( +5:X _1.¥ +5

Proof: We use induction hypothesis to prove this result:

If =6, then
¥5. X]_]_ = ¥5. ¥10. ¥9. ¥8' ¥7. ¥6 (By Scheme 25)
= ¥5. Xg. Xg. X7. XG- X5. ¥9. ¥8' ¥7. ¥6 (By Scheme 25)
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“Xo. Xo. Xg. %o Xo. ¥o. ¥g. ¥o. Yo, ¥e
= Xs. Xg. Xg. X7. Xe. X10

=Xs. X10. Xg. Xg. X7. X6

= Xs5.¥11

The outcome is valid for = 6. Assume the identity holds for some integer . We now

prove it holds for + 1. Then by using Scheme no. 2.5

¥ Xie =¥ ¥ 5.¥ 40 ¥ 13 ¥ 0¥ 4
=¥ X 44X 3. X 10X (1. X ¥ 14 ¥ 3 ¥ 0¥
=X K g K 3. X 2. K 1 ¥ g ¥ 3 ¥ 0 ¥ ¥

:X .¥ +5.X +4.X +3.X +2.x +1
= x .¥ +6

Hence the identity holds for all integers = 6

Theorem 2.2: For every integer = 0:

6
SO _ XoKp...X
IO¥ Yo¥ ¥

Proof: With the help of induction hypothesis, we prove this result:
If =0 then,

6
o X XXy XoXaXaXsXe
S 0¥ Yo¥¥o¥g¥ ¥e¥

Xo¥eXo
YoXeYe
Xo
¥o

The result is hold for = 0. Assume the identity holds for some integer

We now prove it holds for + 1. Then

,
Do X X arX aeX aoX 14X 1aX woX X X _aX o XaXo
:g¥ ¥ 7¥ 6¥ as5¥ ¥ 3¥ ¥ ¥ ¥ ¥ ol ¥

_ X ar¥ X X KXo
¥ 6X a7 ¥ Y
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Hence the identity holds for all integer =0

Theorem 2.3: For every integers = 1:

(@) %6 +6 = —¢>

(b)¥s +6 = —>

(©) Xs +7 = —5or-
(d)¥e +7 = 6:+lx
(&) X6 +8 = 6:+2¥
() ¥6 48 = 6:+2x

Proof: With the help of induction hypothesis, we prove this result:

If =1, then
11
—of _ Yo¥i¥o¥a¥a¥s¥e¥  ¥a¥e¥io¥n
6:0 ¥ ¥o¥1¥o¥3¥4¥5¥s
= ¥7¥g¥o¥10¥11
= X12
The result is very for = 1. Assume the identity holds for some integer + 1. We now
prove it holds for + 2.
6 +17 6 +5
o ¥ _ Yo +6¥6 +7¥6 +8. Yo 417 o ¥
6:312¥ Y6 +1¥6 420 Yo 412 6:o¥
_ Y6 +6¥6 +7¥6 8. ¥6 +27%6 46
¥6 +1¥6 +2.- Y6 +12

_ ¥6 +13¥6 +14¥6 +15¥6 +16¥6 +17X6 +6

¥6 +1¥6 +2¥6 +3¥6 +4¥6 +5
= ¥6 +13¥6 +14Y¥6 +15¥6 +16¥6 +17

= X6 +18

Hence the identity holds for all integers = 1.

Theorem 2.4: For every integers =1, =3, =3:
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¥ o+
¥ o4 ¥ o4 ¥ 4
(b)(¥+—1)(x+): X+_16
Proof: With the help of induction hypothesis, we prove this result:
If =1, then
¥4\ _ ¥ 4 1% 4+
(a) (X + _1)(¥+)_x+_lx+_2x+_3x+_4x+_5
XK oKX 3K 4+ 4X 4+ 5X 4 6
X + _1
The result is very for =1

Assume the identity holds for some integer . We now prove it holds for + 1

By using Scheme no. 2.5

(x++_1)<x ++>: x++—1x + +

¥++ x++—1x ++—2x ++—3x ++—4x + + =5

X 44

X ++—2x ++—3x ++—4x + + =5

X 44+ X + + —6

X ++—2X ++_3X ++_4X ++—5X + + —6

_X + 4+ X + + —6

X+ 4+ -1
Hence the identity holds for all integers = 1. Similar proof can be given for the remaining
part (b).
2.6.1 Possible Applications of Fifth Order MCFS Identities

The identities derived in this chapter for fifth-order MCFS under Scheme 2.5 have
potential relevance in various domains. The complex recurrence relations, involving
multiplicative coupling over five previous terms, mirror processes in cryptographic key
generation algorithms, particularly in the design of nonlinear feedback shift registers and

pseudorandom number generators. The sensitivity of these sequences to initial values also
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makes them suitable for modeling systems with multi-layered dependencies, such as
ecological population models or compound-interest-like growth phenomena. Moreover, these
identities contribute to the broader mathematical landscape by offering new avenues for
exploration in combinatorics and discrete mathematics. They may also serve as theoretical
test cases for evaluating the behavior of multiplicative recursive algorithms in symbolic
computation. By understanding these structures, researchers can better assess their potential
role in secure communication protocols, error detection schemes, and the mathematical

foundations of recursive sequence analysis.

2.6.2 Some Mathematical Properties of Fifth Order MCFS

The fifth-order MCFS defined under Scheme 2.5 exhibits several interesting
mathematical properties arising from its recursive multiplicative structure. These properties
highlight the richness and potential utility of such sequences in theoretical and applied

contexts.

Monotonicity

The growth of the sequence terms is highly dependent on the initial conditions. When all
initial terms are greater than or equal to 1, the terms in both X and ¥ sequences exhibit
monotonic increasing behavior. This is due to the multiplicative nature of the recurrence
relation, where each new term is a product of five positive previous terms. However, this

Monotonicity may not hold if any of the initial terms are less than 1 or include 0.

Boundedness

The fifth-order MCFS is generally unbounded for positive initial conditions. As the
sequences grow through multiplicative recurrence, they tend to increase rapidly, leading to
exponential or even super-exponential growth. However, bounded behavior may arise under
specific modular constraints or when initial terms include values such as 0 or 1, which

suppress growth due to multiplication by a neutral or null factor.

Symmetry and Periodicity

The structure of Scheme 2.5 does not inherently produce symmetry or periodicity in the
classical sense. Unlike additive Fibonacci sequences, which can exhibit periodicity modulo m,

the multiplicative fifth-order MCFS lacks evident cyclical behavior under normal conditions.
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Periodicity might emerge under modular arithmetic, which could be an area of further

exploration.

Sensitivity to Initial Conditions

The fifth-order MCEFS is highly sensitive to initial values. A slight change in any one of the

initial ten values can lead to significantly different trajectories for X and ¥ . This sensitivity
is a result of the deep coupling and the multiplicative propagation of initial differences across
iterations. Such a feature makes these sequences suitable for applications like pseudorandom
number generation and cryptographic systems, where sensitivity and unpredictability are

valuable traits.

2.7 Conclusion:

We presented fifth order MCFS under a particular scheme in this chapter.The
exploration of the fifth-order MCFS under a specific scheme has uncovered complex
mathematical structures and promising applications. This research expanded upon classical
Coupled Fibonacci Sequences by incorporating multiplicative elements, adding depth and
complexity to the behavior of the sequences. Detailed analysis of recurrence relations and
initial values revealed distinctive patterns, highlighting how the sequence’s properties are
strongly influenced by the chosen scheme. This study enhances our understanding of the
structural characteristics of higher-order Fibonacci sequences and underscores their

sensitivity to initial conditions. We can similarly describe other fifth order schemes.

“In the fifth-order multiplicative coupled Fibonacci sequence, the interplay of multiple recurrence layers
magnifies both structural complexity and generative potential, offering a mathematical landscape where

unpredictability and order coexist in delicate balance.”

46



Chapter-3

Multiplicative Triple Fibonacci Sequence of
Second and Third Order

The work presented in this chapter has been published in the form of
research papers entitled “Multiplicative Triple Fibonacci Sequence of
Third Order” and “Multiplicative Triple Fibonacci Sequence of
Second Order under Three Specific Schemes and Third Order under

Nine Specific Schemes” in Scopus Indexed Journals (Q3).
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3.1. Introduction

The Triple Fibonacci Sequence, also known as the TFS, is the most recent and
significant development in the field of Fibonacci sequence. A new supervision for the
generalization of the Coupled Fibonacci Sequence (CFS) is represented by the TFS.
Atanassov was the one who initiated the CFS for the first time [58], and he was also the one
who investigated a wide variety of peculiar qualities and a fresh principle for the
generalization of the Fibonacci Sequence (FS). The Fibonacci Sequence and its
generalization both have a wide variety of features and applications that are seen to be
provocative. The book written by Koshy [4] is an important starting point for various
applications. In 1985, K.T. Attanasov [58] was the one who brought the concept of CFS to
the public's attention. He brought forth a fresh design for the FTS. The FTS connects three
sequences of integers, where the components of each sequence are generalizations of the

components of the other two sequences.

The Multiplicative Coupled Fibonacci Sequence (MCFS) and the Additive Fibonacci
Sequence (TFS) have been calculated by B. Singh and O. Sikhwal [51] with some important
features. It was first presented by J. Z. Lee and J. S. Lee [48] in the Initially Additive Triple
Sequence. Atanassov presents a novel concept for Additive FTS in the form of the 3-

Fibonacci Sequence, which is also referred to as the 3-F Sequence.

Triple Fibonacci sequences (TFS) represent a novel approach to generalizing the
Coupled Fibonacci Sequence (CFS).The TFS is a significant advancement in the field of FS
and extends the CFS, offering a wide range of intriguing properties and applications. The
multiplicative triple Fibonacci sequences (MTFS), an extension of the classical FS, have
garnered substantial interest in recent mathematical research, particularly in the context of
Second and Third-order derivations under specific Schemes. The FS, known for its ubiquity
in nature and applications across diverse fields, serves as the foundation for exploring the
multiplicative variations proposed in this study.

The TFS represents a fresh approach to the generalization of the CFS. It is a
significant advancement in the field of FS and a generalization of the CFS, offering a wide
range of fascinating properties and applications. The MTFS, an extension of the classical FS,
has garnered substantial interest in recent mathematical research, particularly concerning

Second and Third-order derivations under specific Schemes. The FS, known for its ubiquity
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in nature and applications across diverse fields, composes the foundation for exploring the

multiplicative variations proposed in this study.

There has been a great deal of research on the TFS. J. Z. Lee and J. S. Lee [38] were
the first to propose the TFS. Koshy’s book [4] is an excellent source for these applications. In
1985, Attanasov popularized the concept of the CFS and introduced a new TFS design. The
TFS connects three integer sequences, where the elements of one sequence are part of the
generalization of the others, and vice versa. Singh and Sikhwal computed the MCFS and

additive TFS, both have significant properties.

Under two distinct Schemes, Kiran Singh Sisodiya, Vandana Gupta, and Kiran
Sisodiya [41] investigated several features of the fourth-order MCFS. Omprakash Sikhwal,
Mamta Singh, and Shweta Jain examined various aspects of the fifth-order CFS. In 2014,
Krishna Kumar Sharma et al. [70] formulated the additive-linked Fibonacci sequences of r'h
order and demonstrated their diverse features. Bijendra Singh and Omprakash Sikhwal
explored both the primitive aspects of Second-order TFS and several features of additive TFS.
The MTFS of the Second order was examined from multiple perspectives by Mamta Singh,
Shikha Bhatnagar, and Omprakash Sikhwal [52]. The properties of Second-order MTFS were
extensive by Satish Kumar, Hari Kishan, and Deepak Gupta [71]. Additionally, K.S.
Sisodiya, V. Gupta, and V. H. Badshah [72] illustrated different characteristics of Second-
order TFS. B. Singh, Kiran Singh Sisodiya, and Kiran Sisodiya [73] further enhanced the
Second-order MTFS and provided convinced fundamental characteristics. Shoukralla [74]
obtained a numerical solution to the first kind of Fredholm integral equation using the matrix

form of the Second-kind chebyshev polynomials.

The Second-order MTFS introduces a novel dimension to the classical sequence by
incorporating three distinct initial values and employing three specific Schemes for its
evolution. This extension beyond the traditional Fibonacci paradigm unveils a richer tapestry
of numerical relationships and behaviors, prompting a deeper investigation into the
underlying mathematical structure. Building upon this exploration, the study delves into the
Third-order MTFS, expanding its complexity by introducing nine specific Schemes. This
extension amplifies the intricacies of the sequence, offering a more nuanced understanding
of its behavior and potential applications. The literature surrounding FS and its derivatives
has witnessed a surge in interest due to their relevance in various scientific and computational

domains. Previous studies have often focused on additive properties and relationships within
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the Fibonacci framework. However, the current research contributes significantly by
extending the scope to multiplicative operations under specific Schemes, thereby paving the
way for novel insights into the mathematical landscape. This literature review sets the stage
for a comprehensive analysis of MTFS, emphasizing its potential impact on both theoretical

Mathematics and practical applications.

Overall, the MTFS of the Second and Third order, with three and nine specific
Schemes appropriately, presents a unique and intricate exploration of mathematical
sequences, contributing to a broader understanding of Fibonacci-related structures and their
potential applications. In the Second order, the sequence is generated by considering three
initial values and using a set of rules that dictate the multiplication of the last three terms to
obtain the subsequent term. Exploring different Schemes adds complexity and diversity to the
sequence, uncovering unique numerical behaviors. Moving into the Third order, the
investigation expands to nine distinct Schemes, each contributing to the richness and
complexity of the sequence. The interplay of these Schemes yields an MTFS sequence with
intricate dynamics, offering mathematicians and researchers a wealth of material for analysis
and exploration.

This introduction encapsulates a pioneering study in the realm of mathematical sequences,
showcasing the remarkable versatility and adaptability of the Fibonacci framework when
subjected to multiplicative operations. The exploration of specific Schemes introduces a
nuanced understanding of the sequence's evolution, offering a solid platform for further

research and diverse applications in various mathematical and computational domains.

In this note, we present some elemental view that will be used to formulate
Multiplicative Triple Fibonacci Sequence (MTES) of Second and Third order with delightful

properties.
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Figure 3.1: Fibonacci Numbers Spiral [77]
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In Fig 3.1, The Fibonacci spiral in the figure is constructed by arranging squares whose side
lengths correspond to Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.). Each
square’s dimensions represent the sequence’s increasing values. By connecting the corners of
these squares with quarter-circle arcs, the figure forms a spiral. This spiral visually
demonstrates the Fibonacci sequence's exponential growth pattern and its approximation of
the golden ratio. Such spirals are commonly found in nature, such as in the arrangement of

sunflower seeds, shells, and galaxies, highlighting the connection between Mathematics and

natural phenomena.

Figure 3.2: Types of Fibonacci Sequence

Fig 3.2 illustrates different variations of the Fibonacci sequence. CFS are modified versions
where each term is generated based on a coupling between previous terms. MCFS variations
where the relationship between the terms involves multiplication and coupling of previous
terms.TFS is an extension of the Fibonacci sequence where the next term is calculated based
on the previous three term instead of two.MTFS is an extension where the terms are

calculated based on a multiplicative relationship among three previous terms.

1" order CFS with 2
schemes under addition

2 order CFS with 4
schemes under addition

31 order CFS with 8
schemes under addition

4% order CFS with 16
schemes under addition

5% order CFS with 32
schemes under addition

Figure 3.3: Hierarchical Structure of CFS Under Addition
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Fig 3.3 illustrates hierarchical structure of the CFS under addition, with different orders and
Schemes: 1% order CFS represents the basic CFS with two Schemes, where the terms are
derided by adding two coupled sequences.2™ order CFS are more complex sequence with
four Schemes, extending the coupling process to a Second level. 3™ order CFS involves eight
Schemes, further expanding the coupling and addition process. 4™ order CFS are more
advanced version with sixteen Schemes, counting the pattern of CFS under addition.5™" order
CFS are most complex, involving thirty-two Schemes, representing the highest order of

coupling in this structure.

1% order MCFS with 2
schemes under
Multiplication

2% order MCFS with 4
schemes under
Multiplication

3 order MICFS with 8
schemes under
Multiplication

MCFS 1

4% order MCFS with 16
schemes under
Multiplication

5% order CFS with 32
schemes under

Multiplication

Figure 3.4: Structure of MCFS Under Multiplication

Fig. 3.4 outlines the structure of the MCFS under multiplication , showcasing different
orders and Schemes. 1% order MCEFS is most basic form of MCFS with two Schemes, where
terms are generated using a multiplication process between coupled sequences.2™ order
MCEFS is more advanced version with four Schemes, extending the multiplication based
coupling to a Second level.3™ order MCFS increases in complexity with eight Schemes,
involving further multiplication of coupled sequence.4™ order MCFS is higher level sequence
with sixteen Schemes, expanding the multiplicative coupling process even further.5" order
MCES is most complex sequence, involving thirty-two Schemes, representing the highest

level of multiplicative coupling in the FS structure.
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1% order TFS with 3
schemes under addition

24 order TFS with 9
schemes under addition

TES

3" order TFS with 27
schemes under addition

41 order TFS with 81
schemes under addition

Figure 3.5: Structure of TFS

Fig. 3.5 represents the structure of the TFS under addition, featuring different orders and
Schemes. 1% order TFS is the basic form of the TFS, where each term is derived from the
sum of the previous three terms, with three Schemes for generating the sequence. Second
order TFS is more complex extension, incorporating with nine Schemes, where the coupling
and addition process are applied at the Second level. Third order TFS involves twenty-seven
Schemes, expanding the addition process to further include previous terms at an even higher
level. 4% order TFS is the most complex version in this series, with eighty-one Schemes,

involving a highly intricate addition process across multiple levels.

1% order MTFS with 3
schemes under

Multiplication

224 order MTFS with 9
schemes under
Multiplication

MTFES

31 order MTFS with 27

schemes under

Multiplication

4% order MTFS with 81
schemes under

Multiplication

Figure 3.6: Structure of MTFS
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Fig. 3.6 illustrates the structure of the MTFS, showcasing increasing complexity through
various orders and Schemes. 1% order MTFS generates terms by multiplying the previous
three terms, utilizing three Schemes for sequence generation. Second order MTFS is a more
complex version that applies the multiplicative relationship at a Second level, incorporating
nine Schemes to enhance the sequence formation. Third order MTFS further expands the
multiplicative structure, using twenty-seven Schemes for generating terms through the
multiplication of three previous terms in more intricate patterns. Fourth order MTFS is most
advanced level in this series, with eighty-one Schemes, where the multiplicative

relationships become increasingly elaborate across multiple levels.

3.1.1 Motivation for Studying Second and Third Order MTFS

Second and third-order MTFS present a distinctive mathematical framework where
multiplicative recursions interact with structured generation schemes. From a theoretical
perspective, their study is motivated by the richness of their nonlinear behaviour, the
complexity arising from sensitivity to initial conditions, and the intricate patterns that emerge
through higher-order relations. These properties invite deeper analytical exploration,
encouraging the development of new mathematical tools for sequence classification, growth
analysis, and stability examination. Furthermore, investigating these structures contributes to
a broader understanding of how multiplicative processes can produce both predictable
periodicities and unpredictable fluctuations, offering fertile ground for future theoretical

advancements.
3.2 Second Order MTFS

Let {X}2,, {¥}2 {Z}2, be three infinite sequences with initial values
.+, , and which are referred to as the 3-F Sequence or TFS.

If = %= %= %= ¥H=adA=

Then the there are nine different Multiplicative Triple Fibonacci Sequence Schemes, each
defined by initial values , and .These sequences evolve through distinct multiplicative
relationships, generating unique patterns and behaviors. Additionally, we will introduce

parameters , , and to further enhance the complexity and richness of these sequences.

J. Z.Lee and J.S.Lee [48] defined following nine different Schemes of multiplicative triple

Fibonacci sequences are as follows:
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Table 3.1 Second Order MTFS Schemes

Scheme X, o ¥ Zne2
1 Y1 % Zye X X1 %
2 Zor1 1y Xov1 2 e X
3 K1 ¥, Y1 % Zrer Ko
4 ¥ X Z ¥ X 1. Z
5 X 1 Z ¥ X Z ., ¥
6 Z . X X ¥ N
7 X 1 X ¥ ¥ Z 7
8 ¥ ¥ EIE X 41 X
9 Z .7 X 11 X ¥ ¥

Properties of 7%, 8% and 9" Scheme.Below are the first few terms of the 7" Schemes:

Table 3.2: Some terms of 7" Scheme

X ¥ Z
0
1
2
3 2 2 2
4 2 3 23 2 3
5 35 35 35

The 8™ Scheme's initial terms are listed below:

Table 3.3: Some terms of 8" Scheme
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X ¥ zZ
0
1
2
3 2 2 2
4 23 23 2 3
5 35 35 35

Following are the first few terms of the 9" Schemes:

Table 3.4: Some terms of 9" Scheme

X ¥ zZ
0
1
2
3 2 2 2
4 23 2 3 23
5 35 35 35

O. P. Sikhwal, M. Singh, and S. Bhatnagar [52] examined a wide range of Second-order

results.
3.3 Main Results of 2" Order MTFS

We will present some other results on the MTFS of Second order under three specific
Schemes and Third Order under nine Schemes in this chapter.
Now, under Schemes 7%, 8™ and 9% we introduce some results of the MTFS of Second

Order:

Theorem 3.1: For each whole number
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(@) X% 41 =X ¥
FnyFn+

(b) ¥ .1 =¥"¥ !

€ Zu=%Z"
Proof: These results are confirmed by the induction hypothesis.

(a) If =0, then
X, = X,°X,"
= Xl
For =0, the base case holds.

Assume the identity holds for some integer . Then for +1

X o =X X (By Scheme No. 7)
=X, X "X X (By given Hypothesis)
=x, " “x
= X, *1x, *2

The conclusion is valid for all integers = 0. Similar evidence is available for the remaining

parts (b) and (c).

Example based on Theorem 3.1
Consider a Fibonacci sequence , in this sequence, each term is obtained by adding the two
preceding terms, usually beginning with the initial values 0 and 1.
0,1,1,2,3,5,8,13, 21.........
0=0 ,=1 ,=1 3=2, ,=3, 5=5andsoon.
Let {¥ }_o, {¥ }*-o and {Z }*, be three sequences where each term is the product of the
two preceding ones, such that
{¥ }*.0=133927243,............
Where,
X=1X%=3X%=3X%=9 X, =27, X =243 and so on...
{¥ }-, =23,6,18,108,1944.........
Where,
=2 ¥ =3 % =6, % =18 ¥ =108, ¥ = 1944 and so on...
{Z ¥, =14416,64,1024,........
Where,
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Z=1,4=4,2% =44 =16,2, =64, Z = 1024 and so on...
This example verifies Theorem 3.1 for the sequences defined above- The theorem provides a

closed-form formula for the terms of the sequence generated under Scheme 7,
expressing X .1 in terms of the initial values X, and X; raised to powers based on the
standard Fibonacci sequence. We will now check if the computed value of X5, ¥ and
Zs using the recurrence matches the value given by the theorem's formula.
Now we are going to apply the result of part (a) of theorem 3.1
X a=XXx"
Put =4, X, =X X"
X5 = X,°X,°
=(1)°@®)°
= 243
Now we are going to apply the result of part (b) of theorem 3.1
K=t K"
Put =4, ¥, =¥'¥"
K= Kthe
= 2°©)°
= 1944
Now we are going to apply the result of part (c¢) of theorem 3.1
Za=Z,Z "
Put =4, Zq=Z%Z*"
Zs = Z,"%,°
= (1)°@4)°
= 1024
As the calculations show, the results from the multiplicative recurrence (243, 1944, 1024)
match exactly the results predicted by the formulas in Theorem 3.1. This provides a concrete
numerical verification of the theorem's correctness for these specific initial conditions and
demonstrates the utility of the closed-form expression in calculating terms directly without

iterative multiplication.

Theorem 3.2: For each natural number

(X ¥Z )= (X¥%Z) (X1%7)
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Proof: We will confirm this result with the help of induction hypothesis
If =1, then
(¥1971) = (Ko%7Zo) 0(¥ ¥ 7))
= (X1¥71)
For =1, the base case holds.
Assume the identity holds for some integer . Then for +1
(¥ ¥ nZ n) =X ¥ ¥ _)EZZ 1)
=X ¥Z )(X _1¥ 1Z )
= (Xo%Zo) (X1¥Z) (Xo¥Zo) 2(X1¥Z)
=(Xo¥%7Z0) 7 rx¥Z) T
=(Xo¥%Z0) (X1¥Z) =

The conclusion is valid for all integers = 1.

Example based on Theorem 3.2
The Fibonacci sequence  is defined such that each term is the sum of the two preceding
ones, typically starting with 0 and 1.
0,1,1,2,3,5,8,13, 21..cccune.
0=0 1=1 ,=1 3=2, ,4=3, 5=5andsoon.
Let {¥ }*_o, {¥ }*_o and {Z }*-, be three sequences where each term is the product of the
two preceding ones, such that
{¥1}_0=24832256............
Where,
X =2, X% =4, % =8, X% =32, X, = 256 and so on...
{(¥¥o=111111........
Where,
¥=1¥=1%¥=1%=1 % =1andsoon...
{Z }°-p = 2,3,6,18,108,1944, ........
Where,
Z=2,4=3,%=6,%=18 2 =108 and so on...
This example is designed to test the identity in Theorem 3.2- The theorem establishes a
relationship for the product of the th terms of all three sequencesX , ¥ and Z . It claims this

product can be calculated solely from the products of the initial terms X, ¥, Zg and X;, ¥,
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Z, again using Fibonacci numbers as exponents. We will verify this for
Now we are going to apply the result of theorem 3.2
(X ¥2 ) =Xo¥%z) (aHZ)
Put
(¥a¥aZ) = (Xo%Z) +H(¥ ¥ 7)) *
(256 x 1 x108) = (2 x 1 x 2)?(4 x 1 x 3)3
27648 = (4)%(12)°
=16 x 1728
= 27648

4.

The equality holds, confirming Theorem 3.2 for this case. It is noteworthy that even though

the ¥ sequence remains constant at 1, the theorem still accurately captures the combined

multiplicative growth of the three coupled sequences.

Theorem 3.3: For each whole number ;

2 2
(@ X X 11X 42 =X% X

2 +1 2 +2
(b) ¥ ¥ u¥.2=% "

2 +1 2 +2

Proof: These results are confirmed by the induction hypothesis.

24129
If = O, theIlXoX]_Xz = Xo X]_

_ X02X12
= XoXoX1X1
= XX XoX,
= XoX1.X;

= 0, the base case holds.

For

Assume the identity holds for some integer . Then for + 1.

X 11X 10X 13 = (X 11X X 11X 1)

= (X 11X +1)(X 12X 42)

= (X 1 X X )X X 11X 42)
)

+1, 2

X1

+1+2

2 2 a2
=X X ) (Xo

2 +2 41 2 +2
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The conclusion is valid for all integers = 0.

For the remaining sections (b) and (c), comparable evidence is provided.

Example based on Theorem 3.3
The Fibonacci sequence  is defined such that each term is the sum of the two preceding
ones, typically starting with 0 and 1.
0,1,1,2,3,5,8, 13,21, .cocuoun.
0=0 1=1 -,=1 3=2, ,=3, 5s=5andsoon..
Let {X }*_o, {¥ }*_o and {Z }*_, be three sequences where each term is the product of the
two preceding ones, such that
{¥ }*-, =4,5,20,100,2000,200000............

Where,
X =4, X% =5 X% =20, % = 100, X, = 2000 and so on...

{¥ ¥, =1774934316807........
Where,
Y=1L¥=7%=7 %¥=49 ¥ =343 and so on...

{Z ¥, =2,4,8,32,256,8192........
Where,
Z=2,4=4,4 =8,4 =32, 2 =256 and so on...
This example serves to validate Theorem 3.3, which provides an identity for the product of
three consecutive terms of a single sequence. For instance, part (a) gives a formula
for X X ;1X 4o. We will check if this formula holds true for the given sequences at = 2.

Now we are going to apply the result part (a) of theorem 3.3

+1 2

2
XX +1X +2 :XO X]_

2 2
For =2, XXX, =X, °x°

4

XX =X N
20 x 100 x 2000 = 445°
20000 = 20000
Now we are going to apply the result part (b) of theorem 3.3

2 n,.,2 42

¥¥u¥oo=% ¥

23 .24
For =2, K¥¥h=% ¥

4

23 2
K¥¥ =% H
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7 % 49 x 343 = 1476
17649 = 117649
Now we are going to apply the result part (¢) of theorem 3.3

1,2 42

2
Z Z +1Z +2 = ZO Zl
2 3_24
For = 2, 222324 - Zo Zl
23_24
ZngZ4 - Zo Z]_
8 x 32 x 256 = 244°
65536 = 65536
The successful verification for all three sequences strengthens the proof by induction
provided for Theorem 3.3. It illustrates the theorem's application across different sequences
governed by the same multiplicative scheme.
Theorem 3.4: For each whole number and every natural no. = 2;
(a) X 4 +1¥+ -1 =X X ++1l¥ _2¥+_11
(b) ¥4 +1Z + -1 = ¥ ¥++1lZ 2z +_1l

(C) Z + +1X + -1 - Z Z ++11X _ZX +_11

Proof: These results are confirmed by the induction hypothesis.
If =2then X 3¥ 41 =X 10X 11¥ 11
=X X X ¥
=X ¥ ¥Y¥,,
=X ¥O¥Y,

For = 2, the base case holds.
Assume the identity holds for some integer . Then for + 1.
X+ 0¥, =X L X4+ ¥4 ¥4 o

=X+ ¥ DX L ¥y )

=X X 0¥ ¥ X X ¥ ¥ T

+

=X 1x ++11+ y 2t sy +‘11+ -2
=X "X ++12¥ 1y +1
The conclusion is valid for all integers =0, =2.

Similar evidence is available for the remaining parts (b) and (c).
Example based on Theorem 3.4
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The Fibonacci sequence  is defined such that each term is the sum of the two preceding
ones, typically starting with 0 and 1.
0,1,1,2,3,5,8, 13,21, ............
0=0 ,=1 ,=1, 3=2, ,=3, s=5andsoon..
Let {¥ }_o, {¥ }*-o and {Z }*-, be three sequences whose terms is the multiplication of the
two preceding ones such that
{¥ }*.0=133927243,............
Where,
X =1,X%X=3X=3 X%=9 X, =27, X =243, X; = 6561 and so on...
{¥ }-, =23,6,18,108,1944........
Where,
=2 ¥ =3, % =6, ¥ =18, ¥ =108, ¥ = 1944 and so on...
{Z }-,=14416,64,1024,........
Where,
Z=1,4 =424 =4,4 =16,2, =64, Z = 1024 and so on...
This example demonstrates the more complex identity stated in Theorem 3.4- The theorem
relates a term from one sequence X . 41 and another from a different sequence ¥ . _; to a
product of four earlier terms from both sequences, with Fibonacci number exponents. We test
part (a) for specific values =2and = 3.

Now we are going to apply the result of part (a) theorem 3.4
X + +1¥+ -1 =X X +1¥ _2¥+_11

+1
For =2and =3
Xo¥a = XK1 K1 ¥
108 x 6561 = 329361181
708588 = 708588
The result is verified, demonstrating the intricate cross-sequence relationships that Theorem
3.4 captures. This complexity highlights the rich structure inherent in the Multiplicative

Triple Fibonacci Sequences.

Similarly, we can apply the result in parts (b) and (c).

Theorem 3.5: For every integer =0, =2;

(a) X+ +17’4Z + -1 =X }{++117’4Z _ZZ +_:I_l
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(b) ¥oXse =% ¥++11X X +_1l

© Zina¥+a=Z2 Z++11¥ ¥
Proof: A similar proof can be given as in theorem 3.4.

Theorem 3.6: For every integer = 0;
(a) XOX 4 :XO +3_1X1 +4
() #¥ =% K

(C) ZOZ +4 — ZO +3_1Z:l +4
Proof: We can prove the theorem by the method of mathematical induction.
We can also prove theorem 3.1 to theorem 3.6 with the help of Schemes 8" and 9.

3.4 3" ORDER MTFS

Let{X}2,, {¥}2, {Z}22, be three infinite sequences with initial values , , |,

, , and , which are referred to as the 3-F Sequence or TFS.
If}(0: ’¥0: ’Z0:1X1: 1¥1:’Z1: ’X2:1¥2: :Z2:>
Then the following are twenty-seven different MTFS Schemes:

Table 3.5: Third Order MTFS Schemes

Scheme X 43 ¥ i3 Z 43
1 ¥onZ i X Z oo Ko ¥ X oy ¥ o1 Z
2 X g X i X ¥op ¥or ¥ Z 070 2
3 Xi2.Z 41 ¥ ¥ X112 Z i ¥ X
4 Z oy ¥l X X g Z o0 ¥ ¥ o X1 Z
5 X g ¥ o1 Z ¥opZ i X Z oy X o ¥
6 X2 X 41 ¥ ¥i2 ¥ 2 Z 2.2 y1. X
7 X g ¥ i X ¥opZ oy ¥ Z oy X o1 Z
8 ¥ g X 1 X Z ¥ ¥ X g Z 11 Z
9 X2 X 1.2 ¥ ¥ X Z 2.2 41 ¥
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10 X 0.2 41. X ¥ 0. X ¥ Z.i. ¥z
11 Z i X 41 X X 0. ¥ 1. ¥ ¥ 027
12 ¥i2¥11. 2 Z 0. Z 1 X X2 X 11 ¥
13 ¥i.Z2 ¥ Z i X7 X 0. ¥ 1. X
14 Z.i. ¥ ¥ X 0.2 1.7 ¥ i X 1. X
15 ¥i0.Z2 7 Z 0. X 1. X X 0. ¥ 1. ¥
16 Z 0¥ 412 X 2.2 41. % ¥ 42X ¥
17 Z 2.2 41 ¥ X2 X112 ¥a2 ¥ X
18 Z . X . ¥ X 0¥ 1.2 ¥ 0. Z 1 X
19 ¥ X1 ¥ Zi¥n”Z X2 Z 11 X
20 X2 ¥ 41 ¥ ¥i2Z4n 72 Z i X 1. X
21 ¥ i ¥ X Z 0.2 1. ¥ X 0. X 1.2
22 X 0. Z 1.2 ¥ i X 41 X Z i ¥ ¥
23 ZipXn”Z X2 ¥ 41 X ¥i2Z ¥
24 Z 0. Z 1. X X 0. X 1. ¥ ¥ 0¥ Z
25 ¥ o X Z Z 0. ¥ 1 X X 0.2 1. ¥
26 ¥ ¥ a1 ¥ Z.i2Z241. 2 X2 X 41 X
27 Z . 217 X 0. X 41 X ¥ ¥ ¥
Table 3.6: Some terms of 1% Scheme of Third order
X ¥ Z
0
1
2
3
4 2 2 22 2 2
5 432 43 2 4 3 2
Table 3.7: Some terms of 2" Scheme of Third order
X ¥ Z
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23

Table 3.8: Some terms of 34 Scheme of Third order

X ¥ Z
0
1
2
3
4

Table 3.9: Some terms of 4™ Scheme of Third order

X ¥ Z
0
1
2
3 i
4 2 2 22 2

Table 3.10: Some terms of 5™ Scheme of Third order

X ¥ Z
0
1
2
3
4 2 2 2 2 22

Table 3.11: Some terms of 18™" Scheme of Third order
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X ¥ Z
0
1
2
3
4 22 2 2 2 2
Table 3.12: Some terms of 25" Scheme of Third order
X ¥ Z
0
1
2
3
Table 3.13: Some terms of 26™ Scheme of Third order
X ¥ Z
0
1
2
3
4 2 2 2 2 2
5 23 4 34 2 3
Table 3.14: Some terms of 27" Scheme of Third order
X ¥ Z
0
1
2
3
4 2 2 2 2 2
5 2 34 3 4 23
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3.5 Main Results of 34 Order MTFS

Now we present some results of MTFS of Third order under 1%, 2d 3rd 4th 5t 1gth =75t
26Mand 27t:

Theorem 3.7: For each natural no. = 2:
:OX +6¥ +6Z 16 _ (X +5¥ +5Z 15)(X 6% +6Z +6)
—oX +a¥ +4Z 44 (Xa¥%Z4) (X5 ¥%7Z5)

Proof: We demonstrate these findings through induction hypothesis:

If =2, then

20X w6 ¥ woZ o _ (Xo¥eZe) (X7 %:%1) (Xs % 7s)
20X ¥ aZ 10 (Xa¥aZa)(Xs%Zs) (Xs¥%oZs)
_ (X7 ¥%Z7) (X ¥%73)
(Xa¥Zs) (X5 %575)

For =2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some integer . Then for +1
:éX +6¥ +6Z +6 (X w7¥ 17Z 17) (X +6¥ +6Z 46
:éX wa¥ aZ 14 (X 45¥ 157 4s) —oX +a¥ +4Z 44
(X ¥ 4Z )X i5¥ 1572 15)(X 16¥ 167 +6)
(K as¥ o7 ) (aHaZa) (K %o Z5)
_ (X 16¥ 167 +6)(X +7¥ 77 17)
- (X4 ¥4Z4) (X5 %Z5)

The conclusion is valid for all integers = 0.

Theorem 3.8: For each whole no.

X ¥Z )X 11¥ 117 +1) _ 1
(X +3¥ +3Z +3) (X 12¥ 127 42)
Proof: By induction hypothesis, we have
If =0, then
(Xo¥0Zo)(X1¥1Z1) (Xo¥0Z0)(X1¥1Z1)
(X3¥3Z3)  (BZ1X0) (ZoX1¥0) (X2 ¥1 Zo)
(Xo¥0Zo)(X1¥1Z1)

(Xo¥0Zo) (X1¥17Z1)(X2¥,Z5)
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_ 1
 (Xo¥oZ,)
For =0, the base case holds.
Assume the identity holds for some integer . Then for + 1.
X +1¥ 1Z 1) (X 12¥ 107 10) X +1¥ +1Z +1)(X 12¥ 107 1)
¥ 0¥ 142 1) (X 43X 10X 1)(¥ 13¥ 10¥ 1) (Z 4sZ 1oZ 11)
_ X +1¥ 1Z 1) (X 12¥ 107 1)
X ¥ aZ )X 12¥ 07 10)(X s3¥ 137 43)
_ 1
(X 43¥ 137 13)

The conclusion is valid for all integers = 0.

Theorem 3.9: For every integer = 0:
(X ¥ Z2 )X 11¥ 112 +1) _ 1
(X +3¥ +3Z +3) (X 42¥ 422 42)
Proof: These results are confirmed by the induction hypothesis.
If =0, then
(Xo¥oZo)(X1¥aZ1) _ (Xo¥0Z0)(X1¥171)
(X3¥3Zs3) (¥2Z1X0) (Z2X1¥0) (X2¥1Z0)
_ (Xo¥0Z0)(X1¥1Z1)
(XoYoZo) (X1¥121) (X2¥22Z2)
_ 1
 (Xo¥oZ)
For =0, the base case holds.

Assume the identity holds for some integer . Then for + 1.

(X +1¥ 112 1) (X 2¥ 22 +2) _ (X +1¥ 112 )X 2¥ 22 42)
(X +4¥ +4Z +4) (X +3X 42X +1) (¥ 3¥ 12 1)@ 432 122 11)

(X 41¥ 12 )X 42¥ Z 42)

- (X 11¥ 112 )X 2¥ 12 )X 13¥ 32 43)
_ 1
(X +3¥ 432 +3)

The conclusion is valid for all integers = 0.

now we will present the identities of 3' order MTFS under Scheme no. 1.

Theorem 3.10: For each integer =0
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(@) ¥ 0= ¥ 6. ¥ 5. 22,

(b) ¥ o= ¥ 52,5 %2,

(©) Z vo= 26 X5 ¥y

Proof: These results are confirmed by the induction hypothesis.

If =0 then

Xg = ¥g.Z7. %g
= 7, %g. ¥5.27. %o
= X2 ¥5. 72
= X2, ¥5. Xg. ¥5.Z4. %6. ¥5. 24

= Xg. ¥2. 75

For =0, the base case holds.

Assume the identity holds for some integer . Then for + 1.

X410 =¥ 4.2 18X 47

=Z 43X +7.¥ 462 48X 47
=¥2,2. ¥ 6.2 .8
=X¥2,7. ¥ 6. (% 47.¥ 462 45)°

_y4 3 2
=X"47. ¥ 16245

The conclusion is valid for all integers = 0.

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.11: For every integer =0

(a)
(b)
(©)

k=0 XK2k+10 =
k=0 Y2k+10 =

k=0 Z2k+10 =

k=0 Y2k+9 - Zok+8: Kok+7
k=0 Z2k+9 - Kok+8: Yok+7

k=0 K2k+9 - Yok+g: Zok+7

Proof. These results are confirmed by the induction hypothesis.

For =0 then X,o = ¥g.Zg. %7

This is true by first Scheme.

We'll proceed by assuming that the outcome is accurate for some integer

Hence

Now for

| _
k=0 Xok+10 =

=1+ 1. Then

|
k=0 Y2k+9 - Zok+8. Kok+7
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1+1 |

¥orro  Zoks Xoke7 = ¥ou+1)+9-Zog+1)+8 Xo(+1)+7-  Yok+9 - Zok+s: Koka7

= X2(|+1)+10. II(ZO ka:lo (By induction hypOthGSiS)

Thus, the result is true for = |+ 1. Hence by induction method the result is true for any
positive integer

Similar proof can be given for remaining parts (b) and (c).

Theorem 3.12: For each integer =0

(@) k=0 K3k+10 = =0 Y3k+9 - Zak+8- X3k+7
(b) k=0 Y3k+10 =  =0Z3k+9 - X3k+8: Yak+7
(©) k=0Z3k+10 = =0 X3k+9 - ¥3k+8: Z3k+7

Induction can also be used to support this.

Theorem 3.13: For each integer =0, f=1.

(a) ke Kek+10 = ko Tek0 - Zekas Keka7
(b) ko Yek+10 = ko Zrk+9 - Kekrs: Yeka7
(©) k=0 Zy+10 = k=0 Kewro - Yekas Leka7

Induction can also be used to support this.

Theorem 3.14: For every integer =0,5=0

(a) k=0 Kok+3+s = k=0 ¥orr2+s - Lok+1+s Kokrs
(b) k=0 Yok+3+s = =0 Zok+2+s  Koka1+s Yokts
(c) k=0 Zogeges — k=0 Kok+o+s - Yore1+s Lokes

These results are confirmed by the induction hypothesis.

For =0, we have X,,3 = ¥,,5.Z,41. X, Wwhich is true by the first Scheme.
We'll proceed by assuming that the outcome is accurate for some integer = I.
Hence :(:o Kok+10 = L:o ¥ok+9 - Zok+g: Xok+7

Now for =1+ 1. Then
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I+1 |

¥2k+s+2 '22k+s+1' X2k+s = ¥2(I+1)+s+2' ZZ(I+1)+5+1' XZ(I+1)+5- ¥2k+s+2 ' ZZk+s+1' X2k+s
— | . . .
= Xoatyrers oo Xokrard (By induction hypothesis)
— I+ —
keo Xok+s+3 = L.H.S.
The conclusion is valid for all integers =1+ 1.

Therefore, according to the induction process, the conclusion is valid for all positive
integers

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.15: For every integer =0, =0,5=0

(a) k=0 Rekrs+3 = k=0 ¥errst2 - Lekst1- Rekers
(b) k=0 ¥rk+s+3 = k=0 Z1fk+s+2 ' xrk+s+1' ¥rk+s
(c) k=0 Zigrses = k=0 Rekrs+2 - Frirsr1 Lekrs

Proof. These results are confirmed by the induction hypothesis:

For =0, wehave X,,3 = ¥

12 Zor1- K this is true by first Scheme.

We'll proceed by assuming that the outcome is accurate for some integer = I.
|

Hence L:o RKek+10 = ko Yek+ - Zekrs: Rek7
Now for =1+ 1. Then
I+1 [
¥rk+s+2 : Zrk+s+1' xrk+s = ¥r(|+1)+s+2- Zr(l+1)+s+l' xr(l+1)+s- ¥rk+s+2 'Zrk+s+1' xrk+s
k=0 k=0
= Ke(+1)+s+3- L:o Kekrst3 (By induction hypothesis)
= :::10 Rekrs+3
=L.H.S.
The conclusion is valid for all integers =1+ 1.

Consequently, by induction, the result is valid for any positive integer

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.16: For every integer = 2,
-2
(¥o¥oZo) (%1¥aZ1) "T(%o¥oZp) ™2 = (Xa¥aZs)  (Xs¥sZs)
Proof: These results are confirmed by the induction hypothesis.

For = 2, we have
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(X0¥0Z0)? (X1¥1Z1)3 (Ko¥oZ2)? = (X1¥1Z1) (X2¥0Z2)? (X3¥aZ3)? (By Scheme No. 1)

= (XZ¥222)(X3¥323) (X4¥4Z4) (By Scheme No. 1)
= (Xs¥sZs)

For =2, the base case holds.

Assume the identity holds for some integer = I. Then for =1+ 1.

-2
Hence (Xo¥oZo)' (X1¥1Z1) " (%o¥oZ,) "2 = (X3¥3Z3) ~ (Xs¥sZs)

Now for =14+ 1. Then

l+1 142

(Xo¥oZo) (X1¥aZ1)  (K2¥aZy)
|

= (Xo¥oZo) (%o¥oZo) (K1¥121) " (K1 ¥121) (X ¥oZo) "2 (X2 ¥aZy)

1+3

|
= (Xo¥0Zo) (K1¥1Z1) "L (Ko¥0Z2) "2 (Ko ¥0Z0) (K1 ¥121) (K2 ¥0Z2)
I—2 .
= (X3¥aZ3)  (Xs5¥sZ5) (Xo¥oZo) (K1 ¥1Z1) (Ko ¥oZs) (By hypothesis)
-2
= (X3¥sZ3) (Xs5¥s5Z5)(X3¥aZs3) (By Scheme No. 1)

-1
= (Xs¥sZ3) (¥5¥sZs)
The conclusion is valid for all integers =1+ 1.

So, the answer is true for any positive number n using the induction method.

Theorem 3.17: For each integer = O:

(@) X6 +a = 5_%

(0) ¥ +4 =~

(©)Z6 4= —5
Proof: We can prove the result with the help of mathematical induction.

Theorem 3.18: For every integer = 0:

6 +m—1x
— =0 ¥
(a) XI +m — 6_+m—4x
=0 3

6 +m-—1
¥
— =0 ¥
0¥ m =~
=0 3

6 +m—-1
Z
— F =0 ¥
(C) ZI +m T 76 +m—45
=0 ¥
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Proof: With the aid of mathematical induction, we can demonstrate the conclusion.

Also, we can prove theorem 3.7 to theorem 3.17 with the help of Scheme no. 2", 31, 4t
5t 18t 25t 26t and 27,

3.5.1 Possible Applications of Second and Third Order MTFS

While the theoretical aspects of MTFS are compelling, their structural characteristics also
support a range of practical uses. In cryptography, the unpredictable evolution of such
sequences can underpin secure key generation, resilient hashing algorithms, and robust
pseudorandom number systems. Communication technologies may exploit their recursive
complexity for data protection methods, including encrypted transmission protocols and
watermark embedding in digital content. In scientific and engineering contexts, MTFS
models can be adapted to represent systems with compound growth, cyclic feedback, or
iterative construction examples include certain biological population models, network traffic

simulations, and recursive algorithm design.
3.5.2 Significance of the Derived Identities

The identities established in this chapter for second- and third-order Multiplicative
Triple Fibonacci Sequences (MTFS) are central to understanding the algebraic structure and
functional behavior of these extended recursive systems. By expressing explicit relationships
among the terms of the coupled sequences, these identities help clarify how the multiplicative
nature of the recurrence interacts with the initial conditions and the specific scheme chosen.
Such formulations provide insight into the inherent patterns that may not be immediately

apparent from the recursive definitions alone.

From a theoretical standpoint, these identities reinforce the internal consistency of the MTFS
framework and offer a formal basis for analyzing its general behavior. They also enable a
more systematic investigation into the properties of the sequences, such as growth trends,
symmetry, and sensitivity to initial inputs, all of which are crucial in the study of coupled

nonlinear systems.

Beyond their theoretical relevance, the identities contribute to practical aspects of recursive
modeling. They facilitate computational efficiency by reducing reliance on stepwise

calculations and can be used to verify algorithmic implementations of MTFS-based processes.
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Furthermore, these results hold potential for adaptation in areas such as cryptographic
constructions, coding theory, and recursive data generation. Overall, the proven identities not
only enrich the mathematical landscape of MTFS but also support its extension to higher-

order systems and applied domains.

3.6 Conclusion:

The study of the MTFS of the Second order under three specific Schemes and the
Third order under nine specific Schemes has illuminated a fascinating realm of mathematical
intricacies and potential applications. This investigation into these extended FS has deepened
our understanding of their structural properties. The explorations of the MTFS of the Second
order under three specific Schemes and the Third order under nine specific Schemes have
revealed a rich tapestry of mathematical intricacies and potential applications. The study not
only extended the classical TFS but also introduced multiplicative factors that add a layer of
complexity and depth to the sequences' behavior. Through a systematic analysis of the
recurrence relations and initial conditions, we observed the emergence of distinct patterns
under each specific Scheme. The Second-order MTFS exhibited unique properties influenced
by carefully designed Schemes, demonstrating the sensitivity of the sequence to the choice
of initial conditions. Expanding our exploration to the Third-order case, introducing nine

specific Schemes further diversified the mathematical landscape.

“Within the second- and third-order multiplicative triple Fibonacci sequences lies a progression from simplicity
to layered complexity, where each increase in order reveals new algebraic identities and deeper structural

patterns.”
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Chapter-4

Multiplicative Triple Fibonacci Sequence of

Fourth Order

The work presented in this chapter has been published in the form of
a research paper entitled “Multiplicative Triple Fibonacci Sequence of

Fourth Order” in the Scopus Indexed.
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4.1. Introduction

The Fibonacci Triple Sequence is a recent guideline for the universality of the
Coupled Fibonacci Sequence. The Fibonacci numbers and their underlying abstract principle
can be used in almost every area of science. Koshy's book [4] is the best reason why this is
important. K.T. Atanassov was the first to set up the Coupled Fibonacci Sequence. He also
looked into many interesting properties and a current protocol for generalizing the Fibonacci
Sequence.First Additive Triple Sequence was approved by J. Z. Lee and J.S. Lee [48].
Atanassov came up with a new idea for the Additive Triple Fibonacci Sequence, which he

called the 3-Fibonacci Sequence or the 3-F Sequence.
4.1.1 Motivation for Studying Fourth-Order MTFS

The fourth-order Multiplicative Triple Fibonacci Sequence (MTFS) extends the
conceptual scope of its lower-order forms, introducing a richer framework of interactions
among the three component sequences. Unlike the second- and third-order cases, where
multiplicative coupling follows comparatively simpler pathways, the fourth order reveals a
more layered and intricate interplay, giving rise to previously unseen identities and complex
recurrence relations. Investigating this higher order not only deepens the theoretical
understanding of multiplicative systems but also clarifies how increasing structural depth
influences growth dynamics and algebraic behavior. Such insights may, in turn, inform
advanced cryptographic methods, refined mathematical models, and recursive algorithmic

designs where complexity and unpredictability are essential features.

4.2. MTFS of Fourth order:

Let {Xi}2o{¥i}i2o and {Z}i2obe three infinite sequences and called 3-F Sequence or
Triple Fibonacci Sequence with initial value a,b,c,d, e, f,g,h,i,j,k and | be given. Xy =
a¥o=bZy=cX=d¥ =62 =fX=0Y¥=h2Z=i%X=j¥ =kZ =
Then there are 81 Schemes of MTFS of fourth order. Here, we are presenting some identities

of fourth order under nine specific Schemes and these nine Schemes are as follows:

Table 4.1: Some Schemes of 4™ order MTFS we worked on

Scheme X ¥ Z

1 X 43X 10 % 41X ¥ 3 ¥ 0¥ ¥ Z 3.2 422 41.2

77




2 ¥ 2 ¥ 40 ¥ ¥ Z 52 49 % 41.2 X 43X 40 X 41X
3 Z 32 02 +1.2 X 2. X 10X 41X ¥ 2 ¥ 40 ¥ 1 ¥
4 X o ¥ 102 41X ¥ 152 10X 41 ¥ Z 3% 42 ¥ 4.2
5 Z 3 X 0¥ 412 X 43 ¥ 402 41X ¥ 2.2 10X 41 ¥
6 ¥ 2.2 10X 41 ¥ Z a3 X 0¥ 4.2 X 43 ¥ 402 41X
7 X a2 10 ¥ 41X ¥ 12X 107 4. ¥ Z 13 ¥ 40 X 4.2
8 ¥ o X 102 41 ¥ Z ¥ 0% 412 X 432 42 ¥ 41X
9 Z 3 ¥ 10X 412 X 43.2 12.¥ 41X ¥ 2. X 402 41.¥
Table 4.2: Some terms of MTFS of 4™ order of 1% Scheme
X ¥ z
0
1
2
3
4
5 2 22 2 2 2 222
Table 4.2: Some terms of MTFS of 4™ order of 2" Scheme
X ¥ z
0
1
2
3
4
5 222 222 2 22
Table 4.3: Some terms of MTFS of 4 order of 3" Scheme
X ¥ z
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D B~ W DN

222 2 22 222

Now we present the identities of 4% order MTFS under Scheme no. 1%, 2nd, 3 4th " 5t 6t

7% 8t and 9th,
4.3 Main Results of 3" Order MTFS
We will prove all the results by using Scheme no. 1

Theorem 4.1: For every natural number = 2,

-2
(Xo¥oZo) (K1¥1Z1) "1(Xo¥oZs) *2(Xa¥aZs) ™2 = (Xa¥aZ3)(X4¥aZs)  (Xe¥eZo)
Proof: The induction method allows us to demonstrate the aforementioned:

For = 2, we have

2 3 4 5
(Xo¥0Zo) (¥1¥121) (Ko¥oZs) (X3¥aZs)
= (K1 ¥121) (%2 ¥27)? (K3¥aZs) (Ka¥aZa)?
= (Ko¥oZ5) (Ks¥3Z3) (X ¥aZs) (K5 ¥sZs)
= (X3¥3Z3) (Xe¥6Zo)
For =2, the conclusion is correct.
We'll proceed by assuming that the outcome is accurate for some integer
Then for +1
+1 +2 +3 +4
(Xo¥oZo) (X1¥1Z1)  (Ko¥aZa)  (Xa¥aZs)
+1
= (Xo¥oZo) (K1¥121) (X2¥o20) (Ka¥aZ3) (Xo¥oZo) (X1¥aZ1)
(Ko¥22Z;) "2 (Xg¥aZs) *°
-2 .
= (Xs¥aZs) (Ks¥aZs) (Xa¥aZs) ~ (Ko¥eZo) (By hypothesis)
-1
= (Xs¥aZ3)(X4¥aZs) ~ (X6¥oZe)
The conclusion is valid for all integers + 1. Therefore, according to the induction process,

the conclusion is valid for every positive integer = 2.
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Theorem 4.2: For every even integer = 2,

- = —|+2
(X ¥ Z )[2]()( +1¥ +1Z +1)[2]+1(X +2¥ +2Z +2)[2]+ (X +3¥ +3Z +3)[§]+3
2
= (X +2¥ 422 +2)(X +3¥ 432 +3) (X +a¥ +4Z +4)
Proof:

These results are confirmed by the induction hypothesis.For = 2, we have
2 3 4 3
(%2¥oZ2) (Xs¥aZs) (Xa¥aZs) (Xs¥sZs) = (X3¥aZs)(%s¥4Z4)*(¥s¥sZs) (Xs¥eZo)

2
(X4¥4Zq) (Ks¥sZs) (%7¥72Z7)
For = 2, the conclusion is correct.
We'll proceed by assuming that the outcome is accurate for some integer

Then for +1
+2 +2 +2 +2
(% 2% 422 12) 2 (K 1g¥ 42 1) 2 TNk ¥ saZ )2 120K oY s 4e) 2

=0 2o¥ o2 ) ¥ a2 L) ¥ LZ )BT LY LeZ L)

Now we will bring each part of this equation by solving and putting its value here.

= (X a1 a2 +1)[E]+l(x ¥ Z )[E]H(x —1¥ 17 —1)[E]+1(X ¥ L2 —2)[E]+1

(X +a¥ 432 43)2 "2
= (X 12¥ 422 +2)[§]+2(X +1¥ 12 +1)[§]+2()( ¥ Z )[§]+2(x _1 ¥ _ 7 _1)[§]+2

(X +4¥ +4Z +4)[E]+3
= (X +3¥ +3Z _,_3)[5]_'_3()( +2¥ +2Z +2)[E]+3()( +1¥ +1Z +1)[E]+3(X ¥ Z )[E]-'-3

(X +5¥ 152 45)D
= (% 14¥ 142 )T a¥ a2 L)X ¥ 02 )ET K Y a2 L)

now putting the value of equation (4.2), (4.3), (4.4) and (4.5) in equation (4.1), we get
(X +2¥ +2Z +2)[§]+1(X +3¥ +3Z +3)[E]+2(X +4¥ +4Z +4)[§]+3(X +5¥ +5Z +5)[E]+4
= (% ¥ waZ )P 2Oy gz bl Ly oz )bl

(X +2¥ w22 )X ¥ 2 DT ¥ 2Rk v iz )12
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(X +3¥ +SZ +3)[E]+3(X +2¥ +2Z +2)[5]+3(X +1¥ +1Z +1)[§]+3(X ¥ 72 )[§]+3

(X +4¥ 142 +4)[E]+4(X +3¥ 432 +3)[E]+4(x ¥ oZ +2)[E]+4(X ¥ 12 +1)[E]+4
SJ+a

= (K ¥ a2 D ¥ o2 DI ¥ o )X ¥ 2 )

— - - —|+4
(X ¥ Z )[2]+1(X +1¥ +1Z +1)[2]+2(X +2¥ +2Z +2)[2]+3(X +3¥ +SZ +3)[2

O ¥ 2 DI ¥ 2 B2 ¥ 2 )F(K ¥ aZ )
X ¥ 7 B ¥ Lz ERx ¥ 2 YK L gz L)
now we use given hypothesis for every line,
= (X 43¥ 132 13)(X +4¥ w4Z 4a) _Z(X +5¥ +5Z +5)
(X 2o¥ 122 22)(X 43¥ 12 43) 0K +a¥ 1aZ +o)
(% 1¥ 1Z 1) (X +2¥ 2Z 12) _Z(X +3¥ +3Z 43)
(X ¥ 2 )(X 41¥ 112 41) _Z(X ¥ 27 42)
= (% +4¥ 142 1)(X +5¥ 452 45) _Z(X +6¥ +6Z +6)
The conclusion is valid for all integers + 2. As a result, using the induction method, the

conclusion holds for any positive even integer = 1.

Theorem 4.3: For every odd integer =1,

(X ¥z )[E](X +1¥ 112 +1)[E]+1(X 2 ¥ o7 +2)[§]+2(x +3¥ 437 +3)[§]+3
- (X +1¥ +1Z +1)(x +2¥ +2Z +2) (x +3¥ +SZ +3)

Proof: These results are confirmed by the induction hypothesis.

For = 1,we have
0 2 3
(X1¥aZ1) (Xo¥oZs)(Ka¥aZs) (Ka¥aZs) = (Ko¥oZ)(Xa¥sZs)?(Xa¥eZs)
For each odd number = 1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some odd integer

Then for +1
+2 +2 +2 +2
(% 2% 422 12) 2 (K 1g¥ 42 1) 2 TNk ¥ saZ )2 20K s¥ 52 4e) 2 )

=(X +2¥ 422 +2)[5]+1(X +3¥ 432 +3)[5]+2(X +4¥ 442 +4)[5]+3(X +5¥ 457 +5)[5]+4

Now we will bring each part of this equation by solving and putting its value here.
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(X +2¥ 427 +2)[5]+1
= (% w1¥ w2 )P T00¥ 2T ¥ iz )T Ly Lz )R

(% . 3¥ 37 +3)[5]+2
= (X 1% 422 )X ¥ 2 )ER6 ¥ 2 )R ¥z )

(X +4¥ +4Z +4)[E]+3
= (X +3¥ +3Z +3)[5]+3()( +2¥ +2Z +2)[5]+3()( +1¥ +1Z +1)[E]+3(X ¥ Z )[E]+3

(X +5¥ +5Z +5)[5]+4 =
(X +4¥ +4Z +4)[E]+4(X +3¥ +3Z +3)[§]+4()( +2¥ +2Z +2)[E]+4(X +1¥ +1Z +1)[§]+4

now putting the value of equation (4.7), (4.8), (4.9) and (4.10) in equation (4.6), we get
(X 22X 102 DK ¥ o2 TR ¥ a2 L DERK e o2 e
= (% ¥ w2 )B00¥ 2Oy Lz btk vz )l
(X w2¥ 202 )2 ¥ 2 )P0k ¥ 2R iy iz )R

(X +3¥ +3Z +3)[E]+3(X +2¥ +2Z _,_2)[5]_'_3()( +1¥ +1Z +1)[5]+3()( ¥ Z )[E]-'-S

(X +a¥ a2 +4)H+4(X +3¥ 432 +3)[E]+4(x +2¥ 422 +2)[E]+4(X ¥ Z +1)[E i

_ _ _ >|+4
= (X +1¥ +1Z +1)[2]+1(X +2¥ +2Z +2)[2]+2(X +3¥ +3Z +3)[2]+3(X +4¥ +4Z +4)[2]

_ ik - =|+4
(X ¥ Z )[2]+1(X +1¥ +1Z +1)[2]+2(X +2¥ +2Z +2)[2]+3(X +3¥ +3Z +3)[2]+

+4

(X —1¥ —1Z _1)[§]+1(X ¥ 2 )[E]+2(X +1¥ +1Z +1)[5]+3()( +2¥ +2Z +2)[E
(X ¥ 2 M x ¥ Lz )P0 ¥ 2 )ER(x ¥ L2 +1)[5]+4
Now we use given hypothesis for every line,
-2
= (X +2¥ 422 +2)(X +3Y 432 +3) (X +4¥ +aZ +a)
-2
(X +1¥ 412 +1)(X 42¥ 122 42) (X 43¥ 432 43)
(X ¥ Z )(X +1¥ +1Z +1) _Z(X +2¥ +2Z +2)
-2
(X —1¥ —1Z —1)()( ¥ Z ) (X +1¥ +1Z +1)

-2
= (X +3¥ 432 +3)(X +a¥ 442 +4) (X +5¥ +5Z 45)
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The conclusion is valid for all integers + 2. As a result, using the induction method, the

conclusion holds for any positive odd integer = 1.

Theorem 4.4: For every integer =0,

@ | h2o Kk = KaXoKig. Ko +a

(b) igoﬂ Yk = ¥a¥o¥14..... ¥10 +4

© | 20 2 = ZaZoZia.Bro 44

T

Proof: These results are confirmed by the induction hypothesis.

For =1 then
14
Ry = J KoKy KoK K KsKe K7 Kg KoK 10K11X10K 13X 14
k=0
= ,/Xixéxil
= KaXoX14
For each odd number = 1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some odd integer

Then for +1

10 +14
Ky
k=0
10 +4
= [X10 +5X10 +6X10 +7X10 +8%10 +9%X10 +10%X10 +11%X10 +12X10 +13%X10 +14 X
=0

= ‘Ix%o 9% +1a¥aXoX14..... X1g 44

= XaXoX14..... %10 +14
The conclusion is valid for all integers + 1. As a result, using the induction method, the

conclusion holds for any positive odd integer = 1.

Theorem 4.5: For every integer =1,

(a) / oo K = KoKig.. Ko —1
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Proof: Similar to the theorem above, this one can be proved through mathematical induction.

Also, we can use Scheme no. 274, 31, 4th 5t gth 7t =@t and 9th to prove theorem no. 4.1

to 4.5

4.3.1 Significance of the Derived Identities

The identities established in this chapter for fourth-order MTFS hold significant
theoretical and practical value. At the core, these identities reveal how complex multiplicative
relationships evolve across three interlinked sequences under higher-order recurrence. Their
derivation through mathematical induction not only validates the internal structure of the

sequence but also ensures logical consistency across various recurrence schemes.

These results contribute meaningfully to the general theory of coupled recursive sequences.
By identifying fixed patterns, multiplicative symmetries, and functional dependencies, the
identities provide deeper insight into how initial conditions and scheme selection influence
long-term behavior. This understanding becomes essential when considering the sequences'

use in algorithmic modeling or theoretical studies of growth dynamics.

From a practical standpoint, these identities can be applied in computational contexts where
recursive, nonlinear processes are used such as in cryptographic key design, pseudorandom
number generators, or simulations involving multiple interacting systems. Furthermore, they
help in classifying different fourth-order schemes based on algebraic behavior, opening the

door to future generalizations or modular extensions in higher-order MTFS research.

4.3.2 Possible Applications of Fourth-Order MTFS

The fourth-order MTFS exhibits notable behaviors and identity patterns across
various recurrence schemes, indicating several areas where these sequences may find
meaningful applications. Their rapid growth and high sensitivity to initial conditions make
them particularly suitable for roles in secure data transmission, cryptographic key generation,
and pseudorandom number generation. Furthermore, the structured yet adaptable nature of

these recursions allows them to be employed in modeling complex systems—such as multi-
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phase population dynamics, recursive financial systems, or computational algorithms that rely
on layered feedback mechanisms. The flexibility offered by the multiple scheme variations
also enables customization of sequence behavior to meet specific mathematical or practical

requirements in algorithmic and security contexts.
4.4 Conclusion:

The study of the fourth-order Multiplicative Triple Fibonacci Sequence (MTEFS)
across nine distinct Schemes has brought to light intricate mathematical behaviors and
valuable application prospects. By embedding multiplicative factors into classical Triple
Fibonacci Sequences, the research introduced enhanced complexity and dynamic variations.
Careful analysis of recurrence formulas and initial terms revealed unique sequence patterns,
showing the strong influence of both initial conditions and the specific Scheme applied. This
work significantly contributes to a deeper understanding of the structural properties of

advanced Fibonacci sequences and emphasizes their diverse mathematical potential.

“Just as relationships in life grow more complex with each new connection, the fourth-order multiplicative
triple Fibonacci sequence shows how adding layers of interaction transforms simple beginnings into intricate
and unpredictable outcomes.”
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Chapter-5
Coupled Lucas Sequence of Second order and
Fibonacci Lucas Sequence’s Determinantal

Identities

The work presented in this chapter has been partially published in the
form of a research paper entitled “Application of Coupled Lucas
Sequence of Second Order” in a Scopus Indexed Journal (Q3), and
partially presented orally in an International Conference related to

“Fibonacci—Lucas Sequence’s Determinantal Identities.”
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5.1 Introduction

The Fibonacci numbers and polynomials are important concepts that are utilized in a
variety of mathematical disciplines, such as algebra, combinatorics, approximation theory,
geometry, graph theory, and number theory itself. The rabbit-reed problem is possibly the
most well-known application of the Fibonacci numbers. It was initially published by
Leonardo de Pisa in his book "Liber Abaci" in the year 1202, and it is believed to be named
after him. A large number of authors have written on their varied and lovely properties as
well as their many and varied uses. As seen in the graphic on page [4] of the book by Koshy,
the mathematical sequences associated with the Fibonacci numbers and the Lucas numbers
are among the most intriguing ever discovered. Numerous identifiers have been catalogued in

the form of a comprehensive list that may be found in Vajda's work [75].

In order to study Fibonacci numbers, a long form of unity matrices and determinants
is used. Cahill and Narayan [56] looked into the Fibonacci and Lucas numbers' historical
background as determinants of several tridiagonal matrices. Atanassov and Suman, Amitava,

and K. Sisodiya[76], respectively, present the interconnected Jacobsthal Sequence y and the
correlated Second order recurrence relation by creating two sequences, {X }io and {¥ }oio,

which they refer to as 2F Sequences. The way they accomplish this is by creating two

interconnected sequences.

T. Koshy is the author of a book that consists of two chapters and focuses on the
application of matrices and determinants in relation to the Fibonacci numbers. The creation of
classes of identities for Generalized Fibonacci numbers was accomplished by Bicknell-
Johnson and Spears [62] by the application of fundamental matrix operations and
determinants. One can find a variety of helpful and amazing techniques for determining the
future in the excellent survey articles. A significant amount of focus has been placed on the
interpretation of matrices, in particular when their entries are presented in a recursive fashion.
The sequence of numbers known as the Fibonacci numbers is made up of integers 0 and 1,
with each succeeding term in the series being calculated as the sum of the two terms before it.
ie. = 4+ 5, =2and (=0 ;=
The Lucas sequence is also thought to have a similar perception. The recurrence relation
confirms that the Lucas sequence [61] is genuine.

= T =2 and 0:2, 1:1
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We use recurrence to illustrate the Generalized Fibonacci sequence {B }*_, in this area:

B =B _;+B _,, =2andBy;=2 ,B; = Where ands mustboth be non-
negative integers.

Table 5.1: Some terms of CLS

B
0 2
1
2 2 +
3 2 +2
4 4 +3
5 6 +5
6 10 +8
7 16 +13
8 26 +21
9 42 + 34

2— —1=0 is the defining equation of the recurrence relation. which actually has two

roots.

1+V5  1-v5
X = ¥ =

2 2
Now, X¥ =— L, X+¥=1X—-¥=5X2+¥2 =3,

According to the Scheme

X =¥ 4+¥, =0

¥oo=X,2+X, =0

Taking Xy = @, ¥g = b, X; = ¢, ¥, = d where a,b, ¢ and d are integers.

Hirschhorn provides clear answers to the long-standing issues with Atanassov's Second and
Third order recurrence relations. Recently, coupled recurrence relations of order five were
found by Singh, Sikhwal, and Jain. Additionally, Carlitz et al. [65] provided a
representation for a unique sequence. The "Coupled Lucas Sequence of Second Order"
emerges as a captivating exploration within the domain of number theory, building upon the
foundations laid by the classical LS. This innovative extension introduces a dynamic

interplay between two distinct Second-order LS, weaving a tapestry of numerical
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relationships that transcend the conventional boundaries of sequence theory. As a testament
to the continuous evolution of mathematical inquiry, this study delves into the intricacies of
the coupled sequences, unraveling a myriad of patterns, properties and applications. At its
core, the Second-order LS, defined as an integer sequence generated by a recurrence relation,
forms the basis for the coupled exploration. By introducing coupling mechanisms between
two such sequences, a new and intriguing mathematical entity emerges. This coupled
relationship manifests as a simultaneous evolution of two interconnected sequences,
influencing each other's progression in a harmonious dance of numerical dynamics. Cahill

and Narayan analyzed the origins of the Fibonacci and Lucas numbers as determinants of
certain tridiagonal matrices. By creating the sequences {X }20 and {¥ }io , Atanassov and

Suman, Amitava, K. Sisodiya [76] introduce the interrelated Second order recurrence
relation and interlinked Jacobsthal Sequence, respectively, referring to them as 2F

Sequences.

————>] Coupled

Fibonacci
Sequence
Coupled
Sequence
Coupled
> Lucas
Sequence

Figure 5.1: Structure of Coupled Sequence

Fig. 5.1 illustrates the hierarchical relationship between sequences. At the top level is the
"Coupled Sequence", which branches into two distinct types: Coupled Fibonacci Sequence.
One branch leads to the "Coupled Fibonacci Sequence" suggesting it is a variant or extension
of the traditional Fibonacci sequence, possibly modified by a coupling rule or relationship.
Coupled Lucas Sequence has the branch leads to the "Coupled Lucas Sequence" indicating a
similar variant or extension of the Lucas sequence, also with some form of coupling rule.

This structure shows that the "Coupled Sequence" serves as a foundational concept that can
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lead to either a coupled version of the Fibonacci or Lucas sequences, depending on the

branching path.
5.1.1 Motivation for Studying CLS and Their Identities

The Second-Order CLS builds upon the classical Lucas sequence by introducing a
system of two interdependent sequences that evolve simultaneously. This coupling results in
more intricate algebraic relationships and reveals properties that are absent in the standard
Lucas or Fibonacci sequences. Through the study of such coupled structures, one can uncover
meaningful identities and determinant-based expressions that shed light on the underlying
interconnections within recursive systems. Additionally, due to its responsiveness to initial
conditions, CLS has potential applications in areas such as mathematical modeling,
cryptographic design, and algorithmic computation. This chapter aims to establish a
collection of fundamental identities that reflect both the theoretical richness and the applied

relevance of these sequences.

5.2 Coupled Lucas Sequence Of Second Order

The sequences { }i 0 and {M }i Owill coincide and the sequence { }o: 0will turn into a

generalized Lucas sequence if

weset = and =
Where,
O( ) ) = 1( ) ) =

+2( ) ):M +1( | )+2M( | )’

:l,+2,+2+2

M=,, +2, +2 +2

Following are the first few terms.

Table 5.2 First few terms of Second order coupled Lucas sequence

N
0
1
2 + 2 +2
3 +2 +2 +2 +2
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4 +2 +4 +4 +2 +4 +4
5 6 +8 +5 +2 5 +2 +6 +8

Taking Lucas sequence
2= 4t+2 , =0
Mi2=M4+1+2, =0
We defined 2-L. Sequences as coupled order recurrence relations for Lucas numbers and
Lucas sequences.
+2=Maut+t2y, =0

M= at2 , =0

Lo M2

£m+1 + ZLT” Mm1+1 T ZM]HL

Figure 5.2: Structure of Scheme of CLS

Fig 5.2 illustrates the hierarchical structure of the Scheme of CLS under addition. 2™ order
CLS represents the basic CLS with one Scheme, where the terms are derided by adding last

term and twice the Second to last term of the sequence.

5.2.1 Significance of the Derived Identities of CLS

The identities established in this chapter provide a rigorous framework for
understanding the algebraic dynamics inherent in the Second-Order CLS. By articulating
precise relationships between the terms of two mutually dependent sequences, these results

illuminate the structural behavior that arises from their coupling. Such identities not only
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support analytical predictions and simplifications but also serve to distinguish the CLS from

other classes of recursive systems.

On a theoretical level, the identities deepen insight into coupled, nonlinear recurrence
relations and clarify how dual-sequence interactions can give rise to more complex behavior
than that seen in single-sequence models. From an applied perspective, these identities offer
potential utility in areas where controlled complexity and deterministic evolution are
essential—such as in algorithm design, secure data transmission, and recursive computations.
Notably, the determinantal identities bridge the study of recursive sequences with matrix
theory, offering a multidimensional viewpoint on the algebraic structure of such systems.
Collectively, these contributions reinforce the mathematical significance of CLS and

highlight its potential for further exploration in both pure and applied contexts.

5.3 Main Identities

We can derive the following properties from the above terms:

Theorem 5.1: For every odd number = 3.

1

— = (ot M1+ 2+ Mg+ —3+NM _2)
Proof: We will use a mathematical induction method to demonstrate this conclusion.
For =3,
3~ 1:M2+2M1_ 1
2 2
1+2 0+2M1— 1
2
29+ 2M;
B 2
= o+t M
The result is accurate for =2, therefore we suppose the same for . We will now

demonstrate that for + 2.

2= 1_Mu+t2y —

2 2
2 4 +2M -
B 2
__ 1+2 1 +2N
2 2
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Hence the result is true for + 2.

Example based on Theorem 5.1

Let{ }*_pand {M }*-, be two infinite sequences.

w2=M41t+2y, =0
M i>= 4++2 , =0.Suchthat

Table 5.3: Initial terms of the coupled Lucas sequence of Second order

M
0 2 1
1 4 3
2 5 8
3 14 13
4 29 24
5 50 57
6 105 108
7 222 205
8 421 432
9 842 865
10 1729 1684

Now we will apply the theorem on this example

1
2 =(o+Mi1+ 2+Mz+ ., 3+ M _p)
For =3inL.H.S.
3 1213—3
2 2
=5
Now = 3in R.H.S
oFMi+ 2+ Mg+ . 3+M = o+ M;
=1+4
=5=L.H.S



For =5inL.H.S

s— 1 57-3
2 2
=27
Now =5in R.H.S.
oFtMi+ 2+ Mg+ ... 3+tM 2= o+ M1+ 2+ Nj
=1+4+8+14
= 27=L.H.S
Hence the conclusion is valid.
For =7inLH.S
7— 1_205-3
2 2
=101
Now = 7in R.H.S.
otMi+ 2+ Mg+ .. 3+tM 2= o+ M1+ 2+ Nzt 4+ Ns
=1+4+8+14+24+50
= 101=L.H.S

Hence, the conclusion is valid for every odd number =3

Theorem 5.2: For every even number = 2.

— My

> =(Mo+ 1+Ma+ g+ . —3+NM _2)
Proof: We will use a mathematical induction method to demonstrate this conclusion.
For =2,
2~ M1 _Mi+2Mo— M
2 2
= Mo
The result is accurate for =2, therefore we suppose the same for n .We will now

demonstrate that for + 2,

+2—M1:M 1+2NM —M;

2 2
. *+2 4+2M —M;
B 2
_ _M1+2 1 +2M
2 2
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=(Mo+ 1+Mo+ 3+ . + 3t+NM 2)+(

+N )
:(MO+ 1+M2+ 3+ """""" _1+M)

Thus, the outcome is accurate for + 2.

Example based on Theorem 5.2

Let{ }*_pand {M }*-, be two infinite sequences.

+2=Muaut+t2y, =0
M i>= 4++2 , =0.Suchthat

Table 5.4 Second-order Coupled Lucas sequence's initial few terms

M
0 1 2
1 3 4
2 8 5
3 13 14
4 24 29
5 57 50
6 108 105
7 205 222
8 432 421
9 865 842
10 1684 1729

Now we will apply the theorem on this example

— M
—5 == Mo+ 1+ M F g F 3+M )
For =4inL.HS.
2 2

=13
Now =4inRH.S
Mo+ 1+Mo+ 3+ . -3+tM 2=Mo+ 1+M

=1+4+8
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=L.H.S
For =6inL.H.S.

6_M1_105_3

2 2
=51
Now =6inR.H.S
Mo+ 1+Mao+ g+ . 3+M 2=Mo+ 1+ Mot 3+ N
=1+4+8+14+24
=51
=L.H.S

For =8inL.H.S
8 _Ml _ 421 - 3

2 2
=209
Now =8inR.H.S
Mo+ 1+NMo+ 3+ . —<3+tM o2=Mo+ 1+Mot 3+ Mas+ 5+ N
=1+4+8+14+24+50+ 108
= 209
=L.H.S

For =10inL.H.S

10 — 1:1729_3

2 2
= 863
Now = 10in R.H.S
Mo+ 1+Mo+ g+ . 3+tM 2=Mo+ 1+Not 3+ NMa+ s+ Mg+ 7tMg
=1+4+8+14+24+50+ 108+ 222 + 432
= 863
=L.H.S

Hence the conclusion is valid.
Theorem 5.3: For every odd number = 3.

WZ(MO-F 1+M2+ 3F M_3+ _2)
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OR
M —M1=2(Mo+ 1+Ma+ 3+ . M 3+ _3)

Example based on Theorem 5.3
Let{ }*_pand {M }*-, be two infinite sequences.
+2=Maaut+t2y, =0

M+2: +1+2 s = 0.

Such that
Table 5.6 Initial terms of the Second-order Coupled Lucas sequence
M

0 1 2

1 2 3

2 7 4

3 10 11
4 19 24
5 46 39
6 87 84
7 162 179
8 347 336
9 694 671
10 1343 1388

Now we will apply the theorem on this example

M —M;
2
For =5inR.H.S

=(Mo+ 1+Mo+ 3+ ... M st )

Ms — M1 _ 46 — 2
2 2
22 =L.H.S

Now =5inL.H.S
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Mo+ 1+NMo+ 3+ . M 3+ 2=Mo+ 1+NMo+ 3
=1+3+7+11=22=R.H.S
For =7inRH.S

M7—M; _162-2

2 2
=80
=L.H.S
Now =7inL.H.S
Mo+ 1+NMo+ 3+ . M 3+ 2=Mo+ 1+Mao+ 3tMa+ 5
=1+3+7+11+19+ 39
=80
=R.H.S

For =9inR.H.S

MQ_M1_694_2
2 2
= 346

=L.H.S

Now =9inL.H.S

Mo+ 1+Mao+ 3+ . M 3+ 2=Mo+ 1+Mao+ 3tMa+ 5tMg+ 7
=1+3+7+11+19+39+87+179
= 346
=R.H.S

Hence the conclusion is valid.

Theorem 5.4: For every even number = 2.

MZ_ 1:(0+M1+ 2+ Mz + . M s+ -2)

Example based on Theorem 5.4

Let{ }*_pand {M }*_, be two infinite sequences.
+2=Maat2y, =0

M= at+t2 , =0

Such that

Table 5.7 First few terms of Second order coupled Lucas sequence
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M
0 1 2
1 1 2
2 6 3
3 7 8
4 14 19
5 35 28
6 66 63
7 119 136
8 262 251
9 523 500
10 1002 1047

Now we will apply the theorem on this example

M2_1:(0+M1+ >+ Mz+ . M3+ )

For =6inL.H.S

2 2
=32
=R.H.S
Now =6 inR.H.S
otMi+ 2 +NMz+...... M3+ 2= og+Mi+ ,+NMz+ 4
=2+1+3+7+19
=32
=L.H.S

Hence the conclusion is valid.

Theorem 5.5: For every positive integer

+2 +1—M +2M +1:2
M 2o -

Proof: We will prove this result by method of mathematical induction

For =1,

99



32_M3M2:(M2+2M1)2_(2+2 1)M>
MsMi— 31 (2+2 )M1—(M2+2M1) 1
_M2 2+2M1 2~ 2M2—2 1Mo
oM1+2 1M1 =Mz 1—2M;
_2M1 2—2 1Mo
2M1—M2 1
zlel 2~ 1M2]
2M1—M2 1
=2

The result is accurate for = 1.

Therefore we suppose the same for

We will now demonstrate that for + 1,

3 2 MiusMi2 (M 42+2M 1) 22— 272 )M o

MasM o= 43 41 ( 422 )M s1— (M 22+2M 1) 41
M 2%¥2M 41 2= 2N +2—2 M e
- +2M+1+2 M a—Mai2 v172M a1
2M 41 22 M w2
Y

M+ 2= +M +

+2M 11— M w2 41

=2

=2

Hence the result is true for + 1.

Example based on Theorem 5.5

Let{ }*_gand {M }*_ be two infinite sequences.

+w2=Mat2y, =0

Moo= at+t2 , =20

Such that

Table 5.8 introductory terms of the Second-order Coupled Lucas sequence
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1 2 1

2 3 6

3 8 7
4 19 14
5 28 35
6 63 66
7 136 119
8 251 262
9 500 523
10 1047 1002

Now we will apply the theorem on this example

Put =1,
Put =2,
Put =3,

+2 +1—M +2M 1 _,
M M —

32— M3V, (11x4)—(10x7)
MaM1— 31 (10x2)—(11x3)
44 — 70
~20-33
=2

43— MaNM3 (24 x11) — (19 x 10)

NMuMa— 4 o (9% 7)— (24 x 4)
_ (264) — (190)
~ (133) — (96)
=2

5 4~ MsMs (39 x24) — (46 x 19)

MsMz— 5 5 (46x10) — (39 x 11)

_(936) — (874)
~ (460) — (429)
=2

Hence the conclusionisvalid for =1,2,3,...........
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Theorem 5.6: For every integer =0
B +1 BZ+1 B3+1
B ., B, B%,[=B B%B°,B .3
B .3 B?.,; B3,

Proof:
B 1 BZ+1 B3+1

Let =B +2 BZ_._Z BS+2

B .3 B?,; B3,

Taking common out 47, 4, and 43 from 1%, 2" and 3" row respectively,
1 B, B,
=B 1B ;B 3|1 B +2 BZ+2
1 B.; B%,,
Applying ;= ,— jand 3= 3—
1 B B?,,
=B +1B 4B 43|00 B BB .3

0 B4z B 2B i3+B 1)
Taking common out B and B ., from 2" and 3™ row respectively,

1 By B%,
=B B +1BZ+2B +3 |0 1 B i3
0 1 (B +3 +8B +1)

Applying 3= 3— »

1 B, B,
=B B 1B%,,B 30 1 B .,

=B B +1BZ+2B +3

Theorem 5.7: For every integer =0

B + B+t 4+ Bt o
B+ 13 B+ 44 B+ 45=0
B+ 46 Bizt+ 47 Bigt+ g
Proof:
B + B+ 4+ Bt 4
Let =|B +3+ +3 B +4 T +4 B +5 T +5
B+ 46 Bizt+ 47 Big+ 43
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Applying 1= 1+
B+ +B g+ 4 B+ 4+ Bt 4
=B+t w3tB iyt 4 Byt 4 Bist s
B+ +w*+tBirt+ 47 Bt 47 Bigt g

B +B .+ + 4 B+ 4+ Bt 4
=B+3tB iyt 3+ 4 Byt 44 Bt s
B+6+B+7+ +6 T +7 B+7+ +7 B+8+ +8
B+ w2 Baut+t 4 Bt o
=B+ 45 Bt 44 Bisgt+ 45
B+ 4 B+t 47 Bugt g

Since 1% and 3™ columns are identical, thus we obtained the required result.

Theorem 5.8: For every integer =0

1+B 1+ 4, 1+B
1+B ,; 1+B,, 1+B ,|=8([B?>—-B?,,+B B,
Proof:
1+B 1+ ., 1+B .,
Let =[1+B.,; 1+B ., 1+B ,s
1+B .5 1+B ., 1+B .4
Applying 1= 1+

Applying 1= 1— 3

1 1+B ., 1+B .,
1+B ., 1+B .s
1 1+B ., 1+B .4

Il
=

Applying = »,— jand 3= 3—

1 B, B
1 B., B.s
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Applying = ,— iand 3= 3— >
1 B,, B

=lo 28,, 2B .,

0 2B .. 2B .,

Taking common out 2 from 2" and 3™ row,

1 B, B
=40 B4, B 4
0 B.s B .
Applying 3= 3~ >
1 B, B
=40 B, B
0 2B .3 2B .,

Taking common out 2 from 3™ row,

1 B, B

Again applying 3= 3— >

1 B,; B
=8[0 B, B4
O B,;, B
Again applying 1= 11— 3
1 0 0
=8 0O B +2 B +1
0O B, B

Again applying , = ,— 3
Againapplying 1= 11— 3

1 0 0
—glo B8 B, -8B
0 B 4 B

=8(B>—-B2,,+B B ;)

Theorem 5.9: For every integer =0

Bi  Bai1 41 Bi 42|=0
B.w B a1 B w2
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Proof:

Let =B 44 Bi1 +1 Bi1 42
B . B a1 B2 4
Taking common out B , B ,; and B ,, from 1%, 2" and 3“rowand , ,;and ,,

from 1%, 2" and 3™ column respectively,

1 11
=B B 4B 4 +1 +2|1 1 1
1 11

Since all the rows and columns are identical, thus we obtained the required result.

5.4 Conclusion:

The exploration of the Coupled Lucas Sequence of Second Order offers a profound
insight into the broader field of sequence theory, especially in relation to other well-known
sequences such as the Fibonacci sequence and the Generalized Fibonacci-Lucas sequence.
Throughout the history of mathematical research, these sequences have been recognized for
their fascinating properties and significant applications in various fields such as number
theory, computer science, cryptography, and even nature. The current study of the Coupled
Lucas Sequence of Second Order continues in this tradition, pushing the boundaries of what

we know about recursive sequences and their applications.

The Lucas sequences, much like the Fibonacci sequences, are defined by a set of
recurrence relations. However, the unique feature of the Coupled Lucas Sequence of Second
Order lies in its coupling mechanism, which intertwines two independent sequences into a
single structure. This coupling adds a layer of complexity and elegance, as each term in one
sequence depends not only on the preceding terms of its own sequence but also on the
corresponding terms of the other sequence. This disconnectedness introduces intricate
patterns and dependencies, leading to behaviors that are much more complex than those

observed in simple sequences like Fibonacci or Lucas on their own.

Through theoretical analysis, it has been demonstrated that these coupled sequences
possess unique identities and properties that distinguish them from other known sequences.
By utilizing inductive reasoning and computational methods, it is possible to uncover new
identities and relationships within the Coupled Lucas Sequence. Inductive reasoning, in

particular, plays a crucial role in predicting novel outcomes, as it allows researchers to
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extrapolate from known patterns to discover previously unrecognized properties of the

sequence.

The initial values of the two sequences in the Coupled Lucas Sequence of Second
Order play a significant role in determining their behavior. These initial values act as seeds
that define the growth and evolution of the sequences over time. Small changes in these
initial conditions can lead to vastly different outcomes, revealing the sensitivity and
complexity of the system. The recurrence relations, which govern the progression of the
sequences, ensure that each term is calculated based on a fixed formula, but the interaction
between the two sequences adds an additional layer of unpredictability and complexity to the

system.

One of the most intriguing aspects of this research is the way in which the
simultaneous evolution of the two sequences creates a harmonious relationship between them.
Each term in the sequence is intricately linked not only to the preceding terms of its own
sequence but also to the corresponding terms in the coupled sequence. This disconnectedness
suggests that the sequences are working together in tandem, each influencing the other’s
progression in a delicate balance. This relationship introduces a deeper level of structure to
the sequences, which could have far-reaching implications for other areas of Mathematics,

especially in the study of dynamical systems and complexity theory.

The investigation has also revealed practical applications of the Coupled Lucas
Sequence of Second Order. Beyond its theoretical significance, the sequence can be applied
in fields such as cryptography, where the complex relationships between terms in the
sequence could be used to generate secure encryption keys. Additionally, the sequence’s
intricate patterns and behaviors could have applications in computer science, particularly in
algorithms related to recursive functions and optimization problems.

In conclusion, the study of the Coupled Lucas Sequence of Second Order has unveiled a rich
mathematical structure that blends theoretical elegance with practical applications. The
combination of recurrence relations and coupling mechanisms introduces new complexities
that challenge our understanding of traditional sequences, offering new avenues for research
and discovery. By continuing to explore the properties of these sequences, mathematicians
can gain deeper insights into the nature of recursion, interdependence, and complexity,
enriching the broader field of sequence theory. The potential for uncovering new identities

and applications within this framework remains vast, promising exciting developments in
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both theoretical and applied Mathematics.Moreover, the practical applications of the coupled
sequence extend into various domains. The coupling mechanism, while inherently
mathematical, holds promise for applications in cryptography, optimization, and other areas
where the dynamic interplay of numerical relationships can be harnessed for practical
purposes. This underscores the relevance of pure mathematical exploration, demonstrating

that seemingly abstract concepts can find meaningful applications in the real world.

Moreover, the practical applications of the coupled sequence extend into various domains.
The coupling mechanism, while inherently mathematical, holds promise for applications in
cryptography, optimization, and other areas where the dynamic interplay of numerical
relationships can be harnessed for practical purposes. This underscores the relevance of pure
mathematical exploration, demonstrating that seemingly abstract concepts can find

meaningful applications in the real world.

“Just as the rhythm of the seasons follows an unseen order, the coupled Lucas sequence and Fibonacci—Lucas
determinantal identities reveal how separate elements can move in harmony, creating patterns that are both

predictable and profound.”
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Chapter-6
Summary and Conclusions

6.1 Summary of the Research Work

This thesis presents a comprehensive study of various coupled extensions of
Fibonacci and Lucas sequences, focusing on their multiplicative forms, higher-order
constructions, and the identities they satisfy. The investigation spans multiple orders and

structural schemes, offering a systematic development of algebraic results in this area.

In Chapter 2, we explored the fifth-order Multiplicative Coupled Fibonacci Sequence (MCFS)
under a specific recurrence scheme. Several novel identities were derived and proved through
mathematical induction. The results demonstrated the influence of the selected scheme on the

behavior of the sequences and provided a foundation for deeper analysis.

Chapter 3 addressed the second- and third-order Multiplicative Triple Fibonacci Sequences
(MTFS). Here, we introduced recurrence relations involving three coupled sequences and
established identities based on these interactions. The derivations highlighted the role of

initial conditions and recurrence structure in generating sequence patterns and symmetries.

In Chapter 4, the study was extended to fourth-order MTFS. By analyzing a variety of
recurrence schemes, we obtained a broader class of identities. The work also examined
structural behavior across schemes, revealing distinctions in algebraic complexity and

sensitivity to initial values.

Chapter 5 focused on the Coupled Lucas Sequences (CLS) of the second order and their
generalizations. Identities involving both additive and multiplicative properties were
established, including determinantal identities that linked the sequence behavior with matrix
algebra. These results connected recursive sequence theory with linear representations and

provided further scope for mathematical modeling.

Each chapter applied methods such as mathematical induction, determinant expansions, and

combinatorial logic to develop and validate the proposed identities.

6.2 Major Contributions of the Study
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This research contributes several key results to the field of recurrence sequences and their

generalizations:

® Development of new identities for coupled Fibonacci and Lucas sequences,
especially in their multiplicative and higher-order forms.

® Introduction of structurally varied schemes that highlight the dependence of
identity formation on recurrence rules.

® Demonstration of sensitivity and complexity in coupled sequences due to
interactions across multiple sequences.

® Application of determinant methods to formulate compact and generalized
identities, linking sequence behavior with linear algebraic structures.

® (lassification and comparison of schemes, illustrating how different

formulations yield distinct algebraic properties.

These findings not only enhance the theoretical understanding of coupled recursive systems
but also pave the way for future applications in mathematical modeling and computational
algorithms.

6.3 Concluding Remarks

The work undertaken in this thesis has led to a rich collection of identities and
theoretical insights into coupled and multiplicative Fibonacci and Lucas sequences. Through
rigorous derivation and scheme-wise comparison, the study establishes a strong foundation
for future research in generalized recursive structures. The identities and formulations
presented here not only expand the mathematical framework of such sequences but also
highlight their versatility in modeling complex systems and supporting computational
methods. The results serve as a bridge between classical sequence theory and modern
applications, reinforcing the relevance and adaptability of recurrence relations in

contemporary mathematical discourse.
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Scope for Future Research

Although the present study covers a wide range of coupled sequence types and recurrence

schemes, several directions remain open for further exploration:

Extension to sixth-order and hybrid coupled sequences, such as those combining
Fibonacci and Lucas characteristics.

Investigation of modular behavior, periodicity, and convergence in different
arithmetic settings.

Analysis of the computational complexity and algorithmic implementation of
these sequences in real-world applications.

Exploration of their potential in cryptographic systems, pseudorandom number
generation, and error correction codes.

Study of matrix representations, spectral properties, and connections with linear
transformations in higher dimensions.

We can prove the result of CFS of order 2™, 3™, 4t and 5%, also the results on
some special Scheme with the help of Mathematical induction.

Coupled Fibonacci sequence of 2™ and 3 order can be obtained as MTFS.
Coupled Lucas sequence of 3™, 4" and 5 can be derived as 2™ order.

Determinantal identities can be obtained with the help of MCFS and MTFS.

These paths offer promising avenues to deepen both theoretical and applied aspects of

recurrence sequence research.
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Application of Second Order Coupled Lucas Sequence
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Abstract - Fibonacci numbers and polynomials have been
widely studied due to their importance in mathematics, physics,
and business. The Coupled Fibonacci Sequence (CFS) and
Multiplicative Coupled Fibonacci Sequence (MCFS) contain
useful identities but depend on previous terms for computation.
The Lucas Sequence (LS) also displays notable properties in
number theory. This study investigates the second-order
Coupled Lucas Sequence (CLS), in which two interdependent
sequences evolve in tandem. Through mathematical analysis
and simulations, we uncover patterns, periodicities, and
structural relationships within the sequence. Additionally, the
research explores its promising applications in cryptography,
optimization, and algorithm design. A deeper understanding of
CLS enhances number theory and offers insights into broader
mathematical systems. This study contributes to mathematical
research by revealing intricate connections between sequences
and emphasizing the elegance and utility of coupled sequences
across disciplines.

Index Terms- 1.8, FS, CFS, MCFS, CLS.

L. INTRODUCTION

umerous fields, including algebra, combinatorics,

approximation theory, geometry, graph theory, and
number theory itself, have benefited from it., the Fibonacci
numbers and polynomials play a crucial role. Perhaps the
most well-known application of the Fibonacci numbers is in
the rabbit breeding puzzle, which Leonardo de Pisa first
presented in his book "Liber-Abaci" in 1202. Numerous
authors have explored their various characteristics and
broadened usefulness. The Fibonacci and Lucas numbers are
undoubtedly two of the most fascinating mathematical
sequences, as illustrated in Koshy's book [1]. A long list of
identities can be found in Vajda's book [2] and includes
numerous identities. There is a long form of unity matrices
and determinants to study Fibonacci numbers. AK.
Awasthi, Vikas Ranga, and Kamal Dutt [14] discuss the
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extension of Fibonacci sequences using specific
multiplicative schemes.
5.5
8x8
Q 3x3
13x13
>

Fig 1. Fibonacei Spiral with golden ratio

Fig 1, represents the Fibonacci Spiral, formed using squares
with side lengths following the Fibonacci sequence (2 x 2, 3
% 3,5 x5, 8 x%8,...). A quarter-circle arc inside each square
creates a spiral-like curve, approximating the Golden Spiral,
seen in nature, art, and architecture. It visually demonstrates
the connection between the Fibonacci sequence and the
Golden Ratio, showcasing proportional and symmetrical
growth patterns.

The "Coupled Lucas Sequence of Second Order" emerges
as a captivating exploration within the domain of number
theory, building upon the foundations laid by the classical
LS. This innovative extension introduces a dynamic
interplay between two distinct second-order LS, weaving a
tapestry of numerical relationships that transcend the
conventional boundaries of sequence theory. As a testament
to the continuous evolution of mathematical inquiry, this
study delves into the intricacies of the coupled sequences,
unraveling a myriad of patterns, properties, and applications.
By introducing coupling mechanisms between two such
sequences, a new and intriguing mathematical entity
emerges. This coupled relationship manifests as a
simultaneous evolution of two interconnected sequences,
influencing each other's progression in a harmonious dance
of numerical dynamics.

Volume 55, Issue 9, September 2025, Pages 2668-2677
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Multiplicative Triple Fibonacci Sequence of
Second Order under Three Specific Schemes and
Third Order under Nine Specific Schemes

A. K. Awasthi, Member, I[AENG, Vikas Ranga, Kamal Dutt

Abstract—The Fibonacci sequence (FS) can be found in
various aspects of nature. This sequence has applications in
multiple fields of mathematies and real-world scenarios. The FS
is used to build various algebraic structures, including the
Fibonacci group, Fibonacei graph, Fibonacci lattice, Fibonacci
quaternion and Fibonacci octonion. This theory has gained
significant attention recently and is now considered a major
area of number theory. In recent years, there has been
considerable interest in the growth of knowledge in the general
area of Fibonacci numbers and related mathematical problems.
Triple Fibonacci sequences (TFS) have gained popularity
recently, although multiplicative triple equations of recurrence
relations are less well-known. In 1202, Leonardo of Pisa, also
known as Fibonacci (which means "son of Bonacci"), introduced
the results of his investigati into expanding a rabbit
population. The FS is recognized as a sequence with astonishing
properties. In 1985, K.T. Attanasov introduced the Coupled
Fibonacci Sequence (CFS), and further developments were
made in 1987. However, compared to the additive form of TFS,
the multiplicative form of TFS is less well-known. The
multiplicative triple Fibonacci sequences (MTFS) of the second
and third order represent a novel extension of the classical FS,
introducing three specific schemes for the second order and nine
specific schemes for the third order. This mathematical study
explores the intricate relationships between numbers in a
multiplicative context, revealing fascinating patterns and
properties.

Index Terms- FS, CFS, TFS, MTFS.

I. INTRODUCTION

Onc well-known integer sequence is the Fibonacci

sequence (FS). Mathematicians have long been
fascinated by this series. The FS has applications in numerous
fields, including architecture, engineering, computer science,
physics, nature, art, and more. By altering the recurrence
relation, the initial condition, or both, the FS can be
generalized. This broader form is known as the generalized
Fibonacci sequence. Several authors have explored second-
order generalized Fibonacci sequences in the literature. The
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Fibonacci numbers appear in many remarkable scenarios
andare abundant in nature, often represented in images of
fruits, vegetables, and flowers. Mathematical scholars have
been deeply interested in the study of Fibonacci numbers and
related mathematics for centuries.

Triple Fibonacci sequences (TFS) represent a novel
approach to generalizing the Coupled Fibonacci Sequence
(CFS). The TFS is a significant advancement in the field of
FS and extends the CFS, offering a wide range of intriguing
properties and applications. The multiplicative triple
Fibonacci sequences (MTFS), an extension of the classical
FS, have garnered substantial interest in recent mathematical
research, particularly in the context of second and third-order
derivations under specific schemes. The FS, known for its
ubiquity in nature and applications across diverse fields,
serves as the foundation for exploring the multiplicative
variations proposed in this study.

The TFS represents a fresh approach to the generalization
of the CFS. It is a significant advancement in the field of FS
and a generalization of the CFS, offering a wide range of
fascinating properties and applications. The MTFS, an
extension of the classical FS, has garnered substantial interest
in recent mathematical research, particularly concerning
second and third-order derivations under specific schemes.
The FS, known for its ubiquity in nature and applications
across diverse fields, composes the foundation for exploring
the multiplicative variations proposed in this study.

There has been a great deal of research on the TFS. J. Z.
Lee and J. S. Lee [1] were the first to propose the TFS.
Koshy’s book [2] is an excellent source for these applications.
In 1985, Attanasov [3, 4] popularized the concept of the CFS
and introduced a new TFS design. The TFS connects three
integer sequences, where the elements of one sequence are
part of the generalization of the others, and vice versa. Singh
and Sikhwal [4, 7] computed the MCFS and additive TFS,
both have significant properties.

Under two distinct schemes, Kiran Singh Sisodiya,
Vandana Gupta, and Kiran Sisodiya [8] investigated several
features of the fourth-order MCFS. Omprakash Sikhwal,
Mamta Singh, and Shweta Jain [6] examined various aspects
of the fifth-order CFS. In 2014, Krishna Kumar Sharma et al.
[13] formulated the additive-linked Fibonacci sequences of r-
th order and demonstrated their diverse features. Bijendra
Singh and Omprakash Sikhwal [9] explored both the
primitive aspects of second-order TFS and several features of
additive TFS. The MTFS of the second order was examined
from multiple perspectives by Mamta Singh, Shikha
Bhatnagar, and Omprakash Sikhwal [10]. The properties of
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Abstract: From the last few years, there has consequential diversion in progress of Coupled
Fibonacci Sequence, additive Coupled Fibonacci Sequence are modished but Multiplicative
Coupled Fibonacci Sequence of Recurrence Relation are less are not much improved. K. T.
Atanassov transplanted the notion of Coupled Fibonacci Sequence in 1985. He contemplates
Multiplicative Coupled Fibonacci Sequence of second order in 1995.

In the Fibonacci sequence, this paper defined and a craving to outstretch the results of Multiplicative
Coupled Fibonacci sequence.

A lot of work has been terminated on Multiplicative Coupled Fibonacci Sequence of second, third
and fourth order. We offer some identities of Multiplicative Coupled Fibonacci Sequence of fifth
order under one specific scheme.

Keywords- Fibonacci, Sequence, Coupled, Multiplicative
LIntroduction

In the recent, much work has been done Fibonacci Sequence its Multiplicative Fibonacci Sequence is less
known. Firstly, K.T. Atanassov [5] worked in the properties and generalization of Fibonacci Sequence
[1][2] and [4]. K.T. Atanassov [9] notify four different ways of Multiplicative Coupled Fibonacci Sequence.
P. Glaister [6] and P. Hope [7] also studied on Multiplicative Fibonacci Sequence.

Let {J;}i2, and {K;}{Zobe two infinite sequences and called 2-F Sequence or Coupled Fibonacci Sequence
with basic value a, b, ¢ and d then all the distinct schemes of Multiplicative Coupled Fibonacci Sequence
are as follows:

Jo=aKo=bJ;=cK =d
First Scheme:
Jo=aKo=bJ1=cK;=d
Jn+z = Kp+1-Kp, n=0 (1.1)

Kn+2 = Jn+1-Ins nz=0

Second Scheme:
Jo=aKo=b]J; =cK, =d
Jn+z = In+1-Kny n=0 (1.2)

Kn+z = Kpia:Jne n=0

= lo] Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
— of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL
Published under licence by IOP Publishing Lid 1
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Abstract:

The Coupled Fibonacei Sequence are Firstly established by K.T. Atanassov in 1985. The abstractions of Fibonacci Triple
Sequence are considered in 1987. Fibonacci Sequence stands as a kind of super sequence with Fabulous properties. This is
the explosive development in the region of Fibonacci Sequence. Fibonacci was advanced by Leonardo de Pisa (whose
nickname was Fibonacci, which means son of Bonacci) in 1202 as a result of his inspection on the growth of a population of
rabbits. The consecutive Fibonacci numbers are produced by adding together the two previous numbers in the sequence, after
specifying suitable initial conditions. In the last years Triple Fibonacci Sequence are hype, but Multiplicative Triple
Sequence of Recurrence Relations are less known. Much work has been done to study on Fibonacci Triple Sequence in
Additive form. In 1995, Multiplicative Coupled Fibonacci Sequence are contemplated. Our purpose of this paper to present
some results of Multiplicative Triple Fibonacci Sequence of third order under one specific scheme.

This paper expanded out of a curiosity in the Fibonacci sequence and a craving to spread the results of Multiplicative
Coupled Fibonacci sequence. Ever since Fibonacci (Leonardo of Pisa) wrote his Liber Abbaci in 1202, his fascinating
sequence has transfixed men through the centuries, not only for its inborn mathematical riches, but also for its applications in
art and nature. Indeed, it is almost true to say that the research produced by its nearly amounts to the quantity of off- spring
generated by the mythical pair of rabbits who started Fibonacci off on the problem.

Keywords: Fibonacci Sequence, Multiplicative Triple Fibonacci sequence.

1. Introduction: The Fibonacci Triple Sequence is a new direction in generalization of Coupled Fibonacci
sequence. Fibonacci sequence and their generalization have many attracting applications and properties to every
field of science. Koshy’s book [9] is a good origin for these applications. The Coupled Fibonacci Sequence was
first inaugurated by K. T. Atnassov [4] and also examined many curious properties and a new guideline of
generalization of Fibonacci Sequence [2, 5, 6].

1. Z. Lee and J. S. Lee established Firstly Additive Triple Sequence [3]. K. T. Atnassov delineate new notion for
Additive Triple Fibonacci Sequence [7, 8] and called 3-Fibonacci Sequence or 3-F Sequence.

Let {a;}2y {Bi}iZ, and {y;}iZ, be three infinite sequences and called 3-F Sequence or Triple Fibonacci
Sequence with initial value a,b,c,d, e and f.

Ifag =a,By =b,yy=c,a; =d,B; = ey, = f, then nine different schemes of Multiplicative Triple Fibonacci
Sequence are as follows:

First Scheme:
ns2 = PnsrYn
Bniz = Yni1-tn

Yn+z2 = @ni1-Pn
Second Scheme:

@ni2 = Yn+1-Pn

an+2 = Qny1-n

Yn+z = Pns1.tn
Third Scheme:

Qni2 = Qny1-Pn

Pniz = Pnsr-tn

Yn+z = Vns1-@n
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Abstract

K.T. Atanassov are Firstly established the Coupled Fibonacci Sequence in 1985. In 1987, The
essence of Fibonacci Triple Sequences are examined. Fibonacci Sequence stand out as a kind
of super sequence with amazing properties. This is the meteoric expansion in the province of
Fibonacci Sequence. Leonardo de Pisa foremost Fibonacci’s observation on the growth of the
rabbit population as a result in 1202,

Triple Fibonacci Sequence are hype in the last years, but Multiplicative Triple Sequence of
Recurrence Relations are less known. Extravagant work has been done to course on
Fibonacci Triple Sequence in Additive form. In 1995, Multiplicative Coupled Fibonacci
Sequence are treated. Our wish of this paper to offer some results of Multiplicative Triple
Fibonacci Sequence of fourth order under nine specific schemes.

Keywords- Fibonacci Sequence, Multiplicative Triple Fibonacci sequence

1. Introduction

The Fibonacci Triple Sequence is a current guidance in universality of Coupled Fibonacci
sequence. Fibonacci sequence and their abstract principle have umpteen tempting utilization
and properties to every field of science. The best motive for this relevance is Koshy’s book
[9]. The Coupled Fibonacci Sequence was first installed by K.T. Atanassov [4] and also
investigated many inquisitive properties and a modern protocol of generalization of Fibonacci
Sequence [2,5,6].

J.Z. Lee and J.S. Lee ratified Firstly Additive Triple Sequence [3]. K.T. Atanassov lay out
new notion for Additive Triple Fibonacci Sequence [7,8] and called 3-Fibonacci Sequence or
3-F Sequence.
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