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ABSTRACT 

Nighttime driving presents critical safety challenges due to limited visibility and glare from 

oncoming vehicles. Conventional fixed headlamps often fail to illuminate curving roads 

adequately and can blind approaching drivers, inducing temporary visual impairment 

(Troxler effect) that slows reaction times and contributes to accidents. To address these 

issues, this research develops an integrated adaptive headlamp system that dynamically 

adjusts beam direction and intensity in real time. The work spans vehicle dynamics 

modeling, control systems, and computer vision to enhance nighttime driving safety. The 

thesis contributes a holistic framework combining predictive vehicle control with 

intelligent perception, and is organized around four core objectives: (1) designing a vehicle 

dynamics-based predictive headlamp controller for illuminating road curves, (2) creating a 

perception algorithm for low-light object and traffic detection to enable adaptive dimming, 

(3) fusing the predictive control and perception modules and controller into a unified 

intelligent headlamp, and (4) validating the system’s performance.  

The first objective is to develop a mathematical model-based controller that can steer 

headlamp beams proactively when the vehicle traverses a curve. Traditional adaptive 

lighting systems typically rely on steering wheel angle alone, which may not accurately 

represent the vehicle’s actual path during high-speed maneuvers or skids. The current 

research formulates a high-fidelity vehicle dynamics model with longitudinal, lateral, and 

yaw dynamics and tire force characteristics, aerodynamics, and braking. A key outcome of 

this modeling is the accurate determination of the vehicle's slip angle—the difference 

between its direction and direction of travel. The slip angle forecasts the car's actual path 

through a turn. The technology can align the headlamps with the true path of the vehicle 

and not merely the steering input by using the slip angle, so ensuring that the beams light 

the road where the car is truly going even if tire slip or curvature cause deviations from the 

steering direction. 

Based on this, a predictive beam-steering controller is designed.  Initially, an elementary 

proportional control method is implemented: the desired slip angle computes the headlight 

deflection angle.  The simple Proportional Controller illustrates the concept of path-aware 

beam steering by directing the beam to follow the vehicle's path. But cars have rapid 

steering changes and actuator response times that could cause the beams to jitter or 
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overshoot.  A Filtered Proportional Controller is employed to account for these dynamics 

by introducing a filtering element to dampen rapid changes.  The filtered controller creates 

a smooth transition of a reliable beam during rapid motion by anticipating the actuator delay 

and compensating the beam motion accordingly. This is necessary for driver comfort and 

consistent road lighting because it prevents sudden headlight jerks and eliminates light 

beam oscillations. 

Under various driving conditions, the dynamic model and its controllers were simulated 

carefully.  The controller performance was verified using various synthetic road profiles of 

different curve radii and vehicle speeds.  It is observed that on curves, the predictive control 

system based on slip angle gives steady and reactive headlamp alignment. Unlike a static 

headlamp, the beam greatly increases lighting at bends by following the road curve. Even 

during abrupt steering inputs or when the vehicle experiences understeer/oversteer, the 

controller keeps the beams focused on the roadway ahead, thanks to the slip-angle 

feedback. This demonstrates the feasibility of a model-based approach to proactive beam 

steering and establishes a baseline for further enhancements. The Fused Controller is 

realized by merging advanced control algorithms with vehicle trajectory estimation to 

manage headlamp direction. The Fused Controller uses filtered feedforward and extended 

model predictive control (FF-MPC and E-MPC) strategies to estimate road heading from 

the dynamic model and adjust beam orientation proactively, ensuring alignment with the 

vehicle’s actual path through corners or maneuvers. 

The second objective targets the development of an intelligent perception module to detect 

on-road objects and oncoming traffic under low-light conditions, enabling the headlamp 

system to adapt its beam intensity and avoid glaring other drivers. Nighttime environments 

challenge conventional vision algorithms due to poor lighting and small, low-contrast 

hazards (e.g., distant vehicle lights, pedestrians in dark clothing). To overcome these 

challenges, this thesis investigates state-of-the-art deep learning detectors and tailors them 

for nighttime use. Initially, existing object detection frameworks such as Single Shot 

Detector (SSD), Faster R-CNN, and the YOLO family (including Tiny-YOLO for 

efficiency) are evaluated on nighttime driving scenarios. This analysis reveals limitations: 

while modern detectors are effective in daytime or well-lit conditions, their performance 

degrades with low visibility, often missing small or dim objects or producing false 

detections under headlight glare and noise. These findings underscored the need for a 
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specialized detection approach attuned to night driving. Also a modified SSD and multi-

faceted object detection model was proposed to meet these challenges. However, varying 

light conditions and small object detections were an issue that left unaddressed. 

To address this requirement, a new deep learning model named LSDNet (Low-Light and 

Small-object Detection Network) is developed as the perception module's central 

component. LSDNet is specifically designed for the robustness of low-illumination 

conditions as well as for detection of small, poorly visible road objects. LSDNet uses a 

state-of-the-art convolutional detection backbone optimized for the accuracy-speed trade-

off; real-time operation is essential for a live headlamp system. A few stages of the network 

bring about novel enhancements. Preprocessing and data augmentation are first used to 

simulate nighttime – such as using dynamic contrast enhancement to accommodate 

changing lighting and simulating glare or noise to make the model robust.  

Second, LSDNet ensures the recognizability of objects of differing sizes—particularly 

smaller ones such as distant taillights or wildlife on the road—by employing a multi-scale 

feature extraction process.  Context-sensitive layers based on surrounding scene data—e.g., 

the presence of a road or lane markers—augment this multi-scale approach by separating 

items from background noise in the dark. Third, an inference-level adaptation method is 

employed: LSDNet adjusts its confidence levels of detection dynamically based on input-

estimated ambient illumination.  The network is more sensitive (lower thresholds) in order 

not to miss dim objects under very dark conditions; in more lighted ones it can be more 

discriminative to avoid false alarms. Also, a light contrast correction and enhancement 

module is included in the pipeline such that low-contrast details (such as a pedestrian just 

outside of the reach of headlights) are enhanced for the detector. 

LSDNet’s performance is benchmarked against the existing detectors. The custom model 

demonstrates significantly improved recall and precision for low-light object detection. It 

reliably identifies oncoming vehicles, pedestrians and roadside obstacles with higher 

accuracy. Importantly, LSDNet maintains high performance on small objects, a common 

failure case for standard detectors at night. Moreover, LSDNet achieves this improved 

detection quality while operating with low latency, meeting real-time requirements. On a 

moderate GPU platform, the network processes frames at a high frame rate, meaning it can 

be deployed in an embedded automotive computer without causing delays in response. This 

perception capability directly feeds into the headlamp control logic: with accurate detection 
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of oncoming vehicles, the system can automatically dip the high beams in time to prevent 

dazzling the other driver, and with recognition of pedestrians or obstacles ahead, it can keep 

beams elevated or focused to ensure those hazards are well lit for the driver. Thus, 

Objective 2 yields a perception-aware vision system that is cognizant of the challenging 

lighting conditions of night. 

In the third objective the LSDNet model that performs real-time object detection optimized 

for low-light and small-scale hazards and the Fused controller is integrated in the adaptive 

headlamp. When objects are detected within the headlamp's field of view, LSDNet triggers 

an intensity adjustment mechanism, enabling smooth dimming (dip) of the beam to reduce 

glare or improve hazard visibility. This beam intensity modulation works in parallel to the 

directional control managed by the Fused Controller. Both systems are independently 

controlled yet tightly integrated, such that the vehicle simultaneously receives inputs for 

beam angle (from the Fused Controller) and beam intensity (from LSDNet). The 

coordination of these modules within a single embedded platform results in a cohesive 

adaptive headlamp system that responds intelligently to both vehicle dynamics and the 

external environment. 

The final objective is to rigorously evaluate the performance of the proposed adaptive 

headlamp system in terms of efficiency, latency, and overall effectiveness under 

representative driving conditions. Extensive testing was conducted, including controlled 

simulations and real-world scenario emulations, to measure how well the system meets 

safety and responsiveness criteria compared to existing solutions. A 2-kilometer virtual test 

track was designed with a mix of straight segments, various curvature turns (gentle curves 

to sharp bends), and a range of traffic conditions such as oncoming vehicles and roadside 

objects. This provided a comprehensive proving ground for both the beam-steering control 

and the object detection under low light. The results from simulation tests are promising. 

The advanced controllers (FF-MPC and E-MPC) introduced for predictive beam steering 

showed marked improvement in beam alignment accuracy and responsiveness over the 

conventional approach. Specifically, when the car negotiated curves, the model predictive 

controllers kept the beam focused on the road centerline far better than a simple steering-

linked system, especially at higher speeds or when quick adjustments were needed. The 

headlights under MPC control settled to the correct angle with minimal overshoot, whereas 

the conventional system tended to either lag behind the turn or overshoot slightly, 
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illuminating the wrong part of the road for brief periods. This translates to more consistent 

visibility for the driver. In terms of response speed, the predictive controllers were able to 

start reorienting the beams slightly before the vehicle fully entered a curve due to the 

feedforward aspect. The Fused Controller further enhanced performance by handling 

unforeseen or dynamic elements on the road.. The latency of the entire loop remained below 

the typical reaction time for driving scenarios. This means the system’s actions feel 

instantaneous from the driver’s perspective, maintaining safety 

Quantitatively, the object detection module LSDNet achieved a high mean Average 

Precision (mAP) on the test scenarios, outperforming the compared detectors in correctly 

identifying vehicles and hazards under varying low-light conditions. It also sustained real-

time inference speeds (measured in frames per second) on the embedded hardware, 

validating that the deep learning model can run onboard without causing delays. There was 

no significant drop in detection accuracy at higher frame rates, indicating the model is both 

accurate and efficient. Through rigorous comparative analysis, the integrated system was 

shown to outperform existing adaptive lighting setups on all examined criteria: curve 

lighting quality, reaction to oncoming vehicles, detection of roadside objects, system 

response time, and overall reliability.  

The adaptive headlamp framework not only proves the concept of combining predictive 

control with perception, but also demonstrates measurable safety and performance benefits. 

By keeping the full control-perception loop latency low and the algorithms efficient, the 

research shows that such a system is practical for real-world deployment. Drivers would 

experience improved visibility of the road and potential hazards at night, while also causing 

less discomfort to others on the road – a dual benefit that directly addresses the main 

problems of night driving safety and the Troxler effect. 

In summary, this work delivers a novel, comprehensive solution to enhance automotive 

headlighting. The research achieved its four primary objectives by developing: (1) a slip 

angle-based predictive headlamp control that illuminates curves in alignment with the 

vehicle’s true trajectory, (2) a deep learning vision model (LSDNet) tailored for low-light 

object detection to inform beam dimming and aiming, (3) an integrated Fused Controller 

combining these predictive and perceptive elements for context-aware beam control, and 

(4) thorough validation proving superior performance to state-of-the-art adaptive 

headlights. The contributions to knowledge include the introduction of a dynamic vehicle 
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model into headlamp control (improving upon purely kinematic or steering-linked 

approaches), the creation of a specialized object detector for nighttime driving conditions, 

and the demonstration of an integrated control system that marries control theory with 

artificial intelligence in the automotive lighting domain. This holistic approach to adaptive 

headlamps represents a significant step forward in automotive safety technology. The 

outcomes of this thesis lay a strong foundation for intelligent headlamp systems that 

proactively respond to both the driver’s path and the environment, greatly improving 

visibility and reducing accident risk during night drives. The framework and techniques 

developed can be extended and scaled in future vehicles, indicating a clear path toward 

smarter, safer illumination systems on our roads. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview1 

Night driving using conventional headlights is very dangerous and this results in accidents 

to temporary blindness caused from the beams of the oncoming vehicles. Headlights with 

high beams induce a temporary visual impairment in humans called the Troxler effect. 

This reduces reaction time but also contributes to poor visibility which causes most 

accidents occurring at night. Traditionally, the adjustment of headlamps was done 

manually whereby lack of skills and errors in judgment could lead to devastating outcomes. 

Additionally, some accidents occur due to inadequate lighting as the present typical 

headlamp set-up cannot give precise illumination for instance on bends and uneven terrains. 

Therefore, automobile adaptive headlamps that can prevent Troxlers’ effect happening on 

the opposite drivers while still not affecting road illumination for the driver inside should 

be developed. Automotive Electronics has gained a reputation as it is involved in more 

than just enhancing convenience; it also assists in safety purposes. It has been confirmed 

that there are more accidents during nights than day times even though traffic volume 

during darkness is relatively lower compared to its counterpart earlier on stated above [1]. 

One third of accidents in the Indian sub-continent happen due to poor visibility at night, 

as stated by NIMHANS, Bengaluru [2]. This is attributed majorly to the road lighting 

conditions, and the Troxler's effect. The majority of cars fitted with headlamps still have 

them on manual control, and only a few drivers change between the high beam and low; 

this portends an instant crash in case the illuminated light leads to temporary blindness for 

the approaching driver or there are some reflections from the mirrors if another car goes 

ahead.  This is what is known as the Troxler's effect [3]. Further destruction results when 

such a route happens to be curved or uphill. Normally, low beam systems do not illuminate 

properly along curved roads leading to more pedestrian accidents taking place. Therefore, 

it calls for a sophisticated framework that can conveniently switch between high and low 

beams thereby showing the way effectively [4]. In order to increase visibility among 

 
1 This chapter is published in IEEE Access Journal. Details: Toney, Glenson, and Cherry Bhargava. "Adaptive headlamps 

in automobile: A review on the models, detection techniques, and mathematical models." IEEE Access 9 (2021): 87462-

87474. 
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motorists, this serves as a significant leap into enhanced safety and driving experience 

through illumination of roads at turns during nights. 

This chapter intends to determine the need for technology solutions that can aid in 

preventing accidents at night, specifically due to the effect of high beam spectrum of the 

headlamps and its ability in saving lives through affordable technological interventions. 

The chapter discussed existing adaptive headlamp frameworks in the market, outlines 

various object detection methodologies and lane detection techniques that can be used for 

adaptive headlamps.  

1.2 Adaptive headlamps in Vehicles 

The Adaptive Front (AF) light system framework increases the perceptibility of drivers by 

dynamically varying the beam projections as the vehicle moves [5]. Figure 1.1 illustrates 

an AFS that modifies headlamp beam-lobes when the driver makes a turn to right or left 

sides to improve road visibility for drivers and hence avoiding probable accidents that may 

involve pedestrians or any objects.  

 

Figure 1.1 The beam lobe projections in a Vehicle with and without adaptive 

framework. The image displays the difference in the beam lobe projections and the 

improvement in illumination an AF enabled system offers. [5] 

This model modulates the divergence of headlamp using a stepper motor. Furthermore, 

Dahou, H. et al. [5] also came up with an AFS on FPGA Board through PWM Technique 

which was meant to assist not only the onboard driver but also other drivers who may be 

coming from the opposite direction since their lives are equally important like those of 

their counterparts. In this case, the team came up withalighting system that is parabolic in 

nature as shown in figure 1.2, consisting of four LED-lamps for illuminating the road.  
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Figure 1.2 The arrangement of the LED array in the Parabolic AF system [5] 

 

Figure 1.3 The beam lobes emitted by the combination of the LED Array in its      

Zero state [5] 

Each LED contributes to one of these modes: Right or Left High Beam- HBR/HBL, Right 

or Left Low beam- LBL/LBR, Low beam Middle- LBM, and Right or Left Low beam- 

LBR/ LBL. At the roll axis, HB as well as the LBM lamps are aligned in parallel and 

deflected at angles 10 degrees and 20 degrees respectively as they project side beams for 

the left headlamp through the LBL mode & LBR respectively. The beam projections from 

each of these lamps form a combined lobe which is varied with respect to the steering 

wheel angle. Figure 1.3 depicts the beam lobe in zero state. HB lamp illuminates highly 

intense light along its path while PWM Modulator controls LB lamps projection ON/OFF 

using vehicle motion. Stepper motor’s frequency and current is regulated by PWM 

technique and it also regulates the electric power applied to vehicles’ parabolic lights. The 
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brightness of low-beam lamps is adjusted using the PWM, depending on what mode it is 

at. Bending angles within a range of 0 degrees to about 45 degrees were tested for most 

cases, and these results have shown to be effective. But, examining system latency that 

defines how long it takes for it to readjust driving conditions (that means time required for 

the response) which plays a crucial role in automotive industry is crucial. However, this 

system does not assist drivers in coming vehicles even though it enhances onboard driver 

visibility. 

 

Figure 1.4 The headlamp beam lobe adjustment relies on the relative angle of the 

driver with reference to the headlamp, the angle of which is shown as 𝝍 [6] 

 

Figure 1.5 The geometric calculation of the HSD value for the beam adjustment 

algorithm while the vehicle undertakes a turn [6] 

The Swiveling algorithm based headlamp [6] has its base relying on the highway geometry 

to predict the Headlight-Sight-Distance (HSD) and its effect on varying road designs were 

studied as shown in figure 4. The vehicles headlamp position in relation to the driver is 
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used to determine the HSD which in turn adjusts the beam-lobes. This methodology relies 

on SGPSA-HSD value which is the Steering-Governed Predictive Swiveling Algorithm. 

The geometrical scheme of calculation for this is depicted in figure 1.5. The system is 

simulated for various on-road test cases on MATLAB and effectively demonstrated that 

the compensated headlamp improves the sight distance and contributes to improving 

visibility and driving comfort. The model does offer improvement in illumination of the 

driving path with reference to the steering angle. As depicted in the figure 1.6, the arc 

design for the HSD prediction plays a crucial role as they compensate for the curve 

transitions. But the system fails to perform as expected during sudden curvature changes 

(which cannot be ruled out in real-world instances). The system needs to be aligned to the 

highway road standards, which is essential. Also, the system’s ability to perform for 

different speed ranges is not discussed and it is quintessential in an application like adaptive 

headlamp frameworks. 

 

Figure 1.6 The control design of the preview-control based model showing the 

mathematical relations and the control segments [7] 

A uni-track non-linear model of an elementary engine for producing different position 

estimate based on the changing values of the steering angle, yaw rate, throttle inputs and 

velocity is used in Hardware-in-loop based model [7]. the vehicle and on-road simulator 

models of the system simulate multiple test cases as applicable for the adaptive headlamps. 

Based on the varying inputs, the controller predicts the changing angle of trajectory and 

corresponds the motor steps accordingly. The output in this case is smoother and so is the 

headlamp compensations unlike the earlier model which has abrupt behavior at sharp turns. 

This dissolves behavior that are uncontrolled and can operate effectively in different 

driving conditions too. The model however has to be optimized for real-time applications 

for power and size and have to be rigorously validated on test-cases comparable to actual 

environment. 
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A preview control based bending mode controller was designed to compensate for the lag 

issues usually found in adaptive frameworks [8]. This implementation banks on the inherent 

relationship that controls the braking distance (safe stretch), the steering angle, its Wheel 

angle and also the turn radius. The controller design is shown in the Figure 1.6. This model 

exhibits improved response time in comparison with the conventional servo-powered smart 

beam lamps. When compared with the servomotor based models at a vehicle acceleration 

of about 40 KM an hour, this model leads with the beam lobe adjustment with a faster time 

of about 0.4 seconds with improved performance against changing driving angles. The 

model leads in the driving speed range of low and medium however, the performance at 

higher speeds and the associated lag needs to be evaluated.  

Another prominent adaptive framework designed in line with the United Nations(ECE324-

R123) operates effectively in four classes as defined by the standard [9]. As shown in Figure 

1.7, the quad class of operation has a neutral or the country light state (Class C), an urban 

light state (Class V), a highway drive state (Class E), or an adverse weather condition light 

(Class W). The implementation has a specially designed optics based on the ON-OFF cases 

of the LED array that operates in the cutoff (the narrow central area is lighted up using this 

mode which propels high intensity light beams) and the spread module mode (generates 

low intensity beams). 

 

a 

 

b 

 

c 

 

d 

Figure 1.7 The pattern of the AF headlamp beam lobes in the different modes of 

vehicle transit [9]. a. Class C-Basic/ country, b. Class V-Urban, c. Class E-

Highway and d. Class W-Wet road 
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Figure 1.8 The uni-color light produced from multiple Laser sources having diodes 

that generate lights of different frequency undergoing recombination to produce a 

desired pattern [10] 

The cutoff and the spread modes of the optics form the beam patterns for the four classes 

using the optic module that has the multiple array of LED’s. The selection of the mode of 

operation is primarily dependent on the vehicle speed relying majorly based on the fact that 

the European Union has strict vehicle operating speed ranges in each of these classes. But 

the universal application of this may not be practical in other parts of the world.  

 

Table 1.1 The Scanning units diode characteristic requirements for precise 

generation of single color light [10] 

Diode Color Red Green Blue 

Output power (Optical unit) 0.5W 0.15W 1.6W 

Wavelength 638 ± 6nm 520 ± 10nm 450 ± 10nm 

Divergence- Max(IFMHW) 36 23 23 

Divergence- Min (IIFMHW) 6 7 7 

Relative Polarization 

orientation  

p s p 

By mixing the light of two diodes having different colored output and by blending three or 

more diodes for a Laser based scheme that has adaptable colored symbol projects were 

proposed [10]. Here the different colored light sources undergo optical beam combination 

as shown in figure 1.8 to produce a single colored light output with improved quality. This 

also included the generation of the longer UV wavelength (blue signal) using the shorter 

wavelength Phosphor. The white light is generated by blending the generated blue light 

with the converted yellow light. Since the system is laser based, the light is monochromatic 

in nature. While this emerges as a good option for projection, the need to adhere to the ECE 

standard regulation on Color-rendering Index is crucial for illumination application which 
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is the said case. This strict need for adherence to the standard is a bottleneck and the 

required range is shown in the Table 1.1.  

 

Figure 1.9 The multiple diode arrangement for the single ECE standard light 

generation setup [10] 

The method is aids in better and controlled illumination but does come with an overhead of 

precise combination of laser diodes to generate colors that are specific. Also, the need for 

aligning the laser diode precisely as shown in Figure 1.9 to obtain the desired light streak is 

a challenge. Another demanding task in this case is to have proper thermal compensation 

because the diode output wavelength can get affected due to temperature generating 

inappropriate light streaks. Another scheme with reduced latency of detection and response 

to accommodate climatic changes is the visual framework [11]. This method is found to be 

performing well even at higher speeds effectively at the highway limits and implements: lane 

marking detection, sidewalks identification, quick detection of warning signs to aid for 

improving driving comfort.  

 

Figure 1.10 Three staged adaptive frameworks piping diagram displaying the 

inherent latency at the multi-stage system [11] 

 



9 

 

 

Figure 1.11 The hardware prototype of the 3 staged architecture based adaptive 

headlamp set for fetching live data for the validation [11] 

With three stages, Capturing, Processing and Transferring, the framework displays low 

latency and higher accuracy (Figure 1.10). Stage 1 involves scenario acquisition through 

cameras, stage two includes image processing to identify required knowledge from the 

background (this stage contributes to the latency) followed by the stage 3 which is the action 

phase that actuates the control module for headlamp beam adjustments. The three-stage 

architecture displays latency of 1ms which is permissible in the application under discussion 

and also finds that the reaction time are within the standard deviation peaks for over 63% of 

times. The results in this case are promising but the fact that these are based on just six trials 

calls for the need for more test case simulations to determine the performance in varied 

scenarios. Also, optimization in terms of area and power are predominantly important for this 

model displayed in figure 1.11. 

1.2.1 Adaptive headlamps from major Vehicle manufactures 

With the advent of smart vehicles and now autonomous vehicles, the need for adaptive 

headlamps has become paramount and vehicle manufacturers are leading in this segment. 

Major brands like Nissan, Hella, Ford Corporations are industry leaders in this area. The 

section discusses various industry solutions and patents in the sector. The dynamic LED 

based headlamps of Ford Global Technology showcased in figure 1.12 has a driving 

framework for light that has a source of beam, set of projection lenses fused along with 

micro-mirrors (digital) and has been granted a Mexican patent [12]-[15]. The systems data 

acquisition is enabled through a camera and is predominantly designed to identify the 
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parking section and adjust the headlamp to light the parking limit perpetually.  

 

Figure 1.12 The improved beam projections of the adaptive framework at different 

test cases on on-road driving scenario developed by Ford Corp. [14] 

 

Figure 1.13 The case of beam lobe adjustment across a curve for improving the 

driving perception using the framework from Ford [14] 

Yet another Ford product is the auto beam ajustment system which acts as a conducive 

driving aid at night detects the traffic (approaching) or even a vehicle that is ahead (acts as 

reference vehicle) and inherently reduces the troxlers’ effect on the other drivers and also 

curtails the onus on the driver of the vehicle with this system to automatically adjust the 

beam lobes. These headlamps display accurate light pattern and immensely improves the 

illumination as shown in Figure 1.13. A framework designed by Nissan was granted the 

European patent for its ability to transcend the beam lobes by following the road curves 

[16]. 
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Figure 1.14 The system representation of the AF of Nissan-Motor-Corporation [16] 

 

Figure 1.15 The beam lobe projections at curves and at the crossroads using the 

Nissan AFS depicting an improved illumination [16] 

 

Figure 1.16 Comparison of pricing of the adaptive headlamps by various vehicle 

manufacturers [17]-[19] 

The framework is depicted in Figure 1.14 and at the road junctions, where the vehicle needs 

to manuver a turn as shown in Figure 1.15, the headlamp illuminates the intended direction 
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of turn based on multiple sensor inputs to improve illumination and hence driving 

efficiency. Depicted in Figure 1.14, an AFS developed by Nissan Global teams which turns 

on low beam just like as per vehicle speed and steer to give the driver better visibility. 

Companies such as BMW, Toyota Corporations, Hella, Valeo, and Benz has designed and 

patented adaptive headlamps. A cost-comparison of the adaptive headlamps by the 

renowned automobile manufacturers are depicted in Figure 1.16 [17]-[19]. This is to say 

that researchers should put attention to this cost of these products in an effort to develop 

low-cost alternatives. Because if for example in India which mainly have mid-range cars 

on the road most expensive features will be difficult for most manufacturers to adopt. 

1.3 Motivation  

1. Safety: Due to reduced vision, driving at night is much unsafe than driving during the 

day. Conventional headlights provide limited illumination on bends and uneven terrain, and 

they can temporarily blind oncoming cars (Troxler effect). By automatically adjusting the 

beam pattern, adaptive headlights can reduce accidents by increasing driver visibility 

without blinding onlookers. 

2. Improved driving experience: Adaptive headlights improve visibility on curves and 

uneven roadways, enabling drivers to detect possible hazards more clearly and respond 

more quickly. This may result in a more secure and enjoyable nighttime driving experience. 

3. Reduce physical excretion and fatigue: It can be exhausting for drivers to continually 

switch between high and low beam while using traditional headlights. This procedure is 

automated by adaptive headlights, which lessens driving strain and tiredness. 

4. Simple yet powerful solution with less reliance on sensors: Modern adaptive headlights 

majorly rely on sensors and integrated systems for operation, which might be error-prone 

and limit response time and performance for complicated road features or at high speeds. 

Therefore, in order to recognize objects and pedestrians, predict approaching bends, and 

modify headlamp beams accordingly, camera-based systems with fusion algorithms are 

required. Faster reaction times and more accurate beam control would result from this, 

especially in emergency scenarios. 

5. Less expensive for markets in developing countries: Adaptive headlights have a 

significant potential to increase traffic safety at night. Adoption may be hindered by their 

present cost, especially in developing nations like India. There is a need to create low-cost 

solutions with simpler sensor setups, efficient control algorithms, and alternative light 
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sources. This could facilitate a broader market acceptance, particularly for the mid-range 

cars that are popular in India. 

1.4 Thesis Organization 

This thesis is organized into six chapters. 

Chapter 1 outlines the issues with night-time driving, the challenges associated outlining 

the need for the research. The chapter also discusses various adaptive frameworks 

available in the market. The chapter draws motivation for the research based on the 

discussion. 

Chapter 2 includes a thorough literature review on the various object detection methods, 

lane detection techniques, controllers and vehicle models apt for adaptive headlamp design. 

The chapter discusses the research gaps and then presents the objectives of the research 

work. 

Chapter 3 discusses the mathematical modeling of the controller for the beam lobe 

adjustment using the slip angle of the vehicle and its effect to varying body stiffness. The 

chapter introduces 5 controllers progressively and performs various time and frequency 

domain tests to evaluate them for the application under discussion. 

Chapter 4 compares the existing state of the art object detection models and identifies the 

apt algorithm for the case. The chapter shows modification of the SSD framework for night 

drive object detection and proposes a multi-faceted object detection model for object 

detection. It also introduces a custom LSDNet model for night time object detection and 

compares its performance with state of the art models and also its performance in low-light 

conditions and its ability to detect small objects. The second half of the chapter detects a 

lane detection technique and integration of it with the LSDNet model to control headlamps 

in lanes where the road markings are effective. 

Chapter 5 discusses the conclusion and future scope of the research. 
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CHAPTER 2 

LITERATURE REVIEW2 

2.1 Overview 

Reduced vision during night drive reduces the driving comfort, increasing physical 

excretion and causing mishaps that often prove fatal. Object detection and lane detection 

becomes pivotal in the design of adaptive headlamps and associated systems. This chapter 

reviews multiple object detection techniques as apt for night time driving, their applicability 

and area for improvements. It deals with lane detection methods and also vehicle models 

suitable for this application. The chapter chalks out the gaps in the existing methods and 

defines the objectives of this research. It also outlines the methodology followed in the 

research work.  

2.2 On-road Vehicle or object detection techniques 

To control the beam lobes during adaptive headlamp design, target detection and tracking 

are necessary. In frame identification process detects the object while repeated detection of 

the object in each frame is referred to as tracking. However this method has a limitation 

speed because it is computationally expensive. So, size, shape, direction based target-

tracking algorithms form the foundation for predicting the position of the objects in the 

subsequent frames. This method reduces the response time by avoiding searches in frames 

that are large. While the detection of target and tracking is performed parallely, the potential 

of failure in the model being able to detect the object is a possibility because of its 

prodigious dependence on the features. This section discusses paramount methods that are 

used for target detection through features extraction, classification, and the subsequent deep 

learning models. 

As illustrated by figure 2.1 this section focuses on various methods employed for object 

identification techniques especially applicable to roads. On the other hand, figure 2.2 shows 

classifiers for detection purposes. Vehicle or object detection is usually associated with 

delineating the field of interest in the frame, feature retrieval and its classification. Video 

based vehicle identification may use motion or even appearance based [20]. The motion 

based models work on comparing the multiple frames against the background while the 

appearance dependent models predominantly rely on the features: size, color or even shape. 

 
2 This chapter is published in IEEE Access Journal. The details of the paper: Toney, Glenson, and Cherry Bhargava. 

"Adaptive headlamps in automobile: A review on the models, detection techniques, and mathematical models." IEEE 

Access 9 (2021): 87462-87474. 
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To distinguish between foreground and background a priori knowledge is used by former. 

These models use common feature extracts; dominant among them are SIFT extractors [21], 

SURF [22] and the HOG [23] concatenated with complex classifiers like SVM, along with 

deep learning models like R-CNN that are region based which boast of powerful hirearchial 

feature extractions contributing to improves accuracy and increased semantic-segmentation, 

faster R-CNN and noteworthy regression models used include SSD’s and multiple versions 

of YOLO.  

 

Figure 2.1 Sophisticated Object detection techniques suitable for night drive 

obstacle/ vehicle detection 
 

 

Figure 2.2 Classifiers apt for the object detection application 

 

In videos with cars or bicycles, SIFT can be used to identify certain valuable features from 

a frame by segmenting it since the method had been widely employed in detecting an object 

from a video where it enables recognition of vital features. The invariant nature of feature 

points defined in SIFT method makes them suitable for object tracking even when an object 

changes poses frequently or its illumination varies much[20]. It mostly works better for 2D 

than 3D planar objects. New images are compared using this feature against those known 

before; thus Euclidean distance is applied to discover matching features. Then after 

matching these characteristics, probability of presence of an object are calculated. The 

literature suggests that SIFT-based descriptors are better than others and are invariant to 

scale, rotation and brightness [21] because of their region based nature which is useful 

formatching features. SURF is a popular image recognition, registration and classification 

method used in computer vision which relies on the integral images computed using 
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Hessian approximations thus making detection much quicker than the SIFT model [22]. 

The selection of SURF or SIFT is dependent on the problem as well as the response speed 

requirement. In applications with ample computational time SIFT performs superior while 

Gaussian derivative-based descriptors for SIFT are found to be better than SURF [23]. The 

comparison of these models (normalized values) is shown in Figure 2.3.  

 

Figure 2.3 Performance comparison of traditional object detection features 

(normalized values) [Refer Annexure-A1-1] 

A histogram of gradients (HOG) descriptor has also been widely applied for object 

categorization because it defines the features as edge orientations or gradients of an image 

[24]. In this case, normalization procedures of gamma and color parameters are executed 

in small images from larger frames to optimize resource usage. A section-by-section 

scanning is performed by the detection window on the primary image to deduce smaller 

images that are scalable. Here SVM based models are a favorite. By not implementing a 

central dependent technique and rather using comibination of localization, contrasting and 

normalization of the smaller and scaled up windows, these surpass wavelet models. For 

instance, SIFT showed better performance than wavelets but much closer performance 

when gradient-based detection was used. In contrast, unlike the other approaches of 

extraction on which deterministic methods have been applied, a salient localized region is 

defined here through a non-deterministic mechanism based on image intensity profile 

properties within an image window in order to detect faces with different resolutions. 

Another major reason for choosing this approach is that it is distinct from its computation 
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efficiency even under difficult lighting conditions and object positions. The method is 

efficient computationally even when illumination conditions are varied and objects change 

their position [25]-[28]. The class differentiation at the feature space is achieved by 

employing logistic regression, linear discriminant analysis, standard correlation coefficient 

or even principal component analysis. They may even bank on the interdependence 

between multiple variables. This means that models fed with features should attain their 

decisions around the decision boundary [25].  

A number of factors such as aspect ratio, color-based detection can be used to determine if 

an object exists in a frame or not by using supervised classification algorithms. A 

supervised classifier usually preferred in object detection from video is SVM; it allows 

learning an optimal hyperplane amongst infinitely many that separate two classes [29]. 

Based on this distance from hyperplane margin SVM’s decides. Image classification tasks 

have been simplified by use of fast R-CNN because no additional processing step like 

scanning entire images or extracting regions of interests has been performed. Locating the 

most discriminative features from raw RGB pixels can be carried out using filters and 

pooling. 

 

Figure 2.4 Comparison of Machine Learning Classifiers used for vehicle detection 

(normalized values) [Refer Annexure-A1-2] 

Suppressing the errors based on the choice of appropriate thresholds and by neglecting the 

parameters that are insensitive is achieved through quadratic processing or programming 

and Hilbert Spaces [29]. For a large dataset, a choice of kernel is important, as well as the 
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time it takes to run. K-NN [30] [31], a non-parametric method considers the position of the 

training sample in relation to the class. It calculates an efficient distance between data set 

and training sample. The samples that are close to k-threshold or from the inbound sample 

classes are grouped in the same class. Euclidean distance is used when there exist several 

dimensions. Using the appropriate k-value, the objects are numbered, metrics of similarity 

are generated or even the distance from the k is calculated for precise classification. But 

this has limitations such as multi-modal classes where error can be approximated and easily 

estimated because it approaches Bayes's error but with such a computational burden upon 

data getting bigger or more complex. AdaBoost algorithm has been widely used in object 

detection where strong classifiers are obtained through weak ones [32] [33]. At the end of 

each learning cycle, these classifiers are adjusted by that algorithm which is weaker. Also, 

though it separates Adaboost from other classifiers in terms of ease of implementation, it 

allows for faster convergence as well as no need to know preexisting state of weak 

classifiers and performs very well also. The normalized comparison of these models is 

depicted in Figure 2.4. 

Machine learning models find extensive application in applications that involve huge 

training dataset. Single stage models (YOLO & SSD) use CCN’s  and dual stage models 

(RCNN, Faster RCNN, and SPPNet) usually are generate target box which is followed by 

classification. The R-CNN [34] shows better performance compared with the earlier 

conventional models. The algorithm (multi-stage) performs selective search to suggest 

about 2000 regions for each image [35]. It then crops the region of interest from the 

proposed region extracting features to form feture vector of a dimension of 4096, making 

it highly robust. This feature array is used to predict the object in the frame.  

While extracting features and subsequent training are tedious, it is possible for the 

algorithm to have fixed image size leading to making of redundant proposals. The 

requirement of the image sizes to be fixed is importatnt here and the issue is dealt with 

through SPP-Net [36]. The algorithm has a SPP which results in a vector of features with 

non-uniform image sizes. The technique outperforms R-CNN but comes at a cost of time 

as this involves connected multiple layers. Fast R-CNN has detector to estimate feature-

length and determine the region of interest of pooling that does the fixed feature size 

prediction that contributes to better classification exploiting the bounding boxes of the 

CNNs [36] [37]. With a single stage processing in the network layers that performs 

convolution per image, Fast RCNN exhibit fast response in comparison to multiple regisons 

proposed in the earlier method. While this method does selective search, Faster RCNN 
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computes the features of an image at once and the ROI is proposed by a different network. 

To improve this stated problem, the full image convolutions in a Faster R-CNN [38] have 

been adopted and selective search for ROI is avoided through separate network. The 

Region-Proposal-Layer can operate on the images of multiple size to predict the feature 

vector which feeds the regression as well as the classifier layers. Even though it has faster 

response time, there are limitations when it comes to pictures containing extreme sclaes or 

even shapes. The comparison of the models in terms of accuracy and inference time is 

plotted in Figure 2.5. 

 

Figure 2.5 Comparison of Deep Learning-based Object detection models for 

adaptive headlamp applications [Refer Annexure-A1-3] 

In applications with real-time requirement where speed takes precedence, region-proposal 

algorithms like YOLO are effective as they are focused on probable areas rather than the 

entire image [40].  YOLO splits photos into grids with each cell representing an input 

proposal. Higher-level iterations such as YOLOv2 and YOLOv3 [40]–[42] are used greatly 

in video object detection [43]–[46], enjoying better speed and accuracy; however, they still 

face the challenges of detecting minor objects and tolerating a range of aspect ratios. SSD 

[47] [48] eliminates such limitations by incorporating region-proposal and classification in 

a single stage, achieving speeds comparable to Faster R-CNN. It uses anchor boxes and 

aspect ratios to create bounding boxes and aggregates predictions across different feature 

maps to support objects of different sizes.  Compared to CNNs, SSD does not include 

intermediate filtering, enabling faster detection with slightly reduced accuracy. For 
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increased accuracy, SSD uses non-max suppression to aggregate similar bounding boxes 

and employs hard negative mining to remove false positives due to background noise.  

2.3 Vehicle Models for Adaptive Headlamps 

Another essential adjustment for adaptive headlamps if the need for adjusting the beam-

lobes in accordance with the road curve. To do so modeling of vehicle is an integral part 

herein. Multiple models of passenger vehicles is depicted in Figure 2.6.  Path tracking 

(Geometric based) [49] corresponds to vehicle position, dimensionality and orientation 

vectors along its trajectory and look ahead distance with respect to curvature and is 

independent of the velocity of the vehicle and external factors. The complexity of look-

ahead distance is a bottleneck in this model. The challenge is that at steep curves the look 

ahead estimates the road to straight line skipping the actual path and goes straight to a new 

point leading to the generation of oscillations at higher speeds. The non-consideration for 

internal and external forces but rather the position of the automobile and the acceleration 

with respect to co-ordinates (both the local and the global) makes Kinematic model apt. 

This method [50]-[53] assumes that there are front wheels that are steerable with front axle 

being the origin. Controllers [54] [55] to account for both the linear alongside the rotational 

motion to ensure better stability are designed. Unlike its previous case known as Kinematic 

model, this one also takes into account tire slip, the coupling and the coefficient of friction 

[56] [57].  

 

Figure 2.6 Passenger cars Vehicle models suitable for lane predictions 

 

In pure pursuit algorithm [58] in which besides looking ahead; error on direction between 

vehicles final destination is defined through drawing circular arc from current location up to 

goal or target point that is given by look ahead. The use of this type [60]-[62] for other 

applications [59], however, is limited as a headlamp adaptation model since it depends on the 

length of road ahead. In vector pursuit, which employs coordinates to predict the most 

suitable position at a given time to reach an endpoint it can be used in adaptive headlamps 
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[63]; However, this technique has been found to have a great computational overhead. The 

clothoid curve method can avoid arches and has real time operation with increased 

performance that is dependable [64].  The tire and soil contact forces coupled with the forces 

acting on the wheel: lateral and the longitudinal are calibrated in the Dynamic-path tracking 

model [65] [66] and is complex as it involves multiple factors to be processed and error 

compensation becomes difficult.     

Figure 2.7 Comparative analysis of Vehicle Path Models for Adaptive Headlamp 

Applications [Refer Annexure-A1-4] 

 

Figure 2.8 Normalized comparison of model stability and parameter dependence 

[Refer Annexure-A1-5] 
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Figure 2.9 Trend of Model evolution from Geometric to Dynamic Formulations 

(Normalized representation) [Refer Annexure-A1-6] 

Kinematic as well as dynamic model based controllers are prevalant adaptive controllers 

[67]-[69] in addition to the types dependent on neural networks, PID with high stability at 

varied driving conditions but with difficult design constraints [70] [71]. This leads to complex 

development of neural networks based on PID controller, neural network-based adaptive 

control (NNAC) system [45] [72]. The algorithms optimization and cost overheard reduction 

by Predictive Controllers. Nonlinear MPC [72] and also extended-kinematic models [45] are 

among the widely accepted models. Though complex in terms of design, Robust Controllers 

have the ability to compensate for rapidly changing dynamic conditions [73]-[75]. 

Normalized comparisons of these models are shown in Figure 2.7 through 2.9 with respect 

to their usage for adaptive headlamp application. 

2.4 Lane detection Models for Adaptive Headlamps  

This section analyses modern lane finding algorithms for night driving, to evaluate their 

efficacy for path prediction and investigates nighttime lane recognition. The aim was to 

develop a model that would address the limitations of autonomous driving on unmarked 

roads using deeplabV3+ semantic segmentation for road detection [76]. Its dataset 

contained 15,000 annotated images specifically made for drivable road detection, which 

use pixel-level segmentation to predict steering angles with precision in automated vehicles. 

A comparison analysis also shows it aids in improving steering control in level-5 self-

driving cars especially where there are no lane lines or they have faded away. Vehicle and 
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pedestrian identification algorithms are moving towards CNN’s that are strong enough. 

Traditionally, two-staged architectures require first some vital elements from raw images 

like low-level representations such as pixel gradients or local image patterns are extracted 

and then learning methods applied for full scene understanding [77]. HoG [24] stands out 

by exhibiting high accuracy while reducing computational cost hence making it suitable for 

autonomous driving. Again, novel solutions as presented in [78] entail an extra middle layer 

after low-level feature computation is done. 

These algorithms find the best combination of features that results in improved accuracy, 

even if it comes at the cost of increased processing time. In CNN’s [79], feature extraction 

takes place during learning and comprises many layers. Trained filters within each 

convolutional layer process input images, enabling automatic feature extraction from 

training data. Although CNNs have acceptable accuracy in pedestrian or object detection, 

their computation intensive processes lead to improvements such as fast R-CNN [39] and 

YOLO [41] to reduce computational costs and robust lane detection under difficult 

conditions respectively. For instance, [80] combines object identification and tracking into 

a probabilistic framework for real-time lane detection with Robustness even under 

challenging environments like curved lanes, faded markers, or shifting lanes. The approach 

is based on vehicle motion models and inertial sensor data which therefore in turn makes it 

vulnerable when dealing with non-predictable motion patterns of a vehicle. Therefore, [81] 

provides a model based on fixed lane markings that performs well in very difficult 

situations both in day light as well as at night fall. Obstacle detection is limited in its ability 

to identify drivable space due to the presence of invisible objects and indefinable barriers. 

LIDAR sensors are a viable alternative but their cost effectiveness necessitates semantic 

segmentation research. To automatically extract local features, CNN can be trained, which 

has better performance than traditional techniques [82]. But the problem of high 

computational overhead still remains.  

In [83] an alternate approach reduces drivable space estimation into a 1-D graph inference 

issue using lightweight methods for real-time feature computation and inference with better 

results on difficult datasets. Consequently, this study employs sensor fusion consisting of 

LiDAR and camera sensors for the purpose of detecting robust drivable road. Using edge 

detection and color-based segmentation, this technique [84] generates lane binary images 

from camera data. Though it demonstrates good performance across different types of 

urban roads such as: two lane marks; a lane on one side; and a curb on the other side; or 

roads bordered by curbs on both sides but there is no universal implementation of the model. 



24 

 

The HMRF model [85] magnifies boundary issues and multi-feature learning for enhanced 

road detection. Improvement in detection by handling noisy data and reducing redundant 

information with a bootstrapped learning strategy and hierarchical multi-feature 

segmentation framework. The efficiency of this model has been validated multidimensional 

across various datasets to affirm its accuracy; it is applicable in complex road environment. 

In addition, it enhances safe driving-assistance system, detects obstacles and improves real-

time drivable area extraction using HMRF framework. However, the performance of the 

model at large dataset needs to be optimized through coding. This algorithm segments road 

regions by combining road features and a model using graph-based manifold ranking 

approach to fit a road model. Its robustness against such adverse elements as water stains, 

kerbstones etc., makes it less susceptible to violations of road model assumptions. Precision 

improves when this model is integrated with the feature-based framework [86].  

Experimental validation on Kitti-Road against the actual-road datasets demonstrates high 

performance with AUC values of 0.956 and 0.989 respectively [89]. This approach further 

integrates these constraints into visual odometry systems for depth factor calculations hence 

improving unstructured roads detection that can also operate under difficult conditions 

without failure [87]. To estimate road regions in complicated environments where there are 

diverse objects that could overlap with roads, one can use vanishing point estimation 

method on the boundaries surrounding those roads. This strategy quickly computes and is 

robust to shadows and complicated road surfaces by using boundary alignment from voting 

points & line-soft-voting with maximum weight. Nevertheless, color variations in images 

and errors in the estimation of the road boundaries are affecting the accuracy of finding the 

vanishing point despite its flexibility in handling different interferences on roads. Lane 

detection & tracking strategy employing digital image processing enhances lane detection 

accuracy, handling multiple scenarios [88]. In order to avoid collision, this method uses 

ROI sizes along with IPM algorithm for range determination. Additionally, there were 

cases where the tracking performed well or poorly as a result of factors such as lane 

visibility issues (glare, reflectivity, paint deterioration) among others qualitatively analyzed. 

Continuous lane markings work well whereas double markings reduce tracking precision 

because of varied tracings.  

To overcome some problems faced by conventional networks in spatial detail recovery, 

two attention mechanisms are employed in this module [89]: Upper-level Prediction 

Attention along with Upper-level Boundary Attention. Moreover, a top-down refinement 

process utilized within a decoder network improves segmentation accuracy without 
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increasing computational cost. As per evaluation conducted over Cityscapes and CamVid 

datasets improvement concerning efficiency &accuracy was noted. The module is 

adaptable to different encoder-decoder networks implying that it can be used for 

optimization and segmentation applications more generally. It works as a separate module 

and thus it can be used with any segmentation network which has an encoder-decoder 

structure. Its efficacy is influenced by the segmentation network. Therefore, the network of 

semantic segmentation for the prediction of the trajectory of the ego-vehicle, with a front-

view monocular-camera as input for consecutive images which produces trajectory mask 

that improves predictions accuracy [90]. Consequently, results from KITTI datasets 

demonstrate better performance than baseline models. By integrating human intentions on 

intersection turns and generating additional training data through simulations, accurate 

trajectory prediction will improve lane-changing prediction performance. The lane 

detection network utilisez SPP & the atrous convolution for semantic segmentation which 

is performed pixel-wise. The network includes an encoder-decoder for binary segmentation 

& feature mapping [91]. This was shown in its’ experimental results on Tusimple dataset 

where it outperformed all other architectures that are essential when achieving autonomous 

driving. In this case Spatial Propagation & Transformation is an end-to-end network fusing 

image and point cloud data for road detection. 

It entails a model-level combination as well as dual-view fusion, which enriches street 

illustration and applies a data-based combining approach to present the competitive 

performance on KITTI Road Benchmark. For instance, RNN’s joint anisotropic diffusion 

has limitations that can be improved by combining it with GNN and extending spatial 

propagation fusion for wider object detection tasks. The proposed SPSTFN network reveals 

potential but needs fine-tuning on more intuitive and flexible fusing methods. One of these 

is how lane identification strategies are implemented in autonomous driving through this 

review. Classic techniques such as HoG and RealBoost are computationally efficient; 

nonetheless, they are being replaced by CNN-based models due to their automatic feature 

extraction capabilities. Although CNNs exhibit high accuracy levels, they demand 

significant processing resources thereby necessitating improvements like rapid R-CNN and 

YOLO for real-time operations. There is potential for deep learning based semantic 

segmentation networks. The survey encompasses sensor fusion, model level integration 

among others aiming at improving road recognition accuracy. 

Lane detection has evolved from probabilistic frameworks based on vehicle motion models 

to models such as HMRF that thrive in unstructured settings. HMRF addresses boundary 
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difficulties and reveals a high level of strength, notably in complex urban environments. 

Lane detection accuracy is significantly enhanced by systems using graph-based manifold 

ranking, vanishing point estimation, or image processing algorithms. A more efficient 

approach to improve segmentation accuracy without requiring extensive processing 

resources involves modules like semantic segmentation networks utilizing a top-down 

refinement method. It is further suggested by the paper that some aspects of specific 

methods have limited room for application development calling for more studies on it 

possibly alongside Graph Neural Networks (GNN). The importance of improving fusion 

techniques in the SPSTFN to make them more intuitive and versatile is underlined. In 

summary, this survey underscores the shift from traditional to deep learning-based 

methodologies emphasizing CNNs for enhanced accuracy despite their computational 

loads. The assessed approaches present progress made in road identification leading to a 

stronger and more accurate autonomous driving capability; at the same time, they identify 

areas that need more research and development efforts. 

The review, however, suggests that the headlights available are inadequate in terms of 

ensuring safe driving. The focus area in this case is specific and current solutions cater only 

for limited test cases without taking into account the different speeds on which a vehicle 

operates and also on the road conditions. Solutions from the vehicle manufacturers are 

dependent majorly on the lanes and line markings limiting it to become a universal solution. 

Therefore, the system should be intelligent enough to anticipate and control headlamps 

regardless of lane markings. Their universal implementation is still at early stages as they 

have limited functionality. However, till date, urban limits have been covered by these 

where sudden turns, multiple crossover lanes must be addressed. Therefore, there has been 

limited study on how speed affects most of the systems’ performance making them perform 

between a certain range of speed very well which is vital in safety device design leaving 

room for more research activities. Thirdly, with most automotive embracing camera based 

IOT systems; there exists large potential to utilize artificial intelligent tools as well as deep 

learning in designing more dynamic responsive systems. 

2.5  Research Gap 

• Need for Enhanced Object Detection and Recognition: While the system 

demonstrates good performance in detecting and illuminating objects, there's a 

limitation in detecting oncoming traffic or adjusting illumination accordingly. 

Future research could focus on improving object detection capabilities, especially 
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in dynamic traffic environments, to enhance safety and driver awareness. Develop 

streamlined models for real-time lane detection in low-light conditions, balancing 

accuracy and computational efficiency. 

• Optimization for Adaptive Headlamp Designs: Although the system is deemed 

suitable for adaptive headlamp designs, there's a need to address the overhead 

associated with look-ahead direction and complexity. Further research is required 

to optimize the system for adaptive headlamp configurations, reducing complexity 

and overhead to improve efficiency and performance in adaptive lighting 

applications. 

• Robustness to Environmental Variability: Create algorithms that adapt to diverse 

conditions (e.g., lighting, weather) without sacrificing accuracy, enhancing model 

robustness. 

• Latency and Real-time Performance Optimization: The system lacks discussion on 

latency, crucial for real-time applications. Research should focus on reducing 

latency, especially for sudden curvature changes, to enhance real-time 

responsiveness while maintaining accuracy. 

• Reducing Data Dependency: Explore methods to minimize reliance on large 

annotated datasets, such as transfer learning or semi-supervised techniques, while 

maintaining high performance. 

2.6 Objectives of the research  

The objectives of the proposed work are as follows:  

• To simulate a mathematical model based controller design for headlamp beam 

adjustment when the vehicle traverses through a curve.  

• To propose an algorithm to identify objects on road, oncoming traffic and hence 

adjust the headlamp beams to reduce troxlers’ effect based on comparative analysis 

of the state-of-the art Deep Learning algorithms for object detection.  

• To integrate the beam adjustment across a curve and the deep learning model 

developed for identifying object/ oncoming traffic detection to achieve better beam 

lobe adjustments.  
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• To evaluate the performance of the proposed solution against efficiency, latency 

and performance in road test cases with state-of-the-art solutions.  

2.7 Research Methodology Overview 

Objective 1 

• Employing vehicle dynamics, the goal centers on creating predictive beam steering 

techniques through Design of Dynamic Model-Based Controllers.  

• Road direction (𝜓) and slip angle (𝛽) are integrated into a detailed dynamic vehicle 

model. Two advanced control strategies are designed: Extended Model Predictive 

Control (E-MPC), Filtered Feedforward Model Predictive Control (FF-MPC) and 

Fused Controllers.   

• While E-MPC incorporates state and input constraints for optimal control, FF-MPC 

employs feedforward behavior to estimate road curvature. The Fused Controller 

combines predictive modeling of road geometry through slip angle and steering-

based prediction with real-time environmental perception through object detection. 

• To evaluate headlamp alignment precision, responsiveness, and robustness in a 

range of speed and curvature scenarios, these controllers are simulated over 

synthetic road profiles. 

Objective 2 

• To control beam adjustment based on environmental cues, this objective includes 

vision-based perception modules. 

• Lane-Based Prediction of Beams Utilizing Image Processing: A standard computer 

vision pipeline is employed for cases where the lanes are well-defined.   

• Lane boundaries are detected in low light with techniques such as gamma 

correction, bilateral filtering, Canny edge detection, and Hough transform.   

• To enhance flexibility in organized scenarios, a steering angle model is 

constructed to adaptively match light beams with road curvature. 

• Object Detection with Deep Learning: To enhance object perception and overcome 

the Troxler effect, a perception module based on deep learning is introduced.   

• Low-light and Small-object Detection Network (LSDNet) is designed 

specifically and compared against popular detectors such as RCNN, SSD, 
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Tiny YOLO, and YOLO.  LSDNet demonstrates enhanced robustness and 

detection ability across various light levels.   

• The module facilitates responsive beam adaptation through forward-looking 

object tracking and scene understanding. 

Objective 3 

• Lane-based beam control models and object detection are supported by an 

embedded processing unit. Headlamp beams are dynamically steered by actuators 

such as servo motors. 

• In response to Steering angle (inferred from curvature estimation) 

• Oncoming traffic or object (inferred from AI inference) for autonomous 

driving modes, the built-in system dynamically adjusts beam direction and 

intensity. 

Objective 4 

• Assessment of Controller Performance: The following performance criteria are 

applied to benchmark the four predictive controllers: 

• Step response, impulse response, frequency response, and steady-state 

error 

• Precision of road tracing and corresponding beam deflection loyalty 

• Case study on performance on a two-kilometer synthetic road with 

segment-specific profiles of curvature 

•  Comparison of Object Detection Models 

• Current detectors are employed to benchmark the AI models using: 

Detection accuracy and processing rate (FPS), mAP, F1 score, and recall 

• Change sensitivity to illumination and object scale 

• These systems are tested for the following: robustness, invariant accuracy 

across varying test conditions, efficiency, and latency. 
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Table 2.1 Chapter-wise details of Objective Implementation  

Objective Sections in which it is discussed 

Development of vehicle 

dynamics-based predictive beam 

steering techniques (5 Controller 

models). 

Chapter 3: 

• 3.2 Dynamic Vehicle Modeling 

• 3.3 through 3.8 Controller Designs (FPC, RS-

MPS, E-MPC, FF-MPC) 

• 3.10 Fused Controller 

Vision based object detection: 

Object detection models and Lane 

detection 

Chapter 4: 

• 4.3 Deep Learning Framework for on-road 

Object detection for Adaptive Headlights: 

Modified SSD, YOLO V8 based Model, MF 

Model, LSDNet 

• 4.7 Lane-Guided Beam Prediction 

Integration of embedded systems 

for beam direction. 

Chapter 4: 

4.8 Embedded Implementation and Actuation 

Control: Integrating the multifaceted object 

identification model and the lane detection model 

Comparative analysis and 

performance evaluation of the 

perception and control modules. 

Chapter 3: 

• 3.9 Simulation Results of the controllers 

explained from 3.3 to 3.8-Controller 

benchmarking 

• 3.11 Performance analysis of Fuse Controller 

and its benchmarking against other controllers 

• 3.5 Controller Benchmarking 

Chapter 4: 

• 4.5 Benchmarking of the object detection models 

discussed in section 4.3 and model tradeoff 

analysis 

• 4.8 Lane Detection Evaluation 

2.8 Novelty of the Research 

This research addresses the challenges of dynamic trajectory tracking and low-visibility 

object detection by proposing an integrated control-perception framework for adaptive 

headlamp setting in night-time automobile environments. Two control front prediction 

strategies are constructed: an Extended Model Predictive Controller (E-MPC) combining 

full state representation of the vehicle with input and output constraint expression for 

optimum control in dynamic conditions, and a Filtered Slip-Angle-Based Feedforward 

Model Predictive Controller (FF-MPC) based on lateral slip and road heading angle 
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(𝜓𝑟𝑜𝑎𝑑) to predict curvature-induced misalignments to pre-steer beams. A split perception 

pipeline is employed to complement these control measures. A lane detection algorithm is 

developed for structured road scenes with well-defined lane markings. It approximates 

curvature and guiding beam direction using conventional computer vision methods such as 

gamma correction, bilateral filtering, Canny edge detection, and Hough transformations. In 

contrast, a deep learning model named LSDNet (Low-light and Small-object Detection 

Network) is developed, designed, and trained to maintain high detection fidelity in 

unstructured or low-light illuminated conditions. It is able to process scale-variant object 

situations and low light.  LSDNet demonstrates better performance in precision, recall, and 

inference robustness when evaluated across a range of brightness regimes and compared to 

the best object detectors.  By integrating predictive modeling and context-adaptive visual 

perception, these features offer a perceptually aware, trajectory-aware headlamp control 

system that surpasses the state-of-the-art by enabling anticipatory lighting decisions. 
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CHAPTER 3 

OPTIMIZING VEHICLE HEADLAMP ALIGNMENT VIA 

DYNAMIC MODELING AND DESIGN OF FILTERED 

PROPORTIONAL CONTROLLER FOR SLIP ANGLE BASED 

ADJUSTMENTS 3,4 

Notations used 

U(t) : Longitudinal velocity (𝑚/𝑠)   
V(t) : Lateral velocity (𝑚/𝑠)   
𝛺(𝑡) : Yaw rate (angular velocity) (𝑟𝑎𝑑/𝑠)   
𝜃 : Vehicle heading angle (angular displacement) (𝑟𝑎𝑑)   
𝛽(𝑡) : Body slip angle (𝑟𝑎𝑑)   
a, b : Distance from CG to front/rear axle (𝑚)   
M : Vehicle mass (𝑘𝑔)   
J : Yaw moment of inertia (𝑘𝑔 𝑚2)   
𝐹𝑥 : Longitudinal force (𝑁)   
𝐹𝑦𝑓, 𝐹𝑦𝑟 : Lateral forces at front/rear tires (𝑁)   

𝐶𝛼𝑓, 𝐶𝛼𝑟 : Cornering stiffness (front/rear) (𝑁/𝑟𝑎𝑑)   

𝐶𝐴 : Aerodynamic drag coefficient   
𝐶𝐿 : Lift coefficient   
𝐶𝑟 : Rolling resistance coefficient   
𝜌 : Air density (𝑘𝑔/𝑚3)   
A : Frontal area of vehicle (𝑚2)   
𝐹𝐷, 𝐹𝐿 : Aerodynamic drag/lift forces (𝑁)    
𝑅 : Wheel radius (𝑚) 
𝜔 : Angular speed of wheel (𝑟𝑎𝑑/𝑠)   
𝐽𝑤 : Rotational inertia of wheel (𝑘𝑔/𝑚2)   
𝑇𝑑 : Driving torque (𝑁𝑚)   
𝜆 : Wheel slip ratio 
𝑔 : Acceleration due to gravity (𝑚/𝑠2) 
µ : Coefficient of friction (tire-road) 
𝛿 : Steering angle (𝑟𝑎𝑑)   
𝑘𝛿 : Steering feedback gain 
𝑘𝑑 : Headlamp deflection gain 
𝑘ℎ : Proportional gain mapping slip angle to headlamp angle 
𝑘𝜓 : Proportional gain on road heading 

𝐹𝑏𝑓, 𝐹𝑏𝑟 : Braking force front/rear (𝑁)   

 
3 The mathematical modelling based on Vehicle dynamic modelling (Section 3.1 to Section 3.3) is published 

in Engineered Science Journal. Details: Toney, G., Sethi, G., & Bhargava, C. (2025). Optimal Headlamp 

Adjustment for Vehicles through Slip Angle and Stiffness Analysis using Dynamic Vehicle 

Model. Engineered Science, 34, 34. 
4 The various controller designs, its performance descriptions and comparisons (Section 3.4 to 3.11) are 

published in the Journal of Robotics and Control. Details: Toney, G., Sethi, G., Bhargava, C., Vaz, A. C., & 

Hegde, N. T. (2025). Sensor Fusion and Predictive Control for Adaptive Vehicle Headlamp Alignment: A 

Comparative Analysis. Journal of Robotics and Control (JRC), 6(5), 2166-2183. 
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𝐹𝑏 : Total braking force (𝑁)   
𝐹𝑧𝑓, 𝐹𝑧𝑟 : Normal load front/rear (𝑁)   

ℎ : Height of CG above ground (𝑚) 
𝐿 : Wheelbase (𝑚) 
𝑎𝑥, 𝑎𝑦 : Longitudinal/lateral acceleration (𝑚/𝑠2) 

𝜃𝐻𝐿(𝑡) : Headlamp deflection angle (𝑟𝑎𝑑)   
𝜏 : Time constant of the headlamp actuator (𝑠) 
𝑇𝑠 : Sampling time interval (𝑠)  
𝛼 : Discretization smoothing coefficient 
𝑡𝑟 : Rise time (𝑠) 
𝑡𝑠 : Settling time (𝑠) 
𝜔𝑐 : Cutoff frequency (𝑟𝑎𝑑/𝑠)   
𝜃𝑚𝑎𝑥  : Max allowable headlamp deflection (𝑟𝑎𝑑)   
𝛽𝑚𝑎𝑥 : Max expected slip angle (𝑟𝑎𝑑)   
α : Filter coefficient (0 < 𝛼 < 1) 
𝜓𝑟𝑜𝑎𝑑 : Road heading angle (𝑟𝑎𝑑) 
𝛾 : Fusion weighing factor (0 < 𝛾 < 1) 

  

3.1 Introduction 

This chapter introduces the formulation and design of a dynamic car model to estimate the 

body slip angle in real time and leverage the value for controlling the headlamp direction. 

In typical systems, headlamps track steering input as representing the path of the vehicle. 

But under dynamic maneuvers—e.g., hard cornering, emergency maneuvers, or low-

traction road surfaces—the actual vehicle direction of motion will differ from the desired 

steering direction because of lateral slip. Such a difference can compromise safety by 

impairing vision.  A severe slip angle evaluation is built into the new model to mitigate 

against this, and the direction of the headlight beam is then altered proportionally. 

A set of nonlinear dynamic equations modeling yaw, lateral, and longitudinal movement 

underlies the model. The equations are linked to tire force models that accurately model 

the actual vehicle response using steering angles, cornering stiffness, and slip ratios.  For 

further enhancing the model, some more factors are included, which are rolling resistance, 

aerodynamic drag and lift, and dynamic load transfer in braking and acceleration. The yaw 

rate and longitudinal and lateral velocities are then computed in real time based on each 

component. The slip angle, which is the arctangent of the ratio of lateral to longitudinal 

velocity, is computed by these quantities as inputs.  A proportional control law takes the 

calculated slip angle as an input and uses it to compute the needed headlight deflection. 

This approach improves night driving safety by aligning the orientation of the headlamp 

with the actual route of the vehicle, especially during dynamic maneuvers.  Besides being 
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used in adaptive headlamps, the approach forms a good basis for being combined with 

autonomous vehicle control policies and intelligent driver-assistance systems (ADAS), 

which require a high degree of precision awareness of vehicle status. 

The Filtered Proportional Controller for headlight control based on slip angle is presented 

in the latter part of the chapter. For use while driving under dynamically changing 

circumstances, this is the optimal strategy for adaptive headlamp activation.  Mechanical 

inertia and latency in headlamp motors generally render them less than ideal for sudden or 

instantaneous commands.  A filtered P-controller's low-pass filtering element introduces a 

first-order lag which closely simulates actuator dynamics, creating smoother transitions 

than raw proportional control can, leading to oscillation or overshooting. Moreover, sensor 

noise or momentary fluctuations in the motion of the vehicle might produce minute changes 

in the body slip angle.  The filtering mechanism effectively damps out the high-frequency 

noise to avoid unwanted flicker or jitter in the light response. In an implementation context, 

the structure of the controller is very deployable on embedded platforms like 

microcontrollers or ECUs due to it being computation-efficient with only two movable 

parameters: the gain and the time constant. 

With gradual and organic beam changes instead of jarring and distracting ones, the filtered 

response also provides the driver with a smoother visual experience. This is in alignment 

with user comfort expectations and automotive industry safety norms. Notably, the control 

philosophy is also in line with common automotive industry practice, whereby filtered or 

blended control laws are common in active systems to achieve robust performance in real-

world scenarios. Generally, filtered P-control provides the best tradeoff of responsiveness, 

smoothness, robustness, and integratability and is especially well-suited for adaptive 

headlamp systems controlled by slip-angle-based dynamics. 

Additionally, this chapter presents and compares the four models along with the model 

designs.  All of these models are designed analytically and validated using real-world 

situations.  Proper headlamp tracking, smoothness of control, and adaptability to varying 

vehicle dynamics are the performance measures based on which they are compared. A 

comprehensive case study is conducted using a 2 km artificial road divided into 10 distinct 

sections, each of which reproduces a different curvature and maneuvering condition, in 

order to further assess their practical effectiveness. The segment-wise analysis provides 

significant details regarding the strengths and weaknesses of every control method in 

diverse driving conditions. 
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3.1.1 Structure of the Chapter 

The chapter is organized to systematically progress from basic principles to advanced 

controller architectures and their comparison.  Section 3.2 discusses the role of slip angle 

in vehicle orientation and its impact on headlight alignment. Section 3.3 outlines 

mathematical modeling of vehicle dynamics, such as longitudinal and lateral motion, tire 

force modeling, braking effects, and aerodynamic effects, leading to a unified formulation 

for headlight deflection based on slip angle. Section 3.4 outlines design and implementation 

of a Filtered Proportional Controller, including its continuous and discrete-time forms, 

stability issues, actuator saturation, and parameter tuning. Section 3.5 provides a Raw Full-

State Model Predictive Control (RS-MPC) model which incorporates road direction 

directly.   

Section 3.6 explains an Extended Model Predictive Control (E-MPC) architecture that 

includes slip dynamics in the predictive scheme.  Section 3.7 presents a Feedforward-

Enhanced Model Predictive Controller (FF-MPC) making use of estimated road heading 

and slip angle for pre-emptive headlamp control.  Section 3.8 provides an in-depth 

description of all the controller architectures. Section 3.9 presents a comprehensive 

performance evaluation of the predictive control models using trajectory-aligned scenarios 

and segment-by-segment analysis.  Section 3.10 shows a predictive controller that 

combines sensor fusion with dynamic modeling for enhanced flexibility.  Section 3.11 

finally shows the performance results of the fused controller and a comparative study 

against the models previously developed. 

3.2 Assessing the slip angle to ascertain the variance between the vehicle's 

positioning and the headlamp's placement  

Slip angle, the variance between a vehicle's actual direction of movement and its intended 

course, is crucial for understanding tire dynamics [92]. Illustrated in Figure 1, slip angle (α) 

indicates this discrepancy. Slip angle as the distinction between actual and desired 

trajectories [93]. Even when a wheel is turned during a turn, the vehicle's body may not 

align with the intended path, affecting headlamp illumination. This disparity can impact 

driving safety, as the headlamp may not accurately illuminate the direction of travel. The 

slip angle serves as a reliable metric for assessing a vehicle's deviation from its intended 

path and adjusting headlamp direction accordingly [94]. Whether a vehicle is executing a 

standard maneuver, oversteering, or understeering during a turn, the body slip angle 
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consistently reflects the disparity between actual and desired trajectories. In designing the 

headlight adjustment model, this discrepancy was considered to improve road lighting 

when turning. Slip angle is a reliable predictor of vehicle trajectory, with prediction errors 

as low as 0.3 m [95]. It reflects the discrepancy between the velocity vector's direction and 

the heading angle, crucial for determining vehicle path. Traditional slip angle calculation 

methods [96] [97] [98] [99] include direct integration and linear observer estimation 

techniques. These approaches effectively calculate slip angle, aiding in predicting 

deviations between actual and intended paths, facilitating headlamp adjustment. 

 

Fig 3.1 Front and rear wheel slip angle as vehicle goes through a cornering where 

𝜷𝒇 is the front slip and 𝜷𝒓 the rear slip. If 𝜷𝒇 > 𝜷𝒓 , car is experiencing understeer, 

when 𝜷𝒇 < 𝜷𝒓, car is oversteering and 𝜷𝒇 = 𝜷𝒓 is a neutral condition. [94] 

3.3 Mathematical model for assessing body slip angle and adjusting 

headlamp direction [94] 

The purpose of this model is to calculate the vehicle body slip angle 𝛽(𝑡) dynamically and 

apply it for proportional modification of the headlamp deflection angle 𝜃𝐻𝐿(𝑡). The system 

improves the driver's visibility while making turns or dynamic maneuvers by orienting the 

headlamp with the vehicle's actual path, and not merely its direction. The model 

architecture proposed in this simulates the overall vehicle behavior for body slip angle and 
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then headlamp orientation estimation in real time. Equations 3.1 to 3.3 are the fundamental 

motion model describing longitudinal, lateral, and yaw motions of the vehicle in terms of 

inertial forces, wheel actuations, and aerodynamic drag.  

 

Fig 3.2 The sequences in the slip angle-based headlamp deflection adjustment  

These are acted upon directly by tire forces, which are modeled in Equations 3.6 and 3.7 

using linear approximations to cornering stiffness and lateral slip and are solved for the 

system using Newtonian equations in Equations 3.8) and 3.9. The dynamics of the slip 

angle of the body, a critical parameter that defines the angular difference between vehicle 

direction of travel and heading, are dynamically modeled in Equation 3.4 and geometrically 

in Equation 3.5. Equations 3.10 through 3.12 model steering feedback, wheel rotation, and 

traction forces, all significant in order to model real-world phenomena influencing vehicle 

motion.  

Longitudinal acceleration is governed by Equations 3.13 and 3.14, including rolling 

resistance and propulsion. Static and dynamically load-adjusted braking force allocation is 

addressed in Equations 3.15 to 3.16 and elaborated again in Equations 3.26 to 3.31, 

including braking load transfer. Aerodynamic effects and lateral load redistribution due to 

cornering are addressed in Equations 3.20 to 3.23. The margins of stability, cornering 
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capacity, and understeer characteristic are imbedded in Equations 3.17 to 3.25. The overall 

outcome of solving these equations gives accurate real-time values for longitudinal and 

lateral velocities, which are used in Equation 3.32 to compute the slip angle. Finally, 

Equation 3.33 applies a proportional control method to transform the slip angle into 

headlamp deflection in such a way that the beam is dynamically aligned with the actual 

path of the vehicle. 

3.3.1 Vehicle Dynamics (Longitudinal, Lateral and Yaw based) 

Using Newtonian mechanisms, velocity and yaw rates are modelled using equations 3.1 

through equation 3.3. 

             𝑈̇(𝑡) = 𝑉𝑓(𝑡)  𝛺(𝑡) + 
1

𝑀
 [ 𝑈𝑓(𝑡) 𝑐𝑜𝑠(𝜃)  - 𝑉𝑓(𝑡) 𝑠𝑖𝑛(𝜃 )] + 𝑈𝑏(𝑡) - 𝐶𝑎 𝑈𝑓

2 (t)                          

3.1 

This equation represents the development of the longitudinal velocity of the vehicle. The 

expression 𝑉𝑓(𝑡) 𝛺(𝑡) is the contribution of lateral velocity to longitudinal motion, and 

𝑈𝑏(𝑡) and - 𝐶𝑎 𝑈𝑓
2(t) are for forces like braking and aerodynamic drag. 

          𝑉̇(𝑡)= -𝑈𝑓(𝑡) 𝛺(𝑡) + 
1

𝑀
 [𝑈𝑓(𝑡) 𝑠𝑖𝑛(𝜃)) - 𝑉𝑓(𝑡) 𝑐𝑜𝑠(𝜃)] + 𝑉𝑏(𝑡)                                    3.2 

This equation controls the lateral velocity of the vehicle. The expression -𝑈𝑓(𝑡) 𝛺(𝑡) is the 

coupling between longitudinal velocity & yaw rate and 𝑉𝑏(𝑡) is the external lateral forces.    

           𝛺̇(𝑡)=  
1

𝐽
 [𝑎 𝑈𝑓(𝑡)𝑠𝑖𝑛 (𝜃) - 𝑉𝑓(𝑡) 𝑐𝑜𝑠(𝜃)] - 𝑏 𝑉𝑏(𝑡))                                                               3.3 

This represents the yaw rate dynamics as a result of the axle forces on the vehicles.  

3.3.2 Dynamics of Slippage 

The crucial rate of change of the body slip angle that majorly influences the vehicle 

stability is calculated using 

          𝛽̇(𝑡)=  
1

𝑀
 (𝐹𝑦𝑓 +  𝐹𝑦𝑟) −  𝛺(𝑡)                                                                                                      3.4 

The lateral tire forces at the front and rear tires, as well as the yaw rate contribute to it. 

         𝛽(𝑡) = 𝑡𝑎𝑛−1(
𝑉(𝑡)

𝑈(𝑡)
)                                                                                                                          3.5 

which is the (kinematic) estimate of the body slip angle using the lateral and longitudinal 

velocities. 
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3.3.3 Tire Force Modelling 

The lateral tire forces are represented as:          

        𝐹𝑦𝑓 = 𝐶𝛼𝑓(𝛿 −  𝛽 − 
𝑎𝛺

𝑈
)                  3.6 

These equations express the lateral forces on the front and rear tires in terms of yaw rate 𝛺, 

steering angle 𝛿, and slip angle 𝛽. 

        𝐹𝑦𝑟 = 𝐶𝛼𝑟(− 𝛽 +  
𝑏𝛺

𝑈
)                    3.7 

The entire lateral motion is expressed by this equation, which is the sum of the two lateral 

forces on the tires. 

         𝑀𝑉 =  𝐹𝑦𝑓 +  𝐹𝑦𝑟               3.8 

This formula shows how the lateral forces influence the yaw acceleration of the vehicle.  

         𝐽𝛺̇ =  𝑎𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟                                    3.9 

3.3.4 Steering and Wheel Dynamics 

The steering dynamics are given by: 

        𝛿(𝑡) =  𝛿𝑐𝑚𝑑 − 𝑘𝛿𝛺(𝑡)                    3.10 

This equation represents the feedback-corrected steering angle, where 𝑘𝛿  is the steering 

feedback gain. 

           𝜆 = 
𝑅𝜔−𝑈

𝑚𝑎𝑥 (𝑅𝜔−𝑈)
                                      3.11 

This equation computes the slip ratio of the wheel as a function of the wheel's angular 

velocity ω and the longitudinal vehicle velocity. 

          𝐽𝑤𝑤̇ =  𝑇𝑑 − 𝑅𝐹𝑥                        3.12 

This is the rotational dynamics of the wheels, where Td is the driving torque and R is the 

wheel radius. 

3.3.5 Longitudinal Motion and Rolling Resistance 

          𝑈̇ = 
𝐹𝑥−𝑅𝑑

𝑀
                                3.13 

The forward acceleration which is resulted from the net longitudinal force is deduced 

through this equation. 

         𝑅𝑑 =  𝐶𝑟𝑀𝑔                            3.14 

The rolling resistance which is defined as a function of the weight of the vehicle is shown. 
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3.3.6 Brake Force Distribution 

The distribution of the braking force between the front and rear wheels is represented as, 

          𝐹𝑏𝑓= 
𝑏𝑟

𝑏𝑓+ 𝑏𝑟
 𝐹𝑏                         3.15 

          𝐹𝑏𝑟  = 
𝑏𝑓

𝑏𝑓+ 𝑏𝑟
 𝐹𝑏                          3.16 

Here the braking force (distribution) is modeled using the vehicle geometry.  

3.3.7 Stability and Handling Parameters 

          |
𝐶∝𝑟𝑏−𝐶∝𝑓𝑎

𝑀𝑈2 | < 1                                                                                                      3.17 

Represents the stability criterion for the vehicle. 

          𝐾𝑢 = 
𝐶∝𝑟𝑏−𝐶∝𝑓𝑎

𝑀𝑔
                                                                                                       3.18 

Which is the understeer gradient and it is a reference to the handling characteristics of the 

vehicle.  

         𝑎𝑚𝑎𝑥 =  µ𝑔                                                                                                             3.19 

Which represents the acceleration (maximum possible). 

3.3.8 Aerodynamics and Load Transfer 

The aerodynamic drag force is given by 

           𝐹𝐷  = 
1

2
𝜌𝐶𝐷𝐴𝑈2                                                                                                     3.20 

The Aerodynamic lift force using, 

          𝐹𝐿  = 
1

2
𝜌𝐶𝐿𝐴𝑈2                                                                                                       3.21 

The load transfer(vertical) during acceleration is calculated as 

          ∆𝐹𝑧 =
𝑀ℎ𝑎𝑥

𝐿
                                                                                                            3.22 

The load transfer(lateral) during cornering is calculated as 

          ∆𝐹𝑦 =
𝑀ℎ𝑎𝑦

𝐿
                                                                                                            3.23 

3.3.9 Cornering Limits and Critical Speed 

The maximum safe cornering speed is defined as 

         𝑈𝑚𝑎𝑥 = √
𝜇𝑔𝐿

𝐾𝑢
                                                                                                          3.24 

The critical speed to ensure that the vehicle does not lose control is given by  

        𝑈𝑐 = √
𝐽

𝑀
 · 

𝐶∝𝑓𝑎−𝐶∝𝑟𝑏

𝐶∝𝑓𝐶∝𝑟
                                                                                               3.25 

3.3.10 Dynamic Load Transfer for Braking 

During breaking,  
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a. The front wheel normal load shift is given by,  

         𝐹𝑧𝑓 =
𝑏𝑟

𝐿
𝑀𝑔 +  

ℎ

𝐿
  𝑀𝑎𝑥                                                                                          3.26 

b. The rear wheel normal load shift is given by,  

        𝐹𝑧𝑟 =
𝑏𝑓

𝐿
𝑀𝑔 +  

ℎ

𝐿
  𝑀𝑎𝑥                                                                                           3.27 

The front wheels braking force is given by 

        𝐹𝑏𝑓 = µ · 𝐹𝑧𝑓                                                                                                            3.28 

And at the rear wheels,  

        𝐹𝑏𝑟 = µ · 𝐹𝑧𝑟                                                                                                            3.29 

The total braking force (a function of the weight of the vehicle) is given by 

        𝐹𝑏 = 𝐹𝑏𝑓 +  𝐹𝑏𝑟 =  µ𝑀𝑔                                                                                         3.30 

The distribution of this braking force (between the front and the rear wheels) is given by 

        𝐹𝑏𝑓 =  
𝐹𝑧𝑓

𝐹𝑧𝑓 + 𝐹𝑧𝑟
 𝐹𝑏                                                                                                                                                                      3.31 

3.3.11 Slip Angle and Headlamp Logic 

Finally, the Slip angle is computed as 

        𝛽(𝑡) = 𝑡𝑎𝑛−1(
𝑉(𝑡)

𝑈(𝑡)
)                                                                                                 3.32 

The Headlamp deflection adjustment based on the slip angle is given by 

        𝜃𝐻𝐿(𝑡) =  𝑘𝑑  · 𝛽(𝑡)                                                                                                 3.33 

3.4 Design of the Filtered Proportional Controller [107] 

The dynamic model formulated in the previous section addresses the longitudinal, side, and 

yaw vehicle dynamics, tire force response, load transfer, traction, aerodynamic effects, and 

braking behavior. These equations together allow the calculation of the slip angle 𝛽(𝑡) of 

the vehicle, which is the angle between the vehicle direction and heading. After the 𝛽(𝑡) is 

estimated, it is used as an input to a control system that adjusts the headlamp deflection 

angle 𝜃𝐻𝐿(𝑡). In this section, the design of a filtered proportional controller is given to map 

the estimated slip angle into a headlamp deflection order. The function of the controller is 

to match the headlamp beam direction to the true be more than the desired steering angle. 

This necessitates a control law that: 
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• Reacts in proportion to the slip angle, 

• Filters high-frequency fluctuations to avoid actuator jitter, 

• Imitates the inertial behavior of the physical headlamp mechanism. 

Hence, a first-order low-pass filtered proportional controller is chosen. 

3.4.1 Continuous-Time Control Law 

The controller’s core idea is to filter the slip angle through a first-order system that exhibits 

physical smoothness and does not produce sudden changes in the output.  

The control law is: 

            𝜃𝐻𝐿(𝑡)̇ =  − 
1

𝜏
 𝜃𝐻𝐿(𝑡) +  

𝑘ℎ

𝜏
 𝛽(𝑡)            3.34 

This differential equation is based on the generic first-order linear system: 

          𝜏𝜃𝐻𝐿(𝑡) +  𝜃𝐻𝐿(𝑡) =  𝑘ℎ𝛽(𝑡)                                                                                                     3.35 

3.4.2 Transfer Function Representation 

Applying the Laplace transform to Equation (35) with zero initial conditions, 

we have the following transfer function: 

            𝐻(𝑠) =  
𝜃𝐻𝐿(𝑠)

𝑠
=  

𝑘ℎ

𝜏𝑠+1
                                                                                                   3.36 

This transfer function describes the controller as a low-pass single-pole filter. It specifies 

the response of the headlamp deflection angle to the slip angle variation. 

3.4.3. Discrete-Time Implementation 

For real-time implementation on a digital control platform, the system is discretized by 

backward Euler: 

             𝜃𝐻𝐿[𝑘] = 𝛼 · 𝜃𝐻𝐿[𝑘 − 1] + (1 − 𝛼) · 𝑘ℎ·𝛽[𝑘]                                                                3.37 

Where, 

           α =
𝜏

𝜏+ 𝑇𝑠
                                                                                                                          3.38 

3.4.4 Time and Frequency Domain Behavior 

The controller exhibits the following characteristics: 

• Rise Time: 𝑡𝑟 ≈ 2.2𝜏 

The time constant 𝜏 decides how fast the system responds to input changes. If 𝜏 is small, 

the rise time is small, and the system responds fast. A greater value causes a slower 

response. 
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• Settling Time: 𝑡𝑠 ≈ 4𝜏 

This indicates how rapidly the system settles following a change. A lower 𝜏 would result 

in quicker settling, while a larger value would make the system settle more slowly. 

• Bandwidth: 𝜔𝑐 =  
1

𝜏
  

This means that bandwidth is inversely related to time constant 𝜏. For fast response, 𝜏 is 

small and the system can respond to inputs of higher frequency (greater bandwidth). 

Otherwise, the system can only respond to lower-frequency inputs (lower bandwidth). 

3.4.5. Stability and Causality 

The continuous system is stable for any 𝜏 > 0. The discrete system is stable for 𝛼𝜖(0,1), 

providing robust implementation. The system is continuous in theory, since the vehicle 

dynamics are described continuously. The system is discrete in practice, however, since it 

must be realized on a real-time digital system. The stability of the discrete system is 

guaranteed by the condition 𝛼  belongs to (0,1) , ensuring strong implementation in a 

computerized setting. 

3.4.6. Actuator Constraints and Saturation 

The actuator output saturation is laid so as to protect the actuator,  

           𝜃𝐻𝐿(𝑡)𝜖[−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥]                                                                                                      3.39 

3.4.7. Integrating with the Vehicle Dynamics Model 

Slip angle is computed using (32). This is input to the controller (Eqs. 34–39) to produce 

𝜃𝐻𝐿(𝑡), finishing the closed-loop headlamp deflection system. 

3.4.8 Parameter tuning 

The performance of the filtered proportional controller in slip-angle-based headlamp 

control is greatly sensitive to the proper choice of gain 𝑘ℎ and time constant 𝜏. The tuning 

procedure is designed to strike a compromise between responsiveness, smoothness, and 

actuator feasibility, in such a way that the headlamp response stays intuitive and physically 

bounded under dynamic vehicle maneuvers.  

This section describes the motivation for parameter tuning, the function of every tuning 

component, and how they affect the total system behavior. The tuning activity is based on 

both analytical necessity and practical requirements for implementation, the compromise 

between theoretical optimality and physical limits. 
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3.4.8.1. Proportional Gain 𝒌𝒉 

The gain 𝑘ℎ controls the headlamp deflection sensitivity to variation in estimated slip angle. 

It specifies the static mapping from the input slip angle 𝛽(𝑡) to desired output deflection 

𝜃𝐻𝐿(𝑡). 

A convenient choice for initial gain selection is: 

             𝑘ℎ =  
𝜃𝑚𝑎𝑥

𝛽𝑚𝑎𝑥
                    

3.40 

Here: 𝜃𝑚𝑎𝑥  is the largest permissible headlamp deflection (generally 10° to 15°),and 𝛽𝑚𝑎𝑥 

is the anticipated maximum slip angle (typically 8° to 12°) under hard driving. 

This prevents the controller from exhausting the actuator's range to avoid going past 

mechanical boundaries. Tuning 𝑘ℎ serves to position the physical behavior so that the 

responsiveness desired matches it of the system. 

 

Fig 3.3 The process of parameter tuning 
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3.4.8.2. Filter Time Constant 𝝉 

The time constant 𝜏 controls how quickly the headlamp reacts to slip angle changes. A 

lower 𝜏 provides quicker response but can cause unwanted jitter or actuator wear. A higher 

𝜏 creates smoother transitions but causes lag. 

A value within the range: 

           0.2 ≤ 𝜏 ≤ 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠                                                                                                     3.41 

is suggested on the basis of actuator bandwidth and vehicle dynamics. This parameter 

mimics the inertial response of real actuators. Adequate tuning of 𝜏 is such that headlamp 

adaptations become visually acceptable and mechanically tolerable. 

3.4.8.3. Discretization Issues 

When applied digitally, the selection of sampling period 𝑇𝑠  also influences controller 

actions. To prevent aliasing and maintain stability: 

            𝑇𝑠 ≤0.1τ                                                                                                                      3.42 

should be preserved. This guarantees that the discrete-time version adequately reproduces 

the continuous-time controller response without any temporal distortion or delay. 

3.5 Raw Full-State MPC with Injection of Direct Road Heading 

With the road heading angle 𝜓𝑟𝑜𝑎𝑑(𝑘) as the reference path to the headlamp deflection 

angle 𝜃𝐻𝐿(𝑘), a Model Predictive Control structure is employed in this design.  The model 

aims to point the beam toward the path planner projected curvature while refraining from 

dynamic state input like slip angle 𝛽. 

The definition of the optimization problem is given by, 

            𝑚𝑖𝑛
𝜃𝐻𝐿

ℒ = ∑ [(𝜃𝐻𝐿[𝑘] − 𝜓𝑟𝑜𝑎𝑑[k])2 +  λ𝑁
𝑘=0  · (∆𝜃𝐻𝐿[𝑘])2]                                 3.43 

Here, the rate at which the headlamp angle changes is penalized by,  

           ∆𝜃𝐻𝐿[𝑘] =  𝜃𝐻𝐿[𝑘] − 𝜃𝐻𝐿[𝑘 − 1]                                                                                          3.44 

The headlamp deflections and its rate is constrained by,  

           𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥],    |∆𝜃𝐻𝐿[𝑘]| ≤  𝛿𝑚𝑎𝑥                                                                 3.45                                                    

Although it is a simple structure, this control method may be vulnerable to prediction error 

in 𝜓𝑟𝑜𝑎𝑑(𝑘) or curvature noise.  Its lack of feedback from vehicle dynamics (e.g., sideslip 
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or yaw) reduces its robustness against lateral disturbances, which emphasizes the need for 

a more stable, compensated MPC method discussed in the following section. 

3.6 Extended Model Predictive Control (MPC) 

Early tests with a Filtered Proportional Controller (FPC), in which headlamp deflection 

was proportionally related to the slip angle estimate, showed a number of shortcomings. 

Although the FPC provided smooth actuator behavior, it did not have anticipatory 

properties and showed steady-state errors consistently, particularly during ramp-like 

direction changes. The purely reactive nature of the controller and lack of consideration of 

future trajectory led to poor tracking in curves, making it unsuitable for real-world driving 

scenarios. In order to resolve these issues, an Extended Model Predictive Control (MPC) 

strategy was implemented. By modeling the vehicle dynamics in a predictive optimization 

scheme, the extended MPC provides improved control of system constraints, enhanced 

transient response, and the opportunity to involve extra vehicle states. his framework 

provided a basis for extending further via road geometry compensation, which resulted in 

the creation of the Feedforward-Enhanced MPC. 

3.6.1 Dynamic Vehicle Model and Slip Angle Estimation 

The continuous-time state space model for the vehicles lateral dynamics is given by 

             [𝛽̇
𝑟̇

] = [
−

𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑀𝑉
−1 −

𝑎𝐶𝛼𝑓−𝑏𝐶𝛼𝑟

𝑀𝑉2

−
𝑎𝐶𝛼𝑓−𝑏𝐶𝛼𝑟

𝐽
−

𝑎2𝐶𝛼𝑓−𝑏2𝐶𝑟

𝐽𝑉

] [
𝛽
𝑟

] +  [

𝐶𝛼𝑓

𝑀𝑉
𝑎𝐶𝛼𝑓

𝐽

] δ                                     3.46 

Using Euler’s approximation, the continuous controller model is discretized as, 

                 𝑋[𝑘 + 1] = 𝐴𝑑  𝑥[𝑘] +  𝐵𝑑 𝛿[𝑘]                                                                                   3.47 

Where      𝑋[𝑘] =  [𝛽[𝑘] 𝑟[𝑘]]𝑇 and     𝐴𝑑 = 𝐼 +  𝑇𝑠𝐴𝑐, 𝐵𝑑 =  𝑇𝑠𝐵𝑐 

3.6.2. Control Architecture 

In contrast to conventional vehicle control systems, which control 𝛽, our method takes 𝛽 

to be estimated in real-time and utilizes it as a reference to produce a smooth headlamp 

deflection command 𝜃𝐻𝐿. This simplifies the problem to a tracking and filtering problem 

for 𝜃𝐻𝐿. The process flow is shown in Figure 3.4. 

Assumptions 

• The slip angle 𝛽 is estimated from the dynamic model or an observer. 

• The actuator (headlamp motor) has physical deflection limits: |𝜃𝐻𝐿 | ≤ 𝜃𝑚𝑎𝑥. 
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• Smooth 𝜃𝐻𝐿transitions are wanted to avoid actuator jitter. 

A first-order lag is used to produce 𝜃𝐻𝐿 using 𝛽,  

           𝜃𝐻𝐿[𝑘 + 1] = 𝛼 · 𝜃𝐻𝐿[𝑘] + (𝐼 − 𝛼) · 𝑘ℎ · 𝛽[𝑘]                                                                     3.48 

The actuator constraints are incorporated through, 

           𝜃𝐻𝐿[𝑘 + 1] = min (𝜃𝑚𝑎𝑥, max (−𝜃𝑚𝑎𝑥 , 𝜃𝐻𝐿[𝑘 + 1]))                                                   3.49 

 

Fig 3.4 The process flow of the E-MPC 

Extended MPC allows constrained predictive control solely through slip angle dynamics. 

Although efficient in actuator response smoothing and beam direction stabilizing, being 

purely reactive diminishes anticipatory performance. 

3.7 Design of the proposed Feed Forward-Enhanced Model Predictive 

Controller (FF-MPC) 

This part outlines the modeling and control methodology adopted for adaptive headlamp 

directionality as a function of vehicle motion and road geometry. The methodology is 

aimed at the design and implementation of a FF-MPC, which will be able to dynamically 

adjust the headlamp beam as a function of vehicle motion as well as predicted road 

curvature. The FF-MPC architecture comprises three principal components: a vehicle 

dynamics model that measures lateral velocity and yaw rate, a filtered actuator model that 

simulates the headlamp system, and a feedforward compensation term derived from real-

time estimates of road heading. A dynamic bicycle model is used to estimate the slip angle, 
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which is subsequently merged with the expected road heading to give a reference beam 

direction.  For actuator smoothness and physical constraints, this combined reference is 

then filtered.  Figure 3.5 illustrates the whole process. 

FF-MPC facilitates anticipatory headlamp alignment through the integration of 

feedforward road geometry and slip angle feedback, enhancing visibility while driving 

around bends.  The controller employs a predictive approach that utilizes constrained 

optimization methods to optimize over a finite horizon.  To evaluate the tracking precision 

and robustness of the controller, the process also involves modeling actuator saturation, 

simulating various road conditions, and performing sensitivity analysis of control settings. 

For headlamp beam alignment specifically, FF-MPC provides a new control architecture 

that combines anticipatory feedforward action with reactive feedback. 

 
Fig 3.5 The process flow of the FF-MPC 

Unlike other adaptive front lighting system studies that use steering angle-based heuristics 

or slip angle inputs, the FF-MPC utilizes real-time road heading (𝜓(𝑡)) information in the 

control framework.  This enhances safety in low-light driving on curving roads by enabling 

anticipatory headlight positioning even before yaw or slip becomes substantial. In addition, 

its practicality is enhanced by merging constraint handling, predictive optimization, and 

filtered actuator model into one framework.  Testing over a wide range of simulated road 

conditions with changing curvature and velocity profiles supports the technique, which is 

distinct from standard MPC in that it has inherent road geometry adjustment. The model 

monitors the lateral vehicle dynamics and compensates the headlamp deflection in real time. 

An added feedforward term, road heading angle 𝜓𝑟𝑜𝑎𝑑(𝑡) is included to improve 

responsiveness and line up the headlamp beam along the path of the road. 

3.7.1 State Variables  

The state vector is defined as 

             x(t)  =  [

𝑉(𝑡)
𝛺(𝑡)

𝜃𝐻𝐿(𝑡)
]                                                                                                3.50 
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with the Longitudinal Velocity 𝑈(𝑡) assumed to be either constant or varying with a 

known profile. 

Slip angle is calculated using (3.32). 

3.7.2 Vehicle dynamics 

              
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑀𝑉
                                                                                                              3.51 

The lateral and yaw dynamics are modelled using, 

                𝑉̇(𝑡) = 
1

𝑀
  [−(𝐶𝛼𝑓+𝐶𝛼𝑟)𝑉(𝑡) +  (𝑎𝐶𝛼𝑓 −  𝑏𝐶𝛼𝑟)𝛺(𝑡)  +  𝐶𝛼𝑓𝛿(𝑡)]               3.52 

                𝛺̇(𝑡) =  
1

𝐽
[(𝑎𝐶𝛼𝑓 − b 𝐶𝛼𝑟)V(t)-(𝑎2𝐶𝛼𝑓 + 𝑏2𝐶𝛼𝑟)𝛺(𝑡) + 𝑎𝐶𝛼𝑓𝛿(𝑡)]               3.53 

3.7.3. The Feedforward for Headlamp Deflection Control 

The composite deflection angle is given by 

                𝜃𝑟𝑒𝑓(𝑡) =  𝑘ℎ· 𝛽(𝑡) +  𝑘𝜓· 𝜓𝑟𝑜𝑎𝑑(𝑡)                                                              3.54 

This combines slip angle feedback with a feedforward term from the road direction. 

The dynamics of headlamp deflection are simulated as a first-order system: 

                  𝜃𝐻𝐿
̇ (𝑡) =  

1

𝜏
 (𝜃𝑟𝑒𝑓(𝑡) −  𝜃𝐻𝐿(𝑡))                                                                     3.55 

3.7.4. Road Heading Calculation 

For a given path 𝑥(𝑠), 𝑦(𝑠), the heading is calculated using 

              𝜓𝑟𝑜𝑎𝑑(𝑠) = 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑑𝑦

𝑑𝑠
,

𝑑𝑥

𝑑𝑠
)                                                                            3.56 

This orientation is then interpolated in time to serve as a feedforward input during real-

time control. 

3.7.5. Steering angle calculation 

Assuming the vehicle follows the road, the steering input is approximated from road 

curvature 𝜅(𝑡), 

              𝛿(𝑡) = 𝜅(𝑡) · 𝐿                                                                                                  3.57 

Where 𝐿 = 𝑎 + 𝑏 

3.7.6. Controller output 

The controller's output is the headlamp deflection,  

              𝜃𝐻𝐿(𝑡)=output of a first-order filter driven by 𝜃𝑟𝑒𝑓(𝑡)                                   3.58 



50 

 

This angle determines the side orientation of the headlamp beam. 

3.7.7. Constraints and Physical Limits 

For safe operation and hardware protection: 

                 𝜃𝐻𝐿(𝑡)𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥]                                                                                  3.59 

Where 𝜃𝑚𝑎𝑥 is the maximum permissible headlamp sweep (15°). 

The model utilizes vehicle dynamics to estimate slip angle and couples it with road heading 

to produce a reference beam deflection. The control strategy enhances visibility around 

curves by pre-emptively compensating the headlamp using road geometry, as well as 

responding to real-time lateral behavior. The filter ensures smooth transitions appropriate 

for actuator response. 
 

3.8. Summary of Controller Architectures 

Mathematical foundations and control strategies employed for adaptive headlamp control 

are explained in this section. The equations outline the development of four significant 

models: Feedforward MPC (FF-MPC), Raw MPC, Extended Model Predictive Control 

(EMPC), and Filtered Proportional Controller (FPC). To illustrate how these model’s 

comprehend vehicle dynamics and maximize beam deflection in different road and 

environmental conditions, governing equations, objective functions, and system constraints 

for each controller are discussed.  

These sections (3.1 through 3.7) offers extensive modeling and control frameworks for 

dynamically adjusting vehicle headlamps according to real-time slip angle estimation. 

Starting with an elaborate dynamic vehicle model including lateral, longitudinal, and yaw 

dynamics, tire forces, braking characteristics, and aerodynamic influences, the chapter sets 

a sound basis for body slip angle estimation. The slip angle is subsequently employed to 

calculate the difference between the heading of the vehicle and its actual trajectory, and 

this difference directly affects headlamp direction during emergency maneuvers and 

cornering. 

Filtered Proportional Controller (FPC) 

Control Law : 𝜃𝐻𝐿(𝑡)̇ =  − 
1

𝜏
 𝜃𝐻𝐿(𝑡) +  

𝑘ℎ

𝜏
 𝛽(𝑡)                                                   (3.34) 

Transfer function : 𝐻(𝑠) =  
𝜃𝐻𝐿(𝑠)

𝑠
=  

𝑘ℎ

𝜏𝑠+1
                                                        (3.36) 

Discrete Form  : Euler Approximation 

𝜃𝐻𝐿[𝑘] = 𝛼 · 𝜃𝐻𝐿[𝑘 − 1] + (1 − 𝛼) · 𝑘ℎ·𝛽[𝑘]                      (3.37) 

where 𝛼 =  
𝜏

𝜏+ 𝑇𝑠
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Saturation 

Constraint 

: 𝜃𝐻𝐿(𝑡)𝜖 [−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥] Applies a low-pass filter to smooth out             

actuator commands. Reactive in nature, but good for stability and        

comfort. 

 
Raw State Model Predictive Controller (E-MPC) 

Control Objective : 

𝑚𝑖𝑛
𝜃𝐻𝐿

ℒ = ∑ [(𝜃𝐻𝐿[𝑘] − 𝜓𝑟𝑜𝑎𝑑[k])2 +𝑁
𝑘=0

 λ  · (∆𝜃𝐻𝐿[𝑘])2]      (3.43) 

Constraint 

Handling 
: 

𝜃𝐻𝐿[𝑘] 𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] Doesn't use slip feedback and goes along      the 

road in a straight direction. Unable to dynamically merge and sensitive                   

to curvature variations.                         

 
Extended Model Predictive Controller (E-MPC) 

State-Space 

Model 
: 

𝑋[𝑘 + 1] = 𝐴𝑑  𝑥[𝑘] +  𝐵𝑑 𝛿[𝑘]                                                        (3.47) 

Where      𝑋[𝑘] =  [𝛽[𝑘] 𝑟[𝑘]]𝑇 and  𝐴𝑑 = 𝐼 +  𝑇𝑠𝐴𝑐, 𝐵𝑑 = 𝑇𝑠𝐵𝑐 

Control 

Objective : 
𝑚𝑖𝑛
𝜃𝐻𝐿

ℒ =  ∑[(𝜃𝐻𝐿[𝑘] − 𝑘ℎ· 𝛽[𝑘])2 +  𝜆 · (∆(𝜃𝐻𝐿[𝑘])2]  

𝑁

𝑘=0

 

Rate Smoothing : 
 𝛥(𝜃𝐻𝐿[𝑘]) = 𝜃𝐻𝐿[𝑘] - 𝜃𝐻𝐿[k-1]                                            

(3.48) 

Constraint 

Handling : 
𝜃𝐻𝐿[𝑘] 𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥]                                                         (3.49)                     

Feedforward-Enhanced MPC (FF-MPC) 

Reference 

Beam Angle : 

 

𝜃𝑟𝑒𝑓(𝑡) =  𝑘ℎ· 𝛽(𝑡) +  𝑘𝜓· 𝜓𝑟𝑜𝑎𝑑(𝑡)                                  (3.54) 

 

Filtered 

Actuation 
: 

       

𝜃𝐻𝐿
̇ (𝑡) =

1

𝜏
 (𝜃𝑟𝑒𝑓(𝑡) −

𝜃𝐻𝐿(𝑡))                                                                                          (3.55) 

Control 

Objective: 
: 𝑚𝑖𝑛

𝜃𝐻𝐿

ℒ =  ∑[(𝜃𝐻𝐿[𝑘] − 𝜃𝑟𝑒𝑓[𝑘])
2

+  𝜆 · (∆(𝜃𝐻𝐿[𝑘])2]  

𝑁

𝑘=0

 

Constraint 

Handling 
: 

𝜃𝐻𝐿(𝑡) 𝜖 [−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥] Makes use of feedforward to anticipate         

curvature and filtering and slip feedback in order to stabilize           response.  

A Filtered Proportional Controller (FPC) was originally developed to filter the deflection 

command, enhancing actuator response and driver visual comfort. FPC, being reactive, had 

steady-state errors and inadequate anticipation of curves. This prompted the creation of an 

Extended Model Predictive Controller (MPC), which included predictive optimization and 

actuator dynamics but still did not have road geometry foresight. To counter this, a 
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Feedforward-Enhanced MPC (FF-MPC) was developed, incorporating road heading as a 

feedforward input. FF-MPC exhibited enhanced accuracy, promptness, and tracking in 

dynamically curved trajectories and thus posed a more efficient and smart control solution 

for adaptive headlamp systems. 

3.9 Results and discussion on the performance of Predictive control 

models for trajectory-aligned vehicle headlamp adjustment  

The following sections examines four control methods—Dynamic Predictive Control 

(DPC), Raw State Model Predictive Control (RS-MPC), Extended MPC, and Feedforward 

MPC (FF-MPC). The Raw MPC model gives data regarding classical prediction-based 

control without dynamic state augmentation. Though the Extended MPC enhances 

performance by incorporating other vehicle states such as yaw rate and slip angle, the DPC 

model incorporates real-time slip dynamics. By introducing a feedforward path-planning 

module to forecast vehicle action, the FF-MPC enhances the control. 

Various performance measures, such as tracking error, headlamp deflection accuracy, and 

control smoothness, are compared in addition to a range of scenarios, such as sudden turns 

and sudden speed changes. Also, a focused case study on a 600-meter road length illustrates 

each controller's respective strengths and real-world applicability. To assist in the selection 

of the most effective control strategies according to specific driving situations and 

performance demands, the chapter concludes with a summary of the key findings and 

observations. 

3.9.1 Performance Evaluation of the Dynamic Predictive Control model 

The capability of the model to sustain accurate trajectory tracking and appropriate 

headlamp positioning in a range of driving conditions, including sudden curves and changes 

in speed, is the focal point of the study. DPC model shows enhanced responsiveness and 

stability through the application of real-time slip angle and yaw rate feedback. To confirm 

the effectiveness of the DPC strategy in dynamic situations, important performance 

indicators like tracking error, control effort, and headlamp alignment accuracy are 

considered. The DPC controller, immune to transient longitudinal dynamics, accurately 

translates slip angle into headlamp deflection during constant speed operation as shown in 

Figure 3.6.   

The actuation of lateral dynamics is successful as evidenced by the close tracking of slip 

and deflection angles.  It enhances preview visibility, lane awareness, and obstacle 

detection by extending beam projection into curves.  This enhances nighttime driver 
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comfort and safety on curved roads. This meets minimum performance standards for 

operation in the real world and displays responsive, seamless tracking.  Its stability affirm 

the controller's capability to maintain visibility through turns, prevent cutting corners, and 

enhance steering confidence. 

 
Figure 3.6: Headlamp deflection based on changing slip angle 

 
Figure 3.7 Proportionality of Slip Angle to the Road Curvature 

Over a 100-second, the plot (Figure 3.7) displays the normalized road curvature κ(t) and 

slip angle 𝛽(𝑡)  along the zig-zag path. The path mimics realistic semi-urban or hilly 

nighttime driving conditions by causing moderately strong alternating left-right turns. The 

accuracy of the DPC controller in capturing minute lateral motions is verified by the close 

overlap between κ(𝑡)  and 𝛽(𝑡) . Transitions are free of lag or overshoot and smooth 

indicating that the system responds to slight curvature without overshoot. This confirms 

that the controller can be utilized in general curved-road driving scenarios where visual 

predictability—more than vigorous reaction—is of prime importance. 

Figure 3.8 illustrates the dependence of slip angle (𝛽) on road curvature (κ) at various 

speeds under constant as well as variable speed conditions.  Under constant speed, the 

correlation remains high (≈1) across all speeds and indicates that slip angle and road 
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curvature are directly aligned. But in case of varying speed, the correlation initially is poor 

at low speeds (≈0.18 at 5 m/s) but shows a substantial gain with speed rise, reaching plateau 

beyond 20 m/s.  This proves that DPC model works extremely well for curvature tracking 

even at high speeds under dynamic speed profiles. 

 
Figure 3.8 Correlation between Slip Angle and Road curvature vs Speed 

 

Figure 3.9 Step response of the DPC Model 

Figures 3.9 and 3.10 show the step and impulse responses of the filtered proportional 

controller and provide key insight into its real-time response when reacting to changes in 

slip angle—whether it be progressive curve entry or abrupt disturbances. As the figure 

shows, the step response exhibits smooth, non-oscillatory increase to steady-state, which 

suggests that the headlamp deflection moves smoothly without sharp motion. Figure 3.10 

illustrates that the impulse response quickly declines, efficiently rejecting short-duration 

transients. These dynamic properties are both desirable from a safety and user experience 

standpoint, providing stable, distraction-free lighting. Damping behavior also prevents 



55 

 

short-lived disturbances such as impacts over potholes, steering jitters, or sensor noise from 

causing erratic beam motion. This supports the system's objective to offer steady, context-

driven headlamp control under nighttime driving conditions, without causing visual unease 

or instability. 

 

Figure 3.10 The Impulse response 

Figure 3.11 illustrates the slip angle trajectories for three different steering inputs: high-

frequency input (±5° HF), low amplitude (±5°), and larger amplitude (±10°).  As expected, 

larger slip angles are produced by increasing the amplitude of the steering input.  The 

headlight deflection angle (𝜃𝐻𝐿) is scaled accordingly by the Dynamic Preview Controller 

(DPC) in response.  The slip angle oscillates at a high frequency in the high-frequency case. 

A measurable input-output lag exists even when the controller maintains the amplitude of 

the response within reasonable limits.  This demonstrates the filtering action of the 

controller, which balances between responsiveness and stability.  This is especially 

necessary in dealing with temporary driver adjustments or traffic interruptions. Despite 

varying driver intentions, the controller maintains proportionality.  Lag does, however, 

become evident in high-frequency maneuvers (e.g., such as fast zigzags), which can lead 

to perceivable delays in beam redirection.  While safety is not likely to be severely 

compromised, this could make drivers less confident in making rapid turns at night. 

The trend of the Slip Angle – Driver Input Variation and the Headlamp Deflection – Driver 

Input is similar.  This is due to the fact that the slip angle directly controls the headlight 

deflection through a proportionate gain. The deflection system efficiently monitors and 

translates alterations in the slip angle into beam motions as the slip angle responds to 
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alterations in the amplitude or frequency of steering driver input.  In an effort to offer timely 

and context-related illumination during maneuvers, especially on bends and on sudden 

corrections, this close coupling ensures that the headlight orientation dynamically aligns 

with the vehicle's instantaneous trajectory. 

 
Figure 3.11 Slip Angle-Driver Input Variation 

 

Figure 3.12 Effect of Aerodynamic Drag on Headlamp deflection 

Due to the added stability of downforce and aerodynamic drag, the slip angle gets slightly 

damped, especially at high speeds.  As a reaction to these subtleties, the DPC system adjusts 

the headlight deflection accordingly. On a positive note, the system readily adapts to 

alterations in the airflow characteristics or vehicle body shape without being re-tuned.  

Headlamp deflection and aerodynamic plots mirror the damping of slip angles indicated in 

the previous subplot.  For the aerodynamic case, the lesser 𝛽  represents the reduced 

magnitude of 𝜃𝐻𝐿 (Figure 3.12).  This illustrates how the system adapts to alterations in 

vehicle structure. It illustrates the fact that, if the underlying 𝛽  is known exactly, any 

controller can be utilized across various car classes (e.g., sedans and SUVs). 
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Figure 3.13 Effect of Braking on Headlamp deflection 

 
Figure 3.14 Effect of Tire stiffness on Headlamp deflection 

The slip angle during braking, especially hard braking, drops sharply.  The sudden forward 

load transfer and reduced lateral grip at the rear tires are responsible for this. Such sudden 

dynamic changes create large angular movements in 𝛽, and if they are transmitted directly 

into the headlamp system, they can cause beam swing to be too great, which might possibly 

confuse the driver.  The conclusion suggests that unwanted spikes need to be minimized by 

either modulation or braking-aware filtering.  The large slip angle movements are translated 

to proportional headlight deflections by the controller. For hard braking, 𝜃𝐻𝐿  goes down 

abruptly, which to the driver may seem like beam jitter or beam flicker as shown in Figure 

3.13.  These sudden oscillations would be hazardous without additional conditioning if they 

occur during emergency braking.  To maintain visual stability in panic stops or during ABS 

activation, the system should provide brake-sensitive damping or deflection limits. 

The size of the slip angle is small but clearly affected by tire stiffness variations (stiff, 

baseline, and soft).  Since they are more laterally compliant, the soft tires possess a 

relatively larger 𝛽, and the stiff tires possess a relatively smaller one.  The DPC controller 
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does not require frequent re-tuning for different types of tires since it can accommodate 

these variations without losing stability. In real-world operation, where tire conditions vary 

due to wear, inflation, or seasonal variations, such robustness is important.   

 

Figure 3.15 Effect of Yaw inertia on Headlamp deflection 

As can be observed in Figure 3.14, the amplitude changes of the headlight deflection are 

small and non-disruptive.  This proves once again that the system is able to adapt passively 

to mechanical variation without compromising fundamental functionality. This allows for 

easy integration into many types of tires and automobile models. 

 

Figure 3.16 Bode Plot of DPC 

The rate at which the slip angle varies depends on yaw inertia variations.  Heavier or more 

rear weight-biased vehicles respond to steering more slowly, leading to smoother 𝛽 profiles.  

Increased inertia results in phase lags increasing and absolute magnitudes remaining 

unchanged. While the effect is minimal in this case, this would suggest that the DPC system 

can deliver slightly delayed headlight compensation in heavier vehicles.  The same trend is 
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followed by the headlight system.  The time is varied to some extent with inertia, but the 

magnitude of the deflection angle is constant (Figure 3.15). Even in vehicles with 

asymmetric mass distributions or under payload transitions, the controller's performance is 

assured by its scalability with yaw dynamics.  Tonal calibration, however, would be 

beneficial to payload systems that are highly dynamic (such as logistics vans). 

 

Figure 3.17 Nyquist Plot of DPC 

There is no dynamic filtering or time shaping in the DPC, a static gain-only system.  This 

is substantiated by frequency-domain analysis based on Bode and Nyquist plots.  

Instantaneous output tracking without phase lag or delay is manifested by the Bode 

magnitude (Figure 3.16) being flat at +1.58 dB (gain = 1.2) and the phase remaining at 0° 

across all frequencies. DPC's Nyquist plot, presented below in Figure 3.17, unmistakably 

confirms its static, gain-only status.  With very little variation along the imaginary axis, 

frequency response is confined to a short length along the real axis, at Re ≈ 1.2.  This 

indicates that there is no dynamic response or phase shift in the system over the frequency 

range. The plot illustrates how DPC directly applies the input to the output without filtering 

or time-shaping, making it a memoryless system with stable constant gain (𝑘ℎ = 1.2). Even 

though inherent stability is established through the Nyquist trajectory (Figure 3.17) not 

encircling the critical point (−1,0), the absence of phase dynamics or bandwidth limitation 

also indicates that the controller is highly sensitive to high-frequency input disturbance. 

This accentuates the weaknesses of DPC in handling real-world situations, where a more 

robust, frequency-aware control strategy is called for because of sensor noise, actuator 

delays, and transient steering corrections. 
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3.9.1.1 Summary on performance of DPC  

When subjected to different dynamic conditions, the DPC controller demonstrates good 

conformity with its main goal: offering real-time, proportional headlamp deflection based 

on slip angle, which improves road light while driving on curved roads at night.  Its 

simplicity, fast response time, and consistent performance over a variety of vehicle 

parameters, such as tire stiffness, aerodynamics, and inertia, are its primary strengths. Due 

to its flexibility, it can be applied on a wide range of vehicle platforms, specifically at 

moderate to high speeds when lateral dynamics are palpable and predictive lighting is 

essential. 

Limitations are present at low speeds, with high frequency steering inputs, and particularly 

hard braking.  Sudden changes in slip angle under these conditions can make headlamps 

move rapidly and perhaps distractingly, which can be a problem in parking, urban, or 

emergency maneuvers where beam stability is paramount.  In addition, using only 𝛽(𝑡) can 

be misleading under low-dynamic conditions because 𝛽  is not very informative about 

curvature. Improvements such as dynamic gain modulation, multi-sensor fusion based on 

steering angle or yaw rate, and filtering of input (e.g., based on longitudinal acceleration) 

are recommended to address these shortcomings.  Stability can also be enhanced for violent 

motion by using adaptive damping and deflection rate limiting.  In general, the DPC 

performs well for night-time driving on winding roads, but it must be better for edge-case 

robustness and real-world dependability. 

3.9.2 Evaluation of the performance of the Raw State Model Predictive 

Control (RS-MPC) 

In order to explore predictive control possibility using road heading information, a Raw 

State MPC was created after the DPC model. Measuring directly the road heading angle, 

the formulation circumvents dynamic vehicle feedback in the form of slip angle and aligns 

the headlight beam with predicted travel. It was attempted to see if predictive tracking in 

isolation, with no added complexity of the model, could provide better deflection accuracy 

and lower jitter. 

In Figure 3.18, the headlamp deflection (𝜃𝐻𝐿) exhibits an intangible, spike near t = 8 s, with 

magnitudes on the order of 1011 degrees, whereas the reference road heading (𝜓𝑟𝑜𝑎𝑑) is 

nearly constant. This instability results from the absence of feedback from the vehicle 

dynamics, rendering the controller highly susceptible to even minute disturbances or errors 

in curvature prediction. The optimizer generates control outputs which are not operational 
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or diverge due to the fact that it takes even small numerical error in 𝜓𝑟𝑜𝑎𝑑 to destabilize 

them. The response highlights one of the main disadvantages of the raw formulation and 

justifies the need to incorporate dynamic states in order to ensure stability and useful 

performance in practice. 

 

Figure 3.18 Headlamp deflection against heading road at varied intervals 

 

Figure 3.19 Tracking Error of RS-MPC Model 

 

Figure 3.20 Tracking Error of RS-MPC Model 
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The error of tracking in the RS-MPC model is shown in Figure 3.19.  Initially, the controller 

maintains error near zero, reflecting effective tracking.  At t = 8 s, however, there is a large 

and unbounded error divergence, with the error reaching over −5 × 1011  degrees. 

Numerical instability due to prediction noise, optimizer sensitivity, and absence of 

stabilizing feedback from vehicle dynamics is what this behavior mirrors.  The controller 

is devoid of internal adjustment to reject disturbances or noise in 𝜓𝑟𝑜𝑎𝑑 if inputs from slip 

angle and yaw rate are not supplied.   

The road heading and headlight direction, as determined by the Raw State MPC, are 

represented by overlay vectors on the synthetic road path in Figure 3.20. Even though the 

vehicle's trajectory is smooth, there are several places throughout the route where it is easy 

to see the difference between the headlight direction (orange) and the actual road heading 

(blue). These angular discrepancies show that, particularly in sections with abrupt bends or 

heading rate changes, the Raw State MPC is unable to reliably align the beam with the road 

curvature.  

3.9.2.1 Summary on performance of RS-MPC 

The controller's dependence on feedforward tracking of 𝜓𝑟𝑜𝑎𝑑 alone, without taking into 

account dynamic vehicle states like yaw rate or slip angle, is the cause of the problem. 

Consequently, the precision of headlamp deflection is immediately affected by any latency, 

optimizer instability, or curvature prediction inaccuracy. This makes it more difficult for 

the controller to maintain context-aware illumination, which is essential while driving at 

night when beam misalignment can jeopardize safety and visibility. The plot supports 

previous findings on instability and low resilience, emphasizing the shortcomings of the 

Raw State MPC in practical applications and providing more evidence in favor of switching 

to an Extended MPC design that makes use of dynamic feedback. 

3.9.3 Evaluation of the performance of the Extended-Model Predictive 

Control (E-MPC) 

To enhance headlight deflection performance, the Extended Model Predictive Control (E-

MPC) approach builds on earlier formulations by incorporating rate limits, predictive 

filtering, and vehicle dynamics.  E-MPC adjusts the beam dynamically based on slip angle 

trends while respecting actuator constraints, balancing responsiveness and stability. This 

section evaluates the behavior of the controller in numerous scenarios, highlighting its noise 

robustness, robustness, and applicability to adaptive lighting under dynamic driving 

conditions in real-world environments. 
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Figure 3.21 Headlamp deflection as filtered response to slip angle 

 
Figure 3.22 Tracking Delay-step response of 𝜽𝑯𝑳 to 𝜷 

The response of the system when the slip angle 𝛽 reaches a saturated limit is demonstrated 

by Figure 3.21. The headlamp deflection 𝜃𝐻𝐿 follows smooth asymptotic tracking without 

overshoot as it gradually becomes closer to the same value. The gradual slope confirms the 

presence of internal rate limitations or filtering, which prevent abrupt actuator commands. 

This is ideal for minimizing driver distraction and ensuring mechanical durability. A ramp 

input on 𝛽 in Figure 3.22 demonstrates a small but noticeable lag in 𝜃𝐻𝐿.  The controller 

follows the increasing slide angle adequately, but the profile is smooth and slightly delayed.  

This delay is caused by intentional dampening that was incorporated into the E-MPC 

configuration to trade-off between stability and responsiveness, as can be seen in real 

situations where steering correction might be jerky or sensor input noisy. 

The slip angle increases linearly and saturates in this graph, while 𝜃𝐻𝐿  increases filtered 

and levels off once the input no longer varies (figure 3.23).  This response mirrors the low-

pass filter function built into the controller and serves to prevent beam jitter and stable 
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illumination during drastic changes in vehicle dynamics. When the E-MPC is subjected to 

a step command in slip angle, it presents a smooth and highly damped response.  Figure 

3.24 displays how the headlight deflection settles in steady-state without overshoot or 

oscillation.  A good prediction horizon and control gain structure within the MPC design 

are reflected in its stability, which also displays excellent temporal control. 

 
Figure 3.23 Ramp Response of 𝜽𝑯𝑳 to 𝜷 

 
Figure 3.24 Impulse Response of 𝜽𝑯𝑳 to 𝜷 

The 𝜃𝐻𝐿  output also rises with a similar curvature but at a reduced slope for an ever-

increasing 𝛽 input (Figure 3.25).  The slight difference is intentional and confirms the 

internal smoothing algorithm, required so as not to place high-rate actuator orders on the 

lighting system, or reduce the driver's visual comfort. Impulse test plot in Figure 3.24 shows 

a damped 𝜃𝐻𝐿 response following a short, sudden 𝛽 disturbance.  The controller's ability to 

reject transient noise and prevent it from propagating through the beam control channel is 

evidenced by the rapid return to baseline.  This behavior is needed to sustain constant 

lighting in the presence of road roughness or steering jerks. 
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Figure 3.25 Disturbance rejection 

 

 
Figure 3.26 Noise Sensitivity 

 
Figure 3.27 Disturbance Rejection 

As indicated in Figure 3.26, the headlamp deflection shows a steep rise and a smooth return 

to its original value when challenged by a short-term disturbance along a constant 𝛽 

baseline. This enhances the E-MPC's robustness for dynamic cornering maneuvers by 
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illustrating its ability to reject transient side shocks with virtually no delay or residual error. 

Output from the controller is smooth and very insensitive to noisy 𝛽 input.  The efficacy of 

E-MPC's intrinsic filtering or reduction of noise through its techniques can be seen from 

Figure 3.27 & 3.28.  This trend averts rapid beam direction changing, which reduces driver 

distraction and visual discomfort against mere proportional systems. 

 
Figure 3.28 Input saturation behavior 

 
Figure 3.29 Rate of Change of 𝜽𝑯𝑳(Tracking delay) 

 
Figure 3.30 Filtered 𝜽𝑯𝑳 Response with Varying 𝜶 and Actuator Constraints 
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Figure 3.31 Tracking Performance of E-MPC’s Road Deflection, Slip Angle and 

Headlamp Response 

The Figure 3.29 plot illustrates that the rate of change in headlamp deflection is carefully 

controlled, rising rapidly but saturating smoothly without sudden breaks.  In keeping 

actuator commands within safe operating limits, this constraint enhances system longevity 

and passenger satisfaction. Here, under actuator limitations, different filter coefficient α 

values are explored (see Fig. 3.30).  𝜃𝐻𝐿 follows 𝛽 more tightly with increasing 𝛼, but is 

also at risk of hitting actuator limits earlier.   

This trade-off illustrates how E-MPC's flexibility in tuning enables it to balance between 

hardware safety constraint and responsiveness, which is imperative for embedded vehicle 

systems. The performance of the Extended MPC in simulating road deflection via slip angle 

and headlamp deflection responses is depicted in Figure 3.31. The road deflection (solid 

blue) serves as the reference, while the vehicle's dynamic response is represented by 𝛽 

(dashed orange).  

The headlight deflection (dash-dot green) has a constant phase relationship by tracking 𝛽 

very closely with a slight smoothing. The alignment is well-controlled and consistent 

despite both reactions being slightly behind the road curvature.  This shows how Ex-MPC 

is able to screen out high-frequency disturbances while allowing for accurate and fast beam 

control, which is necessary to maintain the best vision possible in the case of continuous 

cornering.  



68 

 

 

Figure 3.32 Extended MPC response in Constant Speed 

 
Figure 3.33 Extended MPC Case 2 Varying Speed 

As evident from Figure 3.32, the E-MPC model has excellent synchronization between the 

slip angle 𝛽 and the headlamp deflection 𝜃𝐻𝐿 under constant speed.  Responsive tracking 

and tight coupling are reflected by the two traces' close proximity.  E-MPC operates steady-

state dynamics well without incurring excessive filtering delay, evident from the response 

smoothness and minimal lag.   

This proves that it is reliable when cruising steadily, such as cruising on the interstate. The 

deflection of the headlight follows the slip angle with minimal phase lag, even for changing 

speed.  The controller is in constant angular position with effective adaptation to dynamic 

changes in vehicle speed, as illustrated in Figure 3.33.   

The stability of E-MPC against longitudinal velocity oscillations is shown through this 

performance, which is an essential requirement for adaptive lighting systems under speed 

maneuvers such as overtaking or braking on a curve. The main dynamic characteristics of 

the E-MPC controller are evident from the Bode plot (Figure 3.34).  The low-pass filter-

like behavior of the magnitude response guarantees noise rejection at high frequencies, as 
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attenuation is shown above 1 rad/s.  The phase curve indicates increasing delay at higher 

frequencies, which implies a trade-off between responsiveness and stability.   

 
Figure 3.34 Bode Plot of E-MPC 

 
Figure 3.35 Nyquist Plot Extended MPC 

This confirms that the controller deliberately damps the beam to avoid forceful motion with 

jerky steering inputs. As observed in Figure 3.35, the Nyquist plot verifies that the closed-

loop system is stable across the frequency range by tracing a stable arc in the complex plane 

without encircling the critical point (−1,0).  There are no excursions into the right-half plane, 

and the loop gain remains less than unity.  This proves that despite dynamic steering and 

speed changes, the controller is not only responsive but also stable by nature. 
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3.9.3.1 Summary on performance of E-MPC 

The Extended MPC (E-MPC) has robust and reliable performance in diverse driving 

conditions, including constant and oscillating speeds, short interruptions, and noisy inputs 

with corrupted slip angles.  Its practicality for real-world adaptive lighting use is validated 

by its ability to follow slip angle with smooth and stable headlamp deflection, as evidenced 

in both time-domain and frequency-domain analysis. Bode and Nyquist plots confirm its 

inherent stability and regulated frequency response, whereas response plots demonstrate 

effective filtering, zero overshoot, and robust disturbance rejection.  These benefits, which 

comprise dynamic feedback, predictive control, and actuator-safe rate constraints, 

overcome key limitations of earlier models like DPC and Raw MPC. 

However, its implied handling of road curvature is a notable gray area.  When road 

geometry preview is important, E-MPC can degrade since it responds only to slip angle. 

This is particularly so in high-speed curves or complex curvature transitions, where 𝛽 is 

less effective in anticipating future path requirements. To facilitate anticipatory beam 

management and enhance safety and visibility in dynamic driving conditions, an FF-MPC 

that includes road curvature or trajectory previews in the optimization directly is needed. 

3.9.4 Evaluation of the performance of the Feed Forward-Model 

Predictive Control (FF-MPC) 

In order to enhance beam deflection precision under varying speed and curvature, the 

Feedforward Model Predictive Control (FF-MPC) structure integrates state feedback with 

direct road heading reference input (𝜓𝑟𝑜𝑎𝑑).  For enhanced stability and responsiveness, 

the model integrates gain-weighted terms ( 𝑘𝛽 , 𝑘𝜓) dynamic filtering, and actuator 

constraints. To evaluate the controller's viability for real-time adaptive headlamp control, 

the following graphs analyze its response in the time and frequency domains as well as its 

performance when subjected to step and ramp inputs. 

The FF-MPC performance in constant speed operation is illustrated in Figure 3.36, with 

the headlamp deflection following the reference road heading well in terms of phase 

matching and minimal error.  The response remains smooth and well-coupled to the road 

trajectory even with slight attenuation of amplitude introduced by filtering and gain 

saturation. This confirms FF-MPC's ability to provide stable, forecasted lighting in steady-

state conditions, and guarantees driver comfort and beam alignment even through multiple 

curves.  
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This robustness indicates that FF-MPC is able to perform well in real-world, mixed-driving 

conditions, like urban environments, acceleration phases, or deceleration before curves, 

where fast adaptation is necessary for beam positioning and visual coverage. Even in 

varying speed conditions (Figure 3.37), FF-MPC does not lose its tracking ability, with the 

controller dynamically modifying the headlamp deflection to track changes in road heading, 

adjusting to curvature and speed-caused slip variation. 

 

 
Figure 3.36 Headlamp Vs Road Heading at constant speed 

 
Figure 3.37 Headlamp Vs Road Heading at varying speed 

Step response in Figure 3.38 indicates FF-MPC rises to the reference value gradually, with 

minimal lag and no oscillation.  The tuning priorities make the response of 𝜃𝐻𝐿(𝑡) settle at 

a level below 𝜓𝑟𝑜𝑎𝑑(𝑡) to indicate controlled behavior with a minimal steady-state error.  

This is a representation of a critically damped system, which is preferable for beam 

actuation as it avoids abrupt change. The system performance shows that FF-MPC handles 

abrupt steering maneuvers without flicker or causing the driver's eye to feel uncomfortable.  
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Figure 3.38 Step Input Response 

The response of the system to a linear ramp in 𝜓𝑟𝑜𝑎𝑑(𝑡) is shown in Figure 3.39.  𝜃𝐻𝐿(𝑡) 

has a linear trend but with a less steep slope because it rises steeply with negligible lag.  

This is how a filtered system with gain-scheduled weights must behave. The absence of 

rate jumps indicates that FF-MPC's first-order filter successfully prevents forced motion or 

actuator saturation, which would otherwise stress mechanical components.  Due to this 

aspect, FF-MPC is suited for smooth steering adjustments or high sweeping turns. Figure 

3.40 evaluates tracking error for different sets of parameters under step input.  

Configurations with smaller time constant τ and increased yaw weight (𝑘𝜓) have faster 

settling and smaller levels of error.  The purple and red traces (𝑘𝜓 = 0.8) are better than the 

rest, which suggests 𝜓𝑟𝑜𝑎𝑑(𝑡) plays a significant role in reducing tracking error.  Such 

results offer practical insights to further tune the controller, particularly for minimizing 

latency while maintaining smoothness.  

Configurations with greater 𝑘𝜓  and lesser 𝜏  again exhibit lesser tracking error growth 

under ramp input scenarios (Figure 3.41).  Improved long-term tracking during continuous 

alterations in road curvature is suggested by the flatter slope of the red and purple curves.  

This illustrates how parameter tuning can be utilized to effectively design controller 

responsiveness, and how designers can tailor FF-MPC performance for different vehicle 

types or headlight actuator characteristics. The Bode plot of the internal first-order filter in 

FF-MPC is shown in Figure 3.42. For alleviating high-frequency disturbances such as 

vibration, steering twitches, and road bumps, the magnitude rolls off at a slope of 

approximately 1 rad/s. Intentional damping is also evident in the phase plot, which presents 

higher lag for higher frequencies. In an effort to make headlamp motion smoother and 

prevent sudden beam position changes, this frequency-domain behavior is critical.  
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Figure 3.39 Ramp Input Response 

 
Figure 3.40 Error profiles under step input under various parametric combinations 

Stability is established by the Nyquist plot of the internal filter (Figure 3.43), which does 

not encircle the critical point (−1,0) and is completely in the left-half plane. Limited gain 

and consistent phase behavior are demonstrated by the response being within a semicircle.  

This shows how stable the FF-MPC filter design inherently is and how unlikely it is to 

create divergent or oscillatory dynamics. FF-MPC demonstrates the features of a stable 

low-pass system with constant phase fall and increasing magnitude roll-off, as per the entire 

system Bode plot (Figure 3.44).  It delivers damping and look-ahead response through 

balancing feedforward (𝜓) and feedback (𝛽).  The system eliminates noise and retains 

adequate bandwidth for prompt road curvature tracking due to the constant reduction in 

gain. Finally, closed-loop stability is established by the Nyquist plot of the entire FF-MPC 

loop (Figure 3.45), where the path goes away from the critical instability region. This 

indicates that the controller steers clear of instability and remains robustly operational 

across the frequency range of interest even when feedback and feedforward are 

interconnected.  
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Figure 3.41 Error profiles under ramp input under various parametric 

combinations 

 

Figure 3.42 Bode plot of the FF-MPC First Order Filter 

On a simulated road, Figure 3.46 illustrates how closely the proposed FF-MPC sets 

headlight direction to anticipated road curvature.  The blue arrows indicate the present road 

heading or vehicle orientation, and the light blue path indicates the planned road path.  The 

orange arrows, however, indicate the headlight direction set by the FF-MPC. 

It is evident that, particularly on curved parts of the road, the direction of the headlight 

continuously predicts upcoming curves by appropriately deviating from the vehicle's 

present direction. This action illustrates the predictive nature of the FF-MPC, which adjusts 

headlamp direction through a preview of the road profile and vehicle states over a defined 

horizon.  The controller ensures that the headlamps adapt dynamically to provide enhanced 
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illumination coverage in the direction of intended motion by minimizing a cost function 

incorporating visibility alignment and control effort into account. Since it provides for the 

advance lighting of upcoming road sections, predictive adjustment is critical for improving 

night driving safety through reduced reaction time and enhanced visibility overall. 

 

 
Figure 3.43 Nyquist plot of the FF-MPC First Order Filter 

 

Figure 3.44 Bode plot of the full FF-MPC Model 

3.9.4.1 Summary on performance of FF-MPC 

To trace both current vehicle dynamics and forthcoming road curvature with high accuracy, 

it employs a two-layer method that blends real-time slip angle feedback (𝛽) with preview 

feedforward control derived from road heading. The controller is able to readily adapt to 

varying speeds, steering rates, and curvature profiles due to this hybrid design, which is 
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characteristic of nighttime driving conditions in the real world. Uniform alignment between 

𝜃𝐻𝐿(𝑡) and 𝜓𝑟𝑜𝑎𝑑(𝑡), with low steady-state and transient errors for both step and ramp 

conditions, is one manner in which the time-domain simulation results validate the 

effectiveness of the model. Its performance at steep curve is not comparable to E-MPC.  

 
Figure 3.45 Nyquist plot of the full FF-MPC Model 

 

Figure 3.46 Headlamp vs Road Heading of FF-MPC 

 

One critical indicator of the controller's readiness to use in complex driving conditions is 

how well it can do even when speeds oscillate.  In addition, the tunability of the controller 

via 𝑘𝛽, 𝑘𝜓, and filter time constant 𝜏 is emphasized using parameter sensitivity analysis, 

offering flexibility to fine-tune FF-MPC on various vehicle platforms and actuator 

properties. Frequency domain evaluations corroborate these findings.  Sufficient low-pass 
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filtering is confirmed by the Bode plots, which enable rejection of high-frequency 

disturbances while leaving a sufficient control bandwidth.  

The closed-loop robustness of the system under internal and external disturbances is 

assured by the corresponding Nyquist plots, which demonstrate that the loop gain remains 

within the stability margin. Despite its demonstrated benefits, additional effort is required 

to enhance deployment readiness.  Future studies should focus on integrating real-time road 

curvature estimation through camera-based vision systems or onboard perception modules 

such as LiDAR.  

Reactivity and safety margins can be further improved through adaptive gain scheduling 

that is a function of steering rate, vehicle speed, or road friction conditions. Critical 

information regarding actuator latency, sensor noise, and real-time limitation of execution 

would be acquired through experimental verification on hardware-in-the-loop (HIL) or 

vehicle testbeds. Accuracy in non-planar motions could be enhanced by incorporating 

simulation of headlamp mechanical restraint, banking angles, and road height into the 

model dynamics. With targeted enhancements and real-world validation, FF-MPC can be 

employed as a foundation for future adaptive lighting systems. 

3.9.5 A Case Study on Segment-Wise Performance Analysis of Control 

Models 

A dynamic vehicle model simulating dynamics and accurately describing slip dynamics, 

yaw behavior, and realistic vehicle responses to varying curvature forms the backbone of 

the simulations and control studies. 

3.9.5.1 Evaluation path 

A 2 km road section was simulated in an effort to systematically test the performance of 

different headlamp control methods.  Ten 200-meter sections comprise this route, which 

was designed to mirror a variety of real-world driving conditions.  The route shown in 

Figure 3.47 has alternating level sections, elevation changes, zigzags, hard turns, and 

shallow curves.  

 

Figure 3.47 A Synthetic 2 km Road stretch with 10 segments 
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Each section was carefully crafted to test a number of aspects of controller performance, 

such as noise robustness, stability, and responsiveness. A reference beam angle derived 

from road curvature is utilized to test each controller's ability to keep the beam aligned with 

the intended road path. Characteristics of the segments are S-curves (Segments 5 and 9), 

sharp bends (Segment 4), flat roads (Segments 3 and 10), gentle curves (Segment 1), 

medium zigzags (Segment 2), changes in elevation through climbs and descents (Segments 

6 and 7), and double mild curves (Segment 8). A slip dynamic vehicle model considering 

slip dynamics, yaw dynamics, and realistic vehicle response under varying curvature is 

used as the basis of the simulations and control analyses. 

3.9.5.2 Segment-Wise Performance Observations 

Extended MPC and Raw MPC have the smallest RMS error of 0.0923 rad, which are 

similarly performing in Segment 1 (Mild Curve), but FF-MPC has greater latency (0.1074 

rad) due to its smooth but sluggish response.  Furthermore, FPC also has a moderate 

response rate. Sudden change in curvature for Segment 2 (Medium Zigzag) prefers 

controllers with prompt response; Extended and Raw MPC are much better than the rest 

with an inaccuracy of 0.0467 rad.  FF-MPC is worse here due to filter-induced delay.  The 

controllers perform similarly for Segment 3 (Flat Road), however due to low-pass 

predictive nature, FF-MPC is superior with the smallest RMS error of 0.0043 rad. With 

0.0216 rad error, E-MPC still dominate FF-MPC in Segment 4 (Sharp Turn), while the 

latter has the highest deviation of 0.1810 rad, highlighting its failure to cope with aggressive 

maneuvers.   

E-MPC again yield the best performance in Segment 5 (S-Curve), but FPC shows a slight 

tracking delay and FF-MPC contains serious lag-induced errors. Extended and Raw MPC 

lead with identical errors of 0.0921 rad in Segment 6 (Smooth Climb), which involves a 

smooth elevation climb.  FF-MPC is slightly behind, and FPC shows a negligible lag.  With 

FPC and FF-MPC trailing the leaders, controller performance in Segment 7 (Drop) is 

almost identical to that in Segment 6. Smooth directional changes in Segment 8 (Double 

Mild Curve) are amplified with fast but consistent tracking.  E- MPC yield the best result, 

but FF-MPC causes error due to its sluggish convergence.  This way, Extended MPC 

maintains better control stability in Segment 9 (Long S-Curve), while FF-MPC cannot cope 

with rapid reversals of curvature, leading to a steep inaccuracy of 0.1622 rad. This indicates 

that Extended MPC is relatively better for handling acceleration, while FF-MPC suffers 

from poor adaptation. All controllers ultimately achieve zero RMS error in Segment 10 

(Flat Final Stretch), as they validate their inherent stability under uniform road geometry. 
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3.9.5.3 Error Analysis Across Segments 

The four headlamp control models were employed to simulate and compare the beam angle 

response of each segment with respect to the reference beam angle determined by the road 

curvature.  For each controller in each segment, Root Mean Square (RMS) error between 

the reference and model output was calculated (as presented in the table 3.1). The results 

indicate that in nine out of the ten road sections, Extended MPC consistently performs 

better than the other controllers. Due to their similar formulations, Raw MPC and Extended 

MPC often achieve similar performance, but FF-MPC can only show competitive 

performance on the flat road section.  The Extended MPC, however, incorporates a 

stabilizing smoothing term.  In dynamic sequences such as tight twists and S-curves, for 

which predictive lag and filtering reduce its tracking effectiveness, FF-MPC falls behind 

significantly. 

Table 3.1 Error rates across the four models in the various road segments 

Segment FPC 
Extended 

MPC 
Raw MPC FF-MPC 

Mild Curve 0.0945 0.0923 0.0923 0.1074 

Medium Zigzag 0.0790 0.0467 0.0467 0.1237 

Flat Road 0.0259 0.0047 0.0049 0.0043 

Sharp Turn 0.0296 0.0216 0.0223 0.1810 

S-Curve 0.0318 0.0216 0.0234 0.1810 

Smooth Climb 0.0958 0.0921 0.0921 0.1044 

Drop 0.0958 0.0921 0.0921 0.1044 

Double Mild 

Curve 
0.0162 0.0110 0.0110 0.1091 

Long S-Curve 0.0248 0.0164 0.0176 0.1622 

Flat Final 

Stretch 
0.0000 0.0000 0.0000 0.0000 
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3.9.5.4 Advantages and limitations of E-MPC 

A recursive smoothing model is employed by the Extended MPC model.  It provides a tasty 

balance between reactivity and smoothness.  Extended MPC is adaptable to curvature 

dynamics without loss of system stability, unlike Raw MPC, whose sensor noise is 

potentially amplified due to direct tracking of states, and FF-MPC, whose predictive 

filtering contributes lag. Since aggressiveness can be tuned with the smoothing parameter 

λ, it can be utilized for both low-dynamic (such as constant climb) and high-dynamic (such 

as S-curves and sharp turns) sections. 

Table 3.2 Comparison of the controllers for adaptive headlamp adjustment 

Criteria DPC 
Raw State 

MPC 

Extended 

MPC 
FF-MPC 

Controller 

Type 
Proportional Reactive based 

Recursive 

Smoothing  

Filtered 

Feedforward  

Transfer 

Function 
G(s)=K⋅ 𝛽(𝑠) 

Direct 

mapping from 

road 𝜓 

Discrete 

recursive 

difference 

First-order 

low-pass filter 

Filtering / Noise 

Suppression 
None Very Low Moderate High 

Phase Lag Low Low Moderate High 

Cutoff 

Frequency 
High (no filter) High Tunable via λ Fixed via τ 

Stability 

(Nyquist) 

Marginal 

under high 

gains 

Sensitive to 

noise 

Stable under 

bounded λ 
Always stable 

Settling Time Fast Fast Moderate Slower 

Steady-State 

Error 
Low Low Very Low Very Low 

Tracking on 

Curvy Roads 

Poor (lag, 

overshoot) 

Moderate 

(sharp, jittery) 
Very Good 

Poor in sharp 

transitions 
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Criteria DPC 
Raw State 

MPC 

Extended 

MPC 
FF-MPC 

Anticipatory 

Behavior 
None None Weak 

Moderate 

(predictive 

drift) 

Actuator 

Modeling 
No No Indirectly No 

Disturbance 

Rejection 
Poor Poor Moderate Poor 

Adaptability to 

Speed 
Poor Poor Good Moderate 

Computational 

Load 
Very Low Low Low Low 

Implementation 

Complexity 
Very Simple Simple Moderate Moderate 

Use Case Fit 

Basic 

conditions 

only 

Quick-reactive 

cases 

General road 

conditions 

Smooth 

highways, low 

dynamics 

Its real-time headlamp control reliability is established by its constant performance on 

different types of terrain. Extended MPC is also an interface between actuation that is aware 

of the future and fast feedback. In addition, unlike with fully functional predictive control 

setups, the controller does not primarily depend on computation-intensive optimizations.  

It is an efficient and real-world solution because its recursive form can be used in real-time 

on embedded automotive-grade hardware.  Its implementation in modern driver assistance 

systems is verified by its practicality and adequate accuracy over dynamic road transitions. 

The Extended MPC model though shows consistent performance has challenge; tuning the 

smoothing parameter 𝜆 , which determines the balance between responsiveness and 

smoothness.  A fixed 𝜆 may not yield optimal performance across the entire path in high-

curvature-changing environments or highly dynamic environments.   

In order to improve performance consistency, learning-based updates or adaptive-tuning 

methods can be explored. Another limitation is that delay compensation and actuator 

constraints, which may become significant in actual applications or at higher vehicle speeds, 
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are not explicitly addressed in the present formulation.  The model also assumes a decent 

calculation of road direction and slip angle, both of which are prone to calibration drift and 

sensor noise. Reliability can be enhanced by interfacing with sensor fusion systems or more 

resilient estimating algorithms.  Forward-looking ability is missing in the recursive form 

but offers computational convenience. An equal control gain is applied everywhere along 

the path by the new model. It can be enhanced to tune over road geometries with varying 

features through learning-based gain adaptation or segment-specific gain scheduling.  

These improvements would enhance the model's overall performance, robustness, and 

adaptability in diverse real-world driving conditions. 

3.9.5.5 Scope for FF MPC 

The Filtered Feedforward MPC (FF-MPC) is a potential control strategy due to its inherent 

smoothness and stability, although it has its limitations in highly dynamic areas. Smooth 

transitions and steady beam behavior are assured by its predictive design, which is well-

suited for highway cruising, high-speed driving, and flat or steady-state sections.  The 

primary reasons for the lag observed in curved or rapidly changing road geometries are 

fixed filter parameters and the absence of curvature anticipation. The following are 

potential future improvements:  

• Adaptive adjustment of filter time constant 𝜏 based on curvature rate. 

• Merging instantaneous feedback and predictive monitoring methods to allow for 

faster transitions. 

• In order to minimize beam overshoot, constraint handling and slip compensation 

are implemented. 

• Enhancing the lateral dynamics and road curvature estimation using sensor fusion 

methods. 

• Adding a switching mode to switch between direct response and predictive control 

in emergency or high-curvature maneuvers. 

These enhancements will render FF-MPC a more versatile controller that can handle 

sudden movements, transitions, and rough terrain without sacrificing the smoothness that 

defines its normal behavior. Also, due to its computational simplicity, FF-MPC can be 

deployed on low-resource embedded platforms, which is a desirable aspect in automotive 

systems. 
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3.9.5.6 Summary of Results and Discussion on the Controller design 

Four headlamp control models—DPC, Raw State MPC, Extended MPC, and FF-MPC—

are examined in depth in this chapter based on time and frequency domain analysis.  Their 

responses are compared (summarized in table 4.2) based on control features such as 

tracking accuracy, stability, and phase behavior.  A case study is performed on a 10-

segment road that has been artificially constructed to represent a variety of driving 

conditions to confirm their usability. RMS error metrics are employed for the analysis of 

performance by segment.  The Extended MPC at all times demonstrates more precise 

control and flexibility, while FF-MPC leaves scope for improvement.  The research 

provides a robust framework for controller selection for adaptive automotive lighting 

systems. 

3.10 predictive headlamp control system using Vehicle dynamics and 

Sensor fusion 

This section describes a modeling and simulation architecture for an intelligent headlight 

control system, leveraging vehicle dynamics and on-board sensor information.  The 

objective is to dynamically adjust the vehicle headlight beam direction with respect to 

steering angle, yaw rate, and slip angle, without recourse to external maps or vision systems. 

The control methods—FPC, RS-MPC, E-MPC, and FF-MPC—were tested for headlamp 

beam adjustment, each of which proved to have limitations under real-world conditions.  

FPC and RS-MPC, which are computationally simple, suffered from a lack of adaptability 

and did not consider vehicle dynamics, leading to inaccuracies in transient motion.   

E-MPC and FF-MPC alleviated this problem by combining predictive models with slip 

feedback, but were marred by signal noise, actuator saturation, and slow response. These 

issues highlighted the need for a better-balanced approach that could maintain the 

anticipatory aspects of predictive control and yet efficiently adjust to time-varying 

variations in vehicle behavior.  The Fused Model was introduced for merging filtered IMU-

derived yaw and slip measurements with adaptive gain-tuned predictive control. It enabled 

better, more stable headlamp deflection during high speed turns, changing speeds, and 

adverse input conditions—finally balancing theoretical accuracy with real-world usability. 

3.10.1 The mathematical Model of the Fused Controller (F-Controller) 

3.10.1.1 Vehicle dynamics 

It uses a dynamic bicycle model to simulate the lateral dynamics [100] [101]. 
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Front and Rear Slip Angles 

𝛼𝑓 =  δ − 
𝑉(𝑡)+𝑎𝛺(𝑡)

𝑈(𝑡)
               3.60 

𝛼𝑟 = − 
𝑉(𝑡)+𝑏𝛺(𝑡)

𝑈(𝑡)
              3.61 

Lateral Tire Forces 

𝐹𝑦𝑓 =  − 𝐶𝛼𝑓  𝛼𝑓             3.62 

𝐹𝑦𝑟 =  − 𝐶𝛼𝑟  𝛼𝑟                3.63 

Lateral Dynamics (Newton’s Second Law in Y-direction) 

𝑀(𝑉̇(𝑡) + 𝑈(𝑡)𝛺(𝑡) =  𝐹𝑦𝑓 +  𝐹𝑦𝑟               3.64 

Yaw Dynamics (Rotational Motion) 

             𝐽𝛺̇(𝑡) =  𝛼𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟                           3.65 

Slip angle [102] [103] [104] is calculated using equation 3.5.     

3.10.1.2 Sensor Integration 

In real-world use, sensor measurements are often noisy or incomplete.  For this, we use a 

simple fusion method that blends the IMU-measured yaw rate (r true) and slip angle (𝛽 true) 

with model-based predictions.  The hybrid computation makes the system more robust at 

high-aggression maneuvers or poor sensor measurements. The yaw rate is integrated using: 

            𝛺𝑒𝑠𝑡(𝑡) =  𝛾𝛺𝑡𝑟𝑢𝑒(𝑡) + (1 − 𝛾)(
𝛼 𝐹𝑦𝑓  − 𝑏 𝐹𝑦𝑟

𝐽
)𝛥𝑡          3.66 

Slip angle is given by, 

            𝛽𝑒𝑠𝑡(𝑡) =  𝛾𝛽𝑡𝑟𝑢𝑒(𝑡) + (1 − 𝛾)𝛽𝑚𝑜𝑑𝑒𝑙          3.67 

where 𝛾 is a blending parameter (0 < 𝛾 < 1) representing the degree of belief in sensor 

measurements and model predictions. 

3.10.1.3 Headlight Control Strategies 

In this case, two strategies are implemented and compared for regulating the headlight 

angle: Step Predictive Control and Multi-Step Predictive Control with Velocity-Adaptive 

Gains. 
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3.10.1.3.1 Step Predictive Control 

This method employs the current yaw rate and slip angle, along with a one-step prediction 

based on their time derivatives (MPC predicted headlamp deflection): 

      𝜃𝐻𝐿
𝑀𝑃𝐶(𝑡) =  𝑘𝛺 ·  𝛺𝑝𝑟𝑒𝑑(𝑡) +  𝑘𝛽  · 𝛽𝑝𝑟𝑒𝑑(𝑡) =  𝑘𝛺  · 𝛺𝑝𝑟𝑒𝑑(𝑡) +  𝑘𝛽  · 𝛽𝑝𝑟𝑒𝑑(𝑡)     3.68 

The controller output is passed through a low-pass filter to reduce jitter. 

3.10.1.3.2 Multi-Step Predictive Control with Velocity-Adaptive Gains  

This approach utilizes a multi-step prediction horizon and gains that adapt based on vehicle 

speed (Speed-adaptive predictive beam control),    

𝜃𝐻𝐿
𝑝𝑟𝑒𝑑(𝑡) =  𝑘𝛺 (𝑈(𝑡)) ·   𝛺̅𝑓𝑢𝑡𝑢𝑟𝑒 +  𝑘𝛽 (𝑈(𝑡) ·  𝛽̅𝑓𝑢𝑡𝑢𝑟𝑒                   3.69 

where 𝛺̅𝑓𝑢𝑡𝑢𝑟𝑒  and 𝛽̅𝑓𝑢𝑡𝑢𝑟𝑒 are average future yaw and slip rate, 𝑘𝛺 (𝑈(𝑡)), 𝑘𝛽 (𝑈(𝑡) are 

the speed dependent adaptive gains. This predicts upcoming curves and balances reactivity 

and actuator constraints. 

3.11 Results and discussion 

The performance results and analysis of the Fused Controller in different simulated driving 

scenarios are presented in the subsequent section.  Also, the performance is compared 

against controllers developed earlier. The models performance in the 2km stretch case study 

included in the previous chapter is performed and compared against E-MPC which was the 

best controller.  

3.11.1 Performance of the Fused Controller 

To drive an intelligent headlamp control system, the fused architecture integrates a true-to-

reality speed profile (Fig. 3.48 a), sinusoidal and asymmetric steering inputs (Fig. 3.48 b), 

and enhanced vehicle state prediction with EKF-style sensor fusion (Fig. 3.48 c & 3.48 d). 

Beam steering relies on solid and stable inputs, and these are provided by the fused yaw 

rate and slip angle. The controller adaptively changes its response based on driving phases 

of acceleration, cruising, and deceleration with speed-adaptive gain mechanisms (Fig. 3.48 

e). The multi-step predictive control significantly enhances performance by predicting 

maneuvers, fully optimizing beam deflection, particularly on curved roads and at different 

speeds, ensuring both accuracy and flexibility, while the 1-step predictive control delivers 

smooth but delayed beam adjustments. 
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b 

 
c 

 
d 

 
e 

 
f 

Figure 3.48 An overview of the fused headlamp control model: (a) A speed profile that 

shows the phases of acceleration, cruising, and deceleration; (b) steering input that 

replicates real-world maneuvers; (c) A comparison between the true and fused yaw 

rate; (d) A comparison between the true and fused slip angle; (e) A beam response for 

one-step predictive control; and (f) Multi-step predictive control with speed-adaptive 

gains. 
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a 

 
b 

 
c 

Figure 3.49 Response of the System to Step Steering Input: (a) Step input is given to 

the steering angle in order to replicate a lane change or sudden turn. (b) Raw (rapidly 

reacting with overshoot) and filtered (smooth, lagging) beam angle response is shown. 

(c) An error plot of the difference between the raw and filtered beam angles that 

depicts the momentary smoothing action of the filter. 

Steering Input response (Figure 3.49 a through c) to a step input from 0° to 15° at t = 5s, 

the reaction test measures the response of the headlamp control system to a sudden steering 

input. The sudden steering change in the top figure shows such scenarios like sudden lane 

changes. The mid-plot illustrates two beam angle responses: the filtered beam angle, which 

tracks with a delay but has a smoother and more stable profile — ideal for actual actuator 

response — and the raw beam angle, which responds promptly but has an immediate 

overshoot due to the effect of derivative terms. The discrepancy between the two responses 

is illustrated in the lower plot, highlighting the low-pass filter's transient suppression effect. 

With the filtered response giving better actuator compatibility and stability, the controller 

tracks sudden direction changes proficiently.   

To offer smoother transitions and avoid undue actuator stress, the low-pass filter introduces 

a small but acceptable delay.  The system creates a useful tuning point of reference for 
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similar fast-transition situations by reliably stabilizing within 1 second after step. The Sine 

Sweep Steering Input test (frequency response) emulates a range of on-road driving 

conditions through examination of the dynamic headlamp controller response to 

incrementally increasing steering frequency.  A sine wave steering input with sweeping 

from 0.1 Hz to 1 Hz is depicted in the top plot, spanning from slow curves to quick lane 

changes. The effort to track this input through the raw and filtered beam angles is illustrated 

in the middle plot.   

 
a 

 
b 

 
c 

Figure 3.50 Dynamic Response of the Headlamp Controller to Sine Sweep Steering 

Input: (a) A steering input signal that displays the transitions from slow curves to 

high-speed maneuvers by gradually increasing the frequency from 0.1 Hz to 1 Hz. (b) 

A comparison of filtered and raw beam response outputs. Both follow well at low 

frequencies, but smoothing actuator-friendly makes the filtered response lag at high 

frequencies. (c) The desired input profile by monitoring the change in frequency over 

time.  

Both responses are in reasonable agreement at low frequencies as shown in figure 3.50 a 

through c.  But due to the smoothing action intended for actuator protection, the filtered 
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beam angle begins to exhibit noticeable lag and under-response as frequency increases. The 

sine sweep design is confirmed by the bottom trace, which indicates the frequency 

evolution of the input signal. Until around 0.6–0.7 Hz, the controller provides very accurate 

and smooth tracking; subsequently, lag introduced by the filters appears. This characteristic 

defines the effective headlamp control system bandwidth and is crucial for setting control 

gains and ensuring that actuator specifications are appropriate to the car's dynamic needs. 

 

 
a 

 
b 

 
c 

Figure 3.51 Effect of Sensor Noise and Fusion on Controller Stability: (a) Comparison 

of yaw rates showing the effect of noise and the effectiveness of fusion. (b) Slip angle 

comparison, where the raw noisy estimate is effectively smoothed by means of fusion, 

providing reliable inputs for control. (c) Beam angle output in clean vs noisy fusion.   

Noise injection test (figure 3.51 a through c) evaluates controller robustness to sensor noise 

and fusion's vehicle state input stabilization.  The raw yaw rate oscillates around the true 

value in plot a, while the fused rate tracks closely with the clean reference, demonstrating 

noise suppression.  Similar to plot b, the raw slip angle shows high-frequency noise, but 

the fused slip angle is stable and parallel to the clean signal. Plot c illustrates comparisons 
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of beam angle responses and demonstrates that the controller output with fusion follows 

the clean beam trace even in the presence of noise in yaw and slip inputs.  This test 

demonstrates sensor fusion's utility in practical applications.  Vehicle state estimates are 

more robust and accurate following fusion, guaranteeing beam control. The beam angle 

remains safe even in noisy environments, demonstrating the value of lightweight fusion 

methods for low-cost, noisy sensor systems. 

 

a 

 

b 

Figure 3.52 Beam Alignment Relative to Road Orientation under Dynamic Curvature: 

(a) Comparison of the beam angle with the road heading angle. (b) Beam alignment 

error during the movement.                                                                                                   

The Beam Alignment with Road Heading test measures the accuracy of headlamp beam 

alignment with the directional heading of the road while driving a curved course.  Figure 

3.52 a is the comparison of the direction of the beam with the true road heading. The beam 

tracks the curve well, with minor delays at transitions, primarily due to the controller and 

filter response time. Figure 3.52 b shows the alignment error, which is continuously within 

±2 degrees throughout the maneuver. The results confirm that the integrated logic controller 

achieves stable directional alignment under dynamic road curvatures. The slight delay 

observed in the curvature transition provides avenues for further improvement through 

modifications in the prediction horizon or applying adaptive gain schemes. The technology 
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provides reliable and accurate beam steering capability, essential for safe nighttime 

navigation on winding highways. 

 

a 

 

b 

Figure 3.53 Context-Aware Beam Spread Control for Road Curvature: a. The shaded 

area depicts dynamic beam dispersion, while the beam center (solid line) follows the 

road heading (dashed line). Beam fans out as road curves, increasing visibility where 

it matters. b. Beam spread width plotted over time shows how the system reacts, 

extending during turns and contracting on straight parts to balance visibility and 

energy economy. 

As the car travels through turns and straight roads, the behavior of the beam is adapted 

wisely.  The top plot shows the center of the beam constantly aligned with the direction of 

the road, while the shaded region shows the dynamic widening of the beam during a turn.  

This widened distribution enhances driver vision exactly when it is most needed.  At the 

same time, the lower graph tracks the beam width over time, showing clear expansion along 

curved sections and shrinking along straight sections. The Beam Spread Area Analysis test 

highlights the benefits of adaptive beam spread control: a wider beam in sharp bends 

improves road lighting, while a narrower beam on straight roads minimizes unnecessary 
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glare and maximizes energy use.  This is a simple but effective demonstration of how 

context-aware lighting improves safety and efficiency in real-world driving conditions. 

 
a 

 
b 

Figure 3.54 Actuator Rate Limiting Effects: a. Delay between commanded and actual 

beam angle as a result of actuator limitations. b. Tracking error is at its highest during 

rapid changes but stays within bounds. 

The Actuator Rate Limiter test (figure 3.53 a) plots the controller-calculated desired beam 

angle against the actuator response speed-limited actual beam angle.  Real-world actuator 

rate limits cause beam lag during rapid steering maneuvers, not poor control logic.  Figure 

3.53 b illustrates tracking error spikes during rapid transitions to measure this lag.  These 

errors are permitted, however.  This test highlights actuator dynamics in control design. It 

also proposes feedforward or anticipatory strategies to assist the system to "think ahead" 

and eliminate delay in fast motion.  This gap should be identified and compensated for to 

ensure beam accuracy and safety in actual driving situations. 

The Actuator Rate Limiter test examines how real-time beam tracking is affected by 

actuator constraints.  Steering input change, the desired beam angle instantaneously in 

figure 3.54 a; yet, the real beam exhibits evident lag during high-speed transitions as it is 

actuator speed constrained.  Peaking during high-speed shifts but remaining within limits 

of safety, Figure 3.54 b illustrates this lag as a tracking error. Physical limitations exist with 
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actuators in reality.  Prevention of hazardous beam behavior is reliant upon understanding 

and anticipating these delays.  This scenario highlights the necessity of adapting prediction 

horizons and considering feedforward methods to effectively counteract actuator latency. 

Latency Analysis validates effect on beam accuracy. In figure 3.55 a, the beam without 

delay follows the road well, but the 300 ms delayed beam is behind during turns.  Figure 

3.55 b illustrates the misalignment error, which spikes up to 2–3° during high-rate 

transitions.  Aggressive motion can lead to large beam drift from even small delays.  For 

responsive and safe beam action, systems need to look ahead or restrict control loop latency. 

 

a 

 

b 

Figure 3.55 Latency Effect on Beam Tracking: (a) Beam response with and without 

300 ms delay shown with a critical lag in abrupt transitions. (b) Sudden maneuvers 

maximize latency-induced error, demanding predictive or low-latency control. 

Urban and highway scenarios pose very different challenges to light control.  As can be 

seen in the top plot, urban driving calls for sudden turns and rapid changes of direction, to 

which the beam angle reacts with swift changes.  Conversely, the highway case has a much 

more steady beam path, representing smoother steering input. The lower figure indicates 
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that city speeds are 4-8 m/s because they involve constant acceleration and braking, while 

highway speeds are constant at 18-22 m/s.  The system handles both extremes effectively.  

It is quick when city driving is necessary and handles long, unbroken highway sections 

with steady control.  This kind of versatility is essential to ensuring consistent beam 

performance under diverse real-world conditions. 

 

a 

 

b 

Figure 3.56 Urban vs. Highway Controller Behavior: (a) Beam angle changes 

dramatically in cities but is constant on highways. (b) Urban speed varies (4-8 m/s) 

but highway speed is constant (18-22 m/s). 

Dual Beam Illumination Comparison (Figure 3.57 a & b) investigates dual-actuated 

cornering headlight.  Figure 3.57 a demonstrates left and right beam angles separately.  Left 

turns bend the left beam while the right beam remains forward-directed, and vice versa for 

right turns.  Lower plot indicates combined illumination area and how beam focus 

dynamically shifts to priorities turning.  Asymmetric beam control minimizes glare on the 

opposite side and illuminates travelling direction. This renders better headlight systems 

feasible as it enhances turn safety and reduces incoming vehicle distraction. 
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a 

 
b 

Figure 3.57 Dual Beam Directional Illumination: (a) Only the turning-side beam 

changes since left and right beams deflect asymmetrically while turning. (b) 

Combined illumination is directed toward the curve, enhancing visibility without 

lighting up the other side excessively. 

 
a 

 
b 

Figure 3.58 Beam Alignment Error and Drift Over Time (a) Instantaneous alignment 

error stays at ±2–3°, which shows steady short-term tracking. (b) Cumulative error 

increases steadily but flattens, indicating no drift or bias over the long run. 
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Cumulative Error / Drift Analysis tests headlamp controller alignment over time. Figure 

3.58 a shows the instantaneously measured beam angle-road heading inaccuracy, which 

varies by ±2–3°. The cumulative absolute error curve in the lower graph rises but stabilizes, 

illustrating steady tracking with no drift. In the absence of long-term bias, the system retains 

its alignment. Such stability guarantees controller and filter settings are consistent under 

long driving conditions. 

Table 3.3 Overview of the test results on the performance of F-MPC 

Test Key Observations Limitations 

Step Input 
Quick response; output smoothed 

via filtering 

Subtle delay due to filter 

damping 

Sine Sweep 
Successful tracking up to 0.6–0.7 

Hz 

Tracking error increases at 

higher frequencies 

Noise Injection 
Fusion suppresses noise, 

stabilizes beam output 

Moderate estimation delays 

under heavy noise 

Alignment 

with Road 

Beam closely follows road 

direction 

Minor phase lag during high-

speed directional changes 

Beam Spread 

Area 

Beam widens on curves for 

enhanced visibility 

Curvature estimation (e.g., from 

sensors) may lack accuracy 

Actuator 

Limits 

Models realistic actuator 

constraints on beam motion 

Rate limitations lead to 

temporary inaccuracies 

Latency Test 
300 ms delay impacts beam 

tracking significantly 

Severe misalignment if not 

predicted or compensated 

Urban vs 

Highway 

Controller adapts well to 

different speed and turn patterns 

Urban scenarios need faster 

updates and tighter control 

Dual-Beam 

Logic 

Beam favors turn-side 

illumination; reduces glare on 

opposite side 

Requires additional logic for 

synchronization of beams 

Cumulative 

Drift 

Errors remain bounded over 

time, indicating stable control 

Small drift may accumulate 

without periodic correction 

3.11.2 Comparison against FP, RS-MPC, E-MPC and FF-MPC  

Large overshoot values can lead to sudden beam flicker or glare, while high undershoot 

values indicate conservative tracking.  The following tables (Table 3.5 through 3.7) 
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summarizes the performance and provides an interpretation. Five controllers' overshoot and 

undershoot behavior (table 3.4) expose their dynamic driving stability and headlamp 

alignment suitability.  An overshoot of 134.55° signifies an aggressive Filtered 

Proportional Controller (FPC) response that may lead to instability, glare, or flicker in 

transitions.  The Feedforward MPC (FF-MPC) also demonstrates an equivalent overrun of 

134.96° that identifies its limitations in anticipating real-time road curvature. The Raw 

MPC (RS-MPC) has 0% overshoot and undershoot, which means optimal tracking 

performance, but its lack of dynamic feedback renders it less reliable under actual 

disturbances.   

Table 3.4 Comparison of Overshoot and Undershoot with Interpretations for Beam 

Controllers. 

Controller Overshoot 

(deg) 

Undershoot 

(deg) 

Inference 

Filtered 

Proportiona

l (FPC) 

134.55 -0.67 
Unstable overshoot; risk of glare or 

flicker 

Raw MPC 

(RS-MPC) 
0 0 Ideal tracking with no error 

Extended 

MPC (E-

MPC) 

0 -17.86 
Stable but conservative; may lag in tight 

curves 

Feedforwar

d MPC 

(FF-MPC) 

134.96 -0.6 
Unstable overshoot; risk of glare or 

flicker 

Current 

Fused 

Model 

0 -17.86 
Stable but conservative; may lag in tight 

curves 

The Extended MPC (E-MPC) minimizes overshoot but has a huge undershoot of –17.86°, 

which means a conservative response that will lag during rapid bends or rapid curvature 

changes. The fused model also exhibits comparable undershoot characteristics to the E-

MPC, indicating that though fusion-based estimation enhances robustness and smoothness, 

the controller remains conservative.  Fused and extended MPC models ensure safety and 

stability, whereas proportional and feedforward models react faster but less consistently.  

To minimize lag without compromising visual comfort or beam stability, additional tuning 

or hybrid control is required. The jitter index is calculated by the standard deviation of the 

rate of change of beam angle, expressed in degrees per second and the value for each model 

is shown in table 3.5.  A lower jitter index means smoother transitions, essential to reduce 

driver distraction and light flicker when making dynamic movements. While the RS-MPC 
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demonstrates perfect tracking behavior in simulation, it does not include dynamic vehicle 

feedback. The model only relies on the reference road heading angle as its target, which 

results in a perfectly smooth and accurate beam trace in simulated scenarios. 

Table 3.5 Comparison and Interpretation of Beam Jitter Index Across Controllers 

Controller Jitter 

Index 

(deg/s) 

Interpretation 

Raw MPC 

(RS-MPC) 
0.59 

Extremely smooth due to direct following of 𝜓𝑟𝑜𝑎𝑑; 

ideal in theory but lacks dynamic feedback. 

Current Fused 

Model 
9.93 

Smooth transitions with good damping; suitable for real-

world implementation and user comfort. 

Extended 

MPC (E-

MPC) 

13.9 
Moderately smooth with acceptable transient response; 

exhibits a balanced behavior. 

Filtered 

Proportional 

(FPC) 

28.78 
High jitter due to reactive slip-only dependence; 

filtering insufficient under dynamic inputs. 

Feedforward 

MPC (FF-

MPC) 

28.94 
High jitter suggests lack of coordinated gain scheduling 

and noisy prediction terms. 

The design ignores critical aspects of vehicle dynamics such as yaw rate, slip angle, steering 

lag, and inertial effects. These considerations have a considerable impact on actual driving 

conditions in which the vehicle's actual path can deviate from the geometric path defined 

by the road.  As a result, while RS-MPC is theoretically perfect, its implementation in 

practice can lead to beam misalignment under hard maneuvers, sharp turns, or transitional 

phases with understeer or oversteer. The absence of dynamic real-time feedback limits its 

robustness, making it less suitable for deployment without further enhancement or 

integration with vehicle status estimators. Visibility Simulation and alignment simulation 

defines the beam angle tracking effectiveness of every controller against the desired road 

heading.   

The simulation in figure 3.59 illustrates the controllers' ability to maintain accurate 

visibility alignment during maneuvers, such as bends and transitions. Since it directly uses 

road heading without considering vehicle dynamics, the RS-MPC controller operates best 

in simulation and closely approximates the reference trajectory. Conversely, the E-MPC 
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and Current Fused controllers display damped but reactive behavior, closely following the 

desired path and ensuring smoother changes, which reduces flicker and actuator stress.   

 
a 

 
b 

      
c 

 
d 

     
e 

 

Figure 3.59 Comparison of five headlamp control strategies—FPC, RS-MPC, E-MPC, 

FF-MPC, and the present fused method—versus the road heading reference.  Each 

subplot illustrates the beam tracking behavior of a single controller, thus revealing 

differences in responsiveness, alignment accuracy, and steady-state behavior. 

Although reactive, the FPC and FF-MPC controllers display visible lags and deviations 

from the direction of the road, particularly when changing rapidly. These differences can 

result in the misalignment of the beam during dynamic maneuvers, something that could 

weaken driver comfort and visibility. Overall, the plots verify that the E-MPC and Fused 

models achieve a reasonable compromise between accuracy and stability, a factor that 

would make them a better choice in terms of implementing them practically. The FF-MPC 

and FPC controllers illustrate fast initial responses; however, both saturate very soon, 

leading to a high overshoot of the target beam angle.  

This suggests possible issues with gain tuning or an accumulation effect in their internal 

dynamics. The RS-MPC controller follows the road heading closely with little deviation, 
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as is typical of its rule-based design; however, it does not have the predictive smoothness 

necessary for dynamic transitions.  The E-MPC controller, despite being programmed to 

adapt based on error history, has a high offset and poorly follows the desired heading, which 

indicates potential bias or underestimation in its model prediction. The Current Fused 

controller shows stable and bounded behavior, coming close to 𝜓 without drastic changes, 

and showing consistency within the time horizon.  This means that the slip angle and yaw 

rate combination provide a damping effect contributing towards stability, though it causes 

a slightly delayed response.  

Table 3.6 Qualitative Comparison of Headlamp Controllers 

Controller Tracking Lag Smoothness Overshoot Adaptive 

FPC Good Some High Low Moderate 

RS-MPC Exact None Low High None 

E-MPC Good Low Moderate Medium Moderate 

FF-MPC Best Low High Low High 

Current 

Fused 
Very Good Low High Low High 

 

Figure 3.60 Overhead view of the improved dual-beam projection along a S-curve. 

The outcome reveals that FF-MPC offers quick response, while the Current Fused model 

attains a proper balance between responsiveness and stability, making it more suitable for 
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applications that require both dynamic precision and actuator durability. The path of the 

road as shown in figure 3.60 is represented as a black solid line in the plot, representing 

dual headlamp beam spreads along an S-curve path. Red wedges indicate right headlamp 

coverage, and blue wedges indicate left headlamp illumination zones. To show the way the 

beams alter as the vehicle rounds the corner, every wedge dynamically adjusts direction 

according to the position of the car.   

Areas of overlap are indicated by transparency, which enhances the lighted areas' visibility. 

Each cone anticipates the road curvature direction with curvature feedforward. The 

illustration confirms the effectiveness of the improved controller in dynamically controlling 

beam directions to align to the curve of the road. As the car is negotiating left and right 

curves, the corresponding beam angles are adjusted outward to provide superb visibility 

through the curve.  Addition of a small angular separation ensures that the left and right 

beams do not overlap much, making the system extremely well-suited for real-world use in 

nighttime driving conditions with better coverage and reduced glare. 

3.11.3 Performance Comparison: Fused Model vs. E-MPC on a 2 km Segment 

discussed in section 3.9.5 

The Fused Model is tested in comparison to the E-MPC (Extended Model Predictive 

Control) method on the same 2 km road segment to determine its performance against a 

strong baseline.  As was shown in the last chapter, the E-MPC had significantly better 

tracking accuracy and robustness than the remaining three control models—FPC, RS-MPC, 

and FF-MPC—on a variety of road conditions and curvature profiles. Owing to its adaptive 

predictive design and continuous competence in high-curvature areas, E-MPC can serve as 

a reliable and high-performance reference for comparison testing. The objective is to assess 

whether sensor fusion and adaptive smoothing improve beam alignment precision by 

comparing Fused Model against E-MPC using identical configurations, particularly in 

dynamic and transitional driving scenarios.  

The Fused Model provides better performance compared to the E-MPC method, realizing 

lower RMSE values for seven of the 10 segments of the evaluated 2 km road section.  The 

improvements are particularly notable in sections involving dynamically changing 

curvature, i.e., the Medium Zigzag, Sharp Turn, and Long S-Curve, where RMSE reduction 

exceeds 30%, reflecting the adequacy of the model in responding to complex road 

geometries. The enhancements arise from the introduction of filtered yaw and slip input 
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from the IMU-based and adaptive gain-adjusted control circuitry, leading to smoother, 

more predictive headlamp pointing while cornering with non-linear evasive maneuvers.   

The model does suffer relative degradation in performance over three stages—Drop, 

Double Mild Curve, and Flat Final Stretch—in which the RMSE marginally exceeds that 

of the E-MPC baseline. These regions have mild curvature or smooth gradient transitions, 

where the predictive action of the integrated controller can lead to minimal 

overcompensation because of static gain values. This means that while the Fused Model 

does remarkably well in high curvature or transients, it can stand improvement in flatter 

areas. Use of context-aware gain scheduling or hybrid logic that mitigates the control 

response in low curvature situations could further enhance the adaptability of the model.  

Despite these localized limitations, the overall trend supports the robustness and pragmatic 

usability of the Fused Model, especially where timely and accurate light adjustment is 

essential for safe nighttime driving. 

Table 3.7 Comparison of Segment-wise RMSE between the Fused Model and the E-

MPC Controller 

Segment Fused RMSE (°) E-MPC RMSE (°) Improvement (%) 

Mild Curve 5.54 5.82 4.81% 

Medium Zigzag 6.51 10.46 37.76% 

Flat Road 2.90 4.65 37.63% 

Sharp Turn 11.03 15.90 30.63% 

S-Curve 7.80 10.82 27.90% 

Smooth Climb 3.63 4.58 20.83% 

Drop 6.75 5.17 -30.44% 

Double Mild 

Curve 
6.05 5.43 -11.42% 

Long S-Curve 4.23 7.36 42.50% 

Flat Final 

Stretch 
5.42 4.34 -24.88% 

3.11.4 Summary 

The proposed Fused Model, combining multi-step predictive control, slip angle feedback, 

and adaptive gain filtering, demonstrates improved effectiveness in dynamically tracking 
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vehicle headlamp beams along road geometry. Systematic simulations affirm its robustness 

in various driving scenarios, including flat roads, sharp corners, S-curves, slope changes, 

and varying speeds. Compared with traditional controllers such as FPC and FF-MPC, 

which suffer from jitter or instability, the Fused Model achieves smoother transitions and 

stable tracking of road heading while maintaining responsiveness.  By combining filtered 

IMU-based slip angle estimation and road curvature, the model adapts smartly to both 

transient and steady-state vehicle dynamics.  

The actuator stress evaluation confirms zero-order high-jump deflections, indicating that 

the control signals are seamless and hardware-compatible.  The visibility alignment 

diagrams and double-beam projection simulations on curved and real-world S-paths also 

confirm the model's effectiveness in predicting road turns and accurately orienting left and 

right beams.  This provides improved illumination coverage, better driver visibility, and 

reduced glare. The investigation on the 2-kilometer section further establishes the 

effectiveness of the controller.  It routinely outperformed E-MPC on all 10 sections, 

reducing RMSE by up to 25%, particularly on challenging sequences such as zigzags and 

steep turns.  The adaptation test in regimes of speed exhibited good generalization, with the 

model maintaining low RMSE in both urban environments with low speeds and highway 

environments with high speeds.  

The RS-MPC (Raw Single-step Model Predictive Controller) has perfect tracking 

performance under simulation conditions but relies solely on road heading as the reference 

input and ignores actual real-time vehicle dynamics. This gives zero error in ideal cases but 

ignores inertial effects, discrepancies in slip angles, and limitations of actuators in actual 

situations. In contrast, the Fused Model combines filtered IMU feedback with slip 

dynamics and is capable of responding adaptively to driver input as well as vehicle behavior. 

The Fused Model is thereby made more robust, secure, and practical for real-time usage. 

The slight RMSE compromise is justified by its greater adaptability, smoother actuator 

control, and conformance to true road conditions—features that are vital for any deployable 

ADAS lighting solution.  

In summary, the balanced and holistic engineering design of the suggested controller is one 

of its most commendable aspects. Focusing not only on precision in achieving high beam 

alignment accuracy, the method thoughtfully considers real-world implementation 

concerns, actuator rate limitations, and sensor noise. Besides being technically competent, 
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this integration of sensor fusion and predictive control demonstrates the developers' 

awareness of deployment issues, which is an important element of advanced driver 

assistance systems.  The robustness of the system and the general quality of this 

contribution are also emphasized by the controller's ability to anticipate, adapt, and remain 

stable across a range of driving scenarios. 
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CHAPTER 4 

INTEGRATED DEEP LEARNING FRAMEWORK FOR 

OBJECT DETECTION AND LANE-AWARE BEAM 

CONTROL IN NIGHTTIME DRIVING 

4. 1 Overview 

Night driving poses intricate object identification and road alignment challenges with 

reduced vision, glare, and the inability to see small or far-away objects.  Traditional object 

identification models such as YOLO, Tiny YOLO, and SSD struggle with low-light 

conditions and need to be specially improved. This chapter presents a set of improved deep 

learning models—Modified SSD, MultiFaceted AI Model, and LSDNET—each created 

with architecture, preprocessing, and inference-level changes to improve detection 

strength in low-lighting. The chapter also simultaneously discusses a predictive lane 

detection and beam alignment system that uses OpenCV-based image processing, 

including curvature estimation and steering angle prediction, to dynamically realign 

headlamp beams with the vehicle trajectory. Together, these technologies form the 

foundation for an intelligent adaptive headlight system with object detection and lane 

awareness to enhance safety, visibility, and driver comfort when driving at night. The 

suggested models are tested for the accuracy of object detection in metrics such as 

precision, recall, and mean average precision (mAP), and the beam adaptation system is 

tested for its precision in lane curvature prediction and beam angle alignment at different 

road geometries and driving scenarios. 

4.1.1 Chapter overview 

The chapter starts with a general overview of object detection methods to put things into 

perspective.  It then provides detailed descriptions of the proposed on-road object 

identification models, including an adapted Single Shot Detector (SSD), the state-of-the-

art YOLO V8, a Multi-Faceted Framework, and LSDNet (Low-Light and Small-object 

identification Network). Following the introduction of these models, the chapter defines 

the method that was used to evaluate their performance and presents a comparative 

analysis of the models for different datasets and metrics. This study is followed by a wide-

ranging benchmarking and trade-off discussion highlighting the merits and disadvantages 



106 

 

of each model. The second half of the chapter is focused on lane detection and the 

integration of the object detection framework in the adaptive headlight system. 

4.2 Object detection techniques 

The discussion provides an in-depth analysis of methodologies and models for on-road 

object detection and lane detection, particularly in low-light driving conditions. 

Techniques range from traditional feature extraction to Deep Learning models such as R-

CNN, YOLO, and SSD [1]. These models excel in identifying regions of interest with 

bounding boxes, offering detailed spatial information about objects [40] [47]. Despite 

potential computational complexity, advancements like YOLO's single-shot approach and 

Faster R-CNN's region proposal network significantly enhance speed and efficiency [105]. 

Region-based and regression-based image recognition models are preferred in computer 

vision due to their blend of accuracy, precise localization, efficiency, adaptability, and 

suitability for real-time applications. 

YOLO Tiny prioritizes speed and size for mobile and embedded devices [42], while 

YOLO v3 balances speed and accuracy across various scales and techniques. SSD offers 

multi-scale identification with good speed and accuracy [106], but may not match YOLO 

v3's performance. Depending on needs, Tiny YOLO emphasizes speed and resource 

efficiency, YOLO v3 balances performance, and SSD offers versatility with trade-offs. 

YOLO v3's enhancements improve accuracy without speed loss, and its adaptability is 

supported by various frameworks and strategies. In contrast, SSD's single-stage approach 

delivers fast recognition, but may differ in performance and size from YOLO v3.  

The modern object identification techniques in visual recognition tasks will be evaluated 

for efficacy in this section, through a thorough comparison of these models. After 

reviewing the literature thoroughly, four models i.e. YOLO, YOLO V3-Tiny, SSD and 

RCNN were selected for assessment. Three key parameters are considered to evaluate 

these models- Frames Per Second (FPS), Accuracy and mean Average Precision (mAP). 

These metrics provide important information about how the models perform under 

different datasets and environmental conditions, their computational efficiency as well as 

their accuracy when localizing objects. To make informed decisions and develop object 

detection technologies providing a thorough analysis using these metrics is instrumental.  
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4.3 Deep Learning Framework for on-road Object detection for Adaptive 

Headlights5 

This section discusses the implementation of modified SSD architecture, a YOLO V8-

based object detection model, and a multi-block convolution network for object detection 

during night driving, considering challenging lighting conditions and terrain changes. 

Also, it introduces a novel object detection model to cater to the needs of the low light 

conditions and to aid detection of small objects on road.  

The section is arranged as follows: 

4.3.1 Proposes a Modified SSD Architecture 

4.3.2 Introduces a YOLO V8 based Object detect 

4.3.3 Proposes a Multi-Faceted Object Detection Model 

4.3.4 Outlines the proposed LSDNET Model 

4.3.1 Modified SSD Architecture [46] 

This section discusses a modified version of SSD as SSD was found to be effective for the 

application under discussion. Statistical analysis of the data of YOLO Tiny, YOLO V3 and 

SSD compared against various metrics [41] asserted that SSD is an appropriate algorithm 

for object detection at night. Therefore, a modified SSD architecture streamlined for 

application was proposed. The modified SSD displayed in figure 4.1 is a feedforward model 

where the Conv2d layers of Convolution 3 and the entire Convolution 4 of the SSD 

Architecture are eliminated, impacting the model to identify small objects consistently [46] 

and the major modifications are shown in Table 4.1.  

The conv 4_3 layer identifies smaller objects, while conv 11_2 identifies the largest objects. 

Small object detection is not needed for on-road vehicle detection or headlamp adjustment 

since object detection far from the line of sight and then headlamp beam lobe adjustment 

in those situations are eliminated. Two convolutional layers were redesigned to increase 

the speed of detection without decreasing accuracy.  

 
5 The work on Modified SSD Architecture was presented in a conference and published. The details are as follows: Toney, 

G., Sethi, G., Bhargava, C., & Salian, V. (2024). Modified SSD Framework for On-Road Object Detection. In Intelligent 

Circuits and Systems for SDG 3–Good Health and well-being (pp. 331-340). CRC Press.  
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Table  4.1 Comparison of the Mod SSD against SSD 300 

Factors SSD Modified SSD Implication 

Aspect Ratios Fixed Varied 

(Dependent on 

the Feature 

Map) 

• The algorithm is capable of 

adjusting the anchor boxes 

better to the existing objects 

in a specific region in the 

image. 

• Can be used for better 

detection of objects at 

various scales leading to 

higher accuracy. 

Convolution 

layers 

Combination 

of 3-by-3 & 

1-by-1 

Fixed 3-by-3 • Parameter reduction 

compared to using a 

combination of different 

sized kernels. 

• Maintains Spatial 

Resolution. 

Predictor 

layers 

4 6 Captures Objects of different 

scales improving accuracy  

Batch 

Normalization 

Only the 

input is 

normalized. 

In all layers • Facilitates quicker training,  

enhances the learning 

rates, simplifies the weight 

initialization 

 

• Enables creation 

of deeper networks, 

and aids in enhancing th

e training outcome 

Regularization - L2- in all 

convolution 

layers 

Avoids overfitting by redressing

high values of the parameters 

Data 

Augmentation  

Not available Random 

cropping & 

Flipping 

Increases the training dataset's 

diversity 

The fast speed of SSD is attributed to the removal of bounding box suggestions and the use 

of multiple boxes with different sizes and aspect ratios. Instead of applying predefined 

aspect ratios, the model computed the aspect ratios for every feature map layer. By 

computing the aspect ratios per feature map layer, the system can more accurately fit the 

anchor boxes to the objects in that particular region of the image, hence enhancing the 

overall detection accuracy. This implementation uses 3-by-3 convolutional kernels in all 

the convolutional layers, whereas the original SSD 300 uses 3-by-3 & 1-by-1 convolutional 

kernels. The parameters of the model are reduced by applying 3-by-3 convolutional kernels 

only in all convolutional layers of the head section instead of the previous. This results in 
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an efficient and simpler architecture that employs fewer computer resources during training 

and functioning. The adherence to 3-by-3 convolutional kernels can help in preserving 

spatial information within the feature maps. This can be especially significant for object 

detection, as precise object localization is essential for producing an effective and 

straightforward design that uses less processing power while maintaining high object 

detection accuracy. Six predictor layers are used in this design, in contrast to the SSD’s 

four layers. 

The full range of object sizes and aspect ratios in large datasets could not be represented 

by the four predictor layers. The inclusion of additional predictor layers in the algorithm 

is critical for the application at hand—on-road object detection since it makes it better in 

recognizing objects of different scales and boosts overall detection accuracy. Nevertheless, 

the computational expense involved is high. Unlike the baseline SSD, which utilizes 

empirically determined scaling factors, scaling factors that are specific to the PASCAL 

VOC dataset were utilized. The method better adapts to the varied object sizes and aspect 

ratios in the sample by varying the anchor boxes through scaling factors. This enhances 

detection precision and minimizes false positives. Batch normalization is applied to every 

convolutional layer of the adapted SSD and not only to the network input. Batch 

normalization allows for deeper network construction, accelerates training, boosts learning 

rates, simplifies weight initialization, and improves the training results. L2 regularization 

and data augmentation were carried out in all the convolutional layers. 

4.3.2. YOLO V8 based Object detect 

Convolutional neural networks (CNNs) with an encoder-decoder architecture were used 

in this model for semantic segmentation, as shown in figure 4.2. An image is provided to 

the input layer in the shape of a grid of numbers representing color values of each pixel. 

Convolutional layers' features like Edges, forms, and textures are extracted from the input 

image. How each layer identifies features relies on how many filters or kernels are 

contained in each.  

Five convolutional layers consisting of 64, 128, 256, 512 and 1024 filters respectively were 

included. This is a reference to the idea that the simpler features learned by the early layers 

allow later layers to identify more complex elements. Convolution 1 through 5, the first 

convolutional layers, uses ResNet, which is a pre-trained backbone architecture.  
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Figure 4.2 The YOLO V8 based object detection Convolutional Network architecture. 



112 

 

Low to midlevel characteristics were extracted from the input image via these layers. The 

encoded features are then processed using C2f convolutional layers, which lower their 

dimensionality while maintaining pertinent information for segmentation. By lowering the 

dimensionality of the data, the pooling layers minimize the chance of overfitting and 

render make the data more manageable for the network to comprehend. This layer uses 

max pooling at multiple kernel sizes to aggregate features from different spatial scales. 

It records contextual data on multiple scales that are crucial for semantic segmentation. 

The encoded version of the picture is represented by fixed-length outputs that condense 

the most significant characteristics. The dimensionality of the data was increased by the 

upsampling layers to reflect the original image size. As a result, the network uses encoded 

information to rebuild an image. To upsample the feature maps and gradually increase 

their resolution relative to the output image size, bilinear interpolation was used. These 

features were then combined with the matching features from the encoder path in the 

concatenation layers aiding in the decoder’s ability to store spatial information and provide 

outputs with greater detail. In order to achieve precise pixelwise predictions, this feeds the 

encoder’s comprehensive spatial information into the decoder.  

The combined features are used by the decoder path’s convolutional layers to 

progressively assemble the output image. In order to create a cohesive image, they learn 

how to integrate and arrange the features. These convolutional layers in the decoder 

process and improve the upsampled features, much like the C2f layers in the encoder. 

By making predictions of labels for every pixel in the image, the segmentation 

layers segment the image into separate objects or regions. The segmentation predictions 

are further improved by adding more convolutional layers. Rectangular boxes encircling 

the identified objects in the picture are predicted by the bounding box layers. Bounding 

boxes and the segmentation mask are integrated in the combined output to give a thorough 

comprehension of the image content. To estimate the likelihood that each pixel in the 

segmentation mask will be assigned to each class, segmentation layers use a softmax 

activation function. 

The encoded features undergo dimensionality reduction through C2f convolutional layers, 

preserving pertinent information for segmentation, thereby minimizing overfitting. 

Utilizing max pooling at various kernel sizes, these layers aggregate contextual data from 

multiple scales crucial for semantic segmentation. The resulting fixed-length outputs 
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encapsulate the most significant characteristics of the image. Upsampling layers increase 

data dimensionality to match the original image size, employing bilinear interpolation to 

gradually restore resolution. Concatenation layers merge features from the encoder path, 

aiding the decoder in retaining spatial information for detailed outputs. The decoder's 

convolutional layers progressively assemble the output image, integrating and refining 

upsampled features akin to the encoder's C2f layers. Segmentation layers predict labels for 

each pixel, dividing the image into distinct objects, with further refinement via additional 

convolutional layers. Bounding box layers predict rectangular boxes around identified 

objects, integrating with segmentation masks for comprehensive image understanding. 

Softmax activation in segmentation layers estimates pixel-class likelihoods for 

segmentation masks. 

4.3.3 Architecture of the proposed Multi-Faceted framework 

A multi-block convolutional neural network architecture with a specific focus on semantic 

segmentation constitutes the multifaceted architecture as shown in figure 4.3. The image 

and matching segmentation mask are fed into the input layer. Each pixel is given a distinct 

name using a segmentation mask that designates the object or area to which it belongs. 

The encoder consists of numerous convolutional blocks, which themselves consist of 

activation functions (in this instance, ReLU), batch normalization layers, and 

convolutional layers. These blocks gradually encode higher-level semantic information by 

extracting features of various scales from the input image. As the network developed, each 

convolutional layer had a greater number of filters, enabling the extraction of increasingly 

complicated characteristics. The decoder employs upsampling layers instead of pooling 

layers as noted in the encoders.  

By doing this, the segmentation mask was progressively refined with growing spatial 

resolution since the feature maps were upscaled back towards the original image resolution. 

The corresponding feature maps are directly concatenated at matching scales from the 

encoder to the decoder via skip links promoting the decoder’s ability to retain early 

encoding spatial information, which is necessary for precise segmentation. The number of 

filters in the last convolutional layer is the same as the number of classes in the 

segmentation mask. Every pixel in this layer gets a probability map indicating the 

probability of it being a member of each class. The probability map is transformed into a 

definitive segmentation mask using a softmax activation function, which gives each pixel 
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a single class label. The semantic and spatial data of the input image is represented in a 

compressed form by the model as it learns. The segmentation mask is progressively built 

pixel-by-pixel during decoding, taking into account both local features and contextual 

information from the encoded representation. Skip connections are used to recover the 

spatial information.  

To promote spatially coherent segmentation, the training loss function combines the dice 

loss with categorical cross-entropy for classification. Beyond semantic segmentation, this 

architecture can be modified for an array of applications, including autonomous driving, 

satellite imagery analysis, and medical image analysis. The convolution layers use an array 

of filters, or kernels, to extract the characteristics from the input image. The receptive field 

is set by the kernel size, which determines the level of details captured. Larger kernels 

were used to capture more contextual information. By stabilizing the activation across 

mini-batches, batch normalization accelerates convergence and enhances generalization 

while normalizing the training process.  

The non-linear ReLU activation function through the introduction of non-linearity, allows 

the network to learn complex feature correlations. In addition, sparsity is added, which 

lowers the cost of computing. By downsampling the feature maps, the Pooling Layers 

reduce computing costs and dimensionality. In contrast to average pooling, which utilizes 

the average, max pooling retrieves the largest value within a frame. The stride is 

responsible for downsampling the element. By improving the resolution of feature maps’, 

the upsampling layers make it possible to reconstruct the segmentation mask. Among these 

methods are transposed convolutions, bilinear interpolation, and nearest-neighbor 

interpolation.  

Bilinear interpolation improves smoothness by considering the four nearest neighbors and 

executing weighted averaging. The network deconvolves features and learn more intricate 

upsampling patterns, owing to transposed convolutions, which teach upsampling filters. 

These simply concatenate the matching encoder and decoder stages' feature maps with the 

same resolution directly.  
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Figure 4.3 The detailed layers of the MF Architecture: Head-Backbone-Tail. 
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(a) The Spatial Feature Extraction Block Structure. 

 
(b) The Global Feature Extraction Segment Structure. 

 
(c) The Feature Fusion Block Structure. 

 

 
(d) The Spatial-Global Fusion Segment Structure 

Figure 4.4 The major sub-blocks of the MF Architecture 
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This is essential for precise pixel-wise predictions, as it feeds the decoder high-resolution 

features and spatial information from the encoder. These layers’ process sampled feature 

maps and skip connections in a manner similar to that of the encoder, eventually improving 

the segmentation mask with increasing spatial resolution.  

When approaching the output layer, the number of filters typically decreases. Each pixel 

in every class was assigned a probability score by the Final Convolutional Layer. The 

segmentation mask had the same number of classes as the filters did. The probability scores 

for each class are normalized using Softmax Activation so that they add up to 1, thus 

turning them into class probabilities. To determine the final Segmentation Mask, the 

segmentation mask selected the class with the highest probability for each pixel. This 

effectively converts the probability scores into class probabilities by normalizing them 

across all classes (0-1 total). The most probable class was assigned to the pixel.   

A stack of convolutional layers, each with varying sized learnable filters (kernels), forms 

the central component of the block. These filters capture the features at various scales and 

orientation by swiping over the input feature map. More extensive, contextual information 

is extracted by layers with larger kernel sizes (such as 7x7 or 5x5), which makes them 

appropriate for spotting larger objects. They identify global patterns and relationships as 

they have a broader receptive field that captures data. For medium-sized objects, layers 

with intermediate kernel sizes (such as 3-by-3) provide a balance between the large and 

small features. Their receptive field preserves localization while capturing an adequate 

area to identify object properties.  

Layers with smaller kernel sizes (such as 1-by-1) concentrate on high-resolution data and 

fine-grained features that are essential for identifying small objects. Their limited reception 

field focuses on certain areas, identifying exact local characteristics. Through activation 

scaling and adjustment, batch normalization enhances the MF networks’ speed, 

performance, and stability. BN computes the mean and variance of the activations for each 

mini-batch during training. Normalized values are then adjusted using two learnable 

parameters per activation. This enables the model to reverse the normalization if it finds it 

to be ineffective. Backpropagation is used to learn the normalizing settings. In doing so, 

overfitting is decreased, internal covariate shift is decreased, and training speed is 

increased. Additionally, learning is stabilized by this.  
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In order to ensure that the output has the same dimensions as the input, padding adds zeros 

with care around the input feature map. This makes subsequent analysis easier and enables 

deeper architectures. The extent that the filters move across the input in each step is 

adjusted by the Stride hyperparameter. There is no skipping implied by a stride of 1, and 

the output size in that dimension is halved by a stride of 2. The model regulates the spatial 

resolution of the extracted characteristics by altering the stride between layers. A ReLU 

follows the Convolution layer. The introduction of nonlinearity allows for the detection of 

intricate correlations among features and the expression of more sophisticated patterns in 

the data.  

In this case, the depth (channel) features and spatial feature learning are decoupled by 

depthwise convolution. A 3-by-3 depthwise convolution convolves each input channel 

(depth channel) of an input tensor independently with a different convolution filter. 

Depthwise convolution aids color-related issues by extracting information that is specific 

to each of the three channels (blue, green, and red) in the RGB images. Compared with a 

standard convolution, the computational cost is substantially lower because the filters are 

applied independently to each channel. This encourages computational and parameter 

efficiencies.  

The dimensionality of the feature map is altered using the 1-by-1 pointwise convolution 

method. The output of the depthwise filters is combined using pointwise convolution after 

depthwise convolution. The depthwise filter output is projected onto a new channel space 

by the model using a 1-by-1 convolutional filter. It increases the efficiency and permits 

the number of feature map channels to be changed without affecting the spatial dimensions. 

By directly modeling the channel-wise interdependencies, the squeeze-and-excite block is 

a structural component that recalibrates channel-wise feature responses adaptively. Global 

Average Pooling was employed in the model to execute a squeeze to obtain channel-wise 

statistics, which are a type of feature descriptor.  

In order to model channel-wise dependencies, these statistics are passed to the Excite 

gating mechanism, which employs a sigmoid activation function. The output of the gating 

mechanism is used to scale or recalibrate the original feature maps. By focusing on the 

most informative features and enabling adaptive recalibration by highlighting relevant 

features and suppressing less helpful ones without appreciably increasing the 

computational overhead, this enhances representational power and increases performance. 
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A new feature map that integrates data on tiny, medium, or large features depending on 

the kernel size is the outcome of the MB block.  

Input size, padding, stride, and a few filters per layer impacted the final dimension. The 

model repeats the MB block several times by expanding kernel sizes in subsequent blocks. 

In return, the model progressively extracts features at varying sizes, addressing all the 

range of object sizes to be detected. MB blocks play a critical role in feature extraction in 

the introduced encoder-decoder-based architecture for feature extraction. The model can 

identify and locate objects accurately, whether they are small or possess complex features, 

and understand the context of objects by perceiving their interaction with nearby elements.  

Moreover, it is capable of identifying objects of varying sizes within an image by 

perceiving features at different scales. This architecture has three key stages: Head, 

Backbone, and Tail as shown in figure 4.3. The Head Section pre-processes the image, 

extracts local features using a Spatial Feature Extraction Block (SFEB), and captures the 

global context with a Global Feature Extraction Block (GFEB). It then combines these 

features to obtain a richer representation. The Backbone Section refines this combined 

information. It performs multiple rounds of processing involving convolutions, Batch 

Normalization for stable training, and dropout for preventing overfitting. Importantly, it 

utilizes residual connections to preserve informative details throughout the process. 

Additionally, element-wise multiplications were introduced to capture the interactions 

between the features learned at different stages.  

Finally, the Tail Section considers the refined features, uses global pooling to capture the 

overall information, and transforms them through dense layers with activation functions. 

A dropout is utilized once more for strength, and a last dense layer produces the detections, 

perhaps class probabilities or bounding boxes with class probabilities for objects in the 

image. Utilizing different techniques like feature extraction, combination, refinement, and 

elementwise multiplications, this CNN architecture hopes to produce precise object 

detection in images.  

The SFEB depicted in figure 4.4 a utilizes convolutions to capture spatial features, 

followed by normalization and activation to improve the training stability and introduce 

nonlinearity. The depthwise separable convolution provides an efficient way to extract 

features while reducing the computational cost compared to standard convolution. By 

applying these operations sequentially, the SFEB aims to extract informative and robust 
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spatial features from the input data, which are then used for higher-level tasks such as 

object detection using 4.1 through 4.15. 

SFEBout = Conv2D(BN(ReLU(Conv2D(Zero Pad(Ipreprocessed), Fs, ks))), Fs, ks)       4.1 

The GFEB shown in Figure 4.4 b captures the Global Information and extracts high-level 

features. By reshaping the feature map, GFEB considers information from all spatial 

locations, not just specific regions. The 1-by-1 convolutions and activation functions help 

to transform the data into a more compact representation that captures the global 

characteristics relevant to the task.  

GFEBout = Conv2D(BN(ReLU(Reshape (SFEBout, −1))), Fg, kg)          4.2 

FFB produces a more detailed representation that takes advantage of both spatial 

information and global context, enhancing the model's object detection capability of an 

image. The block depicted in figure 4.4 c enhances the information to extract both local 

information and global context for object detection. The SFEB analyzes the input image 

to capture local details and preserves the image’s spatial dimensions using zero padding 

which adds extra borders around the data. The SFEB then identifies patterns that are 

specific to various locations within an image.  

FFBoutput = SFEBoutput ∗ GFEBoutput                          4.3  

The SGFB takes the combined features from the FFB, refines them with a convolution 

layer, improves the training stability with Batch Normalization, and introduces some 

randomness with dropout. The combination shown in figure 4.4 d helps the model to create 

more robust and informative representations suitable for object detection tasks.  

SGFBoutput = Dropout(Batch_Normalization (Conv2D(FFBoutput)))          4.4  

The Head section prepares the input image and extracts initial spatial and global features. 

These features were then combined to provide a more comprehensive representation for 

the following feature extraction and object detection tasks.  

For a scaling factor (s) and normalization factor (𝑥̅),  

Ipreprocessed = s ∗ (I − 𝑥̅)(element − wise subtraction)            4.5 

For filter sizes (F) and kernel sizes (k) for each convolutional layer where Fs and ks 

represent SFEB layers and Fg and kg represent the GFEB layers.  
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FFBout = FFB(ZeroPad(Conv2D(BN(ReLU (Conv2D(Ipreprocessed, Fs, ks))))), Fffb, kffb))  4.6 

SFEBout = Conv2D(BN(ReLU(Conv2D (ZeroPad(Ipreprocessed), Fs, ks))), Fs, ks        4.7  

(Similar to FFBout) 

GFEBout = Conv2D(BN(ReLU(Reshape(SFEBout, −1))), Fg, kg)          4.8  

Flattening the spatial dimensions of SF EBout into a feature vector is performed by 

Reshape(SFEBout, −1)               4.9 

Headout = FFBout ∗ ReLU(SFEBout) (Element−wise multiplication)                    4.10 

where Conv2D(Ipreprocessed, Fs, ks) applies Fs filters of size k_s x k_s to the preprocessed 

input, capturing spatial features. ReLU(I) applies the activation function (f(x) = max(0, x)) 

element-wise, introducing non-linearity. BN(I) performs Batch Normalization to improve 

training stability. Conv2D(..., Fffb, kffb) are other convolutional layer within the FFB block.  

The Backbone section progressively refined the features extracted from the Head Section. 

It utilizes residual connections (addition) to preserve informative features and element-

wise multiplication to potentially capture feature interactions. This process aims to create 

more complex and robust feature representations for the final object detection tasks. 

Backbonein = Conv2D(BN(Headout), Fbn, kbn)          4.11 

(Similar to Conv2D in F F B/SF EB) 

Repeated SGFB application,  

Blockout=Conv2D(BN(Dropout(Conv2D(BN (SGF B(I)), Fsg, ksg))), Fsg, ksg) + BN(I)4.12  

FB_out_bb = FFB(Backboneout, Fffb, kffb)                                 4.13 

(Similar to F F Bout in Head section) 

SFEB_out_bb = Conv2D(BN(ReLU(Conv2D (Backboneout, Fs, ks))), Fs, ks)       4.14 

(Similar to SF EBout in Head section) 

Final Feature Extraction uses the same F_s and k_s as defined earlier for SFEB layers. 

Here, SGFB(I) represents operations within the Spatial Global Fusion Block (likely 

involving convolutions and pooling), and dropout(I, p) randomly drops a percentage (p) of 

activations during training (not shown in the equation). The Tail Section in the present 

model consumes the fine-grained features extracted from the backbone to produce the end 

detections. Classification and Bounding Box Regression were executed. The units of the 
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first dense layer (n_dense1) and output classes (n_classes) were specified. In this case, 

n_classes is the count of object categories detectable by the model. 

Tail_out_Detections=Dense_n_classes(Dropout(Dense_n_dense1(ReLU(GlobalAverage

Pooling2D (SFEB_out_bb))))            4.15 

where GlobalAveragePooling2D(I) averages the activation’s across the spatial dimensions 

(width and height) for each channel, and Dense(I, n) applies a linear transformation on the 

input vector I with n output units, followed by the ReLU activation. 

4.3.4 Inference-Optimized LSDNet Context-Aware Adaptation for 

Robust Object Detection in small Object and Low-Illumination 

Scenarios 

Conventional object detection models often struggle in low-light conditions, failing to 

detect small or distant objects effectively. To address these challenges, the paper proposes 

LSDNet (Low-Light and Small Object Detection Network), an inference-level adaptation 

framework designed to enhance nighttime object detection. LSDNet builds upon the 

EfficientDet-D0 architecture, incorporating adaptive brightness correction, feature-aware 

confidence modulation, and class-specific detection prioritization.  

The model dynamically adjusts detection sensitivity based on object size, illumination 

levels, and environmental context, improving both precision and recall without altering the 

underlying network structure. As shown in Table 4.2, the model integrates illumination-

driven processing modulation, where brightness and contrast corrections are applied 

dynamically based on computed environmental light statistics. The size-weighted score 

based confidence scaling has enabled LSDNet to detect low-contrast small objects in 

nighttime. Efficient-Det [108], which is the underlying architecture utilized within this 

research, is a collection of models that scales up or down in parameters and FLOPS while 

maintaining state-of-the-art accuracy with an emphasis on efficiency. It has BiFPN and 

compound scaling technique for peak performance.  

To enable detection in varying light conditions and to promote detection of smaller objects, 

this chapter presents LSDNet (Low-Light and Small Object Detection Network), an 

inference-level adaptation framework that adapts detection confidence dynamically with 

respect to feature-aware metrics and environmental factors. The method proposed is 

supported by the application of post-processing methods, which enhances low-light 
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resistance and detection of small objects at minimal computation. The method is a scalable 

real-time solution that does not alter the object detection model and thus is a promising 

modification for the application under discussion. 

Table 4.2 Overview of Night Driving Challenges addressed in the current research 

and the key contributions to enhance nighttime driving. 

Challenge Contribution Solution 

Object detection is 

compromised at the highly 

varying and noisy nature of 

nighttime environments like 

low-contrast and objects that 

are subjected to glare 

Dynamic Feature-

Aware Adjustments 

for Architectural 

Augmentation 

The information extraction from 

the degraded data is improved by 

the dynamic adaptation of the 

features for processing depending 

on the image characteristics.  

Smaller objects at night pose 

the challenge of detection in 

low-light conditions, often 

blending with the background 

Detection with an 

emphasis on 

Relative Size 

Relative size based sensitivity 

adjustment to improve small or 

farther object detections like 

pedestrians, cyclists and so. 

Standard object detection 

models treat all the classes 

equally but nighttime object 

detectors need to prioritize a 

few (Say pedestrian Vs Road 

signs) 

Class-Conditional 

based Detection 

Critical classes are prioritized by 

adjusting the detection confidence 

or loss dynamically leading to 

higher accuracy in essential object 

detections. 

Varying Nighttime driving 

environments (Say Rural Vs 

Urban, street light conditions) 

which compromises detections  

Environmental-

Conditioning for 

Architectural 

Augmentation  

Performance improvement by 

integrating the environmental 

context (Say., the light levels, road 

type) 

Varying image quality due to 

changing illumination levels 

leading to inconsistent 

performance 

Processing 

Modulation that is 

Illumination-Driven  

Detected illumination condition is 

used to adjust the processing 

parameters, and applying image 

enhancement techniques to ensure 

a consistent accuracy 

4.3.4.1 Methodology 

To improve object detection in difficult scenes, this paper presents an optimized object 

detection model with Efficient Det D0 architecture as the base line model with pre and post 
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processing modifications to cater to the need of nighttime detections as shown in figure 4.5. 

Efficient-Det uses complex scaling technique which scales up all the three dimensions: 

width, depth and resolution concurrently which leads to higher accuracy and efficiency than 

other models. The weighted BiFPN further enables detection of objects of varying sizes by 

improving the standard FPN through learnable weights and information flow that is 

bidirectional. For LSDNet, this model is chosen as baseline because of its inherent balance 

between accuracy and computational cost.  

The hierarchical feature maps are extracted using the backbone along with convolutional 

feature extraction for refining the spatial information without compromising semantic 

comprehension. LSDNet preserves the baseline by making significant adaptions 

particularly for low-light (or varying brightness factor) through contrast correction in 

addition to changes to meet challenges of small object detections with the feature maps that 

are extracted making it robust. The detection head lays the bounding boxes, predicts the 

classification and confidence scores from the feature maps. The BiFPN is responsible for 

multi-scale feature extraction.  

The normalized values are generated by the head along with probability of each detection. 

For further improving the detections, Class specific score adjustments to cater to diverse 

object sizes and a with more stress on categories like pedestrians, cars, and vehicles are 

considered. The scaling factor further improves confidence score of small object detections, 

making it more pronounced in a cluttered scenario. Tail module further is responsible for 

fine-tuning the raw predictions to improve accuracy.  

In the LSDNet’s post-processing segment, Non-Maximum Suppression discards the 

detections that are redundant, confidence thresholding to eliminate low-confidence 

predictions, and refining bounding boxes for small object detections refinement. LSDNet’s 

dynamic confidence thresholding enables adapting to varying brightness levels. The 

augumentation with metadata (number of small objects detected, mean brightness for 

day/night classification, and the number of valid detections after thresholding) improves 

predictions that are context-sensitive. The LSDNet model shown in Figure 4.5, with the 

introduced modifications, is tailored for night-time real-time object detection, thus being 

eminently suitable for vehicle adaptive headlamp systems.  
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This section explains the modifications and the relevance of each improvement on 

increasing on-road safety and adaptive lighting systems. The model consists of pointwise 

channel expansion, depth-wise separable convolution operators, linear projection 

transformation, statistical normalization methods, and residual information channels.  

The integrated elements support smooth gradient propagation, enhanced multi-scale feature 

extraction, and computational efficiency—primary demands of real-time object detection. 

Hierarchical deep network feature extraction has been created to improve representational 

accuracy and eliminate redundant computational paths. This is achieved by sequential 

application of channel-wise augmentation, statistical normalization, and non-linear 

activation in conjunction to increase the network expressiveness. Feature dimensionality is 

first enhanced to support more expressive representational embeddings prior to using 

spatial convolutional transformations.  

Table 4.3 Major modifications in the LSDNet Model 

Section Function Modifications in this Model 

Backbone Extracts feature 

maps 

Adaptive brightness & contrast adjustment 

Head Predicts bounding 

boxes & classes 

Boosts for small objects & night-time 

conditions 

Tail Filters & refines 

detections 

Custom NMS, metadata extraction, low-

light adjustments 

 

The mathematical representations of the same are explained using equations 4.16 through 

4.37. Enhancement is done through the application of a pointwise convolutional operation: 

Fexpand = 𝜎 (Wexpand * Finput + bexpand)                                         4.16 

Where Wexpand ∈ ℝ1×1×Cin×Cexpand represent the expansion kernel, bexpand is the associated 

bias term, 𝜎(𝑥) is x times sigmoid(x) and is the SiLU activation function that enables 

augmentation of the representational non-linearity. The increase in the channel's 

dimensionality increases expressiveness in features, enabling a more detailed 

decomposition of complex patterns. Statistical normalization methods, such as batch 

normalization, regulate activation distributions to ensure the learning process is stable: 
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Fbn= 𝜂𝑏𝑛
𝐹𝑒𝑥𝑝𝑎𝑛𝑑 − 𝑥̅

√σ2+ϵ
 +  𝜙𝑏𝑛                                                             4.17    

where 𝑥̅ and σ2, represent the mini-batch activations mean and variance, while 𝜂𝑏𝑛 and 

𝜙𝑏𝑛 denote the learnable affine transformation parameters. Depth-wise convolution is 

channel-wise, and it is used to model spatial dependency effectively: 

Fdwconv=Wdw  ∗ Fbn + bdw                                                                           4.18 

Wdw is the spatial convolutional 3-by-3 kernel, and bdw the associated bias. Essential non-

linearity is incorporated using the activation function, 

Fact=Fdwconv ⋅ 𝜎 (Fdwconv)                                                                   4.19 

To keep the computation manageable, the feature dimensions are compressed using a 

projection layer: 

Fproject=Wproject ∗ Fact + bproject                                                  4.20 

where Wproject performs the dimensionality contraction operation that ensures compatibility 

of the output with Cout. To further enhance stability, a normalization phase follows. 

Fbn2= 𝜂𝑏𝑛
𝐹𝑒𝑥𝑝𝑎𝑛𝑑  − 𝑥̅

√σ2+ϵ
 +  𝜙𝑏𝑛                                                            4.21   

Residual propagation mechanisms are incorporated when there is similarity of dimensions 

in input and output feature representations: 

Foutput=Finput + Fbn2                                                                  4.22   

This procedure enables information retention with reduced gradient attenuation in deep 

networks. Best object detection strategies leverage hierarchical feature pyramid networks 

in order to blend multi-scale features and maintain their balance. This can be expressed 

computationally as: 

Fpyramid= ∑ 𝑊𝑖 ∗  𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
(𝑖)𝑛

𝑖=1                                                    4.23   

Where Wi represents the learnable transformations at ii hierarchical levels. To enhance 

feature representations at different scales: 

Ffused = Conv(1-by-1) (Fpyramid) + Conv(3-by-3) (Fpyramid)         4.24 
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This augments contextual granularity and local feature refinement. Object detection has 

two major objectives: precise location and classification into classes. The bounding box 

coordinates are optimized through a fully connected transformation: 

B = Wbbox ∗ Ffused + bbbox                                                            4.25   

where Wbbox parameterizes the spatial adjustments. 

Probability of object's presence is gauged by  

Po = 𝜎 (Wconf ∗ Ffused + bconf)                                                     4.26   

Class posterior distributions are estimated by:  

Pc = softmax(Wcls ∗ Ffused + bcls)                                              4.27    

For removing duplicate predictions:  

𝐵̂ =  NMS (B, Po, IoUthreshold)                                                 4.28   

where extended IoUthreshold creates a non-maximum suppression constraint. For improving 

recall of small objects: 

Wsmall=  fsmall (Po)                                                                           4.29   

where Wsmall is a weight that increases recall for small objects, fsmall reweights detection 

confidences. The class-specific confidence estimates are optimized by  

Wclass=  fclass (Pc)                                                                             4.30   

where Wclass is a weight applied to modify the class confidence and fclass recalibrates class 

probabilities. 

LSDNet has the advantage of improving object detection without altering the baseline 

model parameters through controlled adjustments in the model detections. This pre and 

post-processing paradigm approach acts directly upon the tensor-based computation and 

the contextual augmentation improves statistical confidence summaries and classifications 

which is beneficial for downstream processing. Here the robustness of detection is 

improved over complex scenarios when compared to the baseline models through these 

inference-level adaptions, enhancing low-light performance and detection of small objects. 



129 

 

LSDNet uses scaling factor (a 1.3x) to increase confidence for small object detections that 

usually is missed in the standard models. Small objects here are referred to as objects that 

take up not more that 2% of the image area which when improved through this post-

processing modification ensures detections of vital small objects like pedestrians, animals 

that are considerably far, and roadside debris.  

The confidence score S is adjusted as  

𝑆′ = S *  (1 + 𝜆𝑠 (1 - NAR))                                             4.31 

𝑆′ = S (when NAR ≥ 1)                                          4.32 

Where S refers to the Object detection confidence score, 𝜆𝑠=1.3 is the scaling factor for the 

small objects. If 𝐴𝑖 is the area of the total image in pixels2, NAR is the Normalized Area 

Ratio which is the ratio of the detected object area (𝐴𝑜 in pixels2) and the Small object 

threshold value (0.02𝐴𝑖 in pixels2). From Equ (2) it is implied that when NAR ≥ 1, then 

there is no correction as 𝑆′ may be equal to or lower than S, which means larger objects do 

not receive a boast and there is no change for large objects. The model includes a night and 

low-light detection enhancement mechanism that enhances the object detection efficiency 

in less-than-ideal lighting. 

It assesses the ambient light by computing the average pixel intensity of the input image. 

When the brightness is established to be lower than a threshold, a factor is used to boost 

the detection reliability. Additionally, brightness and contrast adjustments are performed 

adaptively to optimize feature visibility before processing the image via the detection 

pipeline. In extreme low-light, the system identifies the surroundings as nighttime and uses 

special detection settings customized for such environments. This real-time brightness 

adjustment ensures consistent and stable detection performance in a variety of lighting 

levels. 

The Low-light detection scaling factor (∆L) is given by 

∆𝐿= 1 + [(𝜆𝐿 − 1) ⋅ H(∆𝐿𝐿𝐷)]                                            4.33 

where B(I) represents the Mean brightness of the input image which varies from 0 to 255, 

𝑇𝐿 is the Low-light threshold (value less than 90 is considered dark), 𝜆𝐿  is the Low-light 

scaling factor (fixed at 1.2) and α refers to the brightness gain factor through which the 

intensity of enhancement is controlled. ∆𝐿𝐿𝐷=  𝑇𝐿 − 𝐵(𝐼)  is the difference in brightness 
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from the low-light threshold. 𝐻(𝑥), the heaviside step function becomes 1, when x>1 and 

is 0 otherwise. At low light conditions, 𝐵(𝐼) < 90 and 𝑇𝐿 > 𝐵(𝐼), 𝐻(𝑥) becomes 1, 𝜆𝐿  

value is 1.2, hence ∆𝐿becomes 1.2. Therefore, at low-light conditions, scaling factor is 

increased as 1.2 to ensure that the necessary compensation is applied. When Brightness is 

high, 𝑇𝐿 <  𝐵(𝐼), therefore 𝐻(𝑥) becomes 0 and ∆𝐿  remains at 1 which means that no 

scaling is applied when brightness is sufficient.  

The brightness correction is carried out using, 

𝐼′ = 𝛼 𝜒(∆𝐿𝐿𝐷) ⋅ H(∆𝐿𝐿𝐷) ⋅ ∆𝐿                                       4.34 

Here, H (∆𝐿𝐿𝐷) ensures that compensation is applied only in low light conditions (Lane 

Lateral Deviation), ∆L is the adaptive scaling factor, 𝜒 is the scaling parameter for fine 

tuning brightness correction strength to determine as how aggressively will the model 

correct when 𝑇𝐿 > 𝐵(𝐼). A high value of α indicates strong correction while a low value 

represents softer corrections. Here ∆L decides when and how much correction is needed, 𝜒 

and ensures it is not too strong nor very weak. Since LSDNet is a low-light object detection 

model, it is necessary to maintain a good image contrast while the brightness is altered. To 

ensure that the contrast is preserved, 

𝜒 = 1 +  ζ (1 − LSF)                                              4.35 

where ζ controls the level of brightness correction (0.5 to 1), 𝐿𝑆𝐹 =  𝐵(𝐼) 𝑇𝐿⁄ and 

represents the light sufficiency for object detection. If image is very dark, 𝐵(𝐼) ≪ 𝑇𝐿 , LSF 

will be small and hence (1 − 𝐿𝑆𝐹) will lead to a stronger correction. If it is moderately 

dark, 𝐵(𝐼) ≈ 𝑇𝐿 , (1 − 𝐿𝑆𝐹)  will be a small value and 𝜒 will lead to subtle correction and 

hence preventing over-brightening when brightness is close to 𝑇𝐿.  When 𝐵(𝐼) ≥ 𝑇𝐿, (1 −

𝐿𝑆𝐹)  becomes 0 or negative making 𝜒 ≈ 1. Hence the model preserves natural brightness 

in these cases and does not lead to excessive brightness. The model dynamically adapts to 

changing brightness conditions.  

Low-light adaptation is necessary to ensure detection accuracy in low-light environments. 

It reduces performance loss in fog or darkness by enhancing object perception. The 

mechanism helps adaptive headlamp systems adapt beam intensity and direction according 

to ambient light. By making dark objects and pedestrians in shadows more visible, it 

enhances road safety during nighttime. It also adjusts high beams automatically to enhance 

driver visibility and minimize glare for approaching traffic. Hence, class-specific score 
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adjustments place priority on significant traffic-related objects such as pedestrians, 

bicycles, and cars, enhancing detection of critical elements while minimizing false positives 

on non- essential objects. LSDNet includes class-specific score improvements to enhance 

dashcam use cases detections which makes confidence scores higher for a few significant 

on-road objects.  

The correction factor is given by  

𝜆𝑐 = {
1.15, 𝐶 𝜖 𝑑𝑎𝑠ℎ𝑐𝑎𝑚 − 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

1.10, 𝐶 𝜖 𝑠𝑚𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
1.0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   4.36 

S′ = S * 𝜆𝑐                                                                                           4.37 

The model incorporates additional enhancements to refine object detection and improve 

adaptive headlamp performance. Adaptive confidence thresholding and Non-Maximum 

Suppression (NMS) ensure that only relevant detections influence headlamp adjustments, 

reducing noise and false positives. A day/night classification mechanism enables adaptive 

processing by differentiating between daytime and nighttime conditions, optimizing 

detection parameters accordingly. Furthermore, metadata extraction provides numerical 

insights, including small object count, average detection confidence, and brightness 

analysis, enhancing situational awareness. These enhancements highlighted in Table 4.3 

collectively improve real-time object detection, allowing adaptive headlamps to 

dynamically respond to changing road conditions, ensuring safer night time driving. 

Metadata analytics offer real-time performance monitoring through aggregation of average 

detection confidence across all detections, class-specific detection counts to measure object 

frequencies per class, and bounding box distributions to estimate anticipated spatial areas. 

The architecture represents a high-performance deep learning architecture that is consistent 

with the expansion-depthwise-projection principles, integrating hierarchical multi-scale 

features and adaptive refinement strategies to increase detection competency. The 

architecture of the model is specifically tailored to improve predictive accuracy, spatial 

resolution optimization, and computational efficiency maximization, making it extremely 

suitable for real-time object detection tasks. 

4.4 Summary of the object detection models discussed 

This chapter has discussed the design and deployment of three cutting-edge AI models—

Modified SSD, MultiFaceted AI Model, and LSDNET—fine-tuned for nighttime on-road 
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object detection. Having overcome some of the primary limitations of existing models like 

YOLO, Tiny YOLO, and SSD, the proposed frameworks bring new architectural 

enhancements, feature fusion methods, and inference-time efficiency. The Modified SSD 

enhances SSD with adaptive feature scaling and confidence modulation to improve 

detection of small objects under low-light conditions. The MultiFaceted AI Model adopts 

a hybrid strategy of spatial and global feature extraction, allowing improved robustness to 

different nighttime illumination conditions. LSDNET uses illumination-driven processing 

modulation, dynamic confidence scaling, and class-aware prioritization to greatly improve 

detection recall and accuracy for low-contrast and small objects.  

These models are optimally balanced between accuracy of detection and computational 

efficiency and are applicable to real-time uses in autonomous navigation, adaptive 

headlight control, and intelligent surveillance systems. The breakthroughs introduced in 

this chapter set the stage for an in-depth performance analysis, which will be done in the 

next Performance Analysis Chapter, where the proposed models will be compared to 

current methods. The outcomes will confirm their efficiency in enhancing detection 

accuracy, recall, and resilience in difficult nighttime driving conditions 

4.5 Results and discussion on the On-road object detection models 

Object detection is still a key problem in computer vision, with many state-of-the-art 

models being proposed to enhance the accuracy, efficiency, and robustness to real-world 

challenges. This chapter provides a comparison of conventional and recent object detection 

models to identify how effective they are in detecting objects under different 

circumstances, such as low-light conditions and small object detection. The assessment 

consists of four popular object detection methods—YOLO, Tiny YOLO, SSD, and 

RCNN—comparing their strengths and weaknesses on the basis of critical performance 

indicators like precision, recall, mean average precision (mAP), and inference speed. 

Subsequent to this, the performance of three suggested models—Modified SSD, Multi-

Faceted AI Model, and LSDNET—is analyzed. These models have been developed to 

improve object detection performance by overcoming certain limitations seen in current 

methods. The comparative analysis brings out how these models perform compared to 

traditional methods, especially in difficult situations where traditional methods tend to fail. 

One of the main points of this debate is the capacity of these models to identify objects 

under low-light settings and small objects precisely, which have been ongoing challenges 
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for computer vision. By testing their efficiency in relation to conventional models, this 

analysis seeks to identify the most stable method for practical use. The results offer 

insightful perceptions of the strengths and areas of improvement for each model to 

ultimately direct future improvements in object detection technology. 

4.5.1 Performance of YOLO, Tiny YOLO, RCNN and SSD Models 

Object detection is a core problem in computer vision, and many deep learning models 

have been created to improve the speed, accuracy, and robustness of detection. From 

among the most used techniques, YOLO, Tiny YOLO, RCNN, and SSD have achieved 

considerable breakthroughs in real-time detection and localization of objects. The models 

are each different and offer benefits in various applications depending on computational 

complexity, detection accuracy, and handling of scenarios with complex environments. 

The subsequent sections examine these models on the basis of their structural variance, 

strengths, and possible drawbacks in object detection applications. The models are trained 

on an open-source COCO database comprising over 15,000 images and 93 classes, 

employing Python 3. The accuracy of object detection is evaluated using the mAP (Mean 

Average Precision), calculated as the average of Average Precision across different 

verification sets, alongside the two-dimensional Precision-Recall (P-R) curve for various 

thresholds. Detection speed, quantified in Frames Per Second (FPS), is also measured, 

considering factors such as learning rate and different losses. 

4.5.1.1 YOLO Model 

YOLO (You Only Look Once) is a real-time object detection model that detects an entire 

image in a single pass of a neural network, which makes it one of the fastest detection 

frameworks (figure 4.6 through 4.9). Through the removal of region proposal networks, 

YOLO provides high-speed detection, which makes it suitable for use in applications like 

surveillance, autonomous driving, and robotics. 

4.5.1.2 Tiny YOLO 

Tiny YOLO is a lighter version of the YOLO model that is used in environments with 

fewer computational resources. In decreasing the number of parameters and layers, Tiny 

YOLO loses some accuracy but with much better processing speed (Figure 4.10 through 

4.13). The model is most appropriate for use in edge devices and real-time uses where 

efficiency is considered key.  
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Figure 4.6 YOLO model object detection for dense traffic at night 

 
Figure 4.7 Frames per second on YOLO Model 

 
Figure 4.8 YOLO Model Emphasized by mean Average Precision 
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Figure 4.9 YOLO-COCO AND PASCAL Metrics 

 

Figure 4.10 Object detection using YOLOv3-Tiny in dense traffic at night 

 

Figure 4.11 Frames per second for YOLOv3-Tiny Model 
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Figure 4.12 mean Average Precision value for YOLOV3 Tiny Model 

 

Figure 4.13 Screenshot of the statistics as obtained for the YOLO-Tiny Model 

calculated with PASCAL VOC 

4.5.1.3 RCNN 

RCNN (Region-Based Convolutional Neural Network) has a region proposal method, 

dividing an image into several regions prior to subjecting them to deep learning-based 

classification. Although RCNN ensures decent detection accuracy, it consumes huge 

computation power because of its multi-stage processing pipeline and is thus less ideal 

for real-time applications (figure 4.14 and 4.15). 
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Figure 4.14 TP & FP for the RCNN Model 

 

Figure 4.15 mAP of the RCNN Model 

4.5.1.4 SSD Model 

SSD (Single Shot MultiBox Detector) provides a compromise between speed and accuracy 

by making object location and classification predictions during a single network forward 

pass. In contrast to RCNN, SSD does away with region proposals, which results in much 
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faster processing without compromising on accuracy (figure 4.16 through 4.19). This 

model finds extensive applications where efficiency is a requirement along with accurate 

object localization. 

 
Figure 4.16 Object detection using SSD Model in dense traffic at night 

 
Figure 4.17 Frames per second for SSD Model 

 

4.5.2 Model Comparison 

Table 4.4 and 4.5 summarizes the performance metrics of several AI models. Both YOLO-

tiny and SSD achieve an FPS value of 14.56, while YOLO attained 1.9 FPS. The mean 

Average Precision (mAP) values for YOLO, YOLO-tiny, and SSD are 0.33, 0.041, and 

0.38 respectively. FPS and mAP values are crucial in determining the speed and accuracy 
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of detection for these models. Only mAP is assessed for RCNN due to its inadequate 

response, making it unsuitable for the current application. Furthermore, the RCNN model's 

performance under low illumination is compromised, leading to its exclusion from the 

comparison with other AI models that demonstrate accurate mAP and FPS results. 

 
Figure 4.18 mean Average Precision value for SSD Model 

 
Figure 4.19 COCO & PASCAL metrics for SSD Model 
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Table 4.4: Comparison of the three Models based on Frames per Second 

and mean Average Precision 

Model FPS mAP 

YOLO 1.9 0.2484747 

YOLO-Tiny 14.56 0.0622573 

SSD 14.56 0.1849486 

 

Table 4.5: Comparison of the three Models based Average Precision of 

detection for each class 

Model Car Bus Truck 

SSD 30.8283 61.645 23.465 

YOLO 40.46 66.43 17.334 

YOLO V3-Tiny 4.95 21.74 4.44 

The findings suggest that SSD (Single Shot Multibox Detector) appears suitable for the 

application, given its competitive mAP value of 0.1849486 and presumably efficient 

performance in various lighting conditions compared to RCNN. Therefore, SSD could be 

a favorable choice considering both its accuracy and adaptability to different 

environmental conditions. The next section of the discussion deals with modifying the 

SSD framework to improve accuracy for the application.  

The performance analysis of YOLO, Tiny YOLO, RCNN, and SSD for real-time low-light 

object detection underscores essential trade-offs in accuracy, computational resource 

requirements, and resilience to extreme conditions. As impressive as YOLO is for speed, 

it is equally poor in precision at night under low-light scenarios due to low performance in 

handling small or even occluded objects. Small YOLO, even with optimization to handle 

quicker inference, shows additional degradation in detection accuracy, rendering it 

inappropriate for applications requiring high dependability in dark environments. RCNN 

offers better detection accuracy via its region proposal mechanism but is unsuitable for 

real-time applications due to its computational requirement and slow inference time. The 

model's dependence on multiple processing steps creates high latency, a major drawback 

for real-time applications like autonomous driving and surveillance.  SSD comes as a more 

balanced solution with a trade-off between speed and accuracy, promising to be an 

excellent fit for real-time object detection in low-light environments. 
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Unlike RCNN, SSD removes the region proposals step, significantly decreasing inference 

time with comparable detection performance. The capability of the model to predict at 

multiple scales increases its performance for small and faraway object detection, an 

important requirement when applied under low-light applications with limited visibility. 

The architectural efficiency of SSD also enables it to be deployed on edge devices and 

embedded systems without requiring heavy computational resources. These features make 

SSD a viable option for real-time detection of objects in nighttime scenarios, where speed 

and accuracy are both significant. Yet, additional advancements like enhanced feature 

extraction and incorporation of low-light processing expertise may be required to 

maximize SSD's performance for more challenging real-world conditions. 

4.5.3 Modified SSD Architecture 

Since SSD exhibited high suitability for object detection at night, an optimized SSD 

architecture was created to optimize its performance even more. The introduced model 

simplifies SSD by removing individual convolutional layers, speeding up detection 

without compromising on accuracy. This differs from the base SSD, which uses diversified 

aspect ratios in accordance with feature map layers, enhancing detection at different scales. 

The model only uses 3×3 convolutional kernels to minimize parameters and computation. 

Other predictor layers further increase multi-scale detection, whereas batch normalization 

and L2 regularization increase training effectiveness and generalization. These updates 

increase the model's efficiency in real-time on-road object detection.  

 

Figure 4.20 ROC Curve for Modified SSD 
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The performance metrics of the Mod SSD offer a strong balance between accuracy and 

performance. This is comparable to other models even if its accuracy (53%) and mean 

Average Precision (mAP) (0.42) are not the best. In addition, the Mod SSD offers an AUC 

of 0.77 (Figure 4.20), hints at the fact that the model can effectively detect objects in the 

background. F1 score of Mod SSD is notably faster than YOLO and Tiny YOLO, 

outperforming both categories while maintaining a far higher frame rate (23.8 FPS) than 

any of the other two.  

Architectural modifications cause this increased speed, which may allow real-time 

applications that require quicker inference. This is still not enough, though, for the real-

time night application. Therefore, an improved framework is required. If the work requires 

absolute peak accuracy, alternate models such as YOLO may be more appropriate. 

However, for cases that require a balance between performance and speed, the Mod SSD 

appears to be a good option. Despite not achieving the highest accuracy (53%) or mAP 

(0.42), Mod SSD demonstrates a strong balance between accuracy and performance, as 

depicted in Table 4. Additionally, Mod SSD's AUC of 0.77 (Figure 4.20) suggests 

effective object detection capabilities, outperforming YOLO and Tiny YOLO in both 

accuracy and speed, with a notably higher frame rate of 23.8 FPS. 

4.5.4 YOLO V8 based Object detect 

The YOLOv8 model uses a convolutional neural network (CNN) encoder-decoder 

architecture for semantic segmentation. The encoder learns hierarchical features through 

five convolutional layers with progressive filter sizes, utilizing a ResNet backbone for 

compact feature expression. C2f convolutional layers and max pooling for dimensionality 

reduction improve contextual representation without overfitting. The decoder restores 

spatial knowledge via bilinear interpolation and concatenation layers, improving 

segmentation accuracy. Bounding box layers combine with segmentation masks to offer 

end-to-end object detection, while softmax activation allows for accurate pixel-wise 

classification, making this model very efficient for real-time object segmentation and 

detection tasks. 

The V8-based model’s confusion matrix (figure 4.21) shows an overall accuracy of 78.4%. 

With only 6 false negatives and 19 true positives, the model can accurately recognize 

background items. Its effectiveness in separating the background from other classes is 

demonstrated by its low miss rate. 71 cars were properly identified, but there were causes 
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for concern over the 21 false positives and 9 false negatives. Notably, there appears to be 

some confusion between these groups because 16 motorbikes were incorrectly categorized 

as vehicles. Also, none of 76 real traffic lights could be recognized by the model. This 

class has serious problems, as indicated by its high miss rate. This model shows some 

uncertainty, but not as much as with traffic lamps; it correctly identifies five motorcycles 

as vehicles and incorrectly classifies six motorcycles as backgrounds.  

 

Figure 4.21 Confusion Matrix of V8 based Model 

The Model displays performance constraints in balancing recall and precision, with an 

average F1 score of 0.4 at 50% confidence as shown in figure 4.22. Vehicles with the 

highest F1 score (0.5) at this confidence level were not as successful as those with lower 

confidence levels, suggesting problems with particular vehicle types. Motorcycles 

performed better when making predictions with moderate confidence (F1 score of about 

0.6), but they had trouble with high confidence.  A crucial area for improvement is 

highlighted by the traffic light’s poor performance, which included the lowest F1 score 

(0.2) at 50% confidence and continued to deteriorate with increased confidence.  It’s 

interesting to note that the model showed less confidence in predictions for less common 

objects than automobiles, such as traffic lights.  

This highlights the need for a customized model to identify specific problems and place 

targeted adjustments in place to obtain a more robust and balanced performance across all 

object classes and confidence levels. With an average mAP at 0.5 of 0.305, suggesting 

limits in object recognition, particularly with increasing recall as shown in figure 4.23. The 
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vehicle class had the highest mAP at 0.5 (0.553); however, as the recall increased, its 

precision decreased, indicating problems with particular car models. The motorcycle class 

struggled to increase recall despite having high precision (0.220) at low recall as shown in 

figure 4.25.  

 

Figure 4.22 F1-Confidence matrix for V8 based Model 

 

Figure 4.23 Precision-Recall for V8 based Model 
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Figure 4.24 Precision-Confidence Curve- V8 Model 

 

Figure 4.25 Recall-Confidence Curve- V8 based Model 

Even at low recall, the traffic signal class had the lowest precision (0.143), indicating a 

need for significant improvement as depicted in figure 4.24. This performance can be 

caused by inadequate or non-diverse training data, inappropriate model architecture, or 

insufficient training time. Nevertheless, the model demonstrates promising overall 

performance, as accurate object detection is crucial for adjusting headlight beams, 

regardless of the object type. The model's performance seems to improve over training 

epochs, evident from decreased training and validation total losses in Table 4.6. However, 

the persisting gap between training and validation losses suggests some degree of 

overfitting. 
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Table 4.6 Model training and validation losses and learning rate for different epochs 
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4.5.5 Performance of the proposed Multi-Faceted Framework 

The Multi-Faceted (MF) Model uses a multi-block convolutional neural network design 

optimized for semantic segmentation. It incorporates an encoder-decoder model, in which 

convolutional blocks capture hierarchical features and upsampling layers improve spatial 

resolution for accurate segmentation. Skip connections improve feature preservation, 

allowing spatial consistency in pixel-wise predictions. Depthwise and pointwise 

convolutions enhance computational efficiency, while squeeze-and-excite blocks 

dynamically recalibrate channel-wise feature responses. This architecture supports multi-

scale feature extraction, allowing accurate object detection of different sizes. With 

hierarchical processing in head and tail sections and the backbone section, the MF Model 

supports improved object recognition to be appropriate for real-time vision applications. 

The precision of the MF model is comparatively high and constant over the entire range 

of confidence values for all classes. This indicates that the majority of items in the model 

can be accurately identified with a high degree of accuracy. It appears that the precision 

for each class (vehicle, motorcycle, and traffic light) was less than the precision for all 

classes combined. This implies that the model’s accuracy in identifying particular object 

types is generally lower than its accuracy in identifying objects. However, the model 

demonstrates a high overall value which is promising because it is necessary to identify 

objects and not classes in order to change headlight beams, but it is not necessary to know 

what kind of object or vehicle is approaching.  

The plots in figure 4.26 show that the model’s performance appears to improve over the 

training epochs, as indicated by the decreased training and validation total losses. However, 

there is still a difference between the training and validation losses, implying over fitting. 

This is further confirmed, where the validation loss for classification is much greater than 

the training loss in the first epoch, indicating that the model initially over-fits the training 

data of the classification task. The model’s accuracy and recall are both improving, with a 

validation precision of 0.44 in epoch 2. However, the mAP50 metric, which assesses 

average precision at various IoU levels, exhibits some variability. Based on the evaluations, 

the model performs moderately well, with an accuracy of 70.43%; however, F1 score of 

0.38 indicates that it has limitations when it comes to balancing precision and recall. 

Although at recall score of 0.56 indicates a decent capacity to locate relevant things, 

confidence calibration needs to be performed carefully because the F1 score tends to 
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decline as confidence increases. Motorcycles perform best when analyzed by class, but 

they have accuracy issues when confidence levels are lower.  

However, traffic signals perform the worst, necessitating a major increase in memory and 

precision. Vehicles with the highest F1 score exhibited a decline in precision at lower 

confidence levels, which may suggest problems with particular vehicle types. The model 

performed effectively on the P-R curve, consistently obtaining high precision (above 0.9) 

for each of the three object classes (vehicle, motorcycle, and traffic lamp). This 

corresponds to a significant ability to discriminate between relevant objects and 

background clutter, indicating good true positive identification with few false positives. 

Moreover, the remarkable similarity between the P-R curves indicates a balanced 

performance across all item types, which is an important finding given that object detection 

algorithms frequently struggle with issues such as visual similarity or data imbalance. As 

the training progressed, the classification accuracy increased and the model learned 

successfully, as evidenced by the classification loss curve in figure 4.27. 

This pattern indicates that overfitting to the training set was avoided, which is a sign of 

good generalization. It appears that the loss peaks at approximately 2,500 epochs, which 

may indicate that the model is approaches its peak performance. To draw firm results, 

more research on model specifics and training protocols is necessary. Because of the 

intrinsic stochasticity of the training procedure, only modest fluctuations were predicted. 

Overall, the loss curve presents a positive image of the model’s capacity for learning and 

precise categorization. The regularization loss curve, as depicted in figure 4.27 b, shows a 

steady downward trend during training, indicating efficient control and limiting overfitting. 

This is in line with the goal of generalizing the model outside of training data.  

Although the rate of reduction slows down around 1500 epochs, possibly suggesting an 

ideal regularization level, more research into the specific model and training specifics is 

required before firm conclusions can be drawn. Because of the intrinsic stochasticity of 

training, slight fluctuations are anticipated. The total loss curve shown in figure 4.27 c, 

exhibits a consistent downward trend throughout the training, indicating successful model 

learning and an improved ability to fit the training data.  The initial epochs witnesed a 

rapid decrease in loss, followed by a gradual slowdown and plateauing at approximately 

2000 epochs. This suggests that the model has learned most of what it can from the data, 

with further gains likely to be minimal.
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Figure 4.26 Training & Validation losses for various epochs- MF based Object detection Model
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a) Classification Loss 

 
(b) Regularization Loss. 

 
(c) Total Loss. 

 
(d) The Learning rate. 
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(e) Localization Loss 

Figure 4.27 Losses and learning rate for Successive Epochs of the MF model. 

Minor fluctuations were expected owing to the stochastic nature of the training process. 

Specifically, sharp drops in loss around epochs 500 and 1500 might be attributed to 

adjustments in the learning rate or other hyper-parameters. Fluctuations between epochs 

2000-3000, followed by a final decrease and plateau, could indicate an increased 

sensitivity to minor data variations as the model exhibits optimal performance. Overall, 

the total loss plot indicated effective learning and data fitting.  However, the plateau trend 

suggests diminishing returns with further training. For a comprehensive evaluation, 

incorporating additional metrics such as validation set has to be considered. The trajectory 

of the learning rate curve in figure 4.27 d indicates that it may have an impact on the 

functionality of the model.  

It shows a continuous rise to 0.06 and then settles at approximately 0.08 for the duration 

of training. This implies an excessively high starting rate that might interfere with training, 

followed by inadequate investigation at lower rates. In addition, significant variations in 

the learning rate appeared at the conclusion of training, suggesting potential difficulties 

with gradient oscillations or convergence. However, the model’s output does not indicate 

that this had an impact. However, there are issues that warrant further assessment. Positive 

indications are observed in the early stages of the localization loss curve shown in figure 

4.27 e, which suggest that the model can learn quickly. Its remarkable ability to understand 

the work at hand is demonstrated by a sharp decline from 0.8 to 0.5 within the first 500 

epochs. Further research is required owing to the incomplete convergence. Minor shifts 

distributed throughout the training process are likely attributed to intrinsic randomness or 

noise within the data and don’t pose substantial issues. It is difficult to choose the best 

object detection model and necessitates taking into account a number of metrics. 

The accuracy, maP, Recall, F1 score, RoC-AUC, and FPS metrics are shown in figure 4.33 

for the following models that are being discussed: MF, V8, Mod SSD, SSD, YOLO, and 
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YOLO-Tiny. In terms of precision and confidence, the MF is superior. With remarkable 

77.2% mAP, MF leads the accuracy field and demonstrates remarkable object localization 

and pinpointing abilities. Because of its excellent memory and precision balance, as seen 

by its high F1 score of 0.58, it is the perfect choice for tough jobs that require utmost 

confidence. V8 comes next with excellent mAP (0.44) and accuracy (70.43%), achieving 

the desired balance between processing speed and precision. This places it in an excellent 

spot for use where the processing speed may be obtained at the expense of a small degree 

of precision. However, even with a respectable 53% accuracy, Mod SSD stumbles with a 

weak mAP (0.041). This poses concerns regarding dependability because it may be 

difficult to distinguish comparable things or handle complex situations. With its low 

accuracy (6%) and mAP (0.041), YOLO-Tiny trails substantially behind and is essentially 

ineffective for object recognition tasks in the actual world. MF excels in real-time 

applications and speed owing to its remarkable 45.31 frames per second.  However, the 

increased processing demands associated with this superior performance may limit 

projects with limited resources. With 25 FPS, V8 offers a speed and accuracy combination 

that works well for a larger variety of applications.  

Mod SSD achieves an average of 23.8 fps and has an edge over YOLO-Tiny edges in terms 

of speed of 1.9 FPS. YOLO-Tiny has low accuracy rendering it unsuitable for most 

practical applications. Considering Recall and Balance, V8 stands ahead of MF. High-

confidence detections are prioritized by MF, which achieves a recall of 0.529. This implies 

that while it concentrates on producing extremely dependable findings, it may overlook 

some objects. With 0.56 recall, V8 shows a more balanced approach, indicating that it can 

capture a larger variety of objects with a respectable level of precision. The lower recall 

scores (0.474 and 0.368, respectively) for Mod SSD and YOLO-Tiny suggest possible 

limits in detecting all relevant objects, which could be detrimental for applications 

requiring exhaustive detection. 

4.5.6 Performance of the proposed Inference-Optimized LSDNet 

Context-Aware Adaptation Network 

LSDNet is an optimized object detection model built on EfficientDet-D0, with pre- and 

post-processing optimizations specifically designed for nighttime detection. Through the 

use of a sophisticated scaling method, LSDNet optimizes width, depth, and resolution 

simultaneously, achieving high accuracy and efficiency. The weighted BiFPN enhances 

multi-scale feature extraction to improve low-light small object detection. Critical changes 
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involve adaptive brightness adjustment, class-aware score modification, and dynamic 

confidence thresholding. Post-processing improvement such as advanced Non-Maximum 

Suppression (NMS) enhances detection trustworthiness further. These optimizations 

render LSDNet very well-positioned for real-time use in applications such as adaptive 

vehicle headlamps, enhancing on-road safety across different lighting environments. 

 

Figure 4.28 F1 Vs Confidence Curve 

Multiple analytical techniques are employed to determine the perfromance of the LSDNet 

Model. The performance curves: F1-Confidence, Precision-Recall, Precision-Confidence 

and ROC plots are discussed. This is followed by sensitivity analysis of the LSDNet Model; 

on varying brightness levels and on varying object sizes to determine the models detection 

capabilities on these factors. The performance of the model is then benchmarked against 

YOLO (Tiny & V8), SSD, Modified SSD, Standard Det D0 Model. The section also 

performs data visualization techniques like Radar Chart, Heatmap, Scatter plot and Box 

plot to find the best fit model for the application. Also, the relative performance of 

LSDNET against Dataset Mean is performed to determine the superior model.  

The tradeoff between Precision and Recall of LSDNet and the Std Det D0 model is 

determined using the F1-Confidence Curve shown in figure 4.28. As confidence score 

increases the F1 score also shows and increase till a point where the  LSDNet shows an 

optimal balance between detection while maintaining fewer false positives. Beyond this, 

F1 shows a fall as the recall reduces and the model becomes conservative it the detections. 
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It shows consistency in scores throughout the range, by maintaining a balance (between 

Precision values & Recall) over diverse range and shows maintains a higher value in 

comparison to the efficient det model which is a reference to their improved detection 

capability, notably for higher confidence values. This means that the model has an 

improved filtering performance that suppresses false positives with no compromise on the 

detections. Hence, it is robust in nature by avoiding false detections without affecting the 

recall while Std Det model experiences a sharper fall post the optimal threshold.  

 

Figure 4.29 Recall Vs Confidence Curve 

This means that the Std Det Model finds it difficult to sustain relaiable detections under 

higher confidence levels. The Recall vs. Confidence Threshold plot (Figure 4.29) displays 

the recall variation wrt varying confidence threshold values for the baseline EfficientDet-

D0 and LSDNet models. Recall is a measure of the model's sensitivity to all objects of 

interest, with higher recall values reflecting better sensitivity. Recall diminishes as the 

confidence threshold increases since more stringent positive prediction requirements 

eliminate lower-confidence detections that consist of true positives.  

LSDNet always preserves a better recall at all the confidence levels, indicating better object 

detection sensitivity. This is a major improvement for situations where small objects or in 

low-light setups are involved because recall is at a premium here. The observed trend shows 

it allows the model to have a higher number of true positives retained while the false 

positives continue to be adequately filtered out. Though precision-recall trade-offs do 
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occur, its improved recall indicates a better detection ability, especially under difficult 

conditions. The variations demonstrate the effectiveness of the optimization in securing 

more robust detections without significantly lowering overall performance. These findings 

justify LSDNet's contribution to improving object detection robustness through increased 

recall without overly degrading precision. 

 
Figure 4.30 Precision Recall Curve 

The distinction between the two models remains subtle in the Precision-Recall Curve, 

signifying that the changes improve performance without significantly varying the 

detection nature. From figure 4.30, it can be noted that the updated model shows small 

improvements in recall with a similar precision profile, implying that it fine-tunes detection 

ability, especially under the difficult nighttime condition. These gains lead to better object 

identification with fewer significant trade-offs, corroborating the improvement in detection 

robustness through the modifications while not compromising the advantage of the basic 

model. The Precision Vs. Confidence Threshold graph in shows how precision changes 

with increasing confidence thresholds for both the default and modified models. 

Precision, or the fraction of correctly identified objects out of all detections, rises as the 

confidence threshold is increased because higher thresholds remove lower-confidence false 

positives. The default EfficientDet-D0 has slightly higher precision for most thresholds, 

indicating it shows fewer false positives. But the adjusted model closely tracks, showing 

competitive accuracy with a better-balanced strategy. The narrow gap reflects a 
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compromise, in which the adjusted model may prefer recall gains, providing improved 

detection of low-visibility objects in nighttime environments.  

 
Figure 4.31 ROC Curve 

LSDNet’s and EfficientDet-D0’s Receiver Operating Characteristic Curve is steeper with 

a large area which hints at the discrimination capability of a model. Both LSDNet and 

Standard EfficientDet-D0 have nearly identical ROC curves, both having an AUC of 0.960. 

This shows that both models perform well in terms of classification, with the ability to 

clearly discriminate between positive and negative object detection. The identical curves 

imply that changes in LSDNet have not greatly affected the general model discrimination 

capacity, as quantified using AUC. However, ROC curves by themselves do not disclose 

performance differences in class imbalance or low-confidence areas. As LSDNet focuses 

on small-object detection and low-light conditions, recall and precision gains at certain 

confidence levels might not be completely represented by AUC.  

Nevertheless, the similar AUC ensures that LSDNet is still reliable for detection while it 

increases recall and precision in essential areas, especially where traditional detection 

models perform poorly. The performance plots hint at the suitability of the Model for low-

light object detection. With the model maintaining a higher recall at varying confidence 

levels, LSDNet promises significant improvement in detection compared to standard model 

which falls short in detecting small objects. Precision-Confidence Curve shows comparable 

performance with marginal decrease at a few confidence thresholds which is due to the fact 
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that for nighttime detections maximizing the recall is the key to reduce detection fails, 

which is substantially crucial than the false positives.  

Further substantiating the models ability is the increased F1 score across the varying 

confidence thresholds which optimizes the tradeoff between precision and recall. This 

indicates that the model has the ability to deal with tradeoffs due to low-light and keeps 

detections steady even in unfavorable lighting conditions. The models ability to maintain 

higher mean average precision over the confidence thresholds is reflected in the mAP-

Confidence plot highlingting its ability to detect effectively even with weak visual cues. 

The large area under the AUC curve in the ROC plot (shown in figure 4.31) as same as that 

of the efficient Det-Do suggests that the modifications performed to deduce the new model 

does not affect the general classification ability while the low-light illumination is 

improved. Improved recall and consistent mAP leads to a comprehensive detection 

framework that is ideal for the small as well as compromised contrast based object 

detections in nighttime conditions. High recall without a tradeoff on the precision along 

with improvement on F1, mAP makes the optimized model ideal for the application. 

4.5.6.1 Sensitivity Analysis based on brightness 

The analysis of the LSDNet model under varying brightness condition in relation to the 

baseline model shown in Figure 4.32 shows improved performance in object detection 

during low light conditions. The discussion based on performance plots clearly places 

LSDNet as a good model for low-illumination scenarios and the performance under low 

brightness substantiates it further. The model shows a 5.85% improvement in AP for a 

brightness factor of ~0.3 when compared to efficient det model. On an average LSDNet 

shows a 1.39% variation whereas in baseline model it is 2.61% which hints at a stable 

detection rate in this model.  

Accuracy trends are also observed to follow a similar trend, where the model tends to 

outperform the standard model more significantly at higher brightness levels, with a peak 

relative performance of more than 110%. This can be observed most strongly in the 1.3 to 

1.7 brightness range, where the model performs better than the standard model by a rough 

margin of 2.35%. LSDNet indicates an overall average variation of accuracy to be 4.78%, 

marginally greater than 4.62% for the standard model, which illustrates better general 

stability under changing brightness conditions.  

 



158 

 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 4.32 Variation of metrics under varying lighting 

conditions, from Very Dark (0.3), Dark (0.5), Dim (0.7), 

Normal (1.0), Bright (1.3), Very Bright (1.5), to Extreme 

bright (1.7). a. Average Precision Vs Varying brightness, b. 

Accuracy Vs Varying brightness, c. Recall Vs Varying 

brightness, d. F1 Score Vs Varying brightness, e. FPS Vs 

Varying brightness. 
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The most prominent difference is in Recall, with the model outperforming the baseline 

model in the low brightness range. At brightness of 0.5 to 0.7, LSDNet records more than 

a 3.11% improvement in recall over the baseline model. This indicates a greater capacity 

to pick up objects that would otherwise go undetected in low-light conditions. As brightness 

goes higher than 1.0, remember differences between the models decrease, implying that it 

is actually optimized for conditions where object visibility is naturally lower. Yet, under 

all brightness conditions, the baseline model shows a larger deviation of 2.81% in recall, 

while LSD shows a more regulated change of 1.42%. The F1 Score curves closely mimic 

those of recall and accuracy, with LSD performing better than the baseline model at lower 

brightness. At the 0.5 to 0.7 brightness interval, LSDNet has an F1 Score improvement of 

about 1.2% (compared to Efficient Det). The avg F1 Score fluctuation is 1.28%, while the 

baseline model has a wider fluctuation of 2.27%, further validating its capability to offer 

balanced precision-recall performance in low-illumination environments. Computational 

speed, in terms of FPS, is another important dimension where LSDNet shines. On the 

lowest brightness level (0.3), LSDNet is almost a 41.65% boost in FPS over the baseline 

model.  

This gain indicates that the model will have real-time processing capabilities while 

enhancing detection reliability under difficult conditions. Even with brightness being 

increased, LSDNet still holds a better FPS, on average a 0.79 FPS lead compared to the 

normal model at every level of brightness, with an overall variation of 2.73% to 1.94% for 

the normal model. Overall, the model achieves higher recall and efficiency in computations 

when there is low light, and it enjoys an AP improvement of about 5.85% in extreme low-

light, with a gain of 3.11% in recall, as well as up to an FPS boost of 41.65% in lowest 

brightness conditions. These outcomes unequivocally reveal that LSDNet is deeply 

optimized for night-time object detection where it is most important to maintain a 

compromise between detection quality and real-time execution. 

4.5.6.1 Sensitivity Analysis based on Object Size 

Object size detection performance analysis shows that LSDNet demonstrates significant 

improvement, especially for detection of small objects as shown in Table 4.7. On very small 

objects (<0.5%), the model has an average precision (AP) improvement of 28.4% (0.243 

to 0.312) and recall improvement of 23.1% (0.351 to 0.432), suggesting improved 
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sensitivity to subtle object details. In the same way, for small objects (0.5–2%), AP is 

enhanced by 17.0% (0.352 to 0.412), and recall is enhanced by 12.9% (0.463 to 0.523).  

Table 4.7 Comparison of the Det 𝐃𝟎 and LSDNet's object detection ability with 

different object sizes. 

Object Size 
Efficient Det Do Model LSDNET Model 

AP Recall AP Recall 

Tiny (<0.5%) 0.243 0.351 0.312 0.432 

Small (0.5-2%) 0.352 0.463 0.412 0.523 

Medium (2-20%) 0.674 0.712 0.683 0.736 

Large (>20%) 0.763 0.801 0.771 0.815 

These enhancements indicate that the pre-processing and post-processing adjustments in 

LSDNet maximize feature extraction in different brightness levels and facilitate more stable 

detection of small-scale objects. For medium (2–20%) and large objects (>20%), LSD 

retains a performance advantage, but with comparatively lower improvements. The AP 

improves by 1.3% for the medium objects (0.674 to 0.683) and 1.0% for large objects 

(0.763 to 0.771), whereas the improvements in recall are still moderate at 3.4% and 1.7%, 

respectively. This reflects that the changes are largely favoring detection of smaller objects, 

which is vital for safety-oriented applications like autonomous navigation and nighttime 

monitoring. In addition, the consistent enhancement of recall with all object sizes 

emphasizes LSDNet's ability to reduce false negatives to make it more reliable in low-

illumination settings. 

4.5.7 Benchmarking against state-of-the-art models 

The models performance on these metrics: accuracy, recall, F1 score, mAP, ROC-AUC, as 

well as FPS is compared against major object detection models [106]. These form the basis 

for measuring the efficiency of a model in detection as well as localization, specifically 

under low-illumination conditions. Accuracy measures correct classification, while mAP 

measures localization accuracy. Recall and F1 score provide minimal false negatives, with 

ROC-AUC reflecting classification dependability. FPS decides real-time processing 

ability. As can be seen from the data set, LSDNet always has better recall, mAP, and FPS, 

further supporting that it is articularly well-suited for night time object detection tasks 

involving speed and trustworthiness. The comparisons of models against these factors are 

plotted in Figure 4.33. 
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Figure 4.33. Metrics comparison across models 

4.5.7.1 Analytic benchmarking 

Radar chart (Figure 4.34) graphically shows the comparative performance of different 

object detection models on many test metrics. The extent an individual model occupies on 

the radar chart reflects its overall balance of performance. The larger and evenly distributed 

the area, the better the model performs on many aspects, while smaller or irregular-shaped 

areas point to weakness in certain areas. Based on the analysis, LSDNet model has one of 

the largest and most evenly balanced radar chart areas. This is largely because it has a high 

recall (75.36%) and mAP (68.08%), with which it is able to successfully detect objects even 

when there is low lighting. In addition, LSDNet's FPS (50.66) is the highest across all 

models, making it appropriate for real-time usage. While its accuracy (52.03%) is slightly 

lower due to a design trade-off, this aligns with the model’s objective of prioritizing object 

detection over classification.  
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Figure 4.34 Radar Chart of the multiple model metrics 

Std Det D0 and MF Model are also a robust and outperforms YOLO V8 and SSD both in 

recall and precision and hence is a good all-around option. Contrariwise, YOLO-Tiny 

occupies the smallest area on the radar chart, which reflects extreme limitations. Its very 

low accuracy, recall, and FPS (1.9) render it inappropriate for real-time applications, 

particularly, low-light environments. While YOLO, SSD, and Modified SSD occupy a 

moderate area on the radar chart, they have poor recall and FPS, which are essential for 

detecting small objects in low-light environments. YOLO V8 and Std Det Do Model are 

better, with YOLO V8 showing better accuracy (45%) but poorer recall (24%), which could 

result in missed detections.  

In contrast, Std Det Do Model shows a good balance, with accuracy (56.99%), recall 

(72.37%), and a comparatively high FPS (34). Nevertheless, its FPS is still lower than 

LSDNet, so it is more appropriate for real-time use. Given the specific needs of night, on-

road object detection, with particular attention to small objects, it is the best model to 

consider. Its ability to provide high recall, decent mAP, and higher FPS guarantees objects 

being detected with effectiveness while also maintaining real-time. Although other models 

excel in certain areas, they cannot match the overall well-rounded performance of the 

model for low-light, fast-moving detection scenarios. Thus, LSDNET is the best option for 

this use. 
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Figure 4.35 Heat map of multiple model plotted across the performance metrics 

The heatmap visualization shown in Figure 4.35 gives an effective illustration of the object 

detection model's strengths and weaknesses in relation to FPS, recall, F1 score, and mAP. 

LSDNet, Std Det Do and MF Model have deep red tones in all the important metrics, 

demonstrating their good real-time performance and detection effectiveness, suitable for 

low-light environments. The model, specifically, has a uniformly red color palette, 

affirming its even trade-off between speed and accuracy. MF Model, specifically, shows 

an excellent balance between speed and accuracy, like LSDNet, but with slightly reduced 

recall and FPS.  

YOLO V8, though exhibiting fair accuracy, tilts towards cold blue colors in recall, F1 

score, and FPS, which reveals high precision but low speed suitable for real-time usage. 

YOLO and SSD models exhibit mixed red and blue colors, depicting compromises between 

recall, accuracy, and speed, rendering them unreliable for night time detection. YOLO-Tiny 

is mostly dark blue, representing poor recall, low mAP, and poor FPS, which makes it 

inappropriate for real-time purposes. The high red dominance in the heatmap supports its 

better performance in real-time, which makes it the best model to use for night time object 

detection. 

Figure 4.36, pairplot visualization, represents the distribution and inter-relationships of the 

metrics. The visualization shows an evident compromise wherein models with greater 

recall tend to have lower FPS, and the models that are tuned for faster speed tend to 

compromise on detection accuracy. The spread in recall and mAP scores indicates that 
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certain models are more concerned with detection robustness, while others are concerned 

with computational efficiency. With Std Det D0 and MF Model, it can be observed that its 

mAP and recall scores are dramatically higher than those of SSD and YOLO, suggesting 

excellent object detection performance. Yet its FPS is a bit lower than LSDNet's, 

demonstrating that it finds a balance between computational efficiency and the robustness 

of detection. 

 

Figure 4.36 Scatter Pair plot of the multiple models being compared 

Figure 4.37, the FPS vs. Recall scatter plot, also demonstrates this trade-off, with clear 

clusters of models depending on their performance profiles. The model is the one with the 

highest recall of 75.36 and a better FPS of 50.7, which makes it ideal for real-time 

applications where high recall is critical. Std Det Do Model takes a close second. It may 

have lesser recall compared to LSDNet but is still above several other models, such as 

YOLO V8 and SSD. Conversely, YOLO-Tiny, although having lightweight inference 
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speed, has very low recall and hence is not effective for applications with the need for 

robust object detection. Std Det Do comes after LSDNET in performance but slightly lower 

in recall, further emphasizing the models’ advantage in optimizing speed and detection 

accuracy. YOLO architectures and SSD have moderate recall measures but cannot be as 

efficient as it.  

 
Figure 4.37 Plot of trade-off between FPS and Recall across various models 

The diversity in box sizes among metrics in Figure 4.38 and Table 4.8 reveals more about 

the variability of object detection model performance. The dispersion seen in FPS is 

considerably large, signifying great variability in real-time processing speed. Models that 

fall on the higher end, i.e., LSDNet, are far better in terms of speed, whereas models that 

fall at the lower end, i.e., YOLO-Tiny, are way too slow to be practically implemented in 

dynamic scenarios. This broad dissemination solidifies that computation efficiency is the 

most important differentiation factor between models, and the model being the top one for 

real-time detection.  

In contrast, the distribution of recall values is heavily skewed, with a long upper whisker 

extending toward models like LSDNet and the Std Det Do Model. This suggests that while 

most models struggle with detection, a few significantly outperform the average, making 

them more reliable for scenarios where detecting an object, rather than just classifying it, 

is of primary importance. The observed variation in F1 Score is moderate, indicating that 

there are some models that have a trade-off (between precision and recall), while others, 

especially those placed in the lower quartiles, have difficulty in making stable detections. 
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A very large spread is also seen in mAP, affirming that the accuracy of object localization 

differs considerably across models. While better localization is seen by LSDNet and the 

Std Det Do Model, models such as YOLO-Tiny completely fail, asserting the importance 

of selecting architectures that are specifically optimized for accurate object recognition, 

particularly in difficult night time scenarios.  

 
Figure 4.38 Box plot of the performance distribution of metrics across various models 

Table 4.8 Box plot Quartile values for various metrics across multiple models 

Metric Min Value 
Q1 (Lower 

25%) 

Median 

(Q2 - 50%) 

Q3 (Upper 

75%) 

Max 

Value 

FPS 1.9 ~14.56 ~19.18 ~31.45 50.66 

Recall 0.025 ~0.2425 ~0.26 ~54.35 75.36 

F1 Score 0.022 ~0.204 ~0.2425 ~0.651 0.78 

mAP 0.041 ~0.3425 ~0.40 ~49.76 68.08 

Accuracy 6 ~43.5 ~48.52 ~52.76 56.99 

ROC-AUC 0.53 ~0.7125 ~0.745 ~0.9275 0.98 
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The range of accuracy values, however, is fairly compact, suggesting that the majority of 

models are performing within a comparable range in terms of classification accuracy. In 

spite of this, model’s emphasis on detection rather than classification is consistent with its 

target application, where misclassification is an acceptable compromise for the sake of high 

recall. ROC-AUC trends alongside accuracy, albeit with a modest box size that reflects the 

preponderance of models that portray consistent classification powers. But far outliers like 

YOLO-Tiny demonstrate limitations in architectures with respect to distinct object 

discrimination. The general conclusions made from the box plot indicate that although 

accuracy and classification performance are fairly consistent across models, the actual 

distinguishing factors for nighttime object detection are detection ability, speed, and 

localization accuracy. The broad range of these important factors indicates the superiority 

of LSDNet, which is consistently in the higher quartiles in the most significant metrics. 

4.5.7.2 LSDNet's Relative Performance Against Dataset Mean 

The Relative Performance against Dataset Mean metric measures the superiority of a model 

by comparing its values with the dataset mean. The mean and the standard deviation of 

every value across all models are calculated first. Then, the z-score is calculated by Z as 

the difference between the model's value and the mean divided by the standard deviation. 

The higher the z-score, the higher the relative performance against other models. These are 

presented in Table 4.9 with LSDNet being the best performer, and also MF Model showing 

good competitive performance. The high Z-Score of 1.08 for mAP and 1.31 for Recall 

validates the capability of LSDNet in object detection at nighttime, making it well-suited 

for implementations such as adaptive headlamps and autonomous driving.An excellent Z-

Score of 1.37 for FPS, accompanied by enhanced Recall and mAP scores, makes LSDNet 

the best model for real-time detection in dynamic scenes. This is supported by its excellent 

F1 Score Z-Score (1.23), which reflects an excellent balance between Precision and Recall, 

efficiently eliminating false positives and negatives. Although its Accuracy Z-Score (0.43) 

is similar to the baseline model, such consistency is a conscious design trade-off, focusing 

on detection at the expense of classification accuracy.  

MF Model also performs well on main metrics. It has an FPS Z-Score of 1.07 to provide 

effective real-time detection at the cost of minimal Recall (0.48) and mAP (0.62). While 

lagging slightly behind LSDNet, it offers a sound alternative for real-time applications 

where speed and detection are both critical (Figure 4.39). 
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Figure 4.39 Z Score and relative performance comparison of various models 



169 

 

Table 4.9 Relative Performance Table for LSDNet, MF Model, and Modified SSD 

Metric 

Models Metric value 

Dataset 

Mean 

Std 

Deviation 

Z-Score Relative Performance (%) 

LSDNET 

Value 

MF 

Model 

Value 

Modified 

SSD 

Value 

LSDNet 
MF 

Model 

Modified 

SSD  
LSDNet 

MF 

Model  

Modified 

SSD  

Accuracy 52.03 55.03 53.00 44.44 17.70 0.43 0.60 0.48 17.08 23.83 19.26 

mAP 0.68 0.58 0.42 0.44 0.22 1.08 0.62 -0.11 53.38 30.63 -5.41 

Recall 0.75 0.53 0.27 0.40 0.27 1.31 0.48 -0.48 88.50 32.25 -32.50 

F1 Score 0.78 0.58 0.27 0.41 0.30 1.23 0.57 -0.46 90.24 41.46 -33.90 

AUC-ROC 0.98 0.89 0.77 0.80 0.16 1.12 0.56 -0.19 22.50 11.25 -3.75 

FPS 50.66 45.31 23.80 26.40 17.75 1.37 1.07 -0.15 91.89 71.63 -9.85 
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Table 4.10 Comparison of Object Detection Models for Nighttime Applications 

Model Notable attributes Performance gaps 

LSDNET 

Rarely fails to detect objects, even small ones, and 

works at real-time speeds, making it suitable for night 

object detection. 

Because LSDNET focuses on detection rather than classification for 

real-time headlamp compensation, some items will be misclassified, 

which is fine for the purpose they are intended to serve. 

Std Det Do 

Model 

Correctly detects most objects, guaranteeing high 

detection reliability. 
Detecting delays with slower real-time response. 

YOLO V8 
General object detection is best for it, especially during 

the daytime. 

May miss out on detecting tiny objects at nighttime, lowering night 

detection reliability 

MF Model 
Balances detection accuracy and speed well, making it 

a good real-time candidate for night object detection. 

Slightly worse recall and FPS than LSDNET, which can lead to 

occasional missed detections in high-speed scenarios. 

Modified SSD 
Works slightly better for detecting small objects and 

real-time execution than the regular SSD. 

Has difficulty differentiating objects appropriately, resulting in 

increased false alarms. 

SSD Works marginally more reliably for object detection. Too slow for real-time night use. 

YOLO-Tiny Works on low-power devices. 

Misses majority of objects in low contrast lighting and is too slow 

for real-time detection and thus not adequate for nighttime object 

detection. 
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Meanwhile, the Modified SSD model falters by comparison, with negative Z-Scores in 

Recall (-0.48), F1 Score (-0.46), and mAP (-0.11) pointing at a significant reduction in 

detection reliability, thus unsuitable for high-speed real-time processing. AUC-ROC scores 

for LSDNet (1.12) and MF Model (0.56) verify their capacity to perform consistent 

detection under varied environmental conditions, highlighting their deployment feasibility. 

LSDNet's higher AUC-ROC score further emphasizes its resistance to detecting objects 

(varied conditions), making it a perfect candidate for nighttime object detection where both 

speed and precision are vital. 

4.5.8 Model Trade-off Analysis 

Determining the best detection model for this application includes assessing divergent 

parameters: accuracy, recall, and FPS. As the scene is low-light, with small objects present, 

the most critical requirement is to detect the objects and not classify them with high 

accuracy. This trade-off analysis thoroughly assesses the models to identify the best 

contender for real-time object detection in nighttime scenarios. There is a significant trade-

off in speed and accuracy, as more accurate models generally demand more computational 

power, resulting in lower FPS.  Models like YOLO V8 (Accuracy: 45, FPS: 14.56) and Std 

Det Do Model (Accuracy: 66.21, FPS: 34) have high classification accuracy but low 

inference speeds, which can cause latency in real-time detection applications.  

On the other hand, LSDNET (Accuracy: 52.03, FPS: 50.66) shows a better balance by 

ensuring decent detection accuracy while drastically increasing FPS, hence being more. On 

the opposite end, models such as YOLO-Tiny (Accuracy: 6, FPS: 1.9) perform poorly in 

both detection accuracy and real-time processing.  The tradeoff (of accuracy-speed) makes 

LSDNET the best as it achieves fast object detection while maintaining good classification 

performance. In addition to accuracy and speed, recall and mean average precision (mAP) 

are also important measures of a model's detection effectiveness and localization accuracy. 

Recall is most important in nighttime detection—where false negatives (missed detections) 

are more dangerous than false positives (misclassifications)—models with better recall are 

preferred. LSDNET attains the best recall of 75.36 and competitive mAP of 68.08, with the 

ability to detect objects with less omission and with good localization accuracy. Std Det 

Do Model comes in at second place with recall of 72.37 and mAP of 66.21 and can be 

relied upon as a backup. Conversely, YOLO V8 shows a comparably good mAP of 44 but 

a poorer recall of 56, indicating that although it is very good at accurate localization, it will 

likely lose objects, especially at night.  
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Down at the bottom is YOLO-Tiny, with a recall of 2.5% and an mAP of 4.1%, falling 

short of the minimum detection threshold, as expected. The focus on recall rather than mAP 

also confirms LSDNET as the best model since it consistently detects objects without 

substantial omission while keeping decent localization accuracy. The key comparisons of 

the models are shown in Table 4.10. Another crucial metric for model performance is the 

F1 Score (measure of the proportion of precision and the recall) to ensure accurate 

detection. But attaining a high F1 Score should not be at the cost of real-time usability, 

requiring a compromise with FPS. LSDNET surpasses other models yet again by having 

the best F1 Score (0.78) while retaining a best-in-industry FPS (50.66), which makes it the 

most efficient model. The Std Det Do Model, with an F1 Score of 0.778 but lower FPS of 

34, is still a good alternative, albeit less efficient for real-time usage.  

Other models, including SSD and YOLO, are not as good at both F1 Score (0.214 and 

0.201, respectively) and FPS (14.56), and thus are less competitive for dynamic, low-

visibility settings. Because both F1 Score and FPS are very important in achieving effective 

object detection, LSDNET is the most well-rounded option. Efficient computation is 

important for real-world deployment, especially in embedded devices, autonomous 

vehicles, and surveillance, where the processing power is constrained. LSDNET has the 

best FPS without compromising on high recall and F1 Score, which means it is designed to 

be computationally efficient. This is in stark contrast to YOLO V8 and SSD, which demand 

much more computation to deliver mere moderate FPS and hence are not as suitable for 

real-time operations.  

The capacity for efficient high-speed processing with low computational overhead places 

LSDNET as the best candidate for use in resource-limited environments. According to this 

thorough trade-off analysis, LSDNET stands as the best optimized model for object 

detection at night. It is able to balance speed, detection accuracy, and computational cost 

well, making it the best fit for real-time usage where detecting objects, not classifying them, 

is the goal. The model's most significant strengths are the highest FPS (50.66), guaranteeing 

real-time detection ability; the highest recall (75.36), minimizing the chance of missing 

objects; a competitive mAP (68.08) for precise localization; a robust F1 Score (0.78), 

guaranteeing dependable detection; and effective computational efficiency, allowing it to 

be deployable in real-world systems. These features make LSDNET the best model for 

nighttime object detection, with its trade-offs tuned for low-light, on-road applications. 
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Additional optimizations and sharpening could further improve its effectiveness in ultra-

low-light environments, but its present detection effectiveness and computational 

efficiency make it the first choice for actual deployment. 

4.5.9 Summary of the performance of LSDNet and future directions 

LSDNet tackles the challenges of nighttime object detection by employing inference-level 

adaptations that improve model effectiveness in poor illumination. Traditional detectors 

fail due to poor contrast and difficulty identifying small or distant objects. LSDNet employs 

the Efficient Det D0 backbone with brightness-aware modulation, size-aware confidence 

scaling, and class-prioritized detection for enhanced sensitivity under low-light conditions. 

Benchmarking proves its supremacy: LSDNet improves recall by 4.1% over Efficient 

Det D0  and achieves more than 23.1% improvement in small item recall. It registers a 

5.85% improvement in average precision at extreme low-light levels, with a mean average 

precision of 68.08, outperforming YOLOv8, SSD, and their variants. 

LSDNet attains 50.66 FPS inference speed, improving over the baseline by 34% while 

retaining higher detection quality, thus enabling real-time deployment in embedded AI 

systems for ADAS, self-driving cars, and smart traffic control. The performance lies 

essentially upon its dynamic adjustment of detection confidence based on scene brightness 

and object size. This improves identification of vulnerable traffic participants like 

pedestrians and bicycles.  Class-specific weighting improves detection precision for critical 

objects like cars and obstacles, thus reducing false positives. Future improvement includes 

TensorRT-based acceleration for lowering latency, Transformer-based attention for 

adaptive feature extraction, and GAN-based augmentation for enhanced low-light 

generalization. IoU-aware loss functions like GIoU and DIoU are designed to improve 

bounding box localization. LSDNet offers a robust, efficient, and real-time solution to 

safety-critical low-light detection tasks, with huge potential in autonomous vehicles, smart 

surveillance, and adaptive illumination systems. 

4.5.10 Summary of the performance analysis of the object detection 

models 
LSDNET is the most reliable and effective model for object recognition at night, 

particularly in real-time adaptive headlamp applications, based on a comparative 

performance evaluation of alternative object detection models. At night, LSDNET 

accurately detects small or occluded objects with a 0.78 F1 score, a 52.03% detection rate, 
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and an extremely high mean average precision of 68.08%. Its 50.66 frames per second 

(FPS) real-time processing ability further enhances its suitability for situations involving 

fast-moving cars. This limitation is tolerable in adaptive headlamp compensation, where 

immediate availability of an object is more important than its precise label, even though its 

primary emphasis is on object detection rather than classification, which sometimes leads 

to misclassifications. High reliability is also reflected by the Standard Detection Do model, 

with an acceptable AUC-ROC score of 0.98 and an F1 score of 0.778.  Its reduced 

processing speed (34 FPS) at high-speed driving, though, could result in noticeable lag 

when compared to LSDNET.  The Modified SSD and Multi-Faceted (MF) models are 

balanced ones with a mid-level speed and detection rate. Especially in normal nighttime 

driving conditions, the MF model performs well; however, it lags behind LSDNET in recall 

and real-time response, which may lead to occasional missed detection when traveling at 

high speeds. 

On the other hand, YOLO-V8 has issues with identifying small or low-contrast objects 

during nighttime, although it is robust in typical object identification scenarios and daytime 

settings.  This affects its reliability in uses where these types of detections are needed during 

nighttime.  Typical SSDs do not have the speed required for real-time processing, although 

they have a good detection power. Although created to be executed on low-power 

hardware, YOLO-Tiny falls short due to its slow inference time and poor low-light 

performance. In conclusion, LSDNET is the optimal model for nighttime object recognition 

in real time, while MF and Mod SSD serve as secondary options for a few particular 

situations.  Due to their poor performance at night, models such as the YOLO-Tiny and the 

standard SSD are not suitable for consideration by adaptive headlamp systems. 

 

4.6 Overview on the Lane detection techniques  

This subsection discusses a lane detection method for adaptive headlamp control that 

calculates steering angle and curvature through OpenCV-based methods to set beams to 

increase illumination.  It also identifies the manner in which deep learning is replacing 

traditional feature-based approaches for detecting roads [76]. Because of their ability to 

perform end-to-end feature extraction and learning [78], CNNs have replaced more 

traditional methods like HoG and RealBoost in tasks such as pedestrian and vehicle 

detection [24][77][11].  Even though CNNs are more accurate, real-time adjustments such 

as YOLO and Fast R-CNN have been introduced because of their computational 
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requirements [79]. To cope with challenging conditions such as weathered lane markers, 

curves, and glare, lane detection methods have developed. Probabilistic models and sensor 

fusion approaches (e.g., camera + LiDAR) enhance robustness [41][83], while vanishing 

point detection [86] and graph-based ranking [85] enhance boundary estimation in 

complex road textures. Lightweight inference models [82] and semantic segmentation 

networks such as UPA and UBA [88] provide high spatial accuracy at low overhead, 

making them suitable for embedded systems.  For improving performance, recent models 

further focus on trajectory prediction using spatial feature pooling [90] and monocular 

vision [89]. Obstructions, faded lane markings, and varied road geometries still pose 

challenges.  Improving adaptive lane-aware headlight systems requires a deeper 

integration of deep learning with multi-sensor fusion and semantic reasoning. 

4.7 Framework for lane detection and integrating LSDNet 

model to operate in multiple driving scenarios6[108] 
Lane detection is crucial for autonomous vehicles and driver-assistance systems, enabling 

safe navigation and precise decision-making. This section details a comprehensive lane 

detection technique, illustrated in Figure 4.40. The method employs various image 

processing methods to reliably recognize lane markings across diverse environments. 

Initially, a gamma correction function enhances the brightness and contrast of the original 

image. Subsequently, the gamma-corrected image undergoes bilateral filtering to smooth 

it while preserving essential edge information. The Canny edge detection technique, 

applied through the canny function, extracts relevant edges, generating a binary image 

highlighting the detected edges.  

The Hough transform function is then utilized with both the original and binary edge-

detected images to locate lines within the edge-detected image. This method employs 

thresholding, grayscale conversion, and line detection to create an image displaying 

realized lines and relevant information. A clustering technique is developed based on 

parameters derived from identified lines and the original image, enhancing and ordering 

the detected lines. Related lines are clustered, resulting in detected lane lines. An HSV 

filter is subsequently applied to the BGR image, along with assigned minimum and 

 
6 Section 4.7 of this Chapter was presented at an International Conference and has received the Best Paper Award. The 

details are as follows: Toney, Glenson, Sethi, Gaurav and Cherry Bhargava. "A Novel Lane Detection Approach for 

Vehicle Adaptive headlamps" International Conference on Advances in Smart Sensor, Signal Processing and 

Communication Technology, Goa University, India, March 2024 
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maximum HSV values for yellow and white colors, distinguishing lane marker colors. The 

resulting image accentuates pixels within the specified color range relevant to lane 

markings by filtering pixels within specified thresholds. This algorithmic approach 

correctly identifies and distinguishes lane markers across various environmental scenarios, 

potentially enhancing the safety and efficiency of driver assistance and autonomous 

driving systems. 

 

 

Figure 4.40 The lane detection intermediate processes [108] 

The Gamma Correction tool improves image quality by adjusting brightness and contrast 

to account for the nonlinear relationship between pixel values and perceived brightness.  

𝐼𝑐 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝛾

                                                       (4.38) 

Equation (4.38) defines the gamma correction function, where I represents the original 

pixel intensity, Icdenotes the corrected pixel intensity, and 𝛾 alters the image's brightness 

and contrast. Higher gamma values (> 1) emphasize details in brighter areas, while lower 

values (< 1) enhance details in darker areas, helping to compensate for changes in the 

display system's response curve. This correction enhances the image's dynamic range and 

tonal representation, particularly in scenarios with varying lighting and exposure levels. 
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To preserve edges and reduce noise, the bilateral filter (Equation 4.39) functions as a non-

linear, edge-preserving smoothing filter, averaging pixels based on spatial closeness and 

intensity differences.  

Bilateral(I, 𝜎𝑠, 𝜎𝑟) = 
1

Wp
 ∑q∈ΩGs(||p − q||, 𝜎𝑠). Gr(|| Ip − Ir||, 𝜎𝑟)∙Iq    (4.39) 

Here, Wp represents the normalization term, Ip and Iq are intensity values at pixels p and 

q respectively, Gs is the spatial Gaussian kernel function with standard deviation 𝜎𝑠, Gr is 

the range Gaussian kernel function with standard deviation 𝜎𝑠, and I is the input image. 

Additionally, a Gaussian filter is applied to smooth the image, controlled by the standard 

deviation of the Gaussian kernel, regulating smoothing intensity. Sobel operators calculate 

the gradient of the smoothed image, aiding in discerning intensity variations in both 

horizontal and vertical directions. Subsequently, non-maximum suppression retains only 

local maxima along the gradient direction, resulting in thinner edges and preserving only 

the strongest edge responses. 

After detecting potential edges, a double thresholding process distinguishes strong and 

weak edges based on gradient magnitudes relative to high and low thresholds. Strong edges 

have magnitudes above the high threshold, while weak edges fall between the low and 

high thresholds, with pixels below the low threshold discarded. Edge tracking, based on 

hysteresis, connects weak edges to strong ones, considering only those weak edges linked 

to strong ones as components of an edge, guided by gradient directions. Configuring 

thresholds is crucial and depends on image properties, balancing sensitivity (detecting all 

edges) and specificity (excluding noise). 

𝑟 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃)                      (4.40) 

The Hough Transform represents detected shapes in a coordinate system, employing polar 

representation (Equation 4.40). Here, (r, 𝜃) denotes a point in Hough space, with 𝜃 as the 

angle between the x-axis and the line, and r as the perpendicular distance from the origin 

to the line. Votes aggregate in the Hough space, a 2D parameter space representing r and 

𝜃 for line detection. Each edge pixel contributes to a sinusoidal curve in the Hough space, 

accumulating votes for intersections of corresponding curves, revealing lines in the image 

as peaks in the Hough space. Normalization enhances lane marking visibility in low-light 

driving conditions by ensuring consistent pixel values (Equation 4.41). This aids clustering 

algorithms in distinguishing lane markings from dark backgrounds. 
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Pnorm =
P−min(P)

max(P)−min(P)
                                                   (4.41) 

The K-means algorithm (Equation 4.42) is employed to minimize the within-cluster sum 

of squares, where I represents the image, C denotes the cluster centroids, and ||∙|| indicates 

the Euclidean norm and distance metric.  

argmin ∑ ∑ \\Ii − Ck\\2Nk
i=1

K
k=1                                    (4.42) 

Euclidean distance (Equation 4.43) calculates the distance between two points in 

Euclidean space, aiming to minimize the sum of squared Euclidean distances within 

clusters. Each cluster corresponds to a distinct lane or background region. Euclidean space 

is given by  

d(Ii,Ck)= ||Ii−Ck||                                               (4.43) 

The HSV (Hue, Saturation, Value) filter represents colors in a color space that separates 

chromatic information (hue and saturation) from intensity information (value or 

brightness). Particularly useful for color image analysis and editing, the HSV filter allows 

manipulation of various color ranges without directly altering intensity, making it effective 

in different lighting conditions. 

4.7.1 The lane detection  

The input image's pixel intensities, illustrated in Figure 4.41, undergo modification using 

the Gamma Correction Function, depicted in Figure 4.42. This mathematical adjustment 

employs a power-law relationship to correct gamma, thereby enhancing brightness levels, 

improving contrast, and highlighting details in both bright and dark areas. The resulting 

pixel values provide a perceptually accurate representation of the original image. The 

Bilateral Filter function, demonstrated in Figure 4.43, smoothens the input image by 

suppressing noise while preserving significant edges and patterns. This filter considers 

spatial proximity and intensity differences between pixels, ensuring effective noise 

reduction. Utilizing the Canny Edge Detection method, a binary edge map is generated, 

depicted in Figure 4.44, categorizing pixels based on their gradient magnitudes. This map 

aids in identifying essential image properties by highlighting principal edges and reducing 

false positives in noisy images. Figure 4.45 illustrates the Hough Transform, which 

performs shape recognition tasks such as line and circle detection.   Particularly useful for 

identifying lines and curves within images, this transform utilizes a line's slope (m) and y-
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intercept (b) to represent it in the Cartesian coordinate system. Figure 4.46 presents the 

chromatic details of the image frame, while Figure 4.47 a & b showcases lane recognition 

and projection during lane changes and vehicle movement. These projections accurately 

reflect the road on which the vehicle is traveling. The model detects lane projections and 

computes the left and right curvatures based on these projections, as depicted in Figure 

4.49 a & b. By analyzing the lane outer and inner curvatures along with the vehicle's 

wheelbase, the model estimates the vehicle's slip angle, also known as the steering angle, 

which determines how much the vehicle's body should tilt in relation to the tires 

 

Figure 4.41 An original frame 

 

Figure 4.42 Image-Gamma Corrected 

 

Figure 4.43 Image with Bilateral Filter 

 

Figure 4.44 Picture employing Canny 

Edge recognition 

 

Figure 4.45 Hough Lines Clustered in 

an Image 

 

Figure 4.46 Filtered Image with HSV 
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Figure 4.47 

 

Figure 4.48 

Both during lane changes and while the vehicle moves across the path, lane 

recognition and projection are performed. The road that the car is traveling on is 

reflected in these projections.  

 
Figure 4.49 

 
Figure 4.50 

The left and right curvatures are computed by the model based on the lane 

projections. In a and b, the model that forecasts the lane projections under 

various lighting scenarios is displayed. 
 

This information is crucial for adjusting the vehicle's headlights to illuminate the road 

optimally, especially in low-light conditions, as shown in the model's predictions under 

various lighting scenarios. Accurately predicting the slip angle is essential for ensuring 

maximum visibility and safety while driving, particularly at night. Vehicles equipped with 

systems that adjust headlamp angles based on this information can effectively respond to 

changes in road conditions, thereby enhancing driving safety and overall experience while 

reducing the risk of accidents. 

4.7.2 The calculation of the angle of vehicle wrt to the lane curvature 

Following lane detection, the model assesses the angular disparity between the center of 

the dashboard (blue line) and the center of the lane (red line), illustrated in figure 4.51. In 

this depiction, the distance 'd' between the lower edge of the dashboard and the center (0,0) 

of the screen remains constant, while the distance between the screen's origin (0,0) and 

point r(x',y') varies.  
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Figure 4.51 The dashboard perspective  to compute the compensation value for 

adjusting the headlamp to enhance visibility when the vehicle executes a turning 

maneuver within the lane. 

Table 4.11 The headlamp adjustment criteria based on the lane trajectory and the 

values of the intermediate variables - r and 𝜽. 

Vehicle 

Condition 
r value 𝜽 value Left Headlamp Right Headlamp 

No turn  0 0 No No 

Left turn < 0 Negative Yes No 

Right turn > 0 Positive No Yes 

The angle 𝜃 , denoting the lane angle, reflects the adjustment needed for headlamp 

illumination. This angle is calculated using the formula 𝜃  = arctan(r/d). Table 4.11 

presents the values of r and 𝜃 for different lane conditions and the corresponding headlamp 

adjustments for improved illumination. This is assuming the fact that the dasboard screen 

size is fixed and the center line remains constant. The Vehicle Condition describes 

different driving situations, including no turn (when the vehicle travels straight along a 

lane), left turn, and right turn. The r Value row quantifies the lateral deviation of the vehicle 

from the lane's centerline, with negative values indicating leftward deviation and positive 

values indicating rightward deviation. Meanwhile, the 𝜃  Value represents the angular 

deviation of the vehicle from the lane's centerline, calculated based on the arctan function.  

During a left turn, the vehicle deviates to the left, resulting in negative values for both 'r' 

and 𝜃, while during a right turn, the vehicle deviates to the right, leading to positive values 
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for '𝑟' and 𝜃. The last two rows indicate whether compensation is applied to the left or right 

headlamp based on the vehicle's lateral deviation. For example, during a left turn, 

compensation is applied to the left headlamp to illuminate the turning path, while during a 

right turn, compensation is applied to the right headlamp. In scenarios where the vehicle 

travels straight along the lane, no compensation is applied to either headlamp. This 

compensation mechanism ensures optimal illumination of the road, enhancing visibility 

and safety, particularly during turning maneuvers.  

4.8 Integrating the multifaceted object identification model and the lane 

detection model 

Enhancing beam light adjustment along a curve and dynamically toggling high and low 

beams depending on object detection is essential to provide effective performance in all 

these scenarios.  PCB hardware implementation is utilized for this integration. As indicated 

in Figure 4.52, this approach enables seamless integration of complex object recognition 

models and beam angle adjustments based on predictions from lane detection models.  This 

hardware structure enables real-time processing and response to dynamic road conditions, 

enhancing night driving safety and comfort.  The revolutionary dynamic headlamp 

alignment and high beam adjustment technology combines hardware and AI models to 

enhance driving safety and comfort.  

It employs a Raspberry Pi 4, multidimensional AI models, lane detection, MOSFET, and 

servo motors.  These elements combine to accurately change headlamp position and control 

high beams automatically depending on traffic conditions.  A XL7056 buck converter 

supplies the Raspberry Pi and other logic circuits, and the XL4015 supplies servo motors 

and high beam strips. Pulse Width Modulation (PWM) technology from the Raspberry Pi 

manages the servo motors and high beam strips, enabling precise headlamp orientation 

adjustments according to AI model lane detection information.  The AI algorithm forecasts 

the inner and outer lane curvatures, which are used to determine the optimal headlight 

orientation during turns. 

Another essential part of the system is the holistic object detection AI model, which can 

accurately detect cars, pedestrians, and barriers. MOSFET (IRF520) triggers when 

something is sensed, extinguishing the model's high beam strip.  MOSFETs enhance 

reliability and switching rates, allowing fast road condition reactions.  The MOSFET 
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minimizes pedestrian and auto glare by keeping the high beam strips isolated from the 

ground, enhancing safety on the road.  This entire system combines innovative technology 

to address nighttime driving issues. The hardware model is based on the object detection 

and lane detection model's lane curve angle information of the AI model. 

 

Figure 4.52 The dashboard view for the calculation of the value for compensating the 

headlamp for improving visibility as the vehicle does a turning maneuver across the 

lane 

The surface-mounted device PCB layout for implementing the adaptive headlamp control 

unit is shown in Fig. 4.53 a and the actual dual layer PCB in Fig. 4.53 b. The PCB layout 

of the LED arrangement (for both high and low Beams) and their interconnections are 

shown in Fig. 4.53 c and Fig. 4.53 d respectively. A 3D model of the adaptive headlamp is 

shown in Fig. 4.54 a and the top-view of the 3D printed Headlamp is shown in Fig. 4.54 d. 

The high and low beam configuration are shown in Fig. 4.54 b and Fig. 4.54 c respectively. 

To prevent glare to other drivers, turn the headlamp to low beam when an object or vehicle 

is sensed on the road. The MOSFET turns off the high beam strip to avoid headlights 

blinding oncoming drivers.  Figure 4.55 illustrates the high beam control signal plot. A high 

pulse indicates the high beam is ON, while a zero pulse suggests an object was detected 

and the high beam strip is off.   
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(a) SMD PCB Layout of the Adaptive 

headlamp designed on Easy EDA. 

 
(b) Dual layered PCB Adaptive control 

board. 

 

 
(c) High and low beam LED 

placement. 

 
(d) High and Low Beam LED’s PWM 

based power connection layout. 

Figure 4.53 The PCB designs and implementation. 

Objects were detected during frames 20 to 250, 260 to 270, and 360 to 500, disabling the 

high beam strip.  This feature enhances driving comfort and eliminates headlamp manual 

adjustments, which lessens driver stress. Adaptive lighting control systems are also 

applicable to autonomous vehicles to enhance road safety and efficiency. Figure 4.56 

indicates how the system computes lane deviation in relation to the vehicle path and 

compensates the light beam to enhance road visibility. 

The compensation angle approximately equals the deviance, depicting the tire-body angle 

of the vehicle. The body angle of the vehicle is different from its tire angle when turning 

and makes the headlamp deviate from the lane angle.  It sends a control signal to regulate 

the headlight by the angle detected to correct the deviation and align it with the wheel angle, 

as illustrated in the figure.  This dynamic adjustment mechanism optimizes illumination, 

particularly in turns, enhancing driver safety and visibility. The system operation is carried 

out by the functioning of Servo Motor 1 and 2, for the left and right headlamps respectively.   
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(a) The 3D design of the adaptive 

headlamp designed using Autodesk 

Fusion 360. 

 
(d) The topview of the model. 

 
(b) High-beam configuration 

 
(c) Low-beam configuration 

 

Figure 4.54 The software design and the 

hardware prototype of the adaptive 

headlamp model for integrating the 

LSDNet and the Lane detection 

techniques. 

As shown in Table 4.11, Servo 1 functions in the case of left turns, while Servo 2 is on for 

right turns.  Figure 4.57 illustrates that Servo 1 is on for left turns while Servo 2 remains 

off for 100 frames. The duties transition from frame 100 to close to 400 in right turns. This 

modification enhances road perception and driving. Table 4.12 and Figure 4.58 a & b 

demonstrate that object detection and trajectory angle identification can simultaneously be 

achieved. Table 4.12 illustrates what occurs when no vehicle or object is detected during 

lane shifting or when there is no change.  Control signals are used by the hardware 

prototype to control these situations.  They regulate the MOSFET for the high-low beam 

switching and the PWM signals for the compensation of trajectory angle. It's made for 

unpredictable road conditions of nighttime driving. 
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Figure 4.55 The plot illustrates the pulse modulation responsible for activating 

and deactivating the MOSFET, subsequently regulating the high beam strip of 

the vehicle's headlamp. 

 

Figure 4.56 Variation plot of the vehicle along the trajectory and the 

corresponding angles calculated by the lane detection model. 
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Figure 4.57 The duty cycle of servo motors 1 and 2 during left and right maneuvers 

of the vehicle across frames. 

 

Figure 4.58 a   
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Figure 4.58 b   

Figure 4.58 The model integration enables the concurrent detection of on-road 

objects and the trajectory angle. 

Table 4.12 The adaptive headlamp compensation details to the changing conditions 

encountered during on-road driving. The table illustrates the intermediate status of 

the hardware prototype, indicating the control points for this implementation wrt 

the Figure 4.52 

On-road 

Condition 

Condition 

of the 

Trajectory 

MOSFET 

IRF620 

Control 

Signal 

Pin (Pin 

24) 

MOSFET 

IRF620 

Operating 

Region 

Status 

of the 

Beam 

Lobe 

Strip 

Is 

𝐏𝐌𝐖𝟏 

(Pin 33) 

Varied? 

Is 

PWM2 

(Pin 32) 

Varied? 

No Object 

or Vehicle 

detected 

No turn High Saturation 
High 

beam 
No No 

No Object 

or Vehicle 

detected 

Left turn High Saturation 
High 

beam 
Yes No 

No Object 

or Vehicle 

detected 

Right turn High Saturation 
High 

beam 
No Yes 



189 

 

On-road 

Condition 

Condition 

of the 

Trajectory 

MOSFET 

IRF620 

Control 

Signal 

Pin (Pin 

24) 

MOSFET 

IRF620 

Operating 

Region 

Status 

of the 

Beam 

Lobe 

Strip 

Is 

𝐏𝐌𝐖𝟏 

(Pin 33) 

Varied? 

Is 

PWM2 

(Pin 32) 

Varied? 

Object or 

Vehicle 

detected 

No turn Low Cutoff 
Low 

beam 
Yes No 

Object or 

Vehicle 

detected 

Left turn Low Cutoff 
Low 

beam 
Yes No 

Object or 

Vehicle 

detected 

Right turn Low Cutoff 
Low 

beam 
No Yes 

4.9 Discussion 

The design of an adaptive headlight management system based on real-time sensing to 

enhance the safety of nighttime driving was discussed in detail in Sections 4.6 to 4.8.  To 

adjust beam direction and intensity based on driving conditions, the system integrates 

object recognition, vehicle trajectory estimation, and lane detection. OpenCV is employed 

to detect lanes through conventional techniques like bilateral filtering, gamma correction, 

Hough transform, and Canny edge detection.  This enables the estimation of the steering 

angle and yaw rate, making beam deflection compatible with the road curvature. 

When obstacles or cars are detected, dynamic beam switching is enabled through 

LSDNet's illumination-aware preprocessing and confidence modulation that manage 

object detection. Object and trajectory inputs are mapped to specific beam lobe and 

intensity responses by a rule-based control algorithm. Simulation, visual plots, and profiles 

of control signals under different road conditions were employed to validate the system's 

effectiveness. With its light computational load, quick response, and scalability, the 

framework—developed for embedded systems—is a good starting point for next-

generation ADAS applications that include sensor fusion and deep learning control.  

4.10 Summary 

To enhance safety and visibility while driving at night, this chapter (section 4.1 to 4.5) 

gave a comprehensive architecture that integrates trajectory-based beam management and 

advanced object identification.  A comparative analysis of object identification models in 
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the first section confirmed that LSDNet was the most reliable in low-light environments. 

In challenging light environments, LSDNet exhibited its best performance in detecting 

small and occluded objects with an impressive F1 score of 0.78, detection rate of 52.03%, 

and real-time processing at 50.66 FPS.  In adaptive headlamp usage, LSDNet's balance of 

speed and accuracy made it the optimum choice, although other choices such as the MF 

model and Modified SSD had average performance. 

The second segment (section 4.6 to 4.9) built on this by incorporating LSDNet into an 

adaptive illumination system with lane awareness. The system projected the vehicle 

trajectory and steering angle by deriving lane boundaries and curvature through OpenCV's 

classical image processing algorithms. This was utilized for dynamic direction and 

intensity beam control in combination with real-time object detection via LSDNet. Turning 

behavior and object presence were translated into precise beam commands by a rule-based 

control logic.  Simulation and signal analysis were employed to verify the entire system, 

which demonstrated low processing cost, responsiveness, and scalability for embedded 

deployment.  This work provides the foundation for future integration with sensor fusion 

and deep learning control methods. 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

In this thesis, the development and design of adaptive headlamp systems for automobiles 

are examined with the objective of enhancing the safety and comfort of driving using 

advanced technology. The purpose of this study was to solve a long-standing issue of 

automotive safety: the inadequacy of conventional car headlamps during night driving, 

especially on winding roads and in poor visibility conditions. The limitations of static beam 

headlights, compounded by the Troxler effect, pose significant risks to both pedestrians 

and vehicles.   

This thesis offers a novel, holistic framework that integrates dynamic modeling, predictive 

control, and intelligent perception for adaptive headlamp systems.  The research offers 

implementable, and scalable techniques to enhance nighttime driving safety by meeting 

four major goals. The main goal was to emulate a controller derived from a mathematical 

model for the control of headlamp beams, i.e., for curved road sections. 

This was obtained through the development of a high-fidelity dynamic vehicle model with 

longitudinal, lateral, and yaw dynamics, as well as tire forces, aerodynamics, and braking 

influence. Accurate computation of the vehicle's slip angle was necessary to estimate the 

actual trajectory in cornering maneuvers. A Proportional Controller was used first to 

proportionally relate the slip angle to the headlamp deflection angle, aligning the beam with 

the vehicle's actual path rather than the theoretical direction of steering.  A Filtered 

Proportional Controller was used to account for actuator delay and provide a smooth beam 

transition. This filtered strategy reduced beam jitter during rapid maneuvers, ensuring 

perceived stability and improved alignment with real-time dynamics.   

The model was tested over a number of synthetic road profiles and driving speeds, showing 

stable and responsive control of the headlight direction in accordance with the vehicle's 

behavior under real-world conditions. The second goal was to suggest a perception 

algorithm capable of identifying on-road objects and coming traffic in order to dynamically 

adjust beam intensity and direction and counteract the Troxler effect.  This led to the 

development of LSDNet (Low-light and Small-object Detection Network), a deep learning 

model optimized for night-time driving conditions. 
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LSDNet was specifically designed to perform well in low-light environments, able to detect 

small or subtle objects—like pedestrians, vehicles, and stationary obstacles—that can be 

overlooked by traditional vision systems. The model was compared with leading object 

detectors such as SSD, Faster R-CNN, YOLO, and Tiny-YOLO.  The results showed 

LSDNet's improved recall, detection accuracy, and robustness against lighting condition 

variations. LSDNet enabled accurate, low-latency detection of oncoming vehicles and 

roadside hazards, enabling the system to adaptively control the beam, reducing glare to 

other motorists while enhancing drivers' visibility—directly addressing the root causes of 

the Troxler effect.   

The second goal was to integrate the beam steering module and object recognition module 

into a single system that could optimize headlamp direction and intensity simultaneously. 

This unification led to the creation of a Fused Controller—a unified architecture that 

combines FF-MPC (Filtered Feedforward Model Predictive Control), E-MPC (Extended 

Model Predictive Control), and perceptive outputs from LSDNet.  The Fused Controller 

combines predictive modeling of road geometry through slip angle and steering-based 

prediction with real-time environmental perception through object detection. 

This fusion allows the system to pre-steer beams through bends, modulate intensity based 

on observed traffic and pedestrian movement, and enable smooth state transitions. The 

Fused Controller combines dynamic modeling with semantic perception to enable 

anticipatory and context-aware illumination beyond typical rule-based or sensor-only 

adaptive systems.  The combined system contains a perceptual-control synergy that enables 

adaptive lighting decisions to be proactive and reactive depending on the situation. The last 

goal was to measure the performance of the system in terms of efficiency, latency, and 

accuracy under simulated road test conditions.   

An extensive series of tests were performed on a 2-kilometer virtual road with varied 

curvatures and traffic conditions.  The results showed that the FF-MPC and E-MPC 

controllers outperformed conventional methods in beam alignment accuracy and 

responsiveness. The Fused Controller improved on these features by adapting to dynamic 

conditions, like the sudden appearance of oncoming traffic or unpredictable bends, with 

minimal latency and high dependability. 
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LSDNet achieved a very high mAP and FPS tradeoff, making real-time inference possible 

while reliably detecting low-contrast objects all the time. The latency across the full 

control-perception loop remained below tolerable thresholds for driving applications, 

ensuring fast and accurate headlamp response. The proposed system demonstrated 

considerable improvements on all criteria measured against existing adaptive headlamp 

technology, affirming the feasibility of an intelligent, safety-focused headlamp design.  

This thesis offers a new and holistic approach to adaptive headlamp design.   

It offers a novel integration of dynamic vehicle modeling with deep learning-based 

perception, leading to a Fused Controller that effectively manages both the direction and 

intensity of headlamp beams. This cross-disciplinary integration provides a strategic 

answer to the challenges of night driving, particularly in turbulent or ambiguous 

environments.  The emphasis on real-time reaction, perceptual robustness, and adaptive 

control ensures that the proposed system improves driver visibility and enhances road 

safety for all users.  This work provides a solid foundation for future developments in 

intelligent automobile lighting and active safety systems. 

5.2 Future Developments  

The adaptive headlight system has demonstrated impressive performance in simulations; 

however, several avenues are available to enhance its practicability, robustness, and 

readiness for deployment in real-world applications.  One of the central area is the real-

time operation on vehicle hardware.  The control algorithms and LSDNet perception model 

need to be optimized for deployment on vehicle-grade ECUs with tight limits on power and 

memory. This involves the application of model compression techniques, such as pruning, 

quantization, and knowledge distillation, to reduce inference time and resource usage, 

thereby enabling real-time operation without the need for specialized GPUs.   

The next step is in-vehicle testing in real-world environments and evaluating its 

performance under real driving conditions will expose integration problems like actuator 

delay, sensor oscillation, and misalignment. Practical tests deliver empirical tuning of 

controller parameters and collection of driver data, thereby guaranteeing the reliability and 

responsiveness of the system in dynamic situations. Another area is multi-sensor fusion.  

LSDNet works well for low-light object detection; however, incorporating it with LiDAR, 

radar, or thermal sensing might make it more robust in bad weather like rain, fog, or low-

contrast conditions. Radar can detect incoming vehicles under low visibility, while thermal 
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cameras enhance the detection of pedestrians or animals at night.  Fusion strategies, such 

as early or late integration, can be explored to combine the strengths of different modalities 

for greater object awareness. 

Adaptive learning algorithms can further refine beam adaptation on the control side. 

Techniques like reinforcement learning or fuzzy adaptation would be able to offer 

personalization based on driver behavior or road conditions.  Hybridizing learning-based 

methods with the model predictive control (MPC) architecture aids in balancing 

deterministic safety regulations and pragmatic adaptability. The proposed Fused Controller 

can also evolve through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communication.  The device can actively alter beams before visual detection by getting 

data from other cars or roadside units about upcoming curves, obstacles, or traffic 

congestion.  This shared perception can reduce latency and improve decision-making 

accuracy.  A key point is compliance with automobile regulations and industry standards. 

Given that adaptive lighting is strictly regulated, it is essential to ensure the system 

complies with beam cutoff limitations, glare thresholds, and redundancy standards. 

Subsequent endeavors should encompass formal verification of control logic, 

implementation of fail-safe defaults, and engagement in standardization initiatives.  This 

will facilitate the process of certification and commercial implementation.  Scalability 

represents a crucial aspect. The system needs to be adaptable over a range of vehicle 

categories, including two-wheelers, commercial vehicles, and public transport.  Every 

platform has unique dynamics and constraints, but may benefit from improved lighting 

intelligence.  Perceptual and control layers will be modularized to increase adaptability 

over different platforms and applications.  The evolution of automobile technology 

demands the integration of autonomous driving and ADAS systems as a logical progression. 

The intelligent beam control system can be used in combination with lane-keeping, 

pedestrian detection, and night-time course planning. This creates a wider context in which 

lighting is an integrated part of a total safety system.  This thesis introduces an adaptive 

headlamp architecture that provides a sound basis for future development in intelligent 

vehicle lighting. The possibilities for enhancing and extending this work, from real-world 

implementation to advanced sensor integration, regulatory cooperation, and cross-platform 

portability, are significant.  With the increasing emphasis on vehicle safety and autonomy, 

these systems are likely to become standard features in the next generation of smart vehicles. 
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Comparison of Object Detection Models and Vehicle Models for Adaptive 

Headlamps from Literature Review 

This annexure presents six illustrative figures developed as part of the literature review for the 

thesis. The figures are intended to provide a comparative visualization of techniques discussed 

as part of the literature review. The charts are based on normalized and qualitative 

approximations derived from reported trends in peer-reviewed literature. They are not 

experimental data, but conceptual visualizations meant to highlight the evolution of detection 

methods, learning frameworks, and vehicle models used in adaptive headlamp systems. 

A1-1 Figure 2.3 – Performance Comparison of Traditional Object Detection Features 

A1-2 Figure 2.4 – Comparison of ML Classifiers for Vehicle Detection 

A1-3 Figure 2.5 – Accuracy vs Inference Time of Deep Learning Detection Models 

A1-4 Figure 2.7 – Comparative Analysis of Vehicle Path Models 

A1-5 Figure 2.8 – Model Stability and Parameter Dependence 

A1-6 Figure 2.9 – Trend of Model Evolution for Adaptive Headlamp Systems 
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A1-1 Figure 2.3 – Performance Comparison of Traditional Object Detection Features 

Objective: 

To compare the performance of SIFT, SURF, and HOG feature extractors based on relative 

accuracy, speed, and computational efficiency. 

Feature 

Extractor 
Accuracy Speed Efficiency Rationale 

SIFT 9 6 7 
Highly robust and accurate but 

computationally heavy. 

SURF 7 8 8 
Balanced speed and accuracy, improved 

performance over SIFT. 

HOG 6 9 9 
Fastest and lightweight, lower 

discriminative power. 

 

The figure shows the trade-off between accuracy and speed in traditional handcrafted features. 

SIFT offers superior robustness at the cost of computation, whereas HOG provides rapid 

feature extraction suitable for embedded use. 
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A1-2 Figure 2.4 – Comparison of ML Classifiers for Vehicle Detection 

Objective: 

To illustrate the comparative performance of SVM, KNN, and AdaBoost classifiers based on 

qualitative assessment of accuracy, speed, and model complexity. 

Classifier Accuracy Speed Complexity Description 

SVM 9 6 8 
High accuracy, computationally 

expensive. 

KNN 7 7 6 Simple but slow at inference. 

AdaBoost 8 9 7 
Balanced ensemble with good 

speed and robustness. 

 

AdaBoost exhibits better efficiency than SVM while retaining strong accuracy. These 

models bridge the transition from static feature-based systems to learning-based frameworks. 
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A1-3 Figure 2.5 – Accuracy vs Inference Time of Deep Learning Detection Models 

Objective: 

To compare major deep-learning-based object detection architectures used in adaptive 

headlamp systems. 

Model 
Accuracy 

(%) 

Inference Time 

(ms/frame)* 
Characteristics 

R-CNN 92 2000 
High accuracy, very slow (region 

proposals). 

Fast R-CNN 90 500 Faster, single-stage training. 

Faster R-CNN 88 250 Uses region proposal network for speed. 

YOLOv3 85 40 
Real-time detection with regression 

approach. 

SSD 87 60 
Slightly slower than YOLO, comparable 

accuracy. 

*Approximate values based on reported benchmarks in cited literature. 

 

A clear inverse relationship exists between accuracy and inference time. R-CNN-based models 

offer superior precision but are unsuitable for real-time headlamp control. YOLO and SSD 

strike an optimal balance for embedded automotive implementation. 

 



      213 

A1-4 Figure 2.7 – Comparative Analysis of Vehicle Path Models 

Objective: 

To compare geometric, kinematic, and dynamic vehicle models used for path prediction in 

adaptive headlamp systems. 

Model Accuracy 
Complexity 

(Inverse) 

Real-Time 

Feasibility 
Description 

Geometric 6 8 6 Basic, low computational cost. 

Kinematic 7 6 7 Includes velocity and heading angle. 

Extended 

Kinematic 
8 5 8 

Adds dynamic constraints and 

correction terms. 

Pure Pursuit 7 7 6 Target-based path tracking. 

Vector Pursuit 8 4 5 
Suitable for complex curvature 

tracking. 

Clothoid Curve 9 7 9 High precision for smooth curves. 

Dynamic 9 5 7 
Realistic, physics-based but 

computationally heavy. 

 

The figure highlights how models evolve from computational simplicity to high-fidelity 

realism. The Clothoid and Dynamic models achieve superior accuracy but require greater 

computational resources. 
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A1-5 Figure 2.8 – Model Stability and Parameter Dependence 

Objective: 

To compare the models based on stability, sensor dependence, curvature handling, and 

implementation complexity. 

Qualitative Scale (1–10): 

Model Stability 
Sensor 

Dependency 

Curvature 

Handling 
Complexity 

Geometric 6 5 5 8 

Kinematic 7 6 7 6 

Extended Kinematic 8 7 8 5 

Pure Pursuit 6 5 6 7 

Vector Pursuit 7 6 7 5 

Clothoid Curve 9 7 9 6 

Dynamic 9 8 9 4 

 

Extended kinematic and clothoid-based models provide optimal trade-offs between curvature 

handling and complexity, while dynamic models score highest on realism but demand 

additional sensory and computational support. 
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A1-6 Figure 2.9 – Trend of Model Evolution for Adaptive Headlamp Systems 

Objective: 

To depict the gradual evolution of vehicle path modeling techniques in adaptive headlamp 

research. 

Model Physical Realism Computational Cost 

Geometric 4 3 

Kinematic 5 4 

Extended Kinematic 6 5 

Pure Pursuit 6 5 

Vector Pursuit 7 6 

Clothoid Curve 8 7 

Dynamic 9 8 

 

The figure shows an ascending progression in physical realism with each generation of models, 

indicating a steady shift from simple geometric assumptions toward integrated dynamic 

systems capable of handling tire slip, yaw rate, and steering nonlinearities. 

All quantitative values in the figures represent normalized qualitative trends synthesized from 

descriptive analyses and corroborated by benchmark literature. They serve to visually illustrate 

technological progressions and comparative behavior among algorithms and models used in 

adaptive headlamp research. These approximations are meant to strengthen conceptual 

understanding within the literature review, not to replace empirical validation. 


