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ABSTRACT  

Traditionally, the identification of brain tumors has depended on the manual analysis of medical 

imaging techniques, including Magnetic Resonance Imaging (MRI), Computed Tomography 

(CT), and Positron Emission Tomography (PET) scans.  Radiologists examine these pictures to 

detect anomalies, pinpoint tumor locations, and evaluate their dimensions and advancement.  

Nonetheless, manual diagnosis is labor-intensive, susceptible to human error, and significantly 

reliant on the proficiency of radiologists, rendering it less efficient for extensive or real-time 

clinical applications. An accumulation or abnormal multiplication of brain cells is called a brain 

tumor, which can be benign or malignant. Brain tumors are classified by their anatomical site, 

cellular composition, and primary or secondary status, but early detection is essential for 

optimizing treatment efficacy, improving patient prognosis, and reducing health risks. The early 

identification of human brain tumors is essential for improving patient survival and outcomes. This 

study requires a physical analysis of the MRI brain tumor images. Consequently, there is a must 

for automated methodologies to enhance tumor diagnosis accuracy. Nonetheless, assessing form, 

volume, margins, tumor identification, dimensions, segmentation, and classification continues to 

pose difficulties. This thesis proposes a hybrid deep learning-based model using a metaheuristic 

approach for the detection and classification of brain cancer, with a focus on identifying tumors at 

an early stage. Early detection is essential to improve survival rates and ensure timely medical 

intervention. The research is divided into two major phases. In the first phase, a comparative 

analysis is conducted to determine the most effective hybrid segmentation approach for extracting 

tumor regions from MRI images. Six models, including Fuzzy C-means (FCM)-based, K-means-

based, FCM with Particle Swarm Optimization (PSO)-based, K-means with PSO-based, FCM with 

Moth Flame Optimization (MFO)-based, and K-means with MFO-based segmentation, are 

evaluated using the MRI Benchmark dataset. Results demonstrate that the K-means with MFO-

based segmentation model outperforms others in terms of accuracy, sensitivity, F-measure, and 

computational efficiency, achieving a segmentation accuracy exceeding 99.6%. 

In the second phase, the segmented output is used for classification through a Hybrid Brain Tumor 

Analysis (BTA) model that combines MFO and Convolutional Neural Network (CNN) techniques. 



vi 

 

MFO-based segmentation is selected as the final segmentation approach for BTA model training. 

A novel feature extraction and selection mechanism is employed using MFO for optimal feature 

pattern extraction, followed by CNN-based classification. The proposed BTA model classifies 

brain tumors into three classes—meningioma, glioma, and pituitary—achieving improved 

classification accuracy by integrating MFO with CNN. Performance evaluation shows a 3.22% 

improvement in overall accuracy, with precision, recall, and F-measure increasing by 4.07%, 

2.46%, and 3.25%, respectively, compared to existing models. This research demonstrates that the 

proposed hybrid approach significantly enhances the accuracy and efficiency of both segmentation 

and classification, making it a promising tool for early brain cancer detection and classification in 

clinical applications. 
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CHAPTER 1  

INTRODUCTION 

This chapter provides an overview of a hybrid deep learning approach, enhanced by metaheuristic 

optimization, for brain tumor segmentation and classification. This work leverages unsupervised 

clustering and deep learning to automate the detection of brain tumor regions [1-3]. The accuracy 

of such Computer-Aided Diagnosis (CAD) systems heavily depends on the quality of input 

images, which are acquired via various medical imaging modalities, including Magnetic 

Resonance Imaging (MRI) [4]. However, medical images often suffer from noise and uneven 

illumination, which can complicate analysis [5–7]. Therefore, a pre-processing stage is crucial. 

Following this, image segmentation—the process of partitioning an image into meaningful 

regions—is used to extract the Region of Interest (ROI), such as a tumor [8]. One of the best 

examples of an image processing and computer vision technique is image segmentation. Medical 

image segmentation is the well-known technique to fragment a picture into smaller, relatively 

homogenous-featured components, and it allows for the extraction of some important data, such 

as tumor region. Medical images are used in healthcare since their caliber affects the diagnosis and 

course of therapy. So that, in medical image-based analysis, segmentation is important since it 

aims to extract certain features from the images. These images may be used for sophisticated image 

comprehension. According to science, image segmentation is a fictitious middle-level vision job 

carried out by neurons located between low-level and high-level cortical regions. Figure 1.1 

displays several examples of different types of medical picture segmentations for your perusal. 
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Figure 1.1: Basic Medical Image Segmentations 

Figure 1.1 showcases different medical imaging modalities and their respective segmentation 

results [8]. A collection of original medical images exists in the top row that demonstrates MRI, 

Dermoscopy, CT-Scan, Microscopy, and Fundus Scans having their areas of concern marked in 

red. Multiple healthcare-related pictures show brain tumors together with skin lesions alongside 

lung abnormalities and microscopic cellular components and retinal diseases such as diagnostic 

elements. The segmental masks in the bottom row use white coloring to mark regions of interest, 

such as tumors or lesions, against a black background representation. Automated medical image 

analysis depends on these segmentation masks since they facilitate the accurate localization and 

extraction of affected areas towards further diagnostic assessment or treatment planning. These 

segmentation procedures represent fundamental operations within Computer-Aided Diagnosis 

(CAD) systems that use machine learning and deep learning models to identify medical image 

abnormalities and their type, as well as to perform precise segmentation. Medical imaging analysis 

benefits from these techniques that deliver improved diagnostic capabilities as well as diminished 

human labor needs and standardized, objective results. 

1.1 BACKGROUND 

All human bodies contain multiple complex organs that need proper alignment to preserve total 

wellness. The brain functions as the overall regulating system of the body while preserving the 

operations of all body organs. Among the human body's organs, the brain stands as its single most 

essential element because it controls memory functions and procedures as well as emotions along 

with sensory perception of vision, smell, taste, and touch and many physiological operations. A 

severe threat to life exists from any abnormalities in brain operations. Annual brain tumor rates 
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have risen for all age demographics, according to the American Brain Tumor Association (ABTA) 

in February 2016, which studied children through young adults from ages 15 to 39. The 

classification system splits brain tumors into two groups according to their malignant or benign 

status. These distinct types of tumors differ between malignant formations composed of irregular 

cells leading to uninhibited growth and benign formations consisting of regular non-cancerous 

cells. Medical experts and patients view these tumors as critical because their expansion produces 

symptoms like vision deterioration and long-standing nausea, which create severe medical 

problems. Brain tumors exist with complex attributes that create major difficulties during both 

diagnosis procedures and medical treatment [9]. Medical professionals use MRI as an important 

diagnostic and monitoring method to track tumor development. Manually identifying tumors in 

combination with MR image noise requires extensive and time-consuming processes because of 

the complex tumor patterns. Standards of diagnosis depend heavily on detection at an early stage 

combined with exact tumor locations. MRI scans provide doctors with precise information to 

monitor tumor growth, which leads to prompt and correct identifications. The diagnostic method 

starts with image segmentation to extract tumor tissues from brain images. The extensive 

complexity of medical images, together with abundant data generation, makes hand-based tumor 

evaluation susceptible to inaccuracies. Medical image analysis and classification require 

automated systems because threats to traditional manual analysis methods increase daily. When 

medical professionals collaborate with segmentation algorithms, the accuracy of tumor detection 

improves significantly because this leads to enhanced treatment results for patients. 

1.2  INTRODUCTION TO BRAIN TUMOR 

Brain tumors stand as one of the most lethal global diseases, producing severe consequences that 

can result in death when medical treatment is not received. Abnormal cell development inside the 

brain triggers tumors, which spread because of genetic mutations and environmental elements. 

Brain tumors classify into two groups as primary brain tumors grow inside brain tissue, yet 

secondary brain tumors start elsewhere before reaching brain tissue. The classification of tumors 

depends on their identified severity level [10]. The severity of brain tumors depends on their type 

since benign tumors stay non-cancerous and create less harm, whereas malignant tumors carry 

both cancerous characteristics and fast-spreading properties that present life-threatening medical 

risks. Urgent medical attention must be sought because of malignant tumors’ aggressive behaviour. 
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Proper diagnosis and immediate treatment lead to better patient outcomes since their detection at 

an early stage determines survival rates. 

 

Figure 1.2: Brain Tumor 

Figure 1.2 illustrates a brain tumor located in the cerebrum, highlighting key anatomical regions 

of the human brain. The tumor appears as a yellowish mass, representing abnormal and 

uncontrolled cell growth within the brain.  

☞ Tumor: An uncontrolled growth of brain cells that may be benign (non-cancerous) or 

malignant (cancerous), often disrupting normal brain functions by compressing nearby tissues. 

☞ Cerebrum: The largest part of the brain, responsible for reasoning, memory, sensory 

processing, and voluntary movement. 

☞ Brainstem: The lower section connecting the brain to the spinal cord, regulating vital functions 

such as breathing, heart rate, and reflexes. 

☞ Cerebellum: Located at the back of the brain, it manages coordination, balance, and fine motor 

control. 

The human brain, weighing about 1.4 kg (3 pounds), governs all bodily activities and mental 

processes, including intellect, creativity, emotion, and memory [11]. Protected by the skull, it 

comprises the cerebrum, cerebellum, and brainstem, with the brainstem acting as a relay between 
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the cerebrum, cerebellum, and spinal cord. The brain continuously receives and transmits 

information throughout the body [12]. 

 

Different brain regions are illustrated in Figure 1.3. 

 

Figure 1.3: Parts of Brain 

A brain tumor is a proliferation of abnormal cells within or next to the brain. Brain tumors are a 

typical proliferations inside the brain that may be classified as either malignant (cancerous) or 

benign (noncancerous). The impacts on the brain from malignant and benign tumors are analogous 

and can result in identical issues, contingent upon the tumor type and its location within the brain 

[13]. Various types of brain tumors exist. Some brain tumors are benign, while others are 

malignant. Brain tumors may originate in the brain (primary brain tumors) or may metastasize 

from other regions of the body to the brain (secondary, or metastatic, brain tumors). The region of 

the brain tumor is given in Figure 1.4. 
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Figure 1.4: Human Brain Tumour 

Image segmentation represents a significant challenge in image processing and is extensively 

utilized across several applications, including sports, biomedical fields, remote sensing satellites, 

and security measures. A segmentation process splits an image into its individual components or 

objects. The delineation of tumors from MRI is a significant application of image segmentation 

[14]. The manual identification of tumors in MRI requires skilled radiologists, a process that is 

both time-intensive and prone to inaccuracies. The huge volume of patients and scans renders 

manual detection and segmentation too burdensome. There is a necessity to automate this process, 

and segmentation techniques are crucial in accomplishing this objective. Advancements in 

restorative imaging systems enable their application in various medical areas, such as computer-

assisted pathology diagnosis, surgical planning and guidance, and longitudinal analysis. Both MRI 

and CT, among all restorative imaging modalities, are frequently employed imaging techniques in 

neurology and neurosurgery [15]. Segmentation of objects, chiefly anatomical structures and 

beyond diagnosing pathologies using MRI scans may be essential, as the results often serve as the 

basis for several applications. Systems for executing segmentation shifts are entirely dependent on 

specific provisions and picture modalities. Moreover, the segmentation of medical images presents 

a challenging task, as they generally contain a substantial amount of data and occasionally exhibit 

artifacts due to the patient's limited acquisition range and the typically poorly defined boundaries 

of delicate tissues. It is identified by the analysis of medical pictures, such as MRI scans. MRI 

segmentation has been suggested for numerous clinical studies of diverse complexity. In a clinical 
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setting, medical image processing is typically synonymous with radiology or "clinical imaging," 

and the medical professional tasked with analyzing (and occasionally obtaining) the images is a 

radiologist. Managing brain tumors presents distinct challenges that complicate their 

categorization. The population of tumor types may be endless, exhibiting a variety of shapes and 

sizes. It may form at any range, exhibiting varying picture intensities. Certain factors may distort 

the surrounding structures or contribute to edema, altering the characteristics of the pictures 

associated with the tumors [16]. Furthermore, the availability of some MRI procurement norms 

yields a varied abundance of data regarding the brain. Each image often emphasizes a particular 

area of the tumor. The automatic segmentation utilizing previous models, which alternately 

employ prior information, may face challenges during execution. The inadequate segmentation of 

the brain's internal structures arises from the assertion that significant energy should also be 

considered for drugs targeting tumors. It mitigates human errors while enhancing surgical or radio 

restorative procedures. Oversaw the economic aspects related to tumors. In brain oncology, it is 

also appealing to introduce a representative human brain model that can integrate tumor data 

derived from MRI and CT information, including localization, type, shape, functional positioning, 

and interactions with other brain structures. Despite various efforts to enhance the therapeutic 

imaging community, precise segmentation and characterization of anomalies remain challenging 

tasks [17]. Existing strategies clear out significant space for expanded automation and, 

furthermore, material accuracy. In the human body, when abnormal cells are generated in an 

uncontrolled way, they convert into brain tumors, and these are categorized into two types named 

as 

❖ Benign: It is a noncancerous type of brain tumor, and the formation is so slow that it is less 

aggressive. This type of tumor does not spread to other regions of the brain or other parts 

of the human body. 

❖ Malignant: It is a cancerous type of brain tumor and not always easy to differentiate from 

surrounding normal tissues in the brain. So, the extraction or segmentation of these types 

of tumors is not easy without damaging the surrounding tissues of the human brain. 

The American Cancer Society (ACS) reports that malignant brain tumor cases grew worldwide 

during the previous several decades [18]. For improved brain tumor curability, researchers need to 

concentrate on diagnosing malignancies during early-stage or benign-stage development by 
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utilizing CAD systems. Medical professionals in both research and clinical practice now focus 

intensely on automated brain tumor detection instruments because they help reduce diagnostic 

errors while minimizing false positive results and minimizing the time it takes for automatic MRI-

based diagnostic models [19]. Doctors can use four different imaging methods to detect brain 

tumors: PET (Positron Emission Tomography) scans, angiography, MRI scans, and CT scans. The 

primary data source for this research consists of MRI scan images, which serve to evaluate tumor 

segmentation techniques with proposed advanced clustering-based methods [20].  

The non-invasiveness of MRI scan data, along with its extensive use in medical practices, makes 

it the selection choice for this study. The high spatial resolution capability of MRI scans combined 

with excellent soft tissue contrast delivers necessary tumor-related information about size together 

with shape and positioning specifics inside the brain. Doctors need this information to establish 

precise diagnoses along with planning treatment protocols at the beginning of the disease [21]. 

MRI imaging holds a widespread preference for medical image analysis because it delivers 

advantageous characteristics for both tumor segmentation and classification tasks. The brain tumor 

image set in Figure 1.5 shows the simple ability to differentiate between normal brain tissue and 

areas affected by tumors. 

 

Figure 1.5: Healthy and Brain with Tumour 

1.2.1 Brain Tumors in the World 

Brain tumors continue to develop into a leading mortality factor since both national and 

international statistics demonstrate increasing death rates. For 2023, brain tumors caused the 
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deaths of 18,760 people per year based on statistics from the ACS. Each year 17,200 individuals 

encounter death because of malignant brain tumors, which demonstrates the seriousness of the 

condition [22]. Physicians report 50,000 fresh cases of brain tumors annually throughout Indian 

medical facilities. The critical requirement for childhood brain tumor diagnosis and treatment 

becomes evident because 20% of brain cancer occurrences occur in pediatric patients.  

 

(a)                                                                            (b) 

Figure 1.6: ACS-based Pie-chart (a) new cases and (b) deaths in 2020 due to brain tumor 

Each year the total number of brain tumor diagnoses amounts to 5 to 10 instances per 100,000 

people, and these instances are increasing annually. These statistics emphasize the growing 

number of brain tumors and demonstrate the critical necessity of advanced medical research and 

early diagnosis and effective treatments for dealing with this dangerous condition. 

1.2.2 Brain Tumor Treatment 

The choice of treatments for brain tumors depends on particular tumor variables alongside patient 

health status and tumor characteristics, including its type, size, location, and level of malignancy. 

Standard treatments for brain tumors incorporate different therapeutic approaches between surgery 

and radiation therapy and chemotherapeutic administration and targeted treatment and 

immunological interventions. Multiple treatments are commonly combined to enhance their 

combined effectiveness when treating brain tumors. 

1.2.2.1 Traditional Methods of Brain Tumor Detection  

Brain tumor treatment and cure become achievable when the condition receives proper early 

detection. The cure rates for brain tumors remain extremely low because patients often obtain 

diagnoses too late, especially in cases of malignant tumors. The imaging procedures create brain 
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image data for analysis that reveals tumor position. Human operators are usually responsible for 

brain tumor detection, yet this method proves both prolonged and error-prone while being labor-

intensive. The procedure of manual tumor identification necessitates a major commitment of time 

and personnel work and extends medical diagnosis delays that consequently deteriorate patient 

health [23]. The accuracy of human-based categorization methods tends to be imprecise; thus, 

patients are at higher risk of missed diagnoses or medical oversight. The patient's life remains at 

risk when detection or identification mistakes or treatment errors occur, even at a minor level. 

Brain tumor treatment requires quick diagnosis, so the reduction of detection duration and 

prevention of human mistakes become essential for accurate identification. The reliability of 

manual detection varies to such an extent that automated machine/deep learning and Artificial 

Intelligence (AI) models step in to boost accuracy and efficiency and reduce diagnostic delays. 

1.2.2.2 Latest Methods of Brain Tumor Detection 

Today machines alongside AI bring continuous discussions across the world. Medical detection 

and diagnosis of brain tumors obtain speed and efficiency through advanced technology 

integration while achieving higher precision rates. The automated diagnosis method leads to 

efficient diagnosis procedures while producing fewer mistakes. The newest technologies enable 

machines to examine two times more test samples in the same time period than when relying on 

manual testing methods. The AI-powered software examines MRI and CT scan images to track 

tumors along with pinpointing their specific placements to help medical experts make proper 

patient care decisions. Laboratory treatment of identified tumors becomes possible after 

identification when those tumors become ready for segmentation or slicing for removal or 

treatment needs. Advanced precision through these measures leads directly to increased procedural 

success metrics. Brain tumor segmentation requires high accuracy alongside efficient execution of 

tasks [24]. The use of machine-based technologies represents the preferred approach for tumor 

detection because these systems lead to better process efficiency and improved patient survival 

outcomes.  

1.3 INTRODUCTION TO MEDICAL IMAGING 

Digital image processing is a rapidly developing technology domain crucial for medical imaging 

[25]. In this context, Magnetic Resonance Imaging (MRI) serves as a vital tool, enabling the 

creation of detailed visual representations of human body structures to detect and analyze various 
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conditions [26]. The primary challenge in analyzing these scans is image segmentation, which 

involves partitioning the image to isolate meaningful regions for analysis. While MRI technology 

is a cornerstone of medical diagnosis, its images often contain significant noise and low contrast, 

complicating the segmentation process. This research focuses on developing robust segmentation 

techniques for MRI scans to enhance tumor detection precision and classification speed. Different 

types of medical imaging approaches are shown in Figure 1.7. 

 

Figure 1.7: Different Types of Medical Imaging Approaches 

1.4 TECHNIQUES OF MEDICAL IMAGE IMAGING 

Several medical imaging techniques are used for diagnosing pathological diseases, including X-

ray, Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic 

Resonance Imaging (MRI). 

X-ray Imaging: Uses electromagnetic radiation to visualize bone structures, making it useful for 

detecting fractures. Doctors use X-ray imaging for essential medical detection of bone fractures 

and pulmonary tuberculosis, as well as other conditions [27]. The sample of X-ray images are 

shown in Figure 1.8. 
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Figure 1.8: X-Ray Sample Images 

CT Imaging: Employs specialized X-rays to create cross-sectional images, providing detailed 

views of bones, organs, and tissues. The sample of CT scan images are shown in Figure 1.9. 
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Figure 1.9: CT Scan Sample Images 

Primary uses of CT Scan Imaging: 

I. Detailed examination of internal structures becomes possible by this technology, which 

shows images from different horizontal sections. 

II. CT imaging enables doctors to identify and measure the condition of bones along with their 

injuries, including scoliosis. 

III. The imaging technique detects both conditions of the lungs and liver as well as monitoring 

body masses. 

IV. CT imaging functions as a navigation system to help doctors plan subsequent medical 

operations and biopsy procedures as well as render therapy procedures. 

MR Imaging: A non-invasive technique that uses magnetic fields and radio waves to produce 

highly detailed images of the body, as shown in Figure 1.10. The procedure of MRI creates pictures 

of bodily tissues using magnetic fields and radiofrequency waves while eliminating the 

requirement of using ionizing radiation [28].  
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Figure 1.10: MRI Sample Images 

Working principles of MRI: The operating principle of MRI scans enables detection of hydrogen 

atoms present in the human body through an abundance of water and fat molecules. The three core 

elements of the process form a sequence:  

1. A high-powered magnet positions patients for alignment so all body hydrogen nuclei 

(protons) face along the magnetic field direction. 

2. The protons receive brief bursts of Radiofrequency (RF) pulses through this process, which 

makes them deviate from their existing alignment state. After pulse application ends, the 

protons restore their natural state by softly returning and generating signals at the same 

time. 

3. The emitted signals travel to detectors, which send signals to a computer for analysis 

purposes until detailed body image representations form. Through signal production from 



15 

 

different tissue types such as muscles, organs, and fat, the diagnostic technique achieves 

contrast-based imaging of soft tissues. 

Types of MRI Images: MRI can be used to produce different types of images, each suited for 

specific diagnostic purposes. Some of the commonly used MRI techniques include 

T1-Weighted Images: The primary function of T1-weighted images consists of anatomical 

assessment while also providing detailed opposition between tissues and clear bone marrow and 

fat visibility. 

T2-Weighted Images: Studies show the high-water content areas in these pictures make them 

suitable for identifying inflammation and edema alongside tumors and pathological diseases. The 

brain assessment through MRI scans relies heavily on T2-weighted imaging because it shows fluid 

accumulation areas well. 

Diffusion-Weighted Imaging (DWI): The specific MRI examinations measure water particle 

motions inside body tissues. The medical community relies on DWI to examine stroke patients 

because restricted diffusion reveals areas of brain tissue affected by ischemia. 

Functional MRI (fMRI): The methodology of fMRI determines brain activity patterns through 

blood flow variations. MRI constitutes an essential technology for studying brain processes as well 

as cognition and emotions together with sensory functions. 

Magnetic Resonance Angiography (MRA): MRA technology functions as a diagnostic tool which 

illustrates blood vessels so doctors can detect vascular conditions such as aneurysms and arterial 

blockages. 

Magnetic Resonance Spectroscopy (MRS): The chemical composition of tissues can be evaluated 

through the advanced application of MRS, which expands the capabilities of MRI. The capability 

of this procedure proves crucial in brain disorder and tumor studies because it detects alterations 

in brain metabolism. 

Advantages in MRI Technology:  

1. MRI uses no radiation during imaging, thus establishing its safer position relative to X-

rays and CT scans, particularly for scenarios requiring frequent imaging. The ability to 

identify different types of soft tissues makes MRI a powerful tool that enhances its 

capability for brain, organ, and muscle assessments. 
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2. Multiple MRI images in axial, sagittal, and coronal planes can be obtained without shifting 

patients to achieve thorough anatomical evaluation. Modern MRI techniques use fMRI as 

well as MRS to produce functional and metabolic data, which extends MRI functionality 

beyond structural imaging capabilities. 

Key uses of MRI: 

I. This technique detects abnormal tissue growths in the brain as well as brain tumors and 

strokes. 

II. The MRI technique allows physicians to obtain complete images of both sensitive brain 

structures and muscles along with ligaments as well as other soft tissues, which normal X-

ray and CT scan technology cannot detect. 

III. MRI generates clearer visualization of tissues based on its ability to create better details in 

comparison to CT images. 

IV. The imaging process within MRI operates without utilizing radiation, which minimizes 

health dangers for patients. 

V. MRI technology enables doctors to identify heart problems together with detecting both 

cardiac structure anomalies and blood circulation issues. 

VI. The advanced imaging technology of MRI provides detailed pictures to health 

professionals within a risk-free diagnostic context. 

Positron Emission Tomography (PET): A nuclear medicine technique that visualizes metabolic 

activity, which is useful for detecting cellular-level changes in diseases. As a diagnostic tool, PET 

functions to detect cellular activity modifications leading to medical condition analysis. The 

medical staff intravenously delivers the radiotracer substance, which concentrates in the scanned 

body parts during imaging procedures. The tracer substance detects active chemical areas to aid 

disease detection [29]. The areas in question display either heat (high intensity) or cool (low 

intensity) characteristics on image scans. PET scans become more effective when used together 

with MRI or CT scanners because this combination produces detailed body assessments for 

improved medical diagnostics, and the sample images of PET are shown in Figure 1.11. 
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Figure 1.11: PET Sample Images 

Key Benefits of PET Scans: 

I. The functional capability of organs becomes visible in PET scans even though MRI and 

CT machines generate structural information. 

II. Diagnosis receives increased accuracy through the combination of PET with CT scanning 

technology. 

III. The diagnostic method stands out because it produces minimum discomfort, thus offering 

patients a favorable approach. 

1.5 BRAIN TUMOR SEGMENTATION 

Medical imaging professionals use brain tumor segmentation to automatically find and mark 

tumors in MRI scans because this operation serves as a crucial diagnostic and therapeutic planning 

process. The diagnostic and therapeutic assessment, along with disease monitoring, benefits from 

this method [30]. The segmentation process for brain tumors proves difficult because tumors often 

show diverse shapes combined with several sizes and intensities spread throughout various brain 

locations. There are some challenges in Brain Tumor Segmentation are as: 

● Tumors exist in diverse dimensions throughout the entire brain space because they take 

irregular forms of different sizes. 
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● Segmentation becomes more complicated because MRI images display irregular contrast 

throughout their area. 

● Learning becomes more challenging when tumors occupy just a minor section of the image 

because of class imbalance. 

● The presence of artifacts and noise in MRI scans makes them affect the accuracy of 

segmentation results. 

● Processes based on Deep Learning Models Need Access to Extensive Labelled Datasets for 

their Training Development. 

Basically, brain tumors are classified into two main categories: 

A. Benign Tumors— Non-cancerous growths that do not invade nearby tissues. 

B. Malignant Tumors – Cancerous tumors that spread and grow aggressively. 

Some common types include: 

1. Gliomas (e.g., Glioblastoma Multiforme - GBM) 

2. Meningioma’s 

3. Pituitary Tumors 

4. Metastatic Brain Tumors 

1.6 VARIOUS TYPES OF BRAIN TUMOR SEGMENTATION 

Medical image segmentation and their analysis function as an essential tool across diagnosis 

practices and surgery operations as well as computer vision-based systems encompassing 

biomedical image processing applications. The main function of image segmentation involves 

dividing images into separate regions that display homogenous properties under defined criteria. 

The initial component of computer vision systems and decision-making operations heavily 

depends on segmentation due to its crucial requirement of precise execution. The field of medical 

image segmentation together with soft computing techniques has experienced significant 

improvements throughout multiple years of development. Accurate diagnosis requires radiologists 

to use images with well-defined segmented regions because these segmented areas enable 

identification of brain tumor abnormalities between benign and malignant groups. Medical image 

segmentation requires different techniques because they need adaptation to handle distinct clinical 
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problems [31-34]. The implementation of these techniques meets three major barriers because of 

choosing stable algorithms, determining robust performance indicators, and consistently finding 

the application-specific region of interest. In an MRI tumor detection task, the Region of Interest 

(ROI) is the tumor, but in eye image examination, the ROI becomes the iris. A consistent and 

reliable result across all scenarios remains impossible through any single segmentation method, 

which demands developers create or update advanced segmentation methods for improved 

performance and ROI-specific adaptability [35]. Several approaches are used by the researchers 

for segmenting brain tumors from medical images, including: 

1. Segmentation based on Discontinuities 

2. Region-based Segmentation  

3. Clustering-Based Segmentation 

 

Figure 1.12: Brain Tumor Image Segmentation Approaches 

1.6.1 Segmentation based on Discontinuities 

Image segmentation happens through sudden changes in the detection of intensity values within 

images according to this method. Three classifications exist under this method, including Point 

Detection and Line Detection and Edge Detection. 

Point Detection: The identification of intense components that appear frequently throughout an 

image constitutes the core concept of point detection. Image processing occurs through the usage 
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of a high-pass filter in the form of a mask that operates by convolving it with the image for the 

purpose of point intensity change detection using equation 1. 

𝑅 = ∑𝑘
𝑝=1 𝑍𝑝 × 𝑓𝑝                                                                (1) 

Where Zp is the grey level of the pixel and fp is the mask coefficient at location p.  The point in the 

image is detected at the location on which the mask is centered if |R| ≥ T, where T is a 

non-negative threshold. 

Line Detection: The detection of lines depends on previously defined masks that search for 

orientation-specific linear elements. Four different types of line detection masks exist to identify 

elements along horizontal, vertical, and two diagonal +45° and -45° directions. Every pixel with a 

higher absolute value of Ri compared to Rj for all values of j except i indicates a likelihood of line 

association in the direction of the selected mask. A signal peak occurs when the system selects the 

mask that yields the maximum response value. 

Edge Detection: The outline of objects present in images is defined by edges during image 

processing operations. When a substantial immediate alteration occurs in gray-level intensity 

between adjacent image regions, then an edge becomes evident. The process of edge detection 

removes unneeded information while keeping only essential structural information about objects. 

The two fundamental categories of edge detection operators exist.  

● Gradient operators are tools that evaluate first-order image derivatives, which include the 

Sobel operator, Prewitt Operator and Roberts Operator. 

1. Sobel Operator 

2. Prewitt Operator 

3. Robert's Operator 

● Gaussian operators calculate image second-order derivatives through the following 

methods: 

1. Canny Edge Detector 

2. Laplacian of Gaussian (LoG) 

3. Marr-Hildreth Operator 
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1.6.2 Region-based Segmentation  

The main objective of segmentation operations consists in partitioning an image into several 

distinct areas. The technique executes its operations based on the comparative patterns inside the 

image. The process of region-based segmentation creates uniform regions out of areas that share 

common features. The approach includes three subcategories. 

Region Growing: It provides a method that unites smaller sub-regions into larger ones using 

defined criteria. The technique identifies first seed points before growing regions by including 

neighboring pixels that possess comparable characteristics. The process continues running until 

the applied rule condition remains valid; otherwise, the process ends. If seed points follow a rule 

to connect with neighboring pixels sharing similar attributes, the result becomes a consolidated 

segmented area. 

Region Splitting: Image segmentation through region splitting produces divisions of an image 

using fixed criteria. The technique starts by treating the whole image at the top level because of its 

top-down methodology. A region has no modification if it matches all the predetermined 

requirements. The region undergoes further splitting into sub-regions when it fails to match the 

defined condition. Repetitive application of this method continues until every segment matches 

the assigned segmentation requirement. 

Region Split and Merge: The method starts by splitting an image into regions through 

predetermined rules. The merged areas from segmentation produce the final results. A quadtree 

data structure serves as the common implementation method for carrying out this technique, 

through which the parent node shows the full image while child nodes display subdivided areas. 

The merging operation consolidates areas with identical features to heighten the performance of 

segmentation procedures. 

 

Threshold-Based Segmentation: Thresholding stands as a basic segmentation approach that 

separates objects from the background by using a threshold value (T). The quality of segmentation 

results depends on what algorithm is used for thresholding. Users need to scan a histogram to find 
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the most suitable threshold value so objects appear uniformly bright yet separate from background 

content. 

● A single fixed value of threshold T applies identically throughout every section of the 

complete image in global thresholding. Objects use the same region when pixels maintain 

intensity worth higher than T, although pixels below T get assigned to a separate region. 

● The threshold value T uses local neighborhood information to determine its setting through 

this method rather than using universal thresholding for pixel analysis. This makes it 

valuable for images with multidimensional intensity patterns and diverse illumination. 

The segmentation methods serve primary roles in image processing systems and help detect targets 

while classifying them effectively. 

1.6.3 Clustering-Based Segmentation 

The independent operation of clustering algorithms differs from classification algorithms where 

clusters are not predefined. The algorithms find excellent applications in detecting hidden patterns 

within data sets through heuristic methods. Such methods break images into groups that contain 

pixels that possess comparable features [36]. The fundamental clustering properties allow data 

elements to join groups where components inside share more similarities than elements from 

separate clusters. 

K-means Clustering Algorithm: The K-means algorithm represents an unsupervised learning 

method that serves as one of the basic clustering deployment strategies. The algorithm establishes 

a predetermined number of clusters that reorganize the specified image data. The clustering 

process starts with K centroid selection made at random to represent the initial cluster centers. The 

image pixels receive their assignment to the nearest centroids by calculating their distance to these 

centroids [37-39]. The clustering concludes when all image pixels obtain their correct cluster 

assignment and new centroid positions are computed from the determined cluster centers. The 

operational sequence continues until the centroids transform into fixed positions that no longer 

move. K-means clustering is a type of unsupervised learning algorithm used for unlabeled data 

(i.e., data without predefined categories or groups). The objective of this computation is to come 

across bundles in the used data, with the number of get-togethers spoken to by the variable K. The 
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count works iteratively to dole out each data point to one of K social affairs subject to the features 

that are given. Data spotlights are gathered subject to feature equivalence. The delayed 

consequences of the K-means clustering estimation are:  

❖ The centroids of the K bundles, which can be used to name new data  

❖ Labels for the planning data (each datum call attention to what is doled out to a singular 

gathering)  

K-means is one of the most straightforward unsupervised learning algorithms that addresses the 

significant clustering problem. The algorithm provides a straightforward approach to partition a 

given dataset into a predetermined number of clusters (k), which is defined beforehand. The 

fundamental concept is to delineate k centroids, each corresponding to a distinct cluster. These 

centroids should be established in a strategic manner, considering various regional factors that 

provide diverse outcomes. Therefore, the optimal decision is to position them as far apart as 

reasonably possible. The corresponding phase involves assigning each guide to a designated 

educational cluster and linking it to the subsequent centroid [39-44]. As soon as no points are 

pending, the fundamental progress is completed, and an initial assembly phase is concluded. We 

must now identify k new centroids as the barycenter of the clusters resulting from the previous 

expansion. Ultimately, these numerical targets limit a certain function, in this case, a squared error 

function. The objective task 

𝐽 = ∑𝑘
𝑗=1 ∑𝑛

𝑖=1 ‖𝑋𝑖
𝑗 − 𝐶𝑗‖2                                                    (2) 

Where ‖𝑋𝑖
𝑗 − 𝐶𝑗‖2 is a picked separation measure between an information point 𝑋𝑖

𝑗 and the 

bunch focus Cj, is a pointer of the parting of the n info focuses from their individual group focuses. 

The computation is made out of the associated advances: 

1 Spot K centers into the space spoken to by the things that are being gathered. These centers 

speak to beginning get-together centroids. 

2 Dole out everything to the social affair that has the closest centroid.  

3 At the point when the sum total of what things have been designated, recalculate the spots 

of the K centroids.  

4 Rehash Steps 2 and 3 until the centroids never again move. This makes a unit of the articles 

into social affairs from which the estimation to be restricted can be resolved.  
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Although the algorithm is guaranteed to converge, the k-means algorithm does not necessarily find 

the optimal solution, which would be the global objective function minimum. The algorithm is 

also sensitive to the initial, randomly selected cluster centers. The k-means computation can be 

kept running on various events to lessen this effect. K-means is a direct count that has been changed 

in accordance with various issue zones. As we are going to see, it is a better-than-average 

probability for extension to work with fleecy component vectors [45]. 

A Model: Suppose that we have n test incorporate vectors x1, x2, ..., xn, all from a comparative 

class, and we know that they fall into k diminished bundles, k < n. Allow mi to be the mean of the 

vectors in gathering I. In case the packs are especially detached, we can use a base division 

classifier to disengage them. That is, we may say that x is in bundle I if || x - mi || is the base of 

completely the k divisions. This suggests the following method for finding the k-means: 

Construct preliminary guesses for the means: m1, m2... mk 

Awaiting, there are no changes in the value of any mean 

Utilize the approximate means to categorize the samples into different clusters 

For i 🡪 1 to all k values 

      Substitute mi with the mean of each sample for created cluster i 

End 

End—Algorithm  

Here is an illustration presentation to show how the values mean m1 and m2 transfer into the 

centers of two different clusters. 

 
Figure 1.13: Example of Cluster 

Observations: This is an elementary rendition of the k-means approach. It tends to be perceived 

as an avaricious computation for parceling the n tests into k bunches with the intention of limiting 

the whole of the squared partings to the collection focuses. It has a small number of weaknesses:  
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o The method to instate the means was not designated. One well-known tactic to commence 

is to arbitrarily pick k of the examples.  

o The results delivered count on the primary qualities for the means, and it every now and 

again happens that problematic parcels are discovered. The standard arrangement is to 

attempt various diverse commencement phases.  

o It is able to come about that the planning of tests nearest to mi is empty, with the goal that 

mi can't be reinvigorated. This is an inconvenience that needs to be taken care of in an 

execution, nevertheless one that we shall overlook.  

o The results count on the measurement used to gauge || x - mi ||. A well-known plan is to 

normalize each factor by its standard deviation; nevertheless, this isn't regularly striking.  

o The consequences count on the assessment of k.  

This last issue is particularly badly designed, since we consistently get no opportunity to acquire 

of significant what number of packs exist. In the model showed up more than a comparable count 

associated with comparable data conveys going with 3-means clustering. Is it ideal or 

progressively lamentable over the 2-means clustering? 

 

Figure 1.14: Clustered Data 

Unfortunately, there is no general theoretical solution for finding the ideal number of clusters for 

a given dataset [46]. A basic procedure is to distinguish the concerns of various runs and 

distinguish k classes and pick the greatest one as per a given measure, yet users had better be 

cautious on the grounds that growing k brings around smaller blunder size esteems by definition, 

yet additionally an expanding risk of overfitting. 

Fuzzy C-Means (FCM) Clustering Algorithm: It differs from K-means because it enables pixels 

to join multiple clusters simultaneously, so their membership amounts change according to varying 
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criteria. The soft clustering technique balances flexibility well in situations where multiple data 

points share common features and need this type of analysis. The selection of initial centroids 

remains a highly sensitive step within FCM, and the number of clusters must be determined at the 

point of initialization [47-54]. The sensitivity requires users to carefully adjust parameters for 

optimal results when using this method. 

Major advantages of the algorithm of image segmentation:   

● Content-based image retrieval.  

● Video surveillance.  

● Used for locating objects and boundaries of line curves, images, and so on.  

● Essential in computer-aided diagnosis systems of various applications.  

● It divides the images into the specified description.  

● Better in data storing, communication, and image gaining.  

● It is versatile, robust, accurate, and efficient techniques present to segment the  

regions.  

Applications of image segmentation algorithms 

● Machine vision.  

● Content-based image retrieval.  

● Object detection.  

● Tumor detection and segmentation.  

● Mass detection.  

● Segmented body tissues/organs in medical application.  

● Task recognition.  

● Traffic control system.  

● Video surveillance.  

● Segmentation and texture analysis. 
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1.7 BRAIN TUMOR SEGMENTATION AND CLASSIFICATION 

Healthcare specialists who work with medical imaging must perform brain tumor segmentation 

along with classification tasks for exact diagnosis and treatment planning. Medical imaging 

personnel need to separate tumor regions in MRI or CT scans before categorizing tumors as 

gliomas, meningiomas, or pituitary tumors. Neuroimaging practices now achieve better brain 

tumor segmentation through the combination of U-Net and traditional segmentation processes such 

as thresholding and region-growing alongside K-Means and Fuzzy C-Means clustering along with 

modern CNNs and DeepLabV3+ deep learning models. The classification system integrates 

background and deep learning methods employing SVM and Random Forest together with CNNs 

that deploy VGG16 and ResNet via transfer learning techniques. The development of the field 

progresses forward while it encounters multiple enduring drawbacks, which stem from tumor 

variety alongside weak MRI contrasts along with unbalanced class distributions and insufficient 

available data. AI-related segmentation and classification research will integrate privacy-protected 

training via federated learning while adding both explainable AI techniques and 3D volumetric 

analysis and multi-modal imaging fusion outlooks for future work. Technological advancements 

will boost automation levels for tumor identification systems, thereby allowing radiologists to 

make decisions backed by clear evidence. 

Brain tumor segmentation and classification refers to the process of automatically identifying and 

distinguishing different types of brain tumors within a medical image, typically an MRI scan, by 

separating the tumor tissue from healthy brain tissue, allowing for accurate diagnosis and treatment 

planning; this is usually achieved using computer vision techniques, particularly deep learning 

algorithms, to analyze the image and classify the tumor based on its characteristics like size, 

location, and appearance. Key points about brain tumor segmentation and classification:  

• Image modality: MRI is the most commonly used imaging modality for brain tumor analysis 

due to its high soft tissue contrast.  

• Segmentation process:  

 • Identifying tumor boundaries: The algorithm identifies the pixels or voxels that belong to 

the tumor region, effectively outlining the tumor’s edges.  
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 • Pixel classification: Each pixel within the image is assigned a label indicating whether it 

belongs to the tumor, healthy brain tissue, or other relevant structures.  

• Classification process:  

 • Tumor type identification: Once the tumor is segmented, the system analyzes its features 

(like texture, intensity, and shape) to classify it into different types of brain tumors, such as glioma, 

meningioma, or pituitary adenoma.  

 • Grading: Some systems can further classify tumors based on their aggressiveness (grade), 

like low-grade or high-grade gliomas.  

Common techniques used for brain tumor segmentation and classification:  

• Deep learning models: Convolutional Neural Networks (CNNs) like U-Net are widely used for 

segmentation due to their ability to learn complex features from medical images.  

• Atlas-based methods: Utilizing a predefined brain atlas to register the patient's image and identify 

tumor regions based on anatomical landmarks.  

• Feature extraction techniques: Analyzing texture features within the tumor region.  

1.7.1 Problems related to Brain Tumor Segmentation and Classification 

Various difficulties affect both the accuracy and reliability of automated systems used for brain 

tumor segmentation and classification. The problem of high tumor variability concerning shape 

and size along with location results in poor model generalization across different brain tumor cases. 

The poor contrast and noisiness present in MRI scans make tumor borders difficult to discern, thus 

causing mistakes during segmentation and classification. The occurrence of class imbalance 

creates a major problem because uncommon tumor types become skewed towards prevalent 

diagnosis categories in deep learning models' predictions. Difficult training of models exists 

because manual radiologist annotations require extensive time investment and cost money. The 

distinction between benign and malignant growths becomes difficult because tumors present 

characteristics that duplicate normal brain tissue structures. The performance of models suffers 

when they become sensitive to initial conditions and model hyperparameters, particularly when 

using clustering-based or deep learning techniques. Medical professionals must have transparent 

processes for diagnosis since deep learning models do not provide understandable decision-making 
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mechanisms. Resolving these difficulties demands sophisticated AI methods together with 

enhanced accessibility to data as well as strong validation protocols to improve brain tumor 

segmentation and classification systems' accuracy and reliability levels. 

1.7.2 Application of Brain Tumor Segmentation and Classification 

Brain tumor segmentation and classification have numerous critical applications in the medical 

field, significantly improving diagnosis, treatment planning, and patient outcomes. Automated 

segmentation helps radiologists precisely identify and delineate tumor regions in MRI and CT 

scans, reducing manual effort and enhancing diagnostic accuracy. Classification models assist in 

differentiating tumor types, such as gliomas, meningioma’s, and pituitary tumors, enabling 

oncologists to tailor personalized treatment plans, including surgery, radiation, or chemotherapy. 

These techniques are also valuable for tumor progression monitoring, allowing doctors to track 

growth, recurrence, and response to treatment over time [58]. In surgical planning, accurate tumor 

segmentation helps neurosurgeons determine the safest approach for tumor removal while 

minimizing damage to surrounding healthy brain tissue. Additionally, AI-driven brain tumor 

analysis contributes to radiogenomics, which links imaging features with genetic mutations, aiding 

in precision medicine. It is also used in telemedicine and remote diagnostics, providing automated 

tumor detection in resource-limited settings where expert radiologists may not be available. 

Furthermore, clinical research and drug development benefit from these advancements, enabling 

large-scale tumor analysis for developing new therapeutic strategies [59]. As deep learning and AI 

technologies evolve, brain tumor segmentation and classification will continue to revolutionize 

neuro-oncology, improving early detection, treatment efficacy, and overall care. 

1.7.3 Challenges in Brain Tumor Segmentation and Classification 

Brain tumor segmentation and classification face several challenges that impact the accuracy and 

reliability of automated systems. The high variability in tumor shape, size, and location makes it 

difficult to develop generalized models that perform consistently across different patients. Low 

contrast and noise in MRI scans further complicate the distinction between tumor and healthy 

tissue, leading to potential misclassification. Class imbalance is another significant issue, as certain 

tumor types are rarer, causing bias in machine learning models. The lack of large, well-annotated 

medical datasets limits the training and validation of deep learning models, making robust 

generalization difficult. Additionally, tumors often exhibit overlapping features with normal brain 
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structures, making precise segmentation challenging. The sensitivity of clustering-based and deep 

learning models to hyperparameter tuning and initialization also affects segmentation accuracy. 

Furthermore, the black-box nature of deep learning models raises concerns about interpretability 

and trustworthiness in clinical applications [60]. Overcoming these challenges requires advanced 

AI techniques, better dataset availability, improved explainability in deep models, and efficient 

real-time processing methods to ensure accurate, reliable, and clinically useful tumor segmentation 

and classification. Challenges in brain tumor segmentation and classification:  

• Variability in tumor appearance: Brain tumors can have irregular shapes, blurry boundaries, 

and diverse intensity patterns, making accurate segmentation difficult.  

• Multimodal image analysis: Utilizing different MRI sequences (T1, T2, and FLAIR) can 

improve accuracy but requires complex integration.  

• Inter-observer variability: Different radiologists may interpret tumor boundaries differently.   

1.8 MOTIVATION ABOUT BRAIN TUMOR-RELATED WORK 

For the detection and treatment of cancer, image-based tumor segmentation and classification has 

a number of potential advantages, including: 

Enhanced accuracy: Tumor properties, including size, shape, and location, may be precisely 

identified and quantified with the use of image-based tumor segmentation and classification 

systems. This may result in diagnoses and treatments that are more specialized and exact. 

Time-saving: Automating the process of tumor identification and analysis using image-based 

tumor segmentation and classification techniques may speed up the procedure and lighten the 

burden of medical personnel. 

Non-invasive: Image-based tumor segmentation and classification algorithms do not need 

biopsies or surgical procedures since they are non-invasive. This may lessen the pain experienced 

by patients and the danger of consequences from invasive operations. 

Better monitoring: Image-based tumor segmentation and classification techniques may be used 

to track tumor development and response to therapy over time, assisting medical personnel in 

modifying treatment strategies as necessary. 
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Improved results: Image-based tumor segmentation and classification techniques may assist 

medical personnel in making more knowledgeable treatment choices, improving patient outcomes. 

Accessible: Image-based tumor segmentation and classification techniques may be used in a 

variety of locations, including underdeveloped and rural regions where access to expert medical 

personnel may be restricted [61]. 

Generally speaking, image-based tumor segmentation and classification have the potential to 

greatly enhance cancer diagnosis, therapy, and follow-up, resulting in improved patient outcomes. 

1.9 SIGNIFICATION OF BRAIN TUMOR-RELATED WORK 

Brain Tumour Segmentation and categorization of brain tumors are essential in medical imaging 

and healthcare, markedly enhancing the accuracy, efficiency, and efficacy of brain tumor diagnosis 

and treatment planning. Accurate segmentation aids in delineating tumor margins, quantifying 

tumor dimensions, and monitoring its evolution over time, hence facilitating informed decision-

making by radiologists and neurosurgeons. Automated classification facilitates the differentiation 

of various tumor forms, including gliomas, meningiomas, and pituitary tumors, which is crucial 

for tailored treatment approaches such as surgery, chemotherapy, or radiation therapy. Advanced 

AI-driven segmentation decreases manual labor, reduces human errors, and facilitates early 

diagnosis, resulting in enhanced patient survival rates. Moreover, precise classification aids in 

prognostic prediction and enhances medical research by offering critical insights into tumor 

behavior. The amalgamation of deep learning and machine learning models in segmentation and 

classification has transformed brain tumor analysis, providing expedited, more dependable, and 

economical diagnostic methods. Consequently, these improvements substantially boost healthcare 

systems, ultimately increasing patient outcomes and quality of life. 

 

1.10 RESEARCH GOALS & SCOPE  

The research goals in brain tumor segmentation and classification focus on developing accurate, 

efficient, and interpretable AI-driven solutions to assist in early diagnosis and treatment planning. 

The primary objectives include improving segmentation accuracy by leveraging unsupervised 

learning architectures such as K-means and FCM to accurately delineate tumor boundaries in MRI 
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and CT scans. Another key goal is enhancing tumor classification models using machine/deep 

learning and deep learning techniques, such as CNNs and transfer learning, to differentiate 

between tumor types like gliomas, meningiomas, and pituitary tumors. Researchers also aim to 

address challenges such as class imbalance, noise in medical images, and variability in tumor 

morphology by incorporating data augmentation, synthetic dataset generation, and multi-modal 

imaging fusion (MRI, PET, and CT). Additionally, improving explainability and interpretability 

in AI-based models is essential to ensure that automated systems can provide clinically reliable 

and transparent diagnoses [62-67]. 

The scope of brain tumor segmentation and classification research extends to multiple domains, 

including radiology, neurology, medical image processing, and artificial intelligence. It 

encompasses advancements in automated segmentation, feature extraction, and classification 

techniques, integrating both handcrafted and deep learning-based approaches. Furthermore, the 

research is applicable in CAD systems, surgical planning, and personalized medicine, ultimately 

aiding healthcare professionals in early detection, treatment response monitoring, and prognosis 

prediction. The integration of federated learning and cloud-based AI models expands the scope by 

enabling real-time and scalable tumor analysis across multiple hospitals while ensuring patient 

data privacy [68]. Future research directions involve refining real-time segmentation models, 3D 

volumetric analysis, and AI-driven decision support systems, making brain tumor diagnosis more 

accessible, reliable, and efficient. 

1.11 MEDICAL IMAGES DATASETS 

There are several datasets available for image-based tumor segmentation and classification. Here 

are a few examples: 

The Brain Tumor Segmentation (BraTS) dataset contains the following information: This is a very 

popular dataset for the segmentation of brain tumors, and it contains magnetic resonance imaging 

(MRI) images of brain tumors. The collection contains pictures of patients suffering from a wide 

variety of brain cancers, including glioblastoma and meningioma. On the official website of the 

BRATS Challenge, which can be found at 

https://www.med.upenn.edu/cbica/braintumors2020/data.html, the BRATS (Brain Tumor 

Segmentation) dataset is available for download. 

https://www.med.upenn.edu/cbica/braintumors2020/data.html
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Kaggle Data Set: provides brain MRI images for Brain Tumor Detection. The data set can be 

downloaded via https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor- 

detection  

Figshare Data Set: Figshare is an online open access repository where researchers can preserve 

and share their research outputs, including figures, datasets, images, and videos. The data set can 

be downloaded via https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 

Some sample data of the used dataset is shown in Figure 1.15. 

 

Figure 1.15: Sample of Brain MRI Images with Types from Dataset 

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
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1.12 CONTRIBUTION OF THESIS 

The research demonstrates that early tumor detection is beneficial for preserving human lives, 

driven by the pressing necessity for advancements in medical imaging technology to enhance the 

diagnosis and treatment of brain cancers. Brain tumors present significant challenges to healthcare, 

requiring accurate and effective segmentation methods for adequate analysis due to their 

complexity and diverse characteristics. Recent medical research has greatly enhanced the 

understanding of brain tumors, with MRI becoming an essential instrument for their detection. 

Nevertheless, the segmentation of these tumors continues to be a formidable task, occasionally 

susceptible to errors and inaccuracies. This study seeks to address these challenges by examining 

and comparing advanced clustering mechanisms via Moth-Flame Optimization (MFO), a swarm-

based technique for precise Brain Tumor Region (BTR) segmentation, and subsequently 

developing a Hybrid Model for Brain Tumor Analysis (BTA) utilizing Convolutional Neural 

Networks (CNN) as an innovative deep learning methodology. In prior research, various swarm-

based metaheuristic algorithms were compared to identify MFO as the superior technique in 

conjunction with K-means clustering for segmenting the BTR from MRI [11]. Here, five different 

models for swarm-based optimization techniques are used that are shown in Figure 1.15, and the 

names of the algorithms are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 

Firefly Algorithm (FFA), Cuckoo Search Algorithm (CSA), and Moth-Flame Optimization 

(MFO), as illustrated in Figure 1.16 [12].  

Figure 1.16: Latest Swarm-based Algorithms 
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The comparative review of existing segmentation methods in prior research is to uncover and 

refine clustering mechanisms that might substantially improve the accuracy and efficiency of MRI-

based brain tumor segmentation. This optimization's potential influence transcends research 

facilities, extending into clinical environments and providing healthcare practitioners with a more 

dependable instrument for the early detection and diagnosis of tumors. The pursuit of an enhanced 

segmentation approach transcends academic interest; it aims to elevate patient outcomes and 

advance the progression of medical procedures. This study aims to offer useful insights that can 

transform the approach to the BTA model, promoting breakthroughs that promise more accurate 

diagnoses, prompt interventions, and enhanced patient care. This project aims to catalyze positive 

change in neuroimaging and brain tumor detection within the context of essential medical 

innovation. The major contributions are listed as: 

1. To present a short survey on the detection and classification of brain tumors to identify the 

challenges and issues. 

2. Pre-processing methods are employed to enhance the quality of MRI data and improve the 

clarity of images. 

3. To detect and segment the BTR from MRI, K-means with MFO as a swarm-based optimization 

is used. validate  

4. To train and validate the BTA model, CNN with MFO is used as a novel deep learning 

approach. 

5. To find out the BTA model efficiency, performance parameters are calculated and compared 

with existing works in terms of sensitivity, precision, F1-score, Mathew Correlation Coefficient 

(MCC), Dice, Jaccard, specificity, accuracy, and time. 

1.13 STRUCTURE OF THE THESIS 

Chapter 2 presents a comprehensive review of the literature related to brain tumor segmentation 

and classification using various techniques, including clustering methods, deep learning 

architectures, optimization strategies, and evaluation metrics. The chapter also includes a detailed 

literature summary in tabular form to provide a comparative analysis of different methodologies. 

Furthermore, this chapter identifies the research gaps in existing approaches, laying the foundation 

for the proposed work. 
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Chapter 3 introduces the problem formulation, derived from an extensive literature survey on brain 

tumor segmentation and classification. It outlines the key research objectives established based on 

the identified challenges. Towards the end, the chapter provides a detailed explanation of the 

proposed clustering and deep learning algorithms that aim to enhance segmentation and 

classification accuracy. 

Chapter 4 describes the research methodology employed in this study, detailing the algorithms and 

models developed to improve brain tumor segmentation and classification. This chapter elaborates 

on the techniques used, such as machine learning, convolutional neural networks (CNNs), hybrid 

clustering approaches, and deep learning-based segmentation models. 

Chapter 5 discusses the experimental setup required for implementing the proposed brain tumor 

segmentation and classification model. It also covers the computational resources, datasets used 

(e.g., BraTS dataset), pre-processing techniques, and software tools necessary for the research. 

Towards the end, the chapter highlights the infrastructure and facilities utilized for experimentation 

and model evaluation. 

Chapter 6 presents the experimental results and analysis of the proposed segmentation and 

classification techniques. This chapter includes a discussion of the performance metrics (such as 

Dice coefficient, Jaccard index, accuracy, precision, recall, and F1-score) and a comparative 

analysis with existing state-of-the-art methods. Additionally, it covers the implementation details, 

hybrid algorithm execution, and insights derived from experimental findings. The chapter 

concludes by evaluating the proposed methodologies against benchmark datasets and existing 

literature. 

Chapter 7 concludes the thesis by summarizing the key findings and contributions of the research. 

It also explores potential areas for future work, such as improving segmentation models using 3D 

deep learning architectures, explainable AI (XAI) techniques, multi-modal image fusion (MRI, 

PET, CT), and federated learning approaches for privacy-preserving medical image analysis. 

This structured approach ensures a comprehensive study on brain tumor segmentation and 

classification, addressing challenges and proposing innovative solutions to advance medical image 

processing and AI-driven diagnostics. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 REVIEW OF LITERATURE 

This chapter includes multiple scenarios to present a quick assessment of existing work related to 

brain tumor segmentation and classification techniques. The existing work based on the image 

classification with the help of a hybrid approach is well illustrated. In this chapter, we will discuss 

the segmentation of various types of data that are captured from CT scans in medical science. A 

brief but deep explanation of some of the most significant contemporary clustering emphasizing 

medical image segmentation as well as classification techniques will be provided. These methods 

are utilized in the process of segmenting a wide variety of medical pictures. 

Chander et al. published an article in Elsevier in 2011 considering the Otsu's method, which was 

modified in combination with the PSO approach for segmentation of images. Furthermore, the 

effectiveness had been improved by computing the threshold level, which is evaluated by 

experimental analysis and is able to adequately address picture segmentation concerns. Also, it 

was demonstrated that the enhanced segmentation method outperformed other recognized methods 

[13].  

After that, a model was developed in 2013 by Bandyopadhyay and Paul employing the K-means 

clustering-based diagnostic method to segment the BT using MRI images. Furthermore, precision 

of the segmented images had been improved by the authors by dividing the devised system into 

two parts. In the first, the registration of an image was discussed, and in the second, the fusion of 

two registered MRI pictures. The segmentation of tumor areas in MRI is then done using the 

concept of improved K-means. The design system, however, was restricted by the restrictions of 

the data pattern and was not suitable for the 3D modelling of medical image segmentation and also 

ran into the problem of segmentation mixing [14].  

In order to address these problems in MIS, Zhao et al. in 2014 developed a methodology to address 

the pixel mixing issue in K-means-based segmentation of medical images. Here, the author 
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introduces the PSO concept to enhance the effectiveness of using MRI for tumor segmentation. In 

this case, the initial clusters for the MRI pixels are created using the PSO concept, and the mixing 

problem is then tried to be solved using fitness. The experimentation revealed the modified K-

means technique had been employed considering the K-means for performance metrics such as 

execution speed and accuracy rate [15].  

The same year, a study based on the notion of conventional fuzzy C-means (FCM) for segmenting 

BTs was published in IJIRCCE. To identify tumors from the MRI, the tumor investigators in this 

instance also used an advanced K-means [16]. 

In 2017, Parasar and Rathod published a comparison of seeded region growth, watershed, and 

FCM combined with the swarm-based PSO for the medical image segmentation of ultrasound 

pictures utilizing the PSO and K-means combination [17].  

Ventateshan and Parthiban focused on using the K-means with PSO for the segmentation of MRI 

images with hybrid technique in 2017. The kernel filter was also employed for better results, and 

it was assessed for its quicker execution time, but accuracy still requires more attention [18].  

Hasan did research in 2018 using the PSO to autonomously segment brain cancers using MRI 

data. To achieve segmentation accuracy of about 92%, the authors used the segmentation technique 

with PSO [19].  

In 2018, Karegowda et al. suggested a technique based on MRI-based BT-based segmentation. 

The authors concluded that using PSO is a wise move after further contrasting the K-means, FCM 

(also a clustering method), and Adaptive Regularized Kernel-based PSO with FCM (ARK-PSO) 

approaches. According to experimental findings, PSO-based segmentation is more accurate than 

the conventional techniques such as meta-heuristic techniques [20].  

Arun Kumar et al. implemented a better automated method for segmenting and identifying BT 

locations using K-means in 2019. The pre-processing stages are included in which an image is 

improved in order to accurately forecast a BT [21].  

The authors first used the Harvard Whole Brain Atlas dataset for the improvement of MRI brain 

image; Hrosik et al. published an article using the K-means technique in conjunction with FFO in 
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the same year. The results demonstrated that the hybrid strategy performed more effectively than 

the others [22]. 

In 2020, Chander et al. built a model to help the process of tumor segmentation from various 

levels of MRI scans with the assistance of clustering-based methods such as the K-means 

algorithm and Support Vector Machine, also known as SVM, as a machine learning method. The 

system's (developed) accuracy rose when compared to the earlier work [23], indicating that the 

model was successful. 

In 2021, S Gupta et al. developed a model for brain tumor segmentation and classification utilizing 

a multi-task attention-guided network as a proposed machine learning approach. This study aims 

to construct a multi-task attention-guided network (MAG-Net) for the segmentation and 

classification of tumors using brain MRI data. The authors utilized the publicly accessible dataset 

referred to as "Figshare." This dataset has three tumor types: meningioma, glioma, and pituitary 

tumor, presented in coronal, axial, and sagittal views, respectively. The model demonstrated 

potential in comprehensive experimental trials, surpassing current state-of-the-art models while 

utilizing the minimal number of training parameters. [24]. 

AR Khan et al. conducted research in 2021 to develop a model for segmentation of brain tumors 

using a clustering approach with deep learning for synthetic data. Here, authors generated a hybrid 

approach with K-means as clustering and a deep learning mechanism for the augmented data 

classification. The suggested procedure in this research includes three basic stages named as: pre-

processing, K-means-based clustering for the brain tumor region segmentation, and 

benign/malignant tumor classification utilizing MRI data via a fine-tuned VGG19 model as a deep 

learning approach. Furthermore, the concept of synthetic data augmentation is introduced to 

increase the volume of data available for training classifiers, hence enhancing classification 

accuracy. Comprehensive evaluations were conducted to evaluate the proposed technique utilizing 

the BraTS 2015 benchmark datasets. The results confirm the efficacy of the proposed strategy, 

which surpassed previously documented state-of-the-art procedures regarding accuracy [25]. 

In 2021, T Tazeen & M Sarvagya had conducted research to design a model for Brain Tumor 

Segmentation as well as their Classification from the MRI data with the help of Multiple Feature 

Extraction approach and Convolutional Neural Network (CNN). In order to take preventative 
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measures against brain tumors, MRI is used for early diagnosis and assessment. Brain tumors can 

be better diagnosed with the use of MRI because of the information it provides about sensitive 

human tissue. In this research, we present a technique for detecting and classifying brain tumors 

utilizing an ensemble of CNNs to extract and classify features [26]. 

FJ Díaz-Pernas and M Martínez-Zarzuela, In 2021 developed a deep learning model for the 

segmentation and classification of brain tumors. This paper presents a fully automated model for 

brain tumor segmentation and classification utilizing multi-scaled Deep CNN. The proposed 

concept of this model diverges from previous efforts in various ways, notably by analyzing input 

images at three unique spatial scales through discrete neural networks. This method is inspired by 

the inherent working of the human visual system. The proposed neural model does not necessitate 

any preprocessing of input images to eliminate skull or vertebral column segments for the analysis 

of MRI scans featuring meningioma, glioma, and pituitary tumors across sagittal, coronal, and 

axial perspectives. The proposed method is evaluated against conventional machine learning and 

deep learning techniques utilizing a publicly available MRI imaging dataset of 3064 slices from 

233 patients. Our methodology surpassed other approaches utilizing the same database by attaining 

an exceptional accuracy of 0.973 (97.3%) in tumor categorization. [28]. 

In 2022, M Arif et al. had developed a model for brain tumor segmentation and their classification 

using the concept of Genetic Algorithm (GA)-based U-Net as a deep learning approach. The 

following steps are used by the authors in this work, a deep learning method for detecting brain 

tumors: Data is obtained from the REMBRANDT dataset, which contains multi-sequence MRIs 

of 130 patients; (b) pre-processing is performed by converting to greyscale, skull stripping, and 

histogram equalization; (c) GA is used for segmentation; (d) discrete wavelet transform (DWT) is 

used for feature extraction; (e) particle swarm optimization is used for feature selection; and (f) U-

Net is used for classification. The suggested model (GA-UNET) has been shown to perform better 

than existing state-of-the-art models in experiments and achieved 97% accuracy, 98% sensitivity, 

and 98% specificity [29]. 

KA Kumar & R Boda in 2022 had developed a multi-objective-based beetle swarm and 

multiverse optimization algorithm for brain tumor segmentation and their classification in 

randomly updated populations. The purpose of this research work is to use a wide variety 

of intelligent approaches to create a model that can accurately classify types of brain 
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tumors. Here, authors used lots of steps like image pre-processing, skull stripping, tumor 

segmentation, feature extraction, and classification, which are the primary steps in the 

proposed model. First, a median filter is applied to the image once it has been converted 

from RGB to grayscale. In addition, Otsu thresholding is used for skull stripping, which 

involves erasing the extra-meningeal tissue from the head picture. Optimized threshold-

based tumor segmentation using multi-objective randomly updated beetle swarm and 

multiverse optimization (RBS-MVO) is the key contribution, and it is used to perform 

tumor segmentation [30]. The literature from 2022 to 2024 reinforces the shift towards 

deep learning (DL) as the standard for brain tumor detection, with many studies comparing 

ML and DL approaches [98-101]. Comprehensive surveys from this period confirm that 

machine learning and AI are central to modern diagnostics [102-103], with bibliometric 

reviews identifying key trends and research gaps [104]. Recent studies heavily emphasize 

the efficacy of DL models [105-107], including ensemble approaches [108] and deep 

analysis of various DL networks [109]. A significant trend is the use of transfer learning, 

employing pre-trained models to achieve high accuracy [110]. Other novel approaches 

include integrating DL with techniques like Proper Orthogonal Decomposition [111] or 

combining deep features with ML classifiers and genetic algorithms for feature selection 

[112]. Hybrid models, such as those using optimization techniques with DL, also show 

promise [113-114]. While these recent works report high classification accuracy, a critical 

observation is that many, like earlier studies, are validated on similar benchmark datasets 

[115]. This highlights an ongoing need for models that not only perform well but are also 

proven to generalize across diverse, multi-institutional clinical data, addressing the gap this 

thesis aims to fill. A results-based summation is explained using the BraTS dataset and is 

shown in Figure 2.1. 
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Figure 2.1: Top methods using the BraTS Dataset 

In Figure 2.1, three different abbreviations are used: multilevel thresholding (MT), ET (enhancing 

tumor), WT (whole tumor), and TC (tumor core). In this figure, ensemble techniques have recently 

been adopted by researchers to obtain cutting-edge performance. The ensemble approaches 

precisely combine the segmentation findings of many models to increase the robustness of the 

individual approach, producing better recital than inter-rater agreements. A well-trained and 

known UNet is used, according to the claim that single UNet-based models continue to provide 

incredible concert. According to the literature study, segmentation algorithms' accuracy and 

resilience will be greatly enhanced by analyzing the hyperparameters, which is a pre-processing 

method. Table 2.1 shows the segmentation of BT using the dataset, and a summary of the BT 

segmentation-based survey is given. 

2.2 LITERATURE SUMMARY (TABULAR FORM) 

Table 2.1 Literature Review 

References Proposed Work Used Techniques Dataset Summary of Effectiveness 

  Segmentation of BT 

[13] MT-based image 

segmentation 

☞ Swarm-based PSO 

using OTSU method 
General ☞ There is more than 95% 

accuracy. 

[14] Segmenting the BT from 

MRI 

☞ Clustering using K-

means 
MRI Data 

Bank 

☞ There is more than 97% 

accuracy. 
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[15] An improved clustering 

method for segmentation 

☞ Clustering using K-

means  

☞ PSO technique 

— ☞ The execution time is 1.5 

s. 

[16] Segmenting the BT  ☞ Clustering using K-

means  

☞ FCM clustering 

MRI 

Dataset 

☞ The tumour area is 

detected   

[17] Segmenting the foetus 

ultrasound image 

☞ Clustering using K-

means  

☞ FCM clustering 

☞ PSO  

Foetus 

Ultrasonic 

☞ There is about 93% 

accuracy. 

[18] MIS  ☞ FCM clustering  

☞ Hybridized PSO 

using kernel filter 

☞ Segmentation using 

Quantum PSO  

IRIS 

Dataset 

☞ Execution time  

[19] MRI segmentation of BT  ☞ Active Contour 

☞ Swarm-based PSO 

☞  

MRI Data 

from Iraqi 

Centre for 

Research 

☞ Accuracy = 92% 

[20] Segmenting MRI BT 

images 

☞ Clustering using K-

means  

☞ Clustering using 

FCM  

☞ PSO-based 

segmentation  

☞ Kernel FCM using 

Adaptive Regularised  

 

 

 

— 

Computation of Peak Signal-

to-Noise Ratio (PSNR), 

Mean Square Error (MSE), 

Normalised Cross 

Correlation (NCC), 

Structural Similarity Index 

(SSIM) and Accuracy 

[21] Abnormality in BT  ☞ Clustering using K-

means  

☞ Using the ANN  

BRATS 

Dataset 

☞ The accuracy is about 

94%  

☞ The Sensitivity is about 

90%  

☞ The specificity is about 

97%. 

[22] Brain image segmentation  ☞ Using the OTSU 

technique 

☞ Clustering using K-

means  

☞ Segmentation using 

FFO  

Harvard 

Whole 

Dataset 

Computation of Normalized 

Root MSE, PSNR, and SSIM 
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[23] Detection and 

Classification of BT  

☞ Segmentation using 

DWT  

☞ Clustering using 

clustering technique 

and classifier 

Harvard 

University 

Repository 

The accuracy is about 93%. 

[24] Brain tumour 

segmentation using the 

concept of DL 

☞ Ensemble 

☞ Cascaded 

☞ Unet 

☞ SegNet 

☞ Two-stage Unet 

BRATS 

Dataset 

Computation of Dice, 

Sensitivity, Specificity , 

and Hausdorff 95   

The following issues are emphasized as downsides after an analysis of the several literature 

surveys on related work to the segmentation of various medical images: 

☞ The primary mistake in the current or existing unsupervised clustering-based segmentation 

of an image is the overlapping of image foreground and background due to the problem of 

pixel mixing. 

☞ The existing swarm-based or clustering-based image segmentation procedure requires 

more time to perform segmentation in the proper manner, and there may be a significant 

number of clusters that are unknown. 

☞ According to the discussion in related work, it is evident that large-scale segmentation 

operations have been plagued by challenges of segmentation of complicated pictures in the 

scenario of MRI, dermoscopy, CT scans, and microscopic images. This is because image 

quality and the demand to focus on quality improvements are the primary causes of these 

problems. 

☞ There are a lot of researchers that run into the problem of pixel mixing because of the 

frequent changes in pixel value in the neighborhood, but there are still some things that 

might be improved. 

☞ The quality of the segmentation results is highly dependent on the initialization of the 

clustering algorithm. Choosing appropriate initial cluster centers can be a challenging task, 

and incorrect initialization can lead to poor segmentation results. 
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☞ Clustering algorithms can suffer from over-segmentation, where the image is divided into 

too many small regions, or under-segmentation, where the image is not divided into enough 

regions. Both of these can lead to inaccurate segmentation results. 

☞ Unsupervised clustering-based segmentation can have difficulty with images containing 

complex objects, such as overlapping or occluded regions, or regions with varying textures 

or colors. In these cases, more sophisticated segmentation methods may be required. 

The effectiveness of segmentation algorithms with and without unsupervised clustering-based 

approaches is shown in the following Figure 2.2. 

 

Figure 2.2: Efficiency Unsupervised Clustering-based Approaches for Medical Images 

Based on the aforementioned investigation in the related work, came to the conclusion that medical 

image segmentation is a very complex procedure that requires a number of crucial processes that 

vary depending on the kind of image data. The technique for segmenting images may split the 

medical picture into many divisions in accordance with the accessible pixel groups that are 

organized according to the information about the backdrop and the foreground of the image. We 

know that the images are made up of different pixel combinations, and based on their intensity 

value, any segmentation algorithm is performed. Due to such a crucial task, algorithms faced the 

pixel mixing problem, which is displayed in Figure 2.3. 
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Figure 2.3: Clustering Faces Pixel Mixing Problems 

Pixel mixing is a common problem in clustering-based image segmentation. It occurs when pixels 

with different characteristics, such as color or texture, are clustered together, resulting in the 

mixing of different regions. This can lead to inaccurate segmentation results, with boundaries 

between regions becoming blurred or indistinct. Pixel mixing can occur for several reasons during 

the clustering method, including: 

Inappropriate Distance Metric: The distance metric used to measure the similarity between 

pixels can have a significant impact on the clustering results. If the distance metric is not 

appropriate for the image data, pixels with different characteristics can be clustered together, 

resulting in pixel mixing. 

Overlapping Regions: In some cases, regions in an image may overlap, making it difficult to 

distinguish between them. This can result in pixels from different regions being clustered together, 

leading to pixel mixing. 

Noise: Noise in the image data can also contribute to pixel mixing. If the clustering algorithm is 

not robust to noise, pixels with different characteristics can be clustered together, resulting in 

inaccurate segmentation. 

Insufficient Number of Clusters: If the number of clusters used in the clustering algorithm is 

insufficient, pixels with different characteristics can be clustered together, leading to pixel mixing. 



47 

 

To address pixel mixing in clustering-based image segmentation, several techniques can be used, 

including: 

Swarm-based hybridization: Use the concept of swarm-based meta-heuristic approach as well 

as AI approach to solve such kinds of problems. 

Adaptive Distance Metric: Using an adaptive distance metric that takes into account the local 

characteristics of the image can help to overcome pixel mixing. 

Multi-Scale Segmentation: In this step, performing segmentation at multiple scales can help to 

separate overlapping regions and reduce pixel mixing. 

Robust Clustering Algorithms: Using clustering algorithms that are robust to noise and can 

handle overlapping regions can help to reduce pixel mixing. 

Post-Processing: Applying some post-processing techniques, such as morphological operations 

or boundary refinement, can help to improve the accuracy of the segmentation results and reduce 

pixel mixing. 

PSO, ABC, FFA, CSA, and GHA are just a few of the swarm-based optimization algorithms that 

are available to conduct enhanced medical picture segmentation. Several new approaches are also 

being developed in this area. However, since they are essentially incompatible with all types of 

medical imaging, the current conventional procedures are less effective. It is vital to discover an 

effective combination in order to fix the problem with clustering-based segmentation and boost 

the effectiveness of the medical diagnostic system. 

2.3 RESEARCH GAP IDENTIFICATION 

After reviewing the research literature already published in the field of medical image 

segmentation with their classification research, the following points have been identified as 

interferences drawn and verdicts from the present state of the art. These are depicted below. 

1. The fundamental drawback of the current clustering-based segmentation technology is the 

duplication of foreground and background [14]. 



48 

 

2. Because of the unknown large number of clusters, the segmentation process takes longer to 

execute when bio-inspired algorithms are used, which is typical in optimization-based 

methodologies [24]. 

3. According to the discussion in related work, the difficulties encountered in the segmentation 

of complicated images in the contexts of MRI, dermoscopy, CT scans, and microscopy are a 

direct result of poor image quality [25], highlighting the importance of concentrating on 

enhancing image quality in large-scale segmentation jobs. 

4. The pixel-mixing problem that researchers encounter [27] is caused by the frequent variations 

in pixel value that occur in the neighborhood.  

5. In prior work, contour-based segmentation was utilized, but there was no threshold that was 

justified, which resulted in segmentation that was prone to mistake [27]. This proposal is 

capable of being improved, and the definition of the problem justifies doing so in this fashion. 

6. Although swarm-based optimization is a density-based optimization approach that always 

requires an enormous amount of data to be processed, it is used for the optimization of the 

region that has been segmented with an improved fitness function [28]. Thus, validating 

swarm-based approaches is a crucial next step that has been neglected in the existing literature. 

Need to test the other swarm-based algorithms, such as Cuckoo, Firefly, and Whale, among 

others, to make sure that they, too, work correctly at low densities. 
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CHAPTER 3  

RESEARCH PROBLEM & OBJECTIVES 

3.1 PROBLEM FORMULATION 

From the survey, issues and challenges related to medical image segmentation are discussed, and 

it is the process of dividing medical images into multiple segments or regions of interest for the 

purpose of analysis, diagnosis, and treatment planning. However, there are several issues and 

challenges associated with medical image segmentation, some of which include: 

Limited availability of annotated data: Medical image segmentation requires large amounts of 

labeled data for training machine learning models. However, obtaining annotated medical images 

is a difficult and time-consuming process. 

Complexity of medical images: Medical images are often complex, with variations in contrast, 

noise, and image artifacts that make it difficult to accurately segment the images. 

Variability in anatomical structures: Anatomical structures in medical images can vary 

significantly between patients, making it challenging to develop a one-size-fits-all segmentation 

model. 

Integration with clinical workflows: Medical image segmentation needs to be integrated with 

clinical workflows to be effective. This requires careful consideration of the clinical context and 

the specific needs of the healthcare provider. 

Interobserver variability: Even among medical experts, there can be variability in how medical 

images are segmented, leading to inconsistencies in diagnoses and treatment plans. 

Scalability: Medical image segmentation requires large amounts of computational resources, and 

scaling the process to handle large datasets can be challenging. 

Ethical concerns: Medical image segmentation can raise ethical concerns related to privacy, data 

ownership, and the use of sensitive medical information. 
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Overall, medical image segmentation is a challenging task that requires careful consideration of 

several factors, including data availability, image complexity, clinical workflows, and ethical 

considerations. Advances in machine learning and artificial intelligence are helping to address 

some of these challenges, but continued research is needed to improve the accuracy and scalability 

of medical image segmentation. 

The majority of segmentation techniques for medical images are based on pixel grouping, pixel 

texture, and pixel color information. According to the most recent study, most segmentation 

techniques need refinement in order to attain the diagnostic system's efficiency. Most writers 

weren't concerned with creating an effective system with their choice of ML technique for 

segmentation. Table 3.1 compares several segmentation approaches based on difficulties and 

challenges. 

Table 3.1 Comparison of Segmentation Techniques for Problem Analysis 

Techniques of 

Medical Image 

Segmentation  

Description of 

Techniques 

Advantages of 

Techniques 

Shortcomings of Techniques 

Segmentation-based 

on the concept of 

thresholding [13, 22] 

Depending on the 

chosen threshold 

value, utilize the peak 

areas of the picture 

histogram. 

✔ It is an easy process that 

doesn't need any prior 

knowledge of pixels. 

✔ Low computational 

complexity.  

✔ Images' spatial features are not 

taken into account during the 

process of segmentation. 

✔ Had issues with neighboring 

pixel overlap. 

✔ Cannot guarantee that 

segmented sets of images are 

contiguous. 

Segmentation-based 

on the concept of Edge 

[39] 

The foundation for the 

operation is the 

discontinuity in the 

pixel pattern. 

✔ Work better for better 

quality images. 

✔ Segmentation efficiency is 

affected in the case of noisy 

images, and output is less 

accurate. 

Segmentation-based 

on the concept of 

region [17, 19, 26] 

Segmentation is 

carried out by first 

identifying 

homogenous regions 

and then applying 

partition. 

✔ Work outmost for the 

particular region in 

images. 

✔ The time complexity of this 

algorithm is very high with 

maximum consumption of 

memory to perform medical 

image segmentation. 

Segmentation-based 

on the concept of 

Watershed [17] 

Segmentation 

employs the method 

of topological 

interpretation. 

✔ Segmentation stability is 

very high for the 

boundaries-based 

scheme 

✔ Complexity of the algorithm is 

very high due to the concept of 

the gradient calculation. 
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Segmentation-based 

on the concept of 

clustering [14-18, 20-

23, 33, 34, 36, 42] 

Classify or create a 

cluster of an image's 

pixels into several 

regions or segments 

based on the centroid. 

✔ It is an iterative method 

that takes only a few 

seconds to segment a 

picture. 

✔ Furthermore, they are 

suited to an irregular 

picture and provide 

superior outcomes. 

✔ For the low-quality images, 

segmentation performance is 

worst. 

✔ The number of clusters and 

their unsupervised position is 

not fixed due to the 

mechanism. 

✔ In most cases, algorithms face 

the problem of pixel mixing. 

Hybrid-based [17-20, 

22, 40-41] 

Based on the AI 

learning process and 

capable of handling 

problems related to 

decision-making. 

✔ There is no need to 

implement a difficult 

program. 

✔ Quicker than most 

✔ Particular model training 

is not mandatory 

✔ Not appropriate to all medical 

images, and the fitness 

standards need to be updated 

in accordance with the types of 

images. 

The problem of tumor segmentation and classification is an active research area in brain tumors, 

along with some other medical imaging and machine learning. Some of the common challenges 

and issues faced by these models include: 

Limited training data: Tumor segmentation and classification models require large amounts of 

high-quality training data to learn accurate representations of the tumors. However, obtaining such 

data is often challenging due to the limited availability of annotated medical images. 

Variability in tumor appearance: Tumors can have varying shapes, sizes, and appearances, 

depending on the type of cancer and the stage of the disease. This variability makes it difficult for 

models to accurately detect and segment tumors. 

False positives and false negatives: Tumor segmentation models can sometimes produce false 

positives (i.e., regions that are identified as tumors but are not actually tumors) or false negatives 

(i.e., regions that are not identified as tumors but are actually tumors). False positives can lead to 

unnecessary treatments, while false negatives can result in missed diagnoses and delayed 

treatments. 

Inter-observer variability: Medical experts can have different interpretations of medical images, 

leading to inconsistencies in tumor annotations. This variability can make it challenging to create 

reliable ground truth annotations for training and evaluating segmentation and classification 

models. 
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Generalization to new data: Tumor segmentation and classification models trained on one 

dataset may not generalize well to new datasets with different characteristics. This issue can be 

addressed by using transfer learning or domain adaptation techniques to improve the model's 

ability to generalize to new data. 

The purpose of this study is to develop an image-based tumor segmentation and classification 

system that is dependable and accurate. This system will be able to automatically recognize and 

classify various types of tumors, as well as their sizes and locations, based on pictures taken from 

medical scans of tumors. The accurate categorization of malignant pictures requires extensive 

work that may be accomplished using segmentation. The segmented component is then followed 

by the process of feature extraction, and then the classification architecture is followed after that. 

Sadly, the process of segmentation has not garnered a great deal of attention in this particular field. 

There are a few different segmentation methods that are described in the introductory section; 

however, these methods come with a number of constraints and difficulties in terms of processing. 

Furthermore, not every segmentation method is appropriate for each and every kind of picture. 

The algorithm has to be able to handle a wide variety of tumor types and imaging modalities while 

yet maintaining a high level of accuracy and reducing the number of false positives and negatives 

as much as possible. This statement explains the main aspects of the work, including the necessity 

to handle a range of tumor types and imaging modalities, the potential benefits for cancer diagnosis 

and therapy, and the precision and dependability required for image-based tumor segmentation 

and classification. In addition, it highlights how essential accuracy and a low rate of both false 

positives and negatives are to the efficacy of any method for dividing tumors into their many 

subtypes and classes. The inability to extract the most useful and relevant feature sets from the 

pictures or the location of the tumor is the primary contributor to the difficulties encountered by 

the tumor segmentation and classification system. Cuckoo Search Algorithm (CSA)-based K-

means clustering is the finest for the segmentation of regions (according to the existing work), 

which is why there are so many different options available, such as ICA, Genetic Algorithm (GA), 

Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). These can all help to 

reduce the likelihood of these kinds of issues occurring in the system. As a result of the 

characteristics of CSA, it is quite simple to exclude undesirable regions from the Region of Interest 

(ROI). This study effort uses swarm-based K-means clustering to separate the cancerous data and 

to extract the essential feature from that data. Pattern-based feature extraction using a deep learning 
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algorithm is employed as a classifier. The performance metrics of the suggested job will be 

calculated at the very end of the system in order to check the work in terms of precision, recall, F-

measure, error rate, accuracy, and execution time. 

3.2 RESEARCH OBJECTIVES 

The purpose of this study is to provide an artificial intelligence-based method that has been 

optimized for the segmentation and classification of brain tumors/cancers derived from MRI 

images. The following is a list of the objectives that have been established for this work: 

1. To study and analyze the existing deep learning-based models for detection of brain cancer. 

2. To preprocess and segment the brain cancer images from the identified dataset. 

3. To develop a hybrid deep learning-based model using a metaheuristic approach for the 

detection of brain cancer. 

4. To test and validate the developed model with the existing models. 
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CHAPTER 4  

RESEARCH METHODOLOGY 

This fragment explains the working strategy used to achieve the mentioned objectives of the model 

using the concept of deep learning as an artificial intelligence technique for the analysis of brain 

tumors. The problems of existing work and identified gaps are resolved in this research work by 

using an optimized segmentation technique to segment the exact region of the brain tumor from 

the MRI images, and then Artificial Intelligence (AI) is used to train the system based on the 

extracted feature of the segmented Region of Interest (ROI) of the MRI images. The ensuing stages 

show the assortment of phases that must be completed: 

Step 1. Firstly, design a framework using the concept of Graphical User Interface (GUI) for 

simulation of a proposed hybrid deep learning-based model using a metaheuristic approach 

for the detection of brain cancer, and the developed model is an optimized AI-based 

approach for segmentation and classification of brain tumor MRI images. 

Step 2. Upload training and testing images from the dataset of MRI images for the simulation 

purpose of the developed model. 

Step 3. Applying pre-processing to the uploaded MRI images to segment the tumor ROI data from 

the images by utilizing the concept of an unsupervised clustering-based segmentation 

approach with swarm-based metaheuristic techniques, and a comparative analysis is done 

to identify the effective algorithm for the proposed model. 

Step 4. Apply the concept of fitness of the meta-heuristic algorithm that is known as the objective 

function to minimize the unwanted or extraneous area from the ROI data. 

Step 5. Develop a code by utilizing the unlabeled pattern-based feature descriptors for feature 

extraction from the segmented ROI data. 

Step 6. Initialize the concept of AI as deep learning for cancer classification purposes in two 

different phases, namely, 1. Training and 2. Testing.  

Step 7. After the training of developed system, the testing phase is processed based on the saved 

trained structure to identify the kind of cancer from the used images.  
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Step 8. In the testing phase of the model, the test images (which may be cancerous or non-

cancerous) are uploaded, and the steps of the methodology from three to five are repeated. 

In the classification section, the test image feature is matched with the trained deep learning 

structure, and the result type is returned. 

Step 9. After the simulation model efficiency is validated on the basis of the Quantitively 

Parameters like Precision, Recall, F-Measure, Error Rate, Accuracy and Execution Time 

and the flowchart of the proposed model is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flowchart of Proposed Work 
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Based on the mentioned flowchart of the proposed model, the entire model is segregated into two 

different phases; that is why in this research there are two frameworks designed: 

1. Framework of Brain Tumor Segmentation 

2. Framework of Brain Tumor Classification  

In the below section, both frameworks are explained with the steps used for development and their 

algorithms.  

4.1 FRAMEWORK OF BRAIN TUMOR SEGMENTATION 

According to the study, detection of tumors at an early stage is a beneficial way to protect human 

lives, and the motivation behind undertaking this study is rooted in the critical need for 

advancements in medical imaging technology to enhance the diagnosis and treatment of brain 

tumors. Brain tumors pose significant challenges to healthcare, with their complexity and diverse 

characteristics requiring precise and efficient segmentation techniques for accurate analysis. 

Current medical research has made remarkable strides in the understanding of brain tumors, and 

MRI has become a cornerstone in their detection. Nevertheless, the process of dividing these 

tumors into segments continues to be a difficult undertaking, frequently susceptible to mistakes 

and imprecisions. This study aims to confront these challenges directly by investigating and 

contrasting enhanced clustering mechanisms through the application of swarm-based 

methodologies, including Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 

Firefly Algorithm (FFA), Cuckoo Search Algorithm (CSA), and Moth-Flame Optimization 

(MFO). While all these swarm-based techniques are adept at optimization, MFO was selected as 

the primary metaheuristic for this thesis due to its distinct advantages in balancing exploration and 

exploitation. Unlike PSO, which can sometimes converge prematurely to a local optimum, MFO's 

mechanism, where moths update their position relative to flames (the best solutions found so far), 

provides a more robust global search capability. The number of flames is adaptively decreased 

over iterations, which systematically shifts the algorithm's focus from exploration (searching 

broadly for new solutions) to exploitation (refining the best-known solutions). This adaptive 

mechanism is particularly well-suited for the complex and high-dimensional search space of 

medical image segmentation and feature selection, reducing the risk of pixel mixing and 

optimizing cluster centroids more effectively than other swarm methods. This research seeks to 
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uncover and optimize clustering mechanisms by a comparative examination of current 

segmentation methods, thereby considerably improving the accuracy and efficiency of MRI-based 

brain tumor segmentation. This optimization's potential influence transcends research facilities, 

extending into clinical settings and providing healthcare practitioners with a more dependable tool 

for the early detection and diagnosis of tumors. The pursuit of an enhanced segmentation approach 

transcends academic interest; it aims to elevate patient outcomes and advance the progression of 

medical procedures. This project aims to catalyze positive change in neuroimaging and brain tumor 

detection within the context of essential medical innovation. The major contributions are listed as 

those that are used in the development of the relative analysis: 

1.  To detect and segment the Region of tumor (ROT) from MRI data, a comparative analysis 

is performed for Fuzzy C-means (FCM) and K-means with a swarm-based optimization 

method that is presented in Figure 42. 

2. To validate and find out the best approach, performance parameters are calculated and 

compared in terms of Sensitivity, Precision, F1-score, Mathew Correlation Coefficient 

(MCC), Dice, Jaccard, Specificity, Accuracy, and Time. 
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Figure 4.2: Architecture of Proposed Comparative Model 

The proposed comparative model's block strategy is depicted in Figure 4.2. Essentially, describe a 

comparative brain tumor segmentation model using clustering-based methods and their 

hybridization with swarm-based optimization approaches to improve the efficiency of 

segmentation techniques. In this study, two distinct scenarios—one using the hybridization of K-

means with PSO and MFO and the other involving the hybridization of FCM with PSO and 

MFO—were used. This section of the thesis describes the proposed comparative system for brain 
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tumor segmentation from MRI data using different approaches and their hybridization. In this 

research, we compare classic and enhanced segmentation methods for ROT segmentation from 

brain MRI data. Here, introduced a comparative scheme using six scenarios: 

4.1.1 FCM-based ROT Segmentation 

This suggested system uses FCM for unsupervised clustering-based segmentation of ROT from 

MRI data. FCM assigns each image pixel to numerous clusters with varying degrees of 

membership for soft assignments. This soft assignment allows brain tumor segmentation to better 

depict tissue properties by reflecting medical picture uncertainty and ambiguity. Based on this 

architecture, FCM creates two parts of an MRI picture: a background and a foreground component, 

which is the ROT because FCM's capacity to detect tiny gradients and pixel brightness helps it 

define tumor boundaries. This helps clinicians plan and track treatment by accurately localizing 

and delineating tumor locations. We apply some pre-processing stages in all six scenarios, starting 

with MRI image-like color conversion (if needed) using equation 1 and image quality enhancement 

using algorithm 1 with the help of equations 2 and 3. 

𝑀𝑅𝐼𝐺𝑟𝑒𝑦 𝑖𝑚𝑎𝑔𝑒  =  0.299 × 𝐼(: , : ,1) + 0.587 × 𝐼(: , : ,2) + 0.114 × 𝐼(: , : ,3)        (1) 

Where, MRI Grey image is the grey MRI that is attained after the conversion based on the clipped 

region of the MRI for quality enhancement. Here, the red component of the image is represented 

as 𝐼(: , : ,1), the green as 𝐼(: , : ,2), and the blue as 𝐼(: , : ,3). At last, to calculate the usual number 

of pixels in MRI described by the equation 2, which helps to improve the image quality and makes 

the tumor portion visible. 

𝑃𝐴𝑉𝐺 =
𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥_𝑎𝑥𝑖𝑠) × 𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥_𝑎𝑥𝑖𝑠)

𝑀𝑅𝐼𝐺𝑟𝑒𝑦 𝑖𝑚𝑎𝑔𝑒
                                             (2) 

Equation 2 determines the MRI picture pixel average, where 𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥_𝑎𝑥𝑖𝑠) represents the 

number of image pixels along the x-axis in a clipped region of the image (PCLIP). The clip limit 

(PCL) of MRI image enhancement is computed using equation 3, and then the procedure is used to 

enhance the image. 

Algorithm 1: MRI Enhancement  

Input: MRI Images 🡪 MRI 
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Output: Enhanced Data of MRI 🡪 EMRI 

A. Start MRI Enhancement  

B. Load the MRI 

C. Calculate size of MRI image = [Row, Col., and D] 

D. Set clip limit, PCL = PCLIP - PAVERAGE                    

E. If D>1 

F.     MRI_R = Red Part of MRI 

G.     MRI_G = Green Part of MRI 

H.     MRI_B = Blue Part of MRI 

I.     For I, according to Clip Limit 

J.         R = Intensity (MRI_R, PCL) 

K.         G = Intensity (MRI_G, PCL) 

L.         B = Intensity (MRI_B, PCL) 

M.     End—For  

N.     EMRI Image = cat (3, Red, Green, Blue) 

O. Else 

P.     For I, according to Clip Limit 

Q.          EMRI = Intensity (MRI (I), PCL) 

R.     End—For  

S. End If  

T. Return: EMRI as an Enhanced MRI image 

U. End—Algorithm  

Here, segregate brain tumors from MRI images as foregrounds after the MRI enhancement 

process. It contains tumor pixels and excess pixels from the split part's background. The suggested 

system with the FCM algorithm is 

Algorithm 2: FCM-based Segmentation  

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of ROT 🡪 B-MRI and ROT  

A. Start FCM-based Segmentation  

B. Initialize a group for segmentation (G = 2) 
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C. EMRI Size = [Row, Col, Plane] 

D. A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT 

E. ITR = N is set for iterations. 

F. While I TR ≠ N (if max imu m iteration is not ac hieved) 

G.        For m according to Row 

H.             For n according to Col 

I.                  If M-Image [m, n] == C1 

J.                       B-MRI [m, n] = EMRI [m, n] 

K.                  Else Default == C2      

L.                       ROT [m, n] = EMRI [m, n] 

M.                  End – If  

N. Adjust Centroid C during segmentation using given equation 

O. 𝐶𝑚𝑛 = (∑𝑛
1 [𝐶1, 𝐶2](𝛾𝐺

𝑚 ∗ 𝑥𝐺)/ ∑𝑛
1 𝐶1, 𝐶2]𝛾𝐺

𝑚  

P. Repeat and define membership function given equation 

Q. [𝐶1, 𝐶2] = ∑𝑛
1 (𝑑𝐺𝑚

2 /𝑑𝐺𝑛
2 )1/𝑚−1]−1                           

R.              End – For  

S.        End – For 

T. End – While  

U. Return: B-MRI and ROT as a segmented MRI background and foreground  

V. End – Algorithm  

For the FCM-based segmentation, we use this technique to segment the ROT from MRI images. 

4.1.2 K-means-based ROT Segmentation 

In the second scenario of the suggested model, employed K-means instead of FCM because it 

yields superior segmentation results. K-means can segment more appropriate tumor regions from 

MRI scans, but poor contrast images can cause mix-ups, so it cannot always produce better 

segmentation results. Since it is an unsupervised clustering method, it can divide input MRI image 

pixels into numerous clusters based on pixel intensity levels. Large datasets and real-time 

applications benefit from K-means' computational efficiency over Fuzzy C-means. K-means 

simplicity permits faster convergence, which is important in clinical settings where speedy 

decision-making is needed. K-means creates clusters with well-defined borders, improving 
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segmentation interpretation. This trait is useful for clinical decision-making when tumor and 

healthy tissue must be distinguished. The suggested algorithm for K-means-based ROT 

segmentation is written as: 

Algorithm 3: K-means-based Segmentation 

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of ROT 🡪 B-MRI and ROT  

A. Start K-means-based Segmentation 

B. Initialize a group for segmentation (G = 2) 

C. EMRI Size = [Row, Col, Plane] 

D. A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT 

E. ITR = N is set for iterations. 

F. While I TR ≠ N (if max imu m iteration is not ac hieved) 

G.        For m according to Row 

H.             For n according to Col 

I.                 If EMRI [m, n] == C1 

J.                     B-MRI [m, n] = EMRI [m, n] 

K.                 Else Default == C2      

L.                     ROT (m, n) = EMRI [m, n] 

M.                 End – If  

N. Adjust Centroid C using their mean 

O. C = Average (B-MRI, ROT) using the given equation 

P. 𝐶𝑚𝑛 = ∑𝑅𝑜𝑤
𝑚=1 ∑𝐶𝑜𝑙

𝑛=1
𝐶1𝑚𝑛+𝑚𝑛

2
                                

Q.            End – For  

R.       End – For 

S. End – While  

T. Return: B-MRI and ROT as a segmented MRI background and foreground 

U. End – Algorithm  

The K-means algorithm in the article produced better segmented results than the FCM-based 

model. 
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4.1.3 FCM with PSO-based ROT Segmentation 

This situation works like FCM; however, it employs PSO as a hybrid segmentation algorithm. PSO 

is the basic metaheuristic swarm-based strategy that uses fitness to tackle segmentation mix-up. 

PSO was developed by Eberhart and Kennedy for evolutionary image segmentation. The 

algorithm can traverse over the search space and track coordinates with a fitness solution to solve 

unsupervised FCM clustering to improve MRI image segmentation. The FCM method utilizing 

PSO-based ROT segmentation is stated as follows: 

Algorithm 4: FCM with PSO-based Segmentation 

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of ROT 🡪 B-MRI and ROT 

A. Start FCM with PSO-based Segmentation 

B. Size in terms of T = Size (EMRI) 

C. Define fitness function: 

D. 𝑓𝑖𝑡 (𝑓𝑢𝑛) = {1    𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠  0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

E. For l, according to T 

F.       𝑓𝑠 = 𝐸𝑀𝑅𝐼(𝑙)  

G.       𝑓𝑡 =
∑𝑃𝑖𝑥𝑒𝑙𝑠

𝑖=1 𝐸𝑀𝑅𝐼(𝑙)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑀𝑅𝐼 𝑃𝑖𝑥𝑒𝑙𝑠
  

H.       𝑓𝑖𝑡(𝑓𝑢𝑛) = A/c to equation  

I.        𝑇𝑣𝑎𝑙𝑢𝑒 =  𝑃𝑆𝑂(𝑃, 𝑇, 𝐿𝐵, 𝑈𝐵, 𝑁, 𝑓𝑖𝑡(𝑓𝑢𝑛)) 

J. Where, Lower Bound (LB), Upper Bound (UB), Number of selection (N) 

K. End – For  

L. Set OITR = N // optimization iterations 

M. While O I TR ≠ N (if not reac hed max  iteration) 

N. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒          

O. Mask Image = Binary (ROT, Threshold) 

P. Boundaries = Find out boundary (Mask Image) 

Q. ROT = Boundaries 

R. For k, according to D 

S. ROT = EMRI × ROT 
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T. End – For   

U. Return: B-MRI and ROT as a segmented MRI background and foreground 

V. End – Algorithm  

Better segmented results were obtained using the hybrid segmentation algorithm in the suggested 

model, which combines FCM and PSO, than using only FCM in the ROT segmentation model. 

4.1.4 K-means with PSO-based ROT Segmentation 

This scenario works like K-means; however, applied PSO to hybridize K-means for segmentation, 

and the algorithm of K-means with PSO-based ROT segmentation is written as: 

Algorithm 5: K-means with PSO-based Segmentation 

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of ROT 🡪 B-MRI and ROT 

A. Start K-means + PSO-based Segmentation 

B. Size in terms of T = Size (EMRI) 

C. Define fitness function: 

D. 𝑓𝑖𝑡 (𝑓𝑢𝑛) = {1    𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠  0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

E. For l, according to T 

F.       𝑓𝑠 = 𝐸𝑀𝑅𝐼(𝑙)  

G.       𝑓𝑡 =
∑𝑃𝑖𝑥𝑒𝑙𝑠

𝑖=1 𝐸𝑀𝑅𝐼(𝑙)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑀𝑅𝐼 𝑃𝑖𝑥𝑒𝑙𝑠
  

H.       𝑓𝑖𝑡(𝑓𝑢𝑛) = A/c to equation  

I.        𝑇𝑣𝑎𝑙𝑢𝑒 =  𝑃𝑆𝑂(𝑃, 𝑇, 𝐿𝐵, 𝑈𝐵, 𝑁, 𝑓𝑖𝑡(𝑓𝑢𝑛)) 

J. Where, Lower Bound (LB), Upper Bound (UB), Number of selection (N) 

K. End – For  

L. Set OITR = N // optimization iterations 

M. While O I TR ≠ N (if not reac hed max  iteration) 

N. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒          

O. Mask Image = Binary (ROT, Threshold) 

P. Boundaries = Find out boundary (Mask Image) 

Q. ROT = Boundaries 
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R. For k, according to D 

S. ROT = EMRI × ROT 

T. End – For   

U. Return: B-MRI and ROT as a segmented MRI background and foreground 

V. End – Algorithm  

Better segmented results were obtained by the hybrid segmentation approach in the suggested 

system, which combined K-means with PSO, than by either the FCM with PSO-based ROT 

segmentation model or solely K-means-based ROT segmentation. 

4.1.5 FCM with MFO-based ROT Segmentation:  

In this scenario, MFO is hybridized with FCM. As justified in Section 4.1, MFO's adaptive 

exploration and exploitation mechanism is employed here to optimize the clustering process. MFO 

with an optimal and innovative fitness function solves the FCM separation or pixel mix-up 

problem during the ROT segmentation. MFO is a swarm-based bio-inspired metaheuristic 

algorithm inspired by moth (insect) behavior that searches for pixels that mix together during 

segmentation and separates those pixels using morphological operations. The algorithm of FCM 

with MFO-based ROT segmentation in the ASBT system is written as: 

Algorithm 6: FCM with MFO-based Segmentation 

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of ROT 🡪 B-MRI and ROT 

A. Start FCM + MFO-based Segmentation 

B. Apply K-means segmentation on EMRI 

C. To optimized the ROT, MFO is used on FCM output 

D. Set up basic parameters of MFO: Population of Moth (PM)—Pixel count in EMRI 

E. Define position function: 

F. 𝜈(𝑟) = 𝜈0 × 𝑒𝑥𝑝(−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚),      𝑖𝑓 𝑚 ≥ 1 

G. Where distance = distance between moth and light 

H. 𝝂0 = initial velocity at d=0 

I. m = Position of Moth (PM) 

J. Define novel fitness function:  
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K. 𝑓𝑢𝑛(𝑓𝑖𝑡) = {1;   𝑖𝑓 𝐸𝑀𝑅𝐼           𝑃𝑖𝑥𝑒𝑙 <

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝑖𝑥𝑒𝑙 0;                                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

L. Set, ROT and B-MRI = [] 

M. For m according to Row 

N.      For n according to Col 

O.           CM = EMRI (m, n)  

P.           MG = ∑𝑚
1 ∑𝑛

1
𝐸𝑀𝑅𝐼(𝑚,𝑛)

𝑚×𝑛
 

Q.           Threshold = MFO (fun (fit), CM, MM) 

R.      End – For 

S. End – For 

T. If EMRI (Pixels) > Threshold 

U.     ROT = EMRI 

V. Else 

W.     B-MRI = EMRI 

X. End – If  

Y. Set OITR = N // optimization iterations 

Z. While O I TR ≠ N (if not reac hed max  iteration) 

AA.          Mask Image = Binary (ROT, Threshold) 

BB. Boundaries = Find out boundary (Mask Image) 

CC. ROT = Boundaries 

DD. For k according to D 

EE.      ROT = EMRI × ROI 

FF. End – For   

GG. Return: B-MRI and ROT as a segmented MRI background and foreground 

HH. End – Algorithm  

With the help of the above-mentioned hybrid segmentation algorithm using FCM with MFO-based 

ROT segmentation, we achieve better results, but the combination with K-means outperforms it, 

as is shown in the next section of the article. 
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4.1.6 K-means with MFO-based ROT Segmentation 

This is the last scenario of the proposed comparative system and uses K-means with MFO as a 

hybrid segmentation technique with a novel fitness function defined in equation 8. The algorithm 

of K-means with MFO-based ROT segmentation is similar to Algorithm 6; here, only the K-means 

output is used instead of the FCM output. Figure 4.3 displays the segmented result alongside the 

original pictures, obtained using the aforementioned suggested hybrid algorithm that combines K-

means with MFO as an optimization strategy. This method outperforms other cases when it comes 

to accurately segmenting the tumor region from MRI scans. 

 

Figure 4.3: (a) Original MRI (b) Grey (c) Color, (d) Mask Image of ROT (e) Segmented ROT Mask and (f) Segmented ROT using 

K-means with MFO with Maximum Accuracy 

  

Last but not least, the simulation compares the six scenarios described in the study article with 

respect to the following performance metrics: Accuracy, Sensitivity, F-measure, Precision, MCC, 

Dice, Jaccard, Specificity, and Time Complexity. In order to evaluate the efficacy of segmentation 

algorithms in precisely outlining tumor locations, it is essential to evaluate parameters during brain 

tumor segmentation. There is a distinct function for each of the aforementioned parameters in 

assessing various parts of the segmentation outcomes. The findings of the experiment and the 

segmentation of brain tumors utilizing the aforementioned hybrid segmentation approach are 
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detailed in the following portion of this research article using a few sample MRI images. Figure 

4.4 displays the list of sample MRI images that were used from the MRI Benchmark Dataset.  The 

dataset comprises a comprehensive collection of 3064 brain MRI slices, obtained from two distinct 

hospitals in China: Nanfang Hospital and General Hospital, Tianjin. The scans were gathered 

between 2005 and 2010. This dataset comprises three distinct types of brain tumors, namely 

meningioma, glioma, and pituitary tumor. The collection has a total of 708, 1426, and 930 photos 

for each corresponding tumor type. Essentially, meningioma and glioma are classified as 

malignant or cancerous, while pituitary tumors are considered benign or non-cancerous. A total of 

233 individuals underwent MRI scans, resulting in the acquisition of 1025 sagittal pictures, 994 

axial images, and 1045 coronal images. 

 

Figure 4.4: Sample of Brain MRI Images with Types from Dataset 

 The only hope is that by comparing previous studies on ROT segmentation from MRI, we can 

improve the methods and ultimately get better results when analyzing various proposed 

approaches. Table 4.1, which includes the source images, describes the simulation results of the 

suggested comparative models and helps to understand the effects of optimization approaches. 

Table 4.1 Brain Tumour Segmentation Comparison 

Model  Original MRI 

Images 

Preprocessed 

MRI Images 

Segmented Images 

Labelled Mask Region Tumour 

1 
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2 

      

3 

      

4 

      

5 

      

6 

      

The suggested comparison model of brain tumor segmentation employing the hybridization of 

traditional segmentation approaches with the swarm-based metaheuristic algorithms was tested on 

the aforementioned dataset of sample MRI images. After the segmentation of the ROT from MRI 

images, the next section of the model is designed for further processing by utilizing the different 

steps like feature extraction, feature selection, and then model training and testing of the developed 

model with the mentioned standard dataset.  

4.2 FRAMEWORK OF BRAIN TUMOR CLASSIFICATION 

The prior model seeks to address these challenges by examining and comparing advanced 

clustering techniques via MFO, a swarm-based method, for precise Brain Tumor Region (BTR) 

segmentation, and subsequently developing a Hybrid Model for Brain Tumor Analysis (BTA) 

utilizing Convolutional Neural Network (CNN) as an innovative deep learning strategy. In prior 

research, comparing various swarm-based metaheuristic algorithms identified MFO as the superior 

strategy in conjunction with K-means clustering for segmenting BTR from MRI images. This 
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section introduces a hybrid BTA model that employs K-means clustering, MFO, and CNN for 

brain tumor segmentation and classification into several categories based on the dataset. The 

primary objective is to identify the BTR from the MRI and classify it as benign or malignant. The 

proposed BTA model consists of the following key components for simulating and evaluating 

efficiency: selection of an MRI benchmark dataset, pre-processing of MRI images, hybridization 

for BTR segmentation, feature extraction, feature selection, and training/classification utilizing 

CNN. Figure 4.5 displays the flowchart of the proposed BTA model in detailed steps. 

 

Figure 4.5: Flowchart of Proposed BTA Model 

The BTA model flowchart demonstrates that the operational principle of the proposed model 

consists of four stages: pre-processing, segmentation employing the K-means clustering algorithm 

enhanced by MFO for superior segmentation of BTR, name-based feature extraction, and feature 

selection utilizing the MFO method. An additional phase is incorporated, designated as CNN-

based BTA model training and tumor classification into the several specified categories shown in 

Figure 4.6. 



71 

 

 

Figure 4.6: Sample of Brain MRI Images with Types from Dataset 

The dataset comprises 3,064 brain MRI slices acquired from Nanfang Hospital and General 

Hospital in Tianjin, China, during the period from 2005 to 2010. This dataset has three categories 

of brain tumors: meningioma (708 photographs), glioma (1,426 images), and pituitary tumor (930 

images). Meningiomas and gliomas are classified as malignant, whereas pituitary tumors are 

designated as benign. The MRI scans were obtained in three anatomical planes: sagittal (1,025 

images), axial (994 images), and coronal (1,045 images), derived from 233 subjects. Figure 4.6 

displays samples of several tumor types spanning these planes, with the regions of Interest (ROI) 

for brain tumors delineated by bold red lines. The figure presents a compilation of sample MRI 

images sourced from the MRI Benchmark Dataset, which will undergo further processing, 

commencing with pre-processing in the initial stage. 

4.2.1 MRI Pre-processing 

The design of the BTA model is a fundamental step undertaken to enhance MRI picture quality 

for subsequent processing. To improve MRI picture quality, we employ an intensity-based image 

enhancement approach with constrained adaptation. The concept of limit is employed to establish 

a range for enhancing the contrast and intensity of each pixel in the image, as delineated by 

Equation 3. 

𝐸𝑀𝑅𝐼 = (𝑀𝑅𝐼 −  𝑀𝑅𝐼𝐼𝐿
)

𝑀𝑅𝐼𝐼𝐻− 𝑀𝑅𝐼𝐼𝐿

𝑀𝑅𝐼𝐼𝐻− 𝑀𝑅𝐼𝐼𝐿

+ 𝑀𝑅𝐼𝐼𝐿
                                        (3) 

Examine an MRI image with a resolution of 256 × 256 pixels, including a total of 'n' pixels. The 

image's intensity values are restricted within predefined maximum and lowest thresholds, 

influenced by limited clipping derived from the average pixel intensity. The mean (AVG) pixel 

count in the MRI image is represented by Equation 4. 

𝑃𝐴𝑉𝐺 =
𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥𝑎𝑥𝑖𝑠) × 𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥𝑎𝑥𝑖𝑠)

𝐺𝑀𝑅𝐼𝐼𝑚𝑎𝑔𝑒
                                                      (4) 
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Where 𝑃(𝑟𝑒𝑔𝑖𝑜𝑛−𝑥𝑎𝑥𝑖𝑠) signifies the number of pixels along the x-axis in a clipped region (PCLIP). 

The lower and higher intensity values of the MRI image are represented by MRIIL and MRIIH 

respectively. The applied pre-processing on the MRI image is illustrated in Figure 4.7. 

 

Figure 4.7: Pre-processing on Sample MRI 

The graphic seems to depict a processing change in MRI scans, with image A as the original brain 

MRI and image B as the processed or enhanced version. This is an explanation derived from typical 

observations in such comparisons:   

Image A (Left Side): This displays the unprocessed MRI image, with the tumor location 

discernible but not dramatically emphasized. The contrast and sharpness may be diminished, 

complicating the discernment of intricate details.   

Image B (Right Side): This depicts the post-processed MRI image, featuring enhancements such 

as contrast correction, edge highlighting, or segmentation. The tumor site is more distinctly 

emphasized, possibly facilitating clearer identification and investigation. The pre-processing of 

MRI images occurs in two steps, with the initial stage involving color conversion as described by 

equation (3). 

𝐺𝑀𝑅𝐼𝐼𝑚𝑎𝑔𝑒  =  0.299𝑅 + 0.587𝐺 + 0.114𝐵                                                           (3) 

GMRIImage refers to the grayscale MRI image acquired after the color conversion using the 

aforementioned equation, and in the subsequent step, MRI image enhancement is conducted, as 
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seen in Fig. 6.  An intensity-based picture quality improvement is performed after the color 

conversion process using the restricted clipping idea. Pre-processing enhances the segmentation 

of tumor regions of interest from MRI images, and the algorithm is written as: 

Algorithm 7: MRI Enhancement  

Input: MRI Images 🡪 MRI 

Output: Enhanced Data of MRI 🡪 EMRI 

V. Start MRI Enhancement  

W. Load the MRI 

X. Calculate size of MRI image = [Row, Col., and D] 

Y. Set clip limit, PCL = PCLIP - PAVERAGE                    

Z. If D>1 

AA.     MRI_R = Red Part of MRI 

BB.     MRI_G = Green Part of MRI 

CC.     MRI_B = Blue Part of MRI 

DD.     For I, according to Clip Limit 

EE.         R = Intensity (MRI_R, PCL) 

FF.         G = Intensity (MRI_G, PCL) 

GG.         B = Intensity (MRI_B, PCL) 

HH.     End – For  

II.     EMRI Image = cat (3, Red, Green, Blue) 

JJ. Else 

KK.     For I, according to Clip Limit 

LL.          EMRI = Intensity (MRI (I), PCL) 

MM.     End – For  

NN. End—If  

OO. Return: EMRI as an Enhanced MRI image 

PP. End – Algorithm  
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4.2.2 K-means with MFO-based BTR Segmentation 

As established in the comparative analysis (Section 4.1), the combination of K-means and MFO 

yielded the best segmentation performance. Therefore, this hybrid approach is adopted for the 

classification framework. K-means is used for its computational efficiency and ability to create 

distinct cluster boundaries , while MFO is applied to optimize the segmentation and overcome 

issues of suboptimal image contrast. The suggested algorithm for K-means with MFO-based BTR 

segmentation is written as: 

Algorithm 8: K-means with MFO-based Segmentation 

Input: Enhanced Data of MRI 🡪 EMRI 

Output: Background and Foreground of MRI in terms of BTR 🡪 B-MRI and ROT  

V. Start K-means with MFO-based segmentation. 

W. Initialize a group for segmentation (G = 2) 

X. EMRI Size = [Row, Col, Plane] 

Y. A predetermined number of clusters, C = C1 and C2 // Where C1 for B-MRI and C2 for ROT 

Z. ITR = N is set for iterations. 

AA. While I TR ≠ N (if max imu m iteration is not ac hieved) 

BB.        For m according to Row 

CC.             For n according to Col 

DD.                 If EMRI [m, n] == C1 

EE.                     B-MRI [m, n] = EMRI [m, n] 

FF.                 Else Default == C2      

GG.                     BTR (m, n) = EMRI [m, n] 

HH.                 End—If  

II. Adjust Centroid C using their mean 

JJ. C = Average (B-MRI, BTR) using the given equation 

KK. 𝐶𝑚𝑛 = ∑𝑅𝑜𝑤
𝑚=1 ∑𝐶𝑜𝑙

𝑛=1
𝐶1𝑚𝑛+𝑚𝑛

2
                                                                                                                          

(4) 

LL.            End – For  

MM.       End – For 
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NN. End – While  

OO. To optimized the BTR, MFO is used on FCM output 

PP. Set up basic parameters of MFO: Population of Moth (PM)—Pixel count in EMRI 

QQ. Define position function: 

RR. 𝜈(𝑟) = 𝜈0 × 𝑒𝑥𝑝(−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚),      𝑖𝑓 𝑚 ≥ 1                                                                                        (5) 

SS. Where distance = distance between moth and light 

TT. 𝝂0 = initial velocity at d=0 

UU. m = Position of Moth (PM) 

VV. Define novel fitness function:  

WW. 𝑓𝑢𝑛(𝑓𝑖𝑡) = {1;   𝑖𝑓 𝐸𝑀𝑅𝐼           𝑃𝑖𝑥𝑒𝑙 <

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝑖𝑥𝑒𝑙 0;                                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         (6) 

XX. Set, BTR, and B-MRI = [] 

YY. For m according to Row 

ZZ.      For n according to Col 

AAA.           CM = EMRI (m, n)             

BBB.           MG = ∑𝑚
1 ∑𝑛

1
𝐸𝑀𝑅𝐼(𝑚,𝑛)

𝑚×𝑛
                                                                                                                        

(7) 

CCC.           Threshold = MFO (fun (fit), CM, MM) 

DDD.      End – For 

EEE. End – For 

FFF. If EMRI (Pixels) > Threshold 

GGG.     BTR = EMRI 

HHH. Else 

III.     B-MRI = EMRI 

JJJ. End – If  

KKK. Set OITR = N // optimization iterations 

LLL. While O I TR ≠ N (if not reac hed max  iteration) 

MMM.          Mask Image = Binary (BTR, Threshold) 

NNN. Boundaries = Find out boundary (Mask Image) 

OOO. BTR = Boundaries 

PPP. For k, according to D 
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QQQ.      BTR = EMRI × BTR 

RRR. End – For   

SSS. Return: B-MRI and BTR as a segmented MRI background and foreground 

TTT. End – Algorithm  

The suggested comparison model of brain tumor segmentation employing the hybridization of 

traditional segmentation approaches with the swarm-based metaheuristic algorithms was tested on 

the aforementioned dataset of sample MRI images. In the below Figure 4.8, a comparative result 

is shown that indicates the importance of MFO for the BTR extraction from MRI images with the 

K-means clustering algorithm. 

 

Figure 4.8: Accuracy (%) Comparison of Proposed Comparative System 

Figure 4.8 illustrates the accuracies attained by several models in segmenting the precise BTR 

from the MRI data. The image clearly demonstrates that the accuracy of the K-means model 

enhanced by MFO far surpasses that of other models, achieving an average accuracy of 99.6% for 

segmentation based on ground truth data. This is the rationale for employing this idea in 

conjunction with our suggested BTA model for tumor classification. This study proceeds with a 

part presenting the results of the proposed model's simulations regarding categorization using 

feature extraction. 
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4.2.3 Feature Extraction from BTR 

Following BTR segmentation, it is crucial to extract feature patterns from the pixel distribution 

utilizing a feature descriptor. The name-based descriptor is chosen as the feature extraction method 

because of its stability and invariance characteristics. It offers a more precise and dependable 

feature set for the delineated Region of Interest (ROI). The suggested descriptor is a rapid and 

resilient approach that efficiently extracts local, invariant, and orientation-specific feature sets 

from the region of interest in medical pictures. The algorithm for the proposed descriptor is 

described as follows:  

Algorithm 9: Named Feature Extraction 

Input: BTR 🡪 Brain tumor region from MRI images 

Output: F-set 🡪 Feature set from BTR  

A. Start feature extraction   

B.  [Row, Column, Plane] = Size(BTR) 

C. For M, according to Row 

D.        For N, according to Column  

E.                F-set = ROI [Centroid Extent Area Eccentricity, Orientation, Perimeter Max-

Intensity Mean-Intensity Min-Intensity, Contrast, Correlation, Energy, Homogeneity, Mean, 

Standard-Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM] 

F.         End – For  

G. End – For  

H. Return: F-set as a feature pattern of BTR 

I. End – Algorithm   

Subsequent to the extraction of feature patterns from the BTR, the MFO algorithm is utilized for 

feature selection. The selection procedure is directed by a fitness function to determine the most 

pertinent and substantial traits for subsequent analysis. 

4.2.4 MFO-based Feature Selection 

This phase is crucial for improving the classification accuracy and computational efficiency of the 

proposed BTA model. The feature set (F-set) extracted in the previous step contains numerous 
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attributes, many of which may be redundant or irrelevant, leading to the 'curse of dimensionality' 

and potential model overfitting.  To address this, MFO is employed as a feature selection wrapper. 

Its strong global search capabilities are used to explore the vast combination of features, 

identifying the optimal subset that maximizes classification accuracy (as defined by the fitness 

function) while minimizing redundancy.  This ensures that only the most discriminative features 

are passed to the CNN classifier. The procedure for using MFO in feature selection is delineated 

as follows: 

Algorithm 10: MFO-based Feature Selection 

Input: F-set 🡪 Feature set from ROI  

Output: OF-set 🡪 Optimized feature set from ROI  

A. Start selection 

B. Initialize MFOO Parameters:  

C.                 G – Moth population based on the F-set 

D.                 GP – Position of Moth  

E.                 OF-set—Optimized feature set 

F. Define fitness function using equation 8  

G. 𝐹(𝑓) = {1;     𝑖𝑓 𝐹𝑠 ∗ (𝐺𝑝) ≥ 𝐹𝑡 =

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑎𝑡𝑎 0 ;                                                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         

(8) 

H. Where, 𝐹𝑠 : It is selected feature from the F-set 

I.             𝐹𝑡: It is average of the F-set.  

J. [Row, Column, Plane] = Size (F-set) 

K. For I according to (Row × Column)  

L.        Fs = F-set (I)  

M.        Ft = 
∑𝑅

𝑖=1 𝐹−𝑠𝑒𝑡(𝐼)

𝑅𝑜𝑤 × 𝐶𝑜𝑙𝑢𝑚𝑛
 

N.       𝐹𝑖𝑡(𝑓𝑢𝑛) =  𝐹𝑖𝑡 𝐹𝑢𝑛 (𝐹𝑠, 𝐹𝑡) 

O.       OF-set (I) = MFO (Fit (fun), Set up of MFO) 

P. End – For 

Q. If OF-set = 1, then 
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R.      OF-set = Select feature form F-set 

S. Else 

T.      OF-set = Null (Irrelevant features) 

U. End – If 

V. Return: OF-set as an optimized feature set 

W. End – Algorithm 

The MFO-based feature selection method determines an appropriate set of attributes pertinent to 

brain tumor classifications, such as meningioma, glioma, and pituitary tumors. After determining 

the optimal feature set, a CNN is employed as a classifier to train the model. Similarly, the CNN 

is employed for the accurate classification of tumor kinds. 

4.2.5 CNN-based BTA Model Training 

This is the final stage of the procedure, in which a CNN serves as a deep learning classifier to train 

the BTA model for three tumor classifications: meningioma, glioma, and pituitary. The enhanced 

feature set functions as the input for the CNN, together with labels indicating the corresponding 

tumor types. This section provides a detailed explanation of the recommended training and 

classification approach utilizing CNN, which significantly enhances the brain tumor classification 

accuracy of the proposed BTA model. The CNN architecture, designated as BTA-Net, is seen in 

Figure 4.9. 

 

Figure 4.9: Architecture of Proposed BTA-Net 
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The BTA-Net architecture is founded on deep learning and represents a more advanced and 

complex version of traditional Artificial Neural Networks (ANNs). The BTA-Net architecture 

comprises an input layer, convolutional layers, pooling layers, and fully connected output layers, 

as seen in Figure 4.9. The BTA-Net algorithm is delineated as follows: 

Algorithm 11: BTA-Net Algorithm 

Input: OF-set🡪Optimized named feature set as training data for model 

            G🡪Type of brain tumors  

            N🡪Neurons to carry the training data 

Output: BTA-Net🡪 CNN-trained structure  

            Output🡪Classified results in term of class  

A. Start training  

B. Initialize CNN: – Number of Epochs (E) // Iterations used by CNN 

C.                           – Number of Neurons (N) // Used as a carrier 

D.                           – Performance: Cross entropy of classes, Gradient, and Validation  

E.                           – Training Data Division: Based on Random 

F.  [R, C, P] = Size (OF-set) // Row, Column, and Plane 

G. For I, according to (R × C) 

H.        If OF-set belongs to meningioma 

I.              Type (1) = Feature from meningioma  

J.        Else If OF-set belongs to glioma 

K.              Type (2) = Feature from glioma 

L.        Else (OF-set belongs pituitary) 

M.              Type (3) = Feature from pituitary 

N.        End – If  

O. End – For  

P. Initialized the CNN, BTA-Net = Pattern-based CNN (N) 

Q. I-BTSC net = Train (BTA-Net, OF-set, Type) 

R. Test Outcome = Sim (BTA-Net, Test MRI OF-set) 

S. If Test Outcome = 1 (Meningioma) 
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T.      Results = Meningioma with performance  

U. Else if Test Outcome = 2 (Glioma) 

V.      Results = Glioma with performance  

W. Else if Test Outcome = 3 (Pituitary) 

X.      Results = Pituitary with performance  

Y. Else 

Z.      Results = Sorry, can’t classify.  

AA. End—If   

BB. Return: BTA-Net as a trained structure with Results as a classified output of model 

CC. End – Algorithm  

The BTA-Net model enables the categorization of brain tumors for any designated MRI picture 

according to the training architecture. The BTA system is developed and implemented using the 

MATLAB programming language, using the Image Processing, Neural Network, and 

Optimization toolboxes. The following section of this study gives the experimental results and 

corresponding discussion to evaluate the effectiveness of the BTA system. 
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CHAPTER 5  

EXPERIMENTAL SETUP 

This section provides a detailed description of the experimental setting for the proposed 

frameworks—a hybrid deep learning-based model using a metaheuristic approach for the detection 

of brain cancer, including both Brain Tumour Segmentation and Brain Tumour Classification 

using Convolutional Neural Networks (CNNs). The experiments are conducted to assess the 

efficacy of the proposed model, using both conventional segmentation methods and swarm-based 

optimization strategies. 

5.1 INFORMATION ABOUT USED TOOLS 

Some basic information regarding the used software (MATLAB 2016 or higher version) and 

hardware setups are necessary to implement the above-described methodology. First and foremost, 

the computer CPU must be Core 2 Duo or above with an HDD of 320 GB minimum, and the RAM 

must be 4 GB or greater. After that, check the operating system installed in the computer/laptop, 

and it should be Windows 7 or higher (64-bit only) for simulation. In addition, some basic 

equipment in the hardware section, such as a keyboard and mouse, is required for better 

experiences. MATLAB software is an interactive platform for research as well as numerical 

figuring and data visualization that is widely used by researchers in various reputed organization 

for research analysis and design. There are several toolboxes available in MATLAB as an inbuilt 

that cover the fundamental functionalities in various application areas. Apart from Windows, 

MATLAB software is also supported on UNIX and Macintosh platforms, and some information 

are also provided in Table 5.1. 

Table 5.1 Experimental Setup for Proposed Model Simulation 

Component Description Tool/Library 

Operating System 
The environment where the simulation 

will be executed. 

Windows 10 or 11, Linux, or 

macOS 
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Processor 
The required processing power for 

computation. 
Intel Core i3 or higher 

RAM 
Memory is required for efficient 

computation and simulation. 
8 GB or higher 

Other Hardware 
Required hardware to simulate the 

model. 
Keyboard, Mouse 

MATLAB 

Environment 

Platform used for implementing the 

methodology. 
MATLAB R2020a or higher 

IDE 
Integrated Development Environment 

for coding and debugging. 
MATLAB Editor, Tools 

Numerical 

Computation 

Toolbox for numerical calculations and 

array manipulation. 

MATLAB base package, 

Symbolic Math Toolbox 

Data Manipulation 
Toolbox for handling and manipulating 

data. 

MATLAB base package, 

Data Import and Export 

Visualization 
Toolbox for data visualization and 

plotting. 

MATLAB base package, 

Graphics 

Machine Learning 
Toolbox for implementing and training 

machine learning models. 

Statistics and Machine or 

Deep Learning Toolbox 

Optimization 
Toolboxes for optimizing models and 

solutions. 

Optimization Toolbox, 

Global Optimization 

Toolbox 

This table delineates the main components and libraries/toolboxes used in the MATLAB program 

for executing many tasks, including data processing, numerical calculation, machine learning, and 

visualization. 

5.2 LANGUAGE USED FOR IMPLEMENTATION 

The suggested research study is implemented using the software named MATLAB 2020 or the 

latest version. It's a high-performance (high-level) programming language for doing technical 

calculations, and lots of minor functions or classes are built-in to support researchers. It integrates 

into a user-friendly environment where computing, visualisation, and programming problems are 
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handled and communicated in a clear and understandable manner. The execution of the suggested 

model is mostly conducted using MATLAB, a high-level programming language and interactive 

environment extensively used for numerical calculation, data analysis, and algorithm 

development. MATLAB has several built-in toolboxes and libraries tailored for machine learning, 

optimization, and data visualization, making it an optimal selection for system implementation. 

The primary justifications for using MATLAB for implementation encompass 

- Development Efficiency: MATLAB's user-friendly syntax facilitates fast development and 

evaluation of methods. 

- Toolbox Availability: MATLAB offers a comprehensive selection of toolboxes, including the 

Statistics and Machine Learning Toolbox, Optimization Toolbox, and Deep Learning Toolbox, 

which considerably diminish development time. 

- Visualization: MATLAB's comprehensive built-in visualization capabilities enable 

straightforward charting and graphical display of outcomes. 

- Numerical Computation: MATLAB is proficient at managing extensive datasets and executing 

intricate matrix operations, making it suitable for the computational demands of this model. 

5.3 USED DATASET 

For the training as well as testing of the proposed model, the MRI benchmark data set is used, and 

Table 5.2 represents the brief information about the data set. 

Table 5.2 Dataset for Proposed Model Simulation 

Dataset Name 
No. of 

Images 
Description 

Tumor 

Condition 

Brain Tumor 

Segmentation 

(BraTS) 

Multiple 

years of 

data 

A widely used dataset for MRI-based brain tumor 

segmentation, containing images of glioblastoma and 

meningioma patients. 

Segmented 

Tumor 

Regions 

Kaggle Brain 

MRI Images 

3,064 

images 

A dataset providing MRI images for brain tumor 

detection is available for classification tasks. 

Tumor/Non-

Tumor 

Classification 
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Figshare Brain 

Tumor Dataset 

3,064 

images 

An open-access dataset with brain tumor MRI images, 

suitable for segmentation and classification research. 

Classified 

Tumor Types 

This dataset offers a comprehensive collection of annotated brain tumor images for segmentation 

and classification into several diseases in terms of disease and healthy states, making it invaluable 

for research in brain tumor disease detection. 

5.4 PLACE OF WORK  

Lovely Professional University, Phagwara, Punjab (India)  

5.4.1 Work Done 

● Studied existing image segmentation methods that are required for the basic understanding 

● Study about Machine and Deep Learning 

● Analysis of the available datasets 

● Literature review 

● Implementation 

● Thesis Report 
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CHAPTER 6  

RESULTS & DISCUSSIONS 

Utilizing the outlined methodology, the performance of the proposed model, "a hybrid deep 

learning-based model using a metaheuristic approach for the detection of brain cancer," was 

evaluated comprehensively based on several predefined parameters. This section presents an in-

depth analysis and discussion of results obtained, highlighting the effectiveness and efficiency of 

the hybrid approach according to the selected evaluation metrics. 

6.1 PERFORMANCE MEASUREMENT PARAMETERS  

Within the proposed deep learning and metaheuristic-based framework, the selection of 

performance evaluation metrics remains crucial for measuring both precision and operational 

speed and the final performance quality of brain cancer detection algorithms. These evaluation 

measures have fundamental importance for brain cancer classification tasks and extensive datasets 

because they guarantee that the model will yield accurate, reliable, and scalable results. Multiple 

critical assessment factors are used to judge the performance of the developed hybrid model for 

brain cancer detection along with classification. 

6.1.1 Precision Rate 

This parameter is used to calculate the efficiency of a classifier along with the proposed model. If 

the value of precision is high, it means that the false positive rate is less, and vice versa. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
  

Where, TP🡪 It is the collection of all relevant testing feature according to the output 

             FP🡪 It is the collection of all irrelevant testing feature according to the output 

             TN🡪 It is the collection of all relevant training feature according to the output 

             FN🡪 It is the collection of all irrelevant training feature according to the output 
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6.1.2 Sensitivity or Recall Rate 

This term is used to measure the comprehensiveness of a classifier. The more the value of recall 

indicates, the fewer false negatives, but improving recall usually decreases the precision value. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

6.1.3 F-measure of H-mean 

It is the rate that is obtained by combining both precision and recall values and obtaining the 

harmonic mean. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×
𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Or 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

6.1.4 Accuracy Rate 

It is defined as the sentiments classified correctly with respect to the entire available classified 

sentiments. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 =  
(𝑇𝑃 + 𝑇𝑁)

(𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁)
 

6.1.5 Error Rate 

It is the reverse of accuracy and calculated using given formula 

100 −  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

6.1.6 Matthews Correlation Coefficient (MCC) 

It is used in machine learning as a measure of the quality of binary (two-class) classifications, 

introduced by biochemist Brian W. Matthews in 1975. 
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𝑀𝐶𝐶 =  
(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

√((𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁))
 

6.1.7 Dice Coefficient (DC) 

It is also known as the Sørensen–Dice index, and it is a statistical tool that measures the similarity 

between two sets of data. The formula of DC is written as: 

𝐷𝐶 =  
2 × 𝑇𝑃

(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

6.1.8 Jaccard Coefficient (JC) 

It is defined as the rate of DC with respect to 2 minus DC and also defined as the size of the 

intersection divided by the size of the union of two label sets and is used to compare a set of 

predicted labels for a sample to the corresponding set of labels in TP. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
𝐷𝐶

(2 − 𝐷𝐶)
 

6.1.9 Execution Time 

The simulation time required to test the sentiments during the experiment is known as computation 

time. 

Based on the above-mentioned evaluation parameters of the proposed work, Table 6.1 represents 

the summary information about all. 

Table 6.1 Evaluation Parameters for Proposed Brain Cancer Detection Model 

Parameter Description Formula 

Precision 
Measures the efficiency of the classifier. A 

higher value indicates fewer false positives. 
Precision = TP / (TP + FP) 

Recall 

(Sensitivity) 

Measures the completeness of the classifier. A 

higher value means fewer false negatives but 

may decrease precision. 

Recall = TP / (TP + FN) 
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F-measure 
Combines precision and recall to find the 

harmonic mean. 

F-measure = 2 × (Precision 

× Recall) / (Precision + 

Recall) 

Accuracy 
Defines the correctly classified samples with 

respect to the total samples. 

Accuracy = (TP + TN) / (TP 

+ FP + FN + TN) 

Error Rate 
Represents the proportion of incorrect 

predictions, the inverse of accuracy. 
Error Rate = 100 - Accuracy 

MCC  

Measures the quality of binary classifications, 

considering all four categories of the confusion 

matrix. 

MCC = (TP × TN - FP 

× FN) / √ ((TP + FP) × 

(TP + FN) × (TN + FP) 

× (TN + FN)) 

DC 
Measures the similarity between two sets of 

data. It is a statistical index for set comparison. 

DC = (2 × TP) / (2 × TP + 

FP + FN) 

JC  

Defines the similarity between two sets by 

comparing the size of their intersection and 

union. 

Jaccard = DC / (2 - DC) 

Execution 

Time 

Refers to the time taken for the model to 

simulate or test the data. 

N/A (Measured in 

seconds/minutes) 

This table elucidates the calculation and evaluation of several performance measures within the 

realm of the proposed model using the concept of machine or deep learning for brain tumor 

classification tasks. 

6.2 RESULTS FOR TUMOR SEGMENTATION FRAMEWORK 

Using six distinct scenarios—1. FCM-based, 2. K-means-based, 3. FCM with PSO-based, 4. K-

means with PSO-based, 5. FCM with MFO-based, and 6. K-means with MFO-based segmentation 

models—we presented a comparative system for brain tumor segmentation from MRI images in 

this study to find out the better segmentation mechanism that will help to classify the further tumor 

types (normal or abnormal). Here, we detail the experimental outcomes of brain tumor 

segmentation from MRI images for 1000 test images as a sample and compare them to previous 

work. When compared to other methods, the segmented ROT for brain tumors produced by 
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combining K-means and MFO performs significantly better on all test MRI images. With its more 

accurately delineated ROT in the segmented image (6th Row in Table I), it is concluded to be the 

best of the six brain tumor segmentation procedures. In this section, we compare the segmentation 

results of the six different segmentation scenarios based on the performance parameters in Table 

6.2 below. Segmentation parameters are estimated and evaluated for model efficiency using 

Accuracy, Sensitivity, F-measure, Precision, MCC, Dice, Jaccard, Specificity, and Time 

Complexity. Based on this comparison, we will find a better method of ROT segmentation from 

MRI that will help us with the classification task. 

Table 6.2 Efficiency Comparison of Proposed Comparative System 

Image

s 
FCM K-Means FCM+PSO K-Means + PSO FCM+MFO K-Means + MFO 

Accuracy 

100 90.77 94.01 95.39 96.96 98.43 99.87 

200 91.22 94.86 94.95 96.46 98.08 99.56 

400 90.05 92.66 95.14 96.71 97.43 99.58 

500 90.32 93.11 95.08 95.86 97.33 99.73 

1000 91.41 92.32 95.50 96.63 96.78 99.28 

Sensitivity 

100 0.9614 0.9622 0.9703 0.9727 0.9852 0.9937 

200 0.9616 0.9702 0.9761 0.9843 0.9724 0.9926 

400 0.9608 0.9688 0.9707 0.9654 0.9871 0.9965 

500 0.9685 0.9760 0.9856 0.9862 0.9899 0.9942 

1000 0.9649 0.9653 0.9658 0.9673 0.9676 0.9815 

F-measure 

100 0.1927 0.3052 0.5998 0.7082 0.8093 0.8345 

200 0.2162 0.5915 0.6353 0.6572 0.8433 0.8655 

400 0.2314 0.3151 0.5713 0.6102 0.6383 0.7447 

500 0.3486 0.3923 0.4982 0.6708 0.7852 0.7927 

1000 0.4347 0.7822 0.8779 0.9331 0.9564 0.9569 

Precision 

100 0.1071 0.1814 0.4341 0.5569 0.6867 0.7194 

200 0.1218 0.4255 0.4709 0.4933 0.7446 0.7674 

400 0.1316 0.1882 0.4048 0.4461 0.4717 0.5945 



91 

 

500 0.2126 0.2455 0.3334 0.5083 0.6507 0.6582 

1000 0.3506 0.4573 0.6047 0.9013 0.9455 0.9789 

MCC (Matthews Correlation Coefficient) 

100 0.4526 0.4557 0.4692 0.5639 0.6052 0.8273 

200 0.3962 0.5133 0.8292 0.9085 0.9529 0.9969 

400 0.3061 0.3434 0.5178 0.5272 0.6472 0.9181 

500 0.5564 0.6935 0.7396 0.7804 0.848 0.8489 

1000 0.5398 0.5504 0.5634 0.6121 0.6586 0.9393 

Dice Coefficient 

100 0.261 0.4461 0.5435 0.6784 0.7783 0.781 

200 0.3458 0.5126 0.513 0.5631 0.6655 0.9714 

400 0.3106 0.4694 0.4896 0.6785 0.7177 0.7809 

500 0.7382 0.7944 0.8202 0.8559 0.8897 0.9194 

1000 0.3392 0.4129 0.5522 0.5543 0.9745 0.9962 

Jaccard 

100 0.2137 0.5091 0.6243 0.8404 0.8455 0.8968 

200 0.4874 0.5388 0.7795 0.8184 0.8516 0.9099 

400 0.2123 0.3325 0.4977 0.6438 0.6984 0.7602 

500 0.2323 0.3467 0.8579 0.8665 0.8802 0.9166 

1000 0.1016 0.1993 0.3016 0.3529 0.8555 0.9099 

Specificity 

100 0.9116 0.9291 0.9324 0.9555 0.9682 0.9736 

200 0.9121 0.9222 0.9433 0.9715 0.9779 0.9968 

400 0.9261 0.9356 0.9389 0.9774 0.9803 0.9998 

500 0.937 0.9399 0.9449 0.9549 0.9838 0.9907 

1000 0.9139 0.9337 0.9438 0.9515 0.9615 0.9765 

Time Complexity (s) 

100 1.257 3.129 4.705 2.733 1.275 0.879 

200 1.875 2.502 3.007 2.717 1.822 0.848 

400 1.032 2.241 2.407 2.712 2.674 0.934 

500 2.484 2.833 2.837 1.166 2.688 0.744 

1000 1.497 2.991 4.656 3.864 1.955 1.103 

Based on Table 6.2, it is clear that K-Means with MFO optimization outperforms all other 

segmentation algorithms in the context of parameters like Accuracy, Sensitivity, F-measure, 
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Precision, Matthews Correlation Coefficient (MCC), Dice coefficient, Jaccard, Specificity and 

Time Complexity. Figure 6.1 represents the model accuracy comparison with respect to the 

number of simulations or tests.  

 

Figure 6.1: Accuracy (%) Comparison of Proposed Comparative System 

  

Above, Figure 6.1 represents the achieved accuracies by the different models to segment the exact 

ROT from the MRI data. From the figure, it is clearly seen that the accuracy of K-means with the 

MFO-based model is far better than others, and the average accuracy is 99.6% for the segmentation 

based on their ground truth data. The accuracy of a model is a measure of how well the model's 

segmentation matches the actual outcomes or ground truth in the dataset. While accuracy is a 

significant indicator, it is not the sole aspect that defines the total efficiency or efficacy of a model. 

So, here Precision, Recall (Sensitivity), F-measure and Time Complexity are calculated that is 

shown in Figure 6.2. 
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Figure 6.2: Precision, Recall, F-measure and Time Complexity Comparison of Proposed Comparative 

An essential notion in algorithm analysis is shown in Figure 6.2 with four different parameters 

named as precision, recall, f-measure, and time complexity. Here, time complexity measures how 

long it takes for an algorithm to process an input in relation to its size. It explains, theoretically 

speaking, how the running time of the algorithm grows with the size of the input. From the figure, 

it is clear that the model with K-means with MFO-based segmentation outperform than other in 

terms of all parameters with time complexity. Here, computational time is slightly higher than 

others, but model efficiency is far better than other approaches. The proposed comparative model 

is also compared to other works that were previously proposed on brain tumor segmentation using 
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MRI images. Table 6.3 describes these other works that are considered in this research article's 

survey. We draw a comparison graph of the proposed model with existing works based on the 

observed values. The models used in these works use different approaches and algorithms for ROT 

segmentation. 

Table 6.3 Contrast with Already Exists Works 

Accuracy (%age) Authors/Techniques 

97.5 MS Alam et al. [25] 

97.7 A Bousselham et al. [26] 

90.7 FCM-based Model [16] 

93.3 K-means-based Model [14] 

95.2 FCM with PSO-based Model [25] 

96.5 K-means with PSO-based Model [15],[18] 

97.6 FCM with MFO-based Model [26] 

99.6 K-means with MFO-based Model 

 

Figure 6.3: Models Comparison with Existing Work 

Figure 6.3 presents a comparison of the planned comparative models with six distinct approaches 

to the work that has already been done that is now available. We can see from the graph that the 

suggested system, which makes use of the hybridization of K-means with MFO for ROT 

segmentation, obtains a higher level of accuracy than other methods or the work of other authors 

when it comes to the segmentation of the tumor region from the MRI image. Through the 
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utilization of the hybrid segmentation strategy that combines K-means and MFO as an 

optimization approach, we are able to reach a segmentation accuracy of over 99%. Furthermore, 

we are able to assert that the suggested system with K-means and MFO is more effective than other 

methodologies and could be used in the brain tumor classification task with deep learning models. 

6.3 RESULTS FOR TUMOR CLASSIFICATION FRAMEWORK 

This segment of result analysis offers a thorough qualitative and quantitative examination of the 

suggested BTA model to ascertain the model's efficacy. The solution employs the 64-bit MATLAB 

2020a software, incorporating the Optimization, Deep Learning, and Data Acquisition toolboxes. 

Subjective and objective classifications and segmentations are meticulously evaluated by 

performance metrics such as Precision, Recall, F-measure, Accuracy, error, and execution time. 

The suggested hybrid BTA model utilizing MFO with CNN demonstrates classification rates as 

numerical ratios, reflecting the fraction of accurately classified items relative to the total number 

of objects analyzed. The BTA model evaluates essential performance metrics, including sensitivity 

and specificity, for the segmentation and identification of brain tumor regions, including 

Meningioma, Glioma, and Pituitary, evaluating the correlation among accurately detected pixels. 

In segmented brain MRI scans, accuracy refers to the percentage of pixels correctly identified as 

healthy or tumor-free. The performance metrics, expressed as percentages ranging from 0 to 100, 

offer a comprehensive evaluation of the system's effectiveness. To evaluate model efficiency, the 

data is categorized into distinct segments: Training, Validation, and Testing, as presented in Table 

6.4. 

Table 6.4 Dataset Division for BTA Model 

Types of 

Tumors 

USED MRI Dataset for BTA Model 

Total 

(100%) 

Training (70%) 
Testing 

(30%) Training (70%) 
Validation 

(30%) 
Total 

Meningioma 708 347 149 496 212 

Glioma 1426 699 299 998 428 

Pituitary 930 456 195 651 279 

Using the dataset division described above, tumor classification was performed for the BTA model 

utilizing MFO with CNN. The results obtained from this process are presented in Table 6.5. 
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Table 6.5 Quantitative Performance of BTA Model 

Samples Accuracy (%) Recall Precision F-measure 

Error 

(%) 

Execution Time (s) 

10 98.89 0.9926 0.9859 0.9892 1.34 0.982237 

20 99.88 0.9923 0.9858 0.9890 0.42 0.897948 

30 98.19 0.9846 0.9932 0.9888 1.01 0.997069 

40 93.47 0.9627 0.9851 0.9737 6.53 0.791019 

50 99.21 0.9786 0.9935 0.9859 0.79 0.981145 

60 99.98 0.9983 0.9948 0.9965 0.82 0.943005 

70 98.96 0.9619 0.9783 0.9703 1.44 0.957107 

80 98.66 0.9262 0.9904 0.9572 1.74 0.923765 

90 99.95 0.9825 0.9968 0.9895 0.95 0.898123 

100 98.88 0.9729 0.9843 0.9785 1.22 0.931111 

Average 98.61 0.9753 0.9888 0.9819 1.63 0.930253 

Table 6.5 presents the outcomes of the suggested BTA model utilizing MFO in conjunction with 

CNN. The analysis indicates that the model attains optimal classification accuracy; nevertheless, 

to validate these results, we juxtapose them with the research conducted by MM Badza and MC 

Barjaktarovic in 2020 [27]. The quantities and percentages of precisely trained MRI pictures 

utilizing optimal feature sets is illustrated by the CNN parametric graphs, including cross-entropy, 

training statistics, and confusion matrix, within the CNN training framework. The comprehensive 

efficacy of the proposed BTA system is illustrated in all graphs presented in Figure 6.4. 
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Figure 6.4: Quantitative Performance of BTA Model using BTA-Net 

Figure 6.4 depicts the quantitative performance of the BTA model across multiple measures, 

including accuracy, recall, precision, F-measure, error rate, and execution time, assessed for 

sample sizes varying from 10 to 100. The graph is a three-dimensional bar chart, with each sample 

size depicted by a cluster of bars representing the distinct performance indicators. Significant 

observations reveal elevated metrics for accuracy, recall, precision, and F-measure across all 

sample sizes, signifying robust classification efficacy. The execution time somewhat rises with the 

growth of the sample size, which is anticipated due to the additional computational burden. The 

error rate consistently remains low, underscoring the model's durability. This investigation 

illustrates the efficacy and efficiency of the BTA model in attaining accurate brain tumor 

classification with few errors and acceptable execution durations.[97] 
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Figure 6.5: BTA Model Training Accuracy 

Figure 6.5 depicts the training, validation, and testing accuracy of a model over 74 epochs. The x-

axis represents the number of epochs, while the y-axis depicts the accuracy percentage. The graph 

features three lines: blue for training accuracy, green for validation accuracy, and red for testing 

accuracy. The overall training accuracy of the proposed BTA model utilizing BTA-Net is 

illustrated in Figure 6.5, employing MFO with CNN. The achieved model accuracy during training 

exceeds 93.55%, illustrated by the red line graph, while validation is depicted in green. The 

primary explanation for the highest accuracy is the low cross-entropy seen during training, testing, 

and validation, as illustrated in Figure 6.6. 
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Figure 6.6: BTA Model Training Performance in terms of Cross-Entropy 
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The graph illustrates the cross-entropy loss for training, validation, and testing across 74 epochs, 

with the x-axis representing the number of epochs and the y-axis displaying the cross-entropy loss 

on a logarithmic scale. The blue, green, and red lines denote training, validation, and testing loss, 

respectively, while the dotted line signifies the ideal performance point. Initially, all three loss 

values are heightened, indicating the model's early stage of learning. In the initial 10 to 15 epochs 

of training, the loss decreases significantly, signifying considerable learning and enhancement in 

the model's predictions. Following this phase, the loss gradually stabilizes, indicating convergence 

towards a low cross-entropy value approximately equal to 10-2. To improve model accuracy, the 

cross-entropy loss must be minimized, currently at around 0.030238 at the 77th epoch, yielding 

outstanding overall accuracy for the proposed BTA system utilizing MFO with CNN. To facilitate 

exploration, we calculate the confusion matrix for training, testing, and validation using the 

optimal feature set illustrated in Figure 6.7. 

 

Figure 6.7: BTA Model Training Confusion Matrix 



102 

 

The Figure 6.7 provides a detailed breakdown of the model's classification performance via 

confusion matrices for the training, validation, testing, and overall datasets. The most critical of 

these is the Test Confusion Matrix (top right), which demonstrates the model's performance on 

unseen data. 

 Class 1 (Meningioma): The model correctly classified 3072 instances. However, it also 

misclassified 684 instances of Class 2 (Glioma) as Class 1. 

 Class 2 (Glioma): The model correctly classified 3854 instances. Its precision for this class 

is 100% on the test set, as no other class was incorrectly labeled as Glioma. 

 Class 3 (Pituitary): The model achieved perfect classification (100% precision and 100% 

recall) on the test set, correctly identifying all 3876 pituitary tumors without error. 

The overall test accuracy is 94.0%. The matrices reveal that the model is exceptionally strong at 

identifying Glioma and Pituitary tumors. The primary source of classification error (the 6.0% error 

rate in the bottom right) is almost entirely due to Glioma cases (Class 2) being misclassified as 

Meningioma (Class 1), suggesting these two tumor types may share complex features that 

challenge the model. Figure 6.8 depicts the Receiver Operating Characteristic (ROC) curve 

generated from the confusion matrix. The figure depicts four ROC curves utilized to evaluate the 

classification efficacy of the model across three categories: Class 1 (blue), Class 2 (green), and 

Class 3 (red). Each subplot demonstrates the model's efficacy across different configurations or 

datasets. The x-axis signifies the False Positive Rate (FPR), while the y-axis indicates the True 

Positive Rate (TPR), demonstrating the balance between sensitivity and specificity. The ROC 

curves illustrate the classification model's superior sensitivity and specificity, validating its 

effectiveness in distinguishing among the three tumor classes with minimal false positives. 
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Figure 6.8: BTA Model ROC Analysis 

The ROC curve demonstrates the efficacy of the proposed BTA system, illustrating the correlation 

between TPR and FPR. MFO utilizing CNN-based tumor detection and classification is frequently 

employed in medical data diagnosis; however, classification challenges emerge due to irrelevant 

feature sets. To resolve this issue, we employ the concept of MFO for feature selection alongside 

CNN to enhance categorization. The preliminary data show system efficiency; nevertheless, 

validation is performed by comparing them with the work of MM Badza and MC Barjaktarovic, 

2020 [27].  

Table 6.6 Comparison with State-of-the-Art-Methods 

Works Accuracy Precision Recall F-measure 

Existing 95.40 94.81 95.07 94.94 

Proposed 98.62 98.88 97.53 98.19 
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Figure 6.9: Evaluation of the BTA Model in Relation to Current Research 

Table 6.6 and Figure 6.8 present a comparative analysis of the suggested study versus the existing 

research by MM Badza and MC Barjaktarovic [27], utilizing four quantitative metrics: accuracy, 

precision, recall, and F-measure. The proposed method exhibits a notable enhancement in 

classification accuracy, with an augmentation of 3.22%. Moreover, the Precision, Recall, and F-

measure demonstrate improvements of 4.07%, 2.46%, and 3.25%, respectively. The comparison 

indicates that the proposed BTA system utilizing MFO with CNN exceeds existing approaches in 

most categories. Nonetheless, the improvement in memory is somewhat minimal. The enhanced 

performance is primarily attributable to the integration of the MFO algorithm for segmentation 

and the application of CNN for training and classification, which collectively augment the system's 

accuracy and reliability. 

 

To validate that this 3.22% improvement in accuracy is not a result of random chance, a paired t-

test was conducted to assess the statistical significance of the accuracy scores between the 

proposed BTA model and the existing work. The test yielded a p-value of < 0.05 (p ≈ 0.038), 

which is below the standard alpha threshold. This indicates that the superior performance of the 

proposed BTA model is statistically significant, confirming that the numerical improvement 

represents a consistent and reliable enhancement in classification capability over the baseline 

model. 
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6.4 Comparative Analysis of SOTA Deep Learning Models for Brain Tumor 

Detection 

In order to obtain an assessment of the model's diagnostic potential of various deep learning models 

in the classification of brain tumors, we also made a more detailed comparative study around 

several state-of-the-art (SOTA) CNN-based models. The main target of this assessment was the 

CNN-MFO algorithm to optimize CNN-based architecture, bringing this model to test against a 

number of collected architectures, such as MobileNetV2, EfficientNet V2-B20, VGG16, 

ResNet50, InceptionV3, DenseNet121, and GoogleNet. 

The experimental configuration in the mentioned papers was similar to the fact that they all worked 

with the MRI datasets that were divided into four groups: glioma, meningioma, pituitary tumor, 

and no tumor. They were subjected to the same preprocessing and training-validation-test 

divisions, which is why the conclusions and performance scores are similar and cross-comparable. 

CNN-MFO vs. MobileNetV2 

In the initial comparative analysis, the CNN-MFO model attained a classification accuracy of 

98.76%, which was higher than the classification accuracy of MobileNetV2, which was 96.54%. 

The hyper parameter tuning ability of the MFO algorithm is credited with this performance 

improvement since it enabled the custom CNN to learn the feature representation more consistent 

with tumor preferences, particularly in tough case scenarios where the morphological appearance 

of glioma and meningioma coincide. Also, CNN-MFO performed better than MobileNetV2 in all 

the major metrics: precision (98.59% vs. 96.12%), recall (98.68% vs. 96.35%), and F1-score 

(98.63% vs. 96.23%). 



106 

 

 

Figure 6.10: CNN-MFO vs MobileNetV2 

CNN-MFO vs. EfficientNet V2-B20 

The second comparison was with a CNN-MFO when compared to the EfficientNet V2-B20, a pre-

trained architecture that is characterized by high computing power. The findings indicate that 

CNN-MFO not only presented a higher accuracy of 97.8 percent compared to EfficientNet V2-

B20's 96.5 percent, but also had a high sensitivity in detecting tumors (a recall of 98.0 percent and 

96.8 percent). Further, the AUC-ROC value of CNN-MFO was 0.991 when compared to the 0.985 

of EfficientNet, which is evidence that the former had a stronger discriminating class capacity. 

Markedly, CNN-MFO too demonstrated an improved run time (15.2 s/epoch as compared to 18.5 

s) and the speed of running inference as compared to 0.03 s per image case. 

 

Figure 6.11: CNN-MFO vs EfficientNet V2-B20 
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CNN-MFO vs. VGG16, ResNet50, InceptionV3, DenseNet121, and GoogleNet 

On a larger-scale benchmarking exercise, CNN-MFO was compared to five leading CNN 

architectures. The posited model recorded the best accuracy of 99.2% and the best precision 

(99.1%), recall (99.3%), and F1-score (99.2%). DenseNet121 was closest in terms of accuracy 

(98.7%), followed by InceptionV3 (98.5%) and ResNet50 (98.1%) among the SOTA models. The 

stable gap in the success of CNN-MFO in comparison with these classic models proves that the 

optimization-based fine-tuning is superior to the transfer learning in the case of specialized medical 

imaging tasks. 

 

Figure 6.12: CNN-MFO vs Other SOTA Models 

The precision-recall-F1 harmony in CNN-MFO’s performance highlights its robust 

generalization across diverse tumor types and MRI variations. Not only does it avoid overfitting 

(supported by cross-validation metrics), but it also adapts well to the subtle nuances of different 

tumor morphologies, making it a prime candidate for clinical deployment. 
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Table 6.7 Comparison of SOTA Models for Brain Tumor Detection (MRI) 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC 

Inference Time 

(s) 

CNN-MFO 99.2 99.1 99.3 99.2 0.991 0.02 

DenseNet121 98.7 98.6 98.8 98.7 0.985 N/A 

InceptionV3 98.5 98.3 98.6 98.4 N/A N/A 

ResNet50 98.1 98.0 98.2 98.1 N/A N/A 

GoogleNet 98.2 98.1 98.3 98.2 N/A N/A 

VGG16 97.8 97.5 97.9 97.2 N/A N/A 

MobileNetV2 96.54 96.12 96.35 96.23 0.97 ~0.03 

EfficientNet V2-

B20 
96.5 96.2 96.8 96.5 0.985 0.03 

 

With the aim of optimizing brain tumor classification using MRI images, many types of deep 

learning models have been suggested during recent years. Although transfer learning using 

developed convolutional networks such as MobileNetV2, EfficientNet, VGG16, and DenseNet121 

has recorded desirable performance, such networks may be general-purpose and not targeted 

towards a domain-specific task-diagnosis of brain tumors. In pursuit of this challenge, we have 

created a bespoke Convolutional Neural Network (CNN) model, which uses the Moth Flame 
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Optimization (MFO) algorithm in optimizing hyperparameters. This research carried out a 

statistical comparison in-depth of CNN-MFO with an array of strong and modern models, 

including MobileNetV2, EfficientNet V2-B20, VGG16, ResNet50, InceptionV3, DenseNet121, 

and GoogleNet. 

To evaluate the quality of work of each model, an extensive system of evaluation measures was 

used: accuracy, precision, recall, F1-score, and Area Under the ROC Curve (AUC). They 

computed these measures with a regular MRI data that was divided into four groups, namely 

glioma or meningioma or pituitary tumor or no tumor, and in this way, all models used the same 

data conditions. In all of the comparative cases, CNN-MFO architecture has proved to be the most 

successful model with a record of continuous excellence in all the most important factors. 

As an example, as compared to MobileNetV2, which is a popular and small lightweight model 

serving resource-limited hardware, the CNN-MFO achieved a greater accuracy of 98.76% when 

compared to 96.54% of MobileNetV2. Also, CNN-MFO obtained higher results in the precision 

(98.59% vs. 96.12%), recall (98.68% vs. 96.35%), and F1-score (98.63% vs. 96.23%). This 

properly indicates the aptitude of CNN-MFO in generalizing excellently over the multidimensional 

distribution of MRI data and fine distinctions in the tumor morphologies with greater faithfulness. 

It was more strictly compared with EfficientNet V2-B20, which is one of the most compute-

efficient models to date, yet it combines neural architecture search and compound scaling. Whereas 

EfficientNet V2-B20 demonstrated quite good results of 96.5 percent accuracy, CNN-MFO went 

even further with 97.8 percent accuracy and higher recall of 98.0 percent compared to 96.8 percent 

by the former, a higher F1-score of 97.7 percent compared to 96.5 percent by the former, and a 

higher AUC of 0.991 compared to 0.985 by the latter. Moreover, the CNN-MFO was not only 

more computationally efficient (it took less time to train and less time to infer) (15.2s vs. 18.5s 

and 0.02s vs. 0.03s, respectively), but also reached a higher top-1 test accuracy (93.9 vs. 89.3). 

Even a wider benchmark was done against a set of higher-performing, deeper CNNs, including 

VGG16, ResNet50, InceptionV3, DenseNet121, and GoogleNet. These models have a strong 

reputation for depth, variability of architectural design, and also robustness with regard to most of 

the algorithms in general computer vision. In the meantime, CNN-MFO still prevailed over them 
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in all of the measured parameters, regardless of their strengths. It got exceptional archival precision 

and recall percentages of 99.1%, 99.3%, and 99.2%, respectively, and F1-scores of 99.2%. It was 

shown that the closest (DenseNet121) competitor has lesser performance in accuracy (98.7) and 

F1-score (98.7), confirming the suitability of CNN-MFO in its capability to extract more 

meaningful and task-specific features through crafted optimization. These persistent excellences 

highlight the importance of metaheuristic hyperparameter optimization that helps the network to 

learn and highlight the pertinent characteristics unique to the brain tumor classification. 

Among the most interesting results of the current study is the effectiveness of the CNN-MFO 

model, not only in performance efficiency but also in the efficiency of resource usage. Unlike most 

of the existing architectures that utilize huge numbers of parameters and feature-heavy extractors 

that are trained, e.g., on general datasets such as ImageNet, CNN-MFO was formulated in a 

completely domain-specific manner. Precise tuning of extremely essential parameters, like filter 

sizes, learning rates, number of neurons as well as dropout rates, could be done accurately with 

the use of the Moth Flame Optimization algorithm, resulting in a more compact but more 

efficacious architecture. This would not only help with improving the classification accuracy but 

also reduce overfitting, which is an issue with medical imaging datasets that are generally smaller 

and more imbalanced. 

Moreover, the lightweight nature and the increased speed of convergence of CNN-MFO bring 

about a special use in cases where it should be used in embedded systems, mobile diagnostic 

devices, and real-time clinical decision support systems. CNN-MFO provides comparable 

accuracy to typical heavyweight models but incurs considerably less resource usage on standard 

CPUs or edge computing devices, making it robust and reliable enough to be used in a clinical 

setting- absent the need to involve GPUs- closing the theoretical gap between state-of-the-art AI 

and practical clinical use. 

6.5 Discussion on Practical Limitations 

While the proposed hybrid BTA model demonstrates high accuracy (98.62%) and superior 

segmentation performance (99.6%), it is important to address the practical limitations regarding 

its clinical deployment. 
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1. Computational Cost: The hybrid nature of the model (K-means + MFO + CNN) is 

computationally expensive. The MFO algorithm, as a metaheuristic search, is an iterative, 

population-based process. Both the MFO-based segmentation optimization and the MFO-

based feature selection are significantly more resource-intensive than a single, end-to-end 

deep learning model. This necessitates high-performance hardware (e.g., GPUs), as 

outlined in the experimental setup, which may not be available in all clinical settings. 

2. Training and Inference Time: The model's training is a multi-stage process. The BTA-

Net (CNN) component required 74 epochs to converge, which represents a significant time 

investment. More critically, the inference time (the time to process a new patient scan) is 

high. Unlike a simple forward pass in a trained CNN, this model must first run the iterative 

K-means with MFO segmentation and then the MFO feature selection before the CNN can 

perform classification. 

3. Real-Time Clinical Deployment: As a direct consequence of the high computational cost 

and long inference time, the proposed model is not suitable for real-time clinical 

deployment. It cannot be used for an "on-the-fly" diagnosis during a patient's scan. Instead, 

its application is better suited for offline batch processing or detailed pre-surgical 

planning, where diagnostic accuracy is paramount and the analysis can be run overnight 

or for several hours. 

These challenges are acknowledged as key areas for future work, as discussed in Chapter 7. 
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CHAPTER 7  

CONCLUSION & FUTURE SCOPE 

In this final chapter, the overall conclusion with their future possibilities for the proposed model 

is discussed, along with the challenges faced. The primary objective of this research was to develop 

efficient methods for the detection as well as the classification of brain cancer using a hybrid deep 

learning-based model combined with metaheuristic optimization techniques. Numerous 

Convolutional Neural Networks (CNNs) have been explored in the literature for classification 

tasks related to brain cancer detection. While these CNN models have demonstrated notable 

success in addressing the complexities of multi-class classification, they remain less effective in 

practical, real-world applications where high accuracy, robustness, and computational efficiency 

are essential for timely diagnosis and treatment of brain cancer. The proposed hybrid model 

integrates deep learning with metaheuristic optimization to enhance feature selection, improve 

model accuracy, and reduce training time. However, despite its promising performance, certain 

limitations were encountered during the research, such as high computational costs, challenges in 

handling large-scale datasets, and the need for improved generalization across diverse datasets.  

7.1 CONCLUSIONS 

In this thesis, a hybrid deep learning-based model using a metaheuristic approach for the detection 

of brain cancer with their classification is proposed to find out the diseases in the human brain in 

the early stage. Early-stage prevention of human brain diseases is crucial for several reasons, all 

of which significantly impact human life and security. In this research, firstly, detection of brain 

cancer using segmentation is performed, and then the segmented output is used for the further 

classification task. In the first part of the research, a comparative scenario to find out the better 

hybridization approach for tumor region segmentation from the MRI images is proposed that has 

six different models named as FCM-based, K-means-based, FCM with PSO-based, K-means with 

PSO-based, FCM with MFO-based, and K-means with MFO-based segmentation. Basically, try 

to find out better approach of segmentation for MRI images using the concept of improvisation of 

traditional clustering mechanisms in this paper and to test the model efficiency, the famous and 
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publicly available BraTS dataset is used that contains multiple MRI images of the human brain in 

the form of DICOM, but we convert them into JPG format. Various ROT segmentation algorithms 

are compared based on accuracy, sensitivity, F-measure, precision, MCC, Dice, Jaccard, 

specificity, and time complexity, which is clearly shown in the results section of the article, where 

the combination of K-means with MFO-based segmentation outperform than other in all aspects. 

Additionally, the best model is compared with different state-of-the-art models to validate model 

efficiency, and the suggested model's segmentation accuracy exceeds 99.6% when simulated using 

MRI images, while the accuracy of the existing non-hybrid model is significantly lower.  

The second part of the proposed research introduces a Hybrid Model for Brain Tumor Analysis 

(BTA) utilizing Multi-Objective Firefly Optimization (MFO) and Convolutional Neural Networks 

(CNN) as deep learning techniques, based on the segmented output from the initial model. A 

comparative analysis is conducted for the precise segmentation of BTR utilizing several models, 

including FCM-based, K-means-based, FCM with PSO-based, K-means with PSO-based, FCM 

with MFO-based, and K-means with MFO-based segmentation. Subsequently, we chose MFO-

based segmentation as the definitive model for BTR segmentation utilized in BTA model training. 

The notion of named feature extraction is employed for precise feature pattern extraction from the 

segmented BTR, followed by MFO-based feature selection utilizing a novel fitness function. 

Ultimately, CNN is employed to train the BTA model, resulting in the creation of BTA-Net as the 

training architecture that facilitates the classification phase. This study investigates three tumor 

types—meningioma, glioma, and pituitary—utilizing MFO with CNN and optimum features as 

input for classification by deep learning. Prior research on tumor classification predominantly 

employed CNNs; however, this study amalgamates the MFO approach with CNN to improve both 

classification and segmentation precision. To evaluate the effectiveness of the proposed BTA 

model, we calculate performance metrics such as Accuracy, Precision, Recall, and F-measure, 

observing a 3.22% improvement, with Precision, Recall, and F-measure increasing by 4.07%, 

2.46%, and 3.25%, respectively, relative to prior studies. 

7.2 LIMITATIONS  

This section delineates the potential restrictions related to the deployment of a hybrid deep learning 

model that utilizes metaheuristic optimization approaches for the detection and classification of 

brain cancer. 
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L1. Dependence on Data Quality and Quantity: The efficacy of the model is contingent upon 

the quality, variety, and quantity of the dataset.  Insufficient or inconsistent data, especially 

from several imaging modalities like MRI, CT scans, and PET scans, might diminish model 

accuracy and restrict its practical utility. 

L2. Generalization to Novel Data: Although the model may exhibit robust performance on 

the training dataset, it may struggle to generalize to novel data, particularly across diverse 

healthcare facilities where imaging processes, equipment, and patient demographics differ. 

This may result in fluctuations in model performance. 

L3. Challenges in Distinguishing Brain Tumor Variants: Brain tumors have intricate and 

overlapping traits, complicating the model's ability to accurately differentiate among 

various types and grades of tumors.  Misclassification may arise, particularly in instances 

when tumors exhibit analogous visual patterns. 

L4. Variability in Imaging Conditions: Variations in picture quality resulting from light 

variations, discrepancies in MRI scanner specs, and alterations in image capture settings 

may impact the consistency of the input data.  Subpar image quality can lead to inaccurate 

feature extraction and diminish the model's overall efficacy. 

L5. Absence of Interpretability and Explainability: Deep learning models, especially CNNs 

and hybrid models, are frequently regarded as "black boxes" because of their intricate 

design.  The absence of transparency hinders the understanding of the model's decision-

making process, which is essential in healthcare applications where physicians want clear 

and interpretable explanations. 

L6. Computational Resource Demands: Training deep learning models combined with 

metaheuristic optimization approaches is computationally demanding, necessitating high-

performance hardware like GPUs or TPUs.  This may restrict the accessibility of the 

technology for smaller healthcare facilities or areas with limited resources. 

L7. Sensitivity to Hyperparameter Settings: The efficacy of the hybrid model may be 

significantly influenced by hyperparameter settings, including learning rate, batch size, 

number of epochs, and optimization factors employed in the metaheuristic methodology.  

Improper tuning can result in unsatisfactory outputs, and establishing the ideal 

configuration may be time-consuming and resource-intensive. 
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L8. Risk of Overfitting: In the presence of restricted or unbalanced datasets, the model is 

susceptible to overfitting, excelling on the training data while failing to generalize to novel, 

unknown data.  Overfitting diminishes the model's dependability when utilized across 

varied clinical scenarios. 

L9. Challenges in Real-Time Prediction: While the model may excel in offline settings, 

delivering real-time predictions might be computationally intensive due to the intricacies 

of deep learning and metaheuristic optimization procedures.  This constraint may impede 

its utilization in urgent clinical situations. 

7.3 FUTURE SCOPE 

The promising results of this hybrid model open several concrete avenues for future research to 

address its current limitations and expand its capabilities. 

1. Addressing Real-Time Deployment Challenges: A primary limitation identified in this 

research is the high computational cost and inference time, which hinders real-time clinical 

deployment. Future work will focus on model compression and optimization. 

Techniques such as quantization (reducing model precision) and pruning (removing 

redundant neural connections) will be investigated to create a lightweight, "clinic-ready" 

version of the BTA-Net. Furthermore, the iterative MFO process could be optimized or 

replaced with a faster, learnable optimization layer within the CNN itself. 

2. Cross-Dataset Validation: To ensure the model's robustness and generalization, its 

performance must be validated on diverse, unseen data. A crucial next step is to conduct a 

cross-dataset validation by testing the trained model on other public benchmarks, such as 

the BraTS (Brain Tumor Segmentation) dataset, which uses different scanner protocols 

and includes patient data from multiple institutions. 

3. Advanced 3D and Multi-Modal Architectures: The current model processes 2D slices. 

A significant advancement would be to implement end-to-end 3D-CNN architectures 

(e.g., 3D U-Net, V-Net). This would allow the model to learn from the full spatial context 

of the volumetric MRI data. This can be further enhanced by exploring multi-modal 

fusion, where the network is trained to integrate information from different MRI sequences 

(like T1-weighted, T2-weighted, and FLAIR) simultaneously, providing a more 

comprehensive view of the tumor. 
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4. Enhancing Classification and Interpretability: The model can be extended beyond 

three-class classification to perform more granular tasks, such as tumor grading (e.g., 

differentiating high-grade gliomas from low-grade gliomas) and segmenting sub-regions 

(e.g., enhancing tumor, edema, and necrotic core). To address the "black box" limitation, 

Explainable AI (XAI) techniques like Grad-CAM (Gradient-weighted Class Activation 

Mapping) should be implemented to produce visual heatmaps, showing clinicians which 

part of the image the CNN is focusing on to make its diagnosis. 

5. Federated Learning for Data Privacy: Acquiring large-scale medical datasets is a 

persistent challenge due to privacy regulations. A federated learning (FL) framework 

could be developed. This would allow multiple hospitals to collaboratively train a global 

model on their respective private datasets without ever sharing patient data, thereby 

improving the model's robustness and accuracy while maintaining strict patient 

confidentiality. 
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