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ABSTRACT

Traditionally, the identification of brain tumors has depended on the manual analysis of medical
imaging techniques, including Magnetic Resonance Imaging (MRI), Computed Tomography
(CT), and Positron Emission Tomography (PET) scans. Radiologists examine these pictures to
detect anomalies, pinpoint tumor locations, and evaluate their dimensions and advancement.
Nonetheless, manual diagnosis is labor-intensive, susceptible to human error, and significantly
reliant on the proficiency of radiologists, rendering it less efficient for extensive or real-time
clinical applications. An accumulation or abnormal multiplication of brain cells is called a brain
tumor, which can be benign or malignant. Brain tumors are classified by their anatomical site,
cellular composition, and primary or secondary status, but early detection is essential for
optimizing treatment efficacy, improving patient prognosis, and reducing health risks. The early
identification of human brain tumors is essential for improving patient survival and outcomes. This
study requires a physical analysis of the MRI brain tumor images. Consequently, there is a must
for automated methodologies to enhance tumor diagnosis accuracy. Nonetheless, assessing form,
volume, margins, tumor identification, dimensions, segmentation, and classification continues to
pose difficulties. This thesis proposes a hybrid deep learning-based model using a metaheuristic
approach for the detection and classification of brain cancer, with a focus on identifying tumors at
an early stage. Early detection is essential to improve survival rates and ensure timely medical
intervention. The research is divided into two major phases. In the first phase, a comparative
analysis is conducted to determine the most effective hybrid segmentation approach for extracting
tumor regions from MRI images. Six models, including Fuzzy C-means (FCM)-based, K-means-
based, FCM with Particle Swarm Optimization (PSO)-based, K-means with PSO-based, FCM with
Moth Flame Optimization (MFO)-based, and K-means with MFO-based segmentation, are
evaluated using the MRI Benchmark dataset. Results demonstrate that the K-means with MFO-
based segmentation model outperforms others in terms of accuracy, sensitivity, F-measure, and

computational efficiency, achieving a segmentation accuracy exceeding 99.6%.

In the second phase, the segmented output is used for classification through a Hybrid Brain Tumor
Analysis (BTA) model that combines MFO and Convolutional Neural Network (CNN) techniques.



MFO-based segmentation is selected as the final segmentation approach for BTA model training.
A novel feature extraction and selection mechanism is employed using MFO for optimal feature
pattern extraction, followed by CNN-based classification. The proposed BTA model classifies
brain tumors into three classes—meningioma, glioma, and pituitary—achieving improved
classification accuracy by integrating MFO with CNN. Performance evaluation shows a 3.22%
improvement in overall accuracy, with precision, recall, and F-measure increasing by 4.07%,
2.46%, and 3.25%, respectively, compared to existing models. This research demonstrates that the
proposed hybrid approach significantly enhances the accuracy and efficiency of both segmentation
and classification, making it a promising tool for early brain cancer detection and classification in

clinical applications.

Vi
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CHAPTER 1
INTRODUCTION

This chapter provides an overview of a hybrid deep learning approach, enhanced by metaheuristic
optimization, for brain tumor segmentation and classification. This work leverages unsupervised
clustering and deep learning to automate the detection of brain tumor regions [1-3]. The accuracy
of such Computer-Aided Diagnosis (CAD) systems heavily depends on the quality of input
images, which are acquired via various medical imaging modalities, including Magnetic
Resonance Imaging (MRI) [4]. However, medical images often suffer from noise and uneven
illumination, which can complicate analysis [5—7]. Therefore, a pre-processing stage is crucial.
Following this, image segmentation—the process of partitioning an image into meaningful
regions—is used to extract the Region of Interest (ROI), such as a tumor [8]. One of the best
examples of an image processing and computer vision technique is image segmentation. Medical
image segmentation is the well-known technique to fragment a picture into smaller, relatively
homogenous-featured components, and it allows for the extraction of some important data, such
as tumor region. Medical images are used in healthcare since their caliber affects the diagnosis and
course of therapy. So that, in medical image-based analysis, segmentation is important since it
aims to extract certain features from the images. These images may be used for sophisticated image
comprehension. According to science, image segmentation is a fictitious middle-level vision job
carried out by neurons located between low-level and high-level cortical regions. Figure 1.1

displays several examples of different types of medical picture segmentations for your perusal.



Figure 1.1: Basic Medical Image Segmentations

Figure 1.1 showcases different medical imaging modalities and their respective segmentation
results [8]. A collection of original medical images exists in the top row that demonstrates MRI,
Dermoscopy, CT-Scan, Microscopy, and Fundus Scans having their areas of concern marked in
red. Multiple healthcare-related pictures show brain tumors together with skin lesions alongside
lung abnormalities and microscopic cellular components and retinal diseases such as diagnostic
elements. The segmental masks in the bottom row use white coloring to mark regions of interest,
such as tumors or lesions, against a black background representation. Automated medical image
analysis depends on these segmentation masks since they facilitate the accurate localization and
extraction of affected areas towards further diagnostic assessment or treatment planning. These
segmentation procedures represent fundamental operations within Computer-Aided Diagnosis
(CAD) systems that use machine learning and deep learning models to identify medical image
abnormalities and their type, as well as to perform precise segmentation. Medical imaging analysis
benefits from these techniques that deliver improved diagnostic capabilities as well as diminished

human labor needs and standardized, objective results.
1.1 BACKGROUND

All human bodies contain multiple complex organs that need proper alignment to preserve total
wellness. The brain functions as the overall regulating system of the body while preserving the
operations of all body organs. Among the human body's organs, the brain stands as its single most
essential element because it controls memory functions and procedures as well as emotions along
with sensory perception of vision, smell, taste, and touch and many physiological operations. A

severe threat to life exists from any abnormalities in brain operations. Annual brain tumor rates



have risen for all age demographics, according to the American Brain Tumor Association (ABTA)
in February 2016, which studied children through young adults from ages 15 to 39. The
classification system splits brain tumors into two groups according to their malignant or benign
status. These distinct types of tumors differ between malignant formations composed of irregular
cells leading to uninhibited growth and benign formations consisting of regular non-cancerous
cells. Medical experts and patients view these tumors as critical because their expansion produces
symptoms like vision deterioration and long-standing nausea, which create severe medical
problems. Brain tumors exist with complex attributes that create major difficulties during both
diagnosis procedures and medical treatment [9]. Medical professionals use MRI as an important
diagnostic and monitoring method to track tumor development. Manually identifying tumors in
combination with MR image noise requires extensive and time-consuming processes because of
the complex tumor patterns. Standards of diagnosis depend heavily on detection at an early stage
combined with exact tumor locations. MRI scans provide doctors with precise information to
monitor tumor growth, which leads to prompt and correct identifications. The diagnostic method
starts with image segmentation to extract tumor tissues from brain images. The extensive
complexity of medical images, together with abundant data generation, makes hand-based tumor
evaluation susceptible to inaccuracies. Medical image analysis and classification require
automated systems because threats to traditional manual analysis methods increase daily. When
medical professionals collaborate with segmentation algorithms, the accuracy of tumor detection

improves significantly because this leads to enhanced treatment results for patients.
1.2 INTRODUCTION TO BRAIN TUMOR

Brain tumors stand as one of the most lethal global diseases, producing severe consequences that
can result in death when medical treatment is not received. Abnormal cell development inside the
brain triggers tumors, which spread because of genetic mutations and environmental elements.
Brain tumors classify into two groups as primary brain tumors grow inside brain tissue, yet
secondary brain tumors start elsewhere before reaching brain tissue. The classification of tumors
depends on their identified severity level [10]. The severity of brain tumors depends on their type
since benign tumors stay non-cancerous and create less harm, whereas malignant tumors carry
both cancerous characteristics and fast-spreading properties that present life-threatening medical

risks. Urgent medical attention must be sought because of malignant tumors’ aggressive behaviour.



Proper diagnosis and immediate treatment lead to better patient outcomes since their detection at

an early stage determines survival rates.

Brain Tumor

Cerebrum”™

Brainstem ~

Figure 1.2: Brain Tumor
Figure 1.2 illustrates a brain tumor located in the cerebrum, highlighting key anatomical regions
of the human brain. The tumor appears as a yellowish mass, representing abnormal and
uncontrolled cell growth within the brain.

w Tumor: An uncontrolled growth of brain cells that may be benign (non-cancerous) or

malignant (cancerous), often disrupting normal brain functions by compressing nearby tissues.

m Cerebrum: The largest part of the brain, responsible for reasoning, memory, sensory

processing, and voluntary movement.

= Brainstem: The lower section connecting the brain to the spinal cord, regulating vital functions

such as breathing, heart rate, and reflexes.

= Cerebellum: Located at the back of the brain, it manages coordination, balance, and fine motor

control.

The human brain, weighing about 1.4 kg (3 pounds), governs all bodily activities and mental
processes, including intellect, creativity, emotion, and memory [11]. Protected by the skull, it
comprises the cerebrum, cerebellum, and brainstem, with the brainstem acting as a relay between



the cerebrum, cerebellum, and spinal cord. The brain continuously receives and transmits

information throughout the body [12].

Different brain regions are illustrated in Figure 1.3.

Thalamus
Corpus callosum

Hypothalamus

Hippocampus Cerebral cortex

Pituitary gland

Midbrain
Brainstem Pons
Medulla

Spinal cord

Cerebellum

Figure 1.3: Parts of Brain

A Dbrain tumor is a proliferation of abnormal cells within or next to the brain. Brain tumors are a
typical proliferations inside the brain that may be classified as either malignant (cancerous) or
benign (noncancerous). The impacts on the brain from malignant and benign tumors are analogous
and can result in identical issues, contingent upon the tumor type and its location within the brain
[13]. Various types of brain tumors exist. Some brain tumors are benign, while others are
malignant. Brain tumors may originate in the brain (primary brain tumors) or may metastasize
from other regions of the body to the brain (secondary, or metastatic, brain tumors). The region of

the brain tumor is given in Figure 1.4.



Figure 1.4: Human Brain Tumour

Image segmentation represents a significant challenge in image processing and is extensively
utilized across several applications, including sports, biomedical fields, remote sensing satellites,
and security measures. A segmentation process splits an image into its individual components or
objects. The delineation of tumors from MRI is a significant application of image segmentation
[14]. The manual identification of tumors in MRI requires skilled radiologists, a process that is
both time-intensive and prone to inaccuracies. The huge volume of patients and scans renders
manual detection and segmentation too burdensome. There is a necessity to automate this process,
and segmentation techniques are crucial in accomplishing this objective. Advancements in
restorative imaging systems enable their application in various medical areas, such as computer-
assisted pathology diagnosis, surgical planning and guidance, and longitudinal analysis. Both MRI
and CT, among all restorative imaging modalities, are frequently employed imaging techniques in
neurology and neurosurgery [15]. Segmentation of objects, chiefly anatomical structures and
beyond diagnosing pathologies using MRI scans may be essential, as the results often serve as the
basis for several applications. Systems for executing segmentation shifts are entirely dependent on
specific provisions and picture modalities. Moreover, the segmentation of medical images presents
a challenging task, as they generally contain a substantial amount of data and occasionally exhibit
artifacts due to the patient's limited acquisition range and the typically poorly defined boundaries
of delicate tissues. It is identified by the analysis of medical pictures, such as MRI scans. MRI

segmentation has been suggested for numerous clinical studies of diverse complexity. In a clinical



setting, medical image processing is typically synonymous with radiology or "“clinical imaging,”
and the medical professional tasked with analyzing (and occasionally obtaining) the images is a
radiologist. Managing brain tumors presents distinct challenges that complicate their
categorization. The population of tumor types may be endless, exhibiting a variety of shapes and
sizes. It may form at any range, exhibiting varying picture intensities. Certain factors may distort
the surrounding structures or contribute to edema, altering the characteristics of the pictures
associated with the tumors [16]. Furthermore, the availability of some MRI procurement norms
yields a varied abundance of data regarding the brain. Each image often emphasizes a particular
area of the tumor. The automatic segmentation utilizing previous models, which alternately
employ prior information, may face challenges during execution. The inadequate segmentation of
the brain's internal structures arises from the assertion that significant energy should also be
considered for drugs targeting tumors. It mitigates human errors while enhancing surgical or radio
restorative procedures. Oversaw the economic aspects related to tumors. In brain oncology, it is
also appealing to introduce a representative human brain model that can integrate tumor data
derived from MRI and CT information, including localization, type, shape, functional positioning,
and interactions with other brain structures. Despite various efforts to enhance the therapeutic
imaging community, precise segmentation and characterization of anomalies remain challenging
tasks [17]. Existing strategies clear out significant space for expanded automation and,
furthermore, material accuracy. In the human body, when abnormal cells are generated in an
uncontrolled way, they convert into brain tumors, and these are categorized into two types named

as

% Benign: Itis a noncancerous type of brain tumor, and the formation is so slow that it is less
aggressive. This type of tumor does not spread to other regions of the brain or other parts
of the human body.

% Malignant: It is a cancerous type of brain tumor and not always easy to differentiate from
surrounding normal tissues in the brain. So, the extraction or segmentation of these types

of tumors is not easy without damaging the surrounding tissues of the human brain.

The American Cancer Society (ACS) reports that malignant brain tumor cases grew worldwide
during the previous several decades [18]. For improved brain tumor curability, researchers need to

concentrate on diagnosing malignancies during early-stage or benign-stage development by

7



utilizing CAD systems. Medical professionals in both research and clinical practice now focus
intensely on automated brain tumor detection instruments because they help reduce diagnostic
errors while minimizing false positive results and minimizing the time it takes for automatic MRI-
based diagnostic models [19]. Doctors can use four different imaging methods to detect brain
tumors: PET (Positron Emission Tomography) scans, angiography, MRI scans, and CT scans. The
primary data source for this research consists of MRI scan images, which serve to evaluate tumor

segmentation techniques with proposed advanced clustering-based methods [20].

The non-invasiveness of MRI scan data, along with its extensive use in medical practices, makes
it the selection choice for this study. The high spatial resolution capability of MRI scans combined
with excellent soft tissue contrast delivers necessary tumor-related information about size together
with shape and positioning specifics inside the brain. Doctors need this information to establish
precise diagnoses along with planning treatment protocols at the beginning of the disease [21].
MRI imaging holds a widespread preference for medical image analysis because it delivers
advantageous characteristics for both tumor segmentation and classification tasks. The brain tumor
image set in Figure 1.5 shows the simple ability to differentiate between normal brain tissue and

areas affected by tumors.

Healthy Brain Brain with a Tumor

e C@rDIUM

L A Tumor
e Corebellum

The Brainstem

Midbrain é’
Pons
Medulla /

) & Spinal cord
Oblongata P =

Figure 1.5: Healthy and Brain with Tumour

1.2.1 Brain Tumors in the World

Brain tumors continue to develop into a leading mortality factor since both national and
international statistics demonstrate increasing death rates. For 2023, brain tumors caused the
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deaths of 18,760 people per year based on statistics from the ACS. Each year 17,200 individuals
encounter death because of malignant brain tumors, which demonstrates the seriousness of the
condition [22]. Physicians report 50,000 fresh cases of brain tumors annually throughout Indian
medical facilities. The critical requirement for childhood brain tumor diagnosis and treatment

becomes evident because 20% of brain cancer occurrences occur in pediatric patients.

Oceanina, 0.82% Africa, 5.90% Oceaning, 0.84%

- Asia, 53.70%

(@) (b)

Figure 1.6: ACS-based Pie-chart (a) new cases and (b) deaths in 2020 due to brain tumor

Each year the total number of brain tumor diagnoses amounts to 5 to 10 instances per 100,000
people, and these instances are increasing annually. These statistics emphasize the growing
number of brain tumors and demonstrate the critical necessity of advanced medical research and

early diagnosis and effective treatments for dealing with this dangerous condition.

1.2.2 Brain Tumor Treatment

The choice of treatments for brain tumors depends on particular tumor variables alongside patient
health status and tumor characteristics, including its type, size, location, and level of malignancy.
Standard treatments for brain tumors incorporate different therapeutic approaches between surgery
and radiation therapy and chemotherapeutic administration and targeted treatment and
immunological interventions. Multiple treatments are commonly combined to enhance their

combined effectiveness when treating brain tumors.
1.2.2.1 Traditional Methods of Brain Tumor Detection

Brain tumor treatment and cure become achievable when the condition receives proper early
detection. The cure rates for brain tumors remain extremely low because patients often obtain

diagnoses too late, especially in cases of malignant tumors. The imaging procedures create brain
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image data for analysis that reveals tumor position. Human operators are usually responsible for
brain tumor detection, yet this method proves both prolonged and error-prone while being labor-
intensive. The procedure of manual tumor identification necessitates a major commitment of time
and personnel work and extends medical diagnosis delays that consequently deteriorate patient
health [23]. The accuracy of human-based categorization methods tends to be imprecise; thus,
patients are at higher risk of missed diagnoses or medical oversight. The patient's life remains at
risk when detection or identification mistakes or treatment errors occur, even at a minor level.
Brain tumor treatment requires quick diagnosis, so the reduction of detection duration and
prevention of human mistakes become essential for accurate identification. The reliability of
manual detection varies to such an extent that automated machine/deep learning and Artificial

Intelligence (Al) models step in to boost accuracy and efficiency and reduce diagnostic delays.
1.2.2.2 Latest Methods of Brain Tumor Detection

Today machines alongside Al bring continuous discussions across the world. Medical detection
and diagnosis of brain tumors obtain speed and efficiency through advanced technology
integration while achieving higher precision rates. The automated diagnosis method leads to
efficient diagnosis procedures while producing fewer mistakes. The newest technologies enable
machines to examine two times more test samples in the same time period than when relying on
manual testing methods. The Al-powered software examines MRI and CT scan images to track
tumors along with pinpointing their specific placements to help medical experts make proper
patient care decisions. Laboratory treatment of identified tumors becomes possible after
identification when those tumors become ready for segmentation or slicing for removal or
treatment needs. Advanced precision through these measures leads directly to increased procedural
success metrics. Brain tumor segmentation requires high accuracy alongside efficient execution of
tasks [24]. The use of machine-based technologies represents the preferred approach for tumor
detection because these systems lead to better process efficiency and improved patient survival

outcomes.

1.3 INTRODUCTION TO MEDICAL IMAGING

Digital image processing is a rapidly developing technology domain crucial for medical imaging
[25]. In this context, Magnetic Resonance Imaging (MRI) serves as a vital tool, enabling the

creation of detailed visual representations of human body structures to detect and analyze various
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conditions [26]. The primary challenge in analyzing these scans is image segmentation, which
involves partitioning the image to isolate meaningful regions for analysis. While MRI technology
is a cornerstone of medical diagnosis, its images often contain significant noise and low contrast,
complicating the segmentation process. This research focuses on developing robust segmentation
techniques for MRI scans to enhance tumor detection precision and classification speed. Different

types of medical imaging approaches are shown in Figure 1.7.

r X-Ray CT Scan | MRI Ultrasound

Figure 1.7: Different Types of Medical Imaging Approaches

1.4 TECHNIQUES OF MEDICAL IMAGE IMAGING

Several medical imaging techniques are used for diagnosing pathological diseases, including X-
ray, Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic
Resonance Imaging (MRI).

X-ray Imaging: Uses electromagnetic radiation to visualize bone structures, making it useful for
detecting fractures. Doctors use X-ray imaging for essential medical detection of bone fractures
and pulmonary tuberculosis, as well as other conditions [27]. The sample of X-ray images are

shown in Figure 1.8.
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Figure 1.8: X-Ray Sample Images

CT Imaging: Employs specialized X-rays to create cross-sectional images, providing detailed
views of bones, organs, and tissues. The sample of CT scan images are shown in Figure 1.9.
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Figure 1.9: CT Scan Sample Images

Primary uses of CT Scan Imaging:
I. Detailed examination of internal structures becomes possible by this technology, which
shows images from different horizontal sections.
Il. CT imaging enables doctors to identify and measure the condition of bones along with their
injuries, including scoliosis.
I11. The imaging technique detects both conditions of the lungs and liver as well as monitoring
body masses.
IV. CT imaging functions as a navigation system to help doctors plan subsequent medical

operations and biopsy procedures as well as render therapy procedures.

MR Imaging: A non-invasive technique that uses magnetic fields and radio waves to produce
highly detailed images of the body, as shown in Figure 1.10. The procedure of MRI creates pictures
of bodily tissues using magnetic fields and radiofrequency waves while eliminating the

requirement of using ionizing radiation [28].
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Figure 1.10: MRI Sample Images

Working principles of MRI: The operating principle of MRI scans enables detection of hydrogen
atoms present in the human body through an abundance of water and fat molecules. The three core
elements of the process form a sequence:

1. A high-powered magnet positions patients for alignment so all body hydrogen nuclei
(protons) face along the magnetic field direction.

2. The protons receive brief bursts of Radiofrequency (RF) pulses through this process, which
makes them deviate from their existing alignment state. After pulse application ends, the
protons restore their natural state by softly returning and generating signals at the same
time.

3. The emitted signals travel to detectors, which send signals to a computer for analysis

purposes until detailed body image representations form. Through signal production from

14



different tissue types such as muscles, organs, and fat, the diagnostic technique achieves

contrast-based imaging of soft tissues.

Types of MRI Images: MRI can be used to produce different types of images, each suited for
specific diagnostic purposes. Some of the commonly used MRI techniques include

T1-Weighted Images: The primary function of T1-weighted images consists of anatomical
assessment while also providing detailed opposition between tissues and clear bone marrow and

fat visibility.

T2-Weighted Images: Studies show the high-water content areas in these pictures make them
suitable for identifying inflammation and edema alongside tumors and pathological diseases. The
brain assessment through MRI scans relies heavily on T2-weighted imaging because it shows fluid

accumulation areas well.

Diffusion-Weighted Imaging (DWI): The specific MRI examinations measure water particle
motions inside body tissues. The medical community relies on DWI to examine stroke patients

because restricted diffusion reveals areas of brain tissue affected by ischemia.

Functional MRI (fMRI): The methodology of fMRI determines brain activity patterns through
blood flow variations. MRI constitutes an essential technology for studying brain processes as well

as cognition and emotions together with sensory functions.

Magnetic Resonance Angiography (MRA): MRA technology functions as a diagnostic tool which
illustrates blood vessels so doctors can detect vascular conditions such as aneurysms and arterial
blockages.

Magnetic Resonance Spectroscopy (MRS): The chemical composition of tissues can be evaluated
through the advanced application of MRS, which expands the capabilities of MRI. The capability
of this procedure proves crucial in brain disorder and tumor studies because it detects alterations

in brain metabolism.

Advantages in MRI Technology:
1. MRI uses no radiation during imaging, thus establishing its safer position relative to X-
rays and CT scans, particularly for scenarios requiring frequent imaging. The ability to
identify different types of soft tissues makes MRI a powerful tool that enhances its

capability for brain, organ, and muscle assessments.
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2.

Multiple MRI images in axial, sagittal, and coronal planes can be obtained without shifting
patients to achieve thorough anatomical evaluation. Modern MRI techniques use fMRI as
well as MRS to produce functional and metabolic data, which extends MRI functionality
beyond structural imaging capabilities.

Key uses of MRI:

VI.

This technique detects abnormal tissue growths in the brain as well as brain tumors and

strokes.

. The MRI technique allows physicians to obtain complete images of both sensitive brain

structures and muscles along with ligaments as well as other soft tissues, which normal X-
ray and CT scan technology cannot detect.

MRI generates clearer visualization of tissues based on its ability to create better details in
comparison to CT images.

The imaging process within MRI operates without utilizing radiation, which minimizes
health dangers for patients.

MRI technology enables doctors to identify heart problems together with detecting both
cardiac structure anomalies and blood circulation issues.

The advanced imaging technology of MRI provides detailed pictures to health

professionals within a risk-free diagnostic context.

Positron Emission Tomography (PET): A nuclear medicine technique that visualizes metabolic

activity, which is useful for detecting cellular-level changes in diseases. As a diagnostic tool, PET

functions to detect cellular activity modifications leading to medical condition analysis. The

medical staff intravenously delivers the radiotracer substance, which concentrates in the scanned

body parts during imaging procedures. The tracer substance detects active chemical areas to aid

disease detection [29]. The areas in question display either heat (high intensity) or cool (low

intensity) characteristics on image scans. PET scans become more effective when used together

with MRI or CT scanners because this combination produces detailed body assessments for

improved medical diagnostics, and the sample images of PET are shown in Figure 1.11.
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Figure 1.11: PET Sample Images

Key Benefits of PET Scans:
. The functional capability of organs becomes visible in PET scans even though MRI and
CT machines generate structural information.
Il.  Diagnosis receives increased accuracy through the combination of PET with CT scanning
technology.
I11.  The diagnostic method stands out because it produces minimum discomfort, thus offering

patients a favorable approach.

1.5 BRAIN TUMOR SEGMENTATION

Medical imaging professionals use brain tumor segmentation to automatically find and mark
tumors in MRI scans because this operation serves as a crucial diagnostic and therapeutic planning
process. The diagnostic and therapeutic assessment, along with disease monitoring, benefits from
this method [30]. The segmentation process for brain tumors proves difficult because tumors often
show diverse shapes combined with several sizes and intensities spread throughout various brain

locations. There are some challenges in Brain Tumor Segmentation are as:

e Tumors exist in diverse dimensions throughout the entire brain space because they take

irregular forms of different sizes.
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e Segmentation becomes more complicated because MRI images display irregular contrast
throughout their area.

e Learning becomes more challenging when tumors occupy just a minor section of the image

because of class imbalance.

e The presence of artifacts and noise in MRI scans makes them affect the accuracy of

segmentation results.

e Processes based on Deep Learning Models Need Access to Extensive Labelled Datasets for

their Training Development.

Basically, brain tumors are classified into two main categories:
A. Benign Tumors— Non-cancerous growths that do not invade nearby tissues.
B. Malignant Tumors — Cancerous tumors that spread and grow aggressively.

Some common types include:
1. Gliomas (e.g., Glioblastoma Multiforme - GBM)
2. Meningioma’s
3. Pituitary Tumors
4

Metastatic Brain Tumors

1.6 VARIOUS TYPES OF BRAIN TUMOR SEGMENTATION

Medical image segmentation and their analysis function as an essential tool across diagnosis
practices and surgery operations as well as computer vision-based systems encompassing
biomedical image processing applications. The main function of image segmentation involves
dividing images into separate regions that display homogenous properties under defined criteria.
The initial component of computer vision systems and decision-making operations heavily
depends on segmentation due to its crucial requirement of precise execution. The field of medical
image segmentation together with soft computing techniques has experienced significant
improvements throughout multiple years of development. Accurate diagnosis requires radiologists
to use images with well-defined segmented regions because these segmented areas enable
identification of brain tumor abnormalities between benign and malignant groups. Medical image

segmentation requires different techniques because they need adaptation to handle distinct clinical
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problems [31-34]. The implementation of these techniques meets three major barriers because of
choosing stable algorithms, determining robust performance indicators, and consistently finding
the application-specific region of interest. In an MRI tumor detection task, the Region of Interest
(ROI) is the tumor, but in eye image examination, the ROI becomes the iris. A consistent and
reliable result across all scenarios remains impossible through any single segmentation method,
which demands developers create or update advanced segmentation methods for improved
performance and ROI-specific adaptability [35]. Several approaches are used by the researchers
for segmenting brain tumors from medical images, including:

1. Segmentation based on Discontinuities

2. Region-based Segmentation

3. Clustering-Based Segmentation

IMAGE SEGMENTATION

Discontinuity detection Similarity detection

based approach based approach

Edge Based Threshold Clustering
Method Based Based

Figure 1.12: Brain Tumor Image Segmentation Approaches

1.6.1 Segmentation based on Discontinuities

Image segmentation happens through sudden changes in the detection of intensity values within
images according to this method. Three classifications exist under this method, including Point
Detection and Line Detection and Edge Detection.

Point Detection: The identification of intense components that appear frequently throughout an
image constitutes the core concept of point detection. Image processing occurs through the usage
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of a high-pass filter in the form of a mask that operates by convolving it with the image for the

purpose of point intensity change detection using equation 1.
R = ZI;S=1 Zp X fp (1)

Where Zj, is the grey level of the pixel and f; is the mask coefficient at location p. The point in the

image is detected at the location on which the mask is centered if |R| = T, where T is a

non—negative threshold.

Line Detection: The detection of lines depends on previously defined masks that search for
orientation-specific linear elements. Four different types of line detection masks exist to identify
elements along horizontal, vertical, and two diagonal +45° and -45° directions. Every pixel with a
higher absolute value of Ri compared to Rj for all values of j except i indicates a likelihood of line
association in the direction of the selected mask. A signal peak occurs when the system selects the

mask that yields the maximum response value.

Edge Detection: The outline of objects present in images is defined by edges during image
processing operations. When a substantial immediate alteration occurs in gray-level intensity
between adjacent image regions, then an edge becomes evident. The process of edge detection
removes unneeded information while keeping only essential structural information about objects.

The two fundamental categories of edge detection operators exist.

e Gradient operators are tools that evaluate first-order image derivatives, which include the
Sobel operator, Prewitt Operator and Roberts Operator.
1. Sobel Operator
2. Prewitt Operator
3. Robert's Operator

e (aussian operators calculate image second-order derivatives through the following
methods:
1. Canny Edge Detector
2. Laplacian of Gaussian (LoG)
3. Marr-Hildreth Operator
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1.6.2 Region-based Segmentation

The main objective of segmentation operations consists in partitioning an image into several
distinct areas. The technique executes its operations based on the comparative patterns inside the
image. The process of region-based segmentation creates uniform regions out of areas that share

common features. The approach includes three subcategories.

Region Growing: It provides a method that unites smaller sub-regions into larger ones using
defined criteria. The technique identifies first seed points before growing regions by including
neighboring pixels that possess comparable characteristics. The process continues running until
the applied rule condition remains valid; otherwise, the process ends. If seed points follow a rule
to connect with neighboring pixels sharing similar attributes, the result becomes a consolidated

segmented area.

Region Splitting: Image segmentation through region splitting produces divisions of an image
using fixed criteria. The technique starts by treating the whole image at the top level because of its
top-down methodology. A region has no modification if it matches all the predetermined
requirements. The region undergoes further splitting into sub-regions when it fails to match the
defined condition. Repetitive application of this method continues until every segment matches

the assigned segmentation requirement.

Region Split and Merge: The method starts by splitting an image into regions through
predetermined rules. The merged areas from segmentation produce the final results. A quadtree
data structure serves as the common implementation method for carrying out this technique,
through which the parent node shows the full image while child nodes display subdivided areas.
The merging operation consolidates areas with identical features to heighten the performance of

segmentation procedures.

Threshold-Based Segmentation: Thresholding stands as a basic segmentation approach that
separates objects from the background by using a threshold value (T). The quality of segmentation

results depends on what algorithm is used for thresholding. Users need to scan a histogram to find
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the most suitable threshold value so objects appear uniformly bright yet separate from background

content.

e A single fixed value of threshold T applies identically throughout every section of the
complete image in global thresholding. Objects use the same region when pixels maintain

intensity worth higher than T, although pixels below T get assigned to a separate region.

e The threshold value T uses local neighborhood information to determine its setting through
this method rather than using universal thresholding for pixel analysis. This makes it

valuable for images with multidimensional intensity patterns and diverse illumination.

The segmentation methods serve primary roles in image processing systems and help detect targets

while classifying them effectively.
1.6.3 Clustering-Based Segmentation

The independent operation of clustering algorithms differs from classification algorithms where
clusters are not predefined. The algorithms find excellent applications in detecting hidden patterns
within data sets through heuristic methods. Such methods break images into groups that contain
pixels that possess comparable features [36]. The fundamental clustering properties allow data
elements to join groups where components inside share more similarities than elements from

separate clusters.

K-means Clustering Algorithm: The K-means algorithm represents an unsupervised learning
method that serves as one of the basic clustering deployment strategies. The algorithm establishes
a predetermined number of clusters that reorganize the specified image data. The clustering
process starts with K centroid selection made at random to represent the initial cluster centers. The
image pixels receive their assignment to the nearest centroids by calculating their distance to these
centroids [37-39]. The clustering concludes when all image pixels obtain their correct cluster
assignment and new centroid positions are computed from the determined cluster centers. The
operational sequence continues until the centroids transform into fixed positions that no longer
move. K-means clustering is a type of unsupervised learning algorithm used for unlabeled data
(i.e., data without predefined categories or groups). The objective of this computation is to come

across bundles in the used data, with the number of get-togethers spoken to by the variable K. The
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count works iteratively to dole out each data point to one of K social affairs subject to the features
that are given. Data spotlights are gathered subject to feature equivalence. The delayed

consequences of the K-means clustering estimation are:
< The centroids of the K bundles, which can be used to name new data

% Labels for the planning data (each datum call attention to what is doled out to a singular

gathering)

K-means is one of the most straightforward unsupervised learning algorithms that addresses the
significant clustering problem. The algorithm provides a straightforward approach to partition a
given dataset into a predetermined number of clusters (k), which is defined beforehand. The
fundamental concept is to delineate k centroids, each corresponding to a distinct cluster. These
centroids should be established in a strategic manner, considering various regional factors that
provide diverse outcomes. Therefore, the optimal decision is to position them as far apart as
reasonably possible. The corresponding phase involves assigning each guide to a designated
educational cluster and linking it to the subsequent centroid [39-44]. As soon as no points are
pending, the fundamental progress is completed, and an initial assembly phase is concluded. We
must now identify k new centroids as the barycenter of the clusters resulting from the previous
expansion. Ultimately, these numerical targets limit a certain function, in this case, a squared error

function. The objective task
J=Z% Xk 1% -Gl 2)

Where ||X;/ — Cj||* is a picked separation measure between an information point X;” and the
bunch focus C;j, is a pointer of the parting of the n info focuses from their individual group focuses.
The computation is made out of the associated advances:
1 Spot K centers into the space spoken to by the things that are being gathered. These centers
speak to beginning get-together centroids.
2 Dole out everything to the social affair that has the closest centroid.
3 At the point when the sum total of what things have been designated, recalculate the spots
of the K centroids.
4 Rehash Steps 2 and 3 until the centroids never again move. This makes a unit of the articles

into social affairs from which the estimation to be restricted can be resolved.
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Although the algorithm is guaranteed to converge, the k-means algorithm does not necessarily find
the optimal solution, which would be the global objective function minimum. The algorithm is
also sensitive to the initial, randomly selected cluster centers. The k-means computation can be
kept running on various events to lessen this effect. K-means is a direct count that has been changed
in accordance with various issue zones. As we are going to see, it is a better-than-average
probability for extension to work with fleecy component vectors [45].

A Model: Suppose that we have n test incorporate vectors x1, X2, ..., xn, all from a comparative
class, and we know that they fall into k diminished bundles, k < n. Allow mi to be the mean of the
vectors in gathering I. In case the packs are especially detached, we can use a base division
classifier to disengage them. That is, we may say that x is in bundle I if || X - mi || is the base of

completely the k divisions. This suggests the following method for finding the k-means:

Construct preliminary guesses for the means: mz, ma... mg
Awaiting, there are no changes in the value of any mean
Utilize the approximate means to categorize the samples into different clusters
Fori (] 1to all k values
Substitute m; with the mean of each sample for created cluster i
End
End—Algorithm

Here is an illustration presentation to show how the values mean mj and m; transfer into the

centers of two different clusters.

Start m-

Start mq
Figure 1.13: Example of Cluster

Observations: This is an elementary rendition of the k-means approach. It tends to be perceived
as an avaricious computation for parceling the n tests into k bunches with the intention of limiting

the whole of the squared partings to the collection focuses. It has a small number of weaknesses:
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o The method to instate the means was not designated. One well-known tactic to commence
is to arbitrarily pick k of the examples.

o The results delivered count on the primary qualities for the means, and it every now and
again happens that problematic parcels are discovered. The standard arrangement is to
attempt various diverse commencement phases.

o Itis able to come about that the planning of tests nearest to mi is empty, with the goal that
mi can't be reinvigorated. This is an inconvenience that needs to be taken care of in an
execution, nevertheless one that we shall overlook.

o The results count on the measurement used to gauge || X - mi |. A well-known plan is to
normalize each factor by its standard deviation; nevertheless, this isn't regularly striking.

o The consequences count on the assessment of k.

This last issue is particularly badly designed, since we consistently get no opportunity to acquire
of significant what number of packs exist. In the model showed up more than a comparable count
associated with comparable data conveys going with 3-means clustering. Is it ideal or

progressively lamentable over the 2-means clustering?

Start m-

T Final

o I ' Boundary
Start my .

Figure 1.14: Clustered Data

Unfortunately, there is no general theoretical solution for finding the ideal number of clusters for
a given dataset [46]. A basic procedure is to distinguish the concerns of various runs and
distinguish k classes and pick the greatest one as per a given measure, yet users had better be
cautious on the grounds that growing k brings around smaller blunder size esteems by definition,

yet additionally an expanding risk of overfitting.

Fuzzy C-Means (FCM) Clustering Algorithm: It differs from K-means because it enables pixels

to join multiple clusters simultaneously, so their membership amounts change according to varying
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criteria. The soft clustering technique balances flexibility well in situations where multiple data
points share common features and need this type of analysis. The selection of initial centroids
remains a highly sensitive step within FCM, and the number of clusters must be determined at the
point of initialization [47-54]. The sensitivity requires users to carefully adjust parameters for

optimal results when using this method.
Major advantages of the algorithm of image segmentation:
e Content-based image retrieval.
e Video surveillance.
e Used for locating objects and boundaries of line curves, images, and so on.
e Essential in computer-aided diagnosis systems of various applications.
e It divides the images into the specified description.

e Better in data storing, communication, and image gaining.

It is versatile, robust, accurate, and efficient techniques present to segment the

regions.
Applications of image segmentation algorithms

e Machine vision.

Content-based image retrieval.

e Object detection.

e Tumor detection and segmentation.

e Mass detection.

e Segmented body tissues/organs in medical application.
e Task recognition.

e Traffic control system.

e Video surveillance.

e Segmentation and texture analysis.
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1.7 BRAIN TUMOR SEGMENTATION AND CLASSIFICATION

Healthcare specialists who work with medical imaging must perform brain tumor segmentation
along with classification tasks for exact diagnosis and treatment planning. Medical imaging
personnel need to separate tumor regions in MRI or CT scans before categorizing tumors as
gliomas, meningiomas, or pituitary tumors. Neuroimaging practices now achieve better brain
tumor segmentation through the combination of U-Net and traditional segmentation processes such
as thresholding and region-growing alongside K-Means and Fuzzy C-Means clustering along with
modern CNNs and DeepLabV3+ deep learning models. The classification system integrates
background and deep learning methods employing SVM and Random Forest together with CNNs
that deploy VGG16 and ResNet via transfer learning techniques. The development of the field
progresses forward while it encounters multiple enduring drawbacks, which stem from tumor
variety alongside weak MRI contrasts along with unbalanced class distributions and insufficient
available data. Al-related segmentation and classification research will integrate privacy-protected
training via federated learning while adding both explainable Al techniques and 3D volumetric
analysis and multi-modal imaging fusion outlooks for future work. Technological advancements
will boost automation levels for tumor identification systems, thereby allowing radiologists to

make decisions backed by clear evidence.

Brain tumor segmentation and classification refers to the process of automatically identifying and
distinguishing different types of brain tumors within a medical image, typically an MRI scan, by
separating the tumor tissue from healthy brain tissue, allowing for accurate diagnosis and treatment
planning; this is usually achieved using computer vision techniques, particularly deep learning
algorithms, to analyze the image and classify the tumor based on its characteristics like size,

location, and appearance. Key points about brain tumor segmentation and classification:

» Image modality: MRI is the most commonly used imaging modality for brain tumor analysis

due to its high soft tissue contrast.
 Segmentation process:

* Identifying tumor boundaries: The algorithm identifies the pixels or voxels that belong to

the tumor region, effectively outlining the tumor’s edges.
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* Pixel classification: Each pixel within the image is assigned a label indicating whether it

belongs to the tumor, healthy brain tissue, or other relevant structures.
» Classification process:

 Tumor type identification: Once the tumor is segmented, the system analyzes its features
(like texture, intensity, and shape) to classify it into different types of brain tumors, such as glioma,

meningioma, or pituitary adenoma.

* Grading: Some systems can further classify tumors based on their aggressiveness (grade),

like low-grade or high-grade gliomas.
Common techniques used for brain tumor segmentation and classification:

* Deep learning models: Convolutional Neural Networks (CNNss) like U-Net are widely used for

segmentation due to their ability to learn complex features from medical images.

» Atlas-based methods: Utilizing a predefined brain atlas to register the patient's image and identify

tumor regions based on anatomical landmarks.
* Feature extraction techniques: Analyzing texture features within the tumor region.

1.7.1 Problems related to Brain Tumor Segmentation and Classification

Various difficulties affect both the accuracy and reliability of automated systems used for brain
tumor segmentation and classification. The problem of high tumor variability concerning shape
and size along with location results in poor model generalization across different brain tumor cases.
The poor contrast and noisiness present in MRI scans make tumor borders difficult to discern, thus
causing mistakes during segmentation and classification. The occurrence of class imbalance
creates a major problem because uncommon tumor types become skewed towards prevalent
diagnosis categories in deep learning models' predictions. Difficult training of models exists
because manual radiologist annotations require extensive time investment and cost money. The
distinction between benign and malignant growths becomes difficult because tumors present
characteristics that duplicate normal brain tissue structures. The performance of models suffers
when they become sensitive to initial conditions and model hyperparameters, particularly when
using clustering-based or deep learning techniques. Medical professionals must have transparent

processes for diagnosis since deep learning models do not provide understandable decision-making
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mechanisms. Resolving these difficulties demands sophisticated Al methods together with
enhanced accessibility to data as well as strong validation protocols to improve brain tumor

segmentation and classification systems' accuracy and reliability levels.

1.7.2 Application of Brain Tumor Segmentation and Classification

Brain tumor segmentation and classification have numerous critical applications in the medical
field, significantly improving diagnosis, treatment planning, and patient outcomes. Automated
segmentation helps radiologists precisely identify and delineate tumor regions in MRI and CT
scans, reducing manual effort and enhancing diagnostic accuracy. Classification models assist in
differentiating tumor types, such as gliomas, meningioma’s, and pituitary tumors, enabling
oncologists to tailor personalized treatment plans, including surgery, radiation, or chemotherapy.
These technigues are also valuable for tumor progression monitoring, allowing doctors to track
growth, recurrence, and response to treatment over time [58]. In surgical planning, accurate tumor
segmentation helps neurosurgeons determine the safest approach for tumor removal while
minimizing damage to surrounding healthy brain tissue. Additionally, Al-driven brain tumor
analysis contributes to radiogenomics, which links imaging features with genetic mutations, aiding
in precision medicine. It is also used in telemedicine and remote diagnostics, providing automated
tumor detection in resource-limited settings where expert radiologists may not be available.
Furthermore, clinical research and drug development benefit from these advancements, enabling
large-scale tumor analysis for developing new therapeutic strategies [59]. As deep learning and Al
technologies evolve, brain tumor segmentation and classification will continue to revolutionize

neuro-oncology, improving early detection, treatment efficacy, and overall care.

1.7.3 Challenges in Brain Tumor Segmentation and Classification

Brain tumor segmentation and classification face several challenges that impact the accuracy and
reliability of automated systems. The high variability in tumor shape, size, and location makes it
difficult to develop generalized models that perform consistently across different patients. Low
contrast and noise in MRI scans further complicate the distinction between tumor and healthy
tissue, leading to potential misclassification. Class imbalance is another significant issue, as certain
tumor types are rarer, causing bias in machine learning models. The lack of large, well-annotated
medical datasets limits the training and validation of deep learning models, making robust

generalization difficult. Additionally, tumors often exhibit overlapping features with normal brain
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structures, making precise segmentation challenging. The sensitivity of clustering-based and deep
learning models to hyperparameter tuning and initialization also affects segmentation accuracy.
Furthermore, the black-box nature of deep learning models raises concerns about interpretability
and trustworthiness in clinical applications [60]. Overcoming these challenges requires advanced
Al techniques, better dataset availability, improved explainability in deep models, and efficient
real-time processing methods to ensure accurate, reliable, and clinically useful tumor segmentation

and classification. Challenges in brain tumor segmentation and classification:

« Variability in tumor appearance: Brain tumors can have irregular shapes, blurry boundaries,

and diverse intensity patterns, making accurate segmentation difficult.

« Multimodal image analysis: Utilizing different MRI sequences (T1, T2, and FLAIR) can

improve accuracy but requires complex integration.

* Inter-observer variability: Different radiologists may interpret tumor boundaries differently.

1.8 MOTIVATION ABOUT BRAIN TUMOR-RELATED WORK

For the detection and treatment of cancer, image-based tumor segmentation and classification has

a number of potential advantages, including:

Enhanced accuracy: Tumor properties, including size, shape, and location, may be precisely
identified and quantified with the use of image-based tumor segmentation and classification

systems. This may result in diagnoses and treatments that are more specialized and exact.

Time-saving: Automating the process of tumor identification and analysis using image-based
tumor segmentation and classification techniques may speed up the procedure and lighten the

burden of medical personnel.

Non-invasive: Image-based tumor segmentation and classification algorithms do not need
biopsies or surgical procedures since they are non-invasive. This may lessen the pain experienced

by patients and the danger of consequences from invasive operations.

Better monitoring: Image-based tumor segmentation and classification techniques may be used
to track tumor development and response to therapy over time, assisting medical personnel in

modifying treatment strategies as necessary.
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Improved results: Image-based tumor segmentation and classification techniques may assist

medical personnel in making more knowledgeable treatment choices, improving patient outcomes.

Accessible: Image-based tumor segmentation and classification techniques may be used in a
variety of locations, including underdeveloped and rural regions where access to expert medical

personnel may be restricted [61].

Generally speaking, image-based tumor segmentation and classification have the potential to

greatly enhance cancer diagnosis, therapy, and follow-up, resulting in improved patient outcomes.

1.9 SIGNIFICATION OF BRAIN TUMOR-RELATED WORK

Brain Tumour Segmentation and categorization of brain tumors are essential in medical imaging
and healthcare, markedly enhancing the accuracy, efficiency, and efficacy of brain tumor diagnosis
and treatment planning. Accurate segmentation aids in delineating tumor margins, quantifying
tumor dimensions, and monitoring its evolution over time, hence facilitating informed decision-
making by radiologists and neurosurgeons. Automated classification facilitates the differentiation
of various tumor forms, including gliomas, meningiomas, and pituitary tumors, which is crucial
for tailored treatment approaches such as surgery, chemotherapy, or radiation therapy. Advanced
Al-driven segmentation decreases manual labor, reduces human errors, and facilitates early
diagnosis, resulting in enhanced patient survival rates. Moreover, precise classification aids in
prognostic prediction and enhances medical research by offering critical insights into tumor
behavior. The amalgamation of deep learning and machine learning models in segmentation and
classification has transformed brain tumor analysis, providing expedited, more dependable, and
economical diagnostic methods. Consequently, these improvements substantially boost healthcare

systems, ultimately increasing patient outcomes and quality of life.

1.10 RESEARCH GOALS & SCOPE

The research goals in brain tumor segmentation and classification focus on developing accurate,
efficient, and interpretable Al-driven solutions to assist in early diagnosis and treatment planning.
The primary objectives include improving segmentation accuracy by leveraging unsupervised

learning architectures such as K-means and FCM to accurately delineate tumor boundaries in MRI
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and CT scans. Another key goal is enhancing tumor classification models using machine/deep
learning and deep learning techniques, such as CNNs and transfer learning, to differentiate
between tumor types like gliomas, meningiomas, and pituitary tumors. Researchers also aim to
address challenges such as class imbalance, noise in medical images, and variability in tumor
morphology by incorporating data augmentation, synthetic dataset generation, and multi-modal
imaging fusion (MRI, PET, and CT). Additionally, improving explainability and interpretability
in Al-based models is essential to ensure that automated systems can provide clinically reliable

and transparent diagnoses [62-67].

The scope of brain tumor segmentation and classification research extends to multiple domains,
including radiology, neurology, medical image processing, and artificial intelligence. It
encompasses advancements in automated segmentation, feature extraction, and classification
techniques, integrating both handcrafted and deep learning-based approaches. Furthermore, the
research is applicable in CAD systems, surgical planning, and personalized medicine, ultimately
aiding healthcare professionals in early detection, treatment response monitoring, and prognosis
prediction. The integration of federated learning and cloud-based Al models expands the scope by
enabling real-time and scalable tumor analysis across multiple hospitals while ensuring patient
data privacy [68]. Future research directions involve refining real-time segmentation models, 3D
volumetric analysis, and Al-driven decision support systems, making brain tumor diagnosis more

accessible, reliable, and efficient.
1.11 MEDICAL IMAGES DATASETS

There are several datasets available for image-based tumor segmentation and classification. Here

are a few examples:

The Brain Tumor Segmentation (BraTS) dataset contains the following information: This is a very
popular dataset for the segmentation of brain tumors, and it contains magnetic resonance imaging
(MRI) images of brain tumors. The collection contains pictures of patients suffering from a wide
variety of brain cancers, including glioblastoma and meningioma. On the official website of the
BRATS Challenge, which can be found at

https://www.med.upenn.edu/cbica/braintumors2020/data.html, the BRATS (Brain Tumor

Segmentation) dataset is available for download.
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Kaggle Data Set: provides brain MRI images for Brain Tumor Detection. The data set can be

downloaded via https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-

detection

Figshare Data Set: Figshare is an online open access repository where researchers can preserve
and share their research outputs, including figures, datasets, images, and videos. The data set can

be downloaded via https://figshare.com/articles/dataset/brain tumor dataset/1512427

Some sample data of the used dataset is shown in Figure 1.15.
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Figure 1.15: Sample of Brain MRI Images with Types from Dataset
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1.12 CONTRIBUTION OF THESIS

The research demonstrates that early tumor detection is beneficial for preserving human lives,
driven by the pressing necessity for advancements in medical imaging technology to enhance the
diagnosis and treatment of brain cancers. Brain tumors present significant challenges to healthcare,
requiring accurate and effective segmentation methods for adequate analysis due to their
complexity and diverse characteristics. Recent medical research has greatly enhanced the
understanding of brain tumors, with MRI becoming an essential instrument for their detection.
Nevertheless, the segmentation of these tumors continues to be a formidable task, occasionally
susceptible to errors and inaccuracies. This study seeks to address these challenges by examining
and comparing advanced clustering mechanisms via Moth-Flame Optimization (MFO), a swarm-
based technique for precise Brain Tumor Region (BTR) segmentation, and subsequently
developing a Hybrid Model for Brain Tumor Analysis (BTA) utilizing Convolutional Neural
Networks (CNN) as an innovative deep learning methodology. In prior research, various swarm-
based metaheuristic algorithms were compared to identify MFO as the superior technique in
conjunction with K-means clustering for segmenting the BTR from MRI [11]. Here, five different
models for swarm-based optimization techniques are used that are shown in Figure 1.15, and the
names of the algorithms are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC),
Firefly Algorithm (FFA), Cuckoo Search Algorithm (CSA), and Moth-Flame Optimization
(MFQ), as illustrated in Figure 1.16 [12].

Swarm-based Optimization Algorithms
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Figure 1.16: Latest Swarm-based Algorithms
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The comparative review of existing segmentation methods in prior research is to uncover and

refine clustering mechanisms that might substantially improve the accuracy and efficiency of MRI-

based brain tumor segmentation. This optimization's potential influence transcends research

facilities, extending into clinical environments and providing healthcare practitioners with a more

dependable instrument for the early detection and diagnosis of tumors. The pursuit of an enhanced

segmentation approach transcends academic interest; it aims to elevate patient outcomes and

advance the progression of medical procedures. This study aims to offer useful insights that can

transform the approach to the BTA model, promoting breakthroughs that promise more accurate

diagnoses, prompt interventions, and enhanced patient care. This project aims to catalyze positive

change in neuroimaging and brain tumor detection within the context of essential medical

innovation. The major contributions are listed as:

1. To present a short survey on the detection and classification of brain tumors to identify the
challenges and issues.

2. Pre-processing methods are employed to enhance the quality of MRI data and improve the
clarity of images.

3. To detect and segment the BTR from MRI, K-means with MFO as a swarm-based optimization
is used. validate

4. To train and validate the BTA model, CNN with MFO is used as a novel deep learning
approach.

5. To find out the BTA model efficiency, performance parameters are calculated and compared
with existing works in terms of sensitivity, precision, F1-score, Mathew Correlation Coefficient

(MCC), Dice, Jaccard, specificity, accuracy, and time.

1.13 STRUCTURE OF THE THESIS

Chapter 2 presents a comprehensive review of the literature related to brain tumor segmentation
and classification using various techniques, including clustering methods, deep learning
architectures, optimization strategies, and evaluation metrics. The chapter also includes a detailed
literature summary in tabular form to provide a comparative analysis of different methodologies.
Furthermore, this chapter identifies the research gaps in existing approaches, laying the foundation

for the proposed work.
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Chapter 3 introduces the problem formulation, derived from an extensive literature survey on brain
tumor segmentation and classification. It outlines the key research objectives established based on
the identified challenges. Towards the end, the chapter provides a detailed explanation of the
proposed clustering and deep learning algorithms that aim to enhance segmentation and

classification accuracy.

Chapter 4 describes the research methodology employed in this study, detailing the algorithms and
models developed to improve brain tumor segmentation and classification. This chapter elaborates
on the techniques used, such as machine learning, convolutional neural networks (CNNSs), hybrid

clustering approaches, and deep learning-based segmentation models.

Chapter 5 discusses the experimental setup required for implementing the proposed brain tumor
segmentation and classification model. It also covers the computational resources, datasets used
(e.g., BraTS dataset), pre-processing techniques, and software tools necessary for the research.
Towards the end, the chapter highlights the infrastructure and facilities utilized for experimentation

and model evaluation.

Chapter 6 presents the experimental results and analysis of the proposed segmentation and
classification techniques. This chapter includes a discussion of the performance metrics (such as
Dice coefficient, Jaccard index, accuracy, precision, recall, and F1-score) and a comparative
analysis with existing state-of-the-art methods. Additionally, it covers the implementation details,
hybrid algorithm execution, and insights derived from experimental findings. The chapter
concludes by evaluating the proposed methodologies against benchmark datasets and existing

literature.

Chapter 7 concludes the thesis by summarizing the key findings and contributions of the research.
It also explores potential areas for future work, such as improving segmentation models using 3D
deep learning architectures, explainable Al (XAl) techniques, multi-modal image fusion (MR,

PET, CT), and federated learning approaches for privacy-preserving medical image analysis.

This structured approach ensures a comprehensive study on brain tumor segmentation and
classification, addressing challenges and proposing innovative solutions to advance medical image

processing and Al-driven diagnostics.
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CHAPTER 2
LITERATURE REVIEW

2.1 REVIEW OF LITERATURE

This chapter includes multiple scenarios to present a quick assessment of existing work related to
brain tumor segmentation and classification techniques. The existing work based on the image
classification with the help of a hybrid approach is well illustrated. In this chapter, we will discuss
the segmentation of various types of data that are captured from CT scans in medical science. A
brief but deep explanation of some of the most significant contemporary clustering emphasizing
medical image segmentation as well as classification techniques will be provided. These methods

are utilized in the process of segmenting a wide variety of medical pictures.

Chander et al. published an article in Elsevier in 2011 considering the Otsu's method, which was
modified in combination with the PSO approach for segmentation of images. Furthermore, the
effectiveness had been improved by computing the threshold level, which is evaluated by
experimental analysis and is able to adequately address picture segmentation concerns. Also, it
was demonstrated that the enhanced segmentation method outperformed other recognized methods
[13].

After that, a model was developed in 2013 by Bandyopadhyay and Paul employing the K-means
clustering-based diagnostic method to segment the BT using MRI images. Furthermore, precision
of the segmented images had been improved by the authors by dividing the devised system into
two parts. In the first, the registration of an image was discussed, and in the second, the fusion of
two registered MRI pictures. The segmentation of tumor areas in MRI is then done using the
concept of improved K-means. The design system, however, was restricted by the restrictions of
the data pattern and was not suitable for the 3D modelling of medical image segmentation and also

ran into the problem of segmentation mixing [14].

In order to address these problems in MIS, Zhao et al. in 2014 developed a methodology to address

the pixel mixing issue in K-means-based segmentation of medical images. Here, the author
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introduces the PSO concept to enhance the effectiveness of using MRI for tumor segmentation. In
this case, the initial clusters for the MRI pixels are created using the PSO concept, and the mixing
problem is then tried to be solved using fitness. The experimentation revealed the modified K-
means technique had been employed considering the K-means for performance metrics such as

execution speed and accuracy rate [15].

The same year, a study based on the notion of conventional fuzzy C-means (FCM) for segmenting
BTs was published in IJIRCCE. To identify tumors from the MRI, the tumor investigators in this

instance also used an advanced K-means [16].

In 2017, Parasar and Rathod published a comparison of seeded region growth, watershed, and
FCM combined with the swarm-based PSO for the medical image segmentation of ultrasound

pictures utilizing the PSO and K-means combination [17].

Ventateshan and Parthiban focused on using the K-means with PSO for the segmentation of MRI
images with hybrid technique in 2017. The kernel filter was also employed for better results, and

it was assessed for its quicker execution time, but accuracy still requires more attention [18].

Hasan did research in 2018 using the PSO to autonomously segment brain cancers using MRI
data. To achieve segmentation accuracy of about 92%, the authors used the segmentation technique
with PSO [19].

In 2018, Karegowda et al. suggested a technique based on MRI-based BT-based segmentation.
The authors concluded that using PSO is a wise move after further contrasting the K-means, FCM
(also a clustering method), and Adaptive Regularized Kernel-based PSO with FCM (ARK-PSO)
approaches. According to experimental findings, PSO-based segmentation is more accurate than

the conventional techniques such as meta-heuristic techniques [20].

Arun Kumar et al. implemented a better automated method for segmenting and identifying BT
locations using K-means in 2019. The pre-processing stages are included in which an image is

improved in order to accurately forecast a BT [21].

The authors first used the Harvard Whole Brain Atlas dataset for the improvement of MRI brain

image; Hrosik et al. published an article using the K-means technique in conjunction with FFO in
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the same year. The results demonstrated that the hybrid strategy performed more effectively than
the others [22].

In 2020, Chander et al. built a model to help the process of tumor segmentation from various
levels of MRI scans with the assistance of clustering-based methods such as the K-means
algorithm and Support Vector Machine, also known as SVM, as a machine learning method. The
system's (developed) accuracy rose when compared to the earlier work [23], indicating that the

model was successful.

In 2021, S Gupta et al. developed a model for brain tumor segmentation and classification utilizing
a multi-task attention-guided network as a proposed machine learning approach. This study aims
to construct a multi-task attention-guided network (MAG-Net) for the segmentation and
classification of tumors using brain MRI data. The authors utilized the publicly accessible dataset
referred to as "Figshare.” This dataset has three tumor types: meningioma, glioma, and pituitary
tumor, presented in coronal, axial, and sagittal views, respectively. The model demonstrated
potential in comprehensive experimental trials, surpassing current state-of-the-art models while

utilizing the minimal number of training parameters. [24].

AR Khan et al. conducted research in 2021 to develop a model for segmentation of brain tumors
using a clustering approach with deep learning for synthetic data. Here, authors generated a hybrid
approach with K-means as clustering and a deep learning mechanism for the augmented data
classification. The suggested procedure in this research includes three basic stages named as: pre-
processing, K-means-based clustering for the brain tumor region segmentation, and
benign/malignant tumor classification utilizing MRI data via a fine-tuned VGG19 model as a deep
learning approach. Furthermore, the concept of synthetic data augmentation is introduced to
increase the volume of data available for training classifiers, hence enhancing classification
accuracy. Comprehensive evaluations were conducted to evaluate the proposed technique utilizing
the BraTS 2015 benchmark datasets. The results confirm the efficacy of the proposed strategy,

which surpassed previously documented state-of-the-art procedures regarding accuracy [25].

In 2021, T Tazeen & M Sarvagya had conducted research to design a model for Brain Tumor
Segmentation as well as their Classification from the MRI data with the help of Multiple Feature

Extraction approach and Convolutional Neural Network (CNN). In order to take preventative
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measures against brain tumors, MRI is used for early diagnosis and assessment. Brain tumors can
be better diagnosed with the use of MRI because of the information it provides about sensitive
human tissue. In this research, we present a technique for detecting and classifying brain tumors

utilizing an ensemble of CNNs to extract and classify features [26].

FJ Diaz-Pernas and M Martinez-Zarzuela, In 2021 developed a deep learning model for the
segmentation and classification of brain tumors. This paper presents a fully automated model for
brain tumor segmentation and classification utilizing multi-scaled Deep CNN. The proposed
concept of this model diverges from previous efforts in various ways, notably by analyzing input
images at three unique spatial scales through discrete neural networks. This method is inspired by
the inherent working of the human visual system. The proposed neural model does not necessitate
any preprocessing of input images to eliminate skull or vertebral column segments for the analysis
of MRI scans featuring meningioma, glioma, and pituitary tumors across sagittal, coronal, and
axial perspectives. The proposed method is evaluated against conventional machine learning and
deep learning techniques utilizing a publicly available MR imaging dataset of 3064 slices from
233 patients. Our methodology surpassed other approaches utilizing the same database by attaining

an exceptional accuracy of 0.973 (97.3%) in tumor categorization. [28].

In 2022, M Arif et al. had developed a model for brain tumor segmentation and their classification
using the concept of Genetic Algorithm (GA)-based U-Net as a deep learning approach. The
following steps are used by the authors in this work, a deep learning method for detecting brain
tumors: Data is obtained from the REMBRANDT dataset, which contains multi-sequence MRIs
of 130 patients; (b) pre-processing is performed by converting to greyscale, skull stripping, and
histogram equalization; (c) GA is used for segmentation; (d) discrete wavelet transform (DWT) is
used for feature extraction; (e) particle swarm optimization is used for feature selection; and (f) U-
Net is used for classification. The suggested model (GA-UNET) has been shown to perform better
than existing state-of-the-art models in experiments and achieved 97% accuracy, 98% sensitivity,
and 98% specificity [29].

KA Kumar & R Boda in 2022 had developed a multi-objective-based beetle swarm and
multiverse optimization algorithm for brain tumor segmentation and their classification in
randomly updated populations. The purpose of this research work is to use a wide variety

of intelligent approaches to create a model that can accurately classify types of brain
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tumors. Here, authors used lots of steps like image pre-processing, skull stripping, tumor
segmentation, feature extraction, and classification, which are the primary steps in the
proposed model. First, a median filter is applied to the image once it has been converted
from RGB to grayscale. In addition, Otsu thresholding is used for skull stripping, which
involves erasing the extra-meningeal tissue from the head picture. Optimized threshold-
based tumor segmentation using multi-objective randomly updated beetle swarm and
multiverse optimization (RBS-MVO) is the key contribution, and it is used to perform
tumor segmentation [30]. The literature from 2022 to 2024 reinforces the shift towards
deep learning (DL) as the standard for brain tumor detection, with many studies comparing
ML and DL approaches [98-101]. Comprehensive surveys from this period confirm that
machine learning and Al are central to modern diagnostics [102-103], with bibliometric
reviews identifying key trends and research gaps [104]. Recent studies heavily emphasize
the efficacy of DL models [105-107], including ensemble approaches [108] and deep
analysis of various DL networks [109]. A significant trend is the use of transfer learning,
employing pre-trained models to achieve high accuracy [110]. Other novel approaches
include integrating DL with techniques like Proper Orthogonal Decomposition [111] or
combining deep features with ML classifiers and genetic algorithms for feature selection
[112]. Hybrid models, such as those using optimization techniques with DL, also show
promise [113-114]. While these recent works report high classification accuracy, a critical
observation is that many, like earlier studies, are validated on similar benchmark datasets
[115]. This highlights an ongoing need for models that not only perform well but are also
proven to generalize across diverse, multi-institutional clinical data, addressing the gap this
thesis aims to fill. A results-based summation is explained using the BraTS dataset and is

shown in Figure 2.1.
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Figure 2.1: Top methods using the BraTS Dataset

In Figure 2.1, three different abbreviations are used: multilevel thresholding (MT), ET (enhancing
tumor), WT (whole tumor), and TC (tumor core). In this figure, ensemble techniques have recently
been adopted by researchers to obtain cutting-edge performance. The ensemble approaches
precisely combine the segmentation findings of many models to increase the robustness of the
individual approach, producing better recital than inter-rater agreements. A well-trained and
known UNet is used, according to the claim that single UNet-based models continue to provide
incredible concert. According to the literature study, segmentation algorithms' accuracy and
resilience will be greatly enhanced by analyzing the hyperparameters, which is a pre-processing
method. Table 2.1 shows the segmentation of BT using the dataset, and a summary of the BT

segmentation-based survey is given.

2.2 LITERATURE SUMMARY (TABULAR FORM)

Table 2.1 Literature Review

References Proposed Work Used Techniques Dataset Summary of Effectiveness

Segmentation of BT

[13] MT-based image = Swarm-based PSO | General w  There is more than 95%
segmentation using OTSU method accuracy.

[14] Segmenting the BT from | == Clustering using K- | MRI Data |= There is more than 97%
MRI means Bank accuracy.
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[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

An improved clustering
method for segmentation

Segmenting the BT

Segmenting the foetus
ultrasound image

MIS

MRI segmentation of BT

Segmenting MRI BT
images

Abnormality in BT

Brain image segmentation

=

=

=

Clustering using K-
means

PSO technique

Clustering using K-
means

FCM clustering

Clustering using K-
means

FCM clustering
PSO

FCM clustering

Hybridized PSO
using kernel filter

Segmentation
Quantum PSO

using

Active Contour
Swarm-based PSO

Clustering using K-
means

Clustering using
FCM

PSO-based
segmentation

Kernel FCM using

Adaptive Regularised

Clustering using K-
means

Using the ANN

Using the OTSU

technique

Clustering using K-
means

Segmentation
FFO

using
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MRI
Dataset

Foetus
Ultrasonic

IRIS
Dataset

MRI Data
from lIraqi
Centre for
Research

BRATS
Dataset

Harvard
Whole
Dataset

w  The execution time is 1.5

.

w  The tumour area is
detected

w  There is about 93%
accuracy.

w  Execution time

w  Accuracy = 92%

Computation of Peak Signal-
to-Noise Ratio (PSNR),
Mean Square Error (MSE),
Normalised Cross
Correlation (NCOC),
Structural Similarity Index
(SSIM) and Accuracy

w  The accuracy is about
94%

w  The Sensitivity is about
90%

w  The specificity is about
97%.

Computation of Normalized
Root MSE, PSNR, and SSIM



[23] Detection and = Segmentation using | Harvard The accuracy is about 93%.
Classification of BT DWT University

= Clustering using Repository

clustering technique
and classifier

[24] Brain tumour |= Ensemble BRATS Computation ~ of  Dice,
segmentation using the Dataset Sensitivity, Specificity
concept of DL = Cascaded and Hausdorff 95
=  Unet
= SegNet

= Two-stage Unet

The following issues are emphasized as downsides after an analysis of the several literature

surveys on related work to the segmentation of various medical images:

= The primary mistake in the current or existing unsupervised clustering-based segmentation
of an image is the overlapping of image foreground and background due to the problem of

pixel mixing.

w The existing swarm-based or clustering-based image segmentation procedure requires
more time to perform segmentation in the proper manner, and there may be a significant

number of clusters that are unknown.

w According to the discussion in related work, it is evident that large-scale segmentation
operations have been plagued by challenges of segmentation of complicated pictures in the
scenario of MRI, dermoscopy, CT scans, and microscopic images. This is because image
quality and the demand to focus on quality improvements are the primary causes of these
problems.

w There are a lot of researchers that run into the problem of pixel mixing because of the
frequent changes in pixel value in the neighborhood, but there are still some things that
might be improved.

w The quality of the segmentation results is highly dependent on the initialization of the
clustering algorithm. Choosing appropriate initial cluster centers can be a challenging task,

and incorrect initialization can lead to poor segmentation results.
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w=  Clustering algorithms can suffer from over-segmentation, where the image is divided into
too many small regions, or under-segmentation, where the image is not divided into enough

regions. Both of these can lead to inaccurate segmentation results.

= Unsupervised clustering-based segmentation can have difficulty with images containing
complex objects, such as overlapping or occluded regions, or regions with varying textures

or colors. In these cases, more sophisticated segmentation methods may be required.

The effectiveness of segmentation algorithms with and without unsupervised clustering-based

approaches is shown in the following Figure 2.2.

Segmentation using Unsupervised Clustering

Segmentation without Unsupervised Clustering == = =

Figure 2.2: Efficiency Unsupervised Clustering-based Approaches for Medical Images

Based on the aforementioned investigation in the related work, came to the conclusion that medical
image segmentation is a very complex procedure that requires a number of crucial processes that
vary depending on the kind of image data. The technique for segmenting images may split the
medical picture into many divisions in accordance with the accessible pixel groups that are
organized according to the information about the backdrop and the foreground of the image. We
know that the images are made up of different pixel combinations, and based on their intensity
value, any segmentation algorithm is performed. Due to such a crucial task, algorithms faced the

pixel mixing problem, which is displayed in Figure 2.3.
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Figure 2.3: Clustering Faces Pixel Mixing Problems

Pixel mixing is a common problem in clustering-based image segmentation. It occurs when pixels
with different characteristics, such as color or texture, are clustered together, resulting in the
mixing of different regions. This can lead to inaccurate segmentation results, with boundaries
between regions becoming blurred or indistinct. Pixel mixing can occur for several reasons during

the clustering method, including:

Inappropriate Distance Metric: The distance metric used to measure the similarity between
pixels can have a significant impact on the clustering results. If the distance metric is not
appropriate for the image data, pixels with different characteristics can be clustered together,

resulting in pixel mixing.

Overlapping Regions: In some cases, regions in an image may overlap, making it difficult to
distinguish between them. This can result in pixels from different regions being clustered together,

leading to pixel mixing.

Noise: Noise in the image data can also contribute to pixel mixing. If the clustering algorithm is
not robust to noise, pixels with different characteristics can be clustered together, resulting in

inaccurate segmentation.

Insufficient Number of Clusters: If the number of clusters used in the clustering algorithm is

insufficient, pixels with different characteristics can be clustered together, leading to pixel mixing.
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To address pixel mixing in clustering-based image segmentation, several techniques can be used,

including:

Swarm-based hybridization: Use the concept of swarm-based meta-heuristic approach as well

as Al approach to solve such kinds of problems.

Adaptive Distance Metric: Using an adaptive distance metric that takes into account the local

characteristics of the image can help to overcome pixel mixing.

Multi-Scale Segmentation: In this step, performing segmentation at multiple scales can help to

separate overlapping regions and reduce pixel mixing.

Robust Clustering Algorithms: Using clustering algorithms that are robust to noise and can

handle overlapping regions can help to reduce pixel mixing.

Post-Processing: Applying some post-processing techniques, such as morphological operations
or boundary refinement, can help to improve the accuracy of the segmentation results and reduce

pixel mixing.

PSO, ABC, FFA, CSA, and GHA are just a few of the swarm-based optimization algorithms that
are available to conduct enhanced medical picture segmentation. Several new approaches are also
being developed in this area. However, since they are essentially incompatible with all types of
medical imaging, the current conventional procedures are less effective. It is vital to discover an
effective combination in order to fix the problem with clustering-based segmentation and boost

the effectiveness of the medical diagnostic system.
2.3 RESEARCH GAP IDENTIFICATION

After reviewing the research literature already published in the field of medical image
segmentation with their classification research, the following points have been identified as

interferences drawn and verdicts from the present state of the art. These are depicted below.

1. The fundamental drawback of the current clustering-based segmentation technology is the

duplication of foreground and background [14].
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Because of the unknown large number of clusters, the segmentation process takes longer to
execute when bio-inspired algorithms are used, which is typical in optimization-based
methodologies [24].

. According to the discussion in related work, the difficulties encountered in the segmentation
of complicated images in the contexts of MRI, dermoscopy, CT scans, and microscopy are a
direct result of poor image quality [25], highlighting the importance of concentrating on
enhancing image quality in large-scale segmentation jobs.

. The pixel-mixing problem that researchers encounter [27] is caused by the frequent variations
in pixel value that occur in the neighborhood.

In prior work, contour-based segmentation was utilized, but there was no threshold that was
justified, which resulted in segmentation that was prone to mistake [27]. This proposal is
capable of being improved, and the definition of the problem justifies doing so in this fashion.
. Although swarm-based optimization is a density-based optimization approach that always
requires an enormous amount of data to be processed, it is used for the optimization of the
region that has been segmented with an improved fitness function [28]. Thus, validating
swarm-based approaches is a crucial next step that has been neglected in the existing literature.
Need to test the other swarm-based algorithms, such as Cuckoo, Firefly, and Whale, among

others, to make sure that they, too, work correctly at low densities.
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CHAPTER 3
RESEARCH PROBLEM & OBJECTIVES

3.1 PROBLEM FORMULATION

From the survey, issues and challenges related to medical image segmentation are discussed, and
it is the process of dividing medical images into multiple segments or regions of interest for the
purpose of analysis, diagnosis, and treatment planning. However, there are several issues and
challenges associated with medical image segmentation, some of which include:

Limited availability of annotated data: Medical image segmentation requires large amounts of
labeled data for training machine learning models. However, obtaining annotated medical images

is a difficult and time-consuming process.

Complexity of medical images: Medical images are often complex, with variations in contrast,

noise, and image artifacts that make it difficult to accurately segment the images.

Variability in anatomical structures: Anatomical structures in medical images can vary
significantly between patients, making it challenging to develop a one-size-fits-all segmentation

model.

Integration with clinical workflows: Medical image segmentation needs to be integrated with
clinical workflows to be effective. This requires careful consideration of the clinical context and

the specific needs of the healthcare provider.

Interobserver variability: Even among medical experts, there can be variability in how medical
images are segmented, leading to inconsistencies in diagnoses and treatment plans.

Scalability: Medical image segmentation requires large amounts of computational resources, and

scaling the process to handle large datasets can be challenging.

Ethical concerns: Medical image segmentation can raise ethical concerns related to privacy, data

ownership, and the use of sensitive medical information.
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Overall, medical image segmentation is a challenging task that requires careful consideration of
several factors, including data availability, image complexity, clinical workflows, and ethical
considerations. Advances in machine learning and artificial intelligence are helping to address
some of these challenges, but continued research is needed to improve the accuracy and scalability

of medical image segmentation.

The majority of segmentation techniques for medical images are based on pixel grouping, pixel
texture, and pixel color information. According to the most recent study, most segmentation
techniques need refinement in order to attain the diagnostic system's efficiency. Most writers
weren't concerned with creating an effective system with their choice of ML technique for

segmentation. Table 3.1 compares several segmentation approaches based on difficulties and

challenges.
Table 3.1 Comparison of Segmentation Techniques for Problem Analysis
Techniques of Description of Advantages of Shortcomings of Techniques
Medical Image Techniques Techniques

Segmentation

Segmentation-based Depending on the v Itis an easy process that | v Images' spatial features are not

on the concept of | chosen threshold doesn't need any prior taken into account during the
thresholding [13, 22] value, utilize the peak knowledge of pixels. process of segmentation.
areas of the picture v Low computational |v Had issues with neighboring

histogram. complexity. pixel overlap.

v Cannot guarantee that
segmented sets of images are
contiguous.

Segmentation-based The foundation for the | v Work better for better |V Segmentation efficiency is

on the concept of Edge | operation is  the quality images. affected in the case of noisy
[39] discontinuity in the images, and output is less
pixel pattern. accurate.
Segmentation-based Segmentation is |v Work outmost for the |V The time complexity of this
on the concept of | carried out by first particular  region in algorithm is very high with
region [17, 19, 26] identifying images. maximum consumption  of
homogenous regions memory to perform medical
and then applying image segmentation.
partition.
Segmentation-based Segmentation v Segmentation stability is | v Complexity of the algorithm is
on the concept of | employs the method very high for the very high due to the concept of
Watershed [17] of topological boundaries-based the gradient calculation.
interpretation. scheme
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Segmentation-based Classify or create a |V It is an iterative method |v For the low-quality images,
on the concept of | cluster of an image's that takes only a few segmentation performance is
clustering [14-18, 20- | pixels into several seconds to segment a worst.

23, 33, 34, 36, 42] regions or segments picture.

based on the centroid. v The number of clusters and

v Furthermore, they are their unsupervised position is
suited to an irregular not fixed due to the
picture and provide mechanism.

rior outcomes. .
SUperior outcomes v/ In most cases, algorithms face

the problem of pixel mixing.

Hybrid-based [17-20, | Based on the Al |v There is no need to |v Not appropriate to all medical

22, 40-41] learning process and implement a difficult images, and the fitness
capable of handling program. standards need to be updated
problems related to + Quicker than most in accordance with the types of
decision-making. images.

v Particular model training
is not mandatory
The problem of tumor segmentation and classification is an active research area in brain tumors,
along with some other medical imaging and machine learning. Some of the common challenges

and issues faced by these models include:

Limited training data: Tumor segmentation and classification models require large amounts of
high-quality training data to learn accurate representations of the tumors. However, obtaining such

data is often challenging due to the limited availability of annotated medical images.

Variability in tumor appearance: Tumors can have varying shapes, sizes, and appearances,
depending on the type of cancer and the stage of the disease. This variability makes it difficult for

models to accurately detect and segment tumors.

False positives and false negatives: Tumor segmentation models can sometimes produce false
positives (i.e., regions that are identified as tumors but are not actually tumors) or false negatives
(i.e., regions that are not identified as tumors but are actually tumors). False positives can lead to
unnecessary treatments, while false negatives can result in missed diagnoses and delayed

treatments.

Inter-observer variability: Medical experts can have different interpretations of medical images,
leading to inconsistencies in tumor annotations. This variability can make it challenging to create
reliable ground truth annotations for training and evaluating segmentation and classification

models.
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Generalization to new data: Tumor segmentation and classification models trained on one
dataset may not generalize well to new datasets with different characteristics. This issue can be
addressed by using transfer learning or domain adaptation techniques to improve the model's

ability to generalize to new data.

The purpose of this study is to develop an image-based tumor segmentation and classification
system that is dependable and accurate. This system will be able to automatically recognize and
classify various types of tumors, as well as their sizes and locations, based on pictures taken from
medical scans of tumors. The accurate categorization of malignant pictures requires extensive
work that may be accomplished using segmentation. The segmented component is then followed
by the process of feature extraction, and then the classification architecture is followed after that.
Sadly, the process of segmentation has not garnered a great deal of attention in this particular field.
There are a few different segmentation methods that are described in the introductory section;
however, these methods come with a number of constraints and difficulties in terms of processing.
Furthermore, not every segmentation method is appropriate for each and every kind of picture.
The algorithm has to be able to handle a wide variety of tumor types and imaging modalities while
yet maintaining a high level of accuracy and reducing the number of false positives and negatives
as much as possible. This statement explains the main aspects of the work, including the necessity
to handle a range of tumor types and imaging modalities, the potential benefits for cancer diagnosis
and therapy, and the precision and dependability required for image-based tumor segmentation
and classification. In addition, it highlights how essential accuracy and a low rate of both false
positives and negatives are to the efficacy of any method for dividing tumors into their many
subtypes and classes. The inability to extract the most useful and relevant feature sets from the
pictures or the location of the tumor is the primary contributor to the difficulties encountered by
the tumor segmentation and classification system. Cuckoo Search Algorithm (CSA)-based K-
means clustering is the finest for the segmentation of regions (according to the existing work),
which is why there are so many different options available, such as ICA, Genetic Algorithm (GA),
Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). These can all help to
reduce the likelihood of these kinds of issues occurring in the system. As a result of the
characteristics of CSA, it is quite simple to exclude undesirable regions from the Region of Interest
(ROI). This study effort uses swarm-based K-means clustering to separate the cancerous data and

to extract the essential feature from that data. Pattern-based feature extraction using a deep learning
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algorithm is employed as a classifier. The performance metrics of the suggested job will be

calculated at the very end of the system in order to check the work in terms of precision, recall, F-

measure, error rate, accuracy, and execution time.

3.2

RESEARCH OBJECTIVES

The purpose of this study is to provide an artificial intelligence-based method that has been

optimized for the segmentation and classification of brain tumors/cancers derived from MRI

images. The following is a list of the objectives that have been established for this work:

1.
2.
3.

To study and analyze the existing deep learning-based models for detection of brain cancer.
To preprocess and segment the brain cancer images from the identified dataset.

To develop a hybrid deep learning-based model using a metaheuristic approach for the
detection of brain cancer.

To test and validate the developed model with the existing models.
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CHAPTER 4
RESEARCH METHODOLOGY

This fragment explains the working strategy used to achieve the mentioned objectives of the model
using the concept of deep learning as an artificial intelligence technique for the analysis of brain
tumors. The problems of existing work and identified gaps are resolved in this research work by
using an optimized segmentation technique to segment the exact region of the brain tumor from
the MRI images, and then Artificial Intelligence (Al) is used to train the system based on the
extracted feature of the segmented Region of Interest (ROI) of the MRI images. The ensuing stages

show the assortment of phases that must be completed:

Step 1.Firstly, design a framework using the concept of Graphical User Interface (GUI) for
simulation of a proposed hybrid deep learning-based model using a metaheuristic approach
for the detection of brain cancer, and the developed model is an optimized Al-based
approach for segmentation and classification of brain tumor MRI images.

Step 2.Upload training and testing images from the dataset of MRI images for the simulation
purpose of the developed model.

Step 3.Applying pre-processing to the uploaded MRI images to segment the tumor ROI data from
the images by utilizing the concept of an unsupervised clustering-based segmentation
approach with swarm-based metaheuristic techniques, and a comparative analysis is done
to identify the effective algorithm for the proposed model.

Step 4.Apply the concept of fitness of the meta-heuristic algorithm that is known as the objective
function to minimize the unwanted or extraneous area from the ROI data.

Step 5.Develop a code by utilizing the unlabeled pattern-based feature descriptors for feature
extraction from the segmented ROI data.

Step 6.Initialize the concept of Al as deep learning for cancer classification purposes in two
different phases, namely, 1. Training and 2. Testing.

Step 7. After the training of developed system, the testing phase is processed based on the saved

trained structure to identify the kind of cancer from the used images.
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Step 8.In the testing phase of the model, the test images (which may be cancerous or non-
cancerous) are uploaded, and the steps of the methodology from three to five are repeated.
In the classification section, the test image feature is matched with the trained deep learning
structure, and the result type is returned.
Step 9. After the simulation model efficiency is validated on the basis of the Quantitively
Parameters like Precision, Recall, F-Measure, Error Rate, Accuracy and Execution Time
and the flowchart of the proposed model is shown in Figure 4.1.

START

TRAINING PHASE TESTING PHASE
UPLOAD TRAINING DATA SET UPLOAD TEST DATA
PRE-PROCESSING PRE-PROCESSING ON TEST DATA
SEGMENTATION SEGMENTATION OF TEST DATA
FEATURE EXTRACTION FEATURE EXTRACTION
TRAINING USING DEEP LEARNING CLASSIFIVC/;\'IV'[C?I\VIVU?ING DEEP
IS NO CAN'T

MATCHED RECOGNIZED

TRAINED

YE

DETECTION OF RESULTS

AS SEVERITY OF DISEASES

CALCULATE FOR VALIDATION:

END

Figure 4.1: Flowchart of Proposed Work
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Based on the mentioned flowchart of the proposed model, the entire model is segregated into two

different phases; that is why in this research there are two frameworks designed:

1. Framework of Brain Tumor Segmentation

2. Framework of Brain Tumor Classification

In the below section, both frameworks are explained with the steps used for development and their

algorithms.
41 FRAMEWORK OF BRAIN TUMOR SEGMENTATION

According to the study, detection of tumors at an early stage is a beneficial way to protect human
lives, and the motivation behind undertaking this study is rooted in the critical need for
advancements in medical imaging technology to enhance the diagnosis and treatment of brain
tumors. Brain tumors pose significant challenges to healthcare, with their complexity and diverse
characteristics requiring precise and efficient segmentation techniques for accurate analysis.
Current medical research has made remarkable strides in the understanding of brain tumors, and
MRI has become a cornerstone in their detection. Nevertheless, the process of dividing these
tumors into segments continues to be a difficult undertaking, frequently susceptible to mistakes
and imprecisions. This study aims to confront these challenges directly by investigating and
contrasting enhanced clustering mechanisms through the application of swarm-based
methodologies, including Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC),
Firefly Algorithm (FFA), Cuckoo Search Algorithm (CSA), and Moth-Flame Optimization
(MFO). While all these swarm-based techniques are adept at optimization, MFO was selected as
the primary metaheuristic for this thesis due to its distinct advantages in balancing exploration and
exploitation. Unlike PSO, which can sometimes converge prematurely to a local optimum, MFQO's
mechanism, where moths update their position relative to flames (the best solutions found so far),
provides a more robust global search capability. The number of flames is adaptively decreased
over iterations, which systematically shifts the algorithm's focus from exploration (searching
broadly for new solutions) to exploitation (refining the best-known solutions). This adaptive
mechanism is particularly well-suited for the complex and high-dimensional search space of
medical image segmentation and feature selection, reducing the risk of pixel mixing and

optimizing cluster centroids more effectively than other swarm methods. This research seeks to
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uncover and optimize clustering mechanisms by a comparative examination of current
segmentation methods, thereby considerably improving the accuracy and efficiency of MRI-based
brain tumor segmentation. This optimization's potential influence transcends research facilities,
extending into clinical settings and providing healthcare practitioners with a more dependable tool
for the early detection and diagnosis of tumors. The pursuit of an enhanced segmentation approach
transcends academic interest; it aims to elevate patient outcomes and advance the progression of
medical procedures. This project aims to catalyze positive change in neuroimaging and brain tumor
detection within the context of essential medical innovation. The major contributions are listed as
those that are used in the development of the relative analysis:

1. Todetect and segment the Region of tumor (ROT) from MRI data, a comparative analysis
is performed for Fuzzy C-means (FCM) and K-means with a swarm-based optimization
method that is presented in Figure 42.

2. To validate and find out the best approach, performance parameters are calculated and
compared in terms of Sensitivity, Precision, F1-score, Mathew Correlation Coefficient

(MCC), Dice, Jaccard, Specificity, Accuracy, and Time.
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Architecture of Proposed Comparative Model

ROT SEGMNETATION

~ FCM with PSO .
U rooerso

/‘“ @ V:J E
J \_/

Calcuiate performance parameters of the model according fo the 4* contribution and compare the all techniques fo
validate the proposed system based on these parameters

Figure 4.2: Architecture of Proposed Comparative Model

The proposed comparative model's block strategy is depicted in Figure 4.2. Essentially, describe a
comparative brain tumor segmentation model using clustering-based methods and their
hybridization with swarm-based optimization approaches to improve the efficiency of
segmentation techniques. In this study, two distinct scenarios—one using the hybridization of K-
means with PSO and MFO and the other involving the hybridization of FCM with PSO and

MFO—were used. This section of the thesis describes the proposed comparative system for brain
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tumor segmentation from MRI data using different approaches and their hybridization. In this
research, we compare classic and enhanced segmentation methods for ROT segmentation from

brain MRI data. Here, introduced a comparative scheme using six scenarios:

4.1.1 FCM-based ROT Segmentation

This suggested system uses FCM for unsupervised clustering-based segmentation of ROT from
MRI data. FCM assigns each image pixel to numerous clusters with varying degrees of
membership for soft assignments. This soft assignment allows brain tumor segmentation to better
depict tissue properties by reflecting medical picture uncertainty and ambiguity. Based on this
architecture, FCM creates two parts of an MRI picture: a background and a foreground component,
which is the ROT because FCM's capacity to detect tiny gradients and pixel brightness helps it
define tumor boundaries. This helps clinicians plan and track treatment by accurately localizing
and delineating tumor locations. We apply some pre-processing stages in all six scenarios, starting
with MRI image-like color conversion (if needed) using equation 1 and image quality enhancement
using algorithm 1 with the help of equations 2 and 3.

MRlgrey image = 0.299 X I(:,:,1) +0.587 X I(:,:,2) + 0.114 X I(:,:,3) 1)

Where, MRI crey image IS the grey MRI that is attained after the conversion based on the clipped
region of the MRI for quality enhancement. Here, the red component of the image is represented
asI(:,:,1), the green as I(:,:,2), and the blue as I(:,:,3). At last, to calculate the usual number
of pixels in MRI described by the equation 2, which helps to improve the image quality and makes

the tumor portion visible.

P(region—x_axis) X P(region—x_axis)
Prye = (2)

MRIGrey image

Equation 2 determines the MRI picture pixel average, where P(,cgion—x axis) Fepresents the
number of image pixels along the x-axis in a clipped region of the image (Pcuip). The clip limit
(PcL) of MRI image enhancement is computed using equation 3, and then the procedure is used to
enhance the image.

Algorithm 1: MRI Enhancement

Input: MRI Images [ MRI
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Output: Enhanced Data of MRI [J EMRI

A. Start MRI Enhancement

B. Load the MRI

C. Calculate size of MRI image = [Row, Col., and D]
D. Set clip limit, PcL = PcLip - PAvERAGE

E. IfD>1

F. MRI_R =Red Part of MRI

G. MRI_G = Green Part of MRI

H. MRI_B = Blue Part of MRI

I.  For I, according to Clip Limit

I R = Intensity (MRI_R, PcL)

K. G = Intensity (MRI_G, PcL)

L. B = Intensity (MRI_B, PcL)

M. End—For

N. EMRI Image = cat (3, Red, Green, Blue)
O.Else

P. For I, according to Clip Limit

Q. EMRI = Intensity (MRI (1), PcL)

R. End—For

S. End If

T. Return: EMRI as an Enhanced MRI image
U. End—Algorithm

Here, segregate brain tumors from MRI images as foregrounds after the MRI enhancement
process. It contains tumor pixels and excess pixels from the split part's background. The suggested

system with the FCM algorithm is

Algorithm 2: FCM-based Segmentation

Input: Enhanced Data of MRI [ EMRI

Output: Background and Foreground of MRI in terms of ROT [ B-MRI and ROT
A. Start FCM-based Segmentation

B. Initialize a group for segmentation (G = 2)
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C. EMRI Size = [Row, Col, Plane]

D. A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT
E. ITR = N is set for iterations.

F. WhileI TR # N (if max imu m iteration is not ac hieved)

G. For m according to Row

H. For n according to Col

l. If M-Image [m, n] == C1

J. B-MRI [m, n] = EMRI [m, n]
K. Else Default == C2

L. ROT [m, n] = EMRI [m, n]
M. End - If

N. Adjust Centroid C during segmentation using given equation

P. Repeat and define membership function given equation

Q.[C1,C2] =%}  (dGm/dén)" ™7

R. End - For
S. End - For
T. End — While

U. Return: B-MRI and ROT as a segmented MRI background and foreground
V. End - Algorithm

For the FCM-based segmentation, we use this technique to segment the ROT from MRI images.

4.1.2 K-means-based ROT Segmentation

In the second scenario of the suggested model, employed K-means instead of FCM because it
yields superior segmentation results. K-means can segment more appropriate tumor regions from
MRI scans, but poor contrast images can cause mix-ups, so it cannot always produce better
segmentation results. Since it is an unsupervised clustering method, it can divide input MRI image
pixels into numerous clusters based on pixel intensity levels. Large datasets and real-time
applications benefit from K-means' computational efficiency over Fuzzy C-means. K-means
simplicity permits faster convergence, which is important in clinical settings where speedy

decision-making is needed. K-means creates clusters with well-defined borders, improving
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segmentation interpretation. This trait is useful for clinical decision-making when tumor and
healthy tissue must be distinguished. The suggested algorithm for K-means-based ROT

segmentation is written as:

Algorithm 3: K-means-based Segmentation

Input: Enhanced Data of MRI [] EMRI

Output: Background and Foreground of MRI in terms of ROT [ B-MRI and ROT

Start K-means-based Segmentation

Initialize a group for segmentation (G = 2)

EMRI Size = [Row, Col, Plane]

A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT
ITR = N is set for iterations.

WhileI TR # N (if max imu m iteration is not ac hieved)

For m according to Row

I o6 mmoow»

For n according to Col
If EMRI [m, n] ==C1
B-MRI [m, n] = EMRI [m, n]
Else Default == C2
ROT (m, n) = EMRI [m, n]
End - If
Adjust Centroid C using their mean

C = Average (B-MRI, ROT) using the given equation

_ VRow Col Clpmptmn
Cmn - Zm:l n=1 2

End - For
End - For
End — While
Return: B-MRI and ROT as a segmented MRI background and foreground
End — Algorithm

CHvP®O P OZZICARC

The K-means algorithm in the article produced better segmented results than the FCM-based

model.
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4.1.3 FCM with PSO-based ROT Segmentation

This situation works like FCM; however, it employs PSO as a hybrid segmentation algorithm. PSO
is the basic metaheuristic swarm-based strategy that uses fitness to tackle segmentation mix-up.
PSO was developed by Eberhart and Kennedy for evolutionary image segmentation. The
algorithm can traverse over the search space and track coordinates with a fitness solution to solve

unsupervised FCM clustering to improve MRI image segmentation. The FCM method utilizing

PSO-based ROT segmentation is stated as follows:

Algorithm 4: FCM with PSO-based Segmentation

Input: Enhanced Data of MRI [1 EMRI

Output: Background and Foreground of MRI in terms of ROT [ B-MRI and ROT

=

mmoOoOw>

» 1O UV oz r X«

Start FCM with PSO-based Segmentation
Size in terms of T = Size (EMRI)
Define fitness function:
fit (fun) = {1 if pixelisless 0 otherwise
For |, accordingto T
fs = EMRI(])

Pixel
ft = el EMRIQ)
Length of EMRI Pixels

fit(fun) = Alc to equation

Tyawe = PSO(P,T,LB,UB, N, fit(fun))
Where, Lower Bound (LB), Upper Bound (UB), Number of selection (N)
End - For
Set OITR = N // optimization iterations

. While OI TR # N (if not reac hed max iteration)

Threshold = Threshold, e

Mask Image = Binary (ROT, Threshold)
Boundaries = Find out boundary (Mask Image)
ROT = Boundaries

For k, according to D

ROT = EMRI x ROT
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T. End-For
U. Return: B-MRI and ROT as a segmented MRI background and foreground
V. End - Algorithm

Better segmented results were obtained using the hybrid segmentation algorithm in the suggested

model, which combines FCM and PSO, than using only FCM in the ROT segmentation model.

4.1.4 K-means with PSO-based ROT Segmentation

This scenario works like K-means; however, applied PSO to hybridize K-means for segmentation,

and the algorithm of K-means with PSO-based ROT segmentation is written as:

Algorithm 5: K-means with PSO-based Segmentation

Input: Enhanced Data of MRI [] EMRI

Output: Background and Foreground of MRI in terms of ROT [J B-MRI and ROT
Start K-means + PSO-based Segmentation
Size in terms of T = Size (EMRI)
Define fitness function:
fit (fun) = {1 if pixelisless 0 otherwise
For |, accordingto T
fs = EMRI(])

Thiels EMRI)
Length of EMRI Pixels

mmoow >

ft=
fit(fun) = Alc to equation
Tyawe = PSO(P,T,LB,UB, N, fit(fun))

Where, Lower Bound (LB), Upper Bound (UB), Number of selection (N)

End - For
Set OITR = N // optimization iterations

I 0

. While 01 TR # N (if not reac hed max iteration)
Threshold = Threshold, e
Mask Image = Binary (ROT, Threshold)
Boundaries = Find out boundary (Mask Image)
ROT = Boundaries

O v oz rx-«
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For k, according to D

ROT = EMRI x ROT

End - For

Return: B-MRI and ROT as a segmented MRI background and foreground
End — Algorithm

< c A9

Better segmented results were obtained by the hybrid segmentation approach in the suggested
system, which combined K-means with PSO, than by either the FCM with PSO-based ROT

segmentation model or solely K-means-based ROT segmentation.

4.1.5 FCM with MFO-based ROT Segmentation:

In this scenario, MFO is hybridized with FCM. As justified in Section 4.1, MFQO's adaptive
exploration and exploitation mechanism is employed here to optimize the clustering process. MFO
with an optimal and innovative fitness function solves the FCM separation or pixel mix-up
problem during the ROT segmentation. MFO is a swarm-based bio-inspired metaheuristic
algorithm inspired by moth (insect) behavior that searches for pixels that mix together during
segmentation and separates those pixels using morphological operations. The algorithm of FCM
with MFO-based ROT segmentation in the ASBT system is written as:

Algorithm 6: FCM with MFO-based Segmentation

Input: Enhanced Data of MRI [1 EMRI

Output: Background and Foreground of MRI in terms of ROT [ B-MRI and ROT

A. Start FCM + MFO-based Segmentation
B. Apply K-means segmentation on EMRI
C. To optimized the ROT, MFO is used on FCM output
D. Set up basic parameters of MFO: Population of Moth (Pm)—Pixel count in EMRI
E. Define position function:
F.v(r) = vy X exp(—distance™), ifm=>=1
G. Where distance = distance between moth and light
H. vo = initial velocity at d=0
I. m = Position of Moth (Pm)

J. Define novel fitness function:
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K. fun(fit) = {1; if EMRI -
Thresholdpiye; 0; Otherwise
L. Set, ROT and B-MRI =[]
M. For m according to Row
N. For naccording to Col
O. Cm = EMRI (m, n)
P Mosyp yp o
Q.
R.

Threshold = MFO (fun (fit), Cm, Mm)
End - For
S. End - For
T. If EMRI (Pixels) > Threshold
U. ROT=EMRI

V. Else
W. B-MRI = EMRI
X.End - If

Y. Set OITR = N // optimization iterations

Z.While 01 TR # N (if not reac hed max iteration)

AA. Mask Image = Binary (ROT, Threshold)

BB. Boundaries = Find out boundary (Mask Image)

CC. ROT = Boundaries

DD. For k according to D

EE. ROT = EMRI x ROI

FF. End-For

GG. Return: B-MRI and ROT as a segmented MRI background and foreground
HH. End - Algorithm

With the help of the above-mentioned hybrid segmentation algorithm using FCM with MFO-based
ROT segmentation, we achieve better results, but the combination with K-means outperforms it,

as is shown in the next section of the article.
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4.1.6 K-means with MFO-based ROT Segmentation

This is the last scenario of the proposed comparative system and uses K-means with MFO as a
hybrid segmentation technique with a novel fitness function defined in equation 8. The algorithm
of K-means with MFO-based ROT segmentation is similar to Algorithm 6; here, only the K-means
output is used instead of the FCM output. Figure 4.3 displays the segmented result alongside the
original pictures, obtained using the aforementioned suggested hybrid algorithm that combines K-
means with MFO as an optimization strategy. This method outperforms other cases when it comes

to accurately segmenting the tumor region from MRI scans.

Figure 4.3: (a) Original MRI (b) Grey (c) Color, (d) Mask Image of ROT (e) Segmented ROT Mask and (f) Segmented ROT using
K-means with MFO with Maximum Accuracy

Last but not least, the simulation compares the six scenarios described in the study article with
respect to the following performance metrics: Accuracy, Sensitivity, F-measure, Precision, MCC,
Dice, Jaccard, Specificity, and Time Complexity. In order to evaluate the efficacy of segmentation
algorithms in precisely outlining tumor locations, it is essential to evaluate parameters during brain
tumor segmentation. There is a distinct function for each of the aforementioned parameters in
assessing various parts of the segmentation outcomes. The findings of the experiment and the

segmentation of brain tumors utilizing the aforementioned hybrid segmentation approach are
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detailed in the following portion of this research article using a few sample MRI images. Figure
4.4 displays the list of sample MRI images that were used from the MRI Benchmark Dataset. The
dataset comprises a comprehensive collection of 3064 brain MRI slices, obtained from two distinct
hospitals in China: Nanfang Hospital and General Hospital, Tianjin. The scans were gathered
between 2005 and 2010. This dataset comprises three distinct types of brain tumors, namely
meningioma, glioma, and pituitary tumor. The collection has a total of 708, 1426, and 930 photos
for each corresponding tumor type. Essentially, meningioma and glioma are classified as
malignant or cancerous, while pituitary tumors are considered benign or non-cancerous. A total of

233 individuals underwent MRI scans, resulting in the acquisition of 1025 sagittal pictures, 994

Pituitary

axial images, and 1045 coronal images.

Meningioma Glioma

Figure 4.4: Sample of Brain MRI Images with Types from Dataset
The only hope is that by comparing previous studies on ROT segmentation from MRI, we can
improve the methods and ultimately get better results when analyzing various proposed
approaches. Table 4.1, which includes the source images, describes the simulation results of the

suggested comparative models and helps to understand the effects of optimization approaches.

Table 4.1 Brain Tumour Segmentation Comparison

Model | Original MRI Preprocessed Segmented Images
Images MRI Images

Labelled ‘ Mask ‘ Region ‘ Tumour
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The suggested comparison model of brain tumor segmentation employing the hybridization of
traditional segmentation approaches with the swarm-based metaheuristic algorithms was tested on
the aforementioned dataset of sample MRI images. After the segmentation of the ROT from MRI
images, the next section of the model is designed for further processing by utilizing the different
steps like feature extraction, feature selection, and then model training and testing of the developed
model with the mentioned standard dataset.

42 FRAMEWORK OF BRAIN TUMOR CLASSIFICATION

The prior model seeks to address these challenges by examining and comparing advanced
clustering techniques via MFO, a swarm-based method, for precise Brain Tumor Region (BTR)
segmentation, and subsequently developing a Hybrid Model for Brain Tumor Analysis (BTA)
utilizing Convolutional Neural Network (CNN) as an innovative deep learning strategy. In prior
research, comparing various swarm-based metaheuristic algorithms identified MFO as the superior

strategy in conjunction with K-means clustering for segmenting BTR from MRI images. This
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section introduces a hybrid BTA model that employs K-means clustering, MFO, and CNN for
brain tumor segmentation and classification into several categories based on the dataset. The
primary objective is to identify the BTR from the MRI and classify it as benign or malignant. The
proposed BTA model consists of the following key components for simulating and evaluating
efficiency: selection of an MRI benchmark dataset, pre-processing of MRI images, hybridization
for BTR segmentation, feature extraction, feature selection, and training/classification utilizing

CNN. Figure 4.5 displays the flowchart of the proposed BTA model in detailed steps.

‘ o Segmentation ol Featu
Upload Brain Proé;:‘s‘l:g O::I‘.\IRI. BTR using 2 e ) - :
S Emk t K-means with Extract Selection using
MRI Images -nhancemen MFO raction MF

-/’-

ll 1k g
\L Testing ————

CNN

Trained CNN S
No

Structure

Ye«

Classify Performance Evaluation
™ Meningioma Precision
Recall
= Glioma F-Measure
“ Pituitary Acrerncy Sorry=e—

Execution Time
L J

Figure 4.5: Flowchart of Proposed BTA Model

The BTA model flowchart demonstrates that the operational principle of the proposed model
consists of four stages: pre-processing, segmentation employing the K-means clustering algorithm
enhanced by MFO for superior segmentation of BTR, name-based feature extraction, and feature
selection utilizing the MFO method. An additional phase is incorporated, designated as CNN-
based BTA model training and tumor classification into the several specified categories shown in
Figure 4.6.
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Figure 4.6: Sample of Brain MRI Images with Types from Dataset

The dataset comprises 3,064 brain MRI slices acquired from Nanfang Hospital and General
Hospital in Tianjin, China, during the period from 2005 to 2010. This dataset has three categories
of brain tumors: meningioma (708 photographs), glioma (1,426 images), and pituitary tumor (930
images). Meningiomas and gliomas are classified as malignant, whereas pituitary tumors are
designated as benign. The MRI scans were obtained in three anatomical planes: sagittal (1,025
images), axial (994 images), and coronal (1,045 images), derived from 233 subjects. Figure 4.6
displays samples of several tumor types spanning these planes, with the regions of Interest (ROI)
for brain tumors delineated by bold red lines. The figure presents a compilation of sample MRI
images sourced from the MRI Benchmark Dataset, which will undergo further processing,

commencing with pre-processing in the initial stage.

4.2.1 MRI Pre-processing

The design of the BTA model is a fundamental step undertaken to enhance MRI picture quality
for subsequent processing. To improve MRI picture quality, we employ an intensity-based image
enhancement approach with constrained adaptation. The concept of limit is employed to establish
a range for enhancing the contrast and intensity of each pixel in the image, as delineated by

Equation 3.

MRI,;— MRI;
Eygr = (MRI — MRI,)) W + MRI;,

(3)

Examine an MRI image with a resolution of 256 x 256 pixels, including a total of 'n' pixels. The
image's intensity values are restricted within predefined maximum and lowest thresholds,
influenced by limited clipping derived from the average pixel intensity. The mean (AVG) pixel

count in the MRI image is represented by Equation 4.

P _ P(region—xaxis) X P(region—xaxis) (4)
AVG GMRImage
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Where P (¢gion—xaxis) Signifies the number of pixels along the x-axis in a clipped region (Pcuip).
The lower and higher intensity values of the MRI image are represented by MRI,Land MRI4
respectively. The applied pre-processing on the MRI image is illustrated in Figure 4.7.

Figure 4.7: Pre-processing on Sample MRI

The graphic seems to depict a processing change in MRI scans, with image A as the original brain
MRI and image B as the processed or enhanced version. This is an explanation derived from typical

observations in such comparisons:

Image A (Left Side): This displays the unprocessed MRI image, with the tumor location
discernible but not dramatically emphasized. The contrast and sharpness may be diminished,

complicating the discernment of intricate details.

Image B (Right Side): This depicts the post-processed MRI image, featuring enhancements such
as contrast correction, edge highlighting, or segmentation. The tumor site is more distinctly
emphasized, possibly facilitating clearer identification and investigation. The pre-processing of
MRI images occurs in two steps, with the initial stage involving color conversion as described by

equation (3).
GMRImage = 0.299R + 0.587G + 0.114B (3)

GMRIimage refers to the grayscale MRI image acquired after the color conversion using the

aforementioned equation, and in the subsequent step, MRI image enhancement is conducted, as
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seen in Fig. 6. An intensity-based picture quality improvement is performed after the color
conversion process using the restricted clipping idea. Pre-processing enhances the segmentation

of tumor regions of interest from MRI images, and the algorithm is written as:

Algorithm 7: MRI Enhancement

Input: MRI Images [| MRI

Output: Enhanced Data of MRI [J EMRI

V. Start MRI Enhancement

W. Load the MRI

X. Calculate size of MRI image = [Row, Col., and D]
Y. Set clip limit, PcL = PcLip - PAvERAGE

Z. 1fD>1

AA. MRI_R = Red Part of MRI

BB. MRI_G = Green Part of MRI

CC. MRI_B = Blue Part of MRI

DD. For I, according to Clip Limit

EE. R = Intensity (MRI_R, Pcr)
FF. G = Intensity (MRI_G, PcL)
GG. B = Intensity (MRI_B, PcL)

HH. End - For
I1. EMRI Image = cat (3, Red, Green, Blue)

JJ. Else

KK. For I, according to Clip Limit
LL. EMRI = Intensity (MRI (1), PcL)
MM. End - For

NN. End—If

OO0. Return: EMRI as an Enhanced MRI image
PP. End - Algorithm
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4.2.2 K-means with MFO-based BTR Segmentation

As established in the comparative analysis (Section 4.1), the combination of K-means and MFO
yielded the best segmentation performance. Therefore, this hybrid approach is adopted for the
classification framework. K-means is used for its computational efficiency and ability to create
distinct cluster boundaries , while MFO is applied to optimize the segmentation and overcome
issues of suboptimal image contrast. The suggested algorithm for K-means with MFO-based BTR

segmentation is written as:

Algorithm 8: K-means with MFO-based Segmentation

Input: Enhanced Data of MRI [1 EMRI

Output: Background and Foreground of MRI in terms of BTR [ B-MRI and ROT

Start K-means with MFO-based segmentation.
. Initialize a group for segmentation (G = 2)
EMRI Size = [Row, Col, Plane]
A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT

ITR =N is set for iterations.

N < X g <

AA.WhileI TR # N (if max imu m iteration is not ac hieved)

BB. For m according to Row

CC. For n according to Col

DD. If EMRI [m, n] == C1

EE. B-MRI [m, n] = EMRI [m, n]
FF. Else Default == C2

GG. BTR (m, n) = EMRI [m, n]
HH. End—If

1. Adjust Centroid C using their mean
JJ. C = Average (B-MRI, BTR) using the given equation
O R A
(4)
LL. End - For
MM. End - For
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NN.End — While
OO. To optimized the BTR, MFO is used on FCM output
PP. Set up basic parameters of MFO: Population of Moth (PM)—Pixel count in EMRI
QQ. Define position function:
RR.v(r) = vy X exp(—distance™), ifm=1 (5)
SS. Where distance = distance between moth and light
TT.v0 = initial velocity at d=0
UU.m = Position of Moth (PM)
VV.Define novel fitness function:
WW. fun(fit) ={1; if EMRI pixel <
Thresholdpiye; 0; Otherwise (6)
XX.Set, BTR, and B-MRI =[]
YY.For m according to Row

ZZ. For naccording to Col

AAA. CM = EMRI (m, n)
_ EMRI(m,n)
BBB. MG = X X — o
()
CCC. Threshold = MFO (fun (fit), CM, MM)

DDD. End — For

EEE. End - For

FFF. If EMRI (Pixels) > Threshold

GGG. BTR=EMRI

HHH. Else

I1l.  B-MRI=EMRI

JJJ.End - If

KKK. Set OITR = N // optimization iterations

LLL. WhileOI TR # N (if not reac hed max iteration)
MMM. Mask Image = Binary (BTR, Threshold)
NNN. Boundaries = Find out boundary (Mask Image)
OOO. BTR = Boundaries

PPP. For k, according to D
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QQQ. BTR=EMRIxBTR

RRR. End - For

SSS. Return: B-MRI and BTR as a segmented MRI background and foreground
TTT. End - Algorithm

The suggested comparison model of brain tumor segmentation employing the hybridization of
traditional segmentation approaches with the swarm-based metaheuristic algorithms was tested on
the aforementioned dataset of sample MRI images. In the below Figure 4.8, a comparative result
is shown that indicates the importance of MFO for the BTR extraction from MRI images with the

K-means clustering algorithm.

| Accuracy (%) Comparison of Proposed Comparative System
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Figure 4.8: Accuracy (%) Comparison of Proposed Comparative System

Figure 4.8 illustrates the accuracies attained by several models in segmenting the precise BTR
from the MRI data. The image clearly demonstrates that the accuracy of the K-means model
enhanced by MFO far surpasses that of other models, achieving an average accuracy of 99.6% for
segmentation based on ground truth data. This is the rationale for employing this idea in
conjunction with our suggested BTA model for tumor classification. This study proceeds with a
part presenting the results of the proposed model's simulations regarding categorization using

feature extraction.
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4.2.3 Feature Extraction from BTR

Following BTR segmentation, it is crucial to extract feature patterns from the pixel distribution
utilizing a feature descriptor. The name-based descriptor is chosen as the feature extraction method
because of its stability and invariance characteristics. It offers a more precise and dependable
feature set for the delineated Region of Interest (ROI). The suggested descriptor is a rapid and
resilient approach that efficiently extracts local, invariant, and orientation-specific feature sets
from the region of interest in medical pictures. The algorithm for the proposed descriptor is

described as follows:

Algorithm 9: Named Feature Extraction

Input: BTR [J Brain tumor region from MRI images

Output: F-set [ Feature set from BTR

A. Start feature extraction

B. [Row, Column, Plane] = Size(BTR)

C. For M, according to Row

D For N, according to Column

E F-set = ROI [Centroid Extent Area Eccentricity, Orientation, Perimeter Max-
Intensity Mean-Intensity Min-Intensity, Contrast, Correlation, Energy, Homogeneity, Mean,
Standard-Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM]

End - For

End - For

Return: F-set as a feature pattern of BTR

I. End - Algorithm

I o m

Subsequent to the extraction of feature patterns from the BTR, the MFO algorithm is utilized for
feature selection. The selection procedure is directed by a fitness function to determine the most

pertinent and substantial traits for subsequent analysis.

4.2.4 MFO-based Feature Selection

This phase is crucial for improving the classification accuracy and computational efficiency of the

proposed BTA model. The feature set (F-set) extracted in the previous step contains numerous
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attributes, many of which may be redundant or irrelevant, leading to the ‘curse of dimensionality’
and potential model overfitting. To address this, MFO is employed as a feature selection wrapper.
Its strong global search capabilities are used to explore the vast combination of features,
identifying the optimal subset that maximizes classification accuracy (as defined by the fitness
function) while minimizing redundancy. This ensures that only the most discriminative features
are passed to the CNN classifier. The procedure for using MFO in feature selection is delineated

as follows:

Algorithm 10: MFO-based Feature Selection

Input: F-set [] Feature set from ROI

Output: OF-set [1 Optimized feature set from ROI

Start selection
Initialize MFOO Parameters:
G — Moth population based on the F-set
GP — Position of Moth
OF-set—Optimized feature set
Define fitness function using equation 8
F(fy={1; ifFExGp)=2F =
Thresholdp,tq 0 ; Otherwise
(8)

H. Where, F; : It is selected feature from the F-set

@ Mmoo o P

l. F;: It is average of the F-set.

J. [Row, Column, Plane] = Size (F-set)
K. For I according to (Row x Column)
L. Fs = F-set (1)
M. Et = YR, F-set()
Row X Column
N. Fit(fun) = Fit Fun (F, F;)
0. OF-set (1) = MFO (Fit (fun), Set up of MFO)
P. End-For
Q. If OF-set =1, then
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R OF-set = Select feature form F-set
S. Else

T. OF-set = Null (Irrelevant features)
U. End-If

V. Return: OF-set as an optimized feature set
W. End — Algorithm

The MFO-based feature selection method determines an appropriate set of attributes pertinent to
brain tumor classifications, such as meningioma, glioma, and pituitary tumors. After determining
the optimal feature set, a CNN is employed as a classifier to train the model. Similarly, the CNN

is employed for the accurate classification of tumor kinds.

4.25 CNN-based BTA Model Training

This is the final stage of the procedure, in which a CNN serves as a deep learning classifier to train
the BTA model for three tumor classifications: meningioma, glioma, and pituitary. The enhanced
feature set functions as the input for the CNN, together with labels indicating the corresponding
tumor types. This section provides a detailed explanation of the recommended training and
classification approach utilizing CNN, which significantly enhances the brain tumor classification
accuracy of the proposed BTA model. The CNN architecture, designated as BTA-Net, is seen in
Figure 4.9.
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Figure 4.9: Architecture of Proposed BTA-Net
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The BTA-Net architecture is founded on deep learning and represents a more advanced and
complex version of traditional Artificial Neural Networks (ANNSs). The BTA-Net architecture
comprises an input layer, convolutional layers, pooling layers, and fully connected output layers,
as seen in Figure 4.9. The BTA-Net algorithm is delineated as follows:

Algorithm 11: BTA-Net Algorithm

Input: OF-set!1Optimized named feature set as training data for model
G Type of brain tumors
NLINeurons to carry the training data

Output: BTA-Net[] CNN-trained structure

OutputIClassified results in term of class

Start training

Initialize CNN: — Number of Epochs (E) // Iterations used by CNN
— Number of Neurons (N) // Used as a carrier
— Performance: Cross entropy of classes, Gradient, and Validation
— Training Data Division: Based on Random

[R, C, P] = Size (OF-set) // Row, Column, and Plane

For I, according to (R x C)

I oG mmOoOOow>

If OF-set belongs to meningioma

Type (1) = Feature from meningioma
Else If OF-set belongs to glioma
Type (2) = Feature from glioma
Else (OF-set belongs pituitary)
Type (3) = Feature from pituitary
End - If
End - For
Initialized the CNN, BTA-Net = Pattern-based CNN (N)
I-BTSC net = Train (BTA-Net, OF-set, Type)
Test Outcome = Sim (BTA-Net, Test MRI OF-set)

If Test Outcome = 1 (Meningioma)

» IO UV OozZzZIr X<«
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T. Results = Meningioma with performance
U. Else if Test Outcome = 2 (Glioma)

V. Results = Glioma with performance

W. Else if Test Outcome = 3 (Pituitary)

X. Results = Pituitary with performance
Y. Else

Z. Results = Sorry, can’t classify.
AA.End—If

BB. Return: BTA-Net as a trained structure with Results as a classified output of model
CC.End - Algorithm

The BTA-Net model enables the categorization of brain tumors for any designated MRI picture
according to the training architecture. The BTA system is developed and implemented using the
MATLAB programming language, using the Image Processing, Neural Network, and
Optimization toolboxes. The following section of this study gives the experimental results and
corresponding discussion to evaluate the effectiveness of the BTA system.
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CHAPTER 5
EXPERIMENTAL SETUP

This section provides a detailed description of the experimental setting for the proposed
frameworks—a hybrid deep learning-based model using a metaheuristic approach for the detection
of brain cancer, including both Brain Tumour Segmentation and Brain Tumour Classification
using Convolutional Neural Networks (CNNs). The experiments are conducted to assess the
efficacy of the proposed model, using both conventional segmentation methods and swarm-based

optimization strategies.
5.1 INFORMATION ABOUT USED TOOLS

Some basic information regarding the used software (MATLAB 2016 or higher version) and
hardware setups are necessary to implement the above-described methodology. First and foremost,
the computer CPU must be Core 2 Duo or above with an HDD of 320 GB minimum, and the RAM
must be 4 GB or greater. After that, check the operating system installed in the computer/laptop,
and it should be Windows 7 or higher (64-bit only) for simulation. In addition, some basic
equipment in the hardware section, such as a keyboard and mouse, is required for better
experiences. MATLAB software is an interactive platform for research as well as numerical
figuring and data visualization that is widely used by researchers in various reputed organization
for research analysis and design. There are several toolboxes available in MATLAB as an inbuilt
that cover the fundamental functionalities in various application areas. Apart from Windows,
MATLAB software is also supported on UNIX and Macintosh platforms, and some information

are also provided in Table 5.1.

Table 5.1 Experimental Setup for Proposed Model Simulation

Component Description Tool/Library

) The environment where the simulation | Windows 10 or 11, Linux, or
Operating System )
will be executed. macOS
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Processor

The required processing power for

computation.

Intel Core i3 or higher

RAM

Memory is required for efficient

computation and simulation.

8 GB or higher

Other Hardware

Required hardware to simulate the

model.

Keyboard, Mouse

MATLAB

Environment

Platform used for implementing the

methodology.

MATLAB R2020a or higher

IDE

Integrated Development Environment

for coding and debugging.

MATLAB Editor, Tools

Numerical

Computation

Toolbox for numerical calculations and

array manipulation.

MATLAB base package,
Symbolic Math Toolbox

Data Manipulation

Toolbox for handling and manipulating
data.

MATLAB base package,
Data Import and Export

Visualization

Toolbox for data visualization and

plotting.

MATLAB base package,
Graphics

Machine Learning

Toolbox for implementing and training

machine learning models.

Statistics and Machine or

Deep Learning Toolbox

Optimization

Toolboxes for optimizing models and

solutions.

Optimization Toolbox,
Global Optimization
Toolbox

This table delineates the main components and libraries/toolboxes used in the MATLAB program

for executing many tasks, including data processing, numerical calculation, machine learning, and

visualization.

5.2

LANGUAGE USED FOR IMPLEMENTATION

The suggested research study is implemented using the software named MATLAB 2020 or the

latest version. It's a high-performance (high-level) programming language for doing technical

calculations, and lots of minor functions or classes are built-in to support researchers. It integrates

into a user-friendly environment where computing, visualisation, and programming problems are
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handled and communicated in a clear and understandable manner. The execution of the suggested
model is mostly conducted using MATLAB, a high-level programming language and interactive
environment extensively used for numerical calculation, data analysis, and algorithm
development. MATLAB has several built-in toolboxes and libraries tailored for machine learning,
optimization, and data visualization, making it an optimal selection for system implementation.

The primary justifications for using MATLAB for implementation encompass

- Development Efficiency: MATLAB's user-friendly syntax facilitates fast development and

evaluation of methods.

- Toolbox Availability: MATLAB offers a comprehensive selection of toolboxes, including the
Statistics and Machine Learning Toolbox, Optimization Toolbox, and Deep Learning Toolbox,

which considerably diminish development time.

- Visualization: MATLAB's comprehensive built-in visualization capabilities enable

straightforward charting and graphical display of outcomes.

- Numerical Computation: MATLAB is proficient at managing extensive datasets and executing

intricate matrix operations, making it suitable for the computational demands of this model.

5.3 USED DATASET

For the training as well as testing of the proposed model, the MRI benchmark data set is used, and

Table 5.2 represents the brief information about the data set.

Table 5.2 Dataset for Proposed Model Simulation

No. of o Tumor
Dataset Name Description o

Images Condition
Brain Tumor Multiple | A widely used dataset for MRI-based brain tumor Segmented

Segmentation years of | segmentation, containing images of glioblastoma and Tumor

(BraTS) data meningioma patients. Regions
Tumor/Non-

Kaggle Brain 3,064 A dataset providing MRI images for brain tumor Tumor

MRI Images images detection is available for classification tasks. Classification
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Figshare Brain | 3,064 An open-access dataset with brain tumor MRI images, | Classified

Tumor Dataset | images suitable for segmentation and classification research. Tumor Types

This dataset offers a comprehensive collection of annotated brain tumor images for segmentation
and classification into several diseases in terms of disease and healthy states, making it invaluable

for research in brain tumor disease detection.
54 PLACE OF WORK

Lovely Professional University, Phagwara, Punjab (India)

5.4.1 Work Done

e Studied existing image segmentation methods that are required for the basic understanding
e Study about Machine and Deep Learning

e Analysis of the available datasets

e Literature review

e Implementation

e Thesis Report
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CHAPTER 6
RESULTS & DISCUSSIONS

Utilizing the outlined methodology, the performance of the proposed model, "a hybrid deep
learning-based model using a metaheuristic approach for the detection of brain cancer,” was
evaluated comprehensively based on several predefined parameters. This section presents an in-
depth analysis and discussion of results obtained, highlighting the effectiveness and efficiency of

the hybrid approach according to the selected evaluation metrics.
6.1 PERFORMANCE MEASUREMENT PARAMETERS

Within the proposed deep learning and metaheuristic-based framework, the selection of
performance evaluation metrics remains crucial for measuring both precision and operational
speed and the final performance quality of brain cancer detection algorithms. These evaluation
measures have fundamental importance for brain cancer classification tasks and extensive datasets
because they guarantee that the model will yield accurate, reliable, and scalable results. Multiple
critical assessment factors are used to judge the performance of the developed hybrid model for

brain cancer detection along with classification.
6.1.1 Precision Rate

This parameter is used to calculate the efficiency of a classifier along with the proposed model. If

the value of precision is high, it means that the false positive rate is less, and vice versa.

TP
(TP + FP)

Precision Rate =
Where, TP It is the collection of all relevant testing feature according to the output
FPLJ It is the collection of all irrelevant testing feature according to the output

TN It is the collection of all relevant training feature according to the output

FNTI It is the collection of all irrelevant training feature according to the output
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6.1.2 Sensitivity or Recall Rate

This term is used to measure the comprehensiveness of a classifier. The more the value of recall

indicates, the fewer false negatives, but improving recall usually decreases the precision value.

TP

Sensitivity or Recall Rate = (TP + FN)

6.1.3 F-measure of H-mean

It is the rate that is obtained by combining both precision and recall values and obtaining the

harmonic mean.

TP
X
2XTP+FP+FN

F — measure = 2

Or

Precison X Recall

F — measure = -
recison + Recall

6.1.4 Accuracy Rate
It is defined as the sentiments classified correctly with respect to the entire available classified
sentiments.

(TP + TN)
(FN + FP +TP + TN)

Accuracy Rate =

6.1.5 Error Rate

It is the reverse of accuracy and calculated using given formula
100 — Accuracy = Error rate

6.1.6 Matthews Correlation Coefficient (MCC)

It is used in machine learning as a measure of the quality of binary (two-class) classifications,
introduced by biochemist Brian W. Matthews in 1975.
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(TP X TN — FP x FN)

cCc =
M J(TP + FP) x (TP + FN) X (TN + FP) x (TN + FN))

6.1.7 Dice Coefficient (DC)

It is also known as the Sgrensen—Dice index, and it is a statistical tool that measures the similarity

between two sets of data. The formula of DC is written as:

2XTP

DC =
(2X TP + FP + FN)

6.1.8 Jaccard Coefficient (JC)

It is defined as the rate of DC with respect to 2 minus DC and also defined as the size of the
intersection divided by the size of the union of two label sets and is used to compare a set of

predicted labels for a sample to the corresponding set of labels in TP.

= DC
Jaccard = 2=D0)
6.1.9 Execution Time

The simulation time required to test the sentiments during the experiment is known as computation

time.

Based on the above-mentioned evaluation parameters of the proposed work, Table 6.1 represents

the summary information about all.

Table 6.1 Evaluation Parameters for Proposed Brain Cancer Detection Model

Parameter Description Formula

o Measures the efficiency of the classifier. A o
Precision ] o o Precision = TP/ (TP + FP)
higher value indicates fewer false positives.

el Measures the completeness of the classifier. A
eca

L higher value means fewer false negatives but | Recall = TP / (TP + FN)
(Sensitivity)

may decrease precision.
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) o ] F-measure = 2 x (Precision
Combines precision and recall to find the o
F-measure ) x Recall) / (Precision +
harmonic mean.
Recall)
Defines the correctly classified samples with | Accuracy = (TP + TN) / (TP
Accuracy
respect to the total samples. +FP +FN + TN)
Represents the proportion of incorrect
Error Rate o ) Error Rate = 100 - Accuracy
predictions, the inverse of accuracy.
MCC = (TP X TN — FP
Measures the quality of binary classifications,
quetty Y X FN) / (TP + FP) x
MCC considering all four categories of the confusion
: (TP + FN) X (TN + FP)
matrix.
X (TN + FN))
. Measures the similarity between two sets of | DC=(2xTP)/ (2 x TP +
data. It is a statistical index for set comparison. | FP + FN)
Defines the similarity between two sets by
JC comparing the size of their intersection and | Jaccard =DC /(2 - DC)
union.
Execution Refers to the time taken for the model to | N/A (Measured in
Time simulate or test the data. seconds/minutes)

This table elucidates the calculation and evaluation of several performance measures within the
realm of the proposed model using the concept of machine or deep learning for brain tumor

classification tasks.

6.2 RESULTS FOR TUMOR SEGMENTATION FRAMEWORK

Using six distinct scenarios—1. FCM-based, 2. K-means-based, 3. FCM with PSO-based, 4. K-
means with PSO-based, 5. FCM with MFO-based, and 6. K-means with MFO-based segmentation
models—we presented a comparative system for brain tumor segmentation from MRI images in
this study to find out the better segmentation mechanism that will help to classify the further tumor
types (normal or abnormal). Here, we detail the experimental outcomes of brain tumor
segmentation from MRI images for 1000 test images as a sample and compare them to previous

work. When compared to other methods, the segmented ROT for brain tumors produced by
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combining K-means and MFO performs significantly better on all test MR1 images. With its more
accurately delineated ROT in the segmented image (6th Row in Table 1), it is concluded to be the
best of the six brain tumor segmentation procedures. In this section, we compare the segmentation
results of the six different segmentation scenarios based on the performance parameters in Table
6.2 below. Segmentation parameters are estimated and evaluated for model efficiency using
Accuracy, Sensitivity, F-measure, Precision, MCC, Dice, Jaccard, Specificity, and Time
Complexity. Based on this comparison, we will find a better method of ROT segmentation from
MRI that will help us with the classification task.

Table 6.2 Efficiency Comparison of Proposed Comparative System

Im:ge FCM K-Means FCM+PSO | K-Means +PSO | FCM+MFO | K-Means + MFO
Accuracy
100 90.77 94.01 95.39 96.96 98.43 99.87
200 91.22 94.86 94.95 96.46 98.08 99.56
400 90.05 92.66 95.14 96.71 97.43 99.58
500 90.32 93.11 95.08 95.86 97.33 99.73
1000 91.41 92.32 95.50 96.63 96.78 99.28
Sensitivity
100 0.9614 0.9622 0.9703 0.9727 0.9852 0.9937
200 0.9616 0.9702 0.9761 0.9843 0.9724 0.9926
400 0.9608 0.9688 0.9707 0.9654 0.9871 0.9965
500 0.9685 0.9760 0.9856 0.9862 0.9899 0.9942
1000 0.9649 0.9653 0.9658 0.9673 0.9676 0.9815
F-measure
100 0.1927 0.3052 0.5998 0.7082 0.8093 0.8345
200 0.2162 0.5915 0.6353 0.6572 0.8433 0.8655
400 0.2314 0.3151 0.5713 0.6102 0.6383 0.7447
500 0.3486 0.3923 0.4982 0.6708 0.7852 0.7927
1000 0.4347 0.7822 0.8779 0.9331 0.9564 0.9569
Precision
100 0.1071 0.1814 0.4341 0.5569 0.6867 0.7194
200 0.1218 0.4255 0.4709 0.4933 0.7446 0.7674
400 0.1316 0.1882 0.4048 0.4461 0.4717 0.5945
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500 0.2126 0.2455 0.3334 0.5083 0.6507 0.6582
1000 0.3506 0.4573 0.6047 0.9013 0.9455 0.9789

MCC (Matthews Correlation Coefficient)

100 0.4526 0.4557 0.4692 0.5639 0.6052 0.8273
200 0.3962 0.5133 0.8292 0.9085 0.9529 0.9969
400 0.3061 0.3434 0.5178 0.5272 0.6472 0.9181
500 0.5564 0.6935 0.7396 0.7804 0.848 0.8489
1000 0.5398 0.5504 0.5634 0.6121 0.6586 0.9393

Dice Coefficient

100 0.261 0.4461 0.5435 0.6784 0.7783 0.781
200 0.3458 0.5126 0.513 0.5631 0.6655 0.9714
400 0.3106 0.469%4 0.4896 0.6785 0.7177 0.7809
500 0.7382 0.7944 0.8202 0.8559 0.8897 0.9194
1000 0.3392 0.4129 0.5522 0.5543 0.9745 0.9962
Jaccard
100 0.2137 0.5091 0.6243 0.8404 0.8455 0.8968
200 0.4874 0.5388 0.7795 0.8184 0.8516 0.9099
400 0.2123 0.3325 0.4977 0.6438 0.6984 0.7602
500 0.2323 0.3467 0.8579 0.8665 0.8802 0.9166
1000 0.1016 0.1993 0.3016 0.3529 0.8555 0.9099
Specificity
100 0.9116 0.9291 0.9324 0.9555 0.9682 0.9736
200 0.9121 0.9222 0.9433 0.9715 0.9779 0.9968
400 0.9261 0.9356 0.9389 0.9774 0.9803 0.9998
500 0.937 0.9399 0.9449 0.9549 0.9838 0.9907
1000 0.9139 0.9337 0.9438 0.9515 0.9615 0.9765

Time Complexity (s)

100 1.257 3.129 4.705 2.733 1.275 0.879
200 1.875 2.502 3.007 2.717 1.822 0.848
400 1.032 2.241 2.407 2.712 2.674 0.934
500 2.484 2.833 2.837 1.166 2.688 0.744
1000 1.497 2.991 4.656 3.864 1.955 1.103

Based on Table 6.2, it is clear that K-Means with MFO optimization outperforms all other

segmentation algorithms in the context of parameters like Accuracy, Sensitivity, F-measure,
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Precision, Matthews Correlation Coefficient (MCC), Dice coefficient, Jaccard, Specificity and
Time Complexity. Figure 6.1 represents the model accuracy comparison with respect to the

number of simulations or tests.

' Accuracy (%) Comparison of Proposed Comparative System
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Figure 6.1: Accuracy (%) Comparison of Proposed Comparative System

Above, Figure 6.1 represents the achieved accuracies by the different models to segment the exact
ROT from the MRI data. From the figure, it is clearly seen that the accuracy of K-means with the
MFO-based model is far better than others, and the average accuracy is 99.6% for the segmentation
based on their ground truth data. The accuracy of a model is a measure of how well the model's
segmentation matches the actual outcomes or ground truth in the dataset. While accuracy is a
significant indicator, it is not the sole aspect that defines the total efficiency or efficacy of a model.
So, here Precision, Recall (Sensitivity), F-measure and Time Complexity are calculated that is

shown in Figure 6.2.
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Figure 6.2: Precision, Recall, F-measure and Time Complexity Comparison of Proposed Comparative

An essential notion in algorithm analysis is shown in Figure 6.2 with four different parameters
named as precision, recall, f-measure, and time complexity. Here, time complexity measures how
long it takes for an algorithm to process an input in relation to its size. It explains, theoretically
speaking, how the running time of the algorithm grows with the size of the input. From the figure,
it is clear that the model with K-means with MFO-based segmentation outperform than other in
terms of all parameters with time complexity. Here, computational time is slightly higher than
others, but model efficiency is far better than other approaches. The proposed comparative model

is also compared to other works that were previously proposed on brain tumor segmentation using
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MRI images. Table 6.3 describes these other works that are considered in this research article's
survey. We draw a comparison graph of the proposed model with existing works based on the
observed values. The models used in these works use different approaches and algorithms for ROT

segmentation.
Table 6.3 Contrast with Already Exists Works

Accuracy (Yage) Authors/Techniques
97.5 MS Alam et al. [25]
97.7 A Bousselham et al. [26]
90.7 FCM-based Model [16]
93.3 K-means-based Model [14]
95.2 FCM with PSO-based Model [25]
96.5 K-means with PSO-based Model [15],[18]
97.6 FCM with MFO-based Model [26]
99.6 K-means with MFO-based Model
" Accuracy Comparison with Existing Work| 9
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Figure 6.3: Models Comparison with Existing Work

Figure 6.3 presents a comparison of the planned comparative models with six distinct approaches
to the work that has already been done that is now available. We can see from the graph that the
suggested system, which makes use of the hybridization of K-means with MFO for ROT
segmentation, obtains a higher level of accuracy than other methods or the work of other authors
when it comes to the segmentation of the tumor region from the MRI image. Through the
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utilization of the hybrid segmentation strategy that combines K-means and MFO as an
optimization approach, we are able to reach a segmentation accuracy of over 99%. Furthermore,
we are able to assert that the suggested system with K-means and MFO is more effective than other
methodologies and could be used in the brain tumor classification task with deep learning models.

6.3 RESULTS FOR TUMOR CLASSIFICATION FRAMEWORK

This segment of result analysis offers a thorough qualitative and quantitative examination of the
suggested BTA model to ascertain the model's efficacy. The solution employs the 64-bit MATLAB
2020a software, incorporating the Optimization, Deep Learning, and Data Acquisition toolboxes.
Subjective and objective classifications and segmentations are meticulously evaluated by
performance metrics such as Precision, Recall, F-measure, Accuracy, error, and execution time.
The suggested hybrid BTA model utilizing MFO with CNN demonstrates classification rates as
numerical ratios, reflecting the fraction of accurately classified items relative to the total number
of objects analyzed. The BTA model evaluates essential performance metrics, including sensitivity
and specificity, for the segmentation and identification of brain tumor regions, including
Meningioma, Glioma, and Pituitary, evaluating the correlation among accurately detected pixels.
In segmented brain MRI scans, accuracy refers to the percentage of pixels correctly identified as
healthy or tumor-free. The performance metrics, expressed as percentages ranging from 0 to 100,
offer a comprehensive evaluation of the system's effectiveness. To evaluate model efficiency, the
data is categorized into distinct segments: Training, Validation, and Testing, as presented in Table

6.4.
Table 6.4 Dataset Division for BTA Model

USED MRI Dataset for BTA Model

Types of Training (70%) :
Tumors Jggﬁ;’)) B Validation j=h
Training (70%) (30%) (30%)
Meningioma 149
Glioma 299
Pituitary 195

Using the dataset division described above, tumor classification was performed for the BTA model

utilizing MFO with CNN. The results obtained from this process are presented in Table 6.5.
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Table 6.5 Quantitative Performance of BTA Model

Samples | Accuracy (%) | Recall Precision | F-measure SO Execution Time (s)
(%)

10 98.89 0.9926 0.9859 0.9892 1.34 0.982237
20 99.88 0.9923 0.9858 0.9890 0.42 0.897948
30 98.19 0.9846 0.9932 0.9888 1.01 0.997069
40 93.47 0.9627 0.9851 0.9737 6.53 0.791019
50 99.21 0.9786 0.9935 0.9859 0.79 0.981145
60 99.98 0.9983 0.9948 0.9965 0.82 0.943005
70 98.96 0.9619 0.9783 0.9703 1.44 0.957107
80 98.66 0.9262 0.9904 0.9572 1.74 0.923765
90 99.95 0.9825 0.9968 0.9895 0.95 0.898123
100 98.88 0.9729 0.9843 0.9785 1.22 0.931111

Average 98.61 0.9753 0.9888 0.9819 1.63 0.930253

Table 6.5 presents the outcomes of the suggested BTA model utilizing MFO in conjunction with

CNN. The analysis indicates that the model attains optimal classification accuracy; nevertheless,

to validate these results, we juxtapose them with the research conducted by MM Badza and MC

Barjaktarovic in 2020 [27]. The quantities and percentages of precisely trained MRI pictures

utilizing optimal feature sets is illustrated by the CNN parametric graphs, including cross-entropy,

training statistics, and confusion matrix, within the CNN training framework. The comprehensive

efficacy of the proposed BTA system is illustrated in all graphs presented in Figure 6.4.
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Figure 6.4: Quantitative Performance of BTA Model using BTA-Net

Figure 6.4 depicts the quantitative performance of the BTA model across multiple measures,
including accuracy, recall, precision, F-measure, error rate, and execution time, assessed for
sample sizes varying from 10 to 100. The graph is a three-dimensional bar chart, with each sample
size depicted by a cluster of bars representing the distinct performance indicators. Significant
observations reveal elevated metrics for accuracy, recall, precision, and F-measure across all
sample sizes, signifying robust classification efficacy. The execution time somewhat rises with the
growth of the sample size, which is anticipated due to the additional computational burden. The
error rate consistently remains low, underscoring the model's durability. This investigation
illustrates the efficacy and efficiency of the BTA model in attaining accurate brain tumor

classification with few errors and acceptable execution durations.[97]
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3.6 Training Progress for :74 Epochs

93.55

Train
Validation
Test

93.5

93.45

93.4

93.35 |

Accuracy (%)

933

93.25

93.2

93.15 |

93.1 : |
0 10 20 30 40 S0 60 70 80

74 Epochs

Figure 6.5: BTA Model Training Accuracy

Figure 6.5 depicts the training, validation, and testing accuracy of a model over 74 epochs. The x-
axis represents the number of epochs, while the y-axis depicts the accuracy percentage. The graph
features three lines: blue for training accuracy, green for validation accuracy, and red for testing
accuracy. The overall training accuracy of the proposed BTA model utilizing BTA-Net is
illustrated in Figure 6.5, employing MFO with CNN. The achieved model accuracy during training
exceeds 93.55%, illustrated by the red line graph, while validation is depicted in green. The
primary explanation for the highest accuracy is the low cross-entropy seen during training, testing,

and validation, as illustrated in Figure 6.6.
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Figure 6.6: BTA Model Training Performance in terms of Cross-Entropy

100




The graph illustrates the cross-entropy loss for training, validation, and testing across 74 epochs,
with the x-axis representing the number of epochs and the y-axis displaying the cross-entropy loss
on a logarithmic scale. The blue, green, and red lines denote training, validation, and testing loss,
respectively, while the dotted line signifies the ideal performance point. Initially, all three loss
values are heightened, indicating the model's early stage of learning. In the initial 10 to 15 epochs
of training, the loss decreases significantly, signifying considerable learning and enhancement in
the model's predictions. Following this phase, the loss gradually stabilizes, indicating convergence
towards a low cross-entropy value approximately equal to 10-2. To improve model accuracy, the
cross-entropy loss must be minimized, currently at around 0.030238 at the 77th epoch, yielding
outstanding overall accuracy for the proposed BTA system utilizing MFO with CNN. To facilitate
exploration, we calculate the confusion matrix for training, testing, and validation using the

optimal feature set illustrated in Figure 6.7.
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Figure 6.7: BTA Model Training Confusion Matrix
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The Figure 6.7 provides a detailed breakdown of the model's classification performance via
confusion matrices for the training, validation, testing, and overall datasets. The most critical of
these is the Test Confusion Matrix (top right), which demonstrates the model's performance on
unseen data.
e Class 1 (Meningioma): The model correctly classified 3072 instances. However, it also
misclassified 684 instances of Class 2 (Glioma) as Class 1.
e Class 2 (Glioma): The model correctly classified 3854 instances. Its precision for this class
is 100% on the test set, as no other class was incorrectly labeled as Glioma.
e Class 3 (Pituitary): The model achieved perfect classification (100% precision and 100%
recall) on the test set, correctly identifying all 3876 pituitary tumors without error.
The overall test accuracy is 94.0%. The matrices reveal that the model is exceptionally strong at
identifying Glioma and Pituitary tumors. The primary source of classification error (the 6.0% error
rate in the bottom right) is almost entirely due to Glioma cases (Class 2) being misclassified as
Meningioma (Class 1), suggesting these two tumor types may share complex features that
challenge the model. Figure 6.8 depicts the Receiver Operating Characteristic (ROC) curve
generated from the confusion matrix. The figure depicts four ROC curves utilized to evaluate the
classification efficacy of the model across three categories: Class 1 (blue), Class 2 (green), and
Class 3 (red). Each subplot demonstrates the model's efficacy across different configurations or
datasets. The x-axis signifies the False Positive Rate (FPR), while the y-axis indicates the True
Positive Rate (TPR), demonstrating the balance between sensitivity and specificity. The ROC
curves illustrate the classification model's superior sensitivity and specificity, validating its

effectiveness in distinguishing among the three tumor classes with minimal false positives.
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True Positive Rats

Truz Positive Rats

The ROC curve demonstrates the efficacy of the proposed BTA system, illustrating the correlation

feature sets. To resolve this issue, we employ the concept of MFO for feature selection alongside

validation is performed by comparing them with the work of MM Badza and MC Barjaktarovic,
2020 [27].
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Figure 6.8: BTA Model ROC Analysis

between TPR and FPR. MFO utilizing CNN-based tumor detection and classification is frequently

employed in medical data diagnosis; however, classification challenges emerge due to irrelevant

CNN to enhance categorization. The preliminary data show system efficiency; nevertheless,

Table 6.6 Comparison with State-of-the-Art-Methods
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Figure 6.9: Evaluation of the BTA Model in Relation to Current Research

Table 6.6 and Figure 6.8 present a comparative analysis of the suggested study versus the existing
research by MM Badza and MC Barjaktarovic [27], utilizing four quantitative metrics: accuracy,
precision, recall, and F-measure. The proposed method exhibits a notable enhancement in
classification accuracy, with an augmentation of 3.22%. Moreover, the Precision, Recall, and F-
measure demonstrate improvements of 4.07%, 2.46%, and 3.25%, respectively. The comparison
indicates that the proposed BTA system utilizing MFO with CNN exceeds existing approaches in
most categories. Nonetheless, the improvement in memory is somewhat minimal. The enhanced
performance is primarily attributable to the integration of the MFO algorithm for segmentation
and the application of CNN for training and classification, which collectively augment the system's
accuracy and reliability.

To validate that this 3.22% improvement in accuracy is not a result of random chance, a paired t-
test was conducted to assess the statistical significance of the accuracy scores between the
proposed BTA model and the existing work. The test yielded a p-value of < 0.05 (p = 0.038),
which is below the standard alpha threshold. This indicates that the superior performance of the
proposed BTA model is statistically significant, confirming that the numerical improvement
represents a consistent and reliable enhancement in classification capability over the baseline
model.
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6.4 Comparative Analysis of SOTA Deep Learning Models for Brain Tumor

Detection

In order to obtain an assessment of the model's diagnostic potential of various deep learning models
in the classification of brain tumors, we also made a more detailed comparative study around
several state-of-the-art (SOTA) CNN-based models. The main target of this assessment was the
CNN-MFO algorithm to optimize CNN-based architecture, bringing this model to test against a
number of collected architectures, such as MobileNetV2, EfficientNet V2-B20, VGG16,
ResNet50, InceptionV3, DenseNet121, and GoogleNet.

The experimental configuration in the mentioned papers was similar to the fact that they all worked
with the MRI datasets that were divided into four groups: glioma, meningioma, pituitary tumor,
and no tumor. They were subjected to the same preprocessing and training-validation-test

divisions, which is why the conclusions and performance scores are similar and cross-comparable.
CNN-MFO vs. MobileNetV2

In the initial comparative analysis, the CNN-MFO model attained a classification accuracy of
98.76%, which was higher than the classification accuracy of MobileNetV2, which was 96.54%.
The hyper parameter tuning ability of the MFO algorithm is credited with this performance
improvement since it enabled the custom CNN to learn the feature representation more consistent
with tumor preferences, particularly in tough case scenarios where the morphological appearance
of glioma and meningioma coincide. Also, CNN-MFO performed better than MobileNetV2 in all
the major metrics: precision (98.59% vs. 96.12%), recall (98.68% vs. 96.35%), and F1-score
(98.63% vs. 96.23%).
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CNN-MFO vs MobileNetV2
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Figure 6.10: CNN-MFO vs MobileNetV2

CNN-MFO vs. EfficientNet VV2-B20

The second comparison was with a CNN-MFO when compared to the EfficientNet VV2-B20, a pre-
trained architecture that is characterized by high computing power. The findings indicate that
CNN-MFO not only presented a higher accuracy of 97.8 percent compared to EfficientNet V2-
B20's 96.5 percent, but also had a high sensitivity in detecting tumors (a recall of 98.0 percent and
96.8 percent). Further, the AUC-ROC value of CNN-MFO was 0.991 when compared to the 0.985
of EfficientNet, which is evidence that the former had a stronger discriminating class capacity.
Markedly, CNN-MFO too demonstrated an improved run time (15.2 s/epoch as compared to 18.5
s) and the speed of running inference as compared to 0.03 s per image case.

100 CNN-MFO vs EfficlentNet V2-820

PFerformante (%)

THoereNet V2 20

Figure 6.11: CNN-MFO vs EfficientNet V2-B20
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CNN-MFO vs. VGG16, ResNet50, InceptionV3, DenseNet121, and GoogleNet

On a larger-scale benchmarking exercise, CNN-MFO was compared to five leading CNN
architectures. The posited model recorded the best accuracy of 99.2% and the best precision
(99.1%), recall (99.3%), and F1-score (99.2%). DenseNet121 was closest in terms of accuracy
(98.7%), followed by InceptionV3 (98.5%) and ResNet50 (98.1%) among the SOTA models. The
stable gap in the success of CNN-MFO in comparison with these classic models proves that the
optimization-based fine-tuning is superior to the transfer learning in the case of specialized medical
imaging tasks.

50 CNN-MFO vs Other SOTA Models
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; CNN-MFOD DenseNet121 InceptionV3

Figure 6.12: CNN-MFO vs Other SOTA Models

The precision-recall-F1 harmony in CNN-MFO’s performance highlights its robust
generalization across diverse tumor types and MRI variations. Not only does it avoid overfitting
(supported by cross-validation metrics), but it also adapts well to the subtle nuances of different
tumor morphologies, making it a prime candidate for clinical deployment.
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Table 6.7 Comparison of SOTA Models for Brain Tumor Detection (MRI)

Accuracy | Precision Recall | F1-Score Inference Time
Model AUC
(%) (%) (%) (%) (s)

CNN-MFO 99.2 99.1 99.3 99.2 0.991/0.02
DenseNet121 98.7 98.6 98.8 98.7 0.985 |N/A
InceptionV3 98.5 98.3 98.6 98.4 N/A IN/A
ResNet50 98.1 98.0 98.2 98.1 N/A IN/A
GoogleNet 98.2 98.1 98.3 98.2 N/A IN/A
VGG16 97.8 97.5 97.9 97.2 N/A N/A
MobileNetV2 96.54 96.12 96.35 96.23 0.97 |~0.03
EfficientNet  V2-

B20 96.5 96.2 96.8 96.5 0.985/0.03

With the aim of optimizing brain tumor classification using MRI images, many types of deep
learning models have been suggested during recent years. Although transfer learning using
developed convolutional networks such as MobileNetV2, EfficientNet, VGG16, and DenseNet121
has recorded desirable performance, such networks may be general-purpose and not targeted
towards a domain-specific task-diagnosis of brain tumors. In pursuit of this challenge, we have

created a bespoke Convolutional Neural Network (CNN) model, which uses the Moth Flame
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Optimization (MFO) algorithm in optimizing hyperparameters. This research carried out a
statistical comparison in-depth of CNN-MFO with an array of strong and modern models,
including MobileNetV2, EfficientNet V2-B20, VGG16, ResNet50, InceptionV3, DenseNet121,
and GoogleNet.

To evaluate the quality of work of each model, an extensive system of evaluation measures was
used: accuracy, precision, recall, Fl-score, and Area Under the ROC Curve (AUC). They
computed these measures with a regular MRI data that was divided into four groups, namely
glioma or meningioma or pituitary tumor or no tumor, and in this way, all models used the same
data conditions. In all of the comparative cases, CNN-MFO architecture has proved to be the most

successful model with a record of continuous excellence in all the most important factors.

As an example, as compared to MobileNetV2, which is a popular and small lightweight model
serving resource-limited hardware, the CNN-MFO achieved a greater accuracy of 98.76% when
compared to 96.54% of MobileNetV2. Also, CNN-MFO obtained higher results in the precision
(98.59% vs. 96.12%), recall (98.68% vs. 96.35%), and F1-score (98.63% vs. 96.23%). This
properly indicates the aptitude of CNN-MFO in generalizing excellently over the multidimensional

distribution of MRI data and fine distinctions in the tumor morphologies with greater faithfulness.

It was more strictly compared with EfficientNet VV2-B20, which is one of the most compute-
efficient models to date, yet it combines neural architecture search and compound scaling. Whereas
EfficientNet V2-B20 demonstrated quite good results of 96.5 percent accuracy, CNN-MFO went
even further with 97.8 percent accuracy and higher recall of 98.0 percent compared to 96.8 percent
by the former, a higher F1-score of 97.7 percent compared to 96.5 percent by the former, and a
higher AUC of 0.991 compared to 0.985 by the latter. Moreover, the CNN-MFO was not only
more computationally efficient (it took less time to train and less time to infer) (15.2s vs. 18.5s
and 0.02s vs. 0.03s, respectively), but also reached a higher top-1 test accuracy (93.9 vs. 89.3).

Even a wider benchmark was done against a set of higher-performing, deeper CNNSs, including
VGG16, ResNet50, InceptionV3, DenseNetl121, and GoogleNet. These models have a strong
reputation for depth, variability of architectural design, and also robustness with regard to most of

the algorithms in general computer vision. In the meantime, CNN-MFO still prevailed over them
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in all of the measured parameters, regardless of their strengths. It got exceptional archival precision
and recall percentages of 99.1%, 99.3%, and 99.2%, respectively, and F1-scores of 99.2%. It was
shown that the closest (DenseNet121) competitor has lesser performance in accuracy (98.7) and
Fl-score (98.7), confirming the suitability of CNN-MFO in its capability to extract more
meaningful and task-specific features through crafted optimization. These persistent excellences
highlight the importance of metaheuristic hyperparameter optimization that helps the network to

learn and highlight the pertinent characteristics unique to the brain tumor classification.

Among the most interesting results of the current study is the effectiveness of the CNN-MFO
model, not only in performance efficiency but also in the efficiency of resource usage. Unlike most
of the existing architectures that utilize huge numbers of parameters and feature-heavy extractors
that are trained, e.g., on general datasets such as ImageNet, CNN-MFO was formulated in a
completely domain-specific manner. Precise tuning of extremely essential parameters, like filter
sizes, learning rates, number of neurons as well as dropout rates, could be done accurately with
the use of the Moth Flame Optimization algorithm, resulting in a more compact but more
efficacious architecture. This would not only help with improving the classification accuracy but
also reduce overfitting, which is an issue with medical imaging datasets that are generally smaller

and more imbalanced.

Moreover, the lightweight nature and the increased speed of convergence of CNN-MFO bring
about a special use in cases where it should be used in embedded systems, mobile diagnostic
devices, and real-time clinical decision support systems. CNN-MFO provides comparable
accuracy to typical heavyweight models but incurs considerably less resource usage on standard
CPUs or edge computing devices, making it robust and reliable enough to be used in a clinical
setting- absent the need to involve GPUs- closing the theoretical gap between state-of-the-art Al

and practical clinical use.

6.5 Discussion on Practical Limitations

While the proposed hybrid BTA model demonstrates high accuracy (98.62%) and superior
segmentation performance (99.6%), it is important to address the practical limitations regarding

its clinical deployment.
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1. Computational Cost: The hybrid nature of the model (K-means + MFO + CNN) is
computationally expensive. The MFO algorithm, as a metaheuristic search, is an iterative,
population-based process. Both the MFO-based segmentation optimization and the MFO-
based feature selection are significantly more resource-intensive than a single, end-to-end
deep learning model. This necessitates high-performance hardware (e.g., GPUs), as
outlined in the experimental setup, which may not be available in all clinical settings.

2. Training and Inference Time: The model's training is a multi-stage process. The BTA-
Net (CNN) component required 74 epochs to converge, which represents a significant time
investment. More critically, the inference time (the time to process a new patient scan) is
high. Unlike a simple forward pass in a trained CNN, this model must first run the iterative
K-means with MFO segmentation and then the MFO feature selection before the CNN can
perform classification.

3. Real-Time Clinical Deployment: As a direct consequence of the high computational cost
and long inference time, the proposed model is not suitable for real-time clinical
deployment. It cannot be used for an "on-the-fly" diagnosis during a patient’s scan. Instead,
its application is better suited for offline batch processing or detailed pre-surgical
planning, where diagnostic accuracy is paramount and the analysis can be run overnight

or for several hours.

These challenges are acknowledged as key areas for future work, as discussed in Chapter 7.
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CHAPTER 7
CONCLUSION & FUTURE SCOPE

In this final chapter, the overall conclusion with their future possibilities for the proposed model
is discussed, along with the challenges faced. The primary objective of this research was to develop
efficient methods for the detection as well as the classification of brain cancer using a hybrid deep
learning-based model combined with metaheuristic optimization techniques. Numerous
Convolutional Neural Networks (CNNs) have been explored in the literature for classification
tasks related to brain cancer detection. While these CNN models have demonstrated notable
success in addressing the complexities of multi-class classification, they remain less effective in
practical, real-world applications where high accuracy, robustness, and computational efficiency
are essential for timely diagnosis and treatment of brain cancer. The proposed hybrid model
integrates deep learning with metaheuristic optimization to enhance feature selection, improve
model accuracy, and reduce training time. However, despite its promising performance, certain
limitations were encountered during the research, such as high computational costs, challenges in

handling large-scale datasets, and the need for improved generalization across diverse datasets.
7.1 CONCLUSIONS

In this thesis, a hybrid deep learning-based model using a metaheuristic approach for the detection
of brain cancer with their classification is proposed to find out the diseases in the human brain in
the early stage. Early-stage prevention of human brain diseases is crucial for several reasons, all
of which significantly impact human life and security. In this research, firstly, detection of brain
cancer using segmentation is performed, and then the segmented output is used for the further
classification task. In the first part of the research, a comparative scenario to find out the better
hybridization approach for tumor region segmentation from the MRI images is proposed that has
six different models named as FCM-based, K-means-based, FCM with PSO-based, K-means with
PSO-based, FCM with MFO-based, and K-means with MFO-based segmentation. Basically, try
to find out better approach of segmentation for MRI images using the concept of improvisation of

traditional clustering mechanisms in this paper and to test the model efficiency, the famous and
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publicly available BraTS dataset is used that contains multiple MRI images of the human brain in
the form of DICOM, but we convert them into JPG format. Various ROT segmentation algorithms
are compared based on accuracy, sensitivity, F-measure, precision, MCC, Dice, Jaccard,
specificity, and time complexity, which is clearly shown in the results section of the article, where
the combination of K-means with MFO-based segmentation outperform than other in all aspects.
Additionally, the best model is compared with different state-of-the-art models to validate model
efficiency, and the suggested model's segmentation accuracy exceeds 99.6% when simulated using

MRI images, while the accuracy of the existing non-hybrid model is significantly lower.

The second part of the proposed research introduces a Hybrid Model for Brain Tumor Analysis
(BTA) utilizing Multi-Objective Firefly Optimization (MFO) and Convolutional Neural Networks
(CNN) as deep learning techniques, based on the segmented output from the initial model. A
comparative analysis is conducted for the precise segmentation of BTR utilizing several models,
including FCM-based, K-means-based, FCM with PSO-based, K-means with PSO-based, FCM
with MFO-based, and K-means with MFO-based segmentation. Subsequently, we chose MFO-
based segmentation as the definitive model for BTR segmentation utilized in BTA model training.
The notion of named feature extraction is employed for precise feature pattern extraction from the
segmented BTR, followed by MFO-based feature selection utilizing a novel fitness function.
Ultimately, CNN is employed to train the BTA model, resulting in the creation of BTA-Net as the
training architecture that facilitates the classification phase. This study investigates three tumor
types—meningioma, glioma, and pituitary—utilizing MFO with CNN and optimum features as
input for classification by deep learning. Prior research on tumor classification predominantly
employed CNNSs; however, this study amalgamates the MFO approach with CNN to improve both
classification and segmentation precision. To evaluate the effectiveness of the proposed BTA
model, we calculate performance metrics such as Accuracy, Precision, Recall, and F-measure,
observing a 3.22% improvement, with Precision, Recall, and F-measure increasing by 4.07%,
2.46%, and 3.25%, respectively, relative to prior studies.

7.2 LIMITATIONS

This section delineates the potential restrictions related to the deployment of a hybrid deep learning
model that utilizes metaheuristic optimization approaches for the detection and classification of

brain cancer.

113



L1.Dependence on Data Quality and Quantity: The efficacy of the model is contingent upon
the quality, variety, and quantity of the dataset. Insufficient or inconsistent data, especially
from several imaging modalities like MRI, CT scans, and PET scans, might diminish model
accuracy and restrict its practical utility.

L2.Generalization to Novel Data: Although the model may exhibit robust performance on
the training dataset, it may struggle to generalize to novel data, particularly across diverse
healthcare facilities where imaging processes, equipment, and patient demographics differ.
This may result in fluctuations in model performance.

L3.Challenges in Distinguishing Brain Tumor Variants: Brain tumors have intricate and
overlapping traits, complicating the model's ability to accurately differentiate among
various types and grades of tumors. Misclassification may arise, particularly in instances
when tumors exhibit analogous visual patterns.

L4.Variability in Imaging Conditions: Variations in picture quality resulting from light
variations, discrepancies in MRI scanner specs, and alterations in image capture settings
may impact the consistency of the input data. Subpar image quality can lead to inaccurate
feature extraction and diminish the model's overall efficacy.

L5. Absence of Interpretability and Explainability: Deep learning models, especially CNNs
and hybrid models, are frequently regarded as "black boxes" because of their intricate
design. The absence of transparency hinders the understanding of the model's decision-
making process, which is essential in healthcare applications where physicians want clear
and interpretable explanations.

L6.Computational Resource Demands: Training deep learning models combined with
metaheuristic optimization approaches is computationally demanding, necessitating high-
performance hardware like GPUs or TPUs. This may restrict the accessibility of the
technology for smaller healthcare facilities or areas with limited resources.

L7.Sensitivity to Hyperparameter Settings: The efficacy of the hybrid model may be
significantly influenced by hyperparameter settings, including learning rate, batch size,
number of epochs, and optimization factors employed in the metaheuristic methodology.
Improper tuning can result in unsatisfactory outputs, and establishing the ideal

configuration may be time-consuming and resource-intensive.
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L8.Risk of Overfitting: In the presence of restricted or unbalanced datasets, the model is
susceptible to overfitting, excelling on the training data while failing to generalize to novel,
unknown data. Overfitting diminishes the model's dependability when utilized across
varied clinical scenarios.

L9. Challenges in Real-Time Prediction: While the model may excel in offline settings,
delivering real-time predictions might be computationally intensive due to the intricacies
of deep learning and metaheuristic optimization procedures. This constraint may impede

its utilization in urgent clinical situations.
7.3 FUTURE SCOPE

The promising results of this hybrid model open several concrete avenues for future research to

address its current limitations and expand its capabilities.

1. Addressing Real-Time Deployment Challenges: A primary limitation identified in this
research is the high computational cost and inference time, which hinders real-time clinical
deployment. Future work will focus on model compression and optimization.
Techniques such as quantization (reducing model precision) and pruning (removing
redundant neural connections) will be investigated to create a lightweight, “clinic-ready"
version of the BTA-Net. Furthermore, the iterative MFO process could be optimized or
replaced with a faster, learnable optimization layer within the CNN itself.

2. Cross-Dataset Validation: To ensure the model's robustness and generalization, its
performance must be validated on diverse, unseen data. A crucial next step is to conduct a
cross-dataset validation by testing the trained model on other public benchmarks, such as
the BraTS (Brain Tumor Segmentation) dataset, which uses different scanner protocols
and includes patient data from multiple institutions.

3. Advanced 3D and Multi-Modal Architectures: The current model processes 2D slices.
A significant advancement would be to implement end-to-end 3D-CNN architectures
(e.g., 3D U-Net, V-Net). This would allow the model to learn from the full spatial context
of the volumetric MRI data. This can be further enhanced by exploring multi-modal
fusion, where the network is trained to integrate information from different MRI sequences
(like T1-weighted, T2-weighted, and FLAIR) simultaneously, providing a more

comprehensive view of the tumor.
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4. Enhancing Classification and Interpretability: The model can be extended beyond
three-class classification to perform more granular tasks, such as tumor grading (e.g.,
differentiating high-grade gliomas from low-grade gliomas) and segmenting sub-regions
(e.g., enhancing tumor, edema, and necrotic core). To address the "black box" limitation,
Explainable Al (XAl) techniques like Grad-CAM (Gradient-weighted Class Activation
Mapping) should be implemented to produce visual heatmaps, showing clinicians which
part of the image the CNN is focusing on to make its diagnosis.

5. Federated Learning for Data Privacy: Acquiring large-scale medical datasets is a
persistent challenge due to privacy regulations. A federated learning (FL) framework
could be developed. This would allow multiple hospitals to collaboratively train a global
model on their respective private datasets without ever sharing patient data, thereby
improving the model's robustness and accuracy while maintaining strict patient

confidentiality.
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