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Abstract

The current thesis, entitled INERTIA OF SOME SPECIAL MATRICES AND A
NOVEL MATRIX TRANSFORMATION is the result of research outcomes con-
ducted by me under the esteemed guidance and supervision of Dr. ISHA GARG, As-
sociate Professor, Department of Mathematics, Lovely Professional University, Phagwara-
Punjab. The research work is now being submitted to the Department of Mathematics,
School of Chemical Engineering and Physical Sciences, Lovely Professional University,
Phagwara-144411, Punjab, India, for the award of a Doctor of Philosophy in Mathemat-
ics. This thesis presents a comprehensive analysis of functions that satisfy the conditions
of monotonicity and convexity on specific domain(sets), focusing on operator monotone
and operator convex functions within matrix theory. The study synthesizes data from
various research publications, highlighting key results and applications of these functions
and their extensions. Particular attention is given to the spectral behavior of pattern-
based matrices, such as P, = [(p; + p;)"] and B, = [|p; — p;j|"], previously explored by
researchers like Bhatia and Jain (2015) and Dyn, Goodman, and Micchelli (1986). We
extend this analysis to matrices defined by nonlinear operator concave functions, demon-
strating that the matrix [f(1 — p;p;)] is conditionally negative definite, nonsingular, and
has inertia (1,0, — 1) when f is a nonlinear operator concave function. The study also
examines cases where this result does not hold for linear functions or specific instances
of f(t) = logt. Furthermore, this thesis introduces a novel matrix operation, termed the
”Trans-flip,” and compares its properties to the well-known transpose and conjugate
operations. The flip operation is analyzed in terms of its effects on determinant, trace,
and inertia, particularly in pattern-based matrices. The study explores both theoretical
and practical implications of this operation, with potential applications in fields such
as computer graphics, image processing, and data manipulation. This work provides
valuable insights into operator convex and concave functions, advancing their theoreti-
cal foundations and offering new directions for future research in matrix transformations

and their applications.

In Chapter 1, we cover the foundational definitions, essential results, and an in-depth
literature review. This chapter establishes the theoretical framework, critically analyzing
existing research to set the stage for the study’s objectives and contributions within the

broader academic discourse.
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In Chapter 2, we analyze the spectral behavior of pattern-based matrices such as
P, = [(pi +pj)"] and B, = [|p; — p;|"], as studied by Bhatia, Jain, Dyn, Goodman, and
others. We extend their work to matrices involving nonlinear operator concave functions,
examining properties like conditional negative definiteness, non-singularity, and inertia.
Additionally, we explore the impact of specific functions, such as f(t) = logt, and

provide examples of concave functions that are not operator concave.

In Chapter 3, we will delve deeper into the properties of concave functions and their
limitations with respect to operator concavity. Specifically, we will explore the criteria
that distinguish operator concave functions from classical concave functions and exam-
ine concrete examples of functions that meet the conditions for concavity but not for
operator concavity. Our goal is to bridge the gap in the existing literature and provide
a clearer understanding of how these functions behave in the context of operator theory,

particularly through the use of matrix inertia.

In Chapter 4, we will examine the implications of the trans-flip operation on matri-
ces and its relationships with established matrix transformations such as the classical
transpose and conjugate transpose. We will analyze the decomposition of square ma-
trices into trans-flip symmetric and trans-flip skew-symmetric components, highlighting
how this new operation affects key matrix properties, including determinant, trace, and
inertia. By comparing the structural characteristics and positivity of trans-flip matrices
with those of traditional transformations, we aim to elucidate the significance of this

novel operation in matrix theory.

In Chapter 5, we will delve into the foundational definitions and properties of hor-
izontal and vertical flips in matrix transformations, establishing a clear framework for
understanding these operations. We will explore the interrelations between horizontal-
flip, vertical-flip, and the newly introduced trans-flip, highlighting their mathematical
formulations and practical significance. This analysis aims to clarify how these trans-
formations contribute to various applications in fields such as image processing and

algorithm design, underscoring their importance in linear algebra.

A bibliography is included at the end of the thesis, which is by no means comprehen-
sive, but does identify all of the research articles and books that were mentioned in the

main text.
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Chapter 1

Introduction

1.1 Introduction

This chapter establishes essential notations, defines fundamental concepts, and presents
key results that are frequently utilized throughout the thesis. The objective is to provide

a strong foundation necessary for understanding the subsequent chapters.

The discussion begins with definitions, properties, and illustrative examples that clar-
ify fundamental principles. A particular emphasis is placed on functions defined over the
domain of positive real numbers, which, under specific conditions, can be extended to
the set of matrices. In analogy with classical notions of concavity, convexity, and mono-
tonicity in real analysis, their matrix counterparts operator-concave, operator-convex,
and operator-monotone functions are explored. These functions have been extensively
studied due to their unique properties and theoretical significance. This thesis aims
to further contribute to this area by investigating additional results and extending the

current understanding of these functions.

Furthermore, essential theorems and their proofs are provided to support the devel-
opment of the main arguments in later chapters. To ensure a comprehensive discussion,
fundamental definitions and properties have been compiled from standard references,
including Bhatia [40], [52], Hardy, and Horn and Johnson [37], [63].

This chapter serves as a prerequisite for a deeper exploration of operator functions and
their properties, ensuring that readers are well-equipped with the necessary theoretical

background to engage with the subsequent chapters.
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1.2 Notations

We denote the Hilbert space by H. R and C represents the fields of a real and com-
plex numbers respectively. Set of all m x k matrices defined over a complex field C is
symbolized by M,,,«x(C). For a matrix R € Mg (C), its eigenvalues are denoted as

w1, ws,...,wk. The trace and determinant of the matrix R € My (C) are given by

k
Tr(R) = Zwi and det(R) = wiwz---wy,
i=1

respectively.

Consider the matrix R = [r;;] € Mgy (C). Let RT = [r;;] represent the transpose [46]

and R* = [Fj;| denote the conjugate transpose of R, for every i, j specified as 1 < 7,5 < n.

Let D = diag(dy,ds,...,d;) be a diagonal matrix, where dy,ds,...,d; are distinct
elements belonging to the complex field. U denotes a unitary matrix, and E is a matrix
with all elements equal to 1. e; represents the i** column, where only the i** element is

1, and all other elements are 0.

1.3 Basic Definitions

1.3.1 Symmetric and Skew-Symmetric Matrix

A matrix R = [r;j] € My, (C) is termed as symmetric matrix if R = R, which means

that r;; = rj; for every 4,5 € {1,2,--- ,k}.

Similarly, if RT = —R, i.e., rj; = —r4j for each and every i, j € {1,2,---,k}, then

the given matrix R is termed as a skew-symmetric matrix.

1.3.2 Self-Adjoint Matrix

Consider a matrix R, which is an element in Mjyx(C). The matrix R is termed to be
self-adjoint if R* = R, indicating that each entry 7;; equals the complex conjugate of
rj;. The set of all self-adjoint operators on the Hilbert space H, as discussed in [15],
is denoted by B(H*). In most cases, the study of self-adjoint matrices is of significant
interest due to the fact that their eigenvalues are guaranteed to be real. For a self-adjoint

operator R, the inertia of R is defined as,
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where ((R), v(R), and J(R) represent the counts of positive, zero, and negative eigen-

values of R, respectively.

1.3.3 Positive (Negative) Definite Matrix

Consider a matrix R € My« (C) is termed as positive (negative) definite [14, 49] if it is
self-adjoint and fulfills any of the following synonymous conditions:

1. (Rx, z) > 0 (< 0) for each non-zero z € CF.

2. All minors corresponding to principal diagonal of R are positive (negative).

3. All eigenvalues of R are positive (negative).

4. R = S*S for some invertible (non-singular) matrix S.

5. R = L*L for some non-singular upper triangular matrix L.

The collection of all positive definite matrices of size k is represented by &7,.. We denote

the positive definite and negative definite matrices by %2 and A4 Z respectively.

1.3.4 Positive (Negative) Semi-definite matrix

A matrix R € My, (C) is called positive (negative) semi-definite [42] if it is self-adjoint
and meets any of the following analogous conditions:
1. (Rx, z) >0 (<0) for every x € CF.
2. All minors corresponding to principal diagonal of R are non-negative (non-positive).
3. Every eigenvalues of the matrix R are non-negative (non-positive).
4. R = 5*S for some matrix S.
5. R = L*L for some upper triangular matrix L.
The collection of all positive semi-definite matrices of size k is denoted by .#,. We
represent the positive semi-definite and negative semi-definite matrices by &.¥ 2 and

N D respectively. Several criteria are available in the literature to identify positive

semi-definite matrices, some of which are listed below in the form of proposition.



Chapter 1. Introduction 4

Proposition 1.3.1. Let R € M (C). Then R is classified as 2. if and only if R
satisfies the condition (Rx, ) > 0 for each x € CF.

Proof. Let us consider R is &.¥ 2 matrix, {x1,x2,..., 2T} as an ortho-normal basis for
C*, composed of the eigenvectors of matrix R, and assume w; denote the eigenvalues
associated with each eigenvector z;, for 1 < j < k. For every x € C*, we can express x

as
k

r = Zajxj, a; € C.

=1

Thus, it follows that,

k k k k
(Rx, x) = <ZajR:Ej, Zajxj> = <Zajwja:j, Zajxj>.
j=1 j=1 j=1

=1

Using orthogonalisation,

k
(Rz, @) = Y |ajfwjllz;)* > 0,
j=1

because w; > 0 for each j.

Conversely, Assume that w is an eigenvalue of R, related to the eigenvector . Then
it is known that,
wlz|* = wz, z) = (R, z) >0,

resulting in the conclusion that w > 0. This concludes the proof. O

Proposition 1.3.2. Suppose R € Myr(C) be a positive semi-definite matriz of order

k. Then every element on the diagonal of R is a non-negative real number.

Proof. Given that R = [r;;] € /,. Then r;; = (Re;, e;) > 0for alli=1,2,...,k, where
e; in R¥, defined as the column vector whose " entry is 1, while all other entries are
0. To discuss the next characterization, we need to define the principal minor of the
matrix R € My (C). For an index set v C {1,2,...,k}, the principal sub-matrix of R
is represented by R[] and is defined as the matrix constructed using the elements from
the rows and columns of R that are indexed by 7. The determinant of the principal
sub-matrix is referred to as the principal minor. For a vector 2 € C*, x[y] denotes the
vector derived from z by removing the entries complementary to 7, and x[y¢] represents

the vector derived from x by removing the entries indexed by . O

Proposition 1.3.3. Let R € My« (C). The matriz R is classified as .S P if and only

if all the principal minors of the matriz R are non-negative.



Chapter 1. Introduction 5

Proof. Let R € My (C) is a &2 matrix, 7 is a proper subset of {1,2,...,k} and
R[] be the principal sub-matrix. Assume z € CF is a vector such that z[y] # 0 and

z[y¢] = 0, where ¢ represents the complement of 7. Then,
z*R[yzly] = 2"Rz > 0.

Since the non-zero vector z[y] can be selected freely, which implies that R[y] is positive

semi-definite. The converse part is trivially true. O

Proposition 1.3.4. Let R € My, (C). Then R is a PSP if and only if there exists a
matriz S € Myxx(C) along with the condition that R = S*S. Additionally, R is a P9

matriz if and only if S is an invertible matrix.

Proof. Let R € ., is a £ % matrix. The spectral decomposition of the matrix R
can be formulated as R = UDU*. Here, U represents an unitary matrix, and D =
diag(wy,wa, ...,wy) be a diagonal matrix eigenvalues of R as the diagonal entries. Since
R is a &% matrix, this implies that w; > 0, for each and every i is the member of the
set {1,2,...,k}. States that S = UPU*, where P = diag(\/w1, /w2, ..., /wy). Hence,
R =5*S.

Conversely, assume that R = S*S for some matrix S. Let 2 € C*. Then,
(Rz, z) = (S*Sz, z) = (Sz, Sz) =||Sz|*> > 0.

This establishes that matrix R is a positive semi-definite.

Furthermore, the matrix R is a positive definite if and only if it is both &% and
non-singular. Since R is non-singular such that R = S*S also det(R) # 0. So, S is
invertible. Hence, R is ZZ if and only if S € My (C) is invertible.

1.3.5 Conditionally Positive (Negative) Definite Matrix

A self-adjoint matrix R € Myxx(C) is referred to as conditionally positive (negative)
definite [30] if
(Rz, ) 20 (<0)

for each vector x € Hy, where

k
H, = {x = (xl,xg,...,xk)e(cksuch thathi = 0}

=1



Chapter 1. Introduction 6

be an (k — 1)-dimensional subspace of C*.

We represent the conditionally positive definite matrix and conditionally negative defi-
nite matrix by € 2% and € .4 2 respectively.

Example 1 Consider the matrix R € My xx(C).

3 2
R = .
For X € Hy, X = (z,—x). Then (RX, X) =322 > 0. Hence, R is ¢ %% matrix with

positive eigenvalues w; = 1.4384 and wy = 5.5616.

Example 2 Consider S be a matrix member of My (C). Then, S is defined as

5 - [‘32 _32]

For X € Hy, we have X = (z,—z). Then (SX, X) = —10x? < 0. Hence, S is €./ 2,
with one eigenvalue positive, i.e. w; = 1, and the other negative, i.e. wy = —5. For
CPY and €N 2 matrices, the following well-known results establish the relationship

among the determinant, eigenvalues, and invertibility.

Proposition 1.3.5. Every matriz that is 2 (N D) matrix is also € P D (€N D)

matrix. However, the reverse implication does not always hold.

Proof. Let R € &, be a positive definite (% %) matrix. Then for all nonzero vectors z,
(Rz, 2) = 2" Rz > 0. (1.1)

Since a conditionally positive definite (4’ % 2) matrix requires 2z Rz > 0 only for those
z such that Zle z; = 0, this follows immediately from the % case. Thus, every %

matrix is also a € ¥ % matrix.

Next we see that the reverse implication does not necessarily hold. Take into account

the symmetric matrix R € M3y3(C) given by

wl—=
oSN
|

=
I
\

(1.2)

wWiN wWIN
Wi

win

Wl

Step 1: Representation of R.
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Note that R can be expressed in terms of the identity matrix I3 and the all-ones
matrix J3 as

R = 13—%J3,

where J3 is the 3 x 3 all-ones matrix.

1) Conditionally positive definite

For any z € R3,
3 2
T T T 2
2z Rz=z Iz—%z Jz = ||z]] —g(ZzZ> .
i=1

If Z?Zl z; = 0, then
z'Rz=|z|* > 0,

and it is strictly positive for all nonzero z with zero sum. Hence R is conditionally

positive definite on the subspace {z € R3: 3. 2; = 0}.

2) Not positive definite
For any nonzero vector z = (21, 29, 23) ' € C3, we have

2Rz = 22+ 22422 — %(zl—l—zQ—{—zg)Q. (1.3)
However, for the particular nonzero vector z = (1,1,1)7,

2"Rz = 3—

Wi
Ne}

= —3<0. (1.4)

Since there exists z # 0 such that z' Rz < 0, the matrix R is not 2 2.

Thus, this example demonstrates that a ¥ %% matrix is not necessarily a &% ma-

trix. O

Proposition 1.3.6. A €N 9 (€ P 2) matriz has at most one positive (negative) eigen-

value, counting multiplicities.

Proof. Consider a matrix R € My (C) that is €.4"2. By definition, we have

(Rx, x) <0 for every x € H.
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From this, it can be inferred that,

max (Rz, xz) <O0.
zeH
el =1

This inevitably brings us to the conclusion that,

where dimension of M is k — 1.

According to the Min-Max principle, we derive that we(R) < 0, indicating there can

be at most one positive eigenvalue of R.

To derive a similar conclusion for a ¥ %% matrix, we can substitute R with —R and

using the expression

—w;(R) = wp—ir1(—R) foreach 1 <i<k.

Thus, it is established that a ¥ % % matrix can have at most one negative eigenvalue.
O

Proposition 1.3.7. Let R € My, (C) be a € PP or(€ N D) matriz but not .S D or(N S D).
If (Axz,x) # 0 for all nonzero x € J, then A is invertible. However, the converse does

not necessarily hold.

Proof. Suppose, with the intention of deriving a contradiction, that R € My (C) is

singular. Thus, It follows that there exists a nontrivial vector x € C* for which
Rz = 0. (2.1)
Consequently, we also have the expression
(Rx, ) = (0, =) =0. (2.2)

As (Rx,x) # 0 for every nonzero x € ¢, this results in a contradiction with (2.2).
Therefore, it can be inferred that ¢ H and R cannot be &.¥%. Hence, there exists
at least one negative eigenvalue w of R. This suggests that there must exist a non-zero
vector y € C* such that

Ry = wy.
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Consequently, we can write

(Ry, y) = (wy, y) = wy'y <O0. (2.3)

Next, we observe that y ¢ H. If we assume y € H, then since R is € X2, we would

have
(Ry, y) >0, (2.4)

which contradicts (2.4). Therefore, it must be that y ¢ H, leading to Zle y; # 0. Let
r = Zle y; and % We note that z = x — py € H and since R is €9, it
follows that =

(Rz, z) > 0. (2.5)

Using (2.1), we compute

(Rz, z) = (R(z —py), (x —py))
= (Rx, z) — p(Ry, =) — p(Ra, y) + |p|*(Ry, v)
= —p(Ry, =)+ |p|*(Ry, v)
= —p(y, Rz)+|p|*(Ry, y)
= [p|*(Ry, v)

= [p|Pwy*y < 0,

this contradicts equation (2.5). Hence, R must be invertible. To demonstrate that the

converse does not hold, consider the matrix R € My (C) represented as,

R:<_01 )

This matrix is invertible and can be classified as € % as well as € A4 2. Nevertheless,

R is neither a A2 matrix nor a #.¥ % matrix. Moreover, we can observe that

(Rx,z) = 0 for every nonzero x € H.

1.4 Hadamard Operations

The Hadamard operation refers to key operations on matrices, namely the Hadamard
product and Hadamard power. These operations are fundamental in matrix analysis

and have widespread applications [33—-35] in several areas of mathematics.
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1.4.1 Hadamard Product

The Hadamard product, or element-wise product, is an operation applied to two matrices
of equal dimensions. Let R = [r;;] and S = [s;;] be matrices of size m x k. The Hadamard
product, denoted by Ro S, is defined as Ro S = [r;s;;], for each and every i belongs
to {1,2,...,m} and for each j € {1,2,...,k}.

In simpler terms, the Hadamard product of matrices R and S involves multiplying
their corresponding elements. It is important to distinguish the Hadamard product
from matrix multiplication, as it operates element by element rather than through the
dot product. This operation exhibits both commutative and associative properties.

Specifically, for matrices R, S, and C of the same size, the following hold true,

RoS = SoRand RoS)oC = Ro(So(C). The Hadamard product has important
applications [32, 43] in fields such as optimization, deep learning (e.g., element-wise
activation functions), and signal processing, where operations on matrices are frequently

performed element by element.

1.4.2 Hadamard Power

The Hadamard power is a variation of the Hadamard product. In this context, every
entry of the given matrix is exponentiated to a predetermined power. For a matrix

R = [ry;], its Hadamard power [69] for a real number p is defined as,

R? = [rfj], for all 7 belongs to the set {1, 2, ..., m} and for each j belongs to the
set {1, 2, ..., k}.

Through this operation, every element of the matrix is raised to the power of p
individually, operating element-wise across the matrix. The Hadamard power is par-
ticularly valuable in machine learning and data science, where it is used for non-linear

transformations of data, and in studies involving matrix inequalities.

The Hadamard power possesses several important properties, few are listed as:
1. Let R, S Mxx(C). Then we have,
(Ro S)? = R°po S°P,  for any real number p.

2. If the matrices R and S are diagonal matrix of order k then it follows,

(RoS)P=RPoSP, Forany pe R
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When R and S are not diagonal matrix, this property may not necessarily be valid.

1 2 12
, S = .
24] [24]

For real number p = 2, calculating the left hand side of equation |,

Consider the matrices:

R =

(ROS)02 —

68 272

17 68
100 400

25 100
] , and other side is, R%?08? = [ ] .

We observe that,
(RoS)*? # R%0 S2.

We reach to a conclusion that the property remains valid only when R and S are

diagonal matrices.

This operation offers an efficient way to apply element-wise exponentiation on ma-
trices, which is a crucial step in numerous computational algorithms. In 1911, Schur
proved a fundamental theorem about the Hadamard product of matrices [11], proving
that the Hadamard multiplication (or product) of two or more 2. % matrices of the
same dimension preserves positive properties. In the following theorem .4} denotes the

set of symmetric matrices of order k.

Theorem 1.4.1. Let R, S € A},. Then the Hadamard product Ro S belongs to Ny If
R, S € .%, then Ro S is also in .7,.

Proof. Let R, S € A, R=R" and S = ST. The Hadamard product R o S is defined

as the element-wise product of the matrices R and S, i.e.,

(RoS) = [rijsij|l, foreachi,je{l, 2, ..., k}.

Since R and S are symmetric matrices, we have r;; = rj; and s;; = sj; for all 4, j.
Therefore, the Hadamard product R o S satisfies
(Ro8) = [rijsiy] = [rjisi] = (RoS),

which implies that R o .S is also symmetric, i.e., Ro S € 4.

Next, assume R, S € %%, where .%};, denotes the set of .S of order k, i.e., R and

S are symmetric and all their eigenvalues are non-negative. Since R, S € %%, we have
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2Rz >0 and 278z >0 for each and every x € C*k,

Now for the Hadamard product R o S, we need to show that

tT(RoS)x >0 for each and every z € C*.

The expression of quadratic form for the Hadamard product [38] is given by
k
.%'T(RO S)x = Z xixjmjsz-j.
ij=1

This expression can be viewed as a sum of products of corresponding elements of R
and S weighted by the components of . Since both R and S are . 2, it follows from
the properties of the Hadamard product that R o S retains the non-negativity property

of the quadratic form,

zT(RoS)z >0 for every z € C*,

this leads to the conclusion that Ro S € .%,.

Thus, we have shown that if R, S € A4, then Ro S € A, and if R, S € %, then
Ro S € .%, as required. O

1.5 Spectral Decomposition of Matrices

Spectral decomposition[39] of a matrix consists of representing the matrix using its
eigenvalues and their associated eigenvectors. For a self-adjoint matrix R € My (C), if

R is diagonalizable, the spectral decomposition expresses R as,

R = QAQT
where,

e () is considered to be an orthogonal matrix and columns of @ represents the

eigenvectors of R,
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o A = diag{wi,wa,...,wi} is a diagonal matrix whose diagonal entries are the eigen-

values of R.

e Q7 denotes the transpose of the matrix @ (in the case of real matrices, Q= = Q7).

In this representation, R is reconstructed from its eigenvalues and eigenvectors, which
provides insight into the structure of the matrix. The eigenvalues in A represent the
scaling factors by which the corresponding eigenvectors (columns of @)) are stretched or

compressed under the transformation represented by R.

For symmetric matrices R, the spectral decomposition simplifies further, as @) is an
orthogonal matrix and the eigenvalues of R are real. In this case, the matrix R can be
formulated as,

R = QAQ"

where QT and @ defines a relation as Q7 = @', and he columns of Q define an
ortho-normal set of eigenvectors, which correspond to the eigenvalues contained in the

matrix A, forming a complete basis for the vector space.

The spectral decomposition plays a fundamental role in various applications, encom-
passing the process of determining solutions for a given system of linear equations, ma-
trix exponentiation, and fields such as principal component analysis (PCA) and quantum

mechanics.

1.6 Interpretation of Rank

The rank of a matrix R € M,,,«x(C) is defined as the dimension of the subspace generated
by its columns, which is equivalent to the dimension of the row space of the matrix R.
It serves as a measure of the matrix’s "non-degeneracy” by indicating the number of

linearly independent columns or rows.

Formally, the rank of R, denoted as rank(R), is expressed as

rank(R) = dimn(Col(R)) = dimn(Row(R)),

where Col(R) and Row(R) represents the column and row space of the matrix R,

respectively.
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The rank denotes the highest count of .Z.# columns or rows within the matrix, where
£ .7 represents the linearly independent. In other words, it is the largest integer r such

that R contains a subset of r .Z.¢ rows or columns.

Another way to determine the rank of a matrix is through its singular value decom-
position (SVD) [36]. Specifically, if R is an m X k matrix, its rank corresponds to the

count of nonzero singular values in the diagonal matrix ¥, when R is decomposed as:

R = UxVT,

where U and V represents the orthogonal matrices, and ¥ is a diagonal matrix with

diagonal elements represents the singular values.

The rank of a matrix provides significant insights into its fundamental properties,
including the solvability of linear systems, matrix invertibility, and the structure of its

null space.

Theorem 1.6.1. For a non-zero square matric R € Mg« (C), the set of conditions

listed below are mutually equivalent,

1. R is a non-singular matriz.
2. R has full rank [48] .
3. R can be transformed into the identity matriz through row reduction.

4. R can be formulated as a multiplication of elementary matrices.

Proof. We aim to show that the equivalence of the conditions in a series of logical
implications.

First we prove that 1 implies 2

a) Suppose R € My (C) is a non-singular matrix, which means R~! exists. If R
does not have full rank, then, according to the rank-nullity theorem, there must
be a nonzero vector in the null space of R., which leads to the conclusion that the
rows or columns of the matrix R are Z%. However, for R to be invertible, its
rows and columns must form a set of .Z.# vectors. Hence, the assumption that R
does not have full rank leads to a contradiction. Therefore, R must have full rank.

Now we prove that 2 implies 3
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b)

If R has full rank, then it has exactly k .Z.# rows and columns. From row reduction
property, the row-reduced echelon form of matrix R, each row will contain exactly
one non-zero element, with all other entries in the row being zero. Thus, the row-
reduced form of R is the identity matrix.

Further we prove that 3 implies 4.

If R is row-equivalent to the identity matrix, it follows from the definition of
row-equivalence that there exists a series of elementary matrices F1, Fo, ..., Fy, it

follows that

R = F\Fy--- Eply.

Hence, R can be outlined as the composition (product) of the elementary matrices.

Finally, we prove that 4 implies 1.

Suppose R = E1FEs--- Ey, where each E; represents an elementary matrix. Since
elementary matrices are always invertible, and the product of any number of such
matrices remains an invertible matrix, it follows that R is invertible. Hence, R is

non-singular.

Thus, the conditions are equivalent, and the proof is complete. O

Theorem 1.6.2 (Cauchy Interlacing Theorem). Let R € M,,»x,(C) be defined as a

Hermitian matriz of size k with eigenvalues satisfying

Wy 2wy > > W

and let S € M(;_1)xk—1)(C) be a principal sub-matriz of R of order (k — 1) with eigen-

values

12 pl2 2 2 (k1)

The eigenvalues of S are interlaced with the eigenvalues of R as follows,

Wi 2 1 2w 2> f2 2 2 1) = Wk

Proof. To establish the interlacing property, we start by considering the spectral the-

orem, which states that every Hermitian matrix is diagonalizable by a unitary matrix.

Thus, we can express R as

R=UDU",

where D = diag(wi,ws, . ..,wy) contains the eigenvalues of R, and U represents a unitary

matrix.
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Let S be the principal sub-matrix of R formed by eliminating the last row and last

column of R. Thus, we can represent S as
S = Up—1Dyp—1U;;_4,

where Dj,_1 = diag{wi,ws,...,wr_1} contains the first (k — 1) eigenvalues of R.

Now, it is known that for any vector x in the space C*, we can decompose z into

two components, one corresponding to the principal sub-matrix S and the other to the

x:(g),

where 0 represents the deleted component. We have

(v (v
(Rx, x) = (R (()) , <0)>

(R, x) = (Sy, y)-

deleted row and column.

For y € CF1, let

Expanding the terms, we get

Now, examine the situation where x is an eigenvector associated with w;, leading to
(Rx, x) = wi(x, x).
As a result, we can conclude that,
will @ || = (Rz, z) >l y ||* for some j.

This indicates that
Wi = s

Next, let x be defined as an eigenvector corresponding to j;, yielding

(Sz, z) = pjlz, z) > wesnllyl*

Consequently, we find that

Hj = W(it1)-
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The interlacing results in
Wi 2 p 2 we > 2 2> 2 (k—1) = Wk,

verifying the Cauchy Interlacing Theorem. O

Theorem 1.6.3. [23/[Spectral Properties of Positive Symmetric Matrices] Let R = [ryj]
be a symmetric matriz of size k where all elements r;; > 0. Let w represent the largest

etgenvalue of R. Then the subsequent properties are true

(i) w is positive, i.e., w > 0.

(i) There exists a corresponding eigenvector (z;) 1 < i < k where each component

satisfies x; > 0.
(iii) The eigenvalue w is unique and its arithmetic multiplicity is 1.

(iv) For any other eigenvalue p, the inequality w > || holds.

Proof. We prove each part theoretically .

(i) Let R € Myyx(C) be a matrix whose eigenvalues are all real, and the sum of its
eigenvalues satisfies Tr(R) > 0. By the Perron-Frobenius theorem [23], if R is a non-
negative irreducible matrix, then it has a unique largest eigenvalue w, which is positive.

Consequently, we obtain that w > 0.

(ii) Let v = (vj) be a real, define eigenvector associated with w, satisfying Rv =
wv. By the Perron-Frobenius theorem for matrices with positive entries, the largest
eigenvalue w has an associated eigenvector with strictly positive entries. We normalize

this eigenvector to obtain x = (z;), where x; > 0 for all 7.

(iii) To show that w is a non-degenerate, assume to the contrary that there exists
another .Z.# eigenvector corresponding to w. However, this contradicts the symmetry
and positive definite behaviour of R, which guarantees that the largest eigenvalue is
unique in terms of an associated non-negative eigenvector. Therefore, w is distinct and

not repeated, i.e., non-degenerate.

(iv) Let p represent any other eigenvalue of R. Since R is symmetric and positive,

its eigenvalues are bounded above in absolute value by w, and thus w > |u|. O

1.6.1 Matrices of Special Patterns

Matrices constructed by arranging natural numbers in specific patterns often exhibit

unique and noteworthy mathematical properties. Examples of such matrices include the
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Hilbert matrix, Harmonic mean matrix, Geometric mean matrix, Cauchy matrix [1],
and Min matrices. These structured matrices [2] have been extensively studied due to

their interesting algebraic and analytical characteristics.
Cauchy Matrix: Let pi,po,...,pr be positive real numbers. The matrix R = [ry]

is termed as Cauchy matrix if each of its entries is given by the form

1
i+

Tij

Cauchy matrices have numerous important characteristics, one of which is that they
are always £.79.

Hilbert Matrix: Consider a matrix of dimension &, denoted by R = [r4;], is known

as a Hilbert matrix if its entries are defined as

1
i+

Tij =

We can note that the Hilbert matrix represents a specific instance of a Cauchy matrix

when p; = i.

Harmonic Mean Matrix: An k x k matrix, denoted by R = [r;;], is referred to as

a harmonic mean matrix if its elements are specified as

ij
i+

Tij =

Min Matrix: A matrix R = [r;;] is outline as min matrix if its entries are determined

through,

73 = min(i, j),

represented as R = [min(4, j)].

GCD Matrix: A matrix R € M,,,«x(R), represented as R = [r;;] is termed a GCD
matrix if every entry r;; represents the Greatest Common Divisor with respect to ¢ and

7, expressed as

’f'ij = GCD(Z,])k

i,j=1"
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It has been established through extensive research that the aforementioned matrices
exhibit infinite divisibility [40]. These matrices play a significant role in various domains,
often serving as benchmark test matrices in numerical analysis. Additionally, they find
applications in multiple fields, including engineering and physical sciences, due to their

distinctive structural properties and computational advantages.

1.7 Matrix Function via Spectral Decomposition

Let f be a function that takes real values, which is defined over an interval I contained
within the real number line R. This function can be extended to the class of matrices

the set of whose eigenvalues are entirely contained within I.

Consider a self-adjoint matrix R € B(H*) with eigenvalues wy,ws, .. .,wk, so that for
every i € {1,2,...,k}, w; lies with in the interval I. The spectral decomposition of the

matrix R is represented as,

R = Udiag(wl,wz,...,wk) U*,

where U is defined to be an unitary matrix. Then, the function f applied to the matrix

R is represented by

f(R) = Udiag(f(w1), fwa), ..., flwr)) U".

Now, We can define operator functions that are analogous to convex, concave, and

monotone functions.

1.8 Operator Monotone Function

A function f that takes real values and is defined on an interval I is referred to as a
matrix monotone function if, for any self-adjoint matrices R and S € B(H*) of order k,

whose spectra (the set of all eigenvalues) lie within I, the condition
R > S = f(R) > f(5)

holds. Here, R > S means that R — S is a #.¥ % matrix.

If a function is matrix monotone [21] for matrices of all orders k, then it is referred

to as an operator monotone[24] function. Note that monotone functions can be
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either increasing or decreasing in the context of real-valued functions, whereas monotone

functions for matrices only define increasing behavior.

It can be easily observed from given example, consider the function f defined from

positive real line to real line, expressed as
f(t) = t", where 0 < r< 1.

This function is said to be operator monotone.

1.9 Operator Concave Function

A function f: I — R is called a matrix concave of order k if, for any R, S € B(H*)
and for every ¢ € [0, 1], the following inequality holds

f(eR+ (1= ¢)S) = cf(R) + (1 =) f(9).

If a function is matrix concave for matrices of all orders k, it is referred to as an oper-

ator concave function.

Example- The function f defined from positive real line to real line
fit) = £/

is an operator concave function on the interval (0,1).

1.10 Operator Convex Functions

A function f: I — R is called a matrix convex function if, for any self-adjoint matrices
R and S with spectra contained within 7, and for every 0 < ¢ < 1, the following
inequality holds,

f(eR+ (1=¢)S) < cf(R) + (1 —c)f(9),

for all R, S € B(H").

If a function is matrix convex [12, 16] for matrices of all orders k, it is referred to as

a function that is operator convex.
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Example- Consider the function f defined from the positive real axis to the positive

real axis.
f@) = ¢

is classified as an operator convex on R.

Theorem 1.10.1 ([40]). Consider a function f : (0,00) — (0,00). If f is an operator

monotone function, then the following properties hold

1. The function tf(t), where t is a variable, is also an operator monotone function.

2. Moreover, The function f(t~'), when applied to the inverse of t, preserves the

property of operator monotonicity.

Proposition 1.10.1. Let f: (0,00) — (0,00) be a function that is an operator convez.

Then the function h(t) represented as

Wty = fét)

is also an operator monotone over an interval (0,00).

1.11 Overview of Relevant Studies

In 1934, K. Lowner first emphasized the significance of operator monotone functions
[5]. He made connections between operator monotonicity and Pick functions, and the
positivity of certain matrix operations, such as the division and difference of matri-
ces. Lowner provided a crucial characteristic of operator monotone functions through a

representation in the form of an integral, represented by

h(t) = a+bt+/oo %dm(s), (1.5)
0 S

where a € R and b > 0, with m denoting a positive measure on (0,00) such that
fooo dm(s) — 4oo. He also proved that the functions f(¢) = ¢" with r lies in the closed

1+s
interval [0, 1] and the logarithmic function f defined from [1,00) to R, (f(t) = logt

are operator monotone. Lowner [7] also identified that for self-adjoint matrices of a
fixed dimension k, specific matrices obtained from the values of f must be positive
definite. He also observed that as k grows, the conditions become more restrictive.
As k — o0, a condition for monotonicity that is both necessary and sufficient is that

the function admits an analytic continuation and mapping the upper half-plane onto
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upper half plane. His important theorem described operator monotone functions defined
for real variables, establishing that every such function originates from holomorphic
functions that map the upper half-plane of a complex plane onto itself. Kraus and Fritz
[6] extended Lowner’s results regarding convex matrix functions to operator convex
functions, uncovering analogous properties for both categories. Lowner’s 1950 work [8]
further examined higher-order monotonic real-valued functions and their relationship
with matrix functions, given that both the dependent and independent variables are
real symmetric matrices of identical order. He explored broader categories of real-valued
functions with real variables defined on open intervals, referred to as transformation
semigroups (5). These functions exhibit continuity, strict monotonicity, and satisfy four

specific properties,

L. If h(x) belongs to S, then the restriction of h(z) to any open subinterval (a’,b") C

(a, b) is also an element of S.
II. If both the h(z) and the g(xz) € S, then the composition g[h(z)] € S.

III. If h(x) defines the limit of a sequence of functions hy,(z) € S, where all functions are
defined in (a, b) and converge uniformly on any closed and bounded sub-interval
of (a, b), then h(xz) € S.

IV. If h(z) € S, then h=!(x) € S.

These properties contribute to obtaining precise criteria for operator monotone functions
and their differential properties. Bendat [10] compiled results from previous studies and
confirmed similar characteristics for convex matrix functions while extending findings to
operator convex functions. He adapted (2.7) into what he termed the Stieltjes integral

form for operator monotone functions, expressed as

fo) = [ e 29

o=

Here, f(z) = > o7 apa™ represents a monotone function with a convergence radius R,
and () is a bounded, nondecreasing function that stays constant for || > %. Several
researchers have approached unique demonstrations of Lowner’s theorem [5] from var-
ious perspectives, with several of these proofs documented in [6, 8, 19, 27, 54]. Frank
Hansen [54] showed that the function defined as ¢ — % is an operator monotone on
the positive real-line for 0 < p < ¢ < 1. Hansen also developed a new theory, providing
an integral representation of operator monotone functions independent of Lowner’s an-
alytic function theory, establishing a standard connection between positive and general

operator monotone functions on (0, 00). Utilizing these standard relationships, through
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which he identified new monotone functions in the context of quantum system state
spaces. The relationship between operator monotone and operator concave (or con-
vex) functions play an essential role in matrix inequalities, leading to the Lowner-Heinz

inequality. This states that for positive operators R and S on a Hilbert space H,
R>S>0=R > SP (29

forall 0 < p < 1. This is equivalent to asserting that the function h(t) = ¢ is an

operator monotone, for ¢ > 0and p € [0, 1].

In 1980, Kubo and Ando [26] introduced an axiomatic framework for operator means
involving two variables, linking it to operator monotone functions defined on two vari-
ables. They demonstrated that each non-negative operator monotone function f that
is defined on the interval [0, oo) is linked with a unique operator connection, where
f(1) = 1 establishes a link to the operator mean. The operator mean o = o is given
by,

RoS = R:f(R"2SR™2)R: (2.9)

where R, S € B(H) are positive operators [25]. Several significant types of means

[29, 64, 76] are given as follows

1. Arithmetic mean: RV S = RT“'S.

N[

2. Geometric mean [44]: R S = Rz (R_%SR_%> Rz.

PN |
3. Harmonic mean: R $H S = (%) .

Kubo’s insights significantly contributed to the conceptual development of multivariable
operator means derived from specific classes of normalized multivariate operator mono-
tone functions. The geometric mean for two variables has been extensively analyzed
and has been extended to two non-commuting operator variables by several authors,
including Lawson [60, 68]. Subsequently, in 2004, Ando et al. [28] provided a definition
for the geometric mean of k distinct positive (semi)definite matrices, generalizing nu-
merous inequalities [72, 74] applicable to a geometric mean of two positive semi-definite
matrices. They also introduced simple computational formulas [71] for square matricesof
order 2. In 2013, Bhatia [62] explored Riemannian geometry, and Bini et al. in 2010
[57] introduced new methods to generalize the geometric mean to multivariable settings.
Moakher et al. [58, 71, 78] demonstrated the geometric mean of symmetric matrices
through a differential method, ultimately establishing a relationship between means
based on Riemannian metrics and geometric means. In 2014, Palfia [67] generalized

Loéwner’s findings to multiple variables and defined real functions that are characterized



Chapter 1. Introduction 24

as operator monotone functions, acknowledging the significance of analytic extension
in transforming the upper half-plane of the complex plane onto itself, and establishing

several theorems related to non-commutative multiple variables.



Chapter 2

Spectral behaviour of the matrix

f(1—pip))]

2.1 Introduction

The study of pattern-based matrices and their spectral properties has a rich history,
marked by significant contributions from mathematicians over the years. The journey
began in the mid-19th century with the pioneering work of Augustin-Louis Cauchy, who
in 1841, defined the matrix R = [r;] = [piipj}‘ This matrix exhibited explicit determi-
nant known for its distinct structure, often expressed as a product of differences between

its parameters, also ensures its invertibility, as a non-zero determinant guarantees that

the matrix has a multiplicative inverse [65, 66]. Cauchy further proved that the matrix

1
PitDpj
nant, setting a foundation for future explorations into matrix theory [4]. Further, in

1986, Dyn, Goodman, and Micchelli [31] delved deeper into the spectral behavior of

analogous to [c;;] defined as | | is positive definite, owing to its non-zero determi-

matrices [|p; — pj|]. They investigated the matrix [|p; — p;|"], where p1,pa,...,py are
distinct real numbers and r > 0. Their research provided insights into how the spectral
properties of these matrices change with different values of . The field witnessed signif-
icant advancements in 2015 with the work of Bhatia and Jain [70]. They analyzed the
spectral behaviour of matrices P, = [(p; + p;)"] and B, = [|p; — p;|"] using the power
function t — t" for distinct positive real numbers p1, ps, ..., pr and positive values of r.
This research laid the groundwork for understanding the influence of power functions
on the behavior of pattern-based matrices, opening new avenues for spectral analysis.
Building on these foundations, in 2018, Garg and Aujla [75, 77] examined matrices of
the form [f(p; + p;)] and [f(|pi — p;|)] with f being any operator monotone function
from (0,00) to (0,00). The results demonstrated the broad applicability of operator

25
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monotone functions [55, 56] in analyzing the spectral behavior of pattern-based matri-
ces, illustrating how these functions can be effectively used to generalize and extend the
analysis of such matrices. A notable contribution to the field came in 2021 from Tanvi
Jain [79]. Jain derived the inertia of the matrix [(1 4+ p;p;)"] for distinct positive real
values of r. Her research offered profound insights into the impact of power functions
on the spectral characteristics of matrices across different contexts, with a specific focus

on inertia and its implications.

Building on this extensive body of knowledge, our chapter aims to further explore
the spectral behavior of matrices of the form [f(1 — p;p;)] for distinct positive real
numbers p;(1 < ¢ < k), where f represents a non-linear operator concave function
mapping (0,00) to (0,00). In Section 2.2, we will demonstrate that such matrices are
conditionally negative definite, nonsingular, and possessing an inertia of (1,0,k — 1),
although this result does hold true for linear functions. Additionally, we examine how
the results change when f is a logarithmic function i.e, f(t) = logt where t is positive
and highlighting the spectral behaviour of log function. Our approach involves a rigorous
analytical method to prove the conditionally negative definiteness, non-singularity, and
inertia of the matrix [f(1 — p;p;)], supported by examples to illustrate these properties.
In Section 2.3 we present an example to demonstrate that a nonlinear function f being
operator concave is not a required condition for a matrix to possess inertia (1,0,k — 1).
Furthermore, we prove that all the assumptions stated in the primary results of Section
2.2 are essential. This work aims to advance the research on the spectral behavior
of pattern-based matrices by expanding the range of studied functions and matrices,
offering new results, and enhancing our understanding of how different functions affect
spectral properties.

The main results presented in this chapter are published in Garg and Agarwal [80].

2.2 Inertia of [f(1 — p;p;)]

We will commence this section with the propositions and lemmas that are essential in

proving the main theorem.

2.2.1 Lemmas and Propositions

Proposition 2.2.1. Let R and S be two LS D of order k, with the assumption that
rank(R) = k. Then, the matrix R+ S is a P 9.
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Proof. Since R and S are positive 2.7 9, for every vector & member of C¥ | it is true
that
(Rz,x) >0

and

(Sz,x) > 0.

This implies that the quadratic forms associated with R and S are non-negative for all
x € CF.

Next, we are given that p(R) denotes he rank of R which is scalar number k, which
is same as the dimension of the space on which R operates. This indicates that the
columns of R are .Z.#, meaning no column can be represented as a linear combination

of the others. Consequently, R is invertible, which implies that

det(R) # 0.

Since R is both #.¥ % and invertible, It follows that R is necessarily a &% matrix.
A matrix R is £ if it satisfies the condition defined as,

(Rz,z) >0 Y non-zero z € CF,

Now, let us consider any non-zero vector x € C¥. We analyze he quadratic form associ-

ated with the matrix R + S, which is expressed as
(R+ S)x,x).
By utilizing the inner product properties, we can expand this expression
(R+ S)z,x) = (Rx,x) + (S, x).
Given that R is a Z% matrix and S is a 2.9, we have,
(Rx,x) >0, for 0#£x €CF

also,
(Sx,z) >0, forall z € C.

Thus, for every non-zero vector x, we have,

(R+ S)x,z) = (Rx,x) + (Sx,x) > 0.
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Given that,
(R+ S)z,z) >0 forall 0+#axeCk

that is, ((R+ S)z, ) is strictly positive for every non-zero z € C*, it follows that R+ S
is a Y2 matrix. O

Proposition 2.2.2. Let R be a square matrix of order k such that
R=uiluy +ujug +ujug + -+ ulug,

where the u;’s are row vectors and uZTuZ s a rank-1 matriz for all 1 < i < k. Additionally,

the collection {uy,us,...,ux} forms a L7 set. Then, R is non-singular.

Proof. We begin by representing the matrix R in terms of its rank-1 decompositions.

Given R can be written as,
R=uluy 4+ uduy + ugu;z, + o+ ul g,

where u; are rows vectors. Since each uzﬂuZ is a rank-1 matrix and the vectors uy, uo, ..., ug
are linearly independent.

This sum of products u;fuz can be expressed more compactly as
R=UU",

Here, U denotes an k x k& matrix defined as

— |\, T T T
U - Ul UQ U3 A uk .
In other words, U represents a matrix where the rows correspond to the vectors uy, us, ..., ug.

Next, we apply well-known inequalities from matrix rank theory for two square matrices
U and V of order k

1. rank(U + V) < rank(U) + rank(V') [59].

2. rank(U) + rank(V) — k < rank(UV) [3, 20].

For our purposes, we will set
v=Ut.

On applying V = U7 in above inequalities, we obtain the following expressions,

rank(U +UT) < rank(U) + rank(UT)
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and

rank(U) 4+ rank(UT) — k < rank(UUT).

Since U represents a square matrix of order k and U7 is a matrix obtained by trans-

posing U. This implies that UT possesses the same rank as U. Therefore, we have

rank(UT) = rank(U).
Let us assume r = rank(U). Substituting into our inequalities, we get,
rank(U +UT) < 2r

and
r+r—k<rank(UUT),

This simplifies to

2r — k < rank(UUT).

Now, since R = UUT, we have,
rank(R) = rank(UUT).
From the preceding inequality, we conclude that

2r — k < rank(R).

Since U is an square matrix of size k whose rows are the vectors uy,uo, ..., u; are
linearly independent. Then U has full rank [59], we conclude that rank(U) = k. There-
fore,

2k — k < rank(R),

which simplifies to
k < rank(R).

We also have the relation

rank(UUT) < min{rank(U), rank(UT)}.
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Since U is a square matrix of order k, it follows that
rank(R) = rank(UUT) < k.
From the above inequalities, we conclude that

rank(R) = k.

Therefore, row-reduced Echelon form of R is equivalent to the identity matrix under

row operations [59], it follows that R is non-singular (invertible). In other words
det(R) # 0.

O

Lemma 2.2.1. Consider a matriz R = [r;;] belonging to My« (C) that is € #%. Con-
sequently, e is 2.7 9. Additionally, e is 2D if and only if ry; + rj; > 2145, for all
1 # ]

Proof. Let ~; = 1y, — mki/2, for 1 < i < k. According to [41, Lemma 2.4], given that
R = [ri;] is € 2.7, we can express, for 1 < i,j <k, the relationship

Tij = Sij + Tik + Tkj — Tkk = Sij + % + 75,

where,

S = [sij] = [rij — rik = Thjj + 7hi]
is a Z.¥ % matrix in Ry, (C) Consequently,

€OS _ [esij]
is also Z.¥%. This implies that

R = [e77] = [e5 Vi) = [ViefieVi] = De**D

is 2.9, where D = diag(e™, e, ...,e%). Ultimately, e°® is22 if and only if e°°

is #9. This condition holds if and only if the rows represents S = (z! - z;) are not

identical or equivalently,
2
0< sz .Z'jH = 8j; + Sjj — 2835 = Ty +Tj5 — 2145,

for all ¢ # j. O
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Lemma 2.2.2. [/1] Let R € Rixx(C) be symmetric and P2 matrixz. The Hadamard
exponential e°® = [e"ii] is P.SD. Furthermore, et is 29 if and only if the rows of

R are distinct .

Theorem 2.2.1. Let {p1,p2,...,pr} be a set of distinct real numbers, and let R =
[14pip;] be a 2. D matriz. Then, the Hadamard exponential of R, denoted by [e*TPiPi],

is a P9 matriz, i.e., [e!TPiPi] is non-singular with all eigenvalues positive.
Proof. The proof proceeds in two parts

1. We show that [e!TPiPi] is a P27 P matrix.

2. Next, we prove that [e!*PiPi] is non-singular.

Define R = [e!*PiPi] = [¢”], where S = [1 + p;p;]. Then we have

[el+pipj] = [61+pipj] = [e - ePiPi],

Thus, we can write

e e PR e ep% eppo PR eplpk
e e - e eP2Pl b5 ... PPk
e PP =] el . : .| =Peq,
e e - e epkpl epka . epz
where _ )
e e e
e e e
P =
e e e
and ) )
ep% ePip2 ... eP1Pk
eP2PL P35 ... eP2Pk
ePEPL  oPEP2 ... P}

Matrix P is a rank-one real symmetric matrix with one eigenvalue ke and all other k —1

eigenvalues zero. Therefore, P is £ Y .i.e

P>0 (2.1)
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The matrix @ can be expressed as Q = e°f where R = [p;p;]. Using the Hadamard
exponential series expansion, we have
R°? RS

o T3]

eP=E+R+ +

where F represents the matrix of order k£ in which every element is equal to 1.
According to the Schur product theorem 1.4.1, each and every term in this series is
PSP, such as R, R°%, R, etc., are all 2.2 matrices. Therefore, the sum of these
PSP matrices, e°F is also a 2L D. ie

Q=eft>0. (2.2)

From equations (2.1) and (2.2), both P and Q are &2.¥ %, and by the Schur product
theorem, their Hadamard product P o Q) is also Z.¥ 9.

To show that el *7i?i] is non-singular, it is sufficient to show that no two rows of the
matrix S = [1 + p;p;] are identical. Assume, for contradiction, that two rows of S are

the same, i.e., both ¢-th and the j-th row are same,

(I+pip1, L+ pip2, ..., L+ pip) = (L +pjp1, L+ pjp2, ..., 1+ pjpk).

This implies that

bip1 = pjp1, PiP2 = Pijp2, ---5 PiPk = DjPk;

which further implies that p; = p;, contradicting the assumption that p; and p; are

distinct real numbers. Therefore, no two rows of S are identical.

Thus, by Lemma 2.2.2, R = [e!TPiPi] does not have two identical rows, implying that

R is non-singular. Therefore, R = [e!TPiPi] is a matrix that is 2 2. O

Lemma 2.2.3. Let R = [r;j] be an k-order matriz that is € A4 9 and has all its entries
positive. The Hadamard inverse of R is a . 9. Furthermore, it is P if and only
if rii + 155 < 2145 for every i, j belongs to the set 1,2,...,k, such that i # j.

Proof. Let the eigenvalues of R be denoted as

with Rv = rv and Au; = w;u;, for i greater than or equal to 1 and less than or equal

to k — 1. Here, the value r represents the Perron eigenvalue, and v = (v, ve,... o) T
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denotes the associated Perron eigenvector, which has positive components as stated by

the Perron-Frobenius Theorem [4]. We can express
R =rww! + wk_luk_l(uk_l)T + ...+ wlul(ul)T.

Introducing V' = diag(1/v1,1/ve, ..., 1/vk),

we can rewrite VRV as
VRV = reel + wgn_l)(VU(n_l))(VU(n_l))T + oo+ w1 (V) (V)T
If it is consider that 2”e = 0, then 27 VRV x < 0. Let
VRV =5 = (si5)

this implies that 27 Sz < 0, i.e S is A .72. Recall the identity for ¢ > 0,

o
l/t:/ e ds.
0

This allows us to express 7 (1/s;;)x as

mT(l/sij)x:/ a2 (%% xds.
0

Since (—s;js), for s > 0, is a P79, as demonstrated in Lemma 2.2.2, (e™%¥s) is a
PSP matrix. Therefore,

(1/si) = (VRV)° D = v pet-Hy !

The matrix R°Y is a 2.2 matrix. In addition, R°-1) is a 22 if and only if

v-lRe(-Dy—1 1

Sij

is a # 2 matrix. This condition holds if and only if (e™%4%) is &%, which occurs if and
only if

Sii + 855 < 2845
for each i # j. This is same as the condition

T Tjj 27"z'j

()2 (vj)? oy’

for all ¢ # j. O
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Lemma 2.2.4. Let R be a matrix that is €N 2 and non-zero, with all of its entries

being non-negative. Then R possesses exactly one positive eigenvalue.

Proof. Given that R is €.4# 2. Thus, for any vector , with the constraint ), z; = 0,
we have 27 Rz < 0. This property shows that R has atmost one positive eigenvalue and
other are non-positive. To show that R has exactly one positive eigenvalue, consider
the matrix structure and its effect on the eigenvalues. Because R is non-zero and all
its entries are non-negative, Perron-Frobenius theory applies, indicating that there is a
unique largest eigenvalue, which is positive. All other eigenvalues must be non-positive,
aligning with the .4 % nature of R. Thus, R possesses exactly one positive eigenvalue.

O

Lemma 2.2.5. Let R a symmetric matriz, where all of its entries are positive, and
it has exactly one positive eigenvalue. Then the Hadamard inverse of R is P.S Y.

Furthermore, it becomes PP if R is invertible.

Lemma 2.2.6. Let p1,po,...,pi are n distinct positive real numbers. Then the matrix

[t — pip;] is a €N D for all real values of t.

Proof. Consider R as a row vector of order k with distinct real numbers p;, where
i = 1,2,...,k, as its components. The matrix [p;p;], which equals R*R, is .9
because it can be expressed as a Gram matrix of the vectors p;. Therefore, the matrix
[t—pipj] is €N D for any real number ¢, as it represents a transformation that preserves
E N 2 behaviour. O

Theorem 2.2.2. Let f : (0,00) — (0,00) be a real valued function that is operator
concave and let p1,po,...,pr be k distinct positive real numbers such that p; < 1V 4.
Then, the matriz [f(1 — p;p;)] satisfies the condition of €N 9

and
1. The matriz is non-singular with inertia (1,0,k — 1), provided that f is non-linear.
2. The matriz is singular with inertia (1,k — 2,1), given that f is linear and k > 2.

Proof. Let f :(0,00) — (0,00) is an operator concave function. The integral represen-

tation of the operator monotone function [5] from (0, c0) to (0, 00) is given by

st
t+ s

h(t) =a+ pt+ /OOO du(s), (2.3)

where, both o and 8 are member of R, 3 > 0 and u be a measure that assigns non-negative values.
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We start by considering the function f evaluated at
t=1—pip;.

Further, we represent the integral expression as,

(o] 1 . Z .
FU =) = o 80 —py) + [ TP e,

Thus, the matrix representation is expressed as,
[ s(1—pip;) }
1—pip;)] = oF + 1—¢-+/ [ds.
Also, -
£ =pipy)] = oB+ 8l = p) + | Gudto) (24)

where,

We can rewrite G4 as follows

o= [ ]

[ (- )

)
t — pip;

=skE — S2Kt

where, t = s+ 1 and
1

t—pip;

K =
Next, we analyze the matrix [t — p;p;] in terms of matrix £ and [p;p;], so we can have,
[t — pips] = tE — [pip;].
Since t > 1 and 0 < p; < 1, it follows that

t—pipj>0Vi,j.
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The matrix tE is €49, as t is a positive constant, and —[p;p;] is A"/ 2, hence € N Z.
Using these facts together with Lemma 2.2.4 and 2.2.5, we deduce that,

1
t— pipj

K =

is % and hence € X2. Therefore, the matrix —K; is €4 %, which leads to the
conclusion that G is also €A 2.

Using this result in Equation (2.4), it follows that the matrix [f(1 — pip;)] is €N 2.
This matrix has all positive entries, and therefore by using Lemma 2.2.4, [f(t — p;p;] has
exactly one positive eigenvalue.

Next, we check the non-singularity of the matrix [f(1 — p;p;]. We categorize this proof
into two parts: first, for a linear function, and then for a non-linear function.

Part 1 Linear Function

Let

ft)=a+pt

be a linear function from (0, 00) to (0,00), where a;, 5 > 0.
Then,
[f(1 = pipj)] = aE + B[1 — pipj].

This matrix is a rank 2 matrix because the matrix [1 — p;p;| has rank 1, and adding
aF a scalar multiple of the unit(identity) matrix, this raises the rank by 1.
Thus, the rank of
aF + B[1 — pip;] is 2.

Since it is a rank 2 matrix, it has only two non-zero eigenvalues. As discussed earlier,
it has exactly one positive and one negative eigenvalue due to the properties and char-
acteristics of the ¥.4 2 matrices. Hence, the inertia of this matrix is (1,0, 1) for n =2
and (1,k —2,1) for k > 2.
Part 2: Non-linear Operator Concave Function
Consider the non-linear operator concave function f : (0,00) — (0, 00).
Let

[t — pip;] = [rij]-

We need to show that [f(1 — p;p;)] is non-singular.
First, note that

rii + 155 = (t—pj) + (t — p3) < 2(t — pipj) = 2rij.
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This inequality indicates that the matrix [r;;] is €4 2.
Using Lemma 2.2.3, we deduce that the matrix [%} is 9.

It follows that for every non-zero vector x € H.

1
(—z,z) >0.
Tij

Hence, for all non-zero vectors « € H;, it holds that,

((sE — s’ Ky)z,z) < 0.

Now consider the term involving the integral in the expression for [f(1 — p;p;)]

(e + B(1 = pipj))z,x) <0,

hence, it can be concluded that
([f(1 = pipj)]z,z) <OV z € Hi.

Using Proposition 1.3.6, we conclude that [f(1 — p;p;)] is non-singular.
Therefore, the inertia of [f(1 — pip;)] is (1,0,k —1).
L]

In the next theorem, we examine a particular instance of operator concave function
defined on (0,00) given by f(¢) = log t. This function is of significant importance and
has been extensively studied by various authors [53, 73] over time.

We note that 0 < 1 — p;p; < 1, under the assumption that p; < 1 V . Additionally,
we know that log ¢t < 0 for 0 < ¢t < 1. Hence, the integral representation (1.5) is not
applicable in this case.

In the following theorem, we analyze the spectral behavior of the matrix [f(1 — pip;)]
in relation to the function f(t) = log t, with the condition p; < 1 V i. It can be noted
that in this case, the matrix [f(1 — p;p;)] is A 2.

Theorem 2.2.3. Consider the function f(t) = logt, where p1,p2,...,pr are k distinct
positive real numbers, such that p; < 1V i, then the matriz [f(1 — pip;)] is N D.

Proof. Given that f(t) = logt and 0 < 1 —p;p; < 1,V 1,5 (since p; < 1V i), we observe
the following,

1. Range of log(1 — p;p;) :For 0 < t < 1, logt < 0. Hence log(1 — p;p;) <0V 1, j.
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2. Matrix Entries: The entries of the matrix [log(1 — p;p;)] are all negative as log(1 —
pipj) < 0.

3. Negative Definiteness: To show that [log(1 — p;p;)] is A P, we must prove that

for every non-zero vector x € H, the quadratic form
([log(1 — pipj)]z, x) <O.

To analyse this, observe that for ¢ < 1, we have,

23t
log(l—t)= —t— — — — — — — ...
og(1 —1) 2 3 4 5

(pipg)?  (pirs)®  (ip)*  (pipj)°
2 3 1 5T

)2 )3 )4 . )D
= <(pipj) + (pl-gj) i (pll?jj) n (plij) 4 (pﬂgj) . ) '

log(1 — pipj) = —(pipj) — (2.5)

Using Schur’s theorem on &2.’% matrices, and the fact that the matrix [p;p;] is 2.9,
we get the matrix [(p;p;)"] is a PP matrix for all r = 1,2,3,.... Being the sum of
PSP matrices, the matrix —[log(1 — p;p;)] is a PP and hence [log(1 — p;p;)] is a
N P matrix.

To prove that this matrix is A4 %, it is sufficient to show that it is non-singular. We
now check the non-singularity of the matrix [log(1 — p;p;)].

Equation (2.5) can also expressed as

00 k 00
—log(1 plp] Z pzpj (Z prJ + Z plpj) ) =R+,
=1 =1

I=k+1
where
i pzpj — (pipj)!
R = d S= .
> an >
=1 I=k+1

It is important to observe that R is a sum of rank-1 matrices and can be expressed as
R=ulus +ulus +vluz + ... + uluy,
where u; is a row matrix given by

u; =

)
VIVLT I

<=

We now assert that the set

{Ul, U2, U3, - uk’}



Chapter 2. Spectral behaviour of the matriz [f(1 — p;p;)] 39

is linearly independent.
To prove that the set is linearly independent, it is enough to show that the rank of the
matrix M is k, where M is given by

[ n1 )?  (p)? (P1)*
G Gt (u
P2
(\/?2 (\/§3 (\/gk
M:[u{ wd wdo ug]z D3 % % %
p, e @) ()"
Y V. T/

Note that the determinant of this matrix is represented as

k
det(M) = % [ —pp).v1<ij<k
’ 1=1

We find that, det(M) # 0. Therefore, rank (M) = k. So, our claim is established.
Using proposition 2.2.2, we conclude that R is a &% matrix. Additionally, by proposi-
tion 1.3.6, we know that the matrix R+ S is also #?2. Therefore, the required matrix
[log(1 — pip;)] is N . O

In the next section we analyse few remarks and examples, which proves that the condition

assumed in Theorem 2.2.1 and 2.2.2 are necessary.

2.3 Remarks

First, we demonstrate that the condition p; < 1 V 7 is essential in Theorem 2.2.2.

Remark 2.1. The condition p; < 1V i is essential for ensuring that the log(1 — p;p;) is
non- negative. Specifically, this condition guarantees that 1 — p;p; > 0 for all indices 4
and j.

As a result, function log(1 — p;p;) is both well-defined and non-negative because the
argument of the logarithmic function, 1 — p;p;, lies strictly between 0 and 1.

If the condition p; < 1 is not satisfied, there may be cases where 1 — p;p; is zero or
negative, leading to undefined values for the logarithmic function. For instance, if p; > 1
for some ¢, then 1 — p;p; < 0 for some j, making log(1 — p;p;) undefined or complex.
Consequently, the matrix [log(1—p;p;)] may contain entries that are not properly defined,
impeding meaningful analysis of its spectral properties. The theoretical results presented
in Theorem 2.2.3, which rely on the negative definiteness of [log(1 — p;p;)], assume that

the matrix entries are well-defined. Without the condition p; < 1, the matrix might
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not exhibit the desired properties, thus invalidating the theorem. Therefore, ensuring

p; < 1is crucial for the applicability and correctness of the results concerning the matrix

[log(1 — pip;)].

Next, we observe that the converse part of Theorem 2.2.2 does not hold true, illus-
trating that the condition of a non-linear function f being operator concave from (0, co)
to (0,00) is not required for the matrix [f(1 — p;p;)] to exhibit the inertia (1,0,%k — 1).
In other terms, even if f is not an operator concave function, the matrix [f(1—p;p;)] can
still possess the inertia (1,0,k — 1). This remark highlights that the specific property
of operator concavity is not a necessary condition for achieving the given inertia of the
matrix, indicating that alternative functions may also produce matrices with the same

inertia characteristics.

Remark 2.2. Consider a function f : (0,00) — (0,00), defined as f(t) =1 —e~t. Our
objective is to prove that the matrix [f(1 — p;p;)] is €A 2 with inertia (1,0,k — 1).
However, f is not an operator concave function.

To begin with, the matrix [f(1 — p;p;j)] can be expressed as
[f(1—pipj)] = E — e_l[e(Pipj)L

where E is €42, [(pip;)] is a rank-1 &2 2 matrix, and [ePP7] is a PP matrix [41,
Lemma 2.5].

We can further observe that the trace of [e~(17PiP5)] is positive, as all diagonal entries
are positive. This implies that [f(1 — p;p;)] is not a 4. % matrix. Using proposition
1.3.6, it follows that [f(1 — p;p;)] is non-singular and has inertia (1,0,k — 1).

Next, let us examine the operator concavity of f(t) = 1—e™!. Suppose f(t) is an operator
concave function. This would imply that the function f(¢) — 1 is likewise an operator

t

concave function. Consequently, —e™" would be operator concave, which implies that

et must be operator convex for all t € (0,00). However, as shown in [40, p.147], e~*
is neither operator concave nor operator convex. Therefore, f(¢) cannot be an operator
concave function.

We have demonstrated that [f(1 — pip;)] is a €4 % matrix including inertia (1,0,k —
1), even though f is not operator concave. This highlights that the specific property

of operator concavity is not necessary for achieving the given inertia of the matrix
[f(1 = pipj)] -

t is convex on the

Given that f(t¢) is a concave function, we recognize that f(t) = e~
entire real line, particularly for ¢ € (0,00), This implies that 1 —e~" is indeed a concave
function. One might conjecture that if the matrix [f(1 —p;p;)] is a €42 and possesses
inertia (1,0, k — 1) for all non-linear concave functions f defined over an interval (0, c0)

then the specific property of concavity is both necessary and sufficient.
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However, this conjecture does not hold universally. The following remark illustrates
that even though [f(1 — p;p;)] can be €42 with the stated inertia for some non-linear
concave functions, this property is not guaranteed for all such functions. Thus, the
condition of f being concave does not necessarily imply that the matrix [f(1 — p;p;)]

will always exhibit conditional negative definiteness and the inertia (1,0,k — 1).

Remark 2.3. Consider a function f from (0,00) to (0,00) defined as

2+¢, ift<.91
t) = (2.6)
2.91, ift> .91,

Let a, 8 € (0,00). Assume, without any loss of generality, that a < 8. If both «, 5 <
0.91 or both «, 5 > 0.91, we directly deduce

(g2 - fe ),

But if o < .91 and 8 > .91 two cases arises:
Case 1 # < .91 then f(aTJrB) — 94 OfT-l‘ﬁ — 4+3+B > 4+a2+.91 _ 4.9§+a — 2+af291 _

S(@)+f(8)
2

Case 2 @28 > 91 then f(242) = 2.91 > o291 _ Zra2 01 _ S/

From both the cases, we can deduce that function f is a concave. Therefore, f(t)

1
3

is a

concave function on an interval (0, 00). However, taking p1 = %, p» = 3, and p3 = 1
2.75 2.83 2875

[f(1 —pipj)l = | 2.83 289 291

2875 291 2091

The inertia of this matrix is (2,0,1). A ¥.4"2 matrix have atmost one positive eigen
value. However, [f(1—p;p;)] matrix has two positive eigenvalues, which contradicts this

requirement. Hence it is not a .4 % matrix.

The next remark illustrates that for operator convex functions, the spectral behavior
of the matrix [f(1 — pip;)] does not adhere to a specific or predictable pattern. Un-
like the case with operator concave functions where certain spectral properties such as
conditional negative definiteness and specific inertia can be established, operator con-
vex functions do not guarantee a similar consistency in results. This variability arises
because operator convex functions introduce different interactions among the matrix

elements, thereby affecting the overall spectral properties in a less predictable manner.
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Consequently, while some operator convex functions may yield matrices with desirable
spectral characteristics, these outcomes cannot be generalized across all such functions.

Remark 2.4. Consider a function f(t) = t*. Let the matrix R = [f(1 — p;p;)], where

D = %ﬂ of order 4 has inertia (2,0, 2), however, if we take a function f(t) = %H’ t>0
it is also an operator convex, but by using Lemma 2.2.3, it is a positive semi-definite

matrix.

2.4 Significance of work

The significance of this research lies in its advancement of spectral analysis of pattern-
based matrices, particularly those formed by applying nonlinear operator concave func-
tions entrywise. By exploring the inertia and spectral properties of these matrices,
the study provides new insights into their conditionally negative definiteness, non-
singularity, and specific inertia patterns. These findings not only extend the under-
standing of matrix behavior under nonlinear transformations but also refine existing
theories by demonstrating the limitations of linear functions in this context. The results
are crucial for mathematicians and scientists working on matrix theory, as they offer a
broader framework for analyzing the spectral properties of complex matrices, with po-
tential applications in areas such as data science, quantum mechanics, and mathematical

physics, where understanding the behavior of large, structured matrices is essential.



Chapter 3

Class of concave functions which

are not operator concave

3.1 Introduction

The exploration of concave functions, particularly those defined from the positive real
line to itself, is an area of significant mathematical interest. Concave functions are well-
known for their wide range of applications across various fields such as optimization,
economics, and convex analysis. These functions are characterized by their distinctive
properties, including continuity, differentiability, and boundedness, which make them
suitable for various theoretical and practical applications. We have identified a special
class of concave functions that do not exhibit operator concavity. This distinction pro-
vides valuable insights into operator theory and enhances our understanding of function

behavior in matrix analysis.

Operator concave functions are a generalized concept of concave functions, which are
defined on the set of bounded self-adjoint operators in a Hilbert space. These functions
adhere to a set of strict criteria that extend beyond the classical definition of concavity
for real-valued functions. Specifically, a function f : R — R is deemed operator concave

if it satisfies the operator inequality
f(cR+ (1 =¢)8) = cf(R) + (1 —¢)f(S) (3.1)

for arbitrary self-adjoint operators R and S and any ¢ € [0,1]. This inequality is a
natural extension of the concavity condition for real-valued functions, but it imposes

additional constraints that not all concave functions can meet.

43
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The primary focus of our study is to conduct a detailed analysis of concave functions
[22] that meet key properties like being monotonic, continuous [17, 18], differentiable,
and bounded, but do not satisfy the criteria for operator concavity. This investigation
is motivated by the observation that many functions exist that are convex [50, 61] but
fail to be operator convex, such as f(t) = t3 on (0, 00), yet similar examples for concave
functions are less readily available. Our aim is to fill this gap in the literature by
presenting concrete examples of concave functions with the aforementioned properties

that are not operator concave.

In the first section of our chapter, we present examples of concave functions that
meet the criteria of continuity, differentiability, and boundedness on the interval (0, o),
but fail to be operator concave. These examples are carefully constructed to highlight

the nuanced differences between concavity and operator concavity.

Following this, we introduce essential propositions that serve as bridges between our
research and the existing literature. These propositions not only establish connections
between our work and previous studies but also set the stage for the introduction of new

concepts and counterexamples.

In the concluding section, we delve into the converse aspects of the results presented

by Garg and Aujla [75] in their seminal work.

3.2 Examples

It is well established that while all operator concave functions are concave, the reverse
implication does not always hold, i.e., there exist functions that are concave but not
operator concave. The distinction between these classes of functions is significant, as
operator concave functions possess additional properties that do not extend to all con-

cave functions.

It is also a widely recognized fact that every operator concave function is also mono-
tonically increasing. However, the reverse does not hold, there exist concave functions

that are monotone but not operator monotone.

For instance, consider the function f(t) = 1—e~! defined from the positive real line to
itself. The function f(t) = 1— e~ ! is concave and monotonically increasing. Meanwhile,
f(t) is not an operator monotone function because for self-adjoint operators R and S,

where R > S > 0, it does not necessarily hold that f(R) > f(5).

There are numerous examples of concave functions that are monotonically decreasing

on the interval (0,00) with a range in (—o0,0). However, no such examples exist for
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concave functions that are monotonically decreasing on (0, 00) to (0,00). This observa-
tion highlights a fundamental concept that every concave function that is defined over

the set of positive real numbers to (0, 00) is necessarily increasing.

Theorem 3.2.1. Let f: (0,00) — (0,00) be a concave function. Then f is monotone

non-decreasing on (0,00); that is, for all 0 < a < b one has f(a) < f(b).

Proof. We establish the result using two fundamental properties of concave functions
[45].

Property 1 (Monotonicity of right-hand difference quotients). For every z > 0
and every 0 < hy < hg, we have

flx+h)— f(z) S f(x+h2) — f(x)
hi - ho '

Consequently, the right-hand difference quotients

gty = TS

form a non-increasing function of h. Hence, the right-hand derivative

fi(z) = lirm ¢z ()

exists (as a finite number or —oo) for every x > 0.

Proof of Property 1. Fix x > 0 and 0 < hy < ho. Set A\ :=1— % € (0,1). Then
x+h =Xz + (1= N (z+ ha).

By concavity of f,
fl@+h1) = Af(x) + (1= A)f(z+ he).

Subtracting f(z) and dividing by hy = (1 — \)hy yields

flx+h1)— f(x) > (@ +h) — f(x)
hi - ho ’

which proves the claim.

Property 2 (Sandwich inequality for difference quotients). The left-hand deriva-

tives

ooy J (@) = fle—h)
f_(w)-—lfgg .
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exist for every x > 0. Moreover, for every a < b,

~—
|
=
~—~
S
S~—

fila) = 102N gy,

Justification of Property 2. The left-hand difference quotients are monotone (by an
argument analogous to Property 1), so the limits exist. The displayed inequalities then

follow from standard concavity properties.

Main argument. Suppose, for contradiction, that there exists g > 0 with f’, (z9) < 0.

By Property 1, the map = +— f/ (x) is non-increasing, so for every x > x¢ we have

fi(z) < fi(zo) < 0.
Applying Property 2 with a = g and any b > x(, we obtain

f) = fzo) _

b—$0 = f—lf—(x())<07
which implies
f(b) < flzo) + fi(zo)(b—w0),  b>wo.

As b — oo, the right-hand side tends to —oo, contradicting the assumption that f(b) > 0

for all b > 0. Hence no such xz exists, and therefore

fi(z) >0 for all = > 0.

Since concavity ensures f’ (z) > f! (), it follows that f’ (z) > 0 for every z > 0.
Applying Property 2 to any 0 < a < b, we obtain

f(b) = f(a)

b—a

so f(b) — f(a) > 0. Hence f(a) < f(b) for all 0 < a < b.

Therefore, f is monotone non-decreasing on (0, 00). O

Lowner’s integral representation theorem [5] provides a foundational result in the
theory of operator monotone functions, which are functions that satisfy certain mono-
tonicity properties with respect to matrices. This theorem has significant implications

for the study of operator convex and operator concave functions [53].
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Bhatia [40, 62] expanded upon Lowner’s theorem and elucidated the direct conse-
quences of operator monotonicity for concave functions. However, the existing litera-
ture has not explored specific concave functions defined from the positive real line to
itself that are distinct from operator concave functions. Some examples of such concave

functions are given as follows.
Example 3.2.1. Consider a function f defined as f : [0,00) — [0,00) given by:
24t ift<5,

7, if t > 5.

The concavity of f can be examined using the standard inequality:

f<x-2ky> > f($)+f(y)7 vz,y €R.

To further analyze its operator concavity, consider the values py = 1, ps = 3, and p3 = 6.

The matriz formed by evaluating f(p; + p;) is:

4 8 7
R= |8 12 7
7T

For a nonzero vector X = (1,2, —3) € R3, we compute the quadratic form:
(RX,X)=11>0.

Since R is not conditionally negative definite (CND), as it contradicts Proposition 3.3.2,

this implies that f does not satisfy operator concavity.

We observe that at ¢ = 5, the given function is not differentiable; however, every
operator concave function is differentiable. Next, we present a concave differentiable

function f defined on the positive real line that is not operator concave.

Example 3.2.2. Let f be a function defined from the positive real line to itself as
fity=1—¢".

The given function is differentiable since f'(t) exists on its domain. The second deriva-

tive is non-positive for all values of t, meaning that

f'(t)=—et<0, Vt>0.
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This implies that f(t) is a concave and differentiable function. Next, we examine whether

f is operator concave.

Consider a positive definite (PD) matriz R given by:

S ot W
o O =

i.e., R >0. The matriz f(R), corresponding to the function f, is given by:

0.8647 0.9502 0.9817
f(R) = 10.9502 0.9933 0.9975
0.9817 0.9975 0.9997

The eigenvalues of f(R) are 1.1830,—0.3170, and —0.8660. Since f(R) has negative

eigenvalues, it is not positive semidefinite, proving that f is not operator concave.

This contradict the condition of monotonicity[40], i,e, f(R) # 0. So, f is not operator
concave function. In the following example, we consider the logarithmic function and

verify the same result as in above example.

Example 3.2.3. Consider the function f, which is defined on the interval [0,00):

f(t) =log(1+1¢).

It is a well-known result that a function f is concave if and only if its second derivative
satisfies f” < 0. In this case, it is well established that the given function is concave, as

its second derivative is given by

1

m<o, \V/tE[0,00)

£t) = -

However, if we take the matriz function corresponding to f, we find that it does not

satisfy the criteria for operator concavity.

Consider the matriz R expressed as:

R:

1 2
2 3|
It is a positive definite matriz, i.e., R > 0 for all nonzero x € C™. The matriz f(R) is

not positive definite, indicating that f is not an operator concave function.
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While the function f(¢) appears concave in the functional theory, this example demon-
strates that it does not satisfy operator concavity. The failure is evident from the nega-
tive eigenvalue in the computed difference matrix, showing that the operator inequality

does not hold.

Example 3.2.4. Define the function f as follows,

f(t) =sin~1(2).

This function is defined on the positive real line up to [—1,1]. To check its concavity,

we compute the second derivative:

t

f(t) = Ta—epne

On the domain t € [0,1), f”(t) is non-positive since

t

The negativity of the second derivative indicates that the function is concave on the

interval [0,1).

However, when extending the domain to [0,00), the function f(t) = sin~(t) is not
defined fort > 1. Since the arcsine function is only defined for |t| < 1, the consideration

of concavity is confined to the interval [0,1), where the function is concave.

To illustrate this violation, consider two self-adjoint matrices R with eigenvalues a, b
and S with eigenvalues c,d of the same dimension and a scalar ¢ € [0,1]. The matrix
function f(R) = sin~(R) is defined by applying the arcsine function to each eigenvalue
of R:

R=
0 b 0

0 0
¢ ], S:[C d], where a,b,c,d € [0,1).

Let f(X) = sin~}(X). Consider the function applied to a convex combination of matrices
R and S:
f(cR+ (1 —¢)S) =sin Y (cR+ (1 —¢)S).

Computing:

sin~!(ca + (1 — ¢)c) 0

- —)8) =
sin” " (cR+ (1 —¢)S5) 0 sin™(cb + (1 — ¢)d)
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Comparing this with the convex combination of the function applied individually to R
and S':
cf(R)+ (1 —¢)f(S) = csin” H(R) + (1 — ¢)sin~1(9),

we obtain:

esin~t(a) + (1 — ¢)sin~!(c) 0

in~! —¢)sin™}(S) =
csin” (R)+(1—c¢) (S) 0 csin1(b) 4 (1 — ¢) sin~(d)

Taking the difference:
sin"}(cR + (1 —1¢)S) — (csin_l(R) +(1-¢) sin_l(S)) =

sin"!(ca + (1 —¢)c) — (csin™!(a) + (1 — ¢)sin™*(c)) 0
0 sin™!(cb+ (1 —¢)d) — (esin™!(b) 4+ (1 — ¢) sin™

Since the diagonal entries may be negative for certain values of a,b,c,d, this matrix is

not necessarily positive semi-definite:
sin ' (cR + (1 —¢)S) — (esin '(R) + (1 — ¢)sin~!(9)) # 0.

This result indicates that sin~!(X) is not a matriz concave function in general. Hence,

f is not an operator concave function.

Remark 1. It is important to observe that the possibility of the existence of conditions
stronger than differentiability and boundedness, under which a function can exhibit
concavity without satisfying the criteria for operator concavity on the positive real line

in the context of matrix analysis, remains an open avenue for future research.

The following section is dedicated to the exploration of essential propositions, each

carefully crafted to facilitate the expansion of our study towards our ultimate objective.

3.3 Propositions

Proposition 3.3.1. [75, 3b] Consider the function f defined as f : [0,00) — [0,00)
being operator concave, and let p1,ps,...,pn be distinct positive real numbers. If f is
non-linear, then the matriz [f(p; + p;)| is conditionally negative definite, non-singular,
and has an inertia of (1,0,k —1).
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Proposition 3.3.2. [75, Remark 5] Let f : [0,00) — [0,00) and let p1,p2,...,pn be
distinct positive real numbers. If [f(p; + pj)] is conditionally negative definite, non-
singular, and has an inertia (1,0,k — 1), then if f is a non-linear function, it must be

concave.

Proposition 3.3.3. [/0, p.120, Theorem V.2.5] Let f be a continuous function that
maps an interval [0,00) into itself. Then, f is operator monotone if and only if it is

opemtor concave.

The following section reflects that, in their influential work, Garg and Aujla presented
effective results concisely in Proposition 3.3.1 and Proposition 3.3.2. These propositions
outline effective methods and principles. However, the converse of both Proposition 3.3.1
and Proposition 3.3.2 is not true. We embark on the task of elucidating the converse of

Proposition 3.3.1 and Proposition 3.3.2 by providing compelling counterexamples.

3.4 Results

We begin with the converse of Proposition 3.3.1, where we find a function f defined as
f:[0,00) = [0,00), where p1,pa, ..., py are distinct positive real numbers such that the
matrix [f(p; + pj)] is conditionally negative definite (44" Z), non-singular, and has an

inertia of (1,0,%k — 1), even though f is not operator concave.

Consider the function f defined in Example 1, with distinct values of p;, namely,

p1L = %,pg = %,pg = i. The resulting matrix is:

2.000 2.8333 2.7500
[f(pi +pj)] = |2.8333 2.6667 2.5833
2.7500 2.5833 2.5000

which is non-singular and conditionally negative definite, with eigenvalues —0.670, —0.001,

and 7.838. However, f(A) # 0, meaning f is not operator concave.

Consequently, the converse of Proposition 3.3.2 is also not true. We provide two

counterexamples for a concave function f that violates key conditions:

1. Violation of Conditional Negative Definiteness: Consider a concave function f :
(0,00) — (0,00) such that [f(p; + p;j)] is non-singular but not conditionally negative
definite. Consider the concave function f from Example 1, with distinct values p; =

2,p2 = 2.5, p3 = 5.5. The resulting matrix is:
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6 65 7
[fpi+p)l =165 7 7
7T T

with inertia (2,0, 1), which is not conditionally negative definite.

2. **Violation of Non-Singularity**: Consider a concave function f : (0,00) — (0, c0)
such that [f(p; + p;)] is conditionally negative definite but singular. Consider Example

2, where the corresponding matrix:
[f(pi +pj)] = [L — e~ Pitrs)]

is conditionally negative definite but has rank 2 (i.e., singular) for all k£ > 2.



Chapter 4

Trans-flip of a matrix and its

properties

In this work, we introduce a novel matrix operation termed the Trans-flip, drawing an
analogy to the widely used transpose operation. We define and analyze the key proper-
ties of the trans-flip, comparing it to well-known transformations such as transpose and
conjugate. Our focus is on how the trans-flip behaves in relation to matrix characteris-
tics like determinant, trace, and inertia over both real and complex fields. We further
investigate the effects of the trans-flip on matrices with specific patterns, particularly
those that exhibit trans-flip symmetry. This study expands the matrix transformation
framework, offering new perspectives and potential applications for the trans-flip oper-

ation.

4.1 Introduction

In this section, we introduce the trans-flip operation on matrices, a new transformation
distinct from the classical transpose. For a matrix R we denoted as R, the trans-flip
symmetrically flips matrix elements about the off-diagonal, where, off-diagonal elements
are represented by i +j = k+ 1. We begin by establishing key definitions and notations,
including matrix sets over real and complex fields. We also introduce the special matrix
Iy, where 7;; = 1 when i + j = k + 1, defining its off-diagonal elements other elements
are 0. This study builds on foundational matrix transformations such as the transpose
(Cayley, 1858) and conjugate transpose (Hermite), and compares the properties of trans-
flip matrices with these established operations. A central finding of the paper is any
square matrix can be expressed as a decomposition into a trans-flip symmetric and trans-

flip skew-symmetric matrix. We explore the effects of this operation on matrix properties
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like determinant, trace, and inertia, and compare it to the transpose operation in terms

of positivity [13] and structural characteristics.

4.2 Definitions

4.2.1. Let R = [r;;] represents a square matrix of order k over the field C and f

defines the trans-flip operation corresponding to the matrix R = [r;], then R/ =

[T(k'—l—l—j)(k’—i-l—i)]’ Z?] = 11 27 ceey k.

In terms of matrix representation if R € Mj.x(C) and R is represented as

11 712 T T1(k-1) Tk
721 722 e T2(k—1) T2k
R p—
Tk—1)1 Tk-12 ~° TE-1)(k-1) T(k-1k
Tk1 Tk2 T Tk(k—1) Tkk

Then the matrix R over the operation trans-flip is represented as

Tkk T(k—1)k T T2k Tk
Tk(k—1) T(k-1)(k-1) "~ T2k-1) T1i(k-1)
R = : : : : :
T'k2 T(k—1)2 e 722 712
Tk1 T(k—1)1 T 21 11

For example, if S = [s;5] € Myx(C), i.e,

L 24+1 5

t—1 ++1 11

then
11 7 5t
Sf=1l14. 5 24,
1—¢ 3 L

4.2.2. Any non-zero square matrix R € My.x(C) is termed as trans-flip symmetric
matrix if Rf = R.
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Few examples of trans-flip symmetric matrices are null matrix, identity matrix, Iy ma-

trix, where

2 .
10

Io =
10 .. 0 0]

4.2.3. Let R = [r;;] is defined to be a non-zero square matrix and R € My(C), if

Rf = —R, then A is called as trans-flip skew symmetric matrix.

For instance, R = [r;;] be non-zero square matrix and r;; € CVi,j=1,2,3.

—-14 -7 0 4 7 0
R=|-6 0 7|andRf=1]6 0 -7
0 6 14 0 —6 —14

In a result Rf holds the relation with R, i.e, Rf = —R.

4.2.4. Consider R = [ry;] is defined to be a square matrix of order k over the field C
and f defines the trans-flip operation corresponding to the matrix R, then the matrix
R is said to be f-orthogonal if RRf =T or Rf = R™1.

In the subsequent section, we present the properties of the trans-flip of a matrix, compare

them with the transpose operation and highlighting their unique characteristics.

4.3 Properties analogous to transpose of a matrix

It can be observed that every square matrix R can be represented as the addition of a
symmetric matrix and a skew-symmetric matrix. In the next theorem, we show that a
square matrix R can be expressed as the addition of a trans-flip symmetric matrix and

a trans-flip skew-symmetric matrix.
Theorem 4.3.1. Any non-zero square matric R € Mpxr(C) can be written as the

addition of the trans-flip symmetric matriz and the trans-flip skew-symmetric matriz.

Proof. Consider the non-zero matrix R € My (C). First, we will show that (R + RY)

is a trans-flip symmetric matrix and (R — R) is a trans-flip skew-symmetric matrix.
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Now, the flip of (R + R’) can be represented as
(R+RN =R + (R"Y =R/ + R=R+R/.
Similarly, we can write,
(R— RN =R — (R =R —R=—(R- R").
Thus, we can express R as
R:% (R+Rf)+(R—Rf)] :

where 2(R + R’) is trans-flip symmetric and (R — R/) is trans-flip skew-symmetric.

We can also prove this result element-wise. Consider the non-zero square matrix of
order n R = [r;;| on the field C,

rin ri2 - Tig
o1 T22 - T2k
R =
[Tkl Tk2 0 Tkk]
Then, its flip R/ is given by
T'kk Tk(k—1) T Tk1
nf T(k-1)k Tk-1)(k-1) " TE-1)1
| Tk T1(k—1) 11|
Now, ) )
T11 + Tkk a12 + Trk—1) - Tk + Tk
ro1 +T(k—1)k 022t T(k—1)(k—1) T2k T T1(k-1
R+ R = '( ) (‘ )(k—1) ' '( )7
| Tkl TRL Tk2 + T(k—1)1 e Tkk +T11
and ~ -
11 — Tkk 12 = Tk(k—1) T Tk — T1k
21 = Tk-1)k 722 = T(k-1)(k—1) ~°° T2k —T1(k-1
R_R — ‘( ) (k=1)(k—1) . (k=1)
| Tkl T Tkl Tk2 = T(k—1)1 T Tkk — T11
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Adding R + Rf and R — Rf, we get

211 219 oo 2ry)
ReR 4R—R = | TR A
EEa
which gives,
_7'11 T2 - le_
%[R+Rf+R—Rf]: e Mg
[Tkl Tk2 ccr Tkk]

O]

In the next theorem, we outline properties that hold for the trans-flip operation,

similar to those of the transpose of a matrix.
Theorem 4.3.2. Let R,S € Myxi(C) be non-zero matrices, and consider t represent
any real numbers. Then the subsequent properties holds true.

1. (RN =R.

2. (tR)f =t(R)).

3. (R+9) =R/ +57.

4. (RS) = STRT.

5 (RNHT = (RT)Y.

6. (R)f = R'.

7. (RN~ = (RY, if R is an invertible.

Proof. 1. Let R be defined as a non-zero matrix, and consider R = [r;;] € My (C).
Then we get,

R = [r(ep1— ) (or1-1))-

Hence,

(RN = [rhs1— o1t 1—(sr1-5))] = [rij] = R.

2. Let R = [’I”ij] € kak((C) Then,

(tR) = (tri)) = [traep1—ne1-p] = tres—nwer—p] = tRL.
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3. Let R, S € M(C) be non-zero matrices. Then R+ S = [r;; + si;] = C = [cy5].
Thus,
(R+S)! = [c]}] = [ecps1-)er1-9)]
= [ror1-) i) + 501-5) (1)
= [Pes1—j)kr1-0)] + St 1) (kr1-9)
=R/ + 57

4. Let R = [rjjlkxm and S = [sjjlmxk, where m,k € N, be matrices with non-zero

entries from the field of complex numbers. Then,

q
RS = C = [¢ijlkxk, Cij = Z TikSkj-

m=1

Therefore,
(RS)! = C7 = [e(ur1—jy s 1-i) lkxh-

The (i, j)-th entry of (RS)f is defined as

Cifj = C(k4+1—75)(k+1—i)

q
= Z T(k+1—5)S(k4+1—1)

m=1

q
= Z S(k+1-)T(k+1—7)-
m=1
This corresponds to the (i, 7)-th entry of SR/ for all i,j =1,2,...,k.

5. Let R = [rij] € Mxx(C). Then RT = [r;;]. Therefore,

(BT = [rgs1—iyer1—)]

= [rer1—) (k1)) = (BDT.

6. Let R € My (C). Then R = [Fi;]gxk. Thus,

i [Pl 1-5) o1y e

= [Py (h1=i) g, = BT

7. Let R € Myxx(C) and |R| # 0, then RR™! = I. Taking the operation f on both
sides, we get,
(RRY =17 =1,
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and consequently,
(RY R =1.

From the above, we can conclude that

(RN)™' = (R,

O]

The following corollary specifies the characteristics of the off-diagonal elements in a
trans-flip skew-symmetric matrix, outlining how these elements behave uniquely under

the trans-flip operation compared to traditional skew-symmetric matrices.
Corollary 4.3.1. For a non-zero, square trans-flip skew symmetric matriz specified over

the field C, all the off-diagonal elements are always zero.

Proof. Let R = [ryj] be non-zero matrix of order k& where r;; € C for all i,j =
1,2,3,...,k. According to the definition of a trans-flip skew-symmetric matrix, we

can express,
Tij = T(k+1—j)(k+1—i) = ~T(k+1—j)(k+1—i) for all s +j5 = k+1,
which implies
2rij = 2rinp1i—jnt1-i) = 0.
Thus,
Tij = T(n+1—j)(n+l—i) = 0 foralli+j=k+1.

O]

In the next theorem, we explain properties that hold true for the trans-flip conjugate

operation, similar to how they hold true for the conjugate transpose of the matrix, where

R = R°.

Theorem 4.3.3. Let R, S € My (C) be non-zero matrices and t be a scalar, then,

1. (R®)® =R.
2. (tR)® =tR®, wheret € C.
3. (R+9)° = R® +8°.

4. (RS)® = SOR®.
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Proof. These results can be proven similarly as in Theorem 4.3.2, by taking the conjugate

of the elements of the trans-flip of the matrix. O

In the subsequent theorem, we derive a significant relationship between the trans-flip of
a matrix and its transpose concerning the determinant, trace, and eigenvalues.
Theorem 4.3.4. For any non-zero square matriz R over the field C, we have det(R) =

det(RT) = det(R/).

Proof. Let R € Mgxx(C) be a non-zero square matrix and

1 T2 - Tig

21 T22 o T2k
det(R) =

Tkl Tk2 - Tkk

We can define the determinant of R/ as follows,

Tkk T(k—1)k T Tk
Th(k— T(h—1)(k— e TY(—

det(Rf) _ k(lf n Tk 1?(1@ 1) 1(k. 1)
Tk1 T(k—1)1 T r11

By applying row interchange operations,
Ri < Rp,Ro < Rp_1,...,Rx & REH’ if k is an even number, and
2 2

Ri—1 <> Rir—1, if kis an odd number.
2 2

This leads to,

TRl T(k-11 - T
det(R7) = (_1)§ T]TZ r(kTI)Q 7“?2 , if k is an even number.
Tkk Tk-1k ~°° Tk
Similarly, for odd k,
Tkl T(k-1)1 - T11
det(A”) = (~1)f5* | TED2 T TR ek i an odd number.

Tkk T(k-1)k - Tlk
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Next, by interchanging the columns of det(R/),
Ci+ Cp Oy Cr_q1,...,Ck & CEH’ if k£ is an even number, and
2 2

Cr-1 > Cr—1, if kis an odd number.
2 2

Thus, we obtain,

riy T o Tkl
det(R)) = (_1)3(_1)5 2T Tk , if k is an even number.
Tk T2k - Tkk
Similarly,
T T2t TRl
det(R7) = (—1)%(—1)% 7112 r?2 T]:Q , if k is an odd number.
Tik T2k vt Tkk

Combining these equations, we get,

11 Ter o TRl
det(RNy = > " 7 ™ gey(RT),
Tk T2k - Tkk
Hence, det(R7) = det(RT) = det(R). O

Theorem 4.3.5. If R = [ryj] is any arbitrary non-zero matriz, Let R be a square matric

with r;j € Cxi(C) for every i,j =1,2,..., k. Then, we have

Tr(R) = Tr(RT) = Tr(R7).

Proof. Consider the arbitrary non-zero square matrix R = [r;;| where r;; € C. The trace

of R is the sum of its diagonal entries,
Tr(R) =711 + 122 + 733+ + Thge
For the matrix Rf = [7(k+1—5)(k+1—3)], the diagonal elements are

Tkks T(k—1)(k—1)> """ »722,T11.
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Thus,
trace(RY) = r + rg—1yge—1) + -+ ra2
=711 + 722 + 733 + - + 1 = trace(R).
Therefore, Trace(R) = Trace(R”) = Trace(R/). O

Corollary 4.3.2. In a similar manner, we can show that Trace(R') = Trace((R/)T).

Theorem 4.3.6. Let R € My« (C) be a non-zero matriz. Then the eigenvalues of R

and R/ are the same.

Proof. Consider R € My (C) be a non-zero square matrix. The characteristic polyno-
mial of R is expressed as |R — wl|, where w denotes the eigenvalues of R. Similarly, the

characteristic polynomial of Rf is |Rf — wI|. From the previous theorem, we have
[R| = |R].
Thus,
(RS —wD)f| = (R) —wl!| = |R - wl].

Therefore, R and R/ share an identical characteristic polynomial and, consequently, the

same eigenvalues. O

Theorem 4.3.7. Let R = [r;;] € M(C) be a non-zero matriz and Iy defines a square

matriz of order k. Then

R = Io(sny (RO Ty ey -

Proof. Consider the arbitrary non-zero matrix R such that R € My yx(C). Then,

11 12 c T1(k—1) T1k
721 722 e T2(k—1) 2k
R p—
Tk—1)1 Tk-12 -~ TE-1)(k-1) T(k-1k
Tk1 Tk2 T Tk(k—1) Tkk

Additionally, the matrix R/ is defined as,

Tkk T(k—1)k T T2k Tk
Tk(k—1) T(k-1)(k=1) ~°° T2k-1) T1(k—1)
T'k2 T(k—1)2 T 722 712
Tk1 T(k—1)1 T 21 711
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Let the matrix Io(xp) be defined as,

0
0
Toexr) =
01 0 0
1 00 0 0
Then
T'kk Tk(k—1) T'k1 00
Tk=1)k TE-1)(k-1) -~ T(k=1)1
TIoexiy (BT = : 0
Tk2 T(k—1)2 722 01
| Tk1 T(k—1)1 r21 | 0
Tk1 Tk2 T Tk(k—1)
k=11 T(k-12 " T(k=1)(k-1)
I Rf T _ . . . .
O(kxk)( )
r21 722 T T2(k-1)
| "1 12 T1(k-1)
Furthermore,
11 12 T T1(k-1)
21 722 T T2(k-1)
To (RN, = :
xk) 0(kxk)
Tk—1)1 Tk-12 - T(k—=1)(k-1)
| TR1 Tk2 Tk(k—1)

Theorem 4.3.8. For arbitrary vectors x and z € R¥, we have

(@)= = (@) ((N)7).

Tkk

T(k—1)k

T2k

Tk

Tk

T2k

T(k—1)k

Tkk
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Proof. Let x,z € R*. Then

I 21
T2 22
T = |T3 and z= |23
Tk Zk
We have, ) )
2k
Zk—1
@) = o 3y o @] [
21
@) (2T = Zpan + Tp_126—1 + To—22h_o + - + Tozo + T121 = barz)lz
Thus,

@)z = @7 ((z))").

O]

The matrix RR” is always a 22. However, RR/ is generally not symmetric, and thus
cannot be guaranteed to be #%. In the subsequent theorem, we will demonstrate that
for a square symmetric matrix R, RRT is always 2. Conversely, this result does not

hold for the matrix RRY under the same conditions.

Theorem 4.3.9. Let R € My (C). Then RRY is not positive definite for k > 3.

Proof. Consider R € My,yx(C). Generally, RR is not a symmetric matrix, and thus,
RR' is not positive definite. However, for k = 2, RR/ has a positive determinant as
well as a positive trace. This implies that RR’ has positive eigenvalues. To demonstrate

that the result does not hold for £ > 3, consider the matrix

W N =
W =~

For this matrix, RR/ has eigenvalues —0.2862, —1.2829, and 43.5692, which include
negative values. This confirms that RR/ is not positive definite when &k > 3. O
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In the next section, we will explore the behavior of pattern-based matrix where R =

[lpi — pjl] is trans-flip symmetric rather than symmetric.

4.4 Pattern-based Matrices Results

In the next theorem, we will explore the condition under which the pattern-based matrix

R = [|pi — pj|]] R is trans-flip symmetric.

Theorem 4.4.1. Let R = [|p;—pjl|] be a trans-flip symmetric matriz of size k, p1,p2, ..., Dk
form AP series. Then the difference of consecutive p; must be the same, i.e., pry1—ps =

pre1 —p forallt,l=1,2,--- k—1.

Proof. Let p1,p2, ..., pr represent distinct real numbers. Then
0 lpr —p2| - |p1— Pl
lp2 — p1] 0 o |p2 — pil
R = . . . .
ok —p1l Pk —p2| - 0 ]
Then,
0 pe—1 —prl - |p1— pal
R Pk — Pr—1] 0 o |Pr—1 — pr—2]
| k=l pe-1 =] 0 |
R = R/ implies |p1 — po| = [p2 — ps| = -+ = |px — pr—1l- O

4.5 Conclusion

We have defined a new matrix operation, the trans-flip of a matrix. While many prop-
erties applicable to the transpose of a matrix are also valid for the trans-flip operation,
there are some exceptions where these properties do not translate. For instance, the dis-
tributive property over addition and scalar multiplication holds for both the transpose
and trans-flip operations. However, properties like positive definiteness of the trans-flip
of matrices do not necessarily follow the same rules as the positive definiteness of the
transpose of a matrix. These differences highlight unique aspects of the trans-flip oper-
ation compared to the transpose. Understanding both the similarities and distinctions

helps in applying the trans-flip operation accurately in various contexts.



Chapter 5

Horizontal-flip, Vertical-flip and
Trans-flip

5.1 Introduction

Matrix transformations, particularly horizontal and vertical flips, are essential compo-
nents of linear algebra, playing a crucial role in various scientific and engineering fields.
These flips rearrange a matrix’s elements, creating a mirrored image along a designated
axis. This work presents a comprehensive analysis of these transformations, focusing on
their mathematical formulation and practical significance. We investigate the mathe-
matical properties, underlying theorems, and practical applications of these flips, which
are widely utilized in areas such as image processing, pattern recognition, and algorithm
design. The study offers an in-depth exploration of these operations, highlighting their

relevance and utility across multiple domains.

To expand the concept of the relation between the horizontal-flip, vertical-flip, and
trans-flip, we need to introduce the foundational definitions of these matrix operations,

describe their properties, and derive their interrelations.

Horizontal-Flip of a Matrix

5.1.1. Horizontal-Flip of a Matrix

A horizontal flip, also referred to as a row-wise reflection, is a matrix transformation
that reverses the order of columns in each row, and effectively creating a mirror image of
the matrix along its vertical axis. Let R € M,,,«x(C) be an m x k matrix with complex

entries. The horizontally flipped matrix, denoted by R* = [rzhj], and defined as

66
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i =rigeje, forl<i<m, 1<j<k (5.1)

Where ¢ and j represents the row index and the column index respectively. This trans-

formation maintains the row structure while reversing the column ordering.

Example 5.1.1. Consider the matriz R € M,,x,(C) represented as,

=y

I
~N b~ =
co ot N
O O W

Applying the horizontal flip operation, each row’s elements are reversed in order, result-

mg in,

3
R'= |6
9

N o =

2
5
8

Thus, the horizontal flip operation maintains the original matrix’s structure while

reflecting its elements along the vertical axis. In other words,

For a matrix R, the horizontal flip can be represented as Ry = R X Py, where Py is

a permutation matrix that reverses the columns.

Vertical Flip of a Matrix

5.1.2. Vertical Flip of a Matrix
A vertical flip, also referred to as a row-wise reflection, and a matrix transformation that
reverses the order of rows while keeping the column elements unchanged. This operation

effectively mirrors the matrix along its horizontal axis.

Formally, let R € M,,,«x(C) be an m x k matrix with complex entries. The vertically

v

flipped matrix, denoted by RY = [rij], is defined as,

Tij = Tm—it14, forl<i<m, 1<j<k. (5.2)

Here, ¢ and j represent the row and column indices, respectively, while m denotes the

total number of rows in the matrix.
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Example 5.1.2. Consider the matriz R € M,,x,(C) represented as,

=y

I
~N b~ =
co ot N
O O W

Applying the vertical flip transformation, the order of the rows is reversed while preserv-

ing the column structure, resulting in,

78 9
R'=14 5 6
1 2 3

Thus, the vertical flip operation maintains the structural integrity of the matrix while

reflecting its rows along the horizontal axis. In other words,

For a matrix R, the vertical flip can be represented as R, = R x P,, where P, is a

permutation matrix that reverses the rows.

Diagonal Flip (Transpose) of a Matrix

5.1.3. Diagonal Flip (Transpose) of a Matrix

A diagonal flip, commonly known as the transpose of a matrix, and a transformation
that reflects the matrix across its main diagonal. This operation interchanges the rows
and columns, meaning that the element located at position (7, j) in the original matrix

is mapped to position (j,7) in the transposed matrix.

Formally, for a given matrix R € M, «x(C), the transpose of R = [r;], denoted as
RT = [r;i], is defined by

Tij =Tji, forl<i<m, 1<j<k. (5.3)

Example 5.1.3. Consider the matriz R € M, (C) defined as,

co ot N
© O W
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Applying the transpose operation, each element at position (i,7) is moved to (j,1), re-

sulting in,

1 4
RT =12 5
3 6

O o0

Thus, the transpose operation effectively swaps the rows and columns, preserving the

overall structure while reorienting the data along the main diagonal.

Matrix flip operations are fundamental transformations that can be expressed using
permutation matrices. These operations are involutory in nature, meaning that applying
the same operation twice restores the original matrix. Formally, let f in general represent
a flip operation, such as a horizontal flip, vertical flip, or diagonal flip (transpose). Then,

for any matrix R, the involutory property can be expressed as,

f(f(R)) =R. (5.4)

This property ensures that repeated application of the flip operation does not alter the

matrix beyond the first transformation.

In the subsequent section, we will explore the relationships among horizontal flip,
vertical flip, and diagonal flip (transpose). Understanding these interconnections will
enhance our ability to perform mathematical analysis and will provide valuable insights
for applications in computing and the software industry. By establishing these relation-
ships, we aim to develop a comprehensive framework for matrix transformations, which

is crucial for various computational and algorithmic implementations.

5.2 Relationship Between Horizontal Flip, Vertical Flip,
and Diagonal Flip

Theorem 5.2.1. Let R € M,,,xx(C) be an m x k matriz over the complex field. The
trans-flip of R, denoted as RY, is defined as the composition of a horizontal flip followed

by a vertical flip, represented as,
R =RMo RV, (5.5)

where R" denotes the horizontal flip of R, and RY represents its vertical flip.
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Proof. Consider the matrix R € M,,xx(C) given by,

r Tz 0 Tik
21 T2 - T2k
R = (5.6)
_Tml T"m2 - ka_

The horizontal flip operation rearranges the columns in reverse order, producing the

transformed matrix.

Mk Tik—1) - Tl
T2k T2(k— e T2
Rt = 2(+-1) (5.7)
_ka T"m(k—1) ~°° Tml_

Subsequently, performing the vertical flip inverts the row order, resulting in the following

matrix. ~ _
T'm1 'm?2 ce T'mk
Ttm—=1)1 Tim-1)2 " T(m—1)k
RY — ( ) ( ) ( ) (5.8)
| T 12 Tk |

Now, applying the vertical flip R¥ to the horizontally flipped matrix R" results in,

Tmk T'm(k—1) T T'm1
Rf — Rh o R”L) — T(m_l)k T(m_l)(k_l) e r(m_l)l (59)
| "1k T1(k—1) T LSS

This confirms that the composition of a horizontal flip followed by a vertical flip results
in a complete reversal of the matrix’s elements along both axes, thereby defining the

trans-flip operation. O

In the following theorem, we establish that the composition of the horizontal flip and

vertical flip operations satisfies the commutative property.

Theorem 5.2.2. Let R € Ry, «x(C) be a matriz. The horizontal flip followed by the
vertical flip, and vice versa, yield the same transformed matriz, denoted as RY. Formally,

these operations commute, i.e.,

RMR) = RY(R") = R’.
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Proof. Consider an m x k matrix R over the field of complex numbers, where the element

at row ¢ and column j is denoted by 7;;.

Now, we show that applying these flips in different sequences results in the same

matrix.

Horizontal Flip Followed by Vertical Flip. Applying the vertical flip first transforms

R into RY with elements
(r*)ij = rm—i+1);-

Applying the horizontal flip to RY gives
(Th(rv))z‘j = (Tv)i(kfj#l) = T(m—i+1)(k—j+1)-

Vertical Flip Followed by Horizontal Flip. Applying the horizontal flip first transforms

R into R" with elements
h
(r")ig = Tik—j+1)-

Applying the vertical flip to R" gives

(TU(Th))ij = (rh)(mfz#l)j = T(m—i+1)(k—j+1)-

Since both sequences gives the same resulting matrix, we conclude that
R"R') = R*(R") = R/.
Thus, the horizontal and vertical flips commute. O

Proposition 5.2.1. Let R be a matriz of order m x k. The horizontal flip of R, denoted
by R", satisfies the relation
(BT = (R")",

where T represents the transpose operation.

Proposition 5.2.2. If R is a symmetric matriz, then its horizontal flip R" remains

symmetric.

Proposition 5.2.3. For any matriz R € Ry, «x(C), the composition of horizontal and
vertical flips satisfies

(R")" = (R*)" = JRJ,

where J is the exchange matriz (or anti-diagonal identity matriz) with ones along the

anti-diagonal, representing both horizontal and vertical flipping.
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Remark 5.1. Matrix flips are widely used in image processing, where flipping an image
horizontally or vertically corresponds to these operations on the matrix representation

of the image.

In the following section, we will explore the implementation of horizontal flip, vertical
flip, and trans-flip operations in MATLAB and C++ programming, demonstrating their

practical applications in computational mathematics and software development.

5.3 Applications in MATLAB and C++4 Programming

5.3.1 Use of horizontal and vertical flip in MATLAB

In MATLAB, we can use the functions f1ipud (flip up-down) and £1iplr (flip left-right)
to perform vertical and horizontal flips, respectively. Here is how we can use them
Horizontal Flip (Left-Right Flip)

The flipud function flips the matrix horizontally, reversing the order of columns.

Example (MATLAB code)

Input
R=11,2,3:4,5,6;7,8,9);
S = flipud(R);
disp(S);
Output

[3,2,1;6,5,4;9,8,7]

Vertical Flip (Up-Down Flip)

The £1ipud function flips the matrix vertically, reversing the order of rows.

Example (MATLAB code) Input
R=11,2,3;4,5,6;7,8,9];

C = flipud(R);

disp(C);
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Output

[7,8,9;4,5,6;1,2,3]

Combine Horizontal and Vertical Flips

Function to flip a matrix horizontally
function flippedMatrix = horizontalFlip(matrix)
flippedMatrix = matrix(:, end:-1:1); % Flip each row

end

Function to flip a matrix vertically
function flippedMatrix = verticalFlip(matrix)
flippedMatrix = matrix(end:-1:1, :); % Flip each column

end

Function to perform combined horizontal and vertical flip
function flippedMatrix = combinedFlip(matrix)

% First flip horizontally, then flip vertically

flippedMatrix = horizontalFlip(matrix);

flippedMatrix = verticalFlip(flippedMatrix);

end

Example usage

matrix = [2 4 5 7; 9 11 12 14; 16 18 19 21; 23 24 26 28];
disp(’Original Matrix:’);

disp(matrix);

flippedMatrix = combinedFlip(matrix);

disp(’Combined Horizontally and Vertically Flipped Matrix:’);
disp(flippedMatrix) ;

5.3.2 C+H+ program for horizontal and vertical flip

#include <iostream>

#include <vector>

using namespace std;
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void horizontalFlip(vector<vector<int>>& matrix) {

int rows matrix.size();

int cols = matrix[0].size();

for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols / 2; j++) {

swap(matrix[i] [j], matrix[i]l[cols - j - 11);

void verticalFlip(vector<vector<int>>& matrix) {

int rows = matrix.size();

int cols matrix[0] .size();
for (int 1 = 0; i < rows / 2; i++) {
for (int j = 0; j < cols; j++) {

swap (matrix [i] [j], matrix([rows - i - 11[j1);

void combinedFlip(vector<vector<int>>& matrix) {
horizontalFlip(matrix);

verticalFlip(matrix);

void printMatrix(const vector<vector<int>>& matrix) {
for (const auto& row : matrix) {
for (int val : row) {
cout << val << " ";
}

cout << endl;

int main() {
vector<vector<int>> matrix = {
{2, 4, 5, 7},
{9, 11, 12, 143},
{16, 18, 19, 21},
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{23, 24, 26, 28%}
};

cout << "Initial Matrix:" << endl;

printMatrix(matrix);

combinedFlip(matrix) ;

cout << "Matrix After Combined Horizontal and Vertical Flip:" << endl;

printMatrix(matrix);

return O;
}
Input
(20 4 5 7]
9 11 12 14
16 18 19 21
23 24 26 28

Output (after combined flip)

5.4 QOutcome

28

21
14
7

26
19
12
)

24
18
11
4

23
16

The study of horizontal and vertical flips of matrices is crucial across various domains.

Understanding their mathematical properties, such as involution and symmetry preser-

vation, and their practical applications, particularly in image processing and computer

graphics, can lead to innovative developments in software and algorithm design.



Conclusion

This thesis makes significant contributions to the spectral analysis of pattern-based ma-
trices, particularly through the study of matrices formed via nonlinear operator concave
functions. By examining the inertia, spectral characteristics, and conditionally negative
definiteness of these matrices, this research provides a nuanced understanding of their
behavior, especially under nonlinear transformations. The introduction of the trans-flip
operation as an alternative to traditional matrix transformations highlights distinctions
in properties like positive definiteness, underscoring the unique behavior of these matri-
ces in various mathematical contexts. Additionally, our examples of concave functions
that fail to exhibit operator concavity shed light on subtle differences in concavity in-

terpretations, enriching the theoretical framework.

The foundational lemmas and connections established between our results and pre-
vious works serve as essential links, deepening the discourse within operator theory and
functional analysis. Finally, by critically exploring limitations in previous findings, no-
tably those by Garg and Aujla, this research paves the way for further investigation
into matrix behavior under complex transformations. These contributions are antici-
pated to inspire future studies across applied mathematics and theoretical fields where

understanding matrix transformations remains vital.

Applications

Applications in Software and Domains

1. Image Processing: Trans-flip is used to mirror images. In deep learning, these

operations are common for data augmentation to improve the robustness of models.

2. Software Examples: Libraries like OpenCV, TensorFlow, and PyTorch provide

functions for flipping images.
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3. Computer Graphics: Trans-Flip are used in rendering transformations and sprite
animations. In video game development, flipping a sprite horizontally or vertically

can represent different directions of movement.

4. Signal Processing: In time-series analysis, trans-flip of matrices (representing sig-

nals) can help in reversing the direction of a signal or in convolution operations.

5. Quantum Computing: Matrix trans-flips can represent certain quantum gates and
operations, especially in the context of quantum error correction and symmetry

operations.

6. Machine Learning: In convolutional neural networks (CNNs), flipping operation

are used during feature extraction and image transformation stages.



Future Scope

The future scope of the Trans-Flip operation, especially when analyzed through pattern-
based matrices and in the context of operator monotone, concave, and convex functions,

is expansive and transformative across multiple domains

1. Pattern-Based Matrices in Image Processing and Graphics
Leveraging Trans-Flip in pattern-based matrices can enhance various transforma-
tions in image processing. By identifying patterns in structured matrices, new
methods for symmetry operations and efficient mirroring could emerge, especially
useful in real-time rendering in graphics and video games. Complex image manip-
ulations can also be made computationally efficient, which is crucial in augmented

and virtual reality.

2. Enhanced Data Augmentation in Deep Learning
Using Trans-Flip transformations tailored to specific patterns and symmetry prop-
erties could improve data augmentation in deep learning frameworks, particularly
for convolutional neural networks (CNNs). With operator monotone and concave
properties, adaptive flipping mechanisms could be developed to extract richer fea-
tures from data, improving robustness and generalization capabilities in image

recognition and object detection models.

3. Signal Processing Applications in Pattern Analysis
Pattern-based trans-flips could introduce new tools for signal processing, especially
in time-series analysis where matrix patterns represent complex signals. Opera-
tor monotone and concave transformations could help refine signal reversal pro-
cesses and convolution operations. This could benefit fields like audio processing,
telecommunications, and seismology, where identifying and reconstructing signal

patterns are crucial.

4. Quantum Computing and Quantum Information Theory
Trans-Flip could support new matrix transformations in quantum computing [9]

by creating unique symmetry operations related to quantum gates. With operator
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monotone and concave functions, there could be developments in error correction
methods and state preparation in quantum algorithms. Trans-Flip might also aid
in designing more efficient quantum circuits that leverage symmetries, supporting

scalable quantum architectures.

5. Advancements in Machine Learning Feature Engineering
In machine learning, especially within CNNs, identifying Trans-Flip operations
through operator convex or concave matrices could support advanced feature ex-
traction methods. These new methods may identify patterns that existing trans-
formations cannot capture, enhancing model accuracy in complex domains like

medical imaging, autonomous driving, and facial recognition.

6. Mathematical Research on Matrix Theory and Operator Theory
Research into Trans-Flip operations within matrix theory could open new avenues
in operator monotone and operator concave function studies. This exploration
could lead to generalizations of matrix transformations, potentially creating new
function classes. These advances could deepen our understanding of matrix oper-
ations in mathematical physics, optimization problems, and theoretical computer

science.

7. Cross-Disciplinary Applications in Robotics and Motion Analysis
In robotics and motion analysis, where pattern-based matrices are often employed,
trans-flip can be utilized for symmetrical motion transformations. Integrating op-
erator monotone and concave functions here could streamline motion planning al-
gorithms and real-time object manipulation, contributing to innovations in robotic

control and biomechanics.

Exploring the Trans-Flip with respect to pattern-based matrices and operator func-
tions could thus serve as a basis for groundbreaking tools and methods in both theoretical

and applied fields.
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2. Three day international webinar on General mathematical tools in research:
theory and Application June 15-17, 2020.

3. National webinar on Data Driven Research in Mathematics and Statistics
June 27, 2020.

4. International conference on Recent Trends in Mathematics and its Appli-
cation July 20-24, 2020 JNU.

5. One Week Confederated Online Faculty Development Program on “Orient-
ing Applications & Conceptualized Aspects of Sciences & Humanities
July 21-25, 2020.

6. One day webinar on Role and Challenges in Science and Technology July
27, 2020.

7. Participated in paper presentation in international conference on Recent Ad-
vances in Fundamental and Applied Sciences (RAFAS) , June 25-26, 2021.
LPU Jalandhar.

8. Attended international conference on Advances in Mathematical Sciences,

October 4-6, 2021. Nagpur University.

9. Participated in international conference on Advancing Technology Develop-

ment, Research Excellence and Innovations, October 22, 2022.
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10.

11.

12.

Attended international conference on Recent Advances in Fundamental and
Applied Sciences’ (RAFAS), March 24-25, 2023. LPU Jalandhar.

Attended 108th Indian Science Congress Conference, January 03 — 07, 2023.
Nagpur University.

Attended international conference on Nonlinear Dynamics and Applications,
February 13-16, 2023. IIT Indore.

Workshops

. participated in NPTEL awareness workshop, July 3, 2020.

. Online Faculty Development Program on Research Methodology, July

13-17, 2020.

. Attended International Faculty Development program on “Advanced Lin-

ear Algebra”, 27th September — 01st October 2021. The University of Delhi.

. Attended Workshop on Linear Algebra for Computer Science And Machine

Learning , November 19-20, 2022. ITT Madras.



Courses Related to Research
Work

Courses

1. Certification in Introduction to Abstract and Linear Algebra with a score of 96%,
awarded by NPTEL in collaboration with the Indian Institute of Technology,
Kharagpur. This rigorous 8-week course, conducted from July to September 2022,
provided comprehensive insights into foundational and advanced topics in abstract

and linear algebra.

2. Certification in Matrix Analysis with Applications, achieving a score of 83 %,
awarded by NPTEL in collaboration with the Indian Institute of Technology,
Roorkee. This intensive 8-week course, held from July to September 2022, cov-
ered advanced concepts and practical applications of matrix analysis, equipping

participants with essential analytical skills.

3. Certification in Matrix Computation and Its Applications, with a score of 68 %,
awarded by NPTEL in collaboration with the Indian Institute of Technology,
Madras. This comprehensive 12-week course, conducted from July to October
2022, provided in-depth knowledge on computational techniques and practical ap-

plications of matrix computation.

4. Completed a 12-week course in MATLAB offered by NPTEL in collaboration with
the Indian Institute of Technology, Bombay. Held from July to October 2023, this

course provided extensive training in MATLAB programming.

5. Certification in Basic Calculus 1, achieved with a score of 53%, offered by NPTEL
in collaboration with the Indian Institute of Technology, Madras. This 8-week
course, conducted from January to April 2024, provided a structured introduc-
tion to essential calculus concepts, focusing on foundational principles and their

practical applications.
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6. Completed an 8-week course in Multivariable Calculus, organized by NPTEL in
collaboration with the Indian Institute of Technology, Delhi. Conducted from
January to April 2024, this course offered a comprehensive exploration of calculus
in multiple dimensions, covering key topics such as partial derivatives, multiple

integrals, and vector calculus, with an emphasis on real-world applications.

7. Completed a 12-week course in Real Analysis, organized by NPTEL in collabo-
ration with the Indian Institute of Technology, Madras. Held from January to
July 2024, this intensive course delved into fundamental concepts of real analysis,
including sequences, series, continuity, and differentiability, providing a rigorous

foundation in mathematical analysis.



Awards and Achievements

1. Achieved first position in paper presentation in international conference on Recent
Advances in Fundamental and Applied Sciences (RAFAS) , June 25-26,
2021. LPU Jalandhar.

2. Achieved First Position in the course Introduction to Abstract and Linear Algebra,
with a certification score of 96%, awarded by NPTEL in collaboration with the
Indian Institute of Technology, Kharagpur. This 8-week course, conducted from
July to September 2022.S
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