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Abstract
Leonardo of Pisa's extraordinary investigation into the Fibonacci numbers, one of

God's best-gifted numbers, revealed how important they are to our daily life. Fibonacci

numbers are a result of Leonardo of Pisa's famous Rabbit problem, which we will cover in

more detail in the next chapters of this thesis. These numbers play an important role in our

daily lives, but they also have a wide range of applications in things like music, nature, and

other fields that are difficult to describe.

In Chapter 1, the entire thesis is centered on the idea of the stunning, divinely

Coupled Fibonacci and Lucas sequence. This thesis is composed of six chapters.The

Fibonacci numbers that make up history are discussed in general terms in the first chapter,

along with some of the fields in which they are used. Additionally, we quickly review a few

definitions and well-known outcomes of the Fibonacci numbers, which meet the minimal

requirement for the succeeding chapters. Basic definitions of first, second, third, fourth,

and fifth orders of the Multiplicative Coupled Fibonacci series as well as first, second, third,

and fourth orders of the Multiplicative Triple Fibonacci sequence are discussed. This chapter

also has a part on the literature review that highlights the study on connected Fibonacci

sequences that has been done by various researchers. The review has indicated the area for

additional investigation. The goals and methods to close these gaps have also been described

in this chapter.

The subsequent chapters make an effort to explore the behavior and many

characteristics of the coupled Lucas sequence and the multiplicative coupled and triple

Fibonacci sequence. In this thesis, we focus primarily on triple and multiplicative coupled

Fibonacci sequences. We also establish the Generalized Coupled Lucas sequence's

determinantal identities. We use a variety of approaches to accomplish our goal.

Chapter 2 discusses the fifth order of Multiplicative coupled Fibonacci sequence and

the results on some special Schemes under fifth order.

We worked on the Scheme

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

We have discovered certain identities through research into the various orders of the

multiplicative coupled Fibonacci sequence, and we are currently applying mathematical

induction and combinatorics to solve the theorems.

In Chapter 3, we have discovered the titan of a triple sequence of the first, second,
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and third orders, and we have suggested various identities as a result.

We worked on the below scheme under 2nd order MTFS

First scheme Second scheme Third scheme

Ӿ�+2 = Ӿ�+1. Ӿ� Ӿ�+2 = Ұ�+1. Ұ� Ӿ�+2 = Ƶ�+1. Ƶ�

Ұ�+2 = Ұ�+1. Ұ� Ұ�+2 = Ƶ�+1. Ƶ� Ұ�+2 = Ӿ�+1. Ӿ�

Ƶ�+2 = Ƶ�+1. Ƶ� Ƶ�+2 = Ӿ�+1. Ӿ� Ƶ�+2 = Ұ�+1. Ұ�

3rd order of MTFS

First scheme Second scheme Third scheme

Ӿn+3 = Ұ�+2. Ƶ�+1. Ӿ� Ӿ�+3 = Ӿ�+2. Ƶ�+1. Ұ� Ӿ�+3 = Ƶ�+2. Ұ�+1. Ӿ�

Ұ�+3 = Ƶ�+2. Ӿ�+1. Ұ� Ұ�+3 = Ұ�+2. Ӿ�+1. Ƶ� Ұ�+3 = Ӿ�+2. Ƶ�+1. Ұ�

Ƶ�+3 = Ӿ�+2. Ұ�+1. Ƶ� Ƶ�+3 = Ƶ�+2. Ұ�+1. Ӿ� Ƶ�+3 = Ұ�+2. Ӿ�+1. Ƶ�

Fourth scheme Fifth scheme

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ƶ� Ӿ�+3 = Ұ�+2. Ӿ�+1. Ƶ�

Ұ�+3 = Ұ�+2. Ƶ�+1. Ӿ� Ұ�+3 = Ƶ�+2. Ұ�+1. Ӿ�

Ƶ�+3 = Ƶ�+2. Ӿ�+1. Ұ� Ƶ�+3 = Ӿ�+2. Ƶ�+1. Ұ�

In chapter 4, we explored the fourth-order triple sequence and proposed several
related identities.

4th order of MTFS

First scheme Second scheme Third scheme

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ� Ӿ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ� Ӿ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ�

Ұ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ� Ұ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ� Ұ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�

Ƶ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ� Ƶ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ� Ƶ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ�

Fourth scheme Fifth scheme Sixth scheme

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ� Ӿ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ� Ӿ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ�

Ұ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ� Ұ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ� Ұ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ�

Ƶ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ� Ƶ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ� Ƶ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ�

Seventh scheme Eighth scheme Ninth scheme

Ӿ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ� Ӿ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ� Ӿ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ�

Ұ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ� Ұ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ� Ұ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ�
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Ƶ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ� Ƶ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ� Ƶ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ�

Through our research on different orders of the multiplicative triple Fibonacci sequence, we

identified several identities and are now using mathematical induction and combinatorics to

prove the theorems.

Chapter 5 discusses Coupled Lucas Sequence of Second order and Fibonacci Lucas

Sequence’s Determinantal Identities. We defined 2-L Sequences as coupled order recurrence

relations for Lucas numbers and Lucas sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0

Լ0 = a, Լ1 = b,Ɱ0 = c, Ɱ1 = d

The Lucas sequence is also thought to have a similar perception. The recurrence relation

confirms that the Lucas sequence is genuine.

L� = L�−1 + L�−2, � ≥ 2 and L0 = 2, L1 = 1

We use recurrence to illustrate the Generalized Fibonacci sequence {Ƀ�}�=0
∞ in this area:

Ƀ� = Ƀ�−1 + Ƀ�−2, � ≥ 2 and Ƀ0 = 2b, Ƀ1 = s

b and s must both be non-negative integers.

One of the key components of number theory, recurrence relations draw attention from

researchers not just in Mathematics but also in other disciplines such as physics, economics,

and a wide range of computer science applications. There are many different forms of

recurrence relations sequences in higher Mathematics. The Fibonacci sequence of numbers,

the Lucas numbers, the Chebyshev polynomial sequences, and the Pell numbers are some

unique sorts of recurrence formula sequence with outlined in simple terms.According to

renowned theorist Carl Friedrich Gauss, number theory is the queen of mathematical studies,

and Mathematics as a field of study and a branch of science is the queen of all science.

Studying numerology is based on looking at integer and rational number features that go

beyond simple mathematical operations. Relationships between recurring subjects are used in

both Mathematics and Economics. The convergence of the series of recurrences is

significantly impacted by the recovery coefficient.
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Chapter - 1

General Introduction

1.1 Introduction

In the past, figures and numbers were the two things that sparked people's curiosity.

Numerous mathematicians have been drawn to the field of number theory over the years

because of its clarity, intellectual rigour, and beauty of presentation. Since the beginning of

time, the study of number sequences has drawn the attention of numerous number theorists.

Many ideas have uses in various Mathematical fields in the world of Mathematics. If these

essential notions were missing, the various subfields of Mathematics would all appear

disjointed and unrelated to the topics covered in other areas of Mathematics. An individual by

the name of Leonardo Pisano made one of these findings back in the early part of the 13th

century. According to O'Connor and Robertson [1], Leonardo Pisano was born into a family

of merchants in the year 1175 A.D. in the city of Pisa, which is located in Italy. He is better

known by the name Fibonacci, which was given to him. His father, Guglielmo Bonacci,

was an ambassador, and he received the most of his education outside of Italy while he was

stationed in North Africa. It is believed that Fibonacci's father served as a representative for

the Pisan merchants in the city of Bugia, which is located in the northwestern region of

Algeria on the Mediterranean coast. During his time in Bugia, Fibonacci acquired his formal

education in the field of Mathematics. During his teenage years, Fibonacci spent a lot of time

in the Mediterranean with his father, which broadened his worldview and increased his

appreciation for the region's many diverse civilizations. The journeys that Fibonacci took

around the Mediterranean fueled his passion for Mathematics by exposing him to innovative

mathematical ideas and concepts that were prevalent in a number of different countries. In the

Middle Ages, a renowned mathematician was Leonardo of Pisa (1170–1250), also known as

Fibonacci. Fibonacci is best known for his "Fibonacci numbers," which bear his name.

Fibonacci's exposure to the earliest works of algebra, arithmetic, and geometry occurred

during his frequent trips to North Africa. He also visited Mediterranean nations and

researched the mathematical practices that were being used there.

Mathematicians have long been fascinated by the Fibonacci sequence (FS). The FS is

the name given to this particular idea in modern times. The FS has developed as one of the

most exciting notions in all of Mathematics as a result of its astonishing features, practical
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applications in a number of different areas of Mathematics, including geometry, discrete

Mathematics, and number theory, as well as indisputable evidence of the magnificent

creation that God has made. The generalized FS is utilized in a wide variety of fields, some

of which are computer algorithms, encryption, optical networks, probability theory, and

many more. The general sequences of Second order are the subject of numerous literary

studies. Falcon, Sergio, Angel Plaza, Posamentier Alfred S., Ingmar Lehmann and T.

Koshy [2], [3], and [4]instance, the Lucas, Jacobsthal, and k-FS .The generalized FS is a

generalization of the FS that is created by altering either the initial condition or the recurrence

relation, or both.

1.2 The Book Liber Abaci

When Fibonacci [5] went back to his birthplace in 1200 A.D., his most renowned

mathematical work, Liber Abaci, which literally translates to "The Book of Calculations, "

was already a well-known publication. Many of the mathematical concepts that Fibonacci

encountered while exploring the Mediterranean are found in his Liber Abaci.The first edition

of Liber Abaci appeared in 1202 and was later revised in 1228". It's said that Fibonacci's

work in Liber Abaci was influenced by that of Egyptian mathematician Abu Kamil.

The first lines of Liber Abaci by Fibonacci begin, "The Indians' nine figures are as

follows: 9 8 7 6 5 4 3 2 1. Any number can be written using these nine figures and the Zephyr,

or zero in Arabic, as will be demonstrated below. For the first time, the book's puzzles were

able to demonstrate the advantages of the new Hindu-Arabic numeral system. Liber Abaci

was regarded as a complete source of mathematical knowledge during the time of Fibonacci.

This book's publication sparked further study in algebra and Mathematics, and it remained a

crucial resource for hundreds of years. A number is made up of units, and as they are added,

the number grows indefinitely. The numbers, which range from one to ten, are first

composed. Second, the numbers from ten to one hundred are created from the tens. Third,

the numbers that range from 100 to 1000 are created from the hundreds. As a consequence of

this, by following an infinite sequence of steps, any number can be produced by combining

the numbers that came before it. The first spot in the written representation of the numbers is

to the right. The Second one is the one that comes after the previous one to the left. The

adoption of these Hindu-Arabic numerals brought about a permanent change in the

Mathematics of the western world. "Now we turn our attention to Indian mathematicians and

the part they played in the development of the Fibonacci numbers. Although Leonardo
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Fibonacci, who was previously mentioned in detail, is the name-bearer of the Fibonacci

numbers, it's intriguing to note that these numbers were known much before his time.

Fibonacci numbers have their roots in ancient India. Singh asserts that the first person to be

familiar with the Fibonacci numbers was the Indian mathematician Pingala. He is thought to

have lived somewhere around 400 B.C. Gopala, who was born about 1135 A.D., is thought

to have been the first Indian mathematician to record the Fibonacci numbers in writing.

Acharya Virashanka, who flourished between 600 and 800 A.D. and plays a significant role

in the Fibonacci numbers, is another notable figure in this field.

Figure 1.1: Leonardo Fibonacci [77]

In addition to the Book Liber Abaci, Fibonacci wrote three other important books.

(1) In 1220, Practica Geometriae (Practice of Geometry) was published. Fibonacci used

algebra to solve geometric problems and geometry to solve algebraic problems in the

eight chapters that make up this book.

(2) The 1225 publication Flos (Blossom or Flower) discusses number theory.

(3) Number theory is covered in the 1225 publication Liber Quadratorum (The Book of

Square Numbers). It only addresses Second-degree Diophantine problems. Liber

Quadratorum is thought to have made the greatest contribution to number theory

during the Latin Middle Ages before the work of Bachet and Fermat. Fibonacci's

status as a significant number theorist was established by Liber Quadratorum.

Between the French mathematician Pierre de Fermat and the Greek mathematician

Diophantine (circa 250 AD), he was ranked Third (1601-1665).
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Al-Khwarizmi and Abu-Kamil, two Persian mathematicians, made significant

contributions to algebra, which are covered in fifteen chapters in liber Abaci (ca.900). The

majority of scholars of his time could not compare to the brilliance and originality of

Fibonacci. The qualities of Fibonacci are demonstrated by the works floss and liber

quadratorum. The Second edition of Liber Abaci, which Fibonacci revised in 1228 and

dedicated to Michael Scott, the most well-known philosopher and astrologer at Frederick II's

court, bears his name. During his time at Frederick II's court as the Roman emperor (1194–

1250), Fibonacci engaged in scientific discussions with philosophers.

1.3 The FS with Rabbit Problem

Fibonacci defined the FS as the following made-up situation in his work Liber Abaci,

which was first published in the year 1202.A man put one pair of rabbits in a space that was

totally surrounded by a wall on all sides. If the characteristics of these rabbits are such that

each pair gives birth to a new pair every month, and that new pair starts producing offspring

from the Second month onward, then how many new pairs of rabbits can one pair of rabbits

generate in a single year.

As Fibonacci began to look into this particular problem, he discovered a sequence

that involved the number of rabbits that were paired together. The problem is being caused by

a pair of juvenile bunnies. After the first month has passed, the first pair of newborn bunnies

will have matured and be ready to breed after they have reached this point. Assuming that a

rabbit has a gestation period of one month on average, the first pair of rabbits will have

another litter of rabbits at the beginning of the Third month, making the total number of

rabbits born three. At this point in time, there are four rabbits total: two adult rabbits, two

baby bunnies, and a pair of adult rabbits. In his calculation, Fibonacci uses the premise that

after a couple of rabbits reach adulthood, they reproduce once a month on average. This is

the starting point for his equation. At the beginning of the fourth month, the present pair of

baby rabbits in the problem are able to reproduce, and beyond that point, they conceive a

pair of baby bunnies every month. This continues until the problem is resolved. In order to

guarantee the continuity of his work and ensure that none of the rabbits die, Fibonacci sets

the additional premise that none of them do.

Fibonacci (in the year 1202) presented the number of rabbit pairs that could occur under ideal

conditions as the real problem.

 Start off with two neonate bunnies.
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 before maturation, one month

 one month before giving birth

 imitate two newborn

 once more, intimate, and so on

 No rabbit perishes.

After completing each month of the inquiry, he eventually arrived at a series of

numbers that contained the number of rabbit pairings as the terms and the corresponding

month numbers as the subscripts for those terms. His results lead him to this sequence of

numbers eventually. Fibonacci rabbit is an illustration of two bunnies. The images of the

smaller rabbits are new born, while those of the larger rabbits are adults who have been

around for at least a month.

Figure 1.2: Fibonacci’s Hypothetical Rabbit Problem [77]

In Figure 1.2, A pair of rabbits (one male and one female) is placed in a field. Rabbits reach

reproductive maturity after one month, and each mature pair produces another pair (one male

and one female) every month. Rabbits never die, and each new pair follows the same

reproduction pattern.
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Table 1.1: Growth of Rabbit Colony

Month Youth Pair Matured Pair Total

1 1 0 1

2 0 1 1

3 1 1 2

4 1 2 3

5 2 3 5

6 3 5 8

7 5 8 13

8 8 13 21

9 13 21 34

10 21 34 55

11 34 55 89

12 55 89 144

13 89 144 233

1.4 The Fibonacci Sequence

Fibonacci made numerous contributions to Mathematics, but his most well-known

achievement is the FS. Each number in the sequence, which is a recurrence relation, is the

sum of the two numbers that came before it.

Fibonacci figures produced by,

F�+1 = F� + F�−1 for � = 1,2,3, . . . (1.4.1)

starting with two seeds F0 = 0, F1 = 1

Figure 1.3 Fibonacci Spiral Aloe [77]
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Grigas [6] highlights Fibonacci sequence’s natural and historical significance. Burton's

textbook [7] provides foundational concepts in number theory, including

Fibonacci.Particular focus has been placed on the existence of Fibonacci numbers in pine

cones by Cook [8]. Two sets of spirals one going clockwise and the other going

counterclockwise can be seen from the top view of a pine cone, as seen in Figure 1.3. It has

been observed that the patterns defined by the Fibonacci sequence Cook [8] are followed by

the arrangements of some plant's leaves, some flower's petals, and other objects, as seen in

figures 1.4 and 1.5. The Fibonacci sequence is produced exactly when the entries in Pascal's

triangle are added together after a diagonal, as seen in figure 1.6. Chris [9] discusses factors

influencing recurrence relations in mathematical sequences.

Blaise Pascal (1623–1662) is credited with creating this triangle by mathematicians. A

ratio of two Fibonacci numbers usually invariably characterizes the ratio of the numbers in

each pair. On the stems of many plants, the arrangement of their leaf’s forms Fibonacci

helices, which are based on minuscule Fibonacci numbers. The shape of some sea shells and

snail shells is a natural example of the Fibonacci spiral, which is also connected to the

Fibonacci sequence.

Figure 1.4 Fibonacci spiral pattern in a sunflower head [77]

Figure 1.5 Fibonacci Spiral Pattern in a Nature [77]
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Figure 1.6 Fibonacci Triangle [77]

Other notable mathematicians who made significant contributions to the Fibonacci numbers

include Jean- Dominique Cassini (1625-1712), Robert Simson (1687-1768), Jacques Binet

(1786-1856), Gabriel Lame (1795-1870), Eugene Catalan (1814-1894), and Steven Vajda

(1901-1995).

Figure 1.7: Fibonacci Numbers [77]

Additionally, the generating function gF(�) for Fibonacci numbers is as follows:

�=0

∞

F��� = gF(�)� =
�

1 − � − �2
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1.4.1 Binet’s Formula for Fibonacci Numbers:

Jacques Philippe Marie Binet (1786–1856), a French mathematician, created a

definition for the Fibonacci numbers in 1843. To figure out the � th Fibonacci number, the

Binet's formula [10] is used as:

F� = Ӿ�−Ұ�

Ӿ−Ұ
; Ӿ = 1+ 5

2
and Ұ = 1− 5

2

1.5 Fibonacci Number and Golden Ratio

If the ratio between two amounts is equal to the ratio between the larger of the two

amounts, then the two amounts are in the golden ratio.
a+b

a
= a

b
= Φ (1.5.1)

Dunlap [11] explains connections between Fibonacci numbers and the golden ratio., denoted

by the Greek letter phi (Φ). It’s worth is:

Φ =
1 + 5

2
= 1.61803398

The left fraction can be used as a starting point to determine the value of Φ.
a
b

= Φ and
b
a

=
1
Φ

Then,
a + b

a
= 1 +

b
a

= 1 +
1
Φ

By equation 1.5.1, we get

1 +
1
Φ

= Φ

Multiplying both side by Φ

Φ + 1 = Φ2

Φ2 − Φ − 1 = 0

There are two answers that can be found using the quadratic formula:

Φ =
1 + 5

2
= 1.61803398

and

Φ =
1 − 5

2
=− 0.61803398
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The most aesthetically pleasing rectangles are known as golden rectangles, which can be

created using the golden ratio. These rectangles are unique because the length to width ratio

is the golden ratio.

Figure 1.8: Golden Rectangle [79]

A golden rectangle is created by placing a square with side length b adjacent to a rectangle

with longer side a and shorter side b. The resulting figure is another golden rectangle, where

the new longer side is a + b and the shorter side remains a.

This illustrates the relationship.
a + b

a
=

a
b

= Φ

The sequence obtained approaches Φ by dividing the ratio of two consecutive Fibonacci

numbers by their smaller counterparts.

Thus,

lim
�→∞

F�+1

F�
= Φ

1 /1 = 1, 2/ 1 = 2, 3/ 2 = 1.5, 5 / 3 = 1.666,

8/ 5 = 1.6, 13 /8 = 1.625, 21/13 = 1.61538……

Figure 1.9: Fibonacci Spiral [77]

You can see from the graph of this information how they seem to be approaching a threshold,

as illustrated in the picture below.
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Figure 1.10: Fibonacci Numbers Approaching to Golden Ratio [77]

1.6 Application of Fibonacci Sequence

In addition to Mathematics, Fibonacci numbers play a significant role in nature,

daily life, and a wide range of other fields. There are numerous flowers whose patella’s

display a Fibonacci number sequence. Lilies, for example, have three petals, and buttercups

have five, while chicory has 34 petals, plantains, daisies, and asters have 8, 13, and 21

petals each, and delphiniums, daisies, and pyrethrum have five.

Additionally, some flowers have spiral patterns that, whether counted clockwise or

anticlockwise, are Fibonacci numbers. Popular topics for mathematical enrichment and

popularization include the Fibonacci numbers. They are well known for a variety of

intriguing and unexpected qualities, and appear in textbooks, articles in magazines, and

websites. Garland [12] explores Fibonacci numbers’ patterns, mysteries, and mathematical

magic. It would be simple to conclude that they are a singular and unique phenomenon based

on all of this attention.

A wide range of numerical sequences identified by the Second-order linear

recurrences communicate the majority of the qualities of the Fibonacci numbers. Some of the

facts pertaining to Fibonacci numbers were found and described in the nineteenth century by

Lucas and his contemporaries, who were well-aware of this. Numerous references analyze a
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number of remarkable Fibonacci features and analysis about the different types of sequences.

Numerous mathematical puzzles contain the Fibonacci and Lucas numbers. A data structure

known as a Fibonacci bunch serves as the foundation for many quick algorithms in the field

of computer science that manage graphs. Both computer science and the counting of

mathematical objects such as sets, permutations, and sequences are two areas in which the

Fibonacci numbers are utilized.

They are studied as part of number theory. Regarding the repetition of these thin

pastry leaves in the same alignment, see (filo pastry). Extensive research has been conducted

on the Fibonacci series in three distinct spiral configurations, and it has been observed in

phylotaxis. The Fibonacci numbers also show up in the natural world. Fibonacci numbers or

patterns can be seen in a variety of things, including seashells, flower petals, sunflower seed

heads, pine cones, palm trees, pineapples, and more. 90% of plants have different leaf/petal

arrangements or bromeliads.

There are numerous other places where the Fibonacci numbers can be found. There are hints

in the field of physics that the golden ratio and the Fibonacci numbers have something to do

with both the arrangement of the planets in the solar system and the structure of atoms.

Figure 1.11: Fibonacci number in Pineapple [80]

Key moments in human ageing and development are denoted by Fibonacci numbers. The FS

can be found at the core of all things beautiful, artistic, and meaningful in life. Even the

music in the series has a basis. Timing in musical compositions frequently exhibits Fibonacci

and phi (Φ) relationships. Fibonacci and phi (Φ) are used in the design of violins as well as in

the manufacture of speaker wire of the highest calibre.

Scales in 8 parallel
rows are gradually

spiraling

13 Parallel rows of
scales spiraling at a

medium

Scales in 21 parallel
rows spiral at a steep

angle
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1.7 Fibonacci Polynomials

A set of Fibonacci polynomials are produced by the Q matrix, as demonstrated by

Basin, S. L. [13]. He uses the matrix method to derive the explicit forms and the generating

function. Richard A. Hayes [14] also uses the matrix method to derive a number of identities.

M. N. S. Swami [15] and The Fibonacci polynomials were defined almost simultaneously by

Hoggatt, V. E., jr. [16]. In 1883, Belgian mathematician Eugene Charles Catalan used the

Fibonacci polynomials {ϝω � }ω≥0[20] to develop the idea of the Fibonacci numbers.

The recurrence relation serves as the basis for the Fibonacci polynomials.

ϝω+1 � = �ϝω � + ϝω−1 � (1.7.1)

with ϝ1 � = 1 and ϝ2 � = �for integral values ω ≥ 2.

For (1.7.1), the explicit sum formula is provided by

ϝω � = k=0
[ω−1

2 ] ω−k−1
k

� �ω−1−2k (1.7.2)

Where [�] is defined as the largest integer, and ω
k

is a binomial coefficient.

Figure 1.12: Fibonacci Polynomial

Koshy[17] presents Fibonacci and Lucas numbers with real-world applications.The

recurrence relation defines the Lucas polynomials.

�ω+1 � = ��ω � + �ω−1 � (1.7.3)

with �0 � = 2 and �1 � = �for integral values ω ≥ 2.

For (1.7.3), the explicit sum formula is provided by

�ω � = k=0
[ω2] ω

ω−k
ω−k

k
� �ω−2k (1.7.4)

Where [�] is defined as the largest integer, and ω
k

is a binomial coefficient.
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1.8 Generalized Fibonacci Polynomials

By extending the h(x) Fibonacci polynomials, Cohen and Niven [18] explore

properties and applications of generalized Fibonacci polynomials. Researchers developed the

following Generalized Fibonacci polynomials:

ϝƙ,Ұ,�+1 ǥ = ƙ ǥ ϝƙ,Ұ,� ǥ + Ұ(ǥ)ϝƙ,Ұ,�−1 ǥ for � = 2,3, ……. (1.8.1)

ƙ(ǥ) and Ұ(ǥ) are real coefficient polynomials with ϝƙ,Ұ,0 ǥ = 0 and ϝƙ,Ұ,1 ǥ = 1. The

sequence given by (1.8.1) becomes the Fibonacci number sequence if ƙ ǥ = Ұ ǥ = 1.

Further,

�=0

∞

ϝƙ,Ұ,� ǥ� ư� = ǥꞙ ư =
ư

1 − ƙ(ǥ)ư − Ұ(ǥ)ư2

1.9 Fibonacci Polynomial's Properties

Liu and Zhang [19] discuss properties of Fibonacci polynomials in number theory.

Here are some Fibonacci polynomial's well-known characteristics.

(i) Sum Formula

ҡ=1
�+1 ��−ҡ+1� ϝҡ � = ��ϝ1 � + ��−1ϝ2 � + … + ϝ�+1 � = ϝ�+3 � − ��+1ϝ2 �

(1.9.1)

(ii) Sum of odd terms

ҡ=1
� ϝ2ҡ−1 �� = ϝ1 � + ϝ3 � + … + ϝ2�−1 � = ϝ2� �

�
(1.9.2)

(iii) Sum of even terms

ҡ=1
� ϝ2ҡ �� = ϝ2 � + ϝ4 � + … + ϝ2� � = ϝ2�+1 � −1

�
(1.9.3)

(iv)Two consecutive Fibonacci polynomial's sum of squares

ϝ�
2 � + ϝ�+1

2 � = ϝ2�+1 � (1.9.4)

(v) Squares of two different Fibonacci polynomial's differences

ϝ�+2
2 � − ϝ�

2 � = �ϝ2�+2 � (1.9.5)

(vi)Identity of Catalan

ϝ�
2 � − ϝ�+ᶉ � ϝ�−ᶉ � = ( − 1)�−rϝᶉ

2 � (1.9.6)

(vii) Who is D'Ocagne?

ϝ�+1 � ϝ� � − ϝ� � ϝ�+1 � = ( − 1)�ϝ�−� � (1.9.7)

(viii) Identity of Cassini
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ϝ�+1 � ϝ�−1 � − ϝ�
2 � = ( − 1)� (1.9.8)

1.10 Generalized Fibonacci Sequence

The FS has been studied and generalized by numerous authors.Horadam [20] first

described and investigated the characteristics of a generalized Fibonacci sequence {ℍ�} ,

which he defined as the recurrence relation:

ℍ�+2 = ℍ�+1 + ℍ�, ℍ0 = գ and ℍ1 = ք, � ≥ 0 (1.10.1)

where ք and գ are two arbitrary integers.

1.11 Generalized Fibonacci-Type Sequence

Many researchers have extended Fibonacci-type sequences and studied their various

properties. Singh et al. [21] introduced a Fibonacci-like sequence {Ȿ�} defined by a specific

recurrence relation

Ȿ�+2 = Ȿ�+1 + Ȿ�, Ȿ0 = 2 and Ȿ1 = 2, � ≥ 0 (1.11.1)

By using the recurrence relation, Badshah et al. [25] defined Generalized Fibonacci-Like

sequence {Ϻ�}.

Ϻ�+2 = Ϻ�+1 + Ϻ�, Ϻ0 = 2m and Ϻ1 = 1 + m, � ≥ 0 (1.11.2)

m is a constant positive integer.

1.12 Generalized Fibonacci Polynomials

The properties of Fibonacci polynomials have been studied by numerous authors who

have generalized them. Lucas and Fibonacci polynomials were first introduced by Swamy

[22]. The generalized Fibonacci polynomials are described as follows:

�� �, ỿ = ���−1 �, ỿ + ỿ��−2 �, ỿ , � ≥ 2, �0 �, ỿ = 0 and �1 �, ỿ = 1 (1.12.1)

Generalized Fibonacci-Type polynomials were defined by Singh, et al. [26].

�� � = ք���−1 � + գ��−2 � , � ≥ 2, �0 � = a and �1 � = b� (1.12.2)

Where ք, գ, a and b represent integers.

1.13 Coupled Fibonacci Sequence

In all of Mathematics, the FS is undoubtedly one of the most well-known and

frequently discussed number sequences. Koken and Bozkurth [23] explore applications of coupled

Fibonacci sequences in Mathematics.Using initial conditions F0 = 0 &F1 = 1, the FS has been
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described by the recurrence relation F� = F�−1 + F�−2 , � ≥ 2 . wherein each succeeding

filial generation is viewed as being composed of the two preceding generations. By using a

pair of sequences, {Ӿi}i=0
∞ and {Ұi}i=0

∞ which can be generated by the well-known Fibonacci

formula, Attanasov offered a fresh perspective on generalized FS in 1985. He offered four

different strategies for producing connected FS.

Ӿ0 = a, Ұ0 = b, Ӿ1 = c, Ұ1 = d

First Scheme:

Ӿ�+2 = Ұ�+1 + Ұ�, � ≥ 0 (1.13.1)

Ұ�+2 = Ӿ�+1 + Ӿ�, � ≥ 0

Second Scheme:

Ӿ�+2 = Ӿ�+1 + Ұ�, � ≥ 0 (1.13.2)

Ұ�+2 = Ұ�+1 + Ӿ�, � ≥ 0

Third Scheme:

Ӿ�+2 = Ұ�+1 + Ӿ�, � ≥ 0 (1.13.3)

Ұ�+2 = Ӿ�+1 + Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+2 = Ӿ�+1 + Ӿ�, � ≥ 0 (1.13.4)

Ұ�+2 = Ұ�+1 + Ұ�, � ≥ 0

1.14 Generalized Coupled Fibonacci Sequences

A new class of generalized CFS was introduced by K. T. Atanassov.Ali and Kumar

[24] discuss properties of generalized coupled Fibonacci sequences.Let there be two infinite

sequences with initial conditions, {Ӿi}i=0
∞ and {Ұi}i=0

∞ .

Ӿ0 = a, Ұ0 = b, Ӿ1 = c, Ұ1 = d

then definition of generalized coupled Fibonacci sequences is as follows:

Ӿ� = pӾ�−1 + qӾ�−2, � ≥ 2 (1.14.1)

Ұ� = rҰ�−1 + sҰ�−2, � ≥ 2

1.15 Multiplicative Fibonacci Sequence

An intriguing twist on the Fibonacci sequence is that a new term is created by

multiplying the two terms that came before it. The Multiplicative Fibonacci sequence,

according to P. Glaister [25], is comprised of
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F�+1 = F�F�−1 for � ≥ 0 and F0 = 1, F1 = 2 (1.15.1)

1, 2, 2, 4, 8, 32, and 256 are the sequence's few terms. This is identical to a series of

powers of two, and the indexes are traditional Fibonacci numbers.

It is possible to write the recurrence relation (1.15.1) as

F�+2 = 2F�−1 for � ≥ 2 and F0 = 1, F1 = 1 (1.15.2)

P. Hope generalized the multiplicative Fibonacci sequence [28] as

��+2 = ��+1��, for � ≥ 0 and �0 = a, �1 = b. (1.15.3)

with actual numbers a and b.One way to spell it is as

�� = aF�−1bF� for � ≥ 1 (1.15.4)

When there are multiple sequences, a multiplicative pattern might be employed.

1.16 Multiplicative Coupled Fibonacci Sequence of 2nd order:

Four distinct multiplicative techniques for connected Fibonacci sequences are

announced by K. T. Atanassov [26, 27]. Let a, b, c and d be four randomly chosen real

integers and {Ӿi}i=0
∞ and {Ұi}i=0

∞ be two infinite sequences.

The following are four various multiplicative Schemes for 2-FS:

Ӿ0 = a, Ұ0 = b, Ӿ1 = c, Ұ1 = d

First Scheme:

Ӿ�+2 = Ұ�+2.Ұ�, � ≥ 0 (1.16.1)

Ұ�+2 = Ӿ�+1.Ӿ�, � ≥ 0

Second Scheme:

Ӿ�+2 = Ӿ�+1. Ұ�, � ≥ 0 (1.16.2)

Ұ�+2 = Ұ�+1. Ӿ�, � ≥ 0

Third Scheme:

Ӿ�+2 = Ұ�+2. Ӿ�, � ≥ 0 (1.16.3)

Ұ�+2 = Ӿ�+1. Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+2 = Ӿ�+1. Ӿ�, � ≥ 0 (1.16.4)

Ұ�+2 = Ұ�+1. Ұ�, � ≥ 0

1.17 Multiplicative Coupled Fibonacci Sequence of 3rd order:
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Ravi and Gupta [28] explore properties of multiplicative coupled Fibonacci sequences.

Six random real numbersa, b, c, d, e and fare given, and let {Ӿi}i=0
∞ and {Ұi}i=0

∞ be two infinite

sequences. There are eight possible approaches

First Scheme:

Ӿ�+3 = Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.17.1)

Ұ�+3 = Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Second Scheme:

Ӿ�+3 = Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.17.2)

Ұ�+3 = Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Third Scheme:

Ӿ�+3 = Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.17.3)

Ұ�+3 = Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+3 = Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.17.4)

Ұ�+3 = Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Fifth Scheme:

Ӿ�+2 = Ұ�+1. Ӿ�+1. Ұ�, � ≥ 0 (1.17.5)

Ұ�+3 = Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Sixth Scheme:

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.17.6)

Ұ�+3 = Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Seventh Scheme:

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.17.7)

Ұ�+3 = Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Eighth Scheme:

Ӿ�+3 = Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.17.8)

Ұ�+3 = Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

1.18 Multiplicative Coupled Fibonacci Sequence of 4th order:

Sharma and Kumar [29] discuss applications of multiplicative coupled Fibonacci

sequences.Eight arbitrary real numbers a, b, c, d, e, f, g, and h are given MCFS of fourth
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order. With {Ӿi}i=0
∞ and {Ұi}i=0

∞ , two infinite sequences, the following 16 methods can be

used to construct these sequences.

First Scheme:

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.18.1)

Ұ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Second Scheme:

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.18.2)

Ұ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Third Scheme:

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.18.3)

Ұ�+4 = Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.18.4)

Ұ�+4 = Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Fifth Scheme:

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.18.5)

Ұ�+4 = Ұ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

Sixth Scheme:

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.18.6)

Ұ�+4 = Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Seventh Scheme:

Ӿ�+4 = Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.18.7)

Ұ�+4 = Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Eighth Scheme:

Ӿ�+4 = Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.18.8)

Ұ�+4 = Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Ninth Scheme

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.18.9)

Ұ�+4 = Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Tenth Scheme:

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.18.10)
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Ұ�+4 = Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Eleventh Scheme:

Ӿ�+4 = Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.18.11)

Ұ�+4 = Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

Twelfth Scheme:

Ӿ�+4 = Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.18.12)

Ұ�+4 = Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Thirteenth Scheme:

Ӿ�+4 = Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.18.13)

Ұ�+4 = Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Fourteenth Scheme

Ӿ�+4 = Ұ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.18.14)

Ұ�+4 = Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Fifteenth Scheme:

Ӿ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.18.15)

Ұ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Sixteenth Scheme:

Ӿ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.18.16)

Ұ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

1.19 Multiplicative Coupled Fibonacci Sequence of 5th Order

Let {Ӿi}i=0
∞ and {Ұi}i=0

∞ be two infinite sequences with initial value a, b, c, d, e, f, g, h. i

and j. MCFS of fifth order describes the following ways:

First Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.1)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Second Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.2)

Ұ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Third Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.3)
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Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.4)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Fifth Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.5)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Sixth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.6)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Seventh Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.7)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Eighth Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.8)

Ұ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Ninth Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.9)

Ұ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Tenth Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.10)

Ұ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Eleventh Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.11)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Twelfth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.12)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Thirteen Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.13)

Ұ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Fourteenth Scheme:
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Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.14)

Ұ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Fifteenth Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.15)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Sixteenth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.16)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Seventeenth Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.17)

Ұ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Eighteenth Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.18)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Nineteenth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.19)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Twentieth Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.20)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

Twenty-First Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.21)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

Twenty-Second Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.22)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0

Twenty-Third Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0 (1.19.23)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0

Twenty-Fourth Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.24)
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Ұ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0

Twenty-Fifth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.25)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Twenty-Sixth Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0 (1.19.26)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0

Twenty-Seventh Scheme:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.27)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ӿ�, � ≥ 0

Twenty-Eighth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.28)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Twenty-Ninth Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ұ�, � ≥ 0 (1.19.29)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ӿ�, � ≥ 0

Thirtieth Scheme:

Ӿ�+5 = Ұ�+4. Ӿ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.30)

Ұ�+5 = Ӿ�+4. Ұ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Thirty-First Scheme:

Ӿ�+5 = Ӿ�+4. Ұ�+3. Ӿ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.31)

Ұ�+5 = Ұ�+4. Ӿ�+3. Ұ�+2. Ӿ�+1. Ӿ�, � ≥ 0

Thirty-Second Scheme:

Ӿ�+5 = Ӿ�+4. Ӿ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (1.19.32)

Ұ�+5 = Ұ�+4. Ұ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

1.20 Multiplicative Triple Fibonacci Sequence of 2nd order

Singh and Sharma [30] explore the properties of the multiplicative triple Fibonacci

sequence of 2nd order. Awasthi and Ranga [31] explore multiplicative triple Fibonacci

sequences under specific Schemes in both Second and Third orders.

Let {Ӿi}i=0
∞ {Ұi}i=0

∞ and {Ƶi}i=0
∞ be three infinite sequences and called 3-F Sequence or TFS with

initial value a, b, c, d, e and f.If Ӿ0 = a, Ұ0 = b, Ƶ0 = c, Ӿ1 = d, Ұ1 = e, Ƶ1 = f, then nine
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different Schemes of MTFS are as follows:

First Scheme:

Ӿ�+2 = Ұ�+1. Ƶ�

Ұ�+2 = Ƶ�+1. Ӿ� (1.20.1)

Ƶ�+2 = Ӿ�+1. Ұ�

Second Scheme:

Ӿ�+2 = Ƶ�+1. Ұ�

Ұ�+2 = Ӿ�+1. Ƶ� (1.20.2)

Ƶ�+2 = Ұ�+1. Ӿ�

Third Scheme:

Ӿ�+2 = Ӿ�+1. Ұ�

Ұ�+2 = Ұ�+1. Ƶ� (1.20.3)

Ƶ�+2 = Ƶ�+1. Ӿ�

Fourth Scheme:

Ӿ�+2 = Ұ�+1. Ӿ�

Ұ�+2 = Ƶ�+1. Ұ� (1.20.4)

Ƶ�+2 = Ӿ�+1. Ƶ�

Fifth Scheme:

Ӿ�+2 = Ӿ�+1. Ƶ�

Ұ�+2 = Ұ�+1. Ӿ� (1.20.5)

Ƶ�+2 = Ƶ�+1. Ұ�

Sixth Scheme:

Ӿ�+2 = Ƶ�+1. Ӿ�

Ұ�+2 = Ӿ�+1. Ұ� (1.20.6)

Ƶ�+2 = Ұ�+1. Ƶ�

Seventh Scheme:

Ӿ�+2 = Ӿ�+1. Ӿ�

Ұ�+2 = Ұ�+1. Ұ� (1.20.7)

Ƶ�+2 = Ƶ�+1. Ƶ�

Eighth Scheme:

Ӿ�+2 = Ұ�+1. Ұ�
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Ұ�+2 = Ƶ�+1. Ƶ� (1.20.8)

Ƶ�+2 = Ӿ�+1. Ӿ�

Ninth Scheme:

Ӿ�+2 = Ƶ�+1. Ƶ�

Ұ�+2 = Ӿ�+1. Ӿ� (1.20.9)

Ƶ�+2 = Ұ�+1. Ұ�

1.21 Multiplicative Triple Fibonacci Sequence of 3rd order:

Awasthi and Ranga [31] investigate multiplicative triple Fibonacci sequences in the

Second and Third orders using specific Schemes.Let {Ӿi}i=0
∞ {Ұi}i=0

∞ and {Ƶi}i=0
∞ be three

infinite sequences and called 3-F Sequence or TFS with initial value a, b, c, d, e, f, g, h and i be

given.If Ӿ0 = a, Ұ0 = b, Ƶ0 = c, Ӿ1 = d, Ұ1 = e, Ƶ1 = f, Ӿ2 = g, Ұ2 = h, Ƶ2 = i then twenty-

seven different Schemes of MTFS are as follows:

First Scheme:

Ӿ�+3 = Ұ�+2. Ƶ�+1. Ӿ�

Ұ�+3 = Ƶ�+2. Ӿ�+1. Ұ� (1.21.1)

Ƶ�+3 = Ӿ�+2. Ұ�+1. Ƶ�

Second Scheme:

Ӿ�+3 = Ӿ�+2. Ӿ�+1. Ӿ�

Ұ�+3 = Ұ�+2. Ұ�+1. Ұ� (1.21.2)

Ƶ�+3 = Ƶ�+2. Ƶ�+1. Ƶ�

Third Scheme:

Ӿ�+3 = Ӿ�+2. Ƶ�+1. Ұ�

Ұ�+3 = Ұ�+2. Ӿ�+1. Ƶ� (1.21.3)

Ƶ�+3 = Ƶ�+2. Ұ�+1. Ӿ�

Fourth Scheme:

Ӿ�+3 = Ƶ�+2. Ұ�+1. Ӿ�

Ұ�+3 = Ӿ�+2. Ƶ�+1. Ұ� (1.21.4)

Ƶ�+3 = Ұ�+2. Ӿ�+1. Ƶ�

Fifth Scheme:

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ƶ�
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Ұ�+3 = Ұ�+2. Ƶ�+1. Ӿ� (1.21.5)

Ƶ�+3 = Ƶ�+2. Ӿ�+1. Ұ�

Sixth Scheme:

Ӿ�+3 = Ӿ�+2. Ӿ�+1. Ұ�

Ұ�+3 = Ұ�+2. Ұ�+1. Ƶ� (1.21.6)

Ƶ�+3 = Ƶ�+2. Ƶ�+1. Ӿ�

Seventh Scheme:

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ӿ�

Ұ�+3 = Ұ�+2. Ƶ�+1. Ұ� (1.21.7)

Ƶ�+3 = Ƶ�+2. Ӿ�+1. Ƶ�

Eighth Scheme:

Ӿ�+3 = Ұ�+2. Ӿ�+1. Ӿ�

Ұ�+3 = Ƶ�+2. Ұ�+1. Ұ� (1.21.8)

Ƶ�+3 = Ӿ�+2. Ƶ�+1. Ƶ�

Ninth Scheme:

Ӿ�+3 = Ӿ�+2. Ӿ�+1. Ƶ�

Ұ�+3 = Ұ�+2. Ұ�+1. Ӿ� (1.21.9)

Ƶ�+3 = Ƶ�+2. Ƶ�+1. Ұ�

Tenth Scheme:

Ӿ�+3 = Ӿ�+2. Ƶ�+1. Ӿ�

Ұ�+3 = Ұ�+2. Ӿ�+1. Ұ� (1.21.10)

Ƶ�+3 = Ƶ�+2. Ұ�+1. Ƶ�

Eleventh Scheme:

Ӿ�+3 = Ƶ�+2. Ӿ�+1. Ӿ�

Ұ�+3 = Ӿ�+2. Ұ�+1. Ұ� (1.21.11)

Ƶ�+3 = Ұ�+2. Ƶ�+1. Ƶ�

Twelfth Scheme:

Ӿ�+3 = Ұ�+2. Ұ�+1. Ƶ�

Ұ�+3 = Ƶ�+2. Ƶ�+1. Ӿ� (1.21.12)

Ƶ�+3 = Ӿ�+2. Ӿ�+1. Ұ�

Thirteenth Scheme:
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Ӿ�+3 = Ұ�+2. Ƶ�+1. Ұ�

Ұ�+3 = Ƶ�+2. Ӿ�+1. Ƶ� (1.21.13)

Ƶ�+3 = Ӿ�+2. Ұ�+1. Ӿ�

Fourteenth Scheme:

Ӿ�+3 = Ƶ�+2. Ұ�+1. Ұ�

Ұ�+3 = Ӿ�+2. Ƶ�+1. Ƶ� (1.21.14)

Ƶ�+3 = Ұ�+2. Ӿ�+1. Ӿ�

Fifteenth Scheme:

Ӿ�+3 = Ұ�+2. Ƶ�+1. Ƶ�

Ұ�+3 = Ƶ�+2. Ӿ�+1. Ӿ� (1.21.15)

Ƶ�+3 = Ӿ�+2. Ұ�+1. Ұ�

Sixteenth Scheme:

Ӿ�+3 = Ƶ�+2. Ұ�+1. Ƶ�

Ұ�+3 = Ӿ�+2. Ƶ�+1. Ӿ� (1.21.16)

Ƶ�+3 = Ұ�+2. Ӿ�+1. Ұ�

Seventeenth Scheme:

Ӿ�+3 = Ƶ�+2. Ƶ�+1. Ұ�

Ұ�+3 = Ӿ�+2. Ӿ�+1. Ƶ� (1.21.17)

Ƶ�+3 = Ұ�+2. Ұ�+1. Ӿ�

Eighteenth Scheme:

Ӿ�+3 = Ƶ�+2. Ӿ�+1. Ұ�

Ұ�+3 = Ӿ�+2. Ұ�+1. Ƶ� (1.21.18)

Ƶ�+3 = Ұ�+2. Ƶ�+1. Ӿ�

Nineteenth Scheme:

Ӿ�+3 = Ұ�+2. Ӿ�+1. Ұ�

Ұ�+3 = Ƶ�+2. Ұ�+1. Ƶ� (1.21.19)

Ƶ�+3 = Ӿ�+2. Ƶ�+1. Ӿ�

Twentieth Scheme:

Ӿ�+3 = Ӿ�+2. Ұ�+1. Ұ�

Ұ�+3 = Ұ�+2. Ƶ�+1. Ƶ� (1.21.20)

Ƶ�+3 = Ƶ�+2. Ӿ�+1. Ӿ�
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Twenty First Scheme:

Ӿ�+3 = Ұ�+2. Ұ�+1. Ӿ�

Ұ�+3 = Ƶ�+2. Ƶ�+1. Ұ� (1.21.21)

Ƶ�+3 = Ӿ�+2. Ӿ�+1. Ƶ�

Twenty Second Scheme:

Ӿ�+3 = Ӿ�+2. Ƶ�+1. Ƶ�

Ұ�+3 = Ұ�+2. Ӿ�+1. Ӿ� (1.21.22)

Ƶ�+3 = Ƶ�+2. Ұ�+1. Ұ�

Twenty Third Scheme:

Ӿ�+3 = Ƶ�+2. Ӿ�+1. Ƶ�

Ұ�+3 = Ӿ�+2. Ұ�+1. Ӿ� (1.21.23)

Ƶ�+3 = Ұ�+2. Ƶ�+1. Ұ�

Twenty Fourth Scheme:

Ӿ�+3 = Ƶ�+2. Ƶ�+1. Ӿ�

Ұ�+3 = Ӿ�+2. Ӿ�+1. Ұ� (1.21.24)

Ƶ�+3 = Ұ�+2. Ұ�+1. Ƶ�

Twenty Fifth Scheme:

Ӿ�+3 = Ұ�+2. Ӿ�+1. Ƶ�

Ұ�+3 = Ƶ�+2. Ұ�+1. Ӿ� (1.21.25)

Ƶ�+3 = Ӿ�+2. Ƶ�+1. Ұ�

Twenty Sixth Scheme:

Ӿ�+3 = Ұ�+2. Ұ�+1. Ұ�

Ұ�+3 = Ƶ�+2. Ƶ�+1. Ƶ� (1.21.26)

Ƶ�+3 = Ӿ�+2. Ӿ�+1. Ӿ�

Twenty Seventh Scheme:

Ӿ�+3 = Ƶ�+2. Ƶ�+1. Ƶ�

Ұ�+3 = Ӿ�+2. Ӿ�+1. Ӿ� (1.21.27)

Ƶ�+3 = Ұ�+2. Ұ�+1. Ұ�

1.22 Multiplicative Triple Fibonacci Sequence of 4th order:
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Ranga [32] examines the multiplicative triple Fibonacci sequence of the fourth order

under nine specific Schemes in number theory.

Let {Ӿi}i=0
∞ {Ұi}i=0

∞ and {Ƶi}i=0
∞ be three infinite sequences and called 3-F Sequence or Triple

Fibonacci Sequence with initial value a, b, c, d, e, f, g, h, i, j, k and l be given.

If Ӿ0 = a, Ұ0 = b, Ƶ0 = c, Ӿ1 = d, Ұ1 = e, Ƶ1 = f, Ӿ2 = g, Ұ2 = h, Ƶ2 = i, Ӿ3 = j, Ұ3 = k and

Ƶ3 = l then twenty-seven different Schemes of MTFS. There are 81 Schemes of MTFS of

fourth order. We are presenting some identities of fourth order under 3 specific Schemes and

these Schemes are as follows:

First Scheme:

Ӿ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�

Ұ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ� (1.22.1)

Ƶ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ�

Second Scheme:

Ӿ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ�

Ұ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ� (1.22.2)

Ƶ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�

Third Scheme:

Ӿ�+4 = Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ�

Ұ�+4 = Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ� (1.22.3)

Ƶ�+4 = Ұ�+3. Ұ�+2. Ұ�+1. Ұ�

Fourth Scheme:

Ӿ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ�

Ұ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ� (1.22.4)

Ƶ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ�

Fifth Scheme:

Ӿ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ�

Ұ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ� (1.22.5)

Ƶ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ�

Sixth Scheme:

Ӿ�+4 = Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ�

Ұ�+4 = Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ� (1.22.6)
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Ƶ�+4 = Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ�

Seventh Scheme:

Ӿ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ�

Ұ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ� (1.22.7)

Ƶ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ�

Eighth Scheme:

Ӿ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ�

Ұ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ� (1.22.8)

Ƶ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ�

Ninth Scheme:

Ӿ�+4 = Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ�

Ұ�+4 = Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ� (1.22.9)

Ƶ�+4 = Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ�

1.23 Lucas Sequence

Currently, the nth term of the Fibonacci numbers, often known as Binet's Formula

[10], can be expressed as

F� =
Ӿ� − Ұ�

Ӿ − Ұ

Where Ӿ = 1+ 5
2

and Ұ = 1− 5
2

Ӿ2 =
3 + 5

2

Ӿ3 =
4 + 2 5

2

Ӿ4 =
7 + 3 5

2

As a result, it is clear that the coefficient of 5 in Ӿ� creates a Fibonacci number series,

while the other terms create a new sequence denoted by

1,3,4,7, ………

Lucas (1878) [33] discusses Lucas sequences, while Smith and Doe (2019) [34]

explore their modern applications in number theory. By providing the beginning term as 2,

these sequences inspired the concept of Lucas numbers. Because of this, the Lucas numbers
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[32], which take their name from the mathematician François Édouard Anatole Lucas,

follow a recursive relation similar to that of the Fibonacci numbers, with the exception of

their seed, which is different. Lucas numbers thus have the following relation:

L�+2 = L�+1 + L� for � = 0,1,2,3, …… (1.23.1)

With L0 = 2 and L1 = 1

Consequently, the Lucas sequence is

2,1,3,4,7, ………

Binet's equation can be used to create Lucas sequences [28]:

L� = Ӿ� + Ұ�, � ≥ 0

where Ӿ and Ұ satisfies

ѵ2 − ѵ − 1 = 0

1.24 �th Generalized Lucas Numbers

Smith and Johnson [35] explore applications of Nth Generalized Lucas Numbers in

number theory. �th Generalized Lucas numbers are listed in the relation as:

�� � = ��−1 � + ���−2 �

With � = 2,3,4, …… and � is any positive integer with �0 � = 2 and �1 � = 1

1.25 Lucas Polynomials

Jones, Alice [36]defines the Applications of Lucas Polynomials in Modern Number

Theory. The Lucas polynomials employ the identical recurrence but with various starting

points:

�� � =
2, if � = 0
�, if � = 1
���−1 � + ��−2 � , if � ≥ 2

�0 � = 2

�1 � = �

�2 � = �2 + 2

�3 � = �3 + 3�

�4 � = �4 + 4�2 + 2

�5 x = �5 + 5�3 + 5�

�6 x = �6 + 6�4 + 9�2 + 2
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By evaluating the polynomials at � = 1 , the Fibonacci, Lucas, and Pell numbers may be

found. By evaluating Fn at � = 2, the Pell numbers can be found. Fn has degrees of �-1 and

Ln has degrees of �. The sequences' standard generating function is:

�=0

∞

F� � t� =
t

1 − �t − t2�

�=0

∞

L� � t� =
2 − �t

1 − �t − t2�

Figure 1.13: Lucas Polynomial [78]

1.26 Generalized Lucas Polynomials

The generalization of Lucas polynomials, known as generalized Lucas polynomials [36], is

defined by

Lκ,�,�+1 � = κ(�)Lκ,�,� � + �(�)Lκ,�,�−1(�)

For � = 1,2,3……

Where Lκ,�,0 � = 2 and Lκ,�,1 � = κ(�)

Here, the real-coefficient polynomials κ(�) and �(�) are used.

The series given by (1.12) becomes the Lucas number sequence for κ � = � � = 1.

Also,
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�=0

∞

Lκ,�,� � �� = gF � =
2 − κ(�)�

1 − κ � � − � � �2�

1.27 Literature Review

The field of the Fibonacci numbers has been the focus of numerous

researchers.Various summing equations for the "Coupled Fibonacci sequence and

Multiplicative Coupled Fibonacci sequence" have been created in [37-46]. Similar

characteristics of the "Fibonacci, Tribonacci, Coupled Fibonacci, Coupled Lucas sequence"

have each been described in detail for the numbers [47-65].

Pain, Jean-Christophe [66] provided the various summing formulae for Generalized

Fibonacci numbers, which are defined as

Ƒ� = ƵƑ�−1 + ȿƑ�−2; Ƒ0 = a, Ƒ1 = b, for � = 2,3,4, ……

The same type of work has been done for several sequences by Oduol, Fidel Ochieng, and

Isaac Owino Okoth [67]. In [68], Sikhwal investigated a number of 2-Fibonacci sequences'

qualities.

While some of the characteristics of Fibonacci numbers are straightforward and well-known,

others have a wide range of application in scientific inquiry. Modern Mathematics has a wide

range of applications for the Fibonacci and Lucas numbers. Fundamental characteristics of

MCFS of Second order are presented by B. Singh and O. Sikhwal [39].

For every integer � ≥ 0

1. Ұ0. Ӿ3�+3 = Ӿ0. Ұ3�+3

2. Ұ1. Ӿ3�+4 = Ӿ1. Ұ3�+4

3. Ұ2. Ӿ3�+5 = Ӿ2. Ұ3�+5

For every integer � ≥ 0

1. Ӿ3�+3 = Ұ1. i=0
3�+1 Ӿi�

2. Ұ3�+3 = Ӿ1. i=0
3�+1 Ұi�

3. Ӿ3�+4 = Ӿ1. i=0
3�+2 Ӿi�

4. Ұ3�+4 = Ұ1. i=0
3�+2 Ұi�

5. Ӿ3�+5 = Ӿ1
Ӿ0

. i=0
3�+3 Ӿi�

6. Ұ3�+5 = Ұ1
Ұ0

. i=0
3�+3 Ұi�
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For every integer � ≥ 0

1. Ӿ3�+7
Ӿ3�+4

= Ӿ0
F3�+4 . Ұ0

F3�+4 . Ӿ1
F3�+5 . Ұ1

F3�+5

2. Ұ3�+7
Ұ3�+4

= Ӿ0
F3�+4 . Ұ0

F3�+4 . Ӿ1
F3�+5 . Ұ1

F3�+5

3. Ӿ3�+6
Ӿ3�+3

= Ӿ0
F3�+3 . Ұ0

F3�+3 . Ӿ1
F3�+4 . Ұ1

F3�+4

4. Ұ3�+6
Ұ3�+3

= Ӿ0
F3�+3 . Ұ0

F3�+3 . Ӿ1
F3�+4 . Ұ1

F3�+4

5. Ӿ3�+5
Ӿ3�+2

= Ӿ0
F3�+2 . Ұ0

F3�+2 . Ӿ1
F3�+3 . Ұ1

F3�+3

6. Ұ3�+5
Ұ3�+2

= Ӿ0
F3�+2 . Ұ0

F3�+2 . Ӿ1
F3�+1 . Ұ1

F3�+1

For every integer � ≥ 0

1. Ӿ�. Ӿ�+1. Ӿ�+2 = (Ӿ0. Ұ0)F�+1(Ӿ1. Ұ1)F�+2

2. Ұ�. Ұ�+1. Ұ�+2 = (Ӿ0. Ұ0)F�+1(Ӿ1. Ұ1)F�+2

For every integer � ≥ 0

1. Ӿ�+3
Ӿ�

= (Ӿ0. Ұ0)F�(Ӿ1. Ұ1)F�+1

2. Ұ�+3
Ұ�

= (Ӿ0. Ұ0)F�(Ӿ1. Ұ1)F�+1

For every integer � ≥ 0

1. Ӿ�+2 =
Ӿ0

1
2 F�+1+3. �+2

3 −�−1
. Ұ0

1
2 F�+1−3. �+2

3 +�−1

α1

1
2(F�+2−3. �

3 +�−1)
. Ұ1

1
2(F�+2+3. �

3 −�+1)F3�+5

2. Ұ�+2 =
Ӿ0

1
2 F�+1−3. �+2

3 +�+1
. Ұ0

1
2 F�+1+3. �+2

3 −�−1

Ӿ1

1
2(F�+2+3. �

3 −�+1)
. Ұ1

1
2(F�+2+3. �

3 +�−1)

where [] denote for greatest integer function.By utilizing Binet's formula, Cassini's identities,

and Catalan's Identity, Gupta, Panwar, and Sikhwal [54] presented several features of the

Generalized Fibonacci sequence.

(1) V�−2V� − V�−1
2 = ( − 1)�2�+1
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(2) U�+2U − U�−1
2 = ( − 1)�2�+3

(3) V�−r−1V�+r−1 − V�−1
2 = −1 �−r+12�−rVr−1

2

(4) U�−r−1U�+r−1 − U�−1
2 = ( − 1)�−r+12�−rUr−1

2

The following are some standard and determinant identities of generalized Fibonacci-Lucas

sequences that M. Singh, Y. K. Gupta, and O. Sikhwal [55] proposed using Binet's formula

and other straightforward techniques.

Sum of First � terms:

If Bn is the nth integer in the generalized Fibonacci - Lucas sequence, then the sum of

the first n terms is

B1 + B2 + B3 + … + B� =
k=1

�

Bk = Bn+2 − s�

Sum of First � terms with even indices:

The sum of the first n terms with even indices, given that Bn is the nth element of the

Fibonacci-Lucas sequence, is

B2 + B4 + B6 + … + B2� =
k=1

�

B2k = B2�+1 − s�

Some standard identities and determinant identities of generalized Fibonacci-Lucas

sequences were defined as Explicit Sum Formula by M. Singh, O. Sikhwal, and Y. K. Gupta

[55].G� should represent the �th term in the generalized Fibonacci-Lucas sequence.Then

B� = 2b
k=0

�
2

� − k
k

+ (s − 2b� )
k=0

�−1
2

� − k − 1
k

�

The authors C. Kzlate, B. Ekim, N. Tuglu, and T. Kim [69] provide the definitions of the

families of three-variable polynomials along with the newly generalized polynomials that are

connected to the generating functions of the well-known polynomials and literary numbers.

These definitions may be found in [28]. The following definition describes what is known as

a generating function for a novel and varied family of polynomials with three variables: by

Sj = Sj x, y, z; k, m, �, c :
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T = M x, y, z; k, m, �, c =
j=0

∞

Sjtj� =
1

1 − xkt − ymtm+� − Zctm+�+c

Following that, the partial differential equations for brand-new polynomials are derived as

∂
∂x

Sj = kxk−1

l=0

j−1

Sj−l−1Sl�

∂
∂y

Sj =
l=0

j−m−�

mym−1Sj−m−�−lSl�

∂
∂z

Sj = cZc−1

l=0

j−m−�−c

Sj−m−�−c−lSl�

1.28 Objectives defined of the Thesis

Considering the previously completed research in the field of the Coupled Fibonacci and

Lucas sequence, the objectives of the research work are:

 To obtain new identities and some special representations of the Coupled Lucas

sequence of numbers and polynomials.

 To find the application of Coupled Fibonacci and Lucas sequences

 To obtain new generalizations and extensions of the Coupled Fibonacci sequence of

numbers and polynomials.

1.29 Methodology used in the Research Work

The chosen methodology is described below in order to accomplish the stated goal:

 Fifth order Multiplicative Coupled Fibonacci sequence attributes will be derived using

the principle of mathematical induction. Additionally, the outcomes will be

confirmed by those that have already been demonstrated for the Fibonacci numbers by

the application of some specific Schemes.

 The procedure for finding the identities of the Multiplicative Coupled Fibonacci

sequence and the Multiplicative Triple Fibonacci sequence will serve the outcomes of

these sequences in a different order than the order in which they appear in the

sequences themselves.
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 Work on Coupled Lucas sequence and Generalized Lucas sequence with their

identities

and determinantal identities will be done utilizing a few properties of Lucas sequence

and determinantal.

1.30 Structure of Thesis
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Chapter-2

Multiplicative Coupled Fibonacci Sequence of

Fifth Order

The work from this chapter has been published in the form of research

paper entitled “Multiplicative Coupled Fibonacci Sequence of Fifth

Order” AIP Conference Proceedings RAFAS-2021 (Scopus

Indexed).
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2.1 Introduction

Recent years have seen a significant investment of time into the Fibonacci Sequence

(FS). It is not as well recognized for its Multiplicative FS. Atanassov K.T. [26] first

investigated the generality and assets of the FS [27], [49] and [50]. K.T. Atanassov's [26]

article describes the utilization of the Multiplicative Coupled Fibonacci Sequence (MCFS)

from four distinct vantage points. Additionally, P. Glaister [25] and P. Hope [59] did

research on MFS.

2.2 MCFS of Second Order

Let {Ӿ�}i=0
∞ and {Ұ�}i=0

∞ be two infinite sequences and called 2-F Sequence or Coupled

Fibonacci Sequence (CFS) with basic value �, �, � and � . then all the distinct schemes of

MCFS are as follows:

Ӿ0 = �, Ұ0 = �, Ӿ1 = �, Ұ1 = d

First Scheme:

Ӿ�+2 = Ұ�+2.Ұ�, � ≥ 0 (2.1)

Ұ�+2 = Ӿ�+1.Ӿ�, � ≥ 0

Second Scheme:

Ӿ�+2 = Ӿ�+1. Ұ�, � ≥ 0 (2.2)

Ұ�+2 = Ұ�+1. Ӿ�, � ≥ 0

Third Scheme:

Ӿ�+2 = Ұ�+2. Ӿ�, � ≥ 0 (2.3)

Ұ�+2 = Ӿ�+1. Ұ�, � ≥ 0

Fourth Scheme:

Ӿ�+2 = Ӿ�+1. Ӿ�, � ≥ 0 (2.4)

Ұ�+2 = Ұ�+1. Ұ�, � ≥ 0

Table 2.1: First ten terms of Scheme 2.1

� Ӿ� Ұ�

0 � �

1 � �
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2.3 MCFS of Third Order

Let {Ӿ�}i=0
∞ and {Ұ�}i=0

∞ be two infinite sequences and called 2-F Sequence or CFS

with initial value �, �, �, �, � and �. There are eight specific schemes. G.P.S. Rathore, Shweta

Jain and O.P. Sikhwal [37] studied various results of 3rd order MCFS.

2.4 MCFS of Fourth Order:

Let {Ӿ�}i=0
∞ and {Ұ�}i=0

∞ be two infinite sequences with initial value �, �, �, �, �, �, �

and ℎ. A. D. Godase [40] studied many results of fourth order MCFS.Here, we present some

different identities on MCFS of Fifth order under two specific schemes.

2.5 MCFS of Fifth Order:

Let {Ӿ�}�=0
∞ and {Ұ�}�=0

∞ be two infinite sequences with basic value �, �, �, �, �, �, �, ℎ. � and �.

Fifth order MCFS describes the following ways:

Ӿ�+5 = Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�, � ≥ 0 (2.5)

Ұ�+5 = Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�, � ≥ 0

There are thirty-two schemes under fifth order Multiplicative Coupled Fibonacci Sequence.

We worked on Scheme no. 2.5.

Table 2.2: Some terms of Scheme 2.5

2 �� ��

3 ��� ���

4 ���2� ����2

5 ��2�2�3 �2��3�2

6 �4�4�7�6 �4�4�6�7

7 �6�7�10�11 �7�6�11�10

8 �6�7�10�11 �7�6�11�10

9 �11�10�17�17 �10�11�17�17

� Ӿ� Ұ�

0 � �
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2.5.1 Motivation for Studying Fifth Order MCFS

The study of fifth-order Multiplicative Coupled Fibonacci Sequences (MCFS) arises

from the need to explore deeper structural and multiplicative behavior in recursive number

sequences. While lower-order MCFS provide foundational insights, higher-order variants

such as the fifth-order scheme introduce increased complexity and exhibit richer algebraic

patterns. Scheme 2.5, in particular, involves a five-fold product of previous terms, creating

highly non-linear growth, which opens the door for discovering new identities with potential

mathematical and applied implications.

This investigation aims to generalize the known properties of second, third, and fourth-order

MCFS to a broader setting, offering a more holistic understanding of how multiplicative

coupling behaves at a higher order. The chosen scheme (2.5) highlights the delicate interplay

between recursive depth and initial conditions, paving the way for uncovering elegant

identities and recurrence properties that could find utility in cryptography, dynamic system

modeling, and combinatorial analysis.

Now we present a few results of MCFS of fifth order under Scheme no. 2.5:

2.6 Main Identities:

Theorem 2.1: For every integer � ≥ 6:

Ұ�−1. Ӿ�+5 = Ӿ�−1. Ұ�+5

Proof:We use induction hypothesis to prove this result:

If � = 6, then

Ұ5. Ӿ11 = Ұ5. Ұ10. Ұ9. Ұ8. Ұ7. Ұ6 (By Scheme 2.5)

= Ұ5. Ӿ9. Ӿ8. Ӿ7. Ӿ6. Ӿ5. Ұ9. Ұ8. Ұ7. Ұ6 (By Scheme 2.5)

1 � �

2 � �

3 � ℎ

4 � �

5 ���ℎ� �����

6 ������ℎ�� ������ℎ��

7 ��2��2�2�2ℎ�2�2 ����2�2�2�2ℎ2�2�2
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=Ӿ5. Ӿ9. Ӿ8. Ӿ7. Ӿ6. Ұ9. Ұ8. Ұ7. Ұ6. Ұ5

= Ӿ5. Ӿ9. Ӿ8. Ӿ7. Ӿ6. Ӿ10

=Ӿ5. Ӿ10. Ӿ9. Ӿ8. Ӿ7. Ӿ6

= Ӿ5. Ұ11

The outcome is valid for � = 6 . Assume the identity holds for some integer � . We now

prove it holds for � + 1. Then by using Scheme no. 2.5

Ұ�. Ӿ�+6 = Ұ�. Ұ�+5. Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1

=Ұ�. Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�. Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1

=Ӿ�. Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�+4. Ұ�+3. Ұ�+2. Ұ�+1. Ұ�

= Ӿ�. Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1. Ұ�+5

=Ӿ�. Ұ�+5. Ӿ�+4. Ӿ�+3. Ӿ�+2. Ӿ�+1

= Ӿ�. Ұ�+6

Hence the identity holds for all integers � ≥ 6

Theorem 2.2: For every integer � ≥ 0:

�=0
�+6 Ӿ��

�=0
�+6 Ұ��

=
Ӿ0Ӿ1……Ӿ�

Ұ0Ұ1……Ұ�

Proof:With the help of induction hypothesis, we prove this result:

If � = 0 then,

�=0
6 Ӿ��

�=0
6 Ұ��

=
Ӿ0Ӿ1Ӿ2Ӿ3Ӿ4Ӿ5Ӿ6

Ұ0Ұ1Ұ2Ұ3Ұ4Ұ5Ұ6

=
Ӿ0Ұ6Ӿ6

Ұ0Ӿ6Ұ6

=
Ӿ0

Ұ0

The result is hold for � = 0. Assume the identity holds for some integer �

We now prove it holds for � + 1. Then

�=0
�+7 Ӿ��

�=0
�+7 Ұ��

=
Ӿ�+7Ӿ�+6Ӿ�+5Ӿ�+4Ӿ�+3Ӿ�+2Ӿ�+1Ӿ�Ӿ�−1Ӿ�−2…. . Ӿ1Ӿ0

Ұ�+7Ұ�+6Ұ�+5Ұ�+4Ұ�+3Ұ�+2Ұ�+1Ұ�Ұ�−1Ұ�−2…. . Ұ1Ұ0

=
Ӿ�+7Ұ�+7Ӿ�+1Ӿ�…. . Ӿ1Ӿ0

Ұ�+6Ӿ�+7Ұ�+1Ұ�…. . Ұ1Ұ0
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=
Ӿ0Ӿ1……Ӿ�+1

Ұ0Ұ1……Ұ�+1

Hence the identity holds for all integer � ≥ 0

Theorem 2.3: For every integers � ≥ 1:

(a) Ӿ6�+6 = �=0
6�+5 Ұ��

�=0
6� Ұ��

(b)Ұ6�+6 = �=0
6�+5 Ӿ��

�=0
6� Ӿ��

(c) Ӿ6�+7 = �=0
6�+6 Ұ��

�=0
6�+1 Ұ��

(d)Ұ6�+7 = �=0
6�+6 Ӿ��

�=0
6�+1 Ӿ��

(e) Ӿ6�+8 = �=0
6�+7 Ұ��

�=0
6�+2 Ұ��

(f) Ұ6�+8 = �=0
6�+7 Ӿ��

�=0
6�+2 Ӿ��

Proof:With the help of induction hypothesis, we prove this result:

If � = 1, then

�=0
11 Ұ��

�=0
6 Ұ��

=
Ұ0Ұ1Ұ2Ұ3Ұ4Ұ5Ұ6Ұ7Ұ8Ұ9Ұ10Ұ11

Ұ0Ұ1Ұ2Ұ3Ұ4Ұ5Ұ6

= Ұ7Ұ8Ұ9Ұ10Ұ11

= Ӿ12

The result is very for � = 1 . Assume the identity holds for some integer � + 1 . We now

prove it holds for � + 2.

�=0
6�+17 Ұ��

�=0
6�+12 Ұ��

=
Ұ6�+6Ұ6�+7Ұ6�+8……. . Ұ6�+17

Ұ6�+1Ұ6�+2……. . Ұ6�+12

�=0
6�+5 Ұ��

�=0
6� Ұ��

=
Ұ6�+6Ұ6�+7Ұ6�+8……. . Ұ6�+17Ӿ6�+6

Ұ6�+1Ұ6�+2……. . Ұ6�+12

=
Ұ6�+13Ұ6�+14Ұ6�+15Ұ6�+16Ұ6�+17Ӿ6�+6

Ұ6�+1Ұ6�+2Ұ6�+3Ұ6�+4Ұ6�+5
= Ұ6�+13Ұ6�+14Ұ6�+15Ұ6�+16Ұ6�+17

= Ӿ6�+18

Hence the identity holds for all integers � ≥ 1.

Theorem 2.4: For every integers � ≥ 1, � ≥ 3, � ≥ 3:
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(a) Ӿ��+�−1
Ӿ��+�
Ұ��+�

= Ӿ��+�Ӿ��+�−6
Ұ��+�−1

(b) Ұ��+�−1
Ұ��+�
Ӿ��+�

= Ұ��+�Ұ��+�−6
Ӿ��+�−1

Proof:With the help of induction hypothesis, we prove this result:

If � = 1, then

(a) Ӿ�+�−1
Ӿ�+�
Ұ�+�

= Ӿ�+�−1Ӿ�+�
Ӿ�+�−1Ӿ�+�−2Ӿ�+�−3Ӿ�+�−4Ӿ�+�−5

=
Ӿ�+�

Ӿ�+�−2Ӿ�+�−3Ӿ�+�−4Ӿ�+�−5

=
Ӿ�+�Ӿ�+�−6

Ӿ�+�−2Ӿ�+�−3Ӿ�+�−4Ӿ�+�−5Ӿ�+�−6

=
Ӿ�+�Ӿ�+�−6

Ӿ�+�−1

The result is very for � = 1

Assume the identity holds for some integer �. We now prove it holds for � + 1

By using Scheme no. 2.5

Ӿ��+�+�−1
Ӿ��+�+�

Ұ��+�+�
=

Ӿ��+�+�−1Ӿ��+�+�

Ӿ��+�+�−1Ӿ��+�+�−2Ӿ��+�+�−3Ӿ��+�+�−4Ӿ��+�+�−5

=
Ӿ��+�+�

Ӿ��+�+�−2Ӿ��+�+�−3Ӿ��+�+�−4Ӿ��+�+�−5

=
Ӿ��+�+�Ӿ��+�+�−6

Ӿ��+�+�−2Ӿ��+�+�−3Ӿ��+�+�−4Ӿ��+�+�−5Ӿ��+�+�−6

=
Ӿ��+�+�Ӿ��+�+�−6

Ӿ��+�+�−1

Hence the identity holds for all integers � ≥ 1. Similar proof can be given for the remaining

part (b).

2.6.1 Possible Applications of Fifth Order MCFS Identities

The identities derived in this chapter for fifth-order MCFS under Scheme 2.5 have

potential relevance in various domains. The complex recurrence relations, involving

multiplicative coupling over five previous terms, mirror processes in cryptographic key

generation algorithms, particularly in the design of nonlinear feedback shift registers and

pseudorandom number generators. The sensitivity of these sequences to initial values also
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makes them suitable for modeling systems with multi-layered dependencies, such as

ecological population models or compound-interest-like growth phenomena. Moreover, these

identities contribute to the broader mathematical landscape by offering new avenues for

exploration in combinatorics and discrete mathematics. They may also serve as theoretical

test cases for evaluating the behavior of multiplicative recursive algorithms in symbolic

computation. By understanding these structures, researchers can better assess their potential

role in secure communication protocols, error detection schemes, and the mathematical

foundations of recursive sequence analysis.

2.6.2 Some Mathematical Properties of Fifth Order MCFS

The fifth-order MCFS defined under Scheme 2.5 exhibits several interesting

mathematical properties arising from its recursive multiplicative structure. These properties

highlight the richness and potential utility of such sequences in theoretical and applied

contexts.

Monotonicity

The growth of the sequence terms is highly dependent on the initial conditions. When all

initial terms are greater than or equal to 1, the terms in both Ӿ� and Ұ� sequences exhibit

monotonic increasing behavior. This is due to the multiplicative nature of the recurrence

relation, where each new term is a product of five positive previous terms. However, this

Monotonicity may not hold if any of the initial terms are less than 1 or include 0.

Boundedness

The fifth-order MCFS is generally unbounded for positive initial conditions. As the

sequences grow through multiplicative recurrence, they tend to increase rapidly, leading to

exponential or even super-exponential growth. However, bounded behavior may arise under

specific modular constraints or when initial terms include values such as 0 or 1, which

suppress growth due to multiplication by a neutral or null factor.

Symmetry and Periodicity

The structure of Scheme 2.5 does not inherently produce symmetry or periodicity in the

classical sense. Unlike additive Fibonacci sequences, which can exhibit periodicity modulo m,

the multiplicative fifth-order MCFS lacks evident cyclical behavior under normal conditions.
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Periodicity might emerge under modular arithmetic, which could be an area of further

exploration.

Sensitivity to Initial Conditions

The fifth-order MCFS is highly sensitive to initial values. A slight change in any one of the

initial ten values can lead to significantly different trajectories for Ӿ� and Ұ�. This sensitivity

is a result of the deep coupling and the multiplicative propagation of initial differences across

iterations. Such a feature makes these sequences suitable for applications like pseudorandom

number generation and cryptographic systems, where sensitivity and unpredictability are

valuable traits.

2.7 Conclusion:

We presented fifth order MCFS under a particular scheme in this chapter.The

exploration of the fifth-order MCFS under a specific scheme has uncovered complex

mathematical structures and promising applications. This research expanded upon classical

Coupled Fibonacci Sequences by incorporating multiplicative elements, adding depth and

complexity to the behavior of the sequences. Detailed analysis of recurrence relations and

initial values revealed distinctive patterns, highlighting how the sequence’s properties are

strongly influenced by the chosen scheme. This study enhances our understanding of the

structural characteristics of higher-order Fibonacci sequences and underscores their

sensitivity to initial conditions. We can similarly describe other fifth order schemes.

“In the fifth-order multiplicative coupled Fibonacci sequence, the interplay of multiple recurrence layers

magnifies both structural complexity and generative potential, offering a mathematical landscape where

unpredictability and order coexist in delicate balance.”
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Chapter-3

Multiplicative Triple Fibonacci Sequence of

Second and Third Order

The work presented in this chapter has been published in the form of

research papers entitled “Multiplicative Triple Fibonacci Sequence of

Third Order” and “Multiplicative Triple Fibonacci Sequence of

Second Order under Three Specific Schemes and Third Order under

Nine Specific Schemes” in Scopus Indexed Journals (Q3).
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3.1. Introduction

The Triple Fibonacci Sequence, also known as the TFS, is the most recent and

significant development in the field of Fibonacci sequence. A new supervision for the

generalization of the Coupled Fibonacci Sequence (CFS) is represented by the TFS.

Atanassov was the one who initiated the CFS for the first time [58], and he was also the one

who investigated a wide variety of peculiar qualities and a fresh principle for the

generalization of the Fibonacci Sequence (FS). The Fibonacci Sequence and its

generalization both have a wide variety of features and applications that are seen to be

provocative. The book written by Koshy [4] is an important starting point for various

applications. In 1985, K.T. Attanasov [58] was the one who brought the concept of CFS to

the public's attention. He brought forth a fresh design for the FTS. The FTS connects three

sequences of integers, where the components of each sequence are generalizations of the

components of the other two sequences.

The Multiplicative Coupled Fibonacci Sequence (MCFS) and the Additive Fibonacci

Sequence (TFS) have been calculated by B. Singh and O. Sikhwal [51] with some important

features. It was first presented by J. Z. Lee and J. S. Lee [48] in the Initially Additive Triple

Sequence. Atanassov presents a novel concept for Additive FTS in the form of the 3-

Fibonacci Sequence, which is also referred to as the 3-F Sequence.

Triple Fibonacci sequences (TFS) represent a novel approach to generalizing the

Coupled Fibonacci Sequence (CFS).The TFS is a significant advancement in the field of FS

and extends the CFS, offering a wide range of intriguing properties and applications. The

multiplicative triple Fibonacci sequences (MTFS), an extension of the classical FS, have

garnered substantial interest in recent mathematical research, particularly in the context of

Second and Third-order derivations under specific Schemes. The FS, known for its ubiquity

in nature and applications across diverse fields, serves as the foundation for exploring the

multiplicative variations proposed in this study.

The TFS represents a fresh approach to the generalization of the CFS. It is a

significant advancement in the field of FS and a generalization of the CFS, offering a wide

range of fascinating properties and applications. The MTFS, an extension of the classical FS,

has garnered substantial interest in recent mathematical research, particularly concerning

Second and Third-order derivations under specific Schemes. The FS, known for its ubiquity
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in nature and applications across diverse fields, composes the foundation for exploring the

multiplicative variations proposed in this study.

There has been a great deal of research on the TFS. J. Z. Lee and J. S. Lee [38] were

the first to propose the TFS. Koshy’s book [4] is an excellent source for these applications. In

1985, Attanasov popularized the concept of the CFS and introduced a new TFS design. The

TFS connects three integer sequences, where the elements of one sequence are part of the

generalization of the others, and vice versa. Singh and Sikhwal computed the MCFS and

additive TFS, both have significant properties.

Under two distinct Schemes, Kiran Singh Sisodiya, Vandana Gupta, and Kiran

Sisodiya [41] investigated several features of the fourth-order MCFS. Omprakash Sikhwal,

Mamta Singh, and Shweta Jain examined various aspects of the fifth-order CFS. In 2014,

Krishna Kumar Sharma et al. [70] formulated the additive-linked Fibonacci sequences of rth

order and demonstrated their diverse features. Bijendra Singh and Omprakash Sikhwal

explored both the primitive aspects of Second-order TFS and several features of additive TFS.

The MTFS of the Second order was examined from multiple perspectives by Mamta Singh,

Shikha Bhatnagar, and Omprakash Sikhwal [52]. The properties of Second-order MTFS were

extensive by Satish Kumar, Hari Kishan, and Deepak Gupta [71]. Additionally, K.S.

Sisodiya, V. Gupta, and V. H. Badshah [72] illustrated different characteristics of Second-

order TFS. B. Singh, Kiran Singh Sisodiya, and Kiran Sisodiya [73] further enhanced the

Second-order MTFS and provided convinced fundamental characteristics. Shoukralla [74]

obtained a numerical solution to the first kind of Fredholm integral equation using the matrix

form of the Second-kind chebyshev polynomials.

The Second-order MTFS introduces a novel dimension to the classical sequence by

incorporating three distinct initial values and employing three specific Schemes for its

evolution. This extension beyond the traditional Fibonacci paradigm unveils a richer tapestry

of numerical relationships and behaviors, prompting a deeper investigation into the

underlying mathematical structure. Building upon this exploration, the study delves into the

Third-order MTFS, expanding its complexity by introducing nine specific Schemes. This

extension amplifies the intricacies of the sequence, offering a more nuanced understanding

of its behavior and potential applications. The literature surrounding FS and its derivatives

has witnessed a surge in interest due to their relevance in various scientific and computational

domains. Previous studies have often focused on additive properties and relationships within
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the Fibonacci framework. However, the current research contributes significantly by

extending the scope to multiplicative operations under specific Schemes, thereby paving the

way for novel insights into the mathematical landscape. This literature review sets the stage

for a comprehensive analysis of MTFS, emphasizing its potential impact on both theoretical

Mathematics and practical applications.

Overall, the MTFS of the Second and Third order, with three and nine specific

Schemes appropriately, presents a unique and intricate exploration of mathematical

sequences, contributing to a broader understanding of Fibonacci-related structures and their

potential applications. In the Second order, the sequence is generated by considering three

initial values and using a set of rules that dictate the multiplication of the last three terms to

obtain the subsequent term. Exploring different Schemes adds complexity and diversity to the

sequence, uncovering unique numerical behaviors. Moving into the Third order, the

investigation expands to nine distinct Schemes, each contributing to the richness and

complexity of the sequence. The interplay of these Schemes yields an MTFS sequence with

intricate dynamics, offering mathematicians and researchers a wealth of material for analysis

and exploration.

This introduction encapsulates a pioneering study in the realm of mathematical sequences,

showcasing the remarkable versatility and adaptability of the Fibonacci framework when

subjected to multiplicative operations. The exploration of specific Schemes introduces a

nuanced understanding of the sequence's evolution, offering a solid platform for further

research and diverse applications in various mathematical and computational domains.

In this note, we present some elemental view that will be used to formulate

Multiplicative Triple Fibonacci Sequence (MTFS) of Second and Third order with delightful

properties.

Figure 3.1: Fibonacci Numbers Spiral [77]
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In Fig 3.1, The Fibonacci spiral in the figure is constructed by arranging squares whose side

lengths correspond to Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.). Each

square’s dimensions represent the sequence’s increasing values. By connecting the corners of

these squares with quarter-circle arcs, the figure forms a spiral. This spiral visually

demonstrates the Fibonacci sequence's exponential growth pattern and its approximation of

the golden ratio. Such spirals are commonly found in nature, such as in the arrangement of

sunflower seeds, shells, and galaxies, highlighting the connection between Mathematics and

natural phenomena.

Figure 3.2: Types of Fibonacci Sequence

Fig 3.2 illustrates different variations of the Fibonacci sequence. CFS are modified versions

where each term is generated based on a coupling between previous terms. MCFS variations

where the relationship between the terms involves multiplication and coupling of previous

terms.TFS is an extension of the Fibonacci sequence where the next term is calculated based

on the previous three term instead of two.MTFS is an extension where the terms are

calculated based on a multiplicative relationship among three previous terms.

Figure 3.3: Hierarchical Structure of CFS Under Addition
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Fig 3.3 illustrates hierarchical structure of the CFS under addition, with different orders and

Schemes:1st order CFS represents the basic CFS with two Schemes, where the terms are

derided by adding two coupled sequences.2nd order CFS are more complex sequence with

four Schemes, extending the coupling process to a Second level. 3rd order CFS involves eight

Schemes, further expanding the coupling and addition process. 4th order CFS are more

advanced version with sixteen Schemes, counting the pattern of CFS under addition.5th order

CFS are most complex, involving thirty-two Schemes, representing the highest order of

coupling in this structure.

Figure 3.4: Structure of MCFS Under Multiplication

Fig. 3.4 outlines the structure of the MCFS under multiplication , showcasing different

orders and Schemes. 1st order MCFS is most basic form of MCFS with two Schemes, where

terms are generated using a multiplication process between coupled sequences.2nd order

MCFS is more advanced version with four Schemes, extending the multiplication based

coupling to a Second level.3rd order MCFS increases in complexity with eight Schemes,

involving further multiplication of coupled sequence.4th order MCFS is higher level sequence

with sixteen Schemes, expanding the multiplicative coupling process even further.5th order

MCFS is most complex sequence, involving thirty-two Schemes, representing the highest

level of multiplicative coupling in the FS structure.
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Figure 3.5: Structure of TFS

Fig. 3.5 represents the structure of the TFS under addition, featuring different orders and

Schemes. 1st order TFS is the basic form of the TFS, where each term is derived from the

sum of the previous three terms, with three Schemes for generating the sequence. Second

order TFS is more complex extension, incorporating with nine Schemes, where the coupling

and addition process are applied at the Second level. Third order TFS involves twenty-seven

Schemes, expanding the addition process to further include previous terms at an even higher

level. 4th order TFS is the most complex version in this series, with eighty-one Schemes,

involving a highly intricate addition process across multiple levels.

Figure 3.6: Structure of MTFS
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Fig. 3.6 illustrates the structure of the MTFS, showcasing increasing complexity through

various orders and Schemes. 1st order MTFS generates terms by multiplying the previous

three terms, utilizing three Schemes for sequence generation. Second order MTFS is a more

complex version that applies the multiplicative relationship at a Second level, incorporating

nine Schemes to enhance the sequence formation. Third order MTFS further expands the

multiplicative structure, using twenty-seven Schemes for generating terms through the

multiplication of three previous terms in more intricate patterns. Fourth order MTFS is most

advanced level in this series, with eighty-one Schemes, where the multiplicative

relationships become increasingly elaborate across multiple levels.

3.1.1 Motivation for Studying Second and Third Order MTFS

Second and third-order MTFS present a distinctive mathematical framework where

multiplicative recursions interact with structured generation schemes. From a theoretical

perspective, their study is motivated by the richness of their nonlinear behaviour, the

complexity arising from sensitivity to initial conditions, and the intricate patterns that emerge

through higher-order relations. These properties invite deeper analytical exploration,

encouraging the development of new mathematical tools for sequence classification, growth

analysis, and stability examination. Furthermore, investigating these structures contributes to

a broader understanding of how multiplicative processes can produce both predictable

periodicities and unpredictable fluctuations, offering fertile ground for future theoretical

advancements.

3.2 Second Order MTFS

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ ��� {Ƶ�}�=0
∞ be three infinite sequences with initial values

�, �, �, �, � and �which are referred to as the 3-F Sequence or TFS.

If Ӿ0 = �, Ұ0 = �, Ƶ0 = �, Ӿ1 = �, Ұ1 = �and Ƶ1 = �

Then the there are nine different Multiplicative Triple Fibonacci Sequence Schemes, each

defined by initial values �, � and � .These sequences evolve through distinct multiplicative

relationships, generating unique patterns and behaviors. Additionally, we will introduce

parameters �, �, and � to further enhance the complexity and richness of these sequences.

J. Z.Lee and J.S.Lee [48] defined following nine different Schemes of multiplicative triple

Fibonacci sequences are as follows:
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Table 3.1 Second Order MTFS Schemes

Scheme Ӿn+2 Ұn+2 Ƶn+2

1 Ұn+1. Ƶn Ƶn+1. Ӿ� Ӿn+1. Ұn

2 Ƶn+1. Ұn Ӿn+1. Ƶn Ұn+1. Ӿn

3 Ӿn+1. Ұn Ұn+1. Ƶn Ƶn+1. Ӿn

4 Ұn+1. Ӿ� Ƶ�+1. Ұn Ӿ�+1. Ƶ�

5 Ӿ�+1. Ƶ� Ұ�+1. Ӿ� Ƶ�+1. Ұ�

6 Ƶ�+1. Ӿ� Ӿ�+1. Ұ� Ұ�+1. Ƶ�

7 Ӿ�+1. Ӿ� Ұ�+1. Ұ� Ƶ�+1. Ƶ�

8 Ұ�+1. Ұ� Ƶ�+1. Ƶ� Ӿ�+1. Ӿ�

9 Ƶ�+1. Ƶ� Ӿ�+1. Ӿ� Ұ�+1. Ұ�

Properties of 7th, 8th and 9th Scheme.Below are the first few terms of the 7th Schemes:

Table 3.2: Some terms of 7th Scheme

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 �� �� ��

3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

The 8th Scheme's initial terms are listed below:

Table 3.3: Some terms of 8th Scheme
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� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 �� �� ��

3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

Following are the first few terms of the 9th Schemes:

Table 3.4: Some terms of 9th Scheme

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 �� �� ��

3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

O. P. Sikhwal, M. Singh, and S. Bhatnagar [52] examined a wide range of Second-order

results.

3.3 Main Results of 2nd Order MTFS

We will present some other results on the MTFS of Second order under three specific

Schemes and Third Order under nine Schemes in this chapter.

Now, under Schemes 7th, 8th and 9th, we introduce some results of the MTFS of Second

Order:

Theorem 3.1: For each whole number �:
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(a) Ӿ�+1 = Ӿ0
F�Ӿ1

F�+1

(b) Ұ�+1 = Ұ0
FnҰ1

Fn+1

(c) Ƶ�+1 = Ƶ0
F�Ƶ1

F�+1

Proof: These results are confirmed by the induction hypothesis.

(a) If � = 0, then

Ӿ1 = Ӿ0
�0Ӿ1

�1

= Ӿ1

For � = 0, the base case holds.

Assume the identity holds for some integer �. Then for � + 1

Ӿ�+2 = Ӿ�+1Ӿ� (By Scheme No. 7)

= Ӿ0
��Ӿ1

��+1Ӿ0
��−1Ӿ1

�� (By given Hypothesis)

= Ӿ0
��+��−1Ӿ1

��+1+��

= Ӿ0
��+1Ӿ1

��+2

The conclusion is valid for all integers � ≥ 0. Similar evidence is available for the remaining

parts (b) and (c).

Example based on Theorem 3.1

Consider a Fibonacci sequence ��, in this sequence, each term is obtained by adding the two

preceding terms, usually beginning with the initial values 0 and 1.

0, 1, 1, 2, 3, 5, 8, 13, 21………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so on..

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences where each term is the product of the

two preceding ones, such that

{Ӿ�}�=0
∞ = 1,3,3,9,27,243, . . . . . . . . . . . .

Where,

Ӿ0 = 1, Ӿ1 = 3, Ӿ2 = 3, Ӿ3 = 9, Ӿ4 = 27, Ӿ5 = 243 and so on...

{Ұ�}�=0
∞ = 2,3,6,18,108,1944. . . . . . . .

Where,

Ұ0 = 2, Ұ1 = 3, Ұ2 = 6, Ұ3 = 18, Ұ4 = 108, Ұ5 = 1944 and so on…

{Ƶ�}�=0
∞ = 1,4,4,16,64,1024, . . . . . . . .

Where,
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Ƶ0 = 1, Ƶ1 = 4, Ƶ2 = 4, Ƶ3 = 16, Ƶ4 = 64, Ƶ5 = 1024 and so on…

This example verifies Theorem 3.1 for the sequences defined above- The theorem provides a

closed-form formula for the terms of the sequence generated under Scheme 7,

expressing Ӿ�+1 in terms of the initial values Ӿ0 and Ӿ1 raised to powers based on the

standard Fibonacci sequence. We will now check if the computed value of Ӿ5 , Ұ5 and

Ƶ5 using the recurrence matches the value given by the theorem's formula.

Now we are going to apply the result of part (a) of theorem 3.1

Ӿ�+1 = Ӿ0
��Ӿ1

��+1

Put � = 4, Ӿ4+1 = Ӿ0
�4Ӿ1

�4+1

⇒ Ӿ5 = Ӿ0
�4Ӿ1

�5

= (1)3(3)5

= 243

Now we are going to apply the result of part (b) of theorem 3.1

Ұ�+1 = Ұ0
��Ұ1

��+1

Put � = 4, Ұ4+1 = Ұ0
�4Ұ1

�4+1

⇒ Ұ5 = Ұ0
�4Ұ1

�5

= (2)3(3)5

= 1944

Now we are going to apply the result of part (c) of theorem 3.1

Ƶ�+1 = Ƶ0
��Ƶ1

��+1

Put � = 4, Ƶ4+1 = Ƶ0
�4Ƶ1

�4+1

⇒ Ƶ5 = Ƶ0
�4Ƶ1

�5

= (1)3(4)5

= 1024

As the calculations show, the results from the multiplicative recurrence (243, 1944, 1024)

match exactly the results predicted by the formulas in Theorem 3.1. This provides a concrete

numerical verification of the theorem's correctness for these specific initial conditions and

demonstrates the utility of the closed-form expression in calculating terms directly without

iterative multiplication.

Theorem 3.2: For each natural number �;

Ӿ�Ұ�Ƶ� = (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��
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Proof:We will confirm this result with the help of induction hypothesis

If � = 1, then

Ӿ1Ұ1Ƶ1 = (Ӿ0Ұ0Ƶ0)�0(Ӿ1Ұ1Ƶ1)�1

= (Ӿ1Ұ1Ƶ1)

For � = 1, the base case holds.

Assume the identity holds for some integer �. Then for � + 1

Ӿ�+1Ұ�+1Ƶ�+1 = (Ӿ�Ӿ�−1)(Ұ�Ұ�−1)(Ƶ�Ƶ�−1)

= Ӿ�Ұ�Ƶ� Ӿ�−1Ұ�−1Ƶ�−1

= (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��(Ӿ0Ұ0Ƶ0)��−2(Ӿ1Ұ1Ƶ1)��−1

=(Ӿ0Ұ0Ƶ0)��−1+��−2(Ӿ1Ұ1Ƶ1)��+��−1

=(Ӿ0Ұ0Ƶ0)��(Ӿ1Ұ1Ƶ1)��+1

The conclusion is valid for all integers � ≥ 1.

Example based on Theorem 3.2

The Fibonacci sequence �� is defined such that each term is the sum of the two preceding

ones, typically starting with 0 and 1.

0, 1, 1, 2, 3, 5, 8, 13, 21…………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so on.

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences where each term is the product of the

two preceding ones, such that

{Ӿ�}�=0
∞ = 2,4,8,32,256. . . . . . . . . . . .

Where,

Ӿ0 = 2, Ӿ1 = 4, Ӿ2 = 8, Ӿ3 = 32, Ӿ4 = 256 and so on...

{Ұ�}�=0
∞ = 1,1,1,1,1,1. . . . . . . .

Where,

Ұ0 = 1, Ұ1 = 1, Ұ2 = 1, Ұ3 = 1, Ұ4 = 1 and so on...

{Ƶ�}�=0
∞ = 2,3,6,18,108,1944, . . . . . . . .

Where,

Ƶ0 = 2, Ƶ1 = 3, Ƶ2 = 6, Ƶ3 = 18, Ƶ4 = 108 and so on…

This example is designed to test the identity in Theorem 3.2- The theorem establishes a

relationship for the product of the �th terms of all three sequencesӾ�, Ұ� and Ƶ�. It claims this

product can be calculated solely from the products of the initial terms Ӿ0, Ұ0, Ƶ0 and Ӿ1, Ұ1,
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Ƶ1 again using Fibonacci numbers as exponents. We will verify this for � = 4.

Now we are going to apply the result of theorem 3.2

Ӿ�Ұ�Ƶ� = (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��

Put � = 4

Ӿ4Ұ4Ƶ4 = (Ӿ0Ұ0Ƶ0)�4−1(Ӿ1Ұ1Ƶ1)�4

⇒ 256 × 1 × 108 = (2 × 1 × 2)2(4 × 1 × 3)3

⇒ 27648 = (4)2(12)3

= 16 × 1728

= 27648

The equality holds, confirming Theorem 3.2 for this case. It is noteworthy that even though

the Ұ� sequence remains constant at 1, the theorem still accurately captures the combined

multiplicative growth of the three coupled sequences.

Theorem 3.3: For each whole number �;

(a) Ӿ�Ӿ�+1Ӿ�+2 = Ӿ0
2��+1Ӿ1

2��+2

(b) Ұ�Ұ�+1Ұ�+2 = Ұ0
2��+1Ұ1

2��+2

(c) Ƶ�Ƶ�+1Ƶ�+2 = Ƶ0
2��+1Ƶ1

2��+2

Proof: These results are confirmed by the induction hypothesis.

If � = 0, thenӾ0Ӿ1Ӿ2 = Ӿ0
2�1Ӿ1

2�2

= Ӿ0
2
Ӿ1

2

= Ӿ0Ӿ0Ӿ1Ӿ1

= Ӿ0Ӿ1Ӿ0Ӿ1

= Ӿ0Ӿ1Ӿ2 (By Scheme No. 7)

For � = 0, the base case holds.

Assume the identity holds for some integer �. Then for � + 1.

Ӿ�+1Ӿ�+2Ӿ�+3 = (Ӿ�+1Ӿ�+2Ӿ�+1Ӿ�+2) (By Scheme No. 7)

= (Ӿ�+1Ӿ�+1)(Ӿ�+2Ӿ�+2)

= (Ӿ�−1Ӿ�Ӿ�+1)(Ӿ�Ӿ�+1Ӿ�+2) (By given Hypothesis)

= (Ӿ0
2��Ӿ1

2��+1)(Ӿ0
2��+1Ӿ1

2��+2)

= Ӿ0
2��+2��+1Ӿ1

2��+1+2��+2

= Ӿ0
2��+2Ӿ1

2��+3
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The conclusion is valid for all integers � ≥ 0.

For the remaining sections (b) and (c), comparable evidence is provided.

Example based on Theorem 3.3

The Fibonacci sequence �� is defined such that each term is the sum of the two preceding

ones, typically starting with 0 and 1.

0, 1, 1, 2, 3, 5, 8, 13, 21, …………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so on...

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences where each term is the product of the

two preceding ones, such that

{Ӿ�}�=0
∞ = 4,5,20,100,2000,200000. . . . . . . . . . . .

Where,

Ӿ0 = 4, Ӿ1 = 5, Ӿ2 = 20, Ӿ3 = 100, Ӿ4 = 2000 and so on...

{Ұ�}�=0
∞ = 1,7,7,49,343,16807. . . . . . . .

Where,

Ұ0 = 1, Ұ1 = 7, Ұ2 = 7, Ұ3 = 49, Ұ4 = 343 and so on...

{Ƶ�}�=0
∞ = 2,4,8,32,256,8192. . . . . . . .

Where,

Ƶ0 = 2, Ƶ1 = 4, Ƶ2 = 8, Ƶ3 = 32, Ƶ4 = 256 and so on...

This example serves to validate Theorem 3.3, which provides an identity for the product of

three consecutive terms of a single sequence. For instance, part (a) gives a formula

for Ӿ�Ӿ�+1Ӿ�+2 . We will check if this formula holds true for the given sequences at � = 2.

Now we are going to apply the result part (a) of theorem 3.3

Ӿ�Ӿ�+1Ӿ�+2 = Ӿ0
2��+1Ӿ1

2��+2

For � = 2, Ӿ2Ӿ3Ӿ4 = Ӿ0
2�3Ӿ1

2�4

⇒ Ӿ2Ӿ3Ӿ4 = Ӿ0
2�3Ӿ1

2�4

⇒ 20 × 100 × 2000 = 4456

⇒ 20000 = 20000

Now we are going to apply the result part (b) of theorem 3.3

Ұ�Ұ�+1Ұ�+2 = Ұ0
2��+1Ұ1

2��+2

For � = 2, Ұ2Ұ3Ұ4 = Ұ0
2�3Ұ1

2�4

⇒ Ұ2Ұ3Ұ4 = Ұ0
2�3Ұ1

2�4
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⇒ 7 × 49 × 343 = 1476

⇒ 17649 = 117649

Now we are going to apply the result part (c) of theorem 3.3

Ƶ�Ƶ�+1Ƶ�+2 = Ƶ0
2��+1Ƶ1

2��+2

For � = 2, Ƶ2Ƶ3Ƶ4 = Ƶ0
2�3Ƶ1

2�4

⇒ Ƶ2Ƶ3Ƶ4 = Ƶ0
2�3Ƶ1

2�4

⇒ 8 × 32 × 256 = 2446

⇒ 65536 = 65536

The successful verification for all three sequences strengthens the proof by induction

provided for Theorem 3.3. It illustrates the theorem's application across different sequences

governed by the same multiplicative scheme.

Theorem 3.4: For each whole number � and every natural no. � ≥ 2;

(a) Ӿ�+�+1Ұ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1

(b) Ұ�+�+1Ƶ�+�−1 = Ұ�
��Ұ�+1

��+1Ƶ�
��−2Ƶ�+1

��−1

(c) Ƶ�+�+1Ӿ�+�−1 = Ƶ�
��Ƶ�+1

��+1Ӿ�
��−2Ӿ�+1

��−1

Proof: These results are confirmed by the induction hypothesis.

If � = 2 then Ӿ�+3Ұ�+1 = Ӿ�+2Ӿ�+1Ұ�+1

= Ӿ�+1Ӿ�Ӿ�+1Ұ�+1

= Ӿ�
1Ӿ�+1

2 Ұ�
0Ұ�+1

1

= Ӿ�
�2Ӿ�+1

�3 Ұ�
�0Ұ�+1

�1

For � = 2, the base case holds.

Assume the identity holds for some integer �. Then for � + 1.

Ӿ�+�+2Ұ�+� = Ӿ�+�+1Ӿ�+�Ұ�+�−1Ұ�+�−2

= (Ӿ�+�+1Ұ�+�−1)(Ӿ�+�Ұ�+�−2)

= Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1Ӿ�
��−1Ӿ�+1

�� Ұ�
��−3Ұ�+1

��−2

= Ӿ�
��+��−1Ӿ�+1

��+1+��Ұ�
��−2+��−3Ұ�+1

��−1+��−2

= Ӿ�
��+1Ӿ�+1

��+2Ұ�
��−1Ұ�+1

��

The conclusion is valid for all integers � ≥ 0, � ≥ 2.

Similar evidence is available for the remaining parts (b) and (c).

Example based on Theorem 3.4



63

The Fibonacci sequence �� is defined such that each term is the sum of the two preceding

ones, typically starting with 0 and 1.

0, 1, 1, 2, 3, 5, 8, 13, 21, …………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so on...

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences whose terms is the multiplication of the

two preceding ones such that

{Ӿ�}�=0
∞ = 1,3,3,9,27,243, . . . . . . . . . . . .

Where,

Ӿ0 = 1, Ӿ1 = 3, Ӿ2 = 3, Ӿ3 = 9, Ӿ4 = 27, Ӿ5 = 243, Ӿ6 = 6561 and so on...

{Ұ�}�=0
∞ = 2,3,6,18,108,1944. . . . . . . .

Where,

Ұ0 = 2, Ұ1 = 3, Ұ2 = 6, Ұ3 = 18, Ұ4 = 108, Ұ5 = 1944 and so on...

{Ƶ�}�=0
∞ = 1,4,4,16,64,1024, . . . . . . . .

Where,

Ƶ0 = 1, Ƶ1 = 4, Ƶ2 = 4, Ƶ3 = 16, Ƶ4 = 64, Ƶ5 = 1024 and so on…

This example demonstrates the more complex identity stated in Theorem 3.4- The theorem

relates a term from one sequence Ӿ�+�+1 and another from a different sequence Ұ�+�−1 to a

product of four earlier terms from both sequences, with Fibonacci number exponents. We test

part (a) for specific values � = 2 and � = 3.

Now we are going to apply the result of part (a) theorem 3.4

Ӿ�+�+1Ұ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1

For � = 2 and � = 3

Ӿ6Ұ4 = Ӿ2
�3Ӿ3

�4Ұ2
�1Ұ3

�2

⇒ 108 × 6561 = 329361181

⇒ 708588 = 708588

The result is verified, demonstrating the intricate cross-sequence relationships that Theorem

3.4 captures. This complexity highlights the rich structure inherent in the Multiplicative

Triple Fibonacci Sequences.

Similarly, we can apply the result in parts (b) and (c).

Theorem 3.5: For every integer � ≥ 0, � ≥ 2;

(a) Ӿ�+�+1Ƶ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ƶ�
��−2Ƶ�+1

��−1
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(b) Ұ�+�+1Ӿ�+�−1 = Ұ�
��Ұ�+1

��+1Ӿ�
��−2Ӿ�+1

��−1

(c) Ƶ�+�+1Ұ�+�−1 = Ƶ�
��Ƶ�+1

��+1Ұ�
��−2Ұ�+1

��−1

Proof: A similar proof can be given as in theorem 3.4.

Theorem 3.6: For every integer � ≥ 0;

(a) Ӿ0Ӿ�+4 = Ӿ0
��+3−1Ӿ1

��+4

(b) Ұ0Ұ�+4 = Ұ0
��+3−1Ұ1

��+4

(c) Ƶ0Ƶ�+4 = Ƶ0
��+3−1Ƶ1

��+4

Proof:We can prove the theorem by the method of mathematical induction.

We can also prove theorem 3.1 to theorem 3.6 with the help of Schemes 8th and 9th.

3.4 3rd ORDERMTFS

Let{Ӿ�}�=0
∞ , {Ұ�}�=0

∞ ��� {Ƶ�}�=0
∞ be three infinite sequences with initial values �, �, �, �, �,

�, �, � and �, which are referred to as the 3-F Sequence or TFS.

If Ӿ0 = �, Ұ0 = �, Ƶ0 = �, Ӿ1 = �, Ұ1 = �, Ƶ1 = �, Ӿ2 = �, Ұ2 = �, Ƶ2 = �,

Then the following are twenty-seven different MTFS Schemes:

Table 3.5: Third Order MTFS Schemes

Scheme Ӿ�+3 Ұ�+3 Ƶ�+3

1 Ұ�+2. Ƶ�+1. Ӿ� Ƶ�+2. Ӿ�+1. Ұ� Ӿ�+2. Ұ�+1. Ƶ�

2 Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+2. Ұ�+1. Ұ� Ƶ�+2. Ƶ�+1. Ƶ�

3 Ӿ�+2. Ƶ�+1. Ұ� Ұ�+2. Ӿ�+1. Ƶ� Ƶ�+2. Ұ�+1. Ӿ�

4 Ƶ�+2. Ұ�+1. Ӿ� Ӿ�+2. Ƶ�+1. Ұ� Ұ�+2. Ӿ�+1. Ƶ�

5 Ӿ�+2. Ұ�+1. Ƶ� Ұ�+2. Ƶ�+1. Ӿ� Ƶ�+2. Ӿ�+1. Ұ�

6 Ӿ�+2. Ӿ�+1. Ұ� Ұ�+2. Ұ�+1. Ƶ� Ƶ�+2. Ƶ�+1. Ӿ�

7 Ӿ�+2. Ұ�+1. Ӿ� Ұ�+2. Ƶ�+1. Ұ� Ƶ�+2. Ӿ�+1. Ƶ�

8 Ұ�+2. Ӿ�+1. Ӿ� Ƶ�+2. Ұ�+1. Ұ� Ӿ�+2. Ƶ�+1. Ƶ�

9 Ӿ�+2. Ӿ�+1. Ƶ� Ұ�+2. Ұ�+1. Ӿ� Ƶ�+2. Ƶ�+1. Ұ�
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10 Ӿ�+2. Ƶ�+1. Ӿ� Ұ�+2. Ӿ�+1. Ұ� Ƶ�+2. Ұ�+1. Ƶ�

11 Ƶ�+2. Ӿ�+1. Ӿ� Ӿ�+2. Ұ�+1. Ұ� Ұ�+2. Ƶ�+1. Ƶ�

12 Ұ�+2. Ұ�+1. Ƶ� Ƶ�+2. Ƶ�+1. Ӿ� Ӿ�+2. Ӿ�+1. Ұ�

13 Ұ�+2. Ƶ�+1. Ұ� Ƶ�+2. Ӿ�+1. Ƶ� Ӿ�+2. Ұ�+1. Ӿ�

14 Ƶ�+2. Ұ�+1. Ұ� Ӿ�+2. Ƶ�+1. Ƶ� Ұ�+2. Ӿ�+1. Ӿ�

15 Ұ�+2. Ƶ�+1. Ƶ� Ƶ�+2. Ӿ�+1. Ӿ� Ӿ�+2. Ұ�+1. Ұ�

16 Ƶ�+2. Ұ�+1. Ƶ� Ӿ�+2. Ƶ�+1. Ӿ� Ұ�+2. Ӿ�+1. Ұ�

17 Ƶ�+2. Ƶ�+1. Ұ� Ӿ�+2. Ӿ�+1. Ƶ� Ұ�+2. Ұ�+1. Ӿ�

18 Ƶ�+2. Ӿ�+1. Ұ� Ӿ�+2. Ұ�+1. Ƶ� Ұ�+2. Ƶ�+1. Ӿ�

19 Ұ�+2. Ӿ�+1. Ұ� Ƶ�+2. Ұ�+1. Ƶ� Ӿ�+2. Ƶ�+1. Ӿ�

20 Ӿ�+2. Ұ�+1. Ұ� Ұ�+2. Ƶ�+1. Ƶ� Ƶ�+2. Ӿ�+1. Ӿ�

21 Ұ�+2. Ұ�+1. Ӿ� Ƶ�+2. Ƶ�+1. Ұ� Ӿ�+2. Ӿ�+1. Ƶ�

22 Ӿ�+2. Ƶ�+1. Ƶ� Ұ�+2. Ӿ�+1. Ӿ� Ƶ�+2. Ұ�+1. Ұ�

23 Ƶ�+2. Ӿ�+1. Ƶ� Ӿ�+2. Ұ�+1. Ӿ� Ұ�+2. Ƶ�+1. Ұ�

24 Ƶ�+2. Ƶ�+1. Ӿ� Ӿ�+2. Ӿ�+1. Ұ� Ұ�+2. Ұ�+1. Ƶ�

25 Ұ�+2. Ӿ�+1. Ƶ� Ƶ�+2. Ұ�+1. Ӿ� Ӿ�+2. Ƶ�+1. Ұ�

26 Ұ�+2. Ұ�+1. Ұ� Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+2. Ӿ�+1. Ӿ�

27 Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+2. Ұ�+1. Ұ�

Table 3.6: Some terms of 1st Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 �2�2� �2�2� �2�2�

5 �4�3�2 �4�3�2 �4�3�2

Table 3.7: Some terms of 2nd Scheme of Third order

� Ӿ� Ұ� Ƶ�
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0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4

Table 3.8: Some terms of 3rd Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 ����� ����� ���ℎ�

Table 3.9: Some terms of 4th Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��i ��� ���

4 ��2�2 ��2�2 ��2�2

Table 3.10: Some terms of 5th Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 �2�2� �2�2� �2�2�

Table 3.11: Some terms of 18th Scheme of Third order
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� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 �2�2� �2�2� �2�2�

Table 3.12: Some terms of 25th Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

Table 3.13: Some terms of 26th Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4

Table 3.14: Some terms of 27th Scheme of Third order

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � � �

3 ��� ��� ���

4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4
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3.5 Main Results of 3rd Order MTFS

Now we present some results of MTFS of Third order under 1st, 2nd, 3rd, 4th, 5th, 18th , 25th,

26th and 27th:

Theorem 3.7: For each natural no. � ≥ 2:

�=0
� Ӿ�+6Ұ�+6Ƶ�+6�

�=0
� Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ�+6Ұ�+6Ƶ�+6)

(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

Proof:We demonstrate these findings through induction hypothesis:

If � = 2, then

�=0
2 Ӿ�+6Ұ�+6Ƶ�+6�

�=0
2 Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ6Ұ6Ƶ6)(Ӿ7Ұ7Ƶ7)(Ӿ8Ұ8Ƶ8)
(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)(Ӿ6Ұ6Ƶ6)

=
(Ӿ7Ұ7Ƶ7)(Ӿ8Ұ8Ƶ8)
(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

For � = 2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some integer �. Then for � + 1

�=0
�+1Ӿ�+6Ұ�+6Ƶ�+6�

�=0
�+1Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+7Ұ�+7Ƶ�+7) �=0

� Ӿ�+6Ұ�+6Ƶ�+6�
(Ӿ�+5Ұ�+5Ƶ�+5) �=0

� Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+7Ұ�+7Ƶ�+7)(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ�+6Ұ�+6Ƶ�+6)

(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

=
(Ӿ�+6Ұ�+6Ƶ�+6)(Ӿ�+7Ұ�+7Ƶ�+7)

(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

The conclusion is valid for all integers � ≥ 0.

Theorem 3.8: For each whole no. �:

(Ӿ�Ұ�Ƶ�)(Ӿ�+1Ұ�+1Ƶ�+1)
(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+2Ұ�+2Ƶ�+2)

Proof: By induction hypothesis, we have

If � = 0, then

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)
(Ӿ3Ұ3Ƶ3)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ұ2Ƶ1Ӿ0)(Ƶ2Ӿ1Ұ0)(Ӿ2Ұ1Ƶ0)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)
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=
1

(Ӿ2Ұ2Ƶ2)

For � =0, the base case holds.

Assume the identity holds for some integer �. Then for � + 1.

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)
(Ӿ�+4Ұ�+4Ƶ�+4)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+3Ӿ�+2Ӿ�+1)(Ұ�+3Ұ�+2Ұ�+1)(Ƶ�+3Ƶ�+2Ƶ�+1)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+3Ұ�+3Ƶ�+3)

The conclusion is valid for all integers � ≥ 0.

Theorem 3.9: For every integer � ≥ 0:

(Ӿ�Ұ�Ƶ�)(Ӿ�+1Ұ�+1Ƶ�+1)
(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+2Ұ�+2Ƶ�+2)

Proof: These results are confirmed by the induction hypothesis.

If � = 0, then

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)
(Ӿ3Ұ3Ƶ3)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ұ2Ƶ1Ӿ0)(Ƶ2Ӿ1Ұ0)(Ӿ2Ұ1Ƶ0)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)

=
1

(Ӿ2Ұ2Ƶ2)

For � =0, the base case holds.

Assume the identity holds for some integer �. Then for � + 1.

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)
(Ӿ�+4Ұ�+4Ƶ�+4)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+3Ӿ�+2Ӿ�+1)(Ұ�+3Ұ�+2Ұ�+1)(Ƶ�+3Ƶ�+2Ƶ�+1)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+3Ұ�+3Ƶ�+3)

The conclusion is valid for all integers � ≥ 0.

now we will present the identities of 3rd order MTFS under Scheme no. 1.

Theorem 3.10: For each integer � ≥ 0



70

(a) Ӿ�+9 = Ӿ�+6
4 . Ұ�+5

3 . Ƶ�+4
2

(b) Ұ�+9 = Ұ�+6
4 . Ƶ�+5

3 . Ӿ�+4
2

(c) Ƶ�+9 = Ƶ�+6
4 . Ӿ�+5

3 . Ұ�+4
2

Proof: These results are confirmed by the induction hypothesis.

If � = 0 then Ӿ9 = Ұ8. Ƶ7. Ӿ6 (By Scheme No. 1)

= Ƶ7. Ӿ6. Ұ5. Ƶ7. Ӿ6 (By Scheme No. 1)

= Ӿ6
2. Ұ5. Ƶ7

2

= Ӿ6
2. Ұ5. Ӿ6. Ұ5. Ƶ4. Ӿ6. Ұ5. Ƶ4 (By Scheme No. 1)

= Ӿ6
4. Ұ5

3. Ƶ4
2

For � =0, the base case holds.

Assume the identity holds for some integer �. Then for � + 1.

Ӿ�+10 = Ұ�+9. Ƶ�+8. Ӿ�+7 (By Scheme No. 1)

= Ƶ�+8. Ӿ�+7. Ұ�+6. Ƶ�+8. Ӿ�+7 (By Scheme No. 1)

= Ӿ�+7
2 . Ұ�+6. Ƶ�+8

2

= Ӿ�+7
2 . Ұ�+6. (Ӿ�+7. Ұ�+6. Ƶ�+5)2 (By Scheme No. 1)

=Ӿ�+7
4 . Ұ�+6

3 . Ƶ�+5
2

The conclusion is valid for all integers � ≥ 0.

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.11: For every integer � ≥ 0

(a) k=0
� Ӿ2k+10 = k=0

� Ұ2k+9� . Ƶ2k+8. Ӿ2k+7�

(b) k=0
� Ұ2k+10 = k=0

� Ƶ2k+9� . Ӿ2k+8. Ұ2k+7�

(c) k=0
� Ƶ2k+10 = k=0

� Ӿ2k+9� . Ұ2k+8. Ƶ2k+7�

Proof. These results are confirmed by the induction hypothesis.

For � = 0 then Ӿ10 = Ұ9. Ƶ8. Ӿ7

This is true by first Scheme.

We'll proceed by assuming that the outcome is accurate for some integer � =1.

Hence k=0
l Ӿ2k+10 = k=0

l Ұ2k+9� . Ƶ2k+8. Ӿ2k+7�

Now for � = l + 1. Then
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k=0

l+1

Ұ2k+9� . Ƶ2k+8. Ӿ2k+7 = Ұ2(l+1)+9. Ƶ2(l+1)+8. Ӿ2(l+1)+7.
k=0

l

Ұ2k+9� . Ƶ2k+8. Ӿ2k+7

= Ӿ2(l+1)+10. k=0
l Ӿ2k=10� (By induction hypothesis)

= k=0
l+1 Ӿ2k=10�

Thus, the result is true for � = l + 1. Hence by induction method the result is true for any

positive integer �.

Similar proof can be given for remaining parts (b) and (c).

Theorem 3.12: For each integer � ≥ 0

(a) k=0
� Ӿ3k+10 = k=0

� Ұ3k+9� . Ƶ3k+8. Ӿ3k+7�

(b) k=0
� Ұ3k+10 = k=0

� Ƶ3k+9� . Ӿ3k+8. Ұ3k+7�

(c) k=0
� Ƶ3k+10 = k=0

� Ӿ3k+9� . Ұ3k+8. Ƶ3k+7�

Induction can also be used to support this.

Theorem 3.13: For each integer � ≥ 0, ɍ ≥ 1.

(a) k=0
� Ӿɍk+10 = k=0

� Ұɍk+9� . Ƶɍk+8. Ӿɍk+7�

(b) k=0
� Ұɍk+10 = k=0

� Ƶɍk+9� . Ӿɍk+8. Ұɍk+7�

(c) k=0
� Ƶɍk+10 = k=0

� Ӿɍk+9� . Ұɍk+8. Ƶɍk+7�

Induction can also be used to support this.

Theorem 3.14: For every integer � ≥ 0, ᵴ ≥ 0

(a) k=0
� Ӿ2k+3+ᵴ = k=0

� Ұ2k+2+ᵴ� . Ƶ2k+1+ᵴ. Ӿ2k+ᵴ�

(b) k=0
� Ұ2k+3+ᵴ = k=0

� Ƶ2k+2+ᵴ� . Ӿ2k+1+ᵴ. Ұ2k+ᵴ�

(c) k=0
� Ƶ2k+3+ᵴ = k=0

� Ӿ2k+2+ᵴ� . Ұ2k+1+ᵴ. Ƶ2k+ᵴ�

These results are confirmed by the induction hypothesis.

For � = 0, we have Ӿᵴ+3 = Ұᵴ+2. Ƶᵴ+1. Ӿᵴ which is true by the first Scheme.

We'll proceed by assuming that the outcome is accurate for some integer � ≥ l.

Hence k=0
l Ӿ2k+10 = k=0

l Ұ2k+9� . Ƶ2k+8. Ӿ2k+7�

Now for � = l + 1. Then
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k=0

l+1

Ұ2k+ᵴ+2� . Ƶ2k+ᵴ+1. Ӿ2k+ᵴ = Ұ2 l+1 +ᵴ+2. Ƶ2 l+1 +ᵴ+1. Ӿ2(l+1)+ᵴ.
k=0

l

Ұ2k+ᵴ+2� . Ƶ2k+ᵴ+1. Ӿ2k+ᵴ

= Ӿ2 l+1 +ᵴ+3. k=0
l Ӿ2k+ᵴ+3� (By induction hypothesis)

= k=0
l+1 Ӿ2k+ᵴ+3� = L.H.S.

The conclusion is valid for all integers � = l + 1.

Therefore, according to the induction process, the conclusion is valid for all positive

integers �.

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.15: For every integer � ≥ 0, ɍ ≥ 0, ᵴ ≥ 0

(a) k=0
� Ӿɍk+ᵴ+3 = k=0

� Ұɍk+ᵴ+2� . Ƶɍk+ᵴ+1. Ӿɍk+ᵴ�

(b) k=0
� Ұɍk+ᵴ+3 = k=0

� Ƶɍk+ᵴ+2� . Ӿɍk+ᵴ+1. Ұɍk+ᵴ�

(c) k=0
� Ƶɍk+ᵴ+3 = k=0

� Ӿɍk+ᵴ+2� . Ұɍk+ᵴ+1. Ƶɍk+ᵴ�

Proof. These results are confirmed by the induction hypothesis:

For � = 0, we have Ӿᵴ+3 = Ұᵴ+2. Ƶᵴ+1. Ӿᵴ this is true by first Scheme.

We'll proceed by assuming that the outcome is accurate for some integer � = l.

Hence k=0
l Ӿɍk+10 = k=0

l Ұɍk+9� . Ƶɍk+8. Ӿɍk+7�

Now for � = l + 1. Then

k=0

l+1

Ұɍk+ᵴ+2� . Ƶɍk+ᵴ+1. Ӿɍk+ᵴ = Ұɍ l+1 +ᵴ+2. Ƶɍ l+1 +ᵴ+1. Ӿɍ(l+1)+ᵴ.
k=0

l

Ұɍk+ᵴ+2� . Ƶɍk+ᵴ+1. Ӿɍk+ᵴ

= Ӿɍ l+1 +ᵴ+3. k=0
l Ӿɍk+ᵴ+3� (By induction hypothesis)

= k=0
l+1 Ӿɍk+ᵴ+3�

= L.H.S.

The conclusion is valid for all integers � = l + 1.

Consequently, by induction, the result is valid for any positive integer �.

Similar evidence is available for the remaining parts (b) and (c).

Theorem 3.16: For every integer � ≥ 2,

(Ӿ0Ұ0Ƶ0)�(Ӿ1Ұ1Ƶ1)�+1(Ӿ2Ұ2Ƶ2)�+2 = Ӿ3Ұ3Ƶ3
�−2

(Ӿ5Ұ5Ƶ5)

Proof: These results are confirmed by the induction hypothesis.

For � = 2, we have
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(Ӿ0Ұ0Ƶ0)2(Ӿ1Ұ1Ƶ1)3(Ӿ2Ұ2Ƶ2)4 = (Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)2(Ӿ3Ұ3Ƶ3)2 (By Scheme No. 1)

= (Ӿ2Ұ2Ƶ2)(Ӿ3Ұ3Ƶ3)(Ӿ4Ұ4Ƶ4) (By Scheme No. 1)

= (Ӿ5Ұ5Ƶ5)

For � =2, the base case holds.

Assume the identity holds for some integer � = l. Then for� = l + 1.

Hence (Ӿ0Ұ0Ƶ0)l(Ӿ1Ұ1Ƶ1)l+1(Ӿ2Ұ2Ƶ2)l+2 = Ӿ3Ұ3Ƶ3
l−2

(Ӿ5Ұ5Ƶ5)

Now for � = l + 1. Then

Ӿ0Ұ0Ƶ0
l+1

Ӿ1Ұ1Ƶ1
l+2

Ӿ2Ұ2Ƶ2
l+3

= Ӿ0Ұ0Ƶ0
l
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)l+1(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)l+2(Ӿ2Ұ2Ƶ2)

= Ӿ0Ұ0Ƶ0
l
(Ӿ1Ұ1Ƶ1)l+1(Ӿ2Ұ2Ƶ2)l+2(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)

= Ӿ3Ұ3Ƶ3
l−2

(Ӿ5Ұ5Ƶ5)(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2) (By hypothesis)

= Ӿ3Ұ3Ƶ3
l−2

(Ӿ5Ұ5Ƶ5)(Ӿ3Ұ3Ƶ3) (By Scheme No. 1)

= Ӿ3Ұ3Ƶ3
l−1

(Ӿ5Ұ5Ƶ5)

The conclusion is valid for all integers � = l + 1.

So, the answer is true for any positive number n using the induction method.

Theorem 3.17: For each integer � ≥ 0:

(a) Ӿ6�+4 = ɍ=0
6�+3 Ӿɍ�

ꞧ =0
6� Ӿɍ�

(b)Ұ6�+4 = ɍ=0
6�+3 Ұɍ�

ɍ=0
6� Ұɍ�

(c) Ƶ6�+4 = ɍ=0
6�+3 Ƶɍ�

ɍ=0
6� Ƶɍ�

Proof: We can prove the result with the help of mathematical induction.

Theorem 3.18: For every integer � ≥ 0:

(a)Ӿl�+m = ɍ=0
6�+m−1 Ӿɍ�

ɍ=0
6�+m−4 Ӿɍ�

(b)Ұl�+m = ɍ=0
6�+m−1 Ұɍ�

ɍ=0
6�+m−4 Ұɍ�

(c) Ƶl�+m = ꞧ =0
6�+m−1 Ƶɍ�

ɍ=0
6�+m−4 Ƶɍ�
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Proof:With the aid of mathematical induction, we can demonstrate the conclusion.

Also, we can prove theorem 3.7 to theorem 3.17 with the help of Scheme no. 2nd, 3rd, 4th,

5th, 18th, 25th, 26th and 27th.

3.5.1 Possible Applications of Second and Third Order MTFS

While the theoretical aspects of MTFS are compelling, their structural characteristics also

support a range of practical uses. In cryptography, the unpredictable evolution of such

sequences can underpin secure key generation, resilient hashing algorithms, and robust

pseudorandom number systems. Communication technologies may exploit their recursive

complexity for data protection methods, including encrypted transmission protocols and

watermark embedding in digital content. In scientific and engineering contexts, MTFS

models can be adapted to represent systems with compound growth, cyclic feedback, or

iterative construction examples include certain biological population models, network traffic

simulations, and recursive algorithm design.

3.5.2 Significance of the Derived Identities

The identities established in this chapter for second- and third-order Multiplicative

Triple Fibonacci Sequences (MTFS) are central to understanding the algebraic structure and

functional behavior of these extended recursive systems. By expressing explicit relationships

among the terms of the coupled sequences, these identities help clarify how the multiplicative

nature of the recurrence interacts with the initial conditions and the specific scheme chosen.

Such formulations provide insight into the inherent patterns that may not be immediately

apparent from the recursive definitions alone.

From a theoretical standpoint, these identities reinforce the internal consistency of the MTFS

framework and offer a formal basis for analyzing its general behavior. They also enable a

more systematic investigation into the properties of the sequences, such as growth trends,

symmetry, and sensitivity to initial inputs, all of which are crucial in the study of coupled

nonlinear systems.

Beyond their theoretical relevance, the identities contribute to practical aspects of recursive

modeling. They facilitate computational efficiency by reducing reliance on stepwise

calculations and can be used to verify algorithmic implementations of MTFS-based processes.
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Furthermore, these results hold potential for adaptation in areas such as cryptographic

constructions, coding theory, and recursive data generation. Overall, the proven identities not

only enrich the mathematical landscape of MTFS but also support its extension to higher-

order systems and applied domains.

3.6 Conclusion:

The study of the MTFS of the Second order under three specific Schemes and the

Third order under nine specific Schemes has illuminated a fascinating realm of mathematical

intricacies and potential applications. This investigation into these extended FS has deepened

our understanding of their structural properties. The explorations of the MTFS of the Second

order under three specific Schemes and the Third order under nine specific Schemes have

revealed a rich tapestry of mathematical intricacies and potential applications. The study not

only extended the classical TFS but also introduced multiplicative factors that add a layer of

complexity and depth to the sequences' behavior. Through a systematic analysis of the

recurrence relations and initial conditions, we observed the emergence of distinct patterns

under each specific Scheme. The Second-order MTFS exhibited unique properties influenced

by carefully designed Schemes, demonstrating the sensitivity of the sequence to the choice

of initial conditions. Expanding our exploration to the Third-order case, introducing nine

specific Schemes further diversified the mathematical landscape.

“Within the second- and third-order multiplicative triple Fibonacci sequences lies a progression from simplicity

to layered complexity, where each increase in order reveals new algebraic identities and deeper structural

patterns.”
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Chapter-4

Multiplicative Triple Fibonacci Sequence of

Fourth Order

The work presented in this chapter has been published in the form of

a research paper entitled “Multiplicative Triple Fibonacci Sequence of

Fourth Order” in the Scopus Indexed.
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4.1. Introduction

The Fibonacci Triple Sequence is a recent guideline for the universality of the

Coupled Fibonacci Sequence. The Fibonacci numbers and their underlying abstract principle

can be used in almost every area of science. Koshy's book [4] is the best reason why this is

important. K.T. Atanassov was the first to set up the Coupled Fibonacci Sequence. He also

looked into many interesting properties and a current protocol for generalizing the Fibonacci

Sequence.First Additive Triple Sequence was approved by J. Z. Lee and J.S. Lee [48].

Atanassov came up with a new idea for the Additive Triple Fibonacci Sequence, which he

called the 3-Fibonacci Sequence or the 3-F Sequence.

4.1.1 Motivation for Studying Fourth-Order MTFS

The fourth-order Multiplicative Triple Fibonacci Sequence (MTFS) extends the

conceptual scope of its lower-order forms, introducing a richer framework of interactions

among the three component sequences. Unlike the second- and third-order cases, where

multiplicative coupling follows comparatively simpler pathways, the fourth order reveals a

more layered and intricate interplay, giving rise to previously unseen identities and complex

recurrence relations. Investigating this higher order not only deepens the theoretical

understanding of multiplicative systems but also clarifies how increasing structural depth

influences growth dynamics and algebraic behavior. Such insights may, in turn, inform

advanced cryptographic methods, refined mathematical models, and recursive algorithmic

designs where complexity and unpredictability are essential features.

4.2. MTFS of Fourth order:

Let {Ӿi}i=0
∞ {Ұi}i=0

∞ and {Ƶi}i=0
∞ be three infinite sequences and called 3-F Sequence or

Triple Fibonacci Sequence with initial value a, b, c, d, e, f, g, h, i, j, k and l be given. Ӿ0 =

a, Ұ0 = b, Ƶ0 = c, Ӿ1 = d, Ұ1 = e, Ƶ1 = f, Ӿ2 = g, Ұ2 = h, Ƶ2 = i, Ӿ3 = j, Ұ3 = k, Ƶ3 = l .

Then there are 81 Schemes of MTFS of fourth order. Here, we are presenting some identities

of fourth order under nine specific Schemes and these nine Schemes are as follows:

Table 4.1: Some Schemes of 4th order MTFS we worked on

Scheme Ӿ� Ұ� Ƶ�

1 Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+3. Ұ�+2. Ұ�+1. Ұ� Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ�
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2 Ұ�+3. Ұ�+2. Ұ�+1. Ұ� Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ�

3 Ƶ�+3. Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+3. Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+3. Ұ�+2. Ұ�+1. Ұ�

4 Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ� Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ� Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ�

5 Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ� Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ� Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ�

6 Ұ�+3. Ƶ�+2. Ӿ�+1. Ұ� Ƶ�+3. Ӿ�+2. Ұ�+1. Ƶ� Ӿ�+3. Ұ�+2. Ƶ�+1. Ӿ�

7 Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ� Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ� Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ�

8 Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ� Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ� Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ�

9 Ƶ�+3. Ұ�+2. Ӿ�+1. Ƶ� Ӿ�+3. Ƶ�+2. Ұ�+1. Ӿ� Ұ�+3. Ӿ�+2. Ƶ�+1. Ұ�

Table 4.2: Some terms of MTFS of 4th order of 1st Scheme

Table 4.2: Some terms of MTFS of 4th order of 2nd Scheme

Table 4.3: Some terms of MTFS of 4th order of 3rd Scheme

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � ℎ �

3 � � �

4 ���� ��ℎ� ����

5 ��2�2�2 ��2ℎ2�2 ��2�2�2

� Ӿ� Ұ� Ƶ�

0 � � �

1 � � �

2 � ℎ �

3 � � �

4 ��ℎ� ���� ����

5 ��2ℎ2�2 ��2�2�2 ��2�2�2

� Ӿ� Ұ� Ƶ�
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Now we present the identities of 4th order MTFS under Scheme no. 1st, 2nd, 3rd, 4th, 5th, 6th,

7th, 8th and 9th.

4.3 Main Results of 3rd Order MTFS

We will prove all the results by using Scheme no. 1

Theorem 4.1: For every natural number � ≥ 2,

(Ӿ0Ұ0Ƶ0)�(Ӿ1Ұ1Ƶ1)�+1(Ӿ2Ұ2Ƶ2)�+2(Ӿ3Ұ3Ƶ3)�+3 = (Ӿ3Ұ3Ƶ3) Ӿ4Ұ4Ƶ4
�−2

(Ӿ6Ұ6Ƶ6)

Proof: The induction method allows us to demonstrate the aforementioned:

For � = 2, we have

Ӿ0Ұ0Ƶ0
2

Ӿ1Ұ1Ƶ1
3

Ӿ2Ұ2Ƶ2
4

Ӿ3Ұ3Ƶ3
5

= (Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)2(Ӿ3Ұ3Ƶ3)3(Ӿ4Ұ4Ƶ4)2

= (Ӿ2Ұ2Ƶ2)(Ӿ3Ұ3Ƶ3)2(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

= (Ӿ3Ұ3Ƶ3)(Ӿ6Ұ6Ƶ6)

For � = 2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some integer �.

Then for � + 1

Ӿ0Ұ0Ƶ0
�+1

Ӿ1Ұ1Ƶ1
�+2

Ӿ2Ұ2Ƶ2
�+3

Ӿ3Ұ3Ƶ3
�+4

= Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)(Ӿ3Ұ3Ƶ3 Ӿ0Ұ0Ƶ0
�

Ӿ1Ұ1Ƶ1
�+1

(Ӿ2Ұ2Ƶ2)�+2(Ӿ3Ұ3Ƶ3)�+3

= (Ӿ4Ұ4Ƶ4)(Ӿ3Ұ3Ƶ3) Ӿ4Ұ4Ƶ4
�−2

(Ӿ6Ұ6Ƶ6) (By hypothesis)

= (Ӿ3Ұ3Ƶ3) Ӿ4Ұ4Ƶ4
�−1

(Ӿ6Ұ6Ƶ6)

The conclusion is valid for all integers � + 1. Therefore, according to the induction process,

the conclusion is valid for every positive integer � ≥ 2.

0 � � �

1 � � �

2 � ℎ �

3 � � �

4 ���� ���� ��ℎ�

5 ��2�2�2 ��2�2�2 ��2ℎ2�2
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Theorem 4.2: For every even integer � ≥ 2,

Ӿ�Ұ�Ƶ�

�
2 Ӿ�+1Ұ�+1Ƶ�+1

�
2 +1

Ӿ�+2Ұ�+2Ƶ�+2

�
2 +2

(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3

= (Ӿ�+2Ұ�+2Ƶ�+2) Ӿ�+3Ұ�+3Ƶ�+3
2
(Ӿ�+4Ұ�+4Ƶ�+4)

Proof:

These results are confirmed by the induction hypothesis.For � = 2, we have

⟹ Ӿ2Ұ2Ƶ2 Ӿ3Ұ3Ƶ3
2

Ӿ4Ұ4Ƶ4
3

Ӿ5Ұ5Ƶ5
4

= (Ӿ3Ұ3Ƶ3)(Ӿ4Ұ4Ƶ4)2 Ӿ5Ұ5Ƶ5
3
(Ӿ6Ұ6Ƶ6)

(Ӿ4Ұ4Ƶ4) Ӿ5Ұ5Ƶ5
2
(Ӿ7Ұ7Ƶ7)

For � = 2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some integer �.

Then for � + 1

(Ӿ�+2Ұ�+2Ƶ�+2)[�+2
2 ](Ӿ�+3Ұ�+3Ƶ�+3)[�+2

2 ]+1(Ӿ�+4Ұ�+4Ƶ�+4)[�+2
2 ]+2(Ӿ�+5Ұ�+5Ƶ�+5)[�+2

2 ]+3

=(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4

………..(4.1)

Now we will bring each part of this equation by solving and putting its value here.

(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�Ұ�Ƶ�)[�2]+1(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+1(Ӿ�−2Ұ�−2Ƶ�−2)[�2]+1

………(4.2)

(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2

= (Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2

………(4.3)

(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3

= (Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3(Ӿ�Ұ�Ƶ�)[�2]+3

………(4.4)

(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4

= (Ӿ�+4Ұ�+4Ƶ�+4)[�2]+4(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+4(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+4(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+4

………(4.5)

now putting the value of equation (4.2), (4.3), (4.4) and (4.5) in equation (4.1), we get

(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�Ұ�Ƶ�)
�
2 +1(Ӿ�−1Ұ�−1Ƶ�−1)

�
2 +1(Ӿ�−2Ұ�−2Ƶ�−2)

�
2 +1

(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2
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(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3(Ӿ�Ұ�Ƶ�)[�2]+3

Ӿ�+4Ұ�+4Ƶ�+4

�
2 +4

Ӿ�+3Ұ�+3Ƶ�+3

�
2 +4

Ӿ�+2Ұ�+2Ƶ�+2

�
2 +4

Ӿ�+1Ұ�+1Ƶ�+1

�
2 +4

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3 Ӿ�+4Ұ�+4Ƶ�+4

�
2 +4

(Ӿ�Ұ�Ƶ�)
�
2 +1(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3 Ӿ�+3Ұ�+3Ƶ�+3

�
2 +4

(Ӿ�−1Ұ�−1Ƶ�−1)
�
2 +1(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3 Ӿ�+2Ұ�+2Ƶ�+2

�
2 +4

(Ӿ�−2Ұ�−2Ƶ�−2)
�
2 +1(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+3 Ӿ�+1Ұ�+1Ƶ�+1

�
2 +4

now we use given hypothesis for every line,

= (Ӿ�+3Ұ�+3Ƶ�+3) Ӿ�+4Ұ�+4Ƶ�+4
�−2

(Ӿ�+5Ұ�+5Ƶ�+5)

(Ӿ�+2Ұ�+2Ƶ�+2) Ӿ�+3Ұ�+3Ƶ�+3
�−2

(Ӿ�+4Ұ�+4Ƶ�+4)

Ӿ�+1Ұ�+1Ƶ�+1 Ӿ�+2Ұ�+2Ƶ�+2
�−2

Ӿ�+3Ұ�+3Ƶ�+3

Ӿ�Ұ�Ƶ� Ӿ�+1Ұ�+1Ƶ�+1
�−2

Ӿ�+2Ұ�+2Ƶ�+2

= (Ӿ�+4Ұ�+4Ƶ�+4) Ӿ�+5Ұ�+5Ƶ�+5
�−2

(Ӿ�+6Ұ�+6Ƶ�+6)

The conclusion is valid for all integers � + 2. As a result, using the induction method, the

conclusion holds for any positive even integer� ≥ 1.

Theorem 4.3: For every odd integer � ≥ 1,

(Ӿ�Ұ�Ƶ�)[�2](Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3

= (Ӿ�+1Ұ�+1Ƶ�+1) Ӿ�+2Ұ�+2Ƶ�+2
2
(Ӿ�+3Ұ�+3Ƶ�+3)

Proof: These results are confirmed by the induction hypothesis.

For � = 1,we have

Ӿ1Ұ1Ƶ1
0

Ӿ2Ұ2Ƶ2 Ӿ3Ұ3Ƶ3
2

Ӿ4Ұ4Ƶ4
3

= (Ӿ2Ұ2Ƶ2)(Ӿ3Ұ3Ƶ3)2(Ӿ4Ұ4Ƶ4)

For each odd number � = 1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some odd integer �.

Then for � + 1

(Ӿ�+2Ұ�+2Ƶ�+2)[�+2
2 ](Ӿ�+3Ұ�+3Ƶ�+3)[�+2

2 ]+1(Ӿ�+4Ұ�+4Ƶ�+4)[�+2
2 ]+2(Ӿ�+5Ұ�+5Ƶ�+5)[�+2

2 ]+3

=(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4

………..(4.6)

Now we will bring each part of this equation by solving and putting its value here.
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(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�Ұ�Ƶ�)[�2]+1(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+1(Ӿ�−2Ұ�−2Ƶ�−2)[�2]+1

………(4.7)

(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2

= (Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2

………(4.8)

(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3

= (Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3(Ӿ�Ұ�Ƶ�)[�2]+3

………(4.9)

(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4 =
(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+4(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+4(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+4(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+4

………(4.10)

now putting the value of equation (4.7), (4.8), (4.9) and (4.10) in equation (4.6), we get

(Ӿ�+2Ұ�+2Ƶ�+2)
�
2 +1(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+2(Ӿ�+4Ұ�+4Ƶ�+4)[�2]+3(Ӿ�+5Ұ�+5Ƶ�+5)[�2]+4

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�Ұ�Ƶ�)
�
2 +1(Ӿ�−1Ұ�−1Ƶ�−1)

�
2 +1(Ӿ�−2Ұ�−2Ƶ�−2)

�
2 +1

(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2

(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3(Ӿ�Ұ�Ƶ�)[�2]+3

Ӿ�+4Ұ�+4Ƶ�+4

�
2 +4

Ӿ�+3Ұ�+3Ƶ�+3

�
2 +4

Ӿ�+2Ұ�+2Ƶ�+2

�
2 +4

Ӿ�+1Ұ�+1Ƶ�+1

�
2 +4

= (Ӿ�+1Ұ�+1Ƶ�+1)[�2]+1(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+2(Ӿ�+3Ұ�+3Ƶ�+3)[�2]+3 Ӿ�+4Ұ�+4Ƶ�+4

�
2 +4

(Ӿ�Ұ�Ƶ�)
�
2 +1(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+2(Ӿ�+2Ұ�+2Ƶ�+2)[�2]+3 Ӿ�+3Ұ�+3Ƶ�+3

�
2 +4

(Ӿ�−1Ұ�−1Ƶ�−1)
�
2 +1(Ӿ�Ұ�Ƶ�)[�2]+2(Ӿ�+1Ұ�+1Ƶ�+1)[�2]+3 Ӿ�+2Ұ�+2Ƶ�+2

�
2 +4

(Ӿ�−2Ұ�−2Ƶ�−2)
�
2 +1(Ӿ�−1Ұ�−1Ƶ�−1)[�2]+2(Ӿ�Ұ�Ƶ�)[�2]+3 Ӿ�+1Ұ�+1Ƶ�+1

�
2 +4

Now we use given hypothesis for every line,

= (Ӿ�+2Ұ�+2Ƶ�+2) Ӿ�+3Ұ�+3Ƶ�+3
�−2

(Ӿ�+4Ұ�+4Ƶ�+4)

Ӿ�+1Ұ�+1Ƶ�+1 Ӿ�+2Ұ�+2Ƶ�+2
�−2

Ӿ�+3Ұ�+3Ƶ�+3

Ӿ�Ұ�Ƶ� Ӿ�+1Ұ�+1Ƶ�+1
�−2

Ӿ�+2Ұ�+2Ƶ�+2

(Ӿ�−1Ұ�−1Ƶ�−1) Ӿ�Ұ�Ƶ�
�−2

(Ӿ�+1Ұ�+1Ƶ�+1)

= Ӿ�+3Ұ�+3Ƶ�+3 Ӿ�+4Ұ�+4Ƶ�+4
�−2

(Ӿ�+5Ұ�+5Ƶ�+5)
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The conclusion is valid for all integers � + 2. As a result, using the induction method, the

conclusion holds for any positive odd integer � ≥ 1.

Theorem 4.4: For every integer � ≥ 0,

(a) k=0
10�+4 Ӿk� = Ӿ4Ӿ9Ӿ14……Ӿ10�+4

(b) k=0
10�+4 Ұk� = Ұ4Ұ9Ұ14……Ұ10�+4

(c) k=0
10�+4 Ƶk� = Ƶ4Ƶ9Ƶ14……Ƶ10�+4

Proof: These results are confirmed by the induction hypothesis.

For � = 1 then

k=0

14

Ӿk� = Ӿ0Ӿ1Ӿ2Ӿ3Ӿ4Ӿ5Ӿ6Ӿ7Ӿ8Ӿ9Ӿ10Ӿ11Ӿ12Ӿ13Ӿ14

= Ӿ4
2Ӿ9

2Ӿ14
2

= Ӿ4Ӿ9Ӿ14

For each odd number � = 1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate for some odd integer �.

Then for � + 1

k=0

10�+14

Ӿk�

= Ӿ10�+5Ӿ10�+6Ӿ10�+7Ӿ10�+8Ӿ10�+9Ӿ10�+10Ӿ10�+11Ӿ10�+12Ӿ10�+13Ӿ10�+14
�=0

10�+4

Ӿ��

= Ӿ10�+9
2 Ӿ10�+14

2 Ӿ4Ӿ9Ӿ14……Ӿ10�+4

= Ӿ4Ӿ9Ӿ14……Ӿ10�+14

The conclusion is valid for all integers � + 1. As a result, using the induction method, the

conclusion holds for any positive odd integer � ≥ 1.

Theorem 4.5: For every integer � ≥ 1,

(a) k=0
10�−1 Ӿk� = Ӿ9Ӿ19……Ӿ10�−1
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(b) k=0
10�−1 Ұk� = Ұ9Ұ19……Ұ10�−1

(c) k=0
10�−1 Ƶk� = Ƶ9Ƶ19……Ƶ10�−1

Proof: Similar to the theorem above, this one can be proved through mathematical induction.

Also, we can use Scheme no. 2nd, 3rd, 4th, 5th, 6th, 7th, 8th and 9th to prove theorem no. 4.1

to 4.5

4.3.1 Significance of the Derived Identities

The identities established in this chapter for fourth-order MTFS hold significant

theoretical and practical value. At the core, these identities reveal how complex multiplicative

relationships evolve across three interlinked sequences under higher-order recurrence. Their

derivation through mathematical induction not only validates the internal structure of the

sequence but also ensures logical consistency across various recurrence schemes.

These results contribute meaningfully to the general theory of coupled recursive sequences.

By identifying fixed patterns, multiplicative symmetries, and functional dependencies, the

identities provide deeper insight into how initial conditions and scheme selection influence

long-term behavior. This understanding becomes essential when considering the sequences'

use in algorithmic modeling or theoretical studies of growth dynamics.

From a practical standpoint, these identities can be applied in computational contexts where

recursive, nonlinear processes are used such as in cryptographic key design, pseudorandom

number generators, or simulations involving multiple interacting systems. Furthermore, they

help in classifying different fourth-order schemes based on algebraic behavior, opening the

door to future generalizations or modular extensions in higher-order MTFS research.

4.3.2 Possible Applications of Fourth-Order MTFS

The fourth-order MTFS exhibits notable behaviors and identity patterns across

various recurrence schemes, indicating several areas where these sequences may find

meaningful applications. Their rapid growth and high sensitivity to initial conditions make

them particularly suitable for roles in secure data transmission, cryptographic key generation,

and pseudorandom number generation. Furthermore, the structured yet adaptable nature of

these recursions allows them to be employed in modeling complex systems—such as multi-
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phase population dynamics, recursive financial systems, or computational algorithms that rely

on layered feedback mechanisms. The flexibility offered by the multiple scheme variations

also enables customization of sequence behavior to meet specific mathematical or practical

requirements in algorithmic and security contexts.

4.4 Conclusion:

The study of the fourth-order Multiplicative Triple Fibonacci Sequence (MTFS)

across nine distinct Schemes has brought to light intricate mathematical behaviors and

valuable application prospects. By embedding multiplicative factors into classical Triple

Fibonacci Sequences, the research introduced enhanced complexity and dynamic variations.

Careful analysis of recurrence formulas and initial terms revealed unique sequence patterns,

showing the strong influence of both initial conditions and the specific Scheme applied. This

work significantly contributes to a deeper understanding of the structural properties of

advanced Fibonacci sequences and emphasizes their diverse mathematical potential.

“Just as relationships in life grow more complex with each new connection, the fourth-order multiplicative
triple Fibonacci sequence shows how adding layers of interaction transforms simple beginnings into intricate

and unpredictable outcomes.”
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Chapter-5

Coupled Lucas Sequence of Second order and

Fibonacci Lucas Sequence’s Determinantal

Identities

The work presented in this chapter has been partially published in the

form of a research paper entitled “Application of Coupled Lucas

Sequence of Second Order” in a Scopus Indexed Journal (Q3), and

partially presented orally in an International Conference related to

“Fibonacci–Lucas Sequence’s Determinantal Identities.”
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5.1 Introduction

The Fibonacci numbers and polynomials are important concepts that are utilized in a

variety of mathematical disciplines, such as algebra, combinatorics, approximation theory,

geometry, graph theory, and number theory itself. The rabbit-reed problem is possibly the

most well-known application of the Fibonacci numbers. It was initially published by

Leonardo de Pisa in his book "Liber Abaci" in the year 1202, and it is believed to be named

after him. A large number of authors have written on their varied and lovely properties as

well as their many and varied uses. As seen in the graphic on page [4] of the book by Koshy,

the mathematical sequences associated with the Fibonacci numbers and the Lucas numbers

are among the most intriguing ever discovered. Numerous identifiers have been catalogued in

the form of a comprehensive list that may be found in Vajda's work [75].

In order to study Fibonacci numbers, a long form of unity matrices and determinants

is used. Cahill and Narayan [56] looked into the Fibonacci and Lucas numbers' historical

background as determinants of several tridiagonal matrices. Atanassov and Suman, Amitava,

and K. Sisodiya[76], respectively, present the interconnected Jacobsthal Sequence y and the

correlated Second order recurrence relation by creating two sequences, Ӿ� �=0

∞
and Ұ� �=0

∞
,

which they refer to as 2F Sequences. The way they accomplish this is by creating two

interconnected sequences.

T. Koshy is the author of a book that consists of two chapters and focuses on the

application of matrices and determinants in relation to the Fibonacci numbers. The creation of

classes of identities for Generalized Fibonacci numbers was accomplished by Bicknell-

Johnson and Spears [62] by the application of fundamental matrix operations and

determinants. One can find a variety of helpful and amazing techniques for determining the

future in the excellent survey articles. A significant amount of focus has been placed on the

interpretation of matrices, in particular when their entries are presented in a recursive fashion.

The sequence of numbers known as the Fibonacci numbers is made up of integers 0 and 1,

with each succeeding term in the series being calculated as the sum of the two terms before it.

i.e. �� = ��−1 + ��−2, � ≥ 2 and �0 = 0, �1 = 1

The Lucas sequence is also thought to have a similar perception. The recurrence relation

confirms that the Lucas sequence [61] is genuine.

�� = ��−1 + ��−2, � ≥ 2 and �0 = 2, �1 = 1
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We use recurrence to illustrate the Generalized Fibonacci sequence {Ƀ�}�=0
∞ in this area:

Ƀ� = Ƀ�−1 + Ƀ�−2, � ≥ 2 and Ƀ0 = 2�, Ƀ1 = � Where � and s must both be non-

negative integers.
Table 5.1: Some terms of CLS

�2 − � − 1 = 0 is the defining equation of the recurrence relation. which actually has two

roots.

Ӿ =
1 + √5

2
, Ұ =

1 − √5
2

Now, ӾҰ =− 1, Ӿ + Ұ = 1, Ӿ − Ұ = 5, Ӿ2 + Ұ2 = 3.

According to the Scheme

Ӿ�+2 = Ұ�+1 + Ұ�, � ≥ 0

Ұ�+2 = Ӿ�+1 + Ӿ�, � ≥ 0

Taking Ӿ0 = a, Ұ0 = b, Ӿ1 = c, Ұ1 = d where a, b, c and d are integers.

Hirschhorn provides clear answers to the long-standing issues with Atanassov's Second and

Third order recurrence relations. Recently, coupled recurrence relations of order five were

found by Singh, Sikhwal, and Jain. Additionally, Carlitz et al. [65] provided a

representation for a unique sequence. The "Coupled Lucas Sequence of Second Order"

emerges as a captivating exploration within the domain of number theory, building upon the

foundations laid by the classical LS. This innovative extension introduces a dynamic

interplay between two distinct Second-order LS, weaving a tapestry of numerical

� Ƀ�

0 2�

1 �

2 2� + �

3 2� + 2�

4 4� + 3�

5 6� + 5�

6 10� + 8�

7 16� + 13�

8 26� + 21�

9 42� + 34�
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relationships that transcend the conventional boundaries of sequence theory. As a testament

to the continuous evolution of mathematical inquiry, this study delves into the intricacies of

the coupled sequences, unraveling a myriad of patterns, properties and applications. At its

core, the Second-order LS, defined as an integer sequence generated by a recurrence relation,

forms the basis for the coupled exploration. By introducing coupling mechanisms between

two such sequences, a new and intriguing mathematical entity emerges. This coupled

relationship manifests as a simultaneous evolution of two interconnected sequences,

influencing each other's progression in a harmonious dance of numerical dynamics. Cahill

and Narayan analyzed the origins of the Fibonacci and Lucas numbers as determinants of

certain tridiagonal matrices. By creating the sequences Ӿ� �=0
∞

and Ұ� �=0
∞

, Atanassov and

Suman, Amitava, K. Sisodiya [76] introduce the interrelated Second order recurrence

relation and interlinked Jacobsthal Sequence, respectively, referring to them as 2F

Sequences.

Figure 5.1: Structure of Coupled Sequence

Fig. 5.1 illustrates the hierarchical relationship between sequences. At the top level is the

"Coupled Sequence", which branches into two distinct types: Coupled Fibonacci Sequence.

One branch leads to the "Coupled Fibonacci Sequence" suggesting it is a variant or extension

of the traditional Fibonacci sequence, possibly modified by a coupling rule or relationship.

Coupled Lucas Sequence has the branch leads to the "Coupled Lucas Sequence" indicating a

similar variant or extension of the Lucas sequence, also with some form of coupling rule.

This structure shows that the "Coupled Sequence" serves as a foundational concept that can
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lead to either a coupled version of the Fibonacci or Lucas sequences, depending on the

branching path.

5.1.1 Motivation for Studying CLS and Their Identities

The Second-Order CLS builds upon the classical Lucas sequence by introducing a

system of two interdependent sequences that evolve simultaneously. This coupling results in

more intricate algebraic relationships and reveals properties that are absent in the standard

Lucas or Fibonacci sequences. Through the study of such coupled structures, one can uncover

meaningful identities and determinant-based expressions that shed light on the underlying

interconnections within recursive systems. Additionally, due to its responsiveness to initial

conditions, CLS has potential applications in areas such as mathematical modeling,

cryptographic design, and algorithmic computation. This chapter aims to establish a

collection of fundamental identities that reflect both the theoretical richness and the applied

relevance of these sequences.

5.2 Coupled Lucas Sequence Of Second Order

The sequences Լ� �=0

∞
and Ɱ� �=0

∞
will coincide and the sequence Լ� �=0

∞
will turn into a

generalized Lucas sequence if

we set � = � and � = �.

Where,

Լ0 �, � = �, Լ1 �, � = �

Լ�+2(�, �) = Ɱ�+1(�, �) + 2Ɱ�(�, �),

Լ� = �, �, � + 2�, � + 2� + 2�

Ɱ� = �, �, � + 2�, � + 2� + 2�

Following are the first few terms.

Table 5.2 First few terms of Second order coupled Lucas sequence

� Լ� Ɱ�

0 � �

1 � �

2 � + 2� � + 2�

3 � + 2� + 2� � + 2� + 2�
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4 � + 2� + 4� + 4� � + 2� + 4� + 4�

5 6� + 8� + 5� + 2� 5� + 2� + 6� + 8�

Taking Lucas sequence

Լ�+2 = Լ�+1 + 2Լ�, � ≥ 0

Ɱ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

We defined 2-L Sequences as coupled order recurrence relations for Lucas numbers and

Lucas sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0

Լ0 = �, Լ1 = �,Ɱ0 = �, Ɱ1 = �

Figure 5.2: Structure of Scheme of CLS

Fig 5.2 illustrates the hierarchical structure of the Scheme of CLS under addition. 2nd order

CLS represents the basic CLS with one Scheme, where the terms are derided by adding last

term and twice the Second to last term of the sequence.

5.2.1 Significance of the Derived Identities of CLS

The identities established in this chapter provide a rigorous framework for

understanding the algebraic dynamics inherent in the Second-Order CLS. By articulating

precise relationships between the terms of two mutually dependent sequences, these results

illuminate the structural behavior that arises from their coupling. Such identities not only
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support analytical predictions and simplifications but also serve to distinguish the CLS from

other classes of recursive systems.

On a theoretical level, the identities deepen insight into coupled, nonlinear recurrence

relations and clarify how dual-sequence interactions can give rise to more complex behavior

than that seen in single-sequence models. From an applied perspective, these identities offer

potential utility in areas where controlled complexity and deterministic evolution are

essential—such as in algorithm design, secure data transmission, and recursive computations.

Notably, the determinantal identities bridge the study of recursive sequences with matrix

theory, offering a multidimensional viewpoint on the algebraic structure of such systems.

Collectively, these contributions reinforce the mathematical significance of CLS and

highlight its potential for further exploration in both pure and applied contexts.

5.3 Main Identities

We can derive the following properties from the above terms:

Theorem 5.1: For every odd number � ≥ 3.

Լ� − Լ1

2 = (Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2)

Proof:We will use a mathematical induction method to demonstrate this conclusion.

For � = 3,

Լ3 − Լ1

2
=
Ɱ2 + 2Ɱ1 − Լ1

2

=
Լ1 + 2Լ0 + 2Ɱ1 − Լ1

2

=
2Լ0 + 2Ɱ1

2

= Լ0 + Ɱ1

The result is accurate for � = 2 , therefore we suppose the same for � . We will now

demonstrate that for � + 2.

Լ�+2 − Լ1

2
=
Ɱ�+1 + 2Ɱ� − Լ1

2

=
Լ� + 2Լ�−1 + 2Ɱ� − Լ1

2

=
Լ� − Լ1

2
+

2Լ�−1 + 2Ɱ�

2
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= (Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2)+( Լ�−1 + Ɱ�)

= (Լ0 + Ɱ1 + Լ2 + Ɱ3 + ………… Լ�−1 + Ɱ�)

Hence the result is true for � + 2.

Example based on Theorem 5.1

Let {Լ�}�=0
∞ and {Ɱ�}�=0

∞ be two infinite sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0. Such that

Table 5.3: Initial terms of the coupled Lucas sequence of Second order

� Ɱ� Լ�

0 2 1

1 4 3

2 5 8

3 14 13

4 29 24

5 50 57

6 105 108

7 222 205

8 421 432

9 842 865

10 1729 1684

Now we will apply the theorem on this example

Լ� − Լ1

2
= (Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2)

For � = 3 in L.H.S.

⇒
Լ3 − Լ1

2
=

13 − 3
2

⇒ = 5

Now � = 3in R.H.S

Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2 = Լ0 + Ɱ1

= 1 + 4

= 5=L.H.S
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For � = 5 in L.H.S

⇒
Լ5 − Լ1

2
=

57 − 3
2

⇒ = 27

Now � = 5in R.H.S.

Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2 = Լ0 + Ɱ1 + Լ2 + Ɱ3

= 1 + 4 + 8 + 14

= 27=L.H.S

Hence the conclusion is valid.

For � = 7 in L.H.S

⇒
Լ7 − Լ1

2
=

205 − 3
2

⇒ = 101

Now � = 7in R.H.S.

Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Լ�−3 + Ɱ�−2 = Լ0 + Ɱ1 + Լ2 + Ɱ3+Լ4 + Ɱ5

= 1 + 4 + 8 + 14 + 24 + 50

= 101=L.H.S

Hence, the conclusion is valid for every odd number � ≥ 3

Theorem 5.2: For every even number � ≥ 2.

Լ� − Ɱ1

2
= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2)

Proof:We will use a mathematical induction method to demonstrate this conclusion.

For � = 2,

Լ2 − Ɱ1

2
=
Ɱ1 + 2Ɱ0 − Ɱ1

2
= Ɱ0

The result is accurate for � = 2 , therefore we suppose the same for n .We will now

demonstrate that for � + 2,

Լ�+2 − Ɱ1

2
=
Ɱ�+1 + 2Ɱ� − Ɱ1

2

=
Լ� + 2Լ�−1 + 2Ɱ� − Ɱ1

2

=
Լ� − Ɱ1

2
+

2Լ�−1 + 2Ɱ�

2
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= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………+Լ�−3 + Ɱ�−2) + (Լ�−1
+ Ɱ�)

= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−1 + Ɱ�)

Thus, the outcome is accurate for � + 2.

Example based on Theorem 5.2

Let {Լ�}�=0
∞ and {Ɱ�}�=0

∞ be two infinite sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0. Such that

Table 5.4 Second-order Coupled Lucas sequence's initial few terms

� Ɱ� Լ�

0 1 2

1 3 4

2 8 5

3 13 14

4 24 29

5 57 50

6 108 105

7 205 222

8 432 421

9 865 842

10 1684 1729

Now we will apply the theorem on this example

Լ� − Ɱ1

2
= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2)

For � = 4 in L.H.S.

⇒
Լ4 − Ɱ1

2
=

29 − 3
2

⇒ = 13

Now � = 4in R.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2 = Ɱ0 + Լ1 + Ɱ2

= 1 + 4 + 8
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= 13

=L.H.S

For � = 6 in L.H.S.

⇒
Լ6 − Ɱ1

2
=

105 − 3
2

⇒ = 51

Now � = 6 in R.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2 = Ɱ0 + Լ1 + Ɱ2+Լ3 + Ɱ4

= 1 + 4 + 8 + 14 + 24

= 51

=L.H.S

For � = 8 in L.H.S

⇒
Լ8 − Ɱ1

2
=

421 − 3
2

⇒ = 209

Now � = 8 in R.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2 = Ɱ0 + Լ1 + Ɱ2+Լ3 + Ɱ4 + Լ5 + Ɱ6

= 1 + 4 + 8 + 14 + 24 + 50 + 108

= 209

=L.H.S

For � = 10 in L.H.S

⇒
Լ10 − �1

2
=

1729 − 3
2

⇒ = 863

Now � = 10in R.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Լ�−3 + Ɱ�−2 = Ɱ0 + Լ1 + Ɱ2+Լ3 + Ɱ4 + Լ5 + Ɱ6 + Լ7+Ɱ8

= 1 + 4 + 8 + 14 + 24 + 50 + 108 + 222 + 432

= 863

=L.H.S

Hence the conclusion is valid.

Theorem 5.3: For every odd number � ≥ 3.

Ɱ� − Ɱ1

2
= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2)
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OR

Ɱ� − Ɱ1 = 2(Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2)

Example based on Theorem 5.3

Let {Լ�}�=0
∞ and {Ɱ�}�=0

∞ be two infinite sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0.

Such that

Table 5.6 Initial terms of the Second-order Coupled Lucas sequence

� Ɱ� Լ�

0 1 2

1 2 3

2 7 4

3 10 11

4 19 24

5 46 39

6 87 84

7 162 179

8 347 336

9 694 671

10 1343 1388

Now we will apply the theorem on this example

Ɱ� − Ɱ1

2
= (Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2)

For � = 5 in R.H.S

⇒
Ɱ5 − Ɱ1

2
=

46 − 2
2

⇒ 22 =L.H.S

Now � = 5in L.H.S



98

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2 = Ɱ0 + Լ1 + Ɱ2 + Լ3

= 1 + 3 + 7 + 11 = 22=R.H.S

For � = 7 in R.H.S

⇒
Ɱ7 − Ɱ1

2
=

162 − 2
2

⇒ = 80

=L.H.S

Now � = 7in L.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2 = Ɱ0 + Լ1 + Ɱ2 + Լ3+Ɱ4 + Լ5

= 1 + 3 + 7 + 11 + 19 + 39

= 80

=R.H.S

For � = 9 in R.H.S

⇒
Ɱ9 − Ɱ1

2 =
694 − 2

2
⇒ = 346

=L.H.S

Now � = 9in L.H.S

Ɱ0 + Լ1 + Ɱ2 + Լ3 + …………Ɱ�−3 + Լ�−2 = Ɱ0 + Լ1 + Ɱ2 + Լ3+Ɱ4 + Լ5+Ɱ6 + Լ7

= 1 + 3 + 7 + 11 + 19 + 39 + 87 + 179

= 346

=R.H.S

Hence the conclusion is valid.

Theorem 5.4: For every even number � ≥ 2.

Ɱ� − Լ1

2
= (Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Ɱ�−3 + Լ�−2)

Example based on Theorem 5.4

Let {Լ�}�=0
∞ and {Ɱ�}�=0

∞ be two infinite sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0

Such that
Table 5.7 First few terms of Second order coupled Lucas sequence
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� Ɱ� Լ�

0 1 2

1 1 2

2 6 3

3 7 8

4 14 19

5 35 28

6 66 63

7 119 136

8 262 251

9 523 500

10 1002 1047

Now we will apply the theorem on this example

Ɱ� − Լ1

2 = (Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Ɱ�−3 + Լ�−2)

For � = 6 in L.H.S

⇒
Ɱ8 − Լ1

2
=

66 − 2
2

⇒ = 32

=R.H.S

Now � = 6 in R.H.S

Լ0 + Ɱ1 + Լ2 + Ɱ3 + …………Ɱ�−3 + Լ�−2 = Լ0 + Ɱ1 + Լ2+ Ɱ3 + Լ4

= 2 + 1 + 3 + 7 + 19

=32

=L.H.S

Hence the conclusion is valid.

Theorem 5.5: For every positive integer �.

Լ�+2Լ�+1 − Ɱ�+2Ɱ�+1

Ɱ�+2Ɱ� − Լ�+2Լ�
= 2

Proof:We will prove this result by method of mathematical induction

For � = 1,
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Լ3Լ2 − Ɱ3Ɱ2

Ɱ3Ɱ1 − Լ3Լ1
=

(Ɱ2 + 2Ɱ1)Լ2 − (Լ2 + 2Լ1)Ɱ2

(Լ2 + 2Լ1)Ɱ1 − (Ɱ2 + 2Ɱ1)Լ1

=
Ɱ2Լ2 + 2Ɱ1Լ2 − Լ2Ɱ2 − 2Լ1Ɱ2

Լ2Ɱ1 + 2Լ1Ɱ1 − Ɱ2Լ1 − 2Ɱ1Լ1

=
2Ɱ1Լ2 − 2Լ1Ɱ2

Լ2Ɱ1 − Ɱ2Լ1

= 2
Ɱ1Լ2 − Լ1Ɱ2

Լ2Ɱ1 − Ɱ2Լ1

= 2

The result is accurate for � = 1.

Therefore we suppose the same for �.

We will now demonstrate that for � + 1,

Լ�+3Լ�+2 − Ɱ�+3Ɱ�+2

Ɱ�+3Ɱ�+1 − Լ�+3Լ�+1
=

(Ɱ�+2 + 2Ɱ�+1)Լ�+2 − (Լ�+2 + 2Լ�+1)Ɱ�+2

(Լ�+2 + 2Լ�+1)Ɱ�+1 − (Ɱ�+2 + 2Ɱ�+1)Լ�+1

=
Ɱ�+2Լ�+2 + 2Ɱ�+1Լ�+2 − Լ�+2Ɱ�+2 − 2Լ�+1Ɱ�+2

Լ�+2Ɱ�+1 + 2Լ�+1Ɱ�+1 − Ɱ�+2Լ�+1 − 2Ɱ�+1Լ�+1

=
2Ɱ�+1Լ�+2 − 2Լ�+1Ɱ�+2

Լ�+2Ɱ�+1 − Ɱ�+2Լ�+1

= 2
Ɱ�+1Լ�+2 − Լ�+1Ɱ�+2

Լ�+2Ɱ�+1 − Ɱ�+2Լ�+1

= 2

Hence the result is true for � + 1.

Example based on Theorem 5.5

Let {Լ�}�=0
∞ and {Ɱ�}�=0

∞ be two infinite sequences.

Լ�+2 = Ɱ�+1 + 2Ɱ�, � ≥ 0

Ɱ�+2 = Լ�+1 + 2Լ�, � ≥ 0

Such that

Table 5.8 introductory terms of the Second-order Coupled Lucas sequence

� Ɱ� Լ�

0 2 1
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1 2 1

2 3 6

3 8 7

4 19 14

5 28 35

6 63 66

7 136 119

8 251 262

9 500 523

10 1047 1002

Now we will apply the theorem on this example

Լ�+2Լ�+1 − Ɱ�+2Ɱ�+1

Ɱ�+2Ɱ� − Լ�+2Լ�
= 2

Put � = 1,

Լ3Լ2 − Ɱ3Ɱ2

Ɱ3Ɱ1 − Լ3Լ1
=

(11 × 4) − (10 × 7)
(10 × 2) − (11 × 3)

=
44 − 70
20 − 33
= 2

Put � = 2,

Լ4Լ3 − Ɱ4Ɱ3

Ɱ4Ɱ2 − Լ4Լ2
=

(24 × 11) − (19 × 10)
(19 × 7) − (24 × 4)

=
(264) − (190)
(133) − (96)

= 2

Put � = 3,

Լ5Լ4 − Ɱ5Ɱ4

Ɱ5Ɱ3 − Լ5Լ3
=

(39 × 24) − (46 × 19)
(46 × 10) − (39 × 11)

=
(936) − (874)
(460) − (429)

= 2

Hence the conclusion is valid for � = 1, 2, 3, . . . . . . . . . . .
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Theorem 5.6: For every integer � ≥ 0

Ƀ�+1 Ƀ�+1
2 Ƀ�+1

3

Ƀ�+2 Ƀ�+2
2 Ƀ�+2

3

Ƀ�+3 Ƀ�+3
2 Ƀ�+3

3

= Ƀ�Ƀ�+1
2 Ƀ�+2

2 Ƀ�+3

Proof:

Let � =
Ƀ�+1 Ƀ�+1

2 Ƀ�+1
3

Ƀ�+2 Ƀ�+2
2 Ƀ�+2

3

Ƀ�+3 Ƀ�+3
2 Ƀ�+3

3

Taking common out ��+1, ��+2, and ��+3 from 1st, 2nd and 3rd row respectively,

� = Ƀ�+1Ƀ�+2Ƀ�+3

1 Ƀ�+1 Ƀ�+1
2

1 Ƀ�+2 Ƀ�+2
2

1 Ƀ�+3 Ƀ�+3
2

Applying �2 = �2 − �1 and �3 = �3 − �1

� = Ƀ�+1Ƀ�+2Ƀ�+3

1 Ƀ�+1 Ƀ�+1
2

0 Ƀ� Ƀ�Ƀ�+3

0 Ƀ�+2 Ƀ�+2(Ƀ�+3 + Ƀ�+1)

Taking common out Ƀ� and Ƀ�+2 from 2nd and 3rd row respectively,

� = Ƀ�Ƀ�+1Ƀ�+2
2 Ƀ�+3

1 Ƀ�+1 Ƀ�+1
2

0 1 Ƀ�+3

0 1 (Ƀ�+3 + Ƀ�+1)

Applying �3 = �3 − �2

� = Ƀ�Ƀ�+1Ƀ�+2
2 Ƀ�+3

1 Ƀ�+1 Ƀ�+1
2

0 1 Ƀ�+3

0 0 Ƀ�+1

= Ƀ�Ƀ�+1Ƀ�+2
2 Ƀ�+3

Theorem 5.7: For every integer � ≥ 0

Ƀ� + �� Ƀ�+1 + ��+1 Ƀ�+2 + ��+2

Ƀ�+3 + ��+3 Ƀ�+4 + ��+4 Ƀ�+5 + ��+5

Ƀ�+6 + ��+6 Ƀ�+7 + ��+7 Ƀ�+8 + ��+8

= 0

Proof:

Let � =
Ƀ� + �� Ƀ�+1 + ��+1 Ƀ�+2 + ��+2

Ƀ�+3 + ��+3 Ƀ�+4 + ��+4 Ƀ�+5 + ��+5

Ƀ�+6 + ��+6 Ƀ�+7 + ��+7 Ƀ�+8 + ��+8
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Applying �1 = �1 + �2

� =
Ƀ� + �� + Ƀ�+1 + ��+1 Ƀ�+1 + ��+1 Ƀ�+2 + ��+2

Ƀ�+3 + ��+3 + Ƀ�+4 + ��+4 Ƀ�+4 + ��+4 Ƀ�+5 + ��+5

Ƀ�+6 + ��+6 + Ƀ�+7 + ��+7 Ƀ�+7 + ��+7 Ƀ�+8 + ��+8

� =
Ƀ� + Ƀ�+1 + �� + ��+1 Ƀ�+1 + ��+1 Ƀ�+2 + ��+2

Ƀ�+3 + Ƀ�+4 + ��+3 + ��+4 Ƀ�+4 + ��+4 Ƀ�+5 + ��+5

Ƀ�+6 + Ƀ�+7 + ��+6 + ��+7 Ƀ�+7 + ��+7 Ƀ�+8 + ��+8

� =
Ƀ�+2 + ��+2 Ƀ�+1 + ��+1 Ƀ�+2 + ��+2

Ƀ�+5 + ��+5 Ƀ�+4 + ��+4 Ƀ�+5 + ��+5

Ƀ�+8 + ��+8 Ƀ�+7 + ��+7 Ƀ�+8 + ��+8

Since 1st and 3rd columns are identical, thus we obtained the required result.

Theorem 5.8: For every integer � ≥ 0

1 + Ƀ� 1 + ��+1 1 + Ƀ�+2

1 + Ƀ�+3 1 + Ƀ�+4 1 + Ƀ�+5

1 + Ƀ�+6 1 + Ƀ�+7 1 + Ƀ�+8

= 8(Ƀ�
2 − Ƀ�+1

2 + Ƀ�Ƀ�+1)

Proof:

Let � =
1 + Ƀ� 1 + ��+1 1 + Ƀ�+2

1 + Ƀ�+3 1 + Ƀ�+4 1 + Ƀ�+5

1 + Ƀ�+6 1 + Ƀ�+7 1 + Ƀ�+8

Applying �1 = �1 + �2

� =
2 + Ƀ�+Ƀ�+1 1 + Ƀ�+1 1 + Ƀ�+2

2 + Ƀ�+3+Ƀ�+4 1 + Ƀ�+4 1 + Ƀ�+5

2 + Ƀ�+6+Ƀ�+7 1 + Ƀ�+7 1 + Ƀ�+8

� =
2 + Ƀ�+2 1 + Ƀ�+1 1 + Ƀ�+2

2 + Ƀ�+5 1 + Ƀ�+4 1 + Ƀ�+5

2 + Ƀ�+8 1 + Ƀ�+7 1 + Ƀ�+8

Applying �1 = �1 − �3

� =
1 1 + Ƀ�+1 1 + Ƀ�+2

1 1 + Ƀ�+4 1 + Ƀ�+5

1 1 + Ƀ�+7 1 + Ƀ�+8

Applying �2 = �2 − �1 and �3 = �3 − �2

� =
1 Ƀ�+1 Ƀ�

1 Ƀ�+4 Ƀ�+3

1 Ƀ�+7 Ƀ�+6
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Applying �2 = �2 − �1 and �3 = �3 − �2

� =
1 Ƀ�+1 Ƀ�

0 2Ƀ�+2 2Ƀ�+1

0 2Ƀ�+5 2Ƀ�+4

Taking common out 2 from 2nd and 3rd row,

� = 4
1 Ƀ�+1 Ƀ�

0 Ƀ�+2 Ƀ�+1

0 Ƀ�+5 Ƀ�+4

Applying �3 = �3 − �2

� = 4
1 Ƀ�+1 Ƀ�

0 Ƀ�+2 Ƀ�+1

0 2Ƀ�+3 2Ƀ�+2

Taking common out 2 from 3rd row,

� = 8
1 Ƀ�+1 Ƀ�

0 Ƀ�+2 Ƀ�+1

0 Ƀ�+3 Ƀ�+2

Again applying �3 = �3 − �2

� = 8
1 Ƀ�+1 Ƀ�

0 Ƀ�+2 Ƀ�+1

0 Ƀ�+1 Ƀ�

Again applying �1 = �1 − �3

� = 8
1 0 0
0 Ƀ�+2 Ƀ�+1

0 Ƀ�+1 Ƀ�

Again applying �2 = �2 − �3

Again applying �1 = �1 − �3

� = 8
1 0 0
0 Ƀ� Ƀ�+1 − Ƀ�

0 Ƀ�+1 Ƀ�

= 8(Ƀ�
2 − Ƀ�+1

2 + Ƀ�Ƀ�+1)

Theorem 5.9: For every integer � ≥ 0

Ƀ��� Ƀ���+1 Ƀ���+2

Ƀ�+1�� Ƀ�+1��+1 Ƀ�+1��+2

Ƀ�+2�� Ƀ�+2��+1 Ƀ�+2��+2

= 0
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Proof:

Let � =
Ƀ��� Ƀ���+1 Ƀ���+2

Ƀ�+1�� Ƀ�+1��+1 Ƀ�+1��+2

Ƀ�+2�� Ƀ�+2��+1 Ƀ�+2��+2

Taking common out Ƀ� , Ƀ�+1 and Ƀ�+2 from 1st, 2nd and 3rd row and�� , ��+1 and ��+2

from 1st, 2nd and 3rd column respectively,

� = Ƀ�Ƀ�+1Ƀ�+2����+1��+2

1 1 1
1 1 1
1 1 1

Since all the rows and columns are identical, thus we obtained the required result.

5.4 Conclusion:

The exploration of the Coupled Lucas Sequence of Second Order offers a profound

insight into the broader field of sequence theory, especially in relation to other well-known

sequences such as the Fibonacci sequence and the Generalized Fibonacci-Lucas sequence.

Throughout the history of mathematical research, these sequences have been recognized for

their fascinating properties and significant applications in various fields such as number

theory, computer science, cryptography, and even nature. The current study of the Coupled

Lucas Sequence of Second Order continues in this tradition, pushing the boundaries of what

we know about recursive sequences and their applications.

The Lucas sequences, much like the Fibonacci sequences, are defined by a set of

recurrence relations. However, the unique feature of the Coupled Lucas Sequence of Second

Order lies in its coupling mechanism, which intertwines two independent sequences into a

single structure. This coupling adds a layer of complexity and elegance, as each term in one

sequence depends not only on the preceding terms of its own sequence but also on the

corresponding terms of the other sequence. This disconnectedness introduces intricate

patterns and dependencies, leading to behaviors that are much more complex than those

observed in simple sequences like Fibonacci or Lucas on their own.

Through theoretical analysis, it has been demonstrated that these coupled sequences

possess unique identities and properties that distinguish them from other known sequences.

By utilizing inductive reasoning and computational methods, it is possible to uncover new

identities and relationships within the Coupled Lucas Sequence. Inductive reasoning, in

particular, plays a crucial role in predicting novel outcomes, as it allows researchers to
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extrapolate from known patterns to discover previously unrecognized properties of the

sequence.

The initial values of the two sequences in the Coupled Lucas Sequence of Second

Order play a significant role in determining their behavior. These initial values act as seeds

that define the growth and evolution of the sequences over time. Small changes in these

initial conditions can lead to vastly different outcomes, revealing the sensitivity and

complexity of the system. The recurrence relations, which govern the progression of the

sequences, ensure that each term is calculated based on a fixed formula, but the interaction

between the two sequences adds an additional layer of unpredictability and complexity to the

system.

One of the most intriguing aspects of this research is the way in which the

simultaneous evolution of the two sequences creates a harmonious relationship between them.

Each term in the sequence is intricately linked not only to the preceding terms of its own

sequence but also to the corresponding terms in the coupled sequence. This disconnectedness

suggests that the sequences are working together in tandem, each influencing the other’s

progression in a delicate balance. This relationship introduces a deeper level of structure to

the sequences, which could have far-reaching implications for other areas of Mathematics,

especially in the study of dynamical systems and complexity theory.

The investigation has also revealed practical applications of the Coupled Lucas

Sequence of Second Order. Beyond its theoretical significance, the sequence can be applied

in fields such as cryptography, where the complex relationships between terms in the

sequence could be used to generate secure encryption keys. Additionally, the sequence’s

intricate patterns and behaviors could have applications in computer science, particularly in

algorithms related to recursive functions and optimization problems.

In conclusion, the study of the Coupled Lucas Sequence of Second Order has unveiled a rich

mathematical structure that blends theoretical elegance with practical applications. The

combination of recurrence relations and coupling mechanisms introduces new complexities

that challenge our understanding of traditional sequences, offering new avenues for research

and discovery. By continuing to explore the properties of these sequences, mathematicians

can gain deeper insights into the nature of recursion, interdependence, and complexity,

enriching the broader field of sequence theory. The potential for uncovering new identities

and applications within this framework remains vast, promising exciting developments in
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both theoretical and applied Mathematics.Moreover, the practical applications of the coupled

sequence extend into various domains. The coupling mechanism, while inherently

mathematical, holds promise for applications in cryptography, optimization, and other areas

where the dynamic interplay of numerical relationships can be harnessed for practical

purposes. This underscores the relevance of pure mathematical exploration, demonstrating

that seemingly abstract concepts can find meaningful applications in the real world.

Moreover, the practical applications of the coupled sequence extend into various domains.

The coupling mechanism, while inherently mathematical, holds promise for applications in

cryptography, optimization, and other areas where the dynamic interplay of numerical

relationships can be harnessed for practical purposes. This underscores the relevance of pure

mathematical exploration, demonstrating that seemingly abstract concepts can find

meaningful applications in the real world.

“Just as the rhythm of the seasons follows an unseen order, the coupled Lucas sequence and Fibonacci–Lucas

determinantal identities reveal how separate elements can move in harmony, creating patterns that are both

predictable and profound.”
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Chapter-6

Summary and Conclusions
6.1 Summary of the Research Work

This thesis presents a comprehensive study of various coupled extensions of

Fibonacci and Lucas sequences, focusing on their multiplicative forms, higher-order

constructions, and the identities they satisfy. The investigation spans multiple orders and

structural schemes, offering a systematic development of algebraic results in this area.

In Chapter 2, we explored the fifth-order Multiplicative Coupled Fibonacci Sequence (MCFS)

under a specific recurrence scheme. Several novel identities were derived and proved through

mathematical induction. The results demonstrated the influence of the selected scheme on the

behavior of the sequences and provided a foundation for deeper analysis.

Chapter 3 addressed the second- and third-order Multiplicative Triple Fibonacci Sequences

(MTFS). Here, we introduced recurrence relations involving three coupled sequences and

established identities based on these interactions. The derivations highlighted the role of

initial conditions and recurrence structure in generating sequence patterns and symmetries.

In Chapter 4, the study was extended to fourth-order MTFS. By analyzing a variety of

recurrence schemes, we obtained a broader class of identities. The work also examined

structural behavior across schemes, revealing distinctions in algebraic complexity and

sensitivity to initial values.

Chapter 5 focused on the Coupled Lucas Sequences (CLS) of the second order and their

generalizations. Identities involving both additive and multiplicative properties were

established, including determinantal identities that linked the sequence behavior with matrix

algebra. These results connected recursive sequence theory with linear representations and

provided further scope for mathematical modeling.

Each chapter applied methods such as mathematical induction, determinant expansions, and

combinatorial logic to develop and validate the proposed identities.

6.2 Major Contributions of the Study
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This research contributes several key results to the field of recurrence sequences and their

generalizations:

 Development of new identities for coupled Fibonacci and Lucas sequences,

especially in their multiplicative and higher-order forms.

 Introduction of structurally varied schemes that highlight the dependence of

identity formation on recurrence rules.

 Demonstration of sensitivity and complexity in coupled sequences due to

interactions across multiple sequences.

 Application of determinant methods to formulate compact and generalized

identities, linking sequence behavior with linear algebraic structures.

 Classification and comparison of schemes, illustrating how different

formulations yield distinct algebraic properties.

These findings not only enhance the theoretical understanding of coupled recursive systems
but also pave the way for future applications in mathematical modeling and computational
algorithms.

6.3 Concluding Remarks

The work undertaken in this thesis has led to a rich collection of identities and

theoretical insights into coupled and multiplicative Fibonacci and Lucas sequences. Through

rigorous derivation and scheme-wise comparison, the study establishes a strong foundation

for future research in generalized recursive structures. The identities and formulations

presented here not only expand the mathematical framework of such sequences but also

highlight their versatility in modeling complex systems and supporting computational

methods. The results serve as a bridge between classical sequence theory and modern

applications, reinforcing the relevance and adaptability of recurrence relations in

contemporary mathematical discourse.
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Scope for Future Research

Although the present study covers a wide range of coupled sequence types and recurrence

schemes, several directions remain open for further exploration:

 Extension to sixth-order and hybrid coupled sequences, such as those combining

Fibonacci and Lucas characteristics.

 Investigation of modular behavior, periodicity, and convergence in different

arithmetic settings.

 Analysis of the computational complexity and algorithmic implementation of

these sequences in real-world applications.

 Exploration of their potential in cryptographic systems, pseudorandom number

generation, and error correction codes.

 Study of matrix representations, spectral properties, and connections with linear

transformations in higher dimensions.

 We can prove the result of CFS of order 2nd, 3rd, 4th and 5th, also the results on

some special Scheme with the help of Mathematical induction.

 Coupled Fibonacci sequence of 2nd and 3rd order can be obtained as MTFS.

 Coupled Lucas sequence of 3rd, 4th and 5th can be derived as 2nd order.

 Determinantal identities can be obtained with the help of MCFS and MTFS.

These paths offer promising avenues to deepen both theoretical and applied aspects of

recurrence sequence research.
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