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ABSTRACT

Nighttime driving presents critical safety challenges due to limited visibility and glare from
oncoming vehicles. Conventional fixed headlamps often fail to illuminate curving roads
adequately and can blind approaching drivers, inducing temporary visual impairment
(Troxler effect) that slows reaction times and contributes to accidents. To address these
issues, this research develops an integrated adaptive headlamp system that dynamically
adjusts beam direction and intensity in real time. The work spans vehicle dynamics
modeling, control systems, and computer vision to enhance nighttime driving safety. The
thesis contributes a holistic framework combining predictive vehicle control with
intelligent perception, and is organized around four core objectives: (1) designing a vehicle
dynamics-based predictive headlamp controller for illuminating road curves, (2) creating a
perception algorithm for low-light object and traffic detection to enable adaptive dimming,
(3) fusing the predictive control and perception modules and controller into a unified

intelligent headlamp, and (4) validating the system’s performance.

The first objective is to develop a mathematical model-based controller that can steer
headlamp beams proactively when the vehicle traverses a curve. Traditional adaptive
lighting systems typically rely on steering wheel angle alone, which may not accurately
represent the vehicle’s actual path during high-speed maneuvers or skids. The current
research formulates a high-fidelity vehicle dynamics model with longitudinal, lateral, and
yaw dynamics and tire force characteristics, acrodynamics, and braking. A key outcome of
this modeling is the accurate determination of the vehicle's slip angle—the difference
between its direction and direction of travel. The slip angle forecasts the car's actual path
through a turn. The technology can align the headlamps with the true path of the vehicle
and not merely the steering input by using the slip angle, so ensuring that the beams light
the road where the car is truly going even if tire slip or curvature cause deviations from the

steering direction.

Based on this, a predictive beam-steering controller is designed. Initially, an elementary
proportional control method is implemented: the desired slip angle computes the headlight
deflection angle. The simple Proportional Controller illustrates the concept of path-aware
beam steering by directing the beam to follow the vehicle's path. But cars have rapid

steering changes and actuator response times that could cause the beams to jitter or
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overshoot. A Filtered Proportional Controller is employed to account for these dynamics
by introducing a filtering element to dampen rapid changes. The filtered controller creates
a smooth transition of a reliable beam during rapid motion by anticipating the actuator delay
and compensating the beam motion accordingly. This is necessary for driver comfort and
consistent road lighting because it prevents sudden headlight jerks and eliminates light

beam oscillations.

Under various driving conditions, the dynamic model and its controllers were simulated
carefully. The controller performance was verified using various synthetic road profiles of
different curve radii and vehicle speeds. It is observed that on curves, the predictive control
system based on slip angle gives steady and reactive headlamp alignment. Unlike a static
headlamp, the beam greatly increases lighting at bends by following the road curve. Even
during abrupt steering inputs or when the vehicle experiences understeer/oversteer, the
controller keeps the beams focused on the roadway ahead, thanks to the slip-angle
feedback. This demonstrates the feasibility of a model-based approach to proactive beam
steering and establishes a baseline for further enhancements. The Fused Controller is
realized by merging advanced control algorithms with vehicle trajectory estimation to
manage headlamp direction. The Fused Controller uses filtered feedforward and extended
model predictive control (FF-MPC and E-MPC) strategies to estimate road heading from
the dynamic model and adjust beam orientation proactively, ensuring alignment with the

vehicle’s actual path through corners or maneuvers.

The second objective targets the development of an intelligent perception module to detect
on-road objects and oncoming traffic under low-light conditions, enabling the headlamp
system to adapt its beam intensity and avoid glaring other drivers. Nighttime environments
challenge conventional vision algorithms due to poor lighting and small, low-contrast
hazards (e.g., distant vehicle lights, pedestrians in dark clothing). To overcome these
challenges, this thesis investigates state-of-the-art deep learning detectors and tailors them
for nighttime use. Initially, existing object detection frameworks such as Single Shot
Detector (SSD), Faster R-CNN, and the YOLO family (including Tiny-YOLO for
efficiency) are evaluated on nighttime driving scenarios. This analysis reveals limitations:
while modern detectors are effective in daytime or well-lit conditions, their performance
degrades with low visibility, often missing small or dim objects or producing false

detections under headlight glare and noise. These findings underscored the need for a



specialized detection approach attuned to night driving. Also a modified SSD and multi-
faceted object detection model was proposed to meet these challenges. However, varying

light conditions and small object detections were an issue that left unaddressed.

To address this requirement, a new deep learning model named LSDNet (Low-Light and
Small-object Detection Network) is developed as the perception module's central
component. LSDNet is specifically designed for the robustness of low-illumination
conditions as well as for detection of small, poorly visible road objects. LSDNet uses a
state-of-the-art convolutional detection backbone optimized for the accuracy-speed trade-
off; real-time operation is essential for a live headlamp system. A few stages of the network
bring about novel enhancements. Preprocessing and data augmentation are first used to
simulate nighttime — such as using dynamic contrast enhancement to accommodate

changing lighting and simulating glare or noise to make the model robust.

Second, LSDNet ensures the recognizability of objects of differing sizes—particularly
smaller ones such as distant taillights or wildlife on the road—by employing a multi-scale
feature extraction process. Context-sensitive layers based on surrounding scene data—e.g.,
the presence of a road or lane markers—augment this multi-scale approach by separating
items from background noise in the dark. Third, an inference-level adaptation method is
employed: LSDNet adjusts its confidence levels of detection dynamically based on input-
estimated ambient illumination. The network is more sensitive (lower thresholds) in order
not to miss dim objects under very dark conditions; in more lighted ones it can be more
discriminative to avoid false alarms. Also, a light contrast correction and enhancement
module is included in the pipeline such that low-contrast details (such as a pedestrian just

outside of the reach of headlights) are enhanced for the detector.

LSDNet’s performance is benchmarked against the existing detectors. The custom model
demonstrates significantly improved recall and precision for low-light object detection. It
reliably identifies oncoming vehicles, pedestrians and roadside obstacles with higher
accuracy. Importantly, LSDNet maintains high performance on small objects, a common
failure case for standard detectors at night. Moreover, LSDNet achieves this improved
detection quality while operating with low latency, meeting real-time requirements. On a
moderate GPU platform, the network processes frames at a high frame rate, meaning it can
be deployed in an embedded automotive computer without causing delays in response. This

perception capability directly feeds into the headlamp control logic: with accurate detection



of oncoming vehicles, the system can automatically dip the high beams in time to prevent
dazzling the other driver, and with recognition of pedestrians or obstacles ahead, it can keep
beams elevated or focused to ensure those hazards are well lit for the driver. Thus,
Objective 2 yields a perception-aware vision system that is cognizant of the challenging

lighting conditions of night.

In the third objective the LSDNet model that performs real-time object detection optimized
for low-light and small-scale hazards and the Fused controller is integrated in the adaptive
headlamp. When objects are detected within the headlamp's field of view, LSDNet triggers
an intensity adjustment mechanism, enabling smooth dimming (dip) of the beam to reduce
glare or improve hazard visibility. This beam intensity modulation works in parallel to the
directional control managed by the Fused Controller. Both systems are independently
controlled yet tightly integrated, such that the vehicle simultaneously receives inputs for
beam angle (from the Fused Controller) and beam intensity (from LSDNet). The
coordination of these modules within a single embedded platform results in a cohesive
adaptive headlamp system that responds intelligently to both vehicle dynamics and the

external environment.

The final objective is to rigorously evaluate the performance of the proposed adaptive
headlamp system in terms of efficiency, latency, and overall effectiveness under
representative driving conditions. Extensive testing was conducted, including controlled
simulations and real-world scenario emulations, to measure how well the system meets
safety and responsiveness criteria compared to existing solutions. A 2-kilometer virtual test
track was designed with a mix of straight segments, various curvature turns (gentle curves
to sharp bends), and a range of traffic conditions such as oncoming vehicles and roadside
objects. This provided a comprehensive proving ground for both the beam-steering control
and the object detection under low light. The results from simulation tests are promising.
The advanced controllers (FF-MPC and E-MPC) introduced for predictive beam steering
showed marked improvement in beam alignment accuracy and responsiveness over the
conventional approach. Specifically, when the car negotiated curves, the model predictive
controllers kept the beam focused on the road centerline far better than a simple steering-
linked system, especially at higher speeds or when quick adjustments were needed. The
headlights under MPC control settled to the correct angle with minimal overshoot, whereas

the conventional system tended to either lag behind the turn or overshoot slightly,
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illuminating the wrong part of the road for brief periods. This translates to more consistent
visibility for the driver. In terms of response speed, the predictive controllers were able to
start reorienting the beams slightly before the vehicle fully entered a curve due to the
feedforward aspect. The Fused Controller further enhanced performance by handling
unforeseen or dynamic elements on the road.. The latency of the entire loop remained below
the typical reaction time for driving scenarios. This means the system’s actions feel

instantaneous from the driver’s perspective, maintaining safety

Quantitatively, the object detection module LSDNet achieved a high mean Average
Precision (mAP) on the test scenarios, outperforming the compared detectors in correctly
identifying vehicles and hazards under varying low-light conditions. It also sustained real-
time inference speeds (measured in frames per second) on the embedded hardware,
validating that the deep learning model can run onboard without causing delays. There was
no significant drop in detection accuracy at higher frame rates, indicating the model is both
accurate and efficient. Through rigorous comparative analysis, the integrated system was
shown to outperform existing adaptive lighting setups on all examined criteria: curve
lighting quality, reaction to oncoming vehicles, detection of roadside objects, system

response time, and overall reliability.

The adaptive headlamp framework not only proves the concept of combining predictive
control with perception, but also demonstrates measurable safety and performance benefits.
By keeping the full control-perception loop latency low and the algorithms efficient, the
research shows that such a system is practical for real-world deployment. Drivers would
experience improved visibility of the road and potential hazards at night, while also causing
less discomfort to others on the road — a dual benefit that directly addresses the main

problems of night driving safety and the Troxler effect.

In summary, this work delivers a novel, comprehensive solution to enhance automotive
headlighting. The research achieved its four primary objectives by developing: (1) a slip
angle-based predictive headlamp control that illuminates curves in alignment with the
vehicle’s true trajectory, (2) a deep learning vision model (LSDNet) tailored for low-light
object detection to inform beam dimming and aiming, (3) an integrated Fused Controller
combining these predictive and perceptive elements for context-aware beam control, and
(4) thorough wvalidation proving superior performance to state-of-the-art adaptive

headlights. The contributions to knowledge include the introduction of a dynamic vehicle
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model into headlamp control (improving upon purely kinematic or steering-linked
approaches), the creation of a specialized object detector for nighttime driving conditions,
and the demonstration of an integrated control system that marries control theory with
artificial intelligence in the automotive lighting domain. This holistic approach to adaptive
headlamps represents a significant step forward in automotive safety technology. The
outcomes of this thesis lay a strong foundation for intelligent headlamp systems that
proactively respond to both the driver’s path and the environment, greatly improving
visibility and reducing accident risk during night drives. The framework and techniques
developed can be extended and scaled in future vehicles, indicating a clear path toward

smarter, safer illumination systems on our roads.
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CHAPTER 1

INTRODUCTION

1.1 Overview!

Night driving using conventional headlights is very dangerous and this results in accidents
to temporary blindness caused from the beams of the oncoming vehicles. Headlights with
high beams induce a temporary visual impairment in humans called the Troxler effect.
This reduces reaction time but also contributes to poor visibility which causes most
accidents occurring at night. Traditionally, the adjustment of headlamps was done
manually whereby lack of skills and errors in judgment could lead to devastating outcomes.
Additionally, some accidents occur due to inadequate lighting as the present typical
headlamp set-up cannot give precise illumination for instance on bends and uneven terrains.
Therefore, automobile adaptive headlamps that can prevent Troxlers’ effect happening on
the opposite drivers while still not affecting road illumination for the driver inside should
be developed. Automotive Electronics has gained a reputation as it is involved in more
than just enhancing convenience; it also assists in safety purposes. It has been confirmed
that there are more accidents during nights than day times even though traffic volume

during darkness is relatively lower compared to its counterpart earlier on stated above [1].

One third of accidents in the Indian sub-continent happen due to poor visibility at night,
as stated by NIMHANS, Bengaluru [2]. This is attributed majorly to the road lighting
conditions, and the Troxler's effect. The majority of cars fitted with headlamps still have
them on manual control, and only a few drivers change between the high beam and low;
this portends an instant crash in case the illuminated light leads to temporary blindness for
the approaching driver or there are some reflections from the mirrors if another car goes
ahead. This is what is known as the Troxler's effect [3]. Further destruction results when
such a route happens to be curved or uphill. Normally, low beam systems do not illuminate
properly along curved roads leading to more pedestrian accidents taking place. Therefore,
it calls for a sophisticated framework that can conveniently switch between high and low

beams thereby showing the way effectively [4]. In order to increase visibility among

! This chapter is published in IEEE Access Journal. Details: Toney, Glenson, and Cherry Bhargava. "Adaptive headlamps
in automobile: A review on the models, detection techniques, and mathematical models." IEEE Access 9 (2021): 87462-
87474,



motorists, this serves as a significant leap into enhanced safety and driving experience

through illumination of roads at turns during nights.

This chapter intends to determine the need for technology solutions that can aid in
preventing accidents at night, specifically due to the effect of high beam spectrum of the
headlamps and its ability in saving lives through affordable technological interventions.
The chapter discussed existing adaptive headlamp frameworks in the market, outlines
various object detection methodologies and lane detection techniques that can be used for

adaptive headlamps.
1.2 Adaptive headlamps in Vehicles

The Adaptive Front (AF) light system framework increases the perceptibility of drivers by
dynamically varying the beam projections as the vehicle moves [5]. Figure 1.1 illustrates
an AFS that modifies headlamp beam-lobes when the driver makes a turn to right or left
sides to improve road visibility for drivers and hence avoiding probable accidents that may
involve pedestrians or any objects.

without AFS

_~ with AFS

i &

Figure 1.1 The beam lobe projections in a Vehicle with and without adaptive
framework. The image displays the difference in the beam lobe projections and the
improvement in illumination an AF enabled system offers. [5]

This model modulates the divergence of headlamp using a stepper motor. Furthermore,
Dahou, H. et al. [5] also came up with an AFS on FPGA Board through PWM Technique
which was meant to assist not only the onboard driver but also other drivers who may be
coming from the opposite direction since their lives are equally important like those of
their counterparts. In this case, the team came up withalighting system that is parabolic in

nature as shown in figure 1.2, consisting of four LED-lamps for illuminating the road.



Figure 1.2 The arrangement of the LED array in the Parabolic AF system [5]
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Figure 1.3 The beam lobes emitted by the combination of the LED Array in its
Zero state [5]
Each LED contributes to one of these modes: Right or Left High Beam- HBR/HBL, Right
or Left Low beam- LBL/LBR, Low beam Middle- LBM, and Right or Left Low beam-
LBR/ LBL. At the roll axis, HB as well as the LBM lamps are aligned in parallel and
deflected at angles 10 degrees and 20 degrees respectively as they project side beams for
the left headlamp through the LBL mode & LBR respectively. The beam projections from
each of these lamps form a combined lobe which is varied with respect to the steering
wheel angle. Figure 1.3 depicts the beam lobe in zero state. HB lamp illuminates highly
intense light along its path while PWM Modulator controls LB lamps projection ON/OFF
using vehicle motion. Stepper motor’s frequency and current is regulated by PWM

technique and it also regulates the electric power applied to vehicles’ parabolic lights. The



brightness of low-beam lamps is adjusted using the PWM, depending on what mode it is
at. Bending angles within a range of 0 degrees to about 45 degrees were tested for most
cases, and these results have shown to be effective. But, examining system latency that
defines how long it takes for it to readjust driving conditions (that means time required for
the response) which plays a crucial role in automotive industry is crucial. However, this

system does not assist drivers in coming vehicles even though it enhances onboard driver

visibility.
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Figure 1.4 The headlamp beam lobe adjustment relies on the relative angle of the
driver with reference to the headlamp, the angle of which is shown as ¥ [6]

Figure 1.5 The geometric calculation of the HSD value for the beam adjustment
algorithm while the vehicle undertakes a turn [6]

The Swiveling algorithm based headlamp [6] has its base relying on the highway geometry
to predict the Headlight-Sight-Distance (HSD) and its effect on varying road designs were

studied as shown in figure 4. The vehicles headlamp position in relation to the driver is



used to determine the HSD which in turn adjusts the beam-lobes. This methodology relies
on SGPSA-HSD value which is the Steering-Governed Predictive Swiveling Algorithm.
The geometrical scheme of calculation for this is depicted in figure 1.5. The system is
simulated for various on-road test cases on MATLAB and effectively demonstrated that
the compensated headlamp improves the sight distance and contributes to improving
visibility and driving comfort. The model does offer improvement in illumination of the
driving path with reference to the steering angle. As depicted in the figure 1.6, the arc
design for the HSD prediction plays a crucial role as they compensate for the curve
transitions. But the system fails to perform as expected during sudden curvature changes
(which cannot be ruled out in real-world instances). The system needs to be aligned to the
highway road standards, which is essential. Also, the system’s ability to perform for
different speed ranges is not discussed and it is quintessential in an application like adaptive

headlamp frameworks.
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Figure 1.6 The control design of the preview-control based model showing the
mathematical relations and the control segments [7]

A uni-track non-linear model of an elementary engine for producing different position
estimate based on the changing values of the steering angle, yaw rate, throttle inputs and
velocity is used in Hardware-in-loop based model [7]. the vehicle and on-road simulator
models of the system simulate multiple test cases as applicable for the adaptive headlamps.
Based on the varying inputs, the controller predicts the changing angle of trajectory and
corresponds the motor steps accordingly. The output in this case is smoother and so is the
headlamp compensations unlike the earlier model which has abrupt behavior at sharp turns.
This dissolves behavior that are uncontrolled and can operate effectively in different
driving conditions too. The model however has to be optimized for real-time applications
for power and size and have to be rigorously validated on test-cases comparable to actual

environment.



A preview control based bending mode controller was designed to compensate for the lag
issues usually found in adaptive frameworks [8]. This implementation banks on the inherent
relationship that controls the braking distance (safe stretch), the steering angle, its Wheel
angle and also the turn radius. The controller design is shown in the Figure 1.6. This model
exhibits improved response time in comparison with the conventional servo-powered smart
beam lamps. When compared with the servomotor based models at a vehicle acceleration
of about 40 KM an hour, this model leads with the beam lobe adjustment with a faster time
of about 0.4 seconds with improved performance against changing driving angles. The
model leads in the driving speed range of low and medium however, the performance at

higher speeds and the associated lag needs to be evaluated.

Another prominent adaptive framework designed in line with the United Nations(ECE324-
R123) operates effectively in four classes as defined by the standard [9]. As shown in Figure
1.7, the quad class of operation has a neutral or the country light state (Class C), an urban
light state (Class V), a highway drive state (Class E), or an adverse weather condition light
(Class W). The implementation has a specially designed optics based on the ON-OFF cases
of the LED array that operates in the cutoff (the narrow central area is lighted up using this
mode which propels high intensity light beams) and the spread module mode (generates

low intensity beams).

|

= =

- =

c

Figure 1.7 The pattern of the AF headlamp beam lobes in the different modes of
vehicle transit [9]. a. Class C-Basic/ country, b. Class V-Urban, c. Class E-
Highway and d. Class W-Wet road
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Figure 1.8 The uni-color light produced from multiple Laser sources having diodes
that generate lights of different frequency undergoing recombination to produce a
desired pattern [10]

The cutoff and the spread modes of the optics form the beam patterns for the four classes
using the optic module that has the multiple array of LED’s. The selection of the mode of
operation is primarily dependent on the vehicle speed relying majorly based on the fact that
the European Union has strict vehicle operating speed ranges in each of these classes. But
the universal application of this may not be practical in other parts of the world.

Table 1.1 The Scanning units diode characteristic requirements for precise
generation of single color light [10]

Diode Color Red Green Blue
Output power (Optical unit) 0.5W 0.15W 1.6W
Wavelength 638 £ 6nm 520 £ 10nm 450 = 10nm
Divergence- Max(lrmnw) 36 23 23
Divergence- Min (llemnw) 6 7 7

Relative Polarization p S p
orientation

By mixing the light of two diodes having different colored output and by blending three or
more diodes for a Laser based scheme that has adaptable colored symbol projects were
proposed [10]. Here the different colored light sources undergo optical beam combination
as shown in figure 1.8 to produce a single colored light output with improved quality. This
also included the generation of the longer UV wavelength (blue signal) using the shorter
wavelength Phosphor. The white light is generated by blending the generated blue light
with the converted yellow light. Since the system is laser based, the light is monochromatic
in nature. While this emerges as a good option for projection, the need to adhere to the ECE

standard regulation on Color-rendering Index is crucial for illumination application which



is the said case. This strict need for adherence to the standard is a bottleneck and the
required range is shown in the Table 1.1.

Figure 1.9 The multiple diode arrangement for the single ECE standard light
generation setup [10]

The method is aids in better and controlled illumination but does come with an overhead of
precise combination of laser diodes to generate colors that are specific. Also, the need for
aligning the laser diode precisely as shown in Figure 1.9 to obtain the desired light streak is
a challenge. Another demanding task in this case is to have proper thermal compensation
because the diode output wavelength can get affected due to temperature generating
inappropriate light streaks. Another scheme with reduced latency of detection and response
to accommodate climatic changes is the visual framework [11]. This method is found to be
performing well even at higher speeds effectively at the highway limits and implements: lane
marking detection, sidewalks identification, quick detection of warning signs to aid for

improving driving comfort.

Frame 2 Stage 1 Stage 2 Stage 3
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Figure 1.10 Three staged adaptive frameworks piping diagram displaying the
inherent latency at the multi-stage system [11]



Figure 1.11 The hardware prototype of the 3 staged architecture based adaptive
headlamp set for fetching live data for the validation [11]
With three stages, Capturing, Processing and Transferring, the framework displays low
latency and higher accuracy (Figure 1.10). Stage 1 involves scenario acquisition through
cameras, stage two includes image processing to identify required knowledge from the
background (this stage contributes to the latency) followed by the stage 3 which is the action
phase that actuates the control module for headlamp beam adjustments. The three-stage
architecture displays latency of 1ms which is permissible in the application under discussion
and also finds that the reaction time are within the standard deviation peaks for over 63% of
times. The results in this case are promising but the fact that these are based on just six trials
calls for the need for more test case simulations to determine the performance in varied
scenarios. Also, optimization in terms of area and power are predominantly important for this

model displayed in figure 1.11.

1.2.1 Adaptive headlamps from major Vehicle manufactures

With the advent of smart vehicles and now autonomous vehicles, the need for adaptive
headlamps has become paramount and vehicle manufacturers are leading in this segment.
Major brands like Nissan, Hella, Ford Corporations are industry leaders in this area. The
section discusses various industry solutions and patents in the sector. The dynamic LED
based headlamps of Ford Global Technology showcased in figure 1.12 has a driving
framework for light that has a source of beam, set of projection lenses fused along with
micro-mirrors (digital) and has been granted a Mexican patent [12]-[15]. The systems data

acquisition is enabled through a camera and is predominantly designed to identify the



parking section and adjust the headlamp to light the parking limit perpetually.
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Figure 1.12 The improved beam projections of the adaptive framework at different
test cases on on-road driving scenario developed by Ford Corp. [14]

Figure 1.13 The case of beam lobe adjustment across a curve for improving the
driving perception using the framework from Ford [14]

Yet another Ford product is the auto beam ajustment system which acts as a conducive
driving aid at night detects the traffic (approaching) or even a vehicle that is ahead (acts as
reference vehicle) and inherently reduces the troxlers’ effect on the other drivers and also
curtails the onus on the driver of the vehicle with this system to automatically adjust the
beam lobes. These headlamps display accurate light pattern and immensely improves the
illumination as shown in Figure 1.13. A framework designed by Nissan was granted the
European patent for its ability to transcend the beam lobes by following the road curves
[16].
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Figure 1.14 The system representation of the AF of Nissan-Motor-Corporation [16]

Curve Crossroads

With AFS

Figure 1.15 The beam lobe projections at curves and at the crossroads using the
Nissan AFS depicting an improved illumination [16]

2500
Cost Comparision
(Price in USD) 2200

BMW Porsche Cayenne  Volvo XC40  BMW Adaptive-  Volvo XC60- Volvo XC60-
Adaptive- Premium Bi-Xenon Advanced Premium Advanced

Figure 1.16 Comparison of pricing of the adaptive headlamps by various vehicle
manufacturers [17]-[19]

The framework is depicted in Figure 1.14 and at the road junctions, where the vehicle needs

to manuver a turn as shown in Figure 1.15, the headlamp illuminates the intended direction

11



of turn based on multiple sensor inputs to improve illumination and hence driving
efficiency. Depicted in Figure 1.14, an AFS developed by Nissan Global teams which turns
on low beam just like as per vehicle speed and steer to give the driver better visibility.
Companies such as BMW, Toyota Corporations, Hella, Valeo, and Benz has designed and
patented adaptive headlamps. A cost-comparison of the adaptive headlamps by the
renowned automobile manufacturers are depicted in Figure 1.16 [17]-[19]. This is to say
that researchers should put attention to this cost of these products in an effort to develop
low-cost alternatives. Because if for example in India which mainly have mid-range cars

on the road most expensive features will be difficult for most manufacturers to adopt.

1.3 Motivation

1. Safety: Due to reduced vision, driving at night is much unsafe than driving during the
day. Conventional headlights provide limited illumination on bends and uneven terrain, and
they can temporarily blind oncoming cars (Troxler effect). By automatically adjusting the
beam pattern, adaptive headlights can reduce accidents by increasing driver visibility
without blinding onlookers.

2. Improved driving experience: Adaptive headlights improve visibility on curves and
uneven roadways, enabling drivers to detect possible hazards more clearly and respond
more quickly. This may result in a more secure and enjoyable nighttime driving experience.
3. Reduce physical excretion and fatigue: It can be exhausting for drivers to continually
switch between high and low beam while using traditional headlights. This procedure is
automated by adaptive headlights, which lessens driving strain and tiredness.

4. Simple yet powerful solution with less reliance on sensors: Modern adaptive headlights
majorly rely on sensors and integrated systems for operation, which might be error-prone
and limit response time and performance for complicated road features or at high speeds.
Therefore, in order to recognize objects and pedestrians, predict approaching bends, and
modify headlamp beams accordingly, camera-based systems with fusion algorithms are
required. Faster reaction times and more accurate beam control would result from this,
especially in emergency scenarios.

5. Less expensive for markets in developing countries: Adaptive headlights have a
significant potential to increase traffic safety at night. Adoption may be hindered by their
present cost, especially in developing nations like India. There is a need to create low-cost

solutions with simpler sensor setups, efficient control algorithms, and alternative light

12



sources. This could facilitate a broader market acceptance, particularly for the mid-range

cars that are popular in India.
1.4 Thesis Organization

This thesis is organized into six chapters.

Chapter 1 outlines the issues with night-time driving, the challenges associated outlining
the need for the research. The chapter also discusses various adaptive frameworks
available in the market. The chapter draws motivation for the research based on the

discussion.

Chapter 2 includes a thorough literature review on the various object detection methods,
lane detection techniques, controllers and vehicle models apt for adaptive headlamp design.
The chapter discusses the research gaps and then presents the objectives of the research

work.

Chapter 3 discusses the mathematical modeling of the controller for the beam lobe
adjustment using the slip angle of the vehicle and its effect to varying body stiffness. The
chapter introduces 5 controllers progressively and performs various time and frequency
domain tests to evaluate them for the application under discussion.

Chapter 4 compares the existing state of the art object detection models and identifies the
apt algorithm for the case. The chapter shows modification of the SSD framework for night
drive object detection and proposes a multi-faceted object detection model for object
detection. It also introduces a custom LSDNet model for night time object detection and
compares its performance with state of the art models and also its performance in low-light
conditions and its ability to detect small objects. The second half of the chapter detects a
lane detection technique and integration of it with the LSDNet model to control headlamps

in lanes where the road markings are effective.

Chapter 5 discusses the conclusion and future scope of the research.
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CHAPTER 2
LITERATURE REVIEW:?

2.1 Overview

Reduced vision during night drive reduces the driving comfort, increasing physical
excretion and causing mishaps that often prove fatal. Object detection and lane detection
becomes pivotal in the design of adaptive headlamps and associated systems. This chapter
reviews multiple object detection techniques as apt for night time driving, their applicability
and area for improvements. It deals with lane detection methods and also vehicle models
suitable for this application. The chapter chalks out the gaps in the existing methods and
defines the objectives of this research. It also outlines the methodology followed in the
research work.

2.2 On-road Vehicle or object detection techniques

To control the beam lobes during adaptive headlamp design, target detection and tracking
are necessary. In frame identification process detects the object while repeated detection of
the object in each frame is referred to as tracking. However this method has a limitation
speed because it is computationally expensive. So, size, shape, direction based target-
tracking algorithms form the foundation for predicting the position of the objects in the
subsequent frames. This method reduces the response time by avoiding searches in frames
that are large. While the detection of target and tracking is performed parallely, the potential
of failure in the model being able to detect the object is a possibility because of its
prodigious dependence on the features. This section discusses paramount methods that are
used for target detection through features extraction, classification, and the subsequent deep
learning models.

As illustrated by figure 2.1 this section focuses on various methods employed for object
identification techniques especially applicable to roads. On the other hand, figure 2.2 shows
classifiers for detection purposes. Vehicle or object detection is usually associated with
delineating the field of interest in the frame, feature retrieval and its classification. Video
based vehicle identification may use motion or even appearance based [20]. The motion
based models work on comparing the multiple frames against the background while the
appearance dependent models predominantly rely on the features: size, color or even shape.

2 This chapter is published in IEEE Access Journal. The details of the paper: Toney, Glenson, and Cherry Bhargava.
"Adaptive headlamps in automobile: A review on the models, detection techniques, and mathematical models." IEEE
Access 9 (2021): 87462-87474.
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To distinguish between foreground and background a priori knowledge is used by former.
These models use common feature extracts; dominant among them are SIFT extractors [21],
SURF [22] and the HOG [23] concatenated with complex classifiers like SVM, along with
deep learning models like R-CNN that are region based which boast of powerful hirearchial
feature extractions contributing to improves accuracy and increased semantic-segmentation,
faster R-CNN and noteworthy regression models used include SSD’s and multiple versions
of YOLO.

Detection
Techniques
Feature Region Regression
Extraction based Proposal based based
SIFT: Scale-invariant CNN: Convolutional YOLO: You Only
feature transform Neural Network Look Once
SURF: Speeded Up SPP-Net: Spatial Pyramid SSD: Single Shot
Robust Features Pooling MultiBox Detector
HOG: Histogram of Faster RCNN: Region-based

Oriented Gradients Convolutional Neural Network

Figure 2.1 Sophisticated Object detection techniques suitable for night drive
obstacle/ vehicle detection

Classifiers
SVM: K-NN: Adaboost
Support Vector Machine K-Nearest Neighbors

Figure 2.2 Classifiers apt for the object detection application

In videos with cars or bicycles, SIFT can be used to identify certain valuable features from
a frame by segmenting it since the method had been widely employed in detecting an object
from a video where it enables recognition of vital features. The invariant nature of feature
points defined in SIFT method makes them suitable for object tracking even when an object
changes poses frequently or its illumination varies much[20]. It mostly works better for 2D
than 3D planar objects. New images are compared using this feature against those known
before; thus Euclidean distance is applied to discover matching features. Then after
matching these characteristics, probability of presence of an object are calculated. The
literature suggests that SIFT-based descriptors are better than others and are invariant to
scale, rotation and brightness [21] because of their region based nature which is useful
formatching features. SURF is a popular image recognition, registration and classification

method used in computer vision which relies on the integral images computed using
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Hessian approximations thus making detection much quicker than the SIFT model [22].
The selection of SURF or SIFT is dependent on the problem as well as the response speed
requirement. In applications with ample computational time SIFT performs superior while
Gaussian derivative-based descriptors for SIFT are found to be better than SURF [23]. The

comparison of these models (normalized values) is shown in Figure 2.3.
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Figure 2.3 Performance comparison of traditional object detection features
(normalized values) [Refer Annexure-Al1-1]
A histogram of gradients (HOG) descriptor has also been widely applied for object
categorization because it defines the features as edge orientations or gradients of an image
[24]. In this case, normalization procedures of gamma and color parameters are executed
in small images from larger frames to optimize resource usage. A section-by-section
scanning is performed by the detection window on the primary image to deduce smaller
images that are scalable. Here SVM based models are a favorite. By not implementing a
central dependent technique and rather using comibination of localization, contrasting and
normalization of the smaller and scaled up windows, these surpass wavelet models. For
instance, SIFT showed better performance than wavelets but much closer performance
when gradient-based detection was used. In contrast, unlike the other approaches of
extraction on which deterministic methods have been applied, a salient localized region is
defined here through a non-deterministic mechanism based on image intensity profile
properties within an image window in order to detect faces with different resolutions.

Another major reason for choosing this approach is that it is distinct from its computation
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efficiency even under difficult lighting conditions and object positions. The method is
efficient computationally even when illumination conditions are varied and objects change
their position [25]-[28]. The class differentiation at the feature space is achieved by
employing logistic regression, linear discriminant analysis, standard correlation coefficient
or even principal component analysis. They may even bank on the interdependence
between multiple variables. This means that models fed with features should attain their
decisions around the decision boundary [25].

A number of factors such as aspect ratio, color-based detection can be used to determine if
an object exists in a frame or not by using supervised classification algorithms. A
supervised classifier usually preferred in object detection from video is SVM; it allows
learning an optimal hyperplane amongst infinitely many that separate two classes [29].
Based on this distance from hyperplane margin SVM’s decides. Image classification tasks
have been simplified by use of fast R-CNN because no additional processing step like
scanning entire images or extracting regions of interests has been performed. Locating the
most discriminative features from raw RGB pixels can be carried out using filters and

pooling.

Relative Score (1-10)

SVM
KNN

)
n
o
o
@
g
<

Classifier

BN Accuracy M Speed W Complexity

Figure 2.4 Comparison of Machine Learning Classifiers used for vehicle detection
(normalized values) [Refer Annexure-Al-2]
Suppressing the errors based on the choice of appropriate thresholds and by neglecting the
parameters that are insensitive is achieved through quadratic processing or programming
and Hilbert Spaces [29]. For a large dataset, a choice of kernel is important, as well as the
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time it takes to run. K-NN [30] [31], a non-parametric method considers the position of the
training sample in relation to the class. It calculates an efficient distance between data set
and training sample. The samples that are close to k-threshold or from the inbound sample
classes are grouped in the same class. Euclidean distance is used when there exist several
dimensions. Using the appropriate k-value, the objects are numbered, metrics of similarity
are generated or even the distance from the k is calculated for precise classification. But
this has limitations such as multi-modal classes where error can be approximated and easily
estimated because it approaches Bayes's error but with such a computational burden upon
data getting bigger or more complex. AdaBoost algorithm has been widely used in object
detection where strong classifiers are obtained through weak ones [32] [33]. At the end of
each learning cycle, these classifiers are adjusted by that algorithm which is weaker. Also,
though it separates Adaboost from other classifiers in terms of ease of implementation, it
allows for faster convergence as well as no need to know preexisting state of weak
classifiers and performs very well also. The normalized comparison of these models is
depicted in Figure 2.4.

Machine learning models find extensive application in applications that involve huge
training dataset. Single stage models (YOLO & SSD) use CCN’s and dual stage models
(RCNN, Faster RCNN, and SPPNet) usually are generate target box which is followed by
classification. The R-CNN [34] shows better performance compared with the earlier
conventional models. The algorithm (multi-stage) performs selective search to suggest
about 2000 regions for each image [35]. It then crops the region of interest from the
proposed region extracting features to form feture vector of a dimension of 4096, making
it highly robust. This feature array is used to predict the object in the frame.

While extracting features and subsequent training are tedious, it is possible for the
algorithm to have fixed image size leading to making of redundant proposals. The
requirement of the image sizes to be fixed is importatnt here and the issue is dealt with
through SPP-Net [36]. The algorithm has a SPP which results in a vector of features with
non-uniform image sizes. The technique outperforms R-CNN but comes at a cost of time
as this involves connected multiple layers. Fast R-CNN has detector to estimate feature-
length and determine the region of interest of pooling that does the fixed feature size
prediction that contributes to better classification exploiting the bounding boxes of the
CNNs [36] [37]. With a single stage processing in the network layers that performs
convolution per image, Fast RCNN exhibit fast response in comparison to multiple regisons

proposed in the earlier method. While this method does selective search, Faster RCNN
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computes the features of an image at once and the ROI is proposed by a different network.
To improve this stated problem, the full image convolutions in a Faster R-CNN [38] have
been adopted and selective search for ROI is avoided through separate network. The
Region-Proposal-Layer can operate on the images of multiple size to predict the feature
vector which feeds the regression as well as the classifier layers. Even though it has faster
response time, there are limitations when it comes to pictures containing extreme sclaes or
even shapes. The comparison of the models in terms of accuracy and inference time is

plotted in Figure 2.5.
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Figure 2.5 Comparison of Deep Learning-based Object detection models for
adaptive headlamp applications [Refer Annexure-A1-3]
In applications with real-time requirement where speed takes precedence, region-proposal
algorithms like YOLO are effective as they are focused on probable areas rather than the
entire image [40]. YOLO splits photos into grids with each cell representing an input
proposal. Higher-level iterations such as YOLOv2 and YOLOv3 [40]-[42] are used greatly
in video object detection [43]-[46], enjoying better speed and accuracy; however, they still
face the challenges of detecting minor objects and tolerating a range of aspect ratios. SSD
[47] [48] eliminates such limitations by incorporating region-proposal and classification in
a single stage, achieving speeds comparable to Faster R-CNN. It uses anchor boxes and
aspect ratios to create bounding boxes and aggregates predictions across different feature
maps to support objects of different sizes. Compared to CNNs, SSD does not include

intermediate filtering, enabling faster detection with slightly reduced accuracy. For
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increased accuracy, SSD uses non-max suppression to aggregate similar bounding boxes

and employs hard negative mining to remove false positives due to background noise.

2.3 Vehicle Models for Adaptive Headlamps

Another essential adjustment for adaptive headlamps if the need for adjusting the beam-
lobes in accordance with the road curve. To do so modeling of vehicle is an integral part
herein. Multiple models of passenger vehicles is depicted in Figure 2.6. Path tracking
(Geometric based) [49] corresponds to vehicle position, dimensionality and orientation
vectors along its trajectory and look ahead distance with respect to curvature and is
independent of the velocity of the vehicle and external factors. The complexity of look-
ahead distance is a bottleneck in this model. The challenge is that at steep curves the look
ahead estimates the road to straight line skipping the actual path and goes straight to a new
point leading to the generation of oscillations at higher speeds. The non-consideration for
internal and external forces but rather the position of the automobile and the acceleration
with respect to co-ordinates (both the local and the global) makes Kinematic model apt.
This method [50]-[53] assumes that there are front wheels that are steerable with front axle
being the origin. Controllers [54] [55] to account for both the linear alongside the rotational
motion to ensure better stability are designed. Unlike its previous case known as Kinematic
model, this one also takes into account tire slip, the coupling and the coefficient of friction
[56] [57].

Vehicle Models
for path prediction

Geometric Pure Pursuit Kinematics Vector Pursuit Clothoid Curve
Path Tracking Model Model Model Model

Figure 2.6 Passenger cars Vehicle models suitable for lane predictions

In pure pursuit algorithm [58] in which besides looking ahead; error on direction between
vehicles final destination is defined through drawing circular arc from current location up to
goal or target point that is given by look ahead. The use of this type [60]-[62] for other
applications [59], however, is limited as a headlamp adaptation model since it depends on the
length of road ahead. In vector pursuit, which employs coordinates to predict the most

suitable position at a given time to reach an endpoint it can be used in adaptive headlamps
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[63]; However, this technique has been found to have a great computational overhead. The
clothoid curve method can avoid arches and has real time operation with increased
performance that is dependable [64]. The tire and soil contact forces coupled with the forces
acting on the wheel: lateral and the longitudinal are calibrated in the Dynamic-path tracking
model [65] [66] and is complex as it involves multiple factors to be processed and error

compensation becomes difficult.

9 9 9
8 8 8 8
8-
7 7 7 7 7 7
6 6 6 6
6-
5 5 5
4
a-
2 -
0-

Geometric Kinematic  Extended Kinematic Pure Pursuit Vector Pursuit  Clothoid Curve Dynamic

Normalized Performance Score (1-10)

Model Type

BN Accuracy W Complexity (Inverse)  mmm Real-Time Feasibility

Figure 2.7 Comparative analysis of Vehicle Path Models for Adaptive Headlamp
Applications [Refer Annexure-Al-4]
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Figure 2.8 Normalized comparison of model stability and parameter dependence
[Refer Annexure-Al-5]
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Normalized Scale (1-10)
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Figure 2.9 Trend of Model evolution from Geometric to Dynamic Formulations
(Normalized representation) [Refer Annexure-A1-6]

Kinematic as well as dynamic model based controllers are prevalant adaptive controllers
[67]-[69] in addition to the types dependent on neural networks, PID with high stability at
varied driving conditions but with difficult design constraints [70] [71]. This leads to complex
development of neural networks based on PID controller, neural network-based adaptive
control (NNAC) system [45] [72]. The algorithms optimization and cost overheard reduction
by Predictive Controllers. Nonlinear MPC [72] and also extended-kinematic models [45] are
among the widely accepted models. Though complex in terms of design, Robust Controllers
have the ability to compensate for rapidly changing dynamic conditions [73]-[75].
Normalized comparisons of these models are shown in Figure 2.7 through 2.9 with respect

to their usage for adaptive headlamp application.

2.4 Lane detection Models for Adaptive Headlamps

This section analyses modern lane finding algorithms for night driving, to evaluate their
efficacy for path prediction and investigates nighttime lane recognition. The aim was to
develop a model that would address the limitations of autonomous driving on unmarked
roads using deeplabV3+ semantic segmentation for road detection [76]. Its dataset
contained 15,000 annotated images specifically made for drivable road detection, which
use pixel-level segmentation to predict steering angles with precision in automated vehicles.
A comparison analysis also shows it aids in improving steering control in level-5 self-

driving cars especially where there are no lane lines or they have faded away. Vehicle and
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pedestrian identification algorithms are moving towards CNN’s that are strong enough.
Traditionally, two-staged architectures require first some vital elements from raw images
like low-level representations such as pixel gradients or local image patterns are extracted
and then learning methods applied for full scene understanding [77]. HOG [24] stands out
by exhibiting high accuracy while reducing computational cost hence making it suitable for
autonomous driving. Again, novel solutions as presented in [78] entail an extra middle layer
after low-level feature computation is done.

These algorithms find the best combination of features that results in improved accuracy,
even if it comes at the cost of increased processing time. In CNN’s [79], feature extraction
takes place during learning and comprises many layers. Trained filters within each
convolutional layer process input images, enabling automatic feature extraction from
training data. Although CNNs have acceptable accuracy in pedestrian or object detection,
their computation intensive processes lead to improvements such as fast R-CNN [39] and
YOLO [41] to reduce computational costs and robust lane detection under difficult
conditions respectively. For instance, [80] combines object identification and tracking into
a probabilistic framework for real-time lane detection with Robustness even under
challenging environments like curved lanes, faded markers, or shifting lanes. The approach
is based on vehicle motion models and inertial sensor data which therefore in turn makes it
vulnerable when dealing with non-predictable motion patterns of a vehicle. Therefore, [81]
provides a model based on fixed lane markings that performs well in very difficult
situations both in day light as well as at night fall. Obstacle detection is limited in its ability
to identify drivable space due to the presence of invisible objects and indefinable barriers.
LIDAR sensors are a viable alternative but their cost effectiveness necessitates semantic
segmentation research. To automatically extract local features, CNN can be trained, which
has better performance than traditional techniques [82]. But the problem of high
computational overhead still remains.

In [83] an alternate approach reduces drivable space estimation into a 1-D graph inference
issue using lightweight methods for real-time feature computation and inference with better
results on difficult datasets. Consequently, this study employs sensor fusion consisting of
LiDAR and camera sensors for the purpose of detecting robust drivable road. Using edge
detection and color-based segmentation, this technique [84] generates lane binary images
from camera data. Though it demonstrates good performance across different types of
urban roads such as: two lane marks; a lane on one side; and a curb on the other side; or

roads bordered by curbs on both sides but there is no universal implementation of the model.
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The HMRF model [85] magnifies boundary issues and multi-feature learning for enhanced
road detection. Improvement in detection by handling noisy data and reducing redundant
information with a bootstrapped learning strategy and hierarchical multi-feature
segmentation framework. The efficiency of this model has been validated multidimensional
across various datasets to affirm its accuracy; it is applicable in complex road environment.
In addition, it enhances safe driving-assistance system, detects obstacles and improves real-
time drivable area extraction using HMRF framework. However, the performance of the
model at large dataset needs to be optimized through coding. This algorithm segments road
regions by combining road features and a model using graph-based manifold ranking
approach to fit a road model. Its robustness against such adverse elements as water stains,
kerbstones etc., makes it less susceptible to violations of road model assumptions. Precision
improves when this model is integrated with the feature-based framework [86].
Experimental validation on Kitti-Road against the actual-road datasets demonstrates high
performance with AUC values of 0.956 and 0.989 respectively [89]. This approach further
integrates these constraints into visual odometry systems for depth factor calculations hence
improving unstructured roads detection that can also operate under difficult conditions
without failure [87]. To estimate road regions in complicated environments where there are
diverse objects that could overlap with roads, one can use vanishing point estimation
method on the boundaries surrounding those roads. This strategy quickly computes and is
robust to shadows and complicated road surfaces by using boundary alignment from voting
points & line-soft-voting with maximum weight. Nevertheless, color variations in images
and errors in the estimation of the road boundaries are affecting the accuracy of finding the
vanishing point despite its flexibility in handling different interferences on roads. Lane
detection & tracking strategy employing digital image processing enhances lane detection
accuracy, handling multiple scenarios [88]. In order to avoid collision, this method uses
ROI sizes along with IPM algorithm for range determination. Additionally, there were
cases where the tracking performed well or poorly as a result of factors such as lane
visibility issues (glare, reflectivity, paint deterioration) among others qualitatively analyzed.
Continuous lane markings work well whereas double markings reduce tracking precision
because of varied tracings.

To overcome some problems faced by conventional networks in spatial detail recovery,
two attention mechanisms are employed in this module [89]: Upper-level Prediction
Attention along with Upper-level Boundary Attention. Moreover, a top-down refinement

process utilized within a decoder network improves segmentation accuracy without
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increasing computational cost. As per evaluation conducted over Cityscapes and CamVid
datasets improvement concerning efficiency &accuracy was noted. The module is
adaptable to different encoder-decoder networks implying that it can be used for
optimization and segmentation applications more generally. It works as a separate module
and thus it can be used with any segmentation network which has an encoder-decoder
structure. Its efficacy is influenced by the segmentation network. Therefore, the network of
semantic segmentation for the prediction of the trajectory of the ego-vehicle, with a front-
view monocular-camera as input for consecutive images which produces trajectory mask
that improves predictions accuracy [90]. Consequently, results from KITTI datasets
demonstrate better performance than baseline models. By integrating human intentions on
intersection turns and generating additional training data through simulations, accurate
trajectory prediction will improve lane-changing prediction performance. The lane
detection network utilisez SPP & the atrous convolution for semantic segmentation which
is performed pixel-wise. The network includes an encoder-decoder for binary segmentation
& feature mapping [91]. This was shown in its’ experimental results on Tusimple dataset
where it outperformed all other architectures that are essential when achieving autonomous
driving. In this case Spatial Propagation & Transformation is an end-to-end network fusing
image and point cloud data for road detection.

It entails a model-level combination as well as dual-view fusion, which enriches street
illustration and applies a data-based combining approach to present the competitive
performance on KITTI Road Benchmark. For instance, RNN’s joint anisotropic diffusion
has limitations that can be improved by combining it with GNN and extending spatial
propagation fusion for wider object detection tasks. The proposed SPSTFN network reveals
potential but needs fine-tuning on more intuitive and flexible fusing methods. One of these
is how lane identification strategies are implemented in autonomous driving through this
review. Classic techniques such as HoG and RealBoost are computationally efficient;
nonetheless, they are being replaced by CNN-based models due to their automatic feature
extraction capabilities. Although CNNs exhibit high accuracy levels, they demand
significant processing resources thereby necessitating improvements like rapid R-CNN and
YOLO for real-time operations. There is potential for deep learning based semantic
segmentation networks. The survey encompasses sensor fusion, model level integration
among others aiming at improving road recognition accuracy.

Lane detection has evolved from probabilistic frameworks based on vehicle motion models

to models such as HMRF that thrive in unstructured settings. HMRF addresses boundary
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difficulties and reveals a high level of strength, notably in complex urban environments.
Lane detection accuracy is significantly enhanced by systems using graph-based manifold
ranking, vanishing point estimation, or image processing algorithms. A more efficient
approach to improve segmentation accuracy without requiring extensive processing
resources involves modules like semantic segmentation networks utilizing a top-down
refinement method. It is further suggested by the paper that some aspects of specific
methods have limited room for application development calling for more studies on it
possibly alongside Graph Neural Networks (GNN). The importance of improving fusion
techniques in the SPSTFN to make them more intuitive and versatile is underlined. In
summary, this survey underscores the shift from traditional to deep learning-based
methodologies emphasizing CNNs for enhanced accuracy despite their computational
loads. The assessed approaches present progress made in road identification leading to a
stronger and more accurate autonomous driving capability; at the same time, they identify
areas that need more research and development efforts.

The review, however, suggests that the headlights available are inadequate in terms of
ensuring safe driving. The focus area in this case is specific and current solutions cater only
for limited test cases without taking into account the different speeds on which a vehicle
operates and also on the road conditions. Solutions from the vehicle manufacturers are
dependent majorly on the lanes and line markings limiting it to become a universal solution.
Therefore, the system should be intelligent enough to anticipate and control headlamps
regardless of lane markings. Their universal implementation is still at early stages as they
have limited functionality. However, till date, urban limits have been covered by these
where sudden turns, multiple crossover lanes must be addressed. Therefore, there has been
limited study on how speed affects most of the systems’ performance making them perform
between a certain range of speed very well which is vital in safety device design leaving
room for more research activities. Thirdly, with most automotive embracing camera based
IOT systems; there exists large potential to utilize artificial intelligent tools as well as deep

learning in designing more dynamic responsive systems.

2.5 Research Gap
e Need for Enhanced Object Detection and Recognition: While the system
demonstrates good performance in detecting and illuminating objects, there's a
limitation in detecting oncoming traffic or adjusting illumination accordingly.

Future research could focus on improving object detection capabilities, especially
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in dynamic traffic environments, to enhance safety and driver awareness. Develop
streamlined models for real-time lane detection in low-light conditions, balancing

accuracy and computational efficiency.

Optimization for Adaptive Headlamp Designs: Although the system is deemed
suitable for adaptive headlamp designs, there's a need to address the overhead
associated with look-ahead direction and complexity. Further research is required
to optimize the system for adaptive headlamp configurations, reducing complexity
and overhead to improve efficiency and performance in adaptive lighting

applications.

Robustness to Environmental Variability: Create algorithms that adapt to diverse
conditions (e.g., lighting, weather) without sacrificing accuracy, enhancing model

robustness.

Latency and Real-time Performance Optimization: The system lacks discussion on
latency, crucial for real-time applications. Research should focus on reducing
latency, especially for sudden curvature changes, to enhance real-time

responsiveness while maintaining accuracy.

Reducing Data Dependency: Explore methods to minimize reliance on large
annotated datasets, such as transfer learning or semi-supervised techniques, while

maintaining high performance.

2.6 Objectives of the research

The objectives of the proposed work are as follows:

To simulate a mathematical model based controller design for headlamp beam
adjustment when the vehicle traverses through a curve.

To propose an algorithm to identify objects on road, oncoming traffic and hence
adjust the headlamp beams to reduce troxlers’ effect based on comparative analysis
of the state-of-the art Deep Learning algorithms for object detection.

To integrate the beam adjustment across a curve and the deep learning model
developed for identifying object/ oncoming traffic detection to achieve better beam

lobe adjustments.
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To evaluate the performance of the proposed solution against efficiency, latency

and performance in road test cases with state-of-the-art solutions.

2.7 Research Methodology Overview

Objective 1

Employing vehicle dynamics, the goal centers on creating predictive beam steering
techniques through Design of Dynamic Model-Based Controllers.

Road direction (y) and slip angle (B) are integrated into a detailed dynamic vehicle
model. Two advanced control strategies are designed: Extended Model Predictive
Control (E-MPC), Filtered Feedforward Model Predictive Control (FF-MPC) and
Fused Controllers.

While E-MPC incorporates state and input constraints for optimal control, FF-MPC
employs feedforward behavior to estimate road curvature. The Fused Controller
combines predictive modeling of road geometry through slip angle and steering-
based prediction with real-time environmental perception through object detection.
To evaluate headlamp alignment precision, responsiveness, and robustness in a
range of speed and curvature scenarios, these controllers are simulated over

synthetic road profiles.

Objective 2

To control beam adjustment based on environmental cues, this objective includes
vision-based perception modules.
Lane-Based Prediction of Beams Utilizing Image Processing: A standard computer
vision pipeline is employed for cases where the lanes are well-defined.
» Lane boundaries are detected in low light with techniques such as gamma
correction, bilateral filtering, Canny edge detection, and Hough transform.
» To enhance flexibility in organized scenarios, a steering angle model is
constructed to adaptively match light beams with road curvature.
Object Detection with Deep Learning: To enhance object perception and overcome
the Troxler effect, a perception module based on deep learning is introduced.
* Low-light and Small-object Detection Network (LSDNet) is designed

specifically and compared against popular detectors such as RCNN, SSD,
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Tiny YOLO, and YOLO. LSDNet demonstrates enhanced robustness and
detection ability across various light levels.
» The module facilitates responsive beam adaptation through forward-looking

object tracking and scene understanding.

Objective 3

e Lane-based beam control models and object detection are supported by an
embedded processing unit. Headlamp beams are dynamically steered by actuators
such as servo motors.

* Inresponse to Steering angle (inferred from curvature estimation)
» Oncoming traffic or object (inferred from Al inference) for autonomous
driving modes, the built-in system dynamically adjusts beam direction and

intensity.

Objective 4

e Assessment of Controller Performance: The following performance criteria are
applied to benchmark the four predictive controllers:
« Step response, impulse response, frequency response, and steady-state
error
» Precision of road tracing and corresponding beam deflection loyalty
+ Case study on performance on a two-kilometer synthetic road with
segment-specific profiles of curvature
e Comparison of Object Detection Models
« Current detectors are employed to benchmark the Al models using:
Detection accuracy and processing rate (FPS), mAP, F1 score, and recall
« Change sensitivity to illumination and object scale
» These systems are tested for the following: robustness, invariant accuracy

across varying test conditions, efficiency, and latency.
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Table 2.1 Chapter-wise details of Objective Implementation

Objective

Sections in which it is discussed

Development of vehicle
dynamics-based predictive beam
steering techniques (5 Controller
models).

Chapter 3:

¢ 3.2 Dynamic Vehicle Modeling

« 3.3 through 3.8 Controller Designs (FPC, RS-
MPS, E-MPC, FF-MPC)

¢ 3.10 Fused Controller

Vision based object detection:
Object detection models and Lane
detection

Chapter 4:

¢ 4.3 Deep Learning Framework for on-road
Obiject detection for Adaptive Headlights:
Modified SSD, YOLO V8 based Model, MF
Model, LSDNet

e 4.7 Lane-Guided Beam Prediction

Chapter 4:

4.8 Embedded Implementation and Actuation

Control: Integrating the multifaceted object

identification model and the lane detection model

Chapter 3:

3.9 Simulation Results of the controllers
explained from 3.3 to 3.8-Controller
benchmarking

¢ 3.11 Performance analysis of Fuse Controller
and its benchmarking against other controllers

3.5 Controller Benchmarking

Integration of embedded systems
for beam direction.

Comparative analysis and
performance evaluation of the

perception and control modules.
Chapter 4:

¢ 4.5 Benchmarking of the object detection models
discussed in section 4.3 and model tradeoff
analysis

¢ 4.8 Lane Detection Evaluation

2.8 Novelty of the Research

This research addresses the challenges of dynamic trajectory tracking and low-visibility
object detection by proposing an integrated control-perception framework for adaptive
headlamp setting in night-time automobile environments. Two control front prediction
strategies are constructed: an Extended Model Predictive Controller (E-MPC) combining
full state representation of the vehicle with input and output constraint expression for
optimum control in dynamic conditions, and a Filtered Slip-Angle-Based Feedforward

Model Predictive Controller (FF-MPC) based on lateral slip and road heading angle
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(W10aa) to predict curvature-induced misalignments to pre-steer beams. A split perception
pipeline is employed to complement these control measures. A lane detection algorithm is
developed for structured road scenes with well-defined lane markings. It approximates
curvature and guiding beam direction using conventional computer vision methods such as
gamma correction, bilateral filtering, Canny edge detection, and Hough transformations. In
contrast, a deep learning model named LSDNet (Low-light and Small-object Detection
Network) is developed, designed, and trained to maintain high detection fidelity in
unstructured or low-light illuminated conditions. It is able to process scale-variant object
situations and low light. LSDNet demonstrates better performance in precision, recall, and
inference robustness when evaluated across a range of brightness regimes and compared to
the best object detectors. By integrating predictive modeling and context-adaptive visual
perception, these features offer a perceptually aware, trajectory-aware headlamp control
system that surpasses the state-of-the-art by enabling anticipatory lighting decisions.
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CHAPTER 3

OPTIMIZING VEHICLE HEADLAMP ALIGNMENT VIA
DYNAMIC MODELING AND DESIGN OF FILTERED
PROPORTIONAL CONTROLLER FOR SLIP ANGLE BASED

ADJUSTMENTS 34
Notations used
u(t) : Longitudinal velocity (m/s)
V(t) : Lateral velocity (m/s)
0(t) : Yaw rate (angular velocity) (rad/s)
6 : Vehicle heading angle (angular displacement) (rad)
B(t) : Body slip angle (rad)
a, b : Distance from CG to front/rear axle (m)
M : Vehicle mass (kg)
J : Yaw moment of inertia (kg m?)
F, : Longitudinal force (N)
Fyf, E,,  : Lateral forces at front/rear tires (N)
Caf, Cor  : Cornering stiffness (front/rear) (N /rad)
Cy : Aerodynamic drag coefficient
C : Lift coefficient
C, : Rolling resistance coefficient
p : Air density (kg/m3)
A : Frontal area of vehicle (m?)
Fp, F, : Aerodynamic drag/lift forces (N)
R : Wheel radius (m)
W : Angular speed of wheel (rad/s)
Jw : Rotational inertia of wheel (kg /m?)
T, : Driving torque (Nm)
A : Wheel slip ratio
g : Acceleration due to gravity (m/s?)
1 : Coefficient of friction (tire-road)
10) : Steering angle (rad)
ks : Steering feedback gain
kq : Headlamp deflection gain
ky : Proportional gain mapping slip angle to headlamp angle
ky, : Proportional gain on road heading

Fys, Fpy  : Braking force front/rear (N)

3 The mathematical modelling based on Vehicle dynamic modelling (Section 3.1 to Section 3.3) is published
in Engineered Science Journal. Details: Toney, G., Sethi, G., & Bhargava, C. (2025). Optimal Headlamp
Adjustment for Vehicles through Slip Angle and Stiffness Analysis using Dynamic Vehicle
Model. Engineered Science, 34, 34.

4 The various controller designs, its performance descriptions and comparisons (Section 3.4 to 3.11) are
published in the Journal of Robotics and Control. Details: Toney, G., Sethi, G., Bhargava, C., Vaz, A.C., &
Hegde, N. T. (2025). Sensor Fusion and Predictive Control for Adaptive Vehicle Headlamp Alignment: A
Comparative Analysis. Journal of Robotics and Control (JRC), 6(5), 2166-2183.
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Fy : Total braking force (N)
F,f, 5 : Normal load front/rear (N)

h : Height of CG above ground (m)
L : Wheelbase (m)
Ay, Ay : Longitudinal/lateral acceleration (m/s?)

Oy () : Headlamp deflection angle (rad)

T : Time constant of the headlamp actuator (s)
Ts : Sampling time interval (s)

a : Discretization smoothing coefficient

t, : Rise time (s)

tg : Settling time (s)

W, : Cutoff frequency (rad/s)

Omax : Max allowable headlamp deflection (rad)
Bmax : Max expected slip angle (rad)

a : Filter coefficient (0 < a < 1)

Yroad : Road heading angle (rad)

y : Fusion weighing factor (0 <y < 1)

3.1 Introduction

This chapter introduces the formulation and design of a dynamic car model to estimate the
body slip angle in real time and leverage the value for controlling the headlamp direction.
In typical systems, headlamps track steering input as representing the path of the vehicle.
But under dynamic maneuvers—e.g., hard cornering, emergency maneuvers, or low-
traction road surfaces—the actual vehicle direction of motion will differ from the desired
steering direction because of lateral slip. Such a difference can compromise safety by
impairing vision. A severe slip angle evaluation is built into the new model to mitigate
against this, and the direction of the headlight beam is then altered proportionally.

A set of nonlinear dynamic equations modeling yaw, lateral, and longitudinal movement
underlies the model. The equations are linked to tire force models that accurately model
the actual vehicle response using steering angles, cornering stiffness, and slip ratios. For
further enhancing the model, some more factors are included, which are rolling resistance,
aerodynamic drag and lift, and dynamic load transfer in braking and acceleration. The yaw
rate and longitudinal and lateral velocities are then computed in real time based on each
component. The slip angle, which is the arctangent of the ratio of lateral to longitudinal
velocity, is computed by these quantities as inputs. A proportional control law takes the
calculated slip angle as an input and uses it to compute the needed headlight deflection.
This approach improves night driving safety by aligning the orientation of the headlamp

with the actual route of the vehicle, especially during dynamic maneuvers. Besides being
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used in adaptive headlamps, the approach forms a good basis for being combined with
autonomous vehicle control policies and intelligent driver-assistance systems (ADAS),
which require a high degree of precision awareness of vehicle status.

The Filtered Proportional Controller for headlight control based on slip angle is presented
in the latter part of the chapter. For use while driving under dynamically changing
circumstances, this is the optimal strategy for adaptive headlamp activation. Mechanical
inertia and latency in headlamp motors generally render them less than ideal for sudden or
instantaneous commands. A filtered P-controller's low-pass filtering element introduces a
first-order lag which closely simulates actuator dynamics, creating smoother transitions
than raw proportional control can, leading to oscillation or overshooting. Moreover, sensor
noise or momentary fluctuations in the motion of the vehicle might produce minute changes
in the body slip angle. The filtering mechanism effectively damps out the high-frequency
noise to avoid unwanted flicker or jitter in the light response. In an implementation context,
the structure of the controller is very deployable on embedded platforms like
microcontrollers or ECUs due to it being computation-efficient with only two movable
parameters: the gain and the time constant.

With gradual and organic beam changes instead of jarring and distracting ones, the filtered
response also provides the driver with a smoother visual experience. This is in alignment
with user comfort expectations and automotive industry safety norms. Notably, the control
philosophy is also in line with common automotive industry practice, whereby filtered or
blended control laws are common in active systems to achieve robust performance in real-
world scenarios. Generally, filtered P-control provides the best tradeoff of responsiveness,
smoothness, robustness, and integratability and is especially well-suited for adaptive
headlamp systems controlled by slip-angle-based dynamics.

Additionally, this chapter presents and compares the four models along with the model
designs. All of these models are designed analytically and validated using real-world
situations. Proper headlamp tracking, smoothness of control, and adaptability to varying
vehicle dynamics are the performance measures based on which they are compared. A
comprehensive case study is conducted using a 2 km artificial road divided into 10 distinct
sections, each of which reproduces a different curvature and maneuvering condition, in
order to further assess their practical effectiveness. The segment-wise analysis provides
significant details regarding the strengths and weaknesses of every control method in

diverse driving conditions.
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3.1.1 Structure of the Chapter

The chapter is organized to systematically progress from basic principles to advanced
controller architectures and their comparison. Section 3.2 discusses the role of slip angle
in vehicle orientation and its impact on headlight alignment. Section 3.3 outlines
mathematical modeling of vehicle dynamics, such as longitudinal and lateral motion, tire
force modeling, braking effects, and aerodynamic effects, leading to a unified formulation
for headlight deflection based on slip angle. Section 3.4 outlines design and implementation
of a Filtered Proportional Controller, including its continuous and discrete-time forms,
stability issues, actuator saturation, and parameter tuning. Section 3.5 provides a Raw Full-
State Model Predictive Control (RS-MPC) model which incorporates road direction
directly.

Section 3.6 explains an Extended Model Predictive Control (E-MPC) architecture that
includes slip dynamics in the predictive scheme. Section 3.7 presents a Feedforward-
Enhanced Model Predictive Controller (FF-MPC) making use of estimated road heading
and slip angle for pre-emptive headlamp control. Section 3.8 provides an in-depth
description of all the controller architectures. Section 3.9 presents a comprehensive
performance evaluation of the predictive control models using trajectory-aligned scenarios
and segment-by-segment analysis. Section 3.10 shows a predictive controller that
combines sensor fusion with dynamic modeling for enhanced flexibility. Section 3.11
finally shows the performance results of the fused controller and a comparative study

against the models previously developed.

3.2 Assessing the slip angle to ascertain the variance between the vehicle's

positioning and the headlamp's placement

Slip angle, the variance between a vehicle's actual direction of movement and its intended
course, is crucial for understanding tire dynamics [92]. Illustrated in Figure 1, slip angle (o)
indicates this discrepancy. Slip angle as the distinction between actual and desired
trajectories [93]. Even when a wheel is turned during a turn, the vehicle's body may not
align with the intended path, affecting headlamp illumination. This disparity can impact
driving safety, as the headlamp may not accurately illuminate the direction of travel. The
slip angle serves as a reliable metric for assessing a vehicle's deviation from its intended
path and adjusting headlamp direction accordingly [94]. Whether a vehicle is executing a

standard maneuver, oversteering, or understeering during a turn, the body slip angle
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consistently reflects the disparity between actual and desired trajectories. In designing the
headlight adjustment model, this discrepancy was considered to improve road lighting
when turning. Slip angle is a reliable predictor of vehicle trajectory, with prediction errors
as low as 0.3 m [95]. It reflects the discrepancy between the velocity vector's direction and
the heading angle, crucial for determining vehicle path. Traditional slip angle calculation
methods [96] [97] [98] [99] include direct integration and linear observer estimation
techniques. These approaches effectively calculate slip angle, aiding in predicting
deviations between actual and intended paths, facilitating headlamp adjustment.

[m]

x(t) y(v),

x(t)l

X(t)b

b=[m]

y(t),

Fig 3.1 Front and rear wheel slip angle as vehicle goes through a cornering where
By is the front slip and B, the rear slip. If B¢ > B,., car is experiencing understeer,

when B¢ < B, car is oversteering and B = B, is a neutral condition. [94]
3.3 Mathematical model for assessing body slip angle and adjusting
headlamp direction [94]
The purpose of this model is to calculate the vehicle body slip angle 5 (t) dynamically and
apply it for proportional modification of the headlamp deflection angle 8y, (t). The system
improves the driver's visibility while making turns or dynamic maneuvers by orienting the

headlamp with the vehicle's actual path, and not merely its direction. The model

architecture proposed in this simulates the overall vehicle behavior for body slip angle and
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then headlamp orientation estimation in real time. Equations 3.1 to 3.3 are the fundamental
motion model describing longitudinal, lateral, and yaw motions of the vehicle in terms of

inertial forces, wheel actuations, and aerodynamic drag.

Vehicle Parameters
Mass, Geometry, Coefficients

v
Initial Conditions Driver Inputs
ugt), Vi, Q1) 8, Ts, Fs

-«

Y

Aerodynamics Motion equations Load Transfer
Fo, Fu dU(t)/dt, dV(t)idt, dO{tydt AFz, AFy

Equ 3.20 to 3.21 Equ 3.110 3.3 Equ 3.22 & 3.23
Y
Tire Forces :
[ Lateral Slip, Cornering ]:7—[ Wheel dynamics
Equ 3.6 to 3.9 Equ 3.11 & 3.12

Y

| compuevve | L] Braking o

Equ 3.15 & 16, 3.26 through 3.1

Y

[ Calculate Slip Angle ]

Equ 3.32

¥
[ Calculate the Headlamp ]

deflection angle

Equ 3.33
Fig 3.2 The sequences in the slip angle-based headlamp deflection adjustment

These are acted upon directly by tire forces, which are modeled in Equations 3.6 and 3.7
using linear approximations to cornering stiffness and lateral slip and are solved for the
system using Newtonian equations in Equations 3.8) and 3.9. The dynamics of the slip
angle of the body, a critical parameter that defines the angular difference between vehicle
direction of travel and heading, are dynamically modeled in Equation 3.4 and geometrically
in Equation 3.5. Equations 3.10 through 3.12 model steering feedback, wheel rotation, and
traction forces, all significant in order to model real-world phenomena influencing vehicle
motion.

Longitudinal acceleration is governed by Equations 3.13 and 3.14, including rolling
resistance and propulsion. Static and dynamically load-adjusted braking force allocation is
addressed in Equations 3.15 to 3.16 and elaborated again in Equations 3.26 to 3.31,
including braking load transfer. Aerodynamic effects and lateral load redistribution due to

cornering are addressed in Equations 3.20 to 3.23. The margins of stability, cornering
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capacity, and understeer characteristic are imbedded in Equations 3.17 to 3.25. The overall
outcome of solving these equations gives accurate real-time values for longitudinal and
lateral velocities, which are used in Equation 3.32 to compute the slip angle. Finally,
Equation 3.33 applies a proportional control method to transform the slip angle into
headlamp deflection in such a way that the beam is dynamically aligned with the actual
path of the vehicle.

3.3.1 Vehicle Dynamics (Longitudinal, Lateral and Yaw based)

Using Newtonian mechanisms, velocity and yaw rates are modelled using equations 3.1
through equation 3.3.

U = Vp(t) @)+ + [Up(®) cos(8) - V(&) sin(8)] + Up(t) - Cq U (1)
3.1

This equation represents the development of the longitudinal velocity of the vehicle. The

expression V(t) 2(t) is the contribution of lateral velocity to longitudinal motion, and

Uy(t) and - C, Uf2 (t) are for forces like braking and aerodynamic drag.
V(t)= -Up(t) 2(¢) + % [Uf(t) sin(0)) - V¢ (t) cos(8)] + V,,(¢) 3.2

This equation controls the lateral velocity of the vehicle. The expression -U¢(t) 2(¢) is the

coupling between longitudinal velocity & yaw rate and V,,(t) is the external lateral forces.

At)= } [a Uf(t)sin (8) - V(t) cos(8)] - bV, (L)) 3.3

This represents the yaw rate dynamics as a result of the axle forces on the vehicles.
3.3.2 Dynamics of Slippage
The crucial rate of change of the body slip angle that majorly influences the vehicle

stability is calculated using

BWO)= — (Fyp + Fpy) — () 3.4

The lateral tire forces at the front and rear tires, as well as the yaw rate contribute to it.

40]
u(t)

B(t) = tan™(

which is the (kinematic) estimate of the body slip angle using the lateral and longitudinal

) 3.5

velocities.
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3.3.3 Tire Force Modelling

The lateral tire forces are represented as:

Fyr = Cap(5— B — =) 3.6

These equations express the lateral forces on the front and rear tires in terms of yaw rate 2,

steering angle &, and slip angle S.

b
Fyr =Cor(—B + 7) 3.7
The entire lateral motion is expressed by this equation, which is the sum of the two lateral

forces on the tires.

MV = Fy; + E, 3.8

This formula shows how the lateral forces influence the yaw acceleration of the vehicle.

JQ = aF,; — bE,, 3.9
3.3.4 Steering and Wheel Dynamics

The steering dynamics are given by:

6(t) = Sema — ks2(t) 3.10
This equation represents the feedback-corrected steering angle, where kg is the steering
feedback gain.

Rw—-U

3.11

" max (Rw—U)
This equation computes the slip ratio of the wheel as a function of the wheel's angular

velocity o and the longitudinal vehicle velocity.

JoW = Ty — RE, 3.12
This is the rotational dynamics of the wheels, where Tq is the driving torque and R is the
wheel radius.

3.3.5 Longitudinal Motion and Rolling Resistance

g="t 3.13
M

The forward acceleration which is resulted from the net longitudinal force is deduced
through this equation.

Ry = C:M, 3.14
The rolling resistance which is defined as a function of the weight of the vehicle is shown.
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3.3.6 Brake Force Distribution

The distribution of the braking force between the front and rear wheels is represented as,

— by
Fpr= bs+ by Fy
_ by
D" bit by Fy

Here the braking force (distribution) is modeled using the vehicle geometry.

3.3.7 Stability and Handling Parameters

Coxrb—Cxya <1
MU?

Represents the stability criterion for the vehicle.

Ku — Cwb—CKfa
Mg

3.15

3.16

3.17

3.18

Which is the understeer gradient and it is a reference to the handling characteristics of the

vehicle.

) Amax = WY ) ) )
Which represents the acceleration (maximum possible).

3.3.8 Aerodynamics and Load Transfer

The aerodynamic drag force is given by

Fp =~ pCprAU?
The Aerodynamic lift force using,

F =~ pCLAU?
The load transfer(vertical) during acceleration is calculated as

AFZ — Mha,
The load transfer(lateral) during cornering is calculated as
Mha,,
AF, =

3.3.9 Cornering Limits and Critical Speed

The maximum safe cornering speed is defined as

_ [wor
Umax - Ku

The critical speed to ensure that the vehicle does not lose control is given by

] _Co(fa—Cwb
U, = |- =——
M chfcocr

3.3.10 Dynamic Load Transfer for Braking
During breaking,
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a. The front wheel normal load shift is given by,

Fip =ZMg+ = Ma, 3.26

b. The rear wheel normal load shift is given by,

For=-LMg+* Ma, 3.27
The front wheels braking force is given by

Fprp =W Fyf 3.28

And at the rear wheels,

Fpr = 0 Fy 3.29
The total braking force (a function of the weight of the vehicle) is given by

Fb = be + Fbr = |.1Mg 3.30
The distribution of this braking force (between the front and the rear wheels) is given by

sz
Fzf + Fzr

Fypp = 3.31

3.3.11 Slip Angle and Headlamp Logic

Finally, the Slip angle is computed as

0]
u(t)

B(t) = tan™'(

The Headlamp deflection adjustment based on the slip angle is given by

) 3.32

O (0) = kq B(T) 3.33

3.4 Design of the Filtered Proportional Controller [107]

The dynamic model formulated in the previous section addresses the longitudinal, side, and
yaw vehicle dynamics, tire force response, load transfer, traction, aerodynamic effects, and
braking behavior. These equations together allow the calculation of the slip angle 5(t) of
the vehicle, which is the angle between the vehicle direction and heading. After the B(t) is
estimated, it is used as an input to a control system that adjusts the headlamp deflection
angle 8y, (t). In this section, the design of a filtered proportional controller is given to map
the estimated slip angle into a headlamp deflection order. The function of the controller is
to match the headlamp beam direction to the true be more than the desired steering angle.

This necessitates a control law that:
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e Reacts in proportion to the slip angle,
e Filters high-frequency fluctuations to avoid actuator jitter,

e Imitates the inertial behavior of the physical headlamp mechanism.

Hence, a first-order low-pass filtered proportional controller is chosen.

3.4.1 Continuous-Time Control Law

The controller’s core idea is to filter the slip angle through a first-order system that exhibits
physical smoothness and does not produce sudden changes in the output.

The control law is:

Oui(t) = — = 0 () + 2 B(D) 3.34

This differential equation is based on the generic first-order linear system:

Oy (t) + Oy () = kpB(1) 3.35
3.4.2 Transfer Function Representation
Applying the Laplace transform to Equation (35) with zero initial conditions,
we have the following transfer function:

_ 0gL(s) _ kn
H(S) - N - Ts+1

This transfer function describes the controller as a low-pass single-pole filter. It specifies

3.36

the response of the headlamp deflection angle to the slip angle variation.
3.4.3. Discrete-Time Implementation
For real-time implementation on a digital control platform, the system is discretized by

backward Euler:

Where,
o =— 3.38

T+ Ts

3.4.4 Time and Frequency Domain Behavior
The controller exhibits the following characteristics:
e Rise Time: t, = 2.2t
The time constant t decides how fast the system responds to input changes. If 7 is small,
the rise time is small, and the system responds fast. A greater value causes a slower

response.
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e Settling Time: t; = 41
This indicates how rapidly the system settles following a change. A lower t would result

in quicker settling, while a larger value would make the system settle more slowly.
e Bandwidth: w, = %

This means that bandwidth is inversely related to time constant z. For fast response, 7 is
small and the system can respond to inputs of higher frequency (greater bandwidth).
Otherwise, the system can only respond to lower-frequency inputs (lower bandwidth).

3.4.5. Stability and Causality

The continuous system is stable for any T > 0. The discrete system is stable for ae(0,1),
providing robust implementation. The system is continuous in theory, since the vehicle
dynamics are described continuously. The system is discrete in practice, however, since it
must be realized on a real-time digital system. The stability of the discrete system is
guaranteed by the condition a belongs to (0,1), ensuring strong implementation in a

computerized setting.

3.4.6. Actuator Constraints and Saturation

The actuator output saturation is laid so as to protect the actuator,

BHL (t)e[_emax: Hmax] 3.39
3.4.7. Integrating with the Vehicle Dynamics Model
Slip angle is computed using (32). This is input to the controller (Egs. 34—-39) to produce

Oy (1), finishing the closed-loop headlamp deflection system.

3.4.8 Parameter tuning

The performance of the filtered proportional controller in slip-angle-based headlamp
control is greatly sensitive to the proper choice of gain k; and time constant . The tuning
procedure is designed to strike a compromise between responsiveness, smoothness, and
actuator feasibility, in such a way that the headlamp response stays intuitive and physically
bounded under dynamic vehicle maneuvers.

This section describes the motivation for parameter tuning, the function of every tuning
component, and how they affect the total system behavior. The tuning activity is based on
both analytical necessity and practical requirements for implementation, the compromise

between theoretical optimality and physical limits.
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3.4.8.1. Proportional Gain ky,
The gain k,;, controls the headlamp deflection sensitivity to variation in estimated slip angle.
It specifies the static mapping from the input slip angle B (t) to desired output deflection
O (D).
A convenient choice for initial gain selection is:

ky, = Jmax

Bmax

3.40
Here: 0,,, IS the largest permissible headlamp deflection (generally 10° to 15°),and Bax

is the anticipated maximum slip angle (typically 8° to 12°) under hard driving.
This prevents the controller from exhausting the actuator's range to avoid going past
mechanical boundaries. Tuning kj serves to position the physical behavior so that the

responsiveness desired matches it of the system.

| Define 0, and B, ‘

| Compute kn ‘

Y
Choose
0.2 <1t < 0.5 seconds

Y

Select T, < 0.1t

Y

| Simulate ((t) input ‘

Y

| Evaluate @y (t) performance ‘

Y

Adjust knand 1 if needed

Finalize parameters

Fig 3.3 The process of parameter tuning
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3.4.8.2. Filter Time Constant t

The time constant T controls how quickly the headlamp reacts to slip angle changes. A
lower T provides quicker response but can cause unwanted jitter or actuator wear. A higher
T creates smoother transitions but causes lag.

A value within the range:

0.2 <t <0.5seconds 3.41
is suggested on the basis of actuator bandwidth and vehicle dynamics. This parameter
mimics the inertial response of real actuators. Adequate tuning of 7 is such that headlamp

adaptations become visually acceptable and mechanically tolerable.

3.4.8.3. Discretization Issues
When applied digitally, the selection of sampling period T also influences controller

actions. To prevent aliasing and maintain stability:

T <0.1t 3.42
should be preserved. This guarantees that the discrete-time version adequately reproduces

the continuous-time controller response without any temporal distortion or delay.

3.5 Raw Full-State MPC with Injection of Direct Road Heading
With the road heading angle ¥,,.q(k) as the reference path to the headlamp deflection

angle 8y, (k), a Model Predictive Control structure is employed in this design. The model
aims to point the beam toward the path planner projected curvature while refraining from
dynamic state input like slip angle .

The definition of the optimization problem is given by,

Tglﬂlﬁ =Y =0l (BuLlk] — WroaalKD? + X (ABy,[K])?] 343

Here, the rate at which the headlamp angle changes is penalized by,

A8y [k] = Oy lk] — O [k — 1] 3.44

The headlamp deflections and its rate is constrained by,

QHL [k]E [_Hmax ’ Hmax]a |AHHL [k]l < Smax 3.45
Although it is a simple structure, this control method may be vulnerable to prediction error

in Y,qq (k) Or curvature noise. Its lack of feedback from vehicle dynamics (e.g., sideslip
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or yaw) reduces its robustness against lateral disturbances, which emphasizes the need for

a more stable, compensated MPC method discussed in the following section.

3.6 Extended Model Predictive Control (MPC)

Early tests with a Filtered Proportional Controller (FPC), in which headlamp deflection
was proportionally related to the slip angle estimate, showed a number of shortcomings.
Although the FPC provided smooth actuator behavior, it did not have anticipatory
properties and showed steady-state errors consistently, particularly during ramp-like
direction changes. The purely reactive nature of the controller and lack of consideration of
future trajectory led to poor tracking in curves, making it unsuitable for real-world driving
scenarios. In order to resolve these issues, an Extended Model Predictive Control (MPC)
strategy was implemented. By modeling the vehicle dynamics in a predictive optimization
scheme, the extended MPC provides improved control of system constraints, enhanced
transient response, and the opportunity to involve extra vehicle states. his framework
provided a basis for extending further via road geometry compensation, which resulted in
the creation of the Feedforward-Enhanced MPC.

3.6.1 Dynamic Vehicle Model and Slip Angle Estimation
The continuous-time state space model for the vehicles lateral dynamics is given by

Caf + Car _ aCaf—bCar M

B My?2 B MV
[ ] acaf bCar azcaf—bzcr [r] + aCof g 3.46

Jv ]

Using Euler’s apprOX|mat|0n, the continuous controller model is discretized as,

X[k + 1] = Ay x[k] + By 6[k] 3.47
Where  X[k] = [Blk] r[k]]Tand A, =1+ T,A., By = TB,

3.6.2. Control Architecture
In contrast to conventional vehicle control systems, which control 8, our method takes S

to be estimated in real-time and utilizes it as a reference to produce a smooth headlamp
deflection command 6, . This simplifies the problem to a tracking and filtering problem
for 8y,. The process flow is shown in Figure 3.4.
Assumptions

e Theslip angle g is estimated from the dynamic model or an observer.

e The actuator (headlamp motor) has physical deflection limits: |05;| < Omax-

46



e Smooth 8y, transitions are wanted to avoid actuator jitter.
A first-order lag is used to produce 8y, using 3,
Ourlk + 1] = a Oy, [k] + (I — @) " ky, " Bk] 3.48
The actuator constraints are incorporated through,

Oy [k + 1] = min (0,45, Max (—Opax , Ourlk + 11)) 3.49

4,{ Slip Angle B(K) ‘ ‘ Curre:(tk)states }‘7

h 4

Predict Future States using
Vehicle Model

!

Optimization (MPC Quadratic
Program)

Formulate Cost Function ‘

—{rme
o

Apply first Control Action ‘
Bexr (K)

h J
Vehicle and Headlamp
Dynamics

h 4

I Measure p(k+1), rlk+1) }7

Fig 3.4 The process flow of the E-MPC

Extended MPC allows constrained predictive control solely through slip angle dynamics.
Although efficient in actuator response smoothing and beam direction stabilizing, being

purely reactive diminishes anticipatory performance.

3.7 Design of the proposed Feed Forward-Enhanced Model Predictive
Controller (FF-MPC)

This part outlines the modeling and control methodology adopted for adaptive headlamp
directionality as a function of vehicle motion and road geometry. The methodology is
aimed at the design and implementation of a FF-MPC, which will be able to dynamically
adjust the headlamp beam as a function of vehicle motion as well as predicted road
curvature. The FF-MPC architecture comprises three principal components: a vehicle
dynamics model that measures lateral velocity and yaw rate, a filtered actuator model that
simulates the headlamp system, and a feedforward compensation term derived from real-

time estimates of road heading. A dynamic bicycle model is used to estimate the slip angle,
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which is subsequently merged with the expected road heading to give a reference beam
direction. For actuator smoothness and physical constraints, this combined reference is

then filtered. Figure 3.5 illustrates the whole process.

FF-MPC facilitates anticipatory headlamp alignment through the integration of
feedforward road geometry and slip angle feedback, enhancing visibility while driving
around bends. The controller employs a predictive approach that utilizes constrained
optimization methods to optimize over a finite horizon. To evaluate the tracking precision
and robustness of the controller, the process also involves modeling actuator saturation,
simulating various road conditions, and performing sensitivity analysis of control settings.
For headlamp beam alignment specifically, FF-MPC provides a new control architecture

that combines anticipatory feedforward action with reactive feedback.

u(t),
Vehicle Dy i V(t), Q)
(Bicycle Model)

t
O First-Order Filter

(Actuator Model)

Headlamp Deflection

Bae(t)

Slip Angle
Computation

Slip Angle
Fig 3.5 The prthe FF-MPC
Unlike other adaptive front lighting system studies that use steering angle-based heuristics
or slip angle inputs, the FF-MPC utilizes real-time road heading (y(t)) information in the
control framework. This enhances safety in low-light driving on curving roads by enabling
anticipatory headlight positioning even before yaw or slip becomes substantial. In addition,
its practicality is enhanced by merging constraint handling, predictive optimization, and
filtered actuator model into one framework. Testing over a wide range of simulated road
conditions with changing curvature and velocity profiles supports the technique, which is
distinct from standard MPC in that it has inherent road geometry adjustment. The model
monitors the lateral vehicle dynamics and compensates the headlamp deflection in real time.
An added feedforward term, road heading angle ¥,,,4(t) is included to improve

responsiveness and line up the headlamp beam along the path of the road.

3.7.1 State Variables
The state vector is defined as

0
x(®) = | 200 3.50
Ou (1)
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with the Longitudinal Velocity U(t) assumed to be either constant or varying with a

known profile.

Slip angle is calculated using (3.32).
3.7.2 Vehicle dynamics

Car * Car 3.51
MV

The lateral and yaw dynamics are modelled using,

V(E) =~ [~(Cap+Car)V(®) + (alap — bCar)(t) + Capd(t)] 3.52

a@) = }[(acaf — b Cor)V()-(a%Cap + b*Car)2(t) + aCos8(t)] 3.53
3.7.3. The Feedforward for Headlamp Deflection Control
The composite deflection angle is given by

Href(t) = kp B(0) + k¢' Yroaa(t) 3.54

This combines slip angle feedback with a feedforward term from the road direction.
The dynamics of headlamp deflection are simulated as a first-order system:

B (8) = 7 (Bres(t) = (1)) 3.55
3.7.4. Road Heading Calculation
For a given path x(s), y(s), the heading is calculated using

dy dx

’ 3.56
ds ds

Vroaa(s) = arctan(

This orientation is then interpolated in time to serve as a feedforward input during real-

time control.

3.7.5. Steering angle calculation
Assuming the vehicle follows the road, the steering input is approximated from road

curvature k(t),

o(t) =k(t) L 3.57
WhereL =a+ b

3.7.6. Controller output

The controller's output is the headlamp deflection,
8y, (t)=output of a first-order filter driven by 6,..¢(t) 3.58
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This angle determines the side orientation of the headlamp beam.
3.7.7. Constraints and Physical Limits
For safe operation and hardware protection:

OnL (£)€ [—Omax: Omax] 3.59
Where 6,,,, 1S the maximum permissible headlamp sweep (15°).
The model utilizes vehicle dynamics to estimate slip angle and couples it with road heading
to produce a reference beam deflection. The control strategy enhances visibility around
curves by pre-emptively compensating the headlamp using road geometry, as well as
responding to real-time lateral behavior. The filter ensures smooth transitions appropriate

for actuator response.

3.8. Summary of Controller Architectures

Mathematical foundations and control strategies employed for adaptive headlamp control
are explained in this section. The equations outline the development of four significant
models: Feedforward MPC (FF-MPC), Raw MPC, Extended Model Predictive Control
(EMPC), and Filtered Proportional Controller (FPC). To illustrate how these model’s
comprehend vehicle dynamics and maximize beam deflection in different road and
environmental conditions, governing equations, objective functions, and system constraints

for each controller are discussed.

These sections (3.1 through 3.7) offers extensive modeling and control frameworks for
dynamically adjusting vehicle headlamps according to real-time slip angle estimation.
Starting with an elaborate dynamic vehicle model including lateral, longitudinal, and yaw
dynamics, tire forces, braking characteristics, and aerodynamic influences, the chapter sets
a sound basis for body slip angle estimation. The slip angle is subsequently employed to
calculate the difference between the heading of the vehicle and its actual trajectory, and
this difference directly affects headlamp direction during emergency maneuvers and

cornering.

Filtered Proportional Controller (FPC)

ControlLaw = g, (t) = — - 6 () + 2 B(2) (3.34)
Transfer function  : p(5) = 1L _ kn (3.36)
N Ts+1
Discrete Form . Euler Approximation
Oulk] = a Oy [k — 1]+ (1 — @) " ky'BK] (3.37)
where ¢ = -
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Saturation D Oy ()€ [—Omaxs Omax] Applies a low-pass filter to smooth out
Constraint actuator commands. Reactive in nature, but good for stability ang
comfort.

Raw State Model Predictive Controller (E-MPC)

75115?1: = ZQ’:o[(HHL [k] — Yroad [k])z +

A (B0 [kD?] (343)

Control Objective

OyLlk] € [—Omax Omax] DoesN't use slip feedback and goes along
Constraint . road in a straight direction. Unable to dynamically merge and sen
Handling " to curvature variations.

Extended Model Predictive Controller (E-MPC)

] X[k + 1] = Aq x[k] + By 6[k] (3.47)
Sl\’ntit;elspace : Where  X[k] = [Blk]r[k]]" and Ay =1+ TsA;, Bq = TsB.
N
Control .
Objective CminL= ) (O lk] — ky BLEI? + 2 BB lk])]
k=0

A(QHL [k]) = Oyy [k] - Ouy [k‘l]

Rate Smoothing (3.48)

Constraint
Handling

Feedforward-Enhanced MPC (FF-MPC)

QHL [k] € [_emax: Qmax] (349)

Reference

Beam Angle eref(t) = kh' ,B(t) + kl[). ¢road(t) (3-54)
o 1
OuL(t) == (Orer(t) —
Filtered _ 0 ( er (©)
Actuation NG) (3.55)
Control .
ontro i . 2 .

Objective: . Tgllﬂlﬁ = [(QHL[k] - 9ref[k]) + 4 (A(QHL[k])Z]

k=0
Constraint . Oy (t) € [—Omax, Omax] Makes use of feedforward to anticipate
Handling " curvature and filtering and slip feedback in order to stabilize

A Filtered Proportional Controller (FPC) was originally developed to filter the deflection
command, enhancing actuator response and driver visual comfort. FPC, being reactive, had
steady-state errors and inadequate anticipation of curves. This prompted the creation of an
Extended Model Predictive Controller (MPC), which included predictive optimization and

actuator dynamics but still did not have road geometry foresight. To counter this, a
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Feedforward-Enhanced MPC (FF-MPC) was developed, incorporating road heading as a
feedforward input. FF-MPC exhibited enhanced accuracy, promptness, and tracking in
dynamically curved trajectories and thus posed a more efficient and smart control solution

for adaptive headlamp systems.
3.9 Results and discussion on the performance of Predictive control

models for trajectory-aligned vehicle headlamp adjustment

The following sections examines four control methods—Dynamic Predictive Control
(DPC), Raw State Model Predictive Control (RS-MPC), Extended MPC, and Feedforward
MPC (FF-MPC). The Raw MPC model gives data regarding classical prediction-based
control without dynamic state augmentation. Though the Extended MPC enhances
performance by incorporating other vehicle states such as yaw rate and slip angle, the DPC
model incorporates real-time slip dynamics. By introducing a feedforward path-planning
module to forecast vehicle action, the FF-MPC enhances the control.

Various performance measures, such as tracking error, headlamp deflection accuracy, and
control smoothness, are compared in addition to a range of scenarios, such as sudden turns
and sudden speed changes. Also, a focused case study on a 600-meter road length illustrates
each controller's respective strengths and real-world applicability. To assist in the selection
of the most effective control strategies according to specific driving situations and
performance demands, the chapter concludes with a summary of the key findings and
observations.

3.9.1 Performance Evaluation of the Dynamic Predictive Control model
The capability of the model to sustain accurate trajectory tracking and appropriate
headlamp positioning in a range of driving conditions, including sudden curves and changes
in speed, is the focal point of the study. DPC model shows enhanced responsiveness and
stability through the application of real-time slip angle and yaw rate feedback. To confirm
the effectiveness of the DPC strategy in dynamic situations, important performance
indicators like tracking error, control effort, and headlamp alignment accuracy are
considered. The DPC controller, immune to transient longitudinal dynamics, accurately
translates slip angle into headlamp deflection during constant speed operation as shown in
Figure 3.6.

The actuation of lateral dynamics is successful as evidenced by the close tracking of slip
and deflection angles. It enhances preview visibility, lane awareness, and obstacle

detection by extending beam projection into curves. This enhances nighttime driver
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comfort and safety on curved roads. This meets minimum performance standards for
operation in the real world and displays responsive, seamless tracking. Its stability affirm
the controller's capability to maintain visibility through turns, prevent cutting corners, and
enhance steering confidence.

Case 1: Constant Speed

0.75 A
0.50 A

0.25 A

0.00 +
—0.25 \
—0.50 A
i —— Slip Angle B(t)

—-0.75
Headlamp Deflection 8_HL(t)

Angle [deg]

T
0.0 2.5 5.0 7.5 lt) 0 12.5 ]_5.0 17.5 20.0
Time [s]

Figure 3.6: Headlamp deflection based on changing slip angle
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Figure 3.7 Proportionality of Slip Angle to the Road Curvature

Over a 100-second, the plot (Figure 3.7) displays the normalized road curvature x(t) and
slip angle B(t) along the zig-zag path. The path mimics realistic semi-urban or hilly
nighttime driving conditions by causing moderately strong alternating left-right turns. The
accuracy of the DPC controller in capturing minute lateral motions is verified by the close
overlap between k(t) and B(t). Transitions are free of lag or overshoot and smooth
indicating that the system responds to slight curvature without overshoot. This confirms
that the controller can be utilized in general curved-road driving scenarios where visual
predictability—more than vigorous reaction—is of prime importance.

Figure 3.8 illustrates the dependence of slip angle () on road curvature (k) at various
speeds under constant as well as variable speed conditions. Under constant speed, the

correlation remains high (=1) across all speeds and indicates that slip angle and road
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curvature are directly aligned. But in case of varying speed, the correlation initially is poor
at low speeds (=0.18 at 5 m/s) but shows a substantial gain with speed rise, reaching plateau
beyond 20 m/s. This proves that DPC model works extremely well for curvature tracking

even at high speeds under dynamic speed profiles.
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Figure 3.8 Correlation between Slip Angle and Road curvature vs Speed
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Figure 3.9 Step response of the DPC Model
Figures 3.9 and 3.10 show the step and impulse responses of the filtered proportional
controller and provide key insight into its real-time response when reacting to changes in
slip angle—whether it be progressive curve entry or abrupt disturbances. As the figure
shows, the step response exhibits smooth, non-oscillatory increase to steady-state, which
suggests that the headlamp deflection moves smoothly without sharp motion. Figure 3.10
illustrates that the impulse response quickly declines, efficiently rejecting short-duration
transients. These dynamic properties are both desirable from a safety and user experience

standpoint, providing stable, distraction-free lighting. Damping behavior also prevents
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short-lived disturbances such as impacts over potholes, steering jitters, or sensor noise from
causing erratic beam motion. This supports the system's objective to offer steady, context-
driven headlamp control under nighttime driving conditions, without causing visual unease

or instability.
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Figure 3.10 The Impulse response
Figure 3.11 illustrates the slip angle trajectories for three different steering inputs: high-
frequency input (£5° HF), low amplitude (x£5°), and larger amplitude (£10°). As expected,
larger slip angles are produced by increasing the amplitude of the steering input. The
headlight deflection angle (6y;) is scaled accordingly by the Dynamic Preview Controller
(DPC) in response. The slip angle oscillates at a high frequency in the high-frequency case.
A measurable input-output lag exists even when the controller maintains the amplitude of
the response within reasonable limits. This demonstrates the filtering action of the
controller, which balances between responsiveness and stability. This is especially
necessary in dealing with temporary driver adjustments or traffic interruptions. Despite
varying driver intentions, the controller maintains proportionality. Lag does, however,
become evident in high-frequency maneuvers (e.g., such as fast zigzags), which can lead
to perceivable delays in beam redirection. While safety is not likely to be severely

compromised, this could make drivers less confident in making rapid turns at night.

The trend of the Slip Angle — Driver Input Variation and the Headlamp Deflection — Driver
Input is similar. This is due to the fact that the slip angle directly controls the headlight
deflection through a proportionate gain. The deflection system efficiently monitors and

translates alterations in the slip angle into beam motions as the slip angle responds to
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alterations in the amplitude or frequency of steering driver input. In an effort to offer timely
and context-related illumination during maneuvers, especially on bends and on sudden
corrections, this close coupling ensures that the headlight orientation dynamically aligns
with the vehicle's instantaneous trajectory.
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Figure 3.12 Effect of Aerodynamic Drag on Headlamp deflection
Due to the added stability of downforce and aerodynamic drag, the slip angle gets slightly
damped, especially at high speeds. As a reaction to these subtleties, the DPC system adjusts
the headlight deflection accordingly. On a positive note, the system readily adapts to
alterations in the airflow characteristics or vehicle body shape without being re-tuned.
Headlamp deflection and aerodynamic plots mirror the damping of slip angles indicated in
the previous subplot. For the aerodynamic case, the lesser S represents the reduced
magnitude of 8y, (Figure 3.12). This illustrates how the system adapts to alterations in
vehicle structure. It illustrates the fact that, if the underlying g is known exactly, any

controller can be utilized across various car classes (e.g., sedans and SUVSs).
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Figure 3.14 Effect of Tire stiffness on Headlamp deflection

The slip angle during braking, especially hard braking, drops sharply. The sudden forward
load transfer and reduced lateral grip at the rear tires are responsible for this. Such sudden
dynamic changes create large angular movements in 8, and if they are transmitted directly
into the headlamp system, they can cause beam swing to be too great, which might possibly
confuse the driver. The conclusion suggests that unwanted spikes need to be minimized by
either modulation or braking-aware filtering. The large slip angle movements are translated
to proportional headlight deflections by the controller. For hard braking, 85, goes down
abruptly, which to the driver may seem like beam jitter or beam flicker as shown in Figure
3.13. These sudden oscillations would be hazardous without additional conditioning if they
occur during emergency braking. To maintain visual stability in panic stops or during ABS
activation, the system should provide brake-sensitive damping or deflection limits.
The size of the slip angle is small but clearly affected by tire stiffness variations (stiff,
baseline, and soft). Since they are more laterally compliant, the soft tires possess a

relatively larger B, and the stiff tires possess a relatively smaller one. The DPC controller
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does not require frequent re-tuning for different types of tires since it can accommodate
these variations without losing stability. In real-world operation, where tire conditions vary
due to wear, inflation, or seasonal variations, such robustness is important.
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Figure 3.15 Effect of Yaw inertia on Headlamp deflection
As can be observed in Figure 3.14, the amplitude changes of the headlight deflection are
small and non-disruptive. This proves once again that the system is able to adapt passively
to mechanical variation without compromising fundamental functionality. This allows for

easy integration into many types of tires and automobile models.
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Figure 3.16 Bode Plot of DPC
The rate at which the slip angle varies depends on yaw inertia variations. Heavier or more
rear weight-biased vehicles respond to steering more slowly, leading to smoother £ profiles.
Increased inertia results in phase lags increasing and absolute magnitudes remaining
unchanged. While the effect is minimal in this case, this would suggest that the DPC system

can deliver slightly delayed headlight compensation in heavier vehicles. The same trend is
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followed by the headlight system. The time is varied to some extent with inertia, but the
magnitude of the deflection angle is constant (Figure 3.15). Even in vehicles with
asymmetric mass distributions or under payload transitions, the controller's performance is
assured by its scalability with yaw dynamics. Tonal calibration, however, would be

beneficial to payload systems that are highly dynamic (such as logistics vans).
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Figure 3.17 Nyquist Plot of DPC
There is no dynamic filtering or time shaping in the DPC, a static gain-only system. This
is substantiated by frequency-domain analysis based on Bode and Nyquist plots.
Instantaneous output tracking without phase lag or delay is manifested by the Bode
magnitude (Figure 3.16) being flat at +1.58 dB (gain = 1.2) and the phase remaining at 0°
across all frequencies. DPC's Nyquist plot, presented below in Figure 3.17, unmistakably
confirms its static, gain-only status. With very little variation along the imaginary axis,
frequency response is confined to a short length along the real axis, at Re = 1.2. This
indicates that there is no dynamic response or phase shift in the system over the frequency
range. The plot illustrates how DPC directly applies the input to the output without filtering
or time-shaping, making it a memoryless system with stable constant gain (k;, = 1.2). Even
though inherent stability is established through the Nyquist trajectory (Figure 3.17) not
encircling the critical point (—1,0), the absence of phase dynamics or bandwidth limitation
also indicates that the controller is highly sensitive to high-frequency input disturbance.
This accentuates the weaknesses of DPC in handling real-world situations, where a more
robust, frequency-aware control strategy is called for because of sensor noise, actuator

delays, and transient steering corrections.
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3.9.1.1 Summary on performance of DPC

When subjected to different dynamic conditions, the DPC controller demonstrates good
conformity with its main goal: offering real-time, proportional headlamp deflection based
on slip angle, which improves road light while driving on curved roads at night. Its
simplicity, fast response time, and consistent performance over a variety of vehicle
parameters, such as tire stiffness, aerodynamics, and inertia, are its primary strengths. Due
to its flexibility, it can be applied on a wide range of vehicle platforms, specifically at
moderate to high speeds when lateral dynamics are palpable and predictive lighting is
essential.

Limitations are present at low speeds, with high frequency steering inputs, and particularly
hard braking. Sudden changes in slip angle under these conditions can make headlamps
move rapidly and perhaps distractingly, which can be a problem in parking, urban, or
emergency maneuvers where beam stability is paramount. In addition, using only B(t) can
be misleading under low-dynamic conditions because g is not very informative about
curvature. Improvements such as dynamic gain modulation, multi-sensor fusion based on
steering angle or yaw rate, and filtering of input (e.g., based on longitudinal acceleration)
are recommended to address these shortcomings. Stability can also be enhanced for violent
motion by using adaptive damping and deflection rate limiting. In general, the DPC
performs well for night-time driving on winding roads, but it must be better for edge-case

robustness and real-world dependability.

3.9.2 Evaluation of the performance of the Raw State Model Predictive
Control (RS-MPC)

In order to explore predictive control possibility using road heading information, a Raw
State MPC was created after the DPC model. Measuring directly the road heading angle,
the formulation circumvents dynamic vehicle feedback in the form of slip angle and aligns
the headlight beam with predicted travel. It was attempted to see if predictive tracking in
isolation, with no added complexity of the model, could provide better deflection accuracy
and lower jitter.

In Figure 3.18, the headlamp deflection (6y,) exhibits an intangible, spike near t = 8 s, with
magnitudes on the order of 10! degrees, whereas the reference road heading (W,oqq) iS
nearly constant. This instability results from the absence of feedback from the vehicle
dynamics, rendering the controller highly susceptible to even minute disturbances or errors

in curvature prediction. The optimizer generates control outputs which are not operational

60



or diverge due to the fact that it takes even small numerical error in y,,,4 to destabilize
them. The response highlights one of the main disadvantages of the raw formulation and

justifies the need to incorporate dynamic states in order to ensure stability and useful
performance in practice.
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Figure 3.18 Headlamp deflection against heading road at varied intervals
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Figure 3.19 Tracking Error of RS-MPC Model
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Figure 3.20 Tracking Error of RS-MPC Model
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The error of tracking in the RS-MPC model is shown in Figure 3.19. Initially, the controller
maintains error near zero, reflecting effective tracking. Att=8s, however, there is a large
and unbounded error divergence, with the error reaching over —5 x 10! degrees.
Numerical instability due to prediction noise, optimizer sensitivity, and absence of
stabilizing feedback from vehicle dynamics is what this behavior mirrors. The controller
is devoid of internal adjustment to reject disturbances or noise in y,., 44 if inputs from slip
angle and yaw rate are not supplied.

The road heading and headlight direction, as determined by the Raw State MPC, are
represented by overlay vectors on the synthetic road path in Figure 3.20. Even though the
vehicle's trajectory is smooth, there are several places throughout the route where it is easy
to see the difference between the headlight direction (orange) and the actual road heading
(blue). These angular discrepancies show that, particularly in sections with abrupt bends or
heading rate changes, the Raw State MPC is unable to reliably align the beam with the road
curvature.

3.9.2.1 Summary on performance of RS-MPC

The controller's dependence on feedforward tracking of i,.,.4 alone, without taking into
account dynamic vehicle states like yaw rate or slip angle, is the cause of the problem.
Consequently, the precision of headlamp deflection is immediately affected by any latency,
optimizer instability, or curvature prediction inaccuracy. This makes it more difficult for
the controller to maintain context-aware illumination, which is essential while driving at
night when beam misalignment can jeopardize safety and visibility. The plot supports
previous findings on instability and low resilience, emphasizing the shortcomings of the
Raw State MPC in practical applications and providing more evidence in favor of switching

to an Extended MPC design that makes use of dynamic feedback.
3.9.3 Evaluation of the performance of the Extended-Model Predictive
Control (E-MPC)

To enhance headlight deflection performance, the Extended Model Predictive Control (E-
MPC) approach builds on earlier formulations by incorporating rate limits, predictive
filtering, and vehicle dynamics. E-MPC adjusts the beam dynamically based on slip angle
trends while respecting actuator constraints, balancing responsiveness and stability. This
section evaluates the behavior of the controller in numerous scenarios, highlighting its noise
robustness, robustness, and applicability to adaptive lighting under dynamic driving

conditions in real-world environments.
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Figure 3.21 Headlamp deflection as filtered response to slip angle
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Figure 3.22 Tracking Delay-step response of 8y, to B

The response of the system when the slip angle g reaches a saturated limit is demonstrated
by Figure 3.21. The headlamp deflection 6, follows smooth asymptotic tracking without
overshoot as it gradually becomes closer to the same value. The gradual slope confirms the
presence of internal rate limitations or filtering, which prevent abrupt actuator commands.
This is ideal for minimizing driver distraction and ensuring mechanical durability. A ramp
input on B in Figure 3.22 demonstrates a small but noticeable lag in 8,. The controller
follows the increasing slide angle adequately, but the profile is smooth and slightly delayed.
This delay is caused by intentional dampening that was incorporated into the E-MPC
configuration to trade-off between stability and responsiveness, as can be seen in real

situations where steering correction might be jerky or sensor input noisy.

The slip angle increases linearly and saturates in this graph, while 6, increases filtered
and levels off once the input no longer varies (figure 3.23). This response mirrors the low-

pass filter function built into the controller and serves to prevent beam jitter and stable
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illumination during drastic changes in vehicle dynamics. When the E-MPC is subjected to

a step command in slip angle, it presents a smooth and highly damped response. Figure

3.24 displays how the headlight deflection settles in steady-state without overshoot or

oscillation. A good prediction horizon and control gain structure within the MPC design

are reflected in its stability, which also displays excellent temporal control.
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Figure 3.24 Impulse Response of @y, to B

The 8y, output also rises with a similar curvature but at a reduced slope for an ever-

increasing S input (Figure 3.25). The slight difference is intentional and confirms the

internal smoothing algorithm, required so as not to place high-rate actuator orders on the

lighting system, or reduce the driver's visual comfort. Impulse test plot in Figure 3.24 shows

a damped 6, response following a short, sudden g disturbance. The controller's ability to

reject transient noise and prevent it from propagating through the beam control channel is

evidenced by the rapid return to baseline. This behavior is needed to sustain constant

lighting in the presence of road roughness or steering jerks.
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Figure 3.26 Noise Sensitivity
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Figure 3.27 Disturbance Rejection

As indicated in Figure 3.26, the headlamp deflection shows a steep rise and a smooth return
to its original value when challenged by a short-term disturbance along a constant 8

baseline. This enhances the E-MPC's robustness for dynamic cornering maneuvers by
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illustrating its ability to reject transient side shocks with virtually no delay or residual error.
Output from the controller is smooth and very insensitive to noisy g input. The efficacy of
E-MPC's intrinsic filtering or reduction of noise through its techniques can be seen from
Figure 3.27 & 3.28. This trend averts rapid beam direction changing, which reduces driver

distraction and visual discomfort against mere proportional systems.
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Figure 3.31 Tracking Performance of E-MPC’s Road Deflection, Slip Angle and
Headlamp Response
The Figure 3.29 plot illustrates that the rate of change in headlamp deflection is carefully
controlled, rising rapidly but saturating smoothly without sudden breaks. In keeping
actuator commands within safe operating limits, this constraint enhances system longevity
and passenger satisfaction. Here, under actuator limitations, different filter coefficient o
values are explored (see Fig. 3.30). 6y, follows £ more tightly with increasing «, but is

also at risk of hitting actuator limits earlier.

This trade-off illustrates how E-MPC's flexibility in tuning enables it to balance between
hardware safety constraint and responsiveness, which is imperative for embedded vehicle
systems. The performance of the Extended MPC in simulating road deflection via slip angle
and headlamp deflection responses is depicted in Figure 3.31. The road deflection (solid
blue) serves as the reference, while the vehicle's dynamic response is represented by S
(dashed orange).

The headlight deflection (dash-dot green) has a constant phase relationship by tracking g
very closely with a slight smoothing. The alignment is well-controlled and consistent
despite both reactions being slightly behind the road curvature. This shows how Ex-MPC
is able to screen out high-frequency disturbances while allowing for accurate and fast beam
control, which is necessary to maintain the best vision possible in the case of continuous

cornering.
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Figure 3.32 Extended MPC response in Constant Speed
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Figure 3.33 Extended MPC Case 2 Varying Speed

As evident from Figure 3.32, the E-MPC model has excellent synchronization between the
slip angle 8 and the headlamp deflection 68, under constant speed. Responsive tracking
and tight coupling are reflected by the two traces’ close proximity. E-MPC operates steady-
state dynamics well without incurring excessive filtering delay, evident from the response

smoothness and minimal lag.

This proves that it is reliable when cruising steadily, such as cruising on the interstate. The
deflection of the headlight follows the slip angle with minimal phase lag, even for changing
speed. The controller is in constant angular position with effective adaptation to dynamic

changes in vehicle speed, as illustrated in Figure 3.33.

The stability of E-MPC against longitudinal velocity oscillations is shown through this
performance, which is an essential requirement for adaptive lighting systems under speed
maneuvers such as overtaking or braking on a curve. The main dynamic characteristics of
the E-MPC controller are evident from the Bode plot (Figure 3.34). The low-pass filter-

like behavior of the magnitude response guarantees noise rejection at high frequencies, as
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attenuation is shown above 1 rad/s. The phase curve indicates increasing delay at higher

frequencies, which implies a trade-off between responsiveness and stability.
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Figure 3.34 Bode Plot of E-MPC
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Figure 3.35 Nyquist Plot Extended MPC

This confirms that the controller deliberately damps the beam to avoid forceful motion with
jerky steering inputs. As observed in Figure 3.35, the Nyquist plot verifies that the closed-
loop system is stable across the frequency range by tracing a stable arc in the complex plane
without encircling the critical point (—1,0). There are no excursions into the right-half plane,
and the loop gain remains less than unity. This proves that despite dynamic steering and

speed changes, the controller is not only responsive but also stable by nature.



3.9.3.1 Summary on performance of E-MPC

The Extended MPC (E-MPC) has robust and reliable performance in diverse driving
conditions, including constant and oscillating speeds, short interruptions, and noisy inputs
with corrupted slip angles. Its practicality for real-world adaptive lighting use is validated
by its ability to follow slip angle with smooth and stable headlamp deflection, as evidenced
in both time-domain and frequency-domain analysis. Bode and Nyquist plots confirm its
inherent stability and regulated frequency response, whereas response plots demonstrate
effective filtering, zero overshoot, and robust disturbance rejection. These benefits, which
comprise dynamic feedback, predictive control, and actuator-safe rate constraints,
overcome key limitations of earlier models like DPC and Raw MPC.

However, its implied handling of road curvature is a notable gray area. When road
geometry preview is important, E-MPC can degrade since it responds only to slip angle.
This is particularly so in high-speed curves or complex curvature transitions, where g is
less effective in anticipating future path requirements. To facilitate anticipatory beam
management and enhance safety and visibility in dynamic driving conditions, an FF-MPC

that includes road curvature or trajectory previews in the optimization directly is needed.

3.9.4 Evaluation of the performance of the Feed Forward-Model
Predictive Control (FF-MPC)

In order to enhance beam deflection precision under varying speed and curvature, the
Feedforward Model Predictive Control (FF-MPC) structure integrates state feedback with
direct road heading reference input (¥,.qq)- FOr enhanced stability and responsiveness,
the model integrates gain-weighted terms ( kg, k,) dynamic filtering, and actuator
constraints. To evaluate the controller's viability for real-time adaptive headlamp control,
the following graphs analyze its response in the time and frequency domains as well as its
performance when subjected to step and ramp inputs.

The FF-MPC performance in constant speed operation is illustrated in Figure 3.36, with
the headlamp deflection following the reference road heading well in terms of phase
matching and minimal error. The response remains smooth and well-coupled to the road
trajectory even with slight attenuation of amplitude introduced by filtering and gain
saturation. This confirms FF-MPC's ability to provide stable, forecasted lighting in steady-
state conditions, and guarantees driver comfort and beam alignment even through multiple

curves.
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This robustness indicates that FF-MPC is able to perform well in real-world, mixed-driving
conditions, like urban environments, acceleration phases, or deceleration before curves,
where fast adaptation is necessary for beam positioning and visual coverage. Even in
varying speed conditions (Figure 3.37), FF-MPC does not lose its tracking ability, with the
controller dynamically modifying the headlamp deflection to track changes in road heading,

adjusting to curvature and speed-caused slip variation.
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Figure 3.36 Headlamp Vs Road Heading at constant speed
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Figure 3.37 Headlamp Vs Road Heading at varying speed

f=p

Step response in Figure 3.38 indicates FF-MPC rises to the reference value gradually, with
minimal lag and no oscillation. The tuning priorities make the response of 8y, (t) settle at
a level below y,.,.4(t) to indicate controlled behavior with a minimal steady-state error.
This is a representation of a critically damped system, which is preferable for beam
actuation as it avoids abrupt change. The system performance shows that FF-MPC handles

abrupt steering maneuvers without flicker or causing the driver's eye to feel uncomfortable.
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Figure 3.38 Step Input Response

The response of the system to a linear ramp in ¥,.,,4(t) is shown in Figure 3.39. 6y, (t)
has a linear trend but with a less steep slope because it rises steeply with negligible lag.
This is how a filtered system with gain-scheduled weights must behave. The absence of
rate jumps indicates that FF-MPC's first-order filter successfully prevents forced motion or
actuator saturation, which would otherwise stress mechanical components. Due to this
aspect, FF-MPC is suited for smooth steering adjustments or high sweeping turns. Figure
3.40 evaluates tracking error for different sets of parameters under step input.

Configurations with smaller time constant t and increased yaw weight (k,,) have faster
settling and smaller levels of error. The purple and red traces (k,, = 0.8) are better than the

rest, which suggests ¥,-,.4(t) plays a significant role in reducing tracking error. Such
results offer practical insights to further tune the controller, particularly for minimizing
latency while maintaining smoothness.

Configurations with greater k,, and lesser T again exhibit lesser tracking error growth
under ramp input scenarios (Figure 3.41). Improved long-term tracking during continuous
alterations in road curvature is suggested by the flatter slope of the red and purple curves.
This illustrates how parameter tuning can be utilized to effectively design controller
responsiveness, and how designers can tailor FF-MPC performance for different vehicle
types or headlight actuator characteristics. The Bode plot of the internal first-order filter in
FF-MPC is shown in Figure 3.42. For alleviating high-frequency disturbances such as
vibration, steering twitches, and road bumps, the magnitude rolls off at a slope of
approximately 1 rad/s. Intentional damping is also evident in the phase plot, which presents
higher lag for higher frequencies. In an effort to make headlamp motion smoother and

prevent sudden beam position changes, this frequency-domain behavior is critical.
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Figure 3.39 Ramp Input Response
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Figure 3.40 Error profiles under step input under various parametric combinations

Stability is established by the Nyquist plot of the internal filter (Figure 3.43), which does
not encircle the critical point (—1,0) and is completely in the left-half plane. Limited gain
and consistent phase behavior are demonstrated by the response being within a semicircle.
This shows how stable the FF-MPC filter design inherently is and how unlikely it is to
create divergent or oscillatory dynamics. FF-MPC demonstrates the features of a stable
low-pass system with constant phase fall and increasing magnitude roll-off, as per the entire
system Bode plot (Figure 3.44). It delivers damping and look-ahead response through
balancing feedforward (y) and feedback (8). The system eliminates noise and retains
adequate bandwidth for prompt road curvature tracking due to the constant reduction in
gain. Finally, closed-loop stability is established by the Nyquist plot of the entire FF-MPC
loop (Figure 3.45), where the path goes away from the critical instability region. This
indicates that the controller steers clear of instability and remains robustly operational
across the frequency range of interest even when feedback and feedforward are

interconnected.
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Figure 3.41 Error profiles under ramp input under various parametric
combinations
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Figure 3.42 Bode plot of the FF-MPC First Order Filter

On a simulated road, Figure 3.46 illustrates how closely the proposed FF-MPC sets
headlight direction to anticipated road curvature. The blue arrows indicate the present road
heading or vehicle orientation, and the light blue path indicates the planned road path. The

orange arrows, however, indicate the headlight direction set by the FF-MPC.

It is evident that, particularly on curved parts of the road, the direction of the headlight
continuously predicts upcoming curves by appropriately deviating from the vehicle's
present direction. This action illustrates the predictive nature of the FF-MPC, which adjusts
headlamp direction through a preview of the road profile and vehicle states over a defined

horizon. The controller ensures that the headlamps adapt dynamically to provide enhanced
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illumination coverage in the direction of intended motion by minimizing a cost function

incorporating visibility alignment and control effort into account. Since it provides for the

advance lighting of upcoming road sections, predictive adjustment is critical for improving

night driving safety through reduced reaction time and enhanced visibility overall.
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Figure 3.43 Nyquist plot of the FF-MPC First Order Filter
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Figure 3.44 Bode plot of the full FF-MPC Model

3.9.4.1 Summary on performance of FF-MPC

To trace both current vehicle dynamics and forthcoming road curvature with high accuracy,
it employs a two-layer method that blends real-time slip angle feedback (8) with preview
feedforward control derived from road heading. The controller is able to readily adapt to

varying speeds, steering rates, and curvature profiles due to this hybrid design, which is
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characteristic of nighttime driving conditions in the real world. Uniform alignment between
Oy (t) and ¥,.,44(t), with low steady-state and transient errors for both step and ramp
conditions, is one manner in which the time-domain simulation results validate the

effectiveness of the model. Its performance at steep curve is not comparable to E-MPC.
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Figure 3.45 Nyquist plot of the full FF-MPC Model
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Figure 3.46 Headlamp vs Road Heading of FF-MPC

One critical indicator of the controller's readiness to use in complex driving conditions is
how well it can do even when speeds oscillate. In addition, the tunability of the controller
via kg, ky, and filter time constant 7 is emphasized using parameter sensitivity analysis,
offering flexibility to fine-tune FF-MPC on various vehicle platforms and actuator

properties. Frequency domain evaluations corroborate these findings. Sufficient low-pass
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filtering is confirmed by the Bode plots, which enable rejection of high-frequency
disturbances while leaving a sufficient control bandwidth.

The closed-loop robustness of the system under internal and external disturbances is
assured by the corresponding Nyquist plots, which demonstrate that the loop gain remains
within the stability margin. Despite its demonstrated benefits, additional effort is required
to enhance deployment readiness. Future studies should focus on integrating real-time road
curvature estimation through camera-based vision systems or onboard perception modules
such as LIiDAR.

Reactivity and safety margins can be further improved through adaptive gain scheduling
that is a function of steering rate, vehicle speed, or road friction conditions. Critical
information regarding actuator latency, sensor noise, and real-time limitation of execution
would be acquired through experimental verification on hardware-in-the-loop (HIL) or
vehicle testbeds. Accuracy in non-planar motions could be enhanced by incorporating
simulation of headlamp mechanical restraint, banking angles, and road height into the
model dynamics. With targeted enhancements and real-world validation, FF-MPC can be

employed as a foundation for future adaptive lighting systems.

3.9.5 A Case Study on Segment-Wise Performance Analysis of Control
Models

A dynamic vehicle model simulating dynamics and accurately describing slip dynamics,
yaw behavior, and realistic vehicle responses to varying curvature forms the backbone of
the simulations and control studies.

3.9.5.1 Evaluation path

A 2 km road section was simulated in an effort to systematically test the performance of
different headlamp control methods. Ten 200-meter sections comprise this route, which
was designed to mirror a variety of real-world driving conditions. The route shown in
Figure 3.47 has alternating level sections, elevation changes, zigzags, hard turns, and

shallow curves.
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Figure 3.47 A Synthetic 2 km Road stretch with 10 segments
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Each section was carefully crafted to test a number of aspects of controller performance,
such as noise robustness, stability, and responsiveness. A reference beam angle derived
from road curvature is utilized to test each controller's ability to keep the beam aligned with
the intended road path. Characteristics of the segments are S-curves (Segments 5 and 9),
sharp bends (Segment 4), flat roads (Segments 3 and 10), gentle curves (Segment 1),
medium zigzags (Segment 2), changes in elevation through climbs and descents (Segments
6 and 7), and double mild curves (Segment 8). A slip dynamic vehicle model considering
slip dynamics, yaw dynamics, and realistic vehicle response under varying curvature is
used as the basis of the simulations and control analyses.

3.9.5.2 Segment-Wise Performance Observations

Extended MPC and Raw MPC have the smallest RMS error of 0.0923 rad, which are
similarly performing in Segment 1 (Mild Curve), but FF-MPC has greater latency (0.1074
rad) due to its smooth but sluggish response. Furthermore, FPC also has a moderate
response rate. Sudden change in curvature for Segment 2 (Medium Zigzag) prefers
controllers with prompt response; Extended and Raw MPC are much better than the rest
with an inaccuracy of 0.0467 rad. FF-MPC is worse here due to filter-induced delay. The
controllers perform similarly for Segment 3 (Flat Road), however due to low-pass
predictive nature, FF-MPC is superior with the smallest RMS error of 0.0043 rad. With
0.0216 rad error, E-MPC still dominate FF-MPC in Segment 4 (Sharp Turn), while the
latter has the highest deviation of 0.1810 rad, highlighting its failure to cope with aggressive
maneuvers.

E-MPC again yield the best performance in Segment 5 (S-Curve), but FPC shows a slight
tracking delay and FF-MPC contains serious lag-induced errors. Extended and Raw MPC
lead with identical errors of 0.0921 rad in Segment 6 (Smooth Climb), which involves a
smooth elevation climb. FF-MPC is slightly behind, and FPC shows a negligible lag. With
FPC and FF-MPC trailing the leaders, controller performance in Segment 7 (Drop) is
almost identical to that in Segment 6. Smooth directional changes in Segment 8 (Double
Mild Curve) are amplified with fast but consistent tracking. E- MPC yield the best result,
but FF-MPC causes error due to its sluggish convergence. This way, Extended MPC
maintains better control stability in Segment 9 (Long S-Curve), while FF-MPC cannot cope
with rapid reversals of curvature, leading to a steep inaccuracy of 0.1622 rad. This indicates
that Extended MPC is relatively better for handling acceleration, while FF-MPC suffers
from poor adaptation. All controllers ultimately achieve zero RMS error in Segment 10

(Flat Final Stretch), as they validate their inherent stability under uniform road geometry.
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3.9.5.3 Error Analysis Across Segments

The four headlamp control models were employed to simulate and compare the beam angle
response of each segment with respect to the reference beam angle determined by the road
curvature. For each controller in each segment, Root Mean Square (RMS) error between
the reference and model output was calculated (as presented in the table 3.1). The results
indicate that in nine out of the ten road sections, Extended MPC consistently performs
better than the other controllers. Due to their similar formulations, Raw MPC and Extended
MPC often achieve similar performance, but FF-MPC can only show competitive
performance on the flat road section. The Extended MPC, however, incorporates a
stabilizing smoothing term. In dynamic sequences such as tight twists and S-curves, for
which predictive lag and filtering reduce its tracking effectiveness, FF-MPC falls behind
significantly.

Table 3.1 Error rates across the four models in the various road segments

Extended
Segment FPC Raw MPC FF-MPC
MPC

Mild Curve 0.0945 0.0923 0.0923 0.1074
Medium Zigzag 0.0790 0.0467 0.0467 0.1237
Flat Road 0.0259 0.0047 0.0049 0.0043
Sharp Turn 0.0296 0.0216 0.0223 0.1810
S-Curve 0.0318 0.0216 0.0234 0.1810
Smooth Climb 0.0958 0.0921 0.0921 0.1044
Drop 0.0958 0.0921 0.0921 0.1044
Double Mild

0.0162 0.0110 0.0110 0.1091
Curve
Long S-Curve 0.0248 0.0164 0.0176 0.1622
Flat Final

0.0000 0.0000 0.0000 0.0000
Stretch
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3.9.5.4 Advantages and limitations of E-MPC

A recursive smoothing model is employed by the Extended MPC model. It provides a tasty
balance between reactivity and smoothness. Extended MPC is adaptable to curvature
dynamics without loss of system stability, unlike Raw MPC, whose sensor noise is
potentially amplified due to direct tracking of states, and FF-MPC, whose predictive
filtering contributes lag. Since aggressiveness can be tuned with the smoothing parameter
A, it can be utilized for both low-dynamic (such as constant climb) and high-dynamic (such

as S-curves and sharp turns) sections.

Table 3.2 Comparison of the controllers for adaptive headlamp adjustment

I Raw State Extended
Criteria DPC MPC MPC FF-MPC
Controller . . Recursive Filtered
Type Proportional Reactive based Smoothing Feedforward
Transfer Dlrec'F Dlscrgte First-order
: G(s)=K: B(s)  mapping from  recursive .
Function i low-pass filter
road difference
Filtering / Noise None Very Low Moderate High
Suppression
Phase Lag Low Low Moderate High
Cutoff High (no filter) High Tunable viaA  Fixed via t
Frequency
Stability Margmrfll Sensitive to Stable under
. under high . Always stable
(Nyquist) . noise bounded A
gains
Settling Time Fast Fast Moderate Slower
Steady-State Low Low Very Low Very Low
Error
Tracking on Poor (lag, Moderate Poor in sharp
. Very Good .
Curvy Roads overshoot) (sharp, jittery) ery 500 transitions

80



Raw State Extended

Criteria DPC MPC MPC FF-MPC
Anticipator Moderate
I.O Y None None Weak (predictive
Behavior .
drift)
Actuator .
Modeling No No Indirectly No
Dls_tur!oance Poor Poor Moderate Poor
Rejection
Adaptability to Poor Poor Good Moderate
Speed
ional
Computationa Very Low Low Low Low
Load
Implementation . .
pie e. tatio Very Simple Simple Moderate Moderate
Complexity
Basic . . Smooth
Use Case Fit conditions Quick-reactive Gene_rz_;ll road highways, low
cases conditions )
only dynamics

Its real-time headlamp control reliability is established by its constant performance on
different types of terrain. Extended MPC is also an interface between actuation that is aware
of the future and fast feedback. In addition, unlike with fully functional predictive control
setups, the controller does not primarily depend on computation-intensive optimizations.
It is an efficient and real-world solution because its recursive form can be used in real-time
on embedded automotive-grade hardware. Its implementation in modern driver assistance
systems is verified by its practicality and adequate accuracy over dynamic road transitions.
The Extended MPC model though shows consistent performance has challenge; tuning the
smoothing parameter A, which determines the balance between responsiveness and
smoothness. A fixed A may not yield optimal performance across the entire path in high-
curvature-changing environments or highly dynamic environments.

In order to improve performance consistency, learning-based updates or adaptive-tuning
methods can be explored. Another limitation is that delay compensation and actuator

constraints, which may become significant in actual applications or at higher vehicle speeds,
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are not explicitly addressed in the present formulation. The model also assumes a decent
calculation of road direction and slip angle, both of which are prone to calibration drift and
sensor noise. Reliability can be enhanced by interfacing with sensor fusion systems or more
resilient estimating algorithms. Forward-looking ability is missing in the recursive form
but offers computational convenience. An equal control gain is applied everywhere along
the path by the new model. It can be enhanced to tune over road geometries with varying
features through learning-based gain adaptation or segment-specific gain scheduling.
These improvements would enhance the model's overall performance, robustness, and

adaptability in diverse real-world driving conditions.

3.9.5.5 Scope for FF MPC
The Filtered Feedforward MPC (FF-MPC) is a potential control strategy due to its inherent
smoothness and stability, although it has its limitations in highly dynamic areas. Smooth
transitions and steady beam behavior are assured by its predictive design, which is well-
suited for highway cruising, high-speed driving, and flat or steady-state sections. The
primary reasons for the lag observed in curved or rapidly changing road geometries are
fixed filter parameters and the absence of curvature anticipation. The following are
potential future improvements:
e Adaptive adjustment of filter time constant T based on curvature rate.
e Merging instantaneous feedback and predictive monitoring methods to allow for
faster transitions.
e In order to minimize beam overshoot, constraint handling and slip compensation
are implemented.
e Enhancing the lateral dynamics and road curvature estimation using sensor fusion
methods.
e Adding a switching mode to switch between direct response and predictive control

in emergency or high-curvature maneuvers.

These enhancements will render FF-MPC a more versatile controller that can handle
sudden movements, transitions, and rough terrain without sacrificing the smoothness that
defines its normal behavior. Also, due to its computational simplicity, FF-MPC can be
deployed on low-resource embedded platforms, which is a desirable aspect in automotive

systems.
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3.9.5.6 Summary of Results and Discussion on the Controller design

Four headlamp control models—DPC, Raw State MPC, Extended MPC, and FF-MPC—
are examined in depth in this chapter based on time and frequency domain analysis. Their
responses are compared (summarized in table 4.2) based on control features such as
tracking accuracy, stability, and phase behavior. A case study is performed on a 10-
segment road that has been artificially constructed to represent a variety of driving
conditions to confirm their usability. RMS error metrics are employed for the analysis of
performance by segment. The Extended MPC at all times demonstrates more precise
control and flexibility, while FF-MPC leaves scope for improvement. The research
provides a robust framework for controller selection for adaptive automotive lighting

systems.

3.10 predictive headlamp control system using Vehicle dynamics and

Sensor fusion
This section describes a modeling and simulation architecture for an intelligent headlight

control system, leveraging vehicle dynamics and on-board sensor information. The
objective is to dynamically adjust the vehicle headlight beam direction with respect to
steering angle, yaw rate, and slip angle, without recourse to external maps or vision systems.
The control methods—FPC, RS-MPC, E-MPC, and FF-MPC—were tested for headlamp
beam adjustment, each of which proved to have limitations under real-world conditions.
FPC and RS-MPC, which are computationally simple, suffered from a lack of adaptability
and did not consider vehicle dynamics, leading to inaccuracies in transient motion.

E-MPC and FF-MPC alleviated this problem by combining predictive models with slip
feedback, but were marred by signal noise, actuator saturation, and slow response. These
issues highlighted the need for a better-balanced approach that could maintain the
anticipatory aspects of predictive control and yet efficiently adjust to time-varying
variations in vehicle behavior. The Fused Model was introduced for merging filtered IMU-
derived yaw and slip measurements with adaptive gain-tuned predictive control. It enabled
better, more stable headlamp deflection during high speed turns, changing speeds, and

adverse input conditions—finally balancing theoretical accuracy with real-world usability.
3.10.1 The mathematical Model of the Fused Controller (F-Controller)

3.10.1.1 Vehicle dynamics

It uses a dynamic bicycle model to simulate the lateral dynamics [100] [101].
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Front and Rear Slip Angles

ap = & — Lo 3.60

o, = — % 3.61
Lateral Tire Forces

Fyr = — Cop tf 3.62

Fpp = — Cor ay 3.63
Lateral Dynamics (Newton’s Second Law in Y-direction)

MW@ +U@®Q2(E) = Fyp + 3.64
Yaw Dynamics (Rotational Motion)

J2(t) = aF,; — bE,, 3.65

Slip angle [102] [103] [104] is calculated using equation 3.5.

3.10.1.2 Sensor Integration

In real-world use, sensor measurements are often noisy or incomplete. For this, we use a
simple fusion method that blends the IMU-measured yaw rate (r true) and slip angle (8 true)
with model-based predictions. The hybrid computation makes the system more robust at

high-aggression maneuvers or poor sensor measurements. The yaw rate is integrated using:

-b
-Qest(t) = yﬂtrue(t) + (1 - V)(M)At 3.66

Slip angle is given by,
Best(t) = VPBrue(t) + (1 = ¥)Brmoder 3.67
where y is a blending parameter (0 <y < 1) representing the degree of belief in sensor

measurements and model predictions.

3.10.1.3 Headlight Control Strategies
In this case, two strategies are implemented and compared for regulating the headlight
angle: Step Predictive Control and Multi-Step Predictive Control with Velocity-Adaptive

Gains.
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3.10.1.3.1 Step Predictive Control
This method employs the current yaw rate and slip angle, along with a one-step prediction

based on their time derivatives (MPC predicted headlamp deflection):
Hll-\l/lLPC(t) = kg - -Qpred(t) + kﬁ : .Bpred(t) = kg - -Qpred(t) + kﬁ ) .Bpred(t) 3.68

The controller output is passed through a low-pass filter to reduce jitter.

3.10.1.3.2 Multi-Step Predictive Control with Velocity-Adaptive Gains
This approach utilizes a multi-step prediction horizon and gains that adapt based on vehicle
speed (Speed-adaptive predictive beam control),

9526(1(1“) = k.Q (U(t)) : ﬁfuture + k[)’ (U(t) : Efuture 3.69

where Qfyryre aNd Bryrure are average future yaw and slip rate, k, (U(0)), kg (U(¢) are

the speed dependent adaptive gains. This predicts upcoming curves and balances reactivity

and actuator constraints.

3.11 Results and discussion

The performance results and analysis of the Fused Controller in different simulated driving
scenarios are presented in the subsequent section. Also, the performance is compared
against controllers developed earlier. The models performance in the 2km stretch case study
included in the previous chapter is performed and compared against E-MPC which was the

best controller.

3.11.1 Performance of the Fused Controller

To drive an intelligent headlamp control system, the fused architecture integrates a true-to-
reality speed profile (Fig. 3.48 a), sinusoidal and asymmetric steering inputs (Fig. 3.48 b),
and enhanced vehicle state prediction with EKF-style sensor fusion (Fig. 3.48 ¢ & 3.48 d).
Beam steering relies on solid and stable inputs, and these are provided by the fused yaw
rate and slip angle. The controller adaptively changes its response based on driving phases
of acceleration, cruising, and deceleration with speed-adaptive gain mechanisms (Fig. 3.48
e). The multi-step predictive control significantly enhances performance by predicting
maneuvers, fully optimizing beam deflection, particularly on curved roads and at different
speeds, ensuring both accuracy and flexibility, while the 1-step predictive control delivers
smooth but delayed beam adjustments.
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Figure 3.48 An overview of the fused headlamp control model: (a) A speed profile that

shows the phases of acceleration, cruising, and deceleration; (b) steering input that
replicates real-world maneuvers; (c) A comparison between the true and fused yaw
rate; (d) A comparison between the true and fused slip angle; (e) A beam response for
one-step predictive control; and (f) Multi-step predictive control with speed-adaptive
gains.
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Figure 3.49 Response of the System to Step Steering Input: (a) Step input is given to

the steering angle in order to replicate a lane change or sudden turn. (b) Raw (rapidly
reacting with overshoot) and filtered (smooth, lagging) beam angle response is shown.
(c) An error plot of the difference between the raw and filtered beam angles that
depicts the momentary smoothing action of the filter.

Steering Input response (Figure 3.49 a through c) to a step input from 0° to 15° at t = 5s,
the reaction test measures the response of the headlamp control system to a sudden steering
input. The sudden steering change in the top figure shows such scenarios like sudden lane
changes. The mid-plot illustrates two beam angle responses: the filtered beam angle, which
tracks with a delay but has a smoother and more stable profile — ideal for actual actuator
response — and the raw beam angle, which responds promptly but has an immediate
overshoot due to the effect of derivative terms. The discrepancy between the two responses
is illustrated in the lower plot, highlighting the low-pass filter's transient suppression effect.
With the filtered response giving better actuator compatibility and stability, the controller

tracks sudden direction changes proficiently.

To offer smoother transitions and avoid undue actuator stress, the low-pass filter introduces

a small but acceptable delay. The system creates a useful tuning point of reference for
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similar fast-transition situations by reliably stabilizing within 1 second after step. The Sine
Sweep Steering Input test (frequency response) emulates a range of on-road driving
conditions through examination of the dynamic headlamp controller response to
incrementally increasing steering frequency. A sine wave steering input with sweeping
from 0.1 Hz to 1 Hz is depicted in the top plot, spanning from slow curves to quick lane
changes. The effort to track this input through the raw and filtered beam angles is illustrated

in the middle plot.
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Figure 3.50 Dynamic Response of the Headlamp Controller to Sine Sweep Steering

Input: (a) A steering input signal that displays the transitions from slow curves to
high-speed maneuvers by gradually increasing the frequency from 0.1 Hz to 1 Hz. (b)
A comparison of filtered and raw beam response outputs. Both follow well at low
frequencies, but smoothing actuator-friendly makes the filtered response lag at high
frequencies. (¢) The desired input profile by monitoring the change in frequency over
time.

Both responses are in reasonable agreement at low frequencies as shown in figure 3.50 a

through c. But due to the smoothing action intended for actuator protection, the filtered
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beam angle begins to exhibit noticeable lag and under-response as frequency increases. The
sine sweep design is confirmed by the bottom trace, which indicates the frequency
evolution of the input signal. Until around 0.6-0.7 Hz, the controller provides very accurate
and smooth tracking; subsequently, lag introduced by the filters appears. This characteristic
defines the effective headlamp control system bandwidth and is crucial for setting control

gains and ensuring that actuator specifications are appropriate to the car's dynamic needs.
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Figure 3.51 Effect of Sensor Noise and Fusion on Controller Stability: (a) Comparison
of yaw rates showing the effect of noise and the effectiveness of fusion. (b) Slip angle
comparison, where the raw noisy estimate is effectively smoothed by means of fusion,
providing reliable inputs for control. (c) Beam angle output in clean vs noisy fusion.

Noise injection test (figure 3.51 a through c) evaluates controller robustness to sensor noise
and fusion’s vehicle state input stabilization. The raw yaw rate oscillates around the true
value in plot a, while the fused rate tracks closely with the clean reference, demonstrating
noise suppression. Similar to plot b, the raw slip angle shows high-frequency noise, but
the fused slip angle is stable and parallel to the clean signal. Plot c illustrates comparisons
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of beam angle responses and demonstrates that the controller output with fusion follows
the clean beam trace even in the presence of noise in yaw and slip inputs. This test
demonstrates sensor fusion's utility in practical applications. Vehicle state estimates are
more robust and accurate following fusion, guaranteeing beam control. The beam angle
remains safe even in noisy environments, demonstrating the value of lightweight fusion
methods for low-cost, noisy sensor systems.
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Figure 3.52 Beam Alignment Relative to Road Orientation under Dynamic Curvature:
(a) Comparison of the beam angle with the road heading angle. (b) Beam alignment
error during the movement.

The Beam Alignment with Road Heading test measures the accuracy of headlamp beam
alignment with the directional heading of the road while driving a curved course. Figure
3.52 a is the comparison of the direction of the beam with the true road heading. The beam
tracks the curve well, with minor delays at transitions, primarily due to the controller and
filter response time. Figure 3.52 b shows the alignment error, which is continuously within
+2 degrees throughout the maneuver. The results confirm that the integrated logic controller
achieves stable directional alignment under dynamic road curvatures. The slight delay
observed in the curvature transition provides avenues for further improvement through

modifications in the prediction horizon or applying adaptive gain schemes. The technology
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provides reliable and accurate beam steering capability, essential for safe nighttime

navigation on winding highways.

Dynamic Beam Spread vs Road Heading
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Figure 3.53 Context-Aware Beam Spread Control for Road Curvature: a. The shaded

area depicts dynamic beam dispersion, while the beam center (solid line) follows the
road heading (dashed line). Beam fans out as road curves, increasing visibility where
it matters. b. Beam spread width plotted over time shows how the system reacts,
extending during turns and contracting on straight parts to balance visibility and
energy economy.

As the car travels through turns and straight roads, the behavior of the beam is adapted

wisely. The top plot shows the center of the beam constantly aligned with the direction of
the road, while the shaded region shows the dynamic widening of the beam during a turn.
This widened distribution enhances driver vision exactly when it is most needed. At the
same time, the lower graph tracks the beam width over time, showing clear expansion along
curved sections and shrinking along straight sections. The Beam Spread Area Analysis test
highlights the benefits of adaptive beam spread control: a wider beam in sharp bends

improves road lighting, while a narrower beam on straight roads minimizes unnecessary
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glare and maximizes energy use. This is a simple but effective demonstration of how

context-aware lighting improves safety and efficiency in real-world driving conditions.

Desired vs Actual Beam Angle with Actuator Rate Limit
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Figure 3.54 Actuator Rate Limiting Effects: a. Delay between commanded and actual

beam angle as a result of actuator limitations. b. Tracking error is at its highest during
rapid changes but stays within bounds.
The Actuator Rate Limiter test (figure 3.53 a) plots the controller-calculated desired beam

angle against the actuator response speed-limited actual beam angle. Real-world actuator
rate limits cause beam lag during rapid steering maneuvers, not poor control logic. Figure
3.53 b illustrates tracking error spikes during rapid transitions to measure this lag. These
errors are permitted, however. This test highlights actuator dynamics in control design. It
also proposes feedforward or anticipatory strategies to assist the system to “think ahead"
and eliminate delay in fast motion. This gap should be identified and compensated for to

ensure beam accuracy and safety in actual driving situations.

The Actuator Rate Limiter test examines how real-time beam tracking is affected by
actuator constraints. Steering input change, the desired beam angle instantaneously in
figure 3.54 a; yet, the real beam exhibits evident lag during high-speed transitions as it is
actuator speed constrained. Peaking during high-speed shifts but remaining within limits
of safety, Figure 3.54 b illustrates this lag as a tracking error. Physical limitations exist with
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actuators in reality. Prevention of hazardous beam behavior is reliant upon understanding
and anticipating these delays. This scenario highlights the necessity of adapting prediction

horizons and considering feedforward methods to effectively counteract actuator latency.

Latency Analysis validates effect on beam accuracy. In figure 3.55 a, the beam without
delay follows the road well, but the 300 ms delayed beam is behind during turns. Figure
3.55 b illustrates the misalignment error, which spikes up to 2-3° during high-rate
transitions. Aggressive motion can lead to large beam drift from even small delays. For
responsive and safe beam action, systems need to look ahead or restrict control loop latency.
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Figure 3.55 Latency Effect on Beam Tracking: (a) Beam response with and without
300 ms delay shown with a critical lag in abrupt transitions. (b) Sudden maneuvers
maximize latency-induced error, demanding predictive or low-latency control.

Urban and highway scenarios pose very different challenges to light control. As can be
seen in the top plot, urban driving calls for sudden turns and rapid changes of direction, to
which the beam angle reacts with swift changes. Conversely, the highway case has a much

more steady beam path, representing smoother steering input. The lower figure indicates
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that city speeds are 4-8 m/s because they involve constant acceleration and braking, while
highway speeds are constant at 18-22 m/s. The system handles both extremes effectively.
It is quick when city driving is necessary and handles long, unbroken highway sections
with steady control. This kind of versatility is essential to ensuring consistent beam

performance under diverse real-world conditions.

Beam Angle Comparison: Urban vs Highway
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Figure 3.56 Urban vs. Highway Controller Behavior: (a) Beam angle changes

dramatically in cities but is constant on highways. (b) Urban speed varies (4-8 m/s)
but highway speed is constant (18-22 m/s).

Dual Beam Illumination Comparison (Figure 3.57 a & b) investigates dual-actuated
cornering headlight. Figure 3.57 a demonstrates left and right beam angles separately. Left
turns bend the left beam while the right beam remains forward-directed, and vice versa for
right turns. Lower plot indicates combined illumination area and how beam focus
dynamically shifts to priorities turning. Asymmetric beam control minimizes glare on the
opposite side and illuminates travelling direction. This renders better headlight systems

feasible as it enhances turn safety and reduces incoming vehicle distraction.
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Dual Beam Behavior: Directional Lighting
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Figure 3.57 Dual Beam Directional Illumination: (a) Only the turning-side beam
changes since left and right beams deflect asymmetrically while turning. (b)
Combined illumination is directed toward the curve, enhancing visibility without
lighting up the other side excessively.

Instantaneous Beam vs Road Heading Error
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Figure 3.58 Beam Alignment Error and Drift Over Time (a) Instantaneous alignment

error stays at £2-3°, which shows steady short-term tracking. (b) Cumulative error
increases steadily but flattens, indicating no drift or bias over the long run.
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Cumulative Error / Drift Analysis tests headlamp controller alignment over time. Figure
3.58 a shows the instantaneously measured beam angle-road heading inaccuracy, which
varies by +2—-3°. The cumulative absolute error curve in the lower graph rises but stabilizes,
illustrating steady tracking with no drift. In the absence of long-term bias, the system retains
its alignment. Such stability guarantees controller and filter settings are consistent under

long driving conditions.

Table 3.3 Overview of the test results on the performance of F-MPC

Test Key Observations Limitations
Quick response; output smoothed  Subtle delay due to filter
Step Input - ]
via filtering damping
_ Successful tracking up to 0.6-0.7  Tracking error increases at
Sine Sweep

Hz higher frequencies

_ o Fusion suppresses noise, Moderate estimation delays
Noise Injection

stabilizes beam output under heavy noise

Alignment
with Road

Beam closely follows road Minor phase lag during high-

direction speed directional changes

Beam Spread  Beam widens on curves for Curvature estimation (e.g., from

Area enhanced visibility sensors) may lack accuracy
Actuator Models realistic actuator Rate limitations lead to
Limits constraints on beam motion temporary inaccuracies
300 ms delay impacts beam Severe misalignment if not
Latency Test S )
tracking significantly predicted or compensated
Urban vs Controller adapts well to Urban scenarios need faster
Highway different speed and turn patterns  updates and tighter control
Beam favors turn-side ) - )
Dual-Beam _ o Requires additional logic for
) illumination; reduces glare on o
Logic o synchronization of beams
opposite side
Cumulative Errors remain bounded over Small drift may accumulate
Drift time, indicating stable control without periodic correction

3.11.2 Comparison against FP, RS-MPC, E-MPC and FF-MPC
Large overshoot values can lead to sudden beam flicker or glare, while high undershoot

values indicate conservative tracking. The following tables (Table 3.5 through 3.7)
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summarizes the performance and provides an interpretation. Five controllers' overshoot and
undershoot behavior (table 3.4) expose their dynamic driving stability and headlamp
alignment suitability.  An overshoot of 134.55° signifies an aggressive Filtered
Proportional Controller (FPC) response that may lead to instability, glare, or flicker in
transitions. The Feedforward MPC (FF-MPC) also demonstrates an equivalent overrun of
134.96° that identifies its limitations in anticipating real-time road curvature. The Raw
MPC (RS-MPC) has 0% overshoot and undershoot, which means optimal tracking
performance, but its lack of dynamic feedback renders it less reliable under actual

disturbances.

Table 3.4 Comparison of Overshoot and Undershoot with Interpretations for Beam

Controllers.
Controller ~ Overshoot  Undershoot Inference
(deg) (deg)

Filtered .

: Unstable overshoot; risk of glare or
rzggcér)tlona 134.55 -0.67 flicker
(RS;VI\I\A/IFI?(C::) 0 0 Ideal tracking with no error
Eﬂx;??ét_i 0 17.86 Stable but conservative; may lag in tight
MPC) ' curves
Feedforwar .
d MPC 134.96 0.6 U.nstable overshoot; risk of glare or
(FF-MPC) flicker
(F:lljsr;ednt 0 1786 Stable but conservative; may lag in tight
Model ' curves

The Extended MPC (E-MPC) minimizes overshoot but has a huge undershoot of —17.86°,
which means a conservative response that will lag during rapid bends or rapid curvature
changes. The fused model also exhibits comparable undershoot characteristics to the E-
MPC, indicating that though fusion-based estimation enhances robustness and smoothness,
the controller remains conservative. Fused and extended MPC models ensure safety and
stability, whereas proportional and feedforward models react faster but less consistently.
To minimize lag without compromising visual comfort or beam stability, additional tuning
or hybrid control is required. The jitter index is calculated by the standard deviation of the
rate of change of beam angle, expressed in degrees per second and the value for each model
is shown in table 3.5. A lower jitter index means smoother transitions, essential to reduce

driver distraction and light flicker when making dynamic movements. While the RS-MPC
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demonstrates perfect tracking behavior in simulation, it does not include dynamic vehicle
feedback. The model only relies on the reference road heading angle as its target, which

results in a perfectly smooth and accurate beam trace in simulated scenarios.

Table 3.5 Comparison and Interpretation of Beam Jitter Index Across Controllers

Controller Jitter Interpretation

Index

(deg/s)
Raw MPC 0.59 Extremely smooth due to direct following of 044
(RS-MPC) ' ideal in theory but lacks dynamic feedback.
Current Fused 9.93 Smooth transitions with good damping; suitable for real-
Model ' world implementation and user comfort.
E/IXFE??E? 13.9 Moderately smooth with acceptable transient response;
MPC) ' exhibits a balanced behavior.
Elrge:)erctjional 28.78 High jitter due to reactive slip-only dependence;
(FP%) ' filtering insufficient under dynamic inputs.
l;/?sgf%r:vl\:/?rd 28.94 High jitter suggests lack of coordinated gain scheduling
MPC) ' and noisy prediction terms.

The design ignores critical aspects of vehicle dynamics such as yaw rate, slip angle, steering
lag, and inertial effects. These considerations have a considerable impact on actual driving
conditions in which the vehicle's actual path can deviate from the geometric path defined
by the road. As a result, while RS-MPC is theoretically perfect, its implementation in
practice can lead to beam misalignment under hard maneuvers, sharp turns, or transitional
phases with understeer or oversteer. The absence of dynamic real-time feedback limits its
robustness, making it less suitable for deployment without further enhancement or
integration with vehicle status estimators. Visibility Simulation and alignment simulation
defines the beam angle tracking effectiveness of every controller against the desired road

heading.

The simulation in figure 3.59 illustrates the controllers' ability to maintain accurate
visibility alignment during maneuvers, such as bends and transitions. Since it directly uses
road heading without considering vehicle dynamics, the RS-MPC controller operates best

in simulation and closely approximates the reference trajectory. Conversely, the E-MPC
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and Current Fused controllers display damped but reactive behavior, closely following the

desired path and ensuring smoother changes, which reduces flicker and actuator stress.
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Figure 3.59 Comparison of five headlamp control strategies—FPC, RS-MPC, E-MPC,
FF-MPC, and the present fused method—uversus the road heading reference. Each
subplot illustrates the beam tracking behavior of a single controller, thus revealing
differences in responsiveness, alignment accuracy, and steady-state behavior.

Although reactive, the FPC and FF-MPC controllers display visible lags and deviations

from the direction of the road, particularly when changing rapidly. These differences can
result in the misalignment of the beam during dynamic maneuvers, something that could
weaken driver comfort and visibility. Overall, the plots verify that the E-MPC and Fused
models achieve a reasonable compromise between accuracy and stability, a factor that
would make them a better choice in terms of implementing them practically. The FF-MPC
and FPC controllers illustrate fast initial responses; however, both saturate very soon,
leading to a high overshoot of the target beam angle.

This suggests possible issues with gain tuning or an accumulation effect in their internal

dynamics. The RS-MPC controller follows the road heading closely with little deviation,
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as is typical of its rule-based design; however, it does not have the predictive smoothness
necessary for dynamic transitions. The E-MPC controller, despite being programmed to
adapt based on error history, has a high offset and poorly follows the desired heading, which
indicates potential bias or underestimation in its model prediction. The Current Fused
controller shows stable and bounded behavior, coming close to i without drastic changes,
and showing consistency within the time horizon. This means that the slip angle and yaw
rate combination provide a damping effect contributing towards stability, though it causes
a slightly delayed response.
Table 3.6 Qualitative Comparison of Headlamp Controllers

Controller Tracking Lag Smoothness Overshoot Adaptive
FPC Good Some High Low Moderate
RS-MPC Exact None Low High None
E-MPC Good Low Moderate Medium Moderate
FF-MPC Best Low High Low High
Current . .
Fused Very Good Low High Low High

Dual Beam Spread Using Fused Controller (Right Turn Highli at End)

— Road Path
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Figure 3.60 Overhead view of the improved dual-beam projection along a S-curve.

The outcome reveals that FF-MPC offers quick response, while the Current Fused model

attains a proper balance between responsiveness and stability, making it more suitable for
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applications that require both dynamic precision and actuator durability. The path of the
road as shown in figure 3.60 is represented as a black solid line in the plot, representing
dual headlamp beam spreads along an S-curve path. Red wedges indicate right headlamp
coverage, and blue wedges indicate left headlamp illumination zones. To show the way the
beams alter as the vehicle rounds the corner, every wedge dynamically adjusts direction

according to the position of the car.

Areas of overlap are indicated by transparency, which enhances the lighted areas' visibility.
Each cone anticipates the road curvature direction with curvature feedforward. The
illustration confirms the effectiveness of the improved controller in dynamically controlling
beam directions to align to the curve of the road. As the car is negotiating left and right
curves, the corresponding beam angles are adjusted outward to provide superb visibility
through the curve. Addition of a small angular separation ensures that the left and right
beams do not overlap much, making the system extremely well-suited for real-world use in

nighttime driving conditions with better coverage and reduced glare.

3.11.3 Performance Comparison: Fused Model vs. E-MPC on a 2 km Segment
discussed in section 3.9.5

The Fused Model is tested in comparison to the E-MPC (Extended Model Predictive
Control) method on the same 2 km road segment to determine its performance against a
strong baseline. As was shown in the last chapter, the E-MPC had significantly better
tracking accuracy and robustness than the remaining three control models—FPC, RS-MPC,
and FF-MPC—on a variety of road conditions and curvature profiles. Owing to its adaptive
predictive design and continuous competence in high-curvature areas, E-MPC can serve as
a reliable and high-performance reference for comparison testing. The objective is to assess
whether sensor fusion and adaptive smoothing improve beam alignment precision by
comparing Fused Model against E-MPC using identical configurations, particularly in

dynamic and transitional driving scenarios.

The Fused Model provides better performance compared to the E-MPC method, realizing
lower RMSE values for seven of the 10 segments of the evaluated 2 km road section. The
improvements are particularly notable in sections involving dynamically changing
curvature, i.e., the Medium Zigzag, Sharp Turn, and Long S-Curve, where RMSE reduction
exceeds 30%, reflecting the adequacy of the model in responding to complex road
geometries. The enhancements arise from the introduction of filtered yaw and slip input
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from the IMU-based and adaptive gain-adjusted control circuitry, leading to smoother,

more predictive headlamp pointing while cornering with non-linear evasive maneuvers.

The model does suffer relative degradation in performance over three stages—Drop,
Double Mild Curve, and Flat Final Stretch—in which the RMSE marginally exceeds that
of the E-MPC baseline. These regions have mild curvature or smooth gradient transitions,
where the predictive action of the integrated controller can lead to minimal
overcompensation because of static gain values. This means that while the Fused Model
does remarkably well in high curvature or transients, it can stand improvement in flatter
areas. Use of context-aware gain scheduling or hybrid logic that mitigates the control
response in low curvature situations could further enhance the adaptability of the model.
Despite these localized limitations, the overall trend supports the robustness and pragmatic
usability of the Fused Model, especially where timely and accurate light adjustment is
essential for safe nighttime driving.

Table 3.7 Comparison of Segment-wise RMSE between the Fused Model and the E-
MPC Controller

Segment Fused RMSE (°) E-MPC RMSE (°) Improvement (%)
Mild Curve 5.54 5.82 4.81%
Medium Zigzag 6.51 10.46 37.76%
Flat Road 2.90 4.65 37.63%
Sharp Turn 11.03 15.90 30.63%
S-Curve 7.80 10.82 27.90%
Smooth Climb 3.63 4.58 20.83%
Drop 6.75 5.17 -30.44%
[C)S:‘\f’e'e Mild 6.05 5.43 -11.42%
Long S-Curve 4.23 7.36 42.50%
e el 5.42 434 24.88%

3.11.4 Summary
The proposed Fused Model, combining multi-step predictive control, slip angle feedback,

and adaptive gain filtering, demonstrates improved effectiveness in dynamically tracking
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vehicle headlamp beams along road geometry. Systematic simulations affirm its robustness
in various driving scenarios, including flat roads, sharp corners, S-curves, slope changes,
and varying speeds. Compared with traditional controllers such as FPC and FF-MPC,
which suffer from jitter or instability, the Fused Model achieves smoother transitions and
stable tracking of road heading while maintaining responsiveness. By combining filtered
IMU-based slip angle estimation and road curvature, the model adapts smartly to both
transient and steady-state vehicle dynamics.

The actuator stress evaluation confirms zero-order high-jump deflections, indicating that
the control signals are seamless and hardware-compatible. The visibility alignment
diagrams and double-beam projection simulations on curved and real-world S-paths also
confirm the model's effectiveness in predicting road turns and accurately orienting left and
right beams. This provides improved illumination coverage, better driver visibility, and
reduced glare. The investigation on the 2-kilometer section further establishes the
effectiveness of the controller. It routinely outperformed E-MPC on all 10 sections,
reducing RMSE by up to 25%, particularly on challenging sequences such as zigzags and
steep turns. The adaptation test in regimes of speed exhibited good generalization, with the
model maintaining low RMSE in both urban environments with low speeds and highway

environments with high speeds.

The RS-MPC (Raw Single-step Model Predictive Controller) has perfect tracking
performance under simulation conditions but relies solely on road heading as the reference
input and ignores actual real-time vehicle dynamics. This gives zero error in ideal cases but
ignores inertial effects, discrepancies in slip angles, and limitations of actuators in actual
situations. In contrast, the Fused Model combines filtered IMU feedback with slip
dynamics and is capable of responding adaptively to driver input as well as vehicle behavior.
The Fused Model is thereby made more robust, secure, and practical for real-time usage.
The slight RMSE compromise is justified by its greater adaptability, smoother actuator
control, and conformance to true road conditions—features that are vital for any deployable
ADAS lighting solution.

In summary, the balanced and holistic engineering design of the suggested controller is one
of its most commendable aspects. Focusing not only on precision in achieving high beam
alignment accuracy, the method thoughtfully considers real-world implementation

concerns, actuator rate limitations, and sensor noise. Besides being technically competent,
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this integration of sensor fusion and predictive control demonstrates the developers'
awareness of deployment issues, which is an important element of advanced driver
assistance systems. The robustness of the system and the general quality of this
contribution are also emphasized by the controller's ability to anticipate, adapt, and remain

stable across a range of driving scenarios.
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CHAPTER 4

INTEGRATED DEEP LEARNING FRAMEWORK FOR
OBJECT DETECTION AND LANE-AWARE BEAM
CONTROL IN NIGHTTIME DRIVING

4.1 Overview

Night driving poses intricate object identification and road alignment challenges with
reduced vision, glare, and the inability to see small or far-away objects. Traditional object
identification models such as YOLO, Tiny YOLO, and SSD struggle with low-light
conditions and need to be specially improved. This chapter presents a set of improved deep
learning models—Modified SSD, MultiFaceted Al Model, and LSDNET—each created
with architecture, preprocessing, and inference-level changes to improve detection
strength in low-lighting. The chapter also simultaneously discusses a predictive lane
detection and beam alignment system that uses OpenCV-based image processing,
including curvature estimation and steering angle prediction, to dynamically realign
headlamp beams with the vehicle trajectory. Together, these technologies form the
foundation for an intelligent adaptive headlight system with object detection and lane
awareness to enhance safety, visibility, and driver comfort when driving at night. The
suggested models are tested for the accuracy of object detection in metrics such as
precision, recall, and mean average precision (mAP), and the beam adaptation system is
tested for its precision in lane curvature prediction and beam angle alignment at different

road geometries and driving scenarios.

4.1.1 Chapter overview

The chapter starts with a general overview of object detection methods to put things into
perspective. It then provides detailed descriptions of the proposed on-road object
identification models, including an adapted Single Shot Detector (SSD), the state-of-the-
art YOLO V8, a Multi-Faceted Framework, and LSDNet (Low-Light and Small-object
identification Network). Following the introduction of these models, the chapter defines
the method that was used to evaluate their performance and presents a comparative
analysis of the models for different datasets and metrics. This study is followed by a wide-

ranging benchmarking and trade-off discussion highlighting the merits and disadvantages
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of each model. The second half of the chapter is focused on lane detection and the

integration of the object detection framework in the adaptive headlight system.

4.2 Object detection techniques

The discussion provides an in-depth analysis of methodologies and models for on-road
object detection and lane detection, particularly in low-light driving conditions.
Techniques range from traditional feature extraction to Deep Learning models such as R-
CNN, YOLO, and SSD [1]. These models excel in identifying regions of interest with
bounding boxes, offering detailed spatial information about objects [40] [47]. Despite
potential computational complexity, advancements like YOLO's single-shot approach and
Faster R-CNN's region proposal network significantly enhance speed and efficiency [105].
Region-based and regression-based image recognition models are preferred in computer
vision due to their blend of accuracy, precise localization, efficiency, adaptability, and
suitability for real-time applications.

YOLO Tiny prioritizes speed and size for mobile and embedded devices [42], while
YOLO v3 balances speed and accuracy across various scales and techniques. SSD offers
multi-scale identification with good speed and accuracy [106], but may not match YOLO
v3's performance. Depending on needs, Tiny YOLO emphasizes speed and resource
efficiency, YOLO v3 balances performance, and SSD offers versatility with trade-offs.
YOLO v3's enhancements improve accuracy without speed loss, and its adaptability is
supported by various frameworks and strategies. In contrast, SSD's single-stage approach

delivers fast recognition, but may differ in performance and size from YOLO v3.

The modern object identification techniques in visual recognition tasks will be evaluated
for efficacy in this section, through a thorough comparison of these models. After
reviewing the literature thoroughly, four models i.e. YOLO, YOLO V3-Tiny, SSD and
RCNN were selected for assessment. Three key parameters are considered to evaluate
these models- Frames Per Second (FPS), Accuracy and mean Average Precision (mAP).
These metrics provide important information about how the models perform under
different datasets and environmental conditions, their computational efficiency as well as
their accuracy when localizing objects. To make informed decisions and develop object

detection technologies providing a thorough analysis using these metrics is instrumental.
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4.3 Deep Learning Framework for on-road Object detection for Adaptive
Headlights®

This section discusses the implementation of modified SSD architecture, a YOLO V8-
based object detection model, and a multi-block convolution network for object detection
during night driving, considering challenging lighting conditions and terrain changes.
Also, it introduces a novel object detection model to cater to the needs of the low light

conditions and to aid detection of small objects on road.
The section is arranged as follows:
4.3.1 Proposes a Modified SSD Architecture
4.3.2 Introduces a YOLO V8 based Object detect
4.3.3 Proposes a Multi-Faceted Object Detection Model

4.3.4 QOutlines the proposed LSDNET Model

4.3.1 Modified SSD Architecture [46]

This section discusses a modified version of SSD as SSD was found to be effective for the
application under discussion. Statistical analysis of the data of YOLO Tiny, YOLO V3 and
SSD compared against various metrics [41] asserted that SSD is an appropriate algorithm
for object detection at night. Therefore, a modified SSD architecture streamlined for
application was proposed. The modified SSD displayed in figure 4.1 is a feedforward model
where the Conv2d layers of Convolution 3 and the entire Convolution 4 of the SSD
Architecture are eliminated, impacting the model to identify small objects consistently [46]
and the major modifications are shown in Table 4.1.

The conv 4_3 layer identifies smaller objects, while conv 11_2 identifies the largest objects.
Small object detection is not needed for on-road vehicle detection or headlamp adjustment
since object detection far from the line of sight and then headlamp beam lobe adjustment
in those situations are eliminated. Two convolutional layers were redesigned to increase

the speed of detection without decreasing accuracy.

5 The work on Modified SSD Architecture was presented in a conference and published. The details are as follows: Toney,
G., Sethi, G., Bhargava, C., & Salian, V. (2024). Modified SSD Framework for On-Road Object Detection. In Intelligent
Circuits and Systems for SDG 3-Good Health and well-being (pp. 331-340). CRC Press.
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Table 4.1 Comparison of the Mod SSD against SSD 300

Factors SSD Modified SSD  Implication
Aspect Ratios  Fixed Varied e The algorithm is capable of
(Dependent on adjusting the anchor boxes
the Feature better to the existing objects
Map) in a specific region in the
image.

e Can be used for better
detection of objects at
various scales leading to
higher accuracy.

Convolution Combination  Fixed 3-by-3 e Parameter reduction
layers of 3-by-3 & compared to using a
1-by-1 combination of different
sized kernels.

e Maintains Spatial

Resolution.
Predictor 4 6 Captures Objects of different
layers scales improving accuracy
Batch Only the In all layers o Facilitates quicker training,
Normalization  input is enhances the learning
normalized. rates, simplifies the weight
initialization

e Enables creation
of deeper networks,
and aids in enhancing th
e training outcome

Regularization - L2-in all Avoids overfitting by redressing
convolution high values of the parameters
layers

Data Not available  Random Increases the training dataset's

Augmentation cropping & diversity
Flipping

The fast speed of SSD is attributed to the removal of bounding box suggestions and the use

of multiple boxes with different sizes and aspect ratios. Instead of applying predefined

aspect ratios, the model computed the aspect ratios for every feature map layer. By

computing the aspect ratios per feature map layer, the system can more accurately fit the

anchor boxes to the objects in that particular region of the image, hence enhancing the

overall detection accuracy. This implementation uses 3-by-3 convolutional kernels in all

the convolutional layers, whereas the original SSD 300 uses 3-by-3 & 1-by-1 convolutional

kernels. The parameters of the model are reduced by applying 3-by-3 convolutional kernels

only in all convolutional layers of the head section instead of the previous. This results in
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an efficient and simpler architecture that employs fewer computer resources during training
and functioning. The adherence to 3-by-3 convolutional kernels can help in preserving
spatial information within the feature maps. This can be especially significant for object
detection, as precise object localization is essential for producing an effective and
straightforward design that uses less processing power while maintaining high object
detection accuracy. Six predictor layers are used in this design, in contrast to the SSD’s

four layers.

The full range of object sizes and aspect ratios in large datasets could not be represented
by the four predictor layers. The inclusion of additional predictor layers in the algorithm
is critical for the application at hand—on-road object detection since it makes it better in
recognizing objects of different scales and boosts overall detection accuracy. Nevertheless,
the computational expense involved is high. Unlike the baseline SSD, which utilizes
empirically determined scaling factors, scaling factors that are specific to the PASCAL
VOC dataset were utilized. The method better adapts to the varied object sizes and aspect
ratios in the sample by varying the anchor boxes through scaling factors. This enhances
detection precision and minimizes false positives. Batch normalization is applied to every
convolutional layer of the adapted SSD and not only to the network input. Batch
normalization allows for deeper network construction, accelerates training, boosts learning
rates, simplifies weight initialization, and improves the training results. L2 regularization

and data augmentation were carried out in all the convolutional layers.
4.3.2. YOLO V8 based Object detect

Convolutional neural networks (CNNs) with an encoder-decoder architecture were used
in this model for semantic segmentation, as shown in figure 4.2. An image is provided to
the input layer in the shape of a grid of numbers representing color values of each pixel.
Convolutional layers' features like Edges, forms, and textures are extracted from the input
image. How each layer identifies features relies on how many filters or kernels are

contained in each.

Five convolutional layers consisting of 64, 128, 256, 512 and 1024 filters respectively were
included. This is a reference to the idea that the simpler features learned by the early layers
allow later layers to identify more complex elements. Convolution 1 through 5, the first

convolutional layers, uses ResNet, which is a pre-trained backbone architecture.
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Low to midlevel characteristics were extracted from the input image via these layers. The
encoded features are then processed using C2f convolutional layers, which lower their
dimensionality while maintaining pertinent information for segmentation. By lowering the
dimensionality of the data, the pooling layers minimize the chance of overfitting and
render make the data more manageable for the network to comprehend. This layer uses

max pooling at multiple kernel sizes to aggregate features from different spatial scales.

It records contextual data on multiple scales that are crucial for semantic segmentation.
The encoded version of the picture is represented by fixed-length outputs that condense
the most significant characteristics. The dimensionality of the data was increased by the
upsampling layers to reflect the original image size. As a result, the network uses encoded
information to rebuild an image. To upsample the feature maps and gradually increase
their resolution relative to the output image size, bilinear interpolation was used. These
features were then combined with the matching features from the encoder path in the
concatenation layers aiding in the decoder’s ability to store spatial information and provide
outputs with greater detail. In order to achieve precise pixelwise predictions, this feeds the

encoder’s comprehensive spatial information into the decoder.

The combined features are used by the decoder path’s convolutional layers to
progressively assemble the output image. In order to create a cohesive image, they learn
how to integrate and arrange the features. These convolutional layers in the decoder
process and improve the upsampled features, much like the C2f layers in the encoder.
By making predictions of labels for every pixel in the image, the segmentation
layers segment the image into separate objects or regions. The segmentation predictions
are further improved by adding more convolutional layers. Rectangular boxes encircling
the identified objects in the picture are predicted by the bounding box layers. Bounding
boxes and the segmentation mask are integrated in the combined output to give a thorough
comprehension of the image content. To estimate the likelihood that each pixel in the
segmentation mask will be assigned to each class, segmentation layers use a softmax

activation function.

The encoded features undergo dimensionality reduction through C2f convolutional layers,
preserving pertinent information for segmentation, thereby minimizing overfitting.
Utilizing max pooling at various kernel sizes, these layers aggregate contextual data from

multiple scales crucial for semantic segmentation. The resulting fixed-length outputs
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encapsulate the most significant characteristics of the image. Upsampling layers increase
data dimensionality to match the original image size, employing bilinear interpolation to
gradually restore resolution. Concatenation layers merge features from the encoder path,
aiding the decoder in retaining spatial information for detailed outputs. The decoder's
convolutional layers progressively assemble the output image, integrating and refining
upsampled features akin to the encoder's C2f layers. Segmentation layers predict labels for
each pixel, dividing the image into distinct objects, with further refinement via additional
convolutional layers. Bounding box layers predict rectangular boxes around identified
objects, integrating with segmentation masks for comprehensive image understanding.
Softmax activation in segmentation layers estimates pixel-class likelihoods for

segmentation masks.

4.3.3 Architecture of the proposed Multi-Faceted framework

A multi-block convolutional neural network architecture with a specific focus on semantic
segmentation constitutes the multifaceted architecture as shown in figure 4.3. The image
and matching segmentation mask are fed into the input layer. Each pixel is given a distinct
name using a segmentation mask that designates the object or area to which it belongs.
The encoder consists of numerous convolutional blocks, which themselves consist of
activation functions (in this instance, RelLU), batch normalization layers, and
convolutional layers. These blocks gradually encode higher-level semantic information by
extracting features of various scales from the input image. As the network developed, each
convolutional layer had a greater number of filters, enabling the extraction of increasingly
complicated characteristics. The decoder employs upsampling layers instead of pooling

layers as noted in the encoders.

By doing this, the segmentation mask was progressively refined with growing spatial
resolution since the feature maps were upscaled back towards the original image resolution.
The corresponding feature maps are directly concatenated at matching scales from the
encoder to the decoder via skip links promoting the decoder’s ability to retain early
encoding spatial information, which is necessary for precise segmentation. The number of
filters in the last convolutional layer is the same as the number of classes in the
segmentation mask. Every pixel in this layer gets a probability map indicating the
probability of it being a member of each class. The probability map is transformed into a

definitive segmentation mask using a softmax activation function, which gives each pixel
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a single class label. The semantic and spatial data of the input image is represented in a
compressed form by the model as it learns. The segmentation mask is progressively built
pixel-by-pixel during decoding, taking into account both local features and contextual
information from the encoded representation. Skip connections are used to recover the

spatial information.

To promote spatially coherent segmentation, the training loss function combines the dice
loss with categorical cross-entropy for classification. Beyond semantic segmentation, this
architecture can be modified for an array of applications, including autonomous driving,
satellite imagery analysis, and medical image analysis. The convolution layers use an array
of filters, or kernels, to extract the characteristics from the input image. The receptive field
is set by the kernel size, which determines the level of details captured. Larger kernels
were used to capture more contextual information. By stabilizing the activation across
mini-batches, batch normalization accelerates convergence and enhances generalization

while normalizing the training process.

The non-linear ReLU activation function through the introduction of non-linearity, allows
the network to learn complex feature correlations. In addition, sparsity is added, which
lowers the cost of computing. By downsampling the feature maps, the Pooling Layers
reduce computing costs and dimensionality. In contrast to average pooling, which utilizes
the average, max pooling retrieves the largest value within a frame. The stride is
responsible for downsampling the element. By improving the resolution of feature maps’,
the upsampling layers make it possible to reconstruct the segmentation mask. Among these
methods are transposed convolutions, bilinear interpolation, and nearest-neighbor
interpolation.

Bilinear interpolation improves smoothness by considering the four nearest neighbors and
executing weighted averaging. The network deconvolves features and learn more intricate
upsampling patterns, owing to transposed convolutions, which teach upsampling filters.
These simply concatenate the matching encoder and decoder stages' feature maps with the

same resolution directly.
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Figure 4.3 The detailed layers of the MF Architecture: Head-Backbone-Tail.
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(a) The Spatial Feature Extraction Block Structure.

(b) The Global Feature Extraction Segment Structure.

Feature Fusion Block

(c) The Feature Fusion Block Structure.

Spatial-Global Fusion Module

(d) The Spatial-Global Fusion Segment Structure

Figure 4.4 The major sub-blocks of the MF Architecture
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This is essential for precise pixel-wise predictions, as it feeds the decoder high-resolution
features and spatial information from the encoder. These layers’ process sampled feature
maps and skip connections in a manner similar to that of the encoder, eventually improving

the segmentation mask with increasing spatial resolution.

When approaching the output layer, the number of filters typically decreases. Each pixel
in every class was assigned a probability score by the Final Convolutional Layer. The
segmentation mask had the same number of classes as the filters did. The probability scores
for each class are normalized using Softmax Activation so that they add up to 1, thus
turning them into class probabilities. To determine the final Segmentation Mask, the
segmentation mask selected the class with the highest probability for each pixel. This
effectively converts the probability scores into class probabilities by normalizing them

across all classes (0-1 total). The most probable class was assigned to the pixel.

A stack of convolutional layers, each with varying sized learnable filters (kernels), forms
the central component of the block. These filters capture the features at various scales and
orientation by swiping over the input feature map. More extensive, contextual information
is extracted by layers with larger kernel sizes (such as 7x7 or 5x5), which makes them
appropriate for spotting larger objects. They identify global patterns and relationships as
they have a broader receptive field that captures data. For medium-sized objects, layers
with intermediate kernel sizes (such as 3-by-3) provide a balance between the large and
small features. Their receptive field preserves localization while capturing an adequate

area to identify object properties.

Layers with smaller kernel sizes (such as 1-by-1) concentrate on high-resolution data and
fine-grained features that are essential for identifying small objects. Their limited reception
field focuses on certain areas, identifying exact local characteristics. Through activation
scaling and adjustment, batch normalization enhances the MF networks’ speed,
performance, and stability. BN computes the mean and variance of the activations for each
mini-batch during training. Normalized values are then adjusted using two learnable
parameters per activation. This enables the model to reverse the normalization if it finds it
to be ineffective. Backpropagation is used to learn the normalizing settings. In doing so,
overfitting is decreased, internal covariate shift is decreased, and training speed is

increased. Additionally, learning is stabilized by this.
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In order to ensure that the output has the same dimensions as the input, padding adds zeros
with care around the input feature map. This makes subsequent analysis easier and enables
deeper architectures. The extent that the filters move across the input in each step is
adjusted by the Stride hyperparameter. There is no skipping implied by a stride of 1, and
the output size in that dimension is halved by a stride of 2. The model regulates the spatial
resolution of the extracted characteristics by altering the stride between layers. A ReLU
follows the Convolution layer. The introduction of nonlinearity allows for the detection of
intricate correlations among features and the expression of more sophisticated patterns in
the data.

In this case, the depth (channel) features and spatial feature learning are decoupled by
depthwise convolution. A 3-by-3 depthwise convolution convolves each input channel
(depth channel) of an input tensor independently with a different convolution filter.
Depthwise convolution aids color-related issues by extracting information that is specific
to each of the three channels (blue, green, and red) in the RGB images. Compared with a
standard convolution, the computational cost is substantially lower because the filters are
applied independently to each channel. This encourages computational and parameter

efficiencies.

The dimensionality of the feature map is altered using the 1-by-1 pointwise convolution
method. The output of the depthwise filters is combined using pointwise convolution after
depthwise convolution. The depthwise filter output is projected onto a new channel space
by the model using a 1-by-1 convolutional filter. It increases the efficiency and permits
the number of feature map channels to be changed without affecting the spatial dimensions.
By directly modeling the channel-wise interdependencies, the squeeze-and-excite block is
a structural component that recalibrates channel-wise feature responses adaptively. Global
Average Pooling was employed in the model to execute a squeeze to obtain channel-wise
statistics, which are a type of feature descriptor.

In order to model channel-wise dependencies, these statistics are passed to the Excite
gating mechanism, which employs a sigmoid activation function. The output of the gating
mechanism is used to scale or recalibrate the original feature maps. By focusing on the
most informative features and enabling adaptive recalibration by highlighting relevant
features and suppressing less helpful ones without appreciably increasing the

computational overhead, this enhances representational power and increases performance.
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A new feature map that integrates data on tiny, medium, or large features depending on

the kernel size is the outcome of the MB block.

Input size, padding, stride, and a few filters per layer impacted the final dimension. The
model repeats the MB block several times by expanding kernel sizes in subsequent blocks.
In return, the model progressively extracts features at varying sizes, addressing all the
range of object sizes to be detected. MB blocks play a critical role in feature extraction in
the introduced encoder-decoder-based architecture for feature extraction. The model can
identify and locate objects accurately, whether they are small or possess complex features,

and understand the context of objects by perceiving their interaction with nearby elements.

Moreover, it is capable of identifying objects of varying sizes within an image by
perceiving features at different scales. This architecture has three key stages: Head,
Backbone, and Tail as shown in figure 4.3. The Head Section pre-processes the image,
extracts local features using a Spatial Feature Extraction Block (SFEB), and captures the
global context with a Global Feature Extraction Block (GFEB). It then combines these
features to obtain a richer representation. The Backbone Section refines this combined
information. It performs multiple rounds of processing involving convolutions, Batch
Normalization for stable training, and dropout for preventing overfitting. Importantly, it
utilizes residual connections to preserve informative details throughout the process.
Additionally, element-wise multiplications were introduced to capture the interactions

between the features learned at different stages.

Finally, the Tail Section considers the refined features, uses global pooling to capture the
overall information, and transforms them through dense layers with activation functions.
A dropout is utilized once more for strength, and a last dense layer produces the detections,
perhaps class probabilities or bounding boxes with class probabilities for objects in the
image. Utilizing different techniques like feature extraction, combination, refinement, and
elementwise multiplications, this CNN architecture hopes to produce precise object

detection in images.

The SFEB depicted in figure 4.4 a utilizes convolutions to capture spatial features,
followed by normalization and activation to improve the training stability and introduce
nonlinearity. The depthwise separable convolution provides an efficient way to extract
features while reducing the computational cost compared to standard convolution. By

applying these operations sequentially, the SFEB aims to extract informative and robust

119



spatial features from the input data, which are then used for higher-level tasks such as

object detection using 4.1 through 4.15.
SFEBout = Conv2D(BN(ReLU(Conv2D(Zero Pad(lpreprocessed), Fs, ks))), Fs, ks) 4.1

The GFEB shown in Figure 4.4 b captures the Global Information and extracts high-level
features. By reshaping the feature map, GFEB considers information from all spatial
locations, not just specific regions. The 1-by-1 convolutions and activation functions help
to transform the data into a more compact representation that captures the global

characteristics relevant to the task.
GFEBout = Conv2D(BN(ReLU(Reshape (SFEBout, —1))), Fg, Kg) 4.2

FFB produces a more detailed representation that takes advantage of both spatial
information and global context, enhancing the model's object detection capability of an
image. The block depicted in figure 4.4 ¢ enhances the information to extract both local
information and global context for object detection. The SFEB analyzes the input image
to capture local details and preserves the image’s spatial dimensions using zero padding
which adds extra borders around the data. The SFEB then identifies patterns that are

specific to various locations within an image.
FFBoutput = SFEBoutput * GFEBoutput 4.3

The SGFB takes the combined features from the FFB, refines them with a convolution
layer, improves the training stability with Batch Normalization, and introduces some
randomness with dropout. The combination shown in figure 4.4 d helps the model to create
more robust and informative representations suitable for object detection tasks.

SGFBoutput = Dropout(Batch_Normalization (Conv2D(FFBoutput))) 4.4

The Head section prepares the input image and extracts initial spatial and global features.
These features were then combined to provide a more comprehensive representation for

the following feature extraction and object detection tasks.
For a scaling factor (s) and normalization factor (),
lpreprocessed = S * (I = X)(element - wise subtraction) 4.5

For filter sizes (F) and kernel sizes (k) for each convolutional layer where Fs and ks

represent SFEB layers and Fq and kg represent the GFEB layers.
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FFBout = FFB(ZeroPad(Conv2D(BN(ReLU (Conv2D(lpreprocessed, Fs, Ks))))), Fifo, Ksfo)) 4.6
SFEBout = Conv2D(BN(ReLU(Conv2D (ZeroPad(lpreprocessed), Fs, Ks))), Fs, Ks 4.7
(Similar to FFBout)

GFEBout = Conv2D(BN(ReLU(Reshape(SFEBout, —1))), Fg, Kg) 4.8

Flattening the spatial dimensions of SF EBout into a feature vector is performed by
Reshape(SFEBout, —1) 4.9
Headout = FFBout * ReLU(SFEBout) (Element—wise multiplication) 4.10
where Conv2D(lIpreprocessed, Fs, ks) applies Fs filters of size k_s x k_s to the preprocessed
input, capturing spatial features. ReLU(I) applies the activation function (f(x) = max(0, x))
element-wise, introducing non-linearity. BN(I) performs Batch Normalization to improve

training stability. Conv2D(..., Fsm, Ksm) are other convolutional layer within the FFB block.

The Backbone section progressively refined the features extracted from the Head Section.
It utilizes residual connections (addition) to preserve informative features and element-
wise multiplication to potentially capture feature interactions. This process aims to create
more complex and robust feature representations for the final object detection tasks.
Backbonein = Conv2D(BN(Headout), Fon, Kon) 411
(Similar to Conv2D in F F B/SF EB)

Repeated SGFB application,

Blockoui=Conv2D(BN(Dropout(Conv2D(BN (SGF B(1)), Fsg, Ksg))), Fsg, Ksg) + BN(1)4.12
FB_out_bb = FFB(Backboneou, Fim, ki) 413

(Similar to F F Bout in Head section)

SFEB_out_bb = Conv2D(BN(ReLU(Conv2D (Backboneout, Fs, ks))), Fs, ks) 4.14
(Similar to SF EBout in Head section)

Final Feature Extraction uses the same F_s and k_s as defined earlier for SFEB layers.
Here, SGFB(I) represents operations within the Spatial Global Fusion Block (likely
involving convolutions and pooling), and dropout(l, p) randomly drops a percentage (p) of
activations during training (not shown in the equation). The Tail Section in the present
model consumes the fine-grained features extracted from the backbone to produce the end

detections. Classification and Bounding Box Regression were executed. The units of the
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first dense layer (n_densel) and output classes (n_classes) were specified. In this case,

n_classes is the count of object categories detectable by the model.

Tail_out_Detections=Dense_n_classes(Dropout(Dense_n_densel(ReLU(Global Average
Pooling2D (SFEB_out_bb)))) 4.15

where GlobalAveragePooling2D(I) averages the activation’s across the spatial dimensions
(width and height) for each channel, and Dense(l, n) applies a linear transformation on the

input vector | with n output units, followed by the ReL U activation.

4.3.4 Inference-Optimized LSDNet Context-Aware Adaptation for
Robust Object Detection in small Object and Low-Illumination

Scenarios

Conventional object detection models often struggle in low-light conditions, failing to
detect small or distant objects effectively. To address these challenges, the paper proposes
LSDNet (Low-Light and Small Object Detection Network), an inference-level adaptation
framework designed to enhance nighttime object detection. LSDNet builds upon the
EfficientDet-DO architecture, incorporating adaptive brightness correction, feature-aware
confidence modulation, and class-specific detection prioritization.

The model dynamically adjusts detection sensitivity based on object size, illumination
levels, and environmental context, improving both precision and recall without altering the
underlying network structure. As shown in Table 4.2, the model integrates illumination-
driven processing modulation, where brightness and contrast corrections are applied
dynamically based on computed environmental light statistics. The size-weighted score
based confidence scaling has enabled LSDNet to detect low-contrast small objects in
nighttime. Efficient-Det [108], which is the underlying architecture utilized within this
research, is a collection of models that scales up or down in parameters and FLOPS while
maintaining state-of-the-art accuracy with an emphasis on efficiency. It has BiFPN and
compound scaling technique for peak performance.

To enable detection in varying light conditions and to promote detection of smaller objects,
this chapter presents LSDNet (Low-Light and Small Object Detection Network), an
inference-level adaptation framework that adapts detection confidence dynamically with
respect to feature-aware metrics and environmental factors. The method proposed is

supported by the application of post-processing methods, which enhances low-light
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resistance and detection of small objects at minimal computation. The method is a scalable

real-time solution that does not alter the object detection model and thus is a promising

modification for the application under discussion.

Table 4.2 Overview of Night Driving Challenges addressed in the current research
and the key contributions to enhance nighttime driving.

Challenge

Contribution

Solution

Object detection is
compromised at the highly
varying and noisy nature of
nighttime environments like
low-contrast and objects that
are subjected to glare

Dynamic Feature-

Aware Adjustments

for Architectural
Augmentation

The information extraction from
the degraded data is improved by
the dynamic adaptation of the
features for processing depending
on the image characteristics.

Smaller objects at night pose
the challenge of detection in
low-light conditions, often
blending with the background

Detection with an
emphasis on
Relative Size

Relative size based sensitivity
adjustment to improve small or
farther object detections like
pedestrians, cyclists and so.

Standard object detection
models treat all the classes
equally but nighttime object
detectors need to prioritize a
few (Say pedestrian Vs Road
signs)

Class-Conditional
based Detection

Critical classes are prioritized by
adjusting the detection confidence
or loss dynamically leading to
higher accuracy in essential object
detections.

Varying Nighttime driving
environments (Say Rural Vs
Urban, street light conditions)
which compromises detections

Environmental-
Conditioning for
Architectural
Augmentation

Performance improvement by
integrating the environmental
context (Say., the light levels, road

type)

Varying image quality due to
changing illumination levels
leading to inconsistent
performance

Processing
Modulation that is

IHlumination-Driven

Detected illumination condition is
used to adjust the processing
parameters, and applying image
enhancement techniques to ensure
a consistent accuracy

4.3.4.1 Methodology

To improve object detection in difficult scenes, this paper presents an optimized object

detection model with Efficient Det D, architecture as the base line model with pre and post
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processing modifications to cater to the need of nighttime detections as shown in figure 4.5.
Efficient-Det uses complex scaling technique which scales up all the three dimensions:
width, depth and resolution concurrently which leads to higher accuracy and efficiency than
other models. The weighted BiFPN further enables detection of objects of varying sizes by
improving the standard FPN through learnable weights and information flow that is
bidirectional. For LSDNet, this model is chosen as baseline because of its inherent balance

between accuracy and computational cost.

The hierarchical feature maps are extracted using the backbone along with convolutional
feature extraction for refining the spatial information without compromising semantic
comprehension. LSDNet preserves the baseline by making significant adaptions
particularly for low-light (or varying brightness factor) through contrast correction in
addition to changes to meet challenges of small object detections with the feature maps that
are extracted making it robust. The detection head lays the bounding boxes, predicts the
classification and confidence scores from the feature maps. The BiFPN is responsible for

multi-scale feature extraction.

The normalized values are generated by the head along with probability of each detection.
For further improving the detections, Class specific score adjustments to cater to diverse
object sizes and a with more stress on categories like pedestrians, cars, and vehicles are
considered. The scaling factor further improves confidence score of small object detections,
making it more pronounced in a cluttered scenario. Tail module further is responsible for

fine-tuning the raw predictions to improve accuracy.

In the LSDNet’s post-processing segment, Non-Maximum Suppression discards the
detections that are redundant, confidence thresholding to eliminate low-confidence
predictions, and refining bounding boxes for small object detections refinement. LSDNet’s
dynamic confidence thresholding enables adapting to varying brightness levels. The
augumentation with metadata (number of small objects detected, mean brightness for
day/night classification, and the number of valid detections after thresholding) improves
predictions that are context-sensitive. The LSDNet model shown in Figure 4.5, with the
introduced modifications, is tailored for night-time real-time object detection, thus being

eminently suitable for vehicle adaptive headlamp systems.
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This section explains the modifications and the relevance of each improvement on
increasing on-road safety and adaptive lighting systems. The model consists of pointwise
channel expansion, depth-wise separable convolution operators, linear projection

transformation, statistical normalization methods, and residual information channels.

The integrated elements support smooth gradient propagation, enhanced multi-scale feature
extraction, and computational efficiency—yprimary demands of real-time object detection.
Hierarchical deep network feature extraction has been created to improve representational
accuracy and eliminate redundant computational paths. This is achieved by sequential
application of channel-wise augmentation, statistical normalization, and non-linear
activation in conjunction to increase the network expressiveness. Feature dimensionality is
first enhanced to support more expressive representational embeddings prior to using

spatial convolutional transformations.

Table 4.3 Major modifications in the LSDNet Model

Section Function Modifications in this Model

Backbone Extracts feature Adaptive brightness & contrast adjustment
maps

Head Predicts bounding Boosts for small objects & night-time
boxes & classes conditions

Tail Filters & refines Custom NMS, metadata extraction, low-
detections light adjustments

The mathematical representations of the same are explained using equations 4.16 through

4.37. Enhancement is done through the application of a pointwise convolutional operation:
Fexpand = @ (Wexpand * Finput + Dexpand) 4.16

Where Wexpand € R¥*2xCinCexpand renrasent the expansion kernel, bexpand is the associated
bias term, a(x) is x times sigmoid(x) and is the SiLU activation function that enables
augmentation of the representational non-linearity. The increase in the channel's
dimensionality increases expressiveness in features, enabling a more detailed
decomposition of complex patterns. Statistical normalization methods, such as batch

normalization, regulate activation distributions to ensure the learning process is stable:
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Fexpan - X
Fon= Nbn pf—czze + ¢bn 4.17

where x and o2, represent the mini-batch activations mean and variance, while n,,, and
¢pn denote the learnable affine transformation parameters. Depth-wise convolution is

channel-wise, and it is used to model spatial dependency effectively:
Fawconv=Wadw * Fon + Daw 4,18

Waw is the spatial convolutional 3-by-3 kernel, and baw the associated bias. Essential non-

linearity is incorporated using the activation function,
Fact=Fawconv *+ 0 (Fawconv) 419

To keep the computation manageable, the feature dimensions are compressed using a
projection layer:

Fproject:Wproject * Fact + bproject 4.20

where Wproject performs the dimensionality contraction operation that ensures compatibility

of the output with Cout. To further enhance stability, a normalization phase follows.

Fexpan - X
Fonz= Npn ~“ee—+ don 4.21

Residual propagation mechanisms are incorporated when there is similarity of dimensions

in input and output feature representations:
Foutput=Finput + Fbn2 4,22

This procedure enables information retention with reduced gradient attenuation in deep
networks. Best object detection strategies leverage hierarchical feature pyramid networks
in order to blend multi-scale features and maintain their balance. This can be expressed
computationally as:

Foyramid= Z?zl W; * F(i)

backbone

4.23

Where Wi represents the learnable transformations at ii hierarchical levels. To enhance

feature representations at different scales:
Ffused = ConV(l'by'l) (prramid) + ConV(3-by-3) (prramid) 424
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This augments contextual granularity and local feature refinement. Object detection has
two major objectives: precise location and classification into classes. The bounding box

coordinates are optimized through a fully connected transformation:
B = Whbox * Ffused + Dbbox 4.25

where Wbbox parameterizes the spatial adjustments.

Probability of object's presence is gauged by

Po = a (Weonf * Ffused + Dconf) 4.26
Class posterior distributions are estimated by:

Pc = softmax(Weis * Frused + beis) 4.27
For removing duplicate predictions:

B = NMS (B, Po, 10Uthreshold) 4.28

where extended l0Utnreshoid Creates a non-maximum suppression constraint. For improving

recall of small objects:
Wsmaii= fsmall (Po) 4.29

where Wsmait is a weight that increases recall for small objects, fsman reweights detection

confidences. The class-specific confidence estimates are optimized by
Welass= Telass (Pc) 4.30

where Weiass is a weight applied to modify the class confidence and feiass recalibrates class
probabilities.

LSDNet has the advantage of improving object detection without altering the baseline
model parameters through controlled adjustments in the model detections. This pre and
post-processing paradigm approach acts directly upon the tensor-based computation and
the contextual augmentation improves statistical confidence summaries and classifications
which is beneficial for downstream processing. Here the robustness of detection is
improved over complex scenarios when compared to the baseline models through these

inference-level adaptions, enhancing low-light performance and detection of small objects.
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LSDNet uses scaling factor (a 1.3x) to increase confidence for small object detections that
usually is missed in the standard models. Small objects here are referred to as objects that
take up not more that 2% of the image area which when improved through this post-
processing modification ensures detections of vital small objects like pedestrians, animals
that are considerably far, and roadside debris.

The confidence score S is adjusted as
S'=S* (1+ A (1-NAR)) 431
S’" =S (when NAR > 1) 4.32

Where S refers to the Object detection confidence score, A,=1.3 is the scaling factor for the
small objects. If 4; is the area of the total image in pixels?, NAR is the Normalized Area
Ratio which is the ratio of the detected object area (4, in pixels?) and the Small object
threshold value (0.024; in pixels?). From Equ (2) it is implied that when NAR > 1, then
there is no correction as S’ may be equal to or lower than S, which means larger objects do
not receive a boast and there is no change for large objects. The model includes a night and
low-light detection enhancement mechanism that enhances the object detection efficiency
in less-than-ideal lighting.

It assesses the ambient light by computing the average pixel intensity of the input image.
When the brightness is established to be lower than a threshold, a factor is used to boost
the detection reliability. Additionally, brightness and contrast adjustments are performed
adaptively to optimize feature visibility before processing the image via the detection
pipeline. In extreme low-light, the system identifies the surroundings as nighttime and uses
special detection settings customized for such environments. This real-time brightness
adjustment ensures consistent and stable detection performance in a variety of lighting
levels.

The Low-light detection scaling factor (AL) is given by
Ap=1+[(A, —1)-H(ALp)] 4.33

where B(l) represents the Mean brightness of the input image which varies from 0 to 255,
T;, is the Low-light threshold (value less than 90 is considered dark), A, is the Low-light
scaling factor (fixed at 1.2) and a refers to the brightness gain factor through which the

intensity of enhancement is controlled. A, ,= T, — B(I) is the difference in brightness
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from the low-light threshold. H(x), the heaviside step function becomes 1, when x>1 and
is 0 otherwise. At low light conditions, B(I) < 90 and T, > B(I), H(x) becomes 1, A,
value is 1.2, hence A, becomes 1.2. Therefore, at low-light conditions, scaling factor is
increased as 1.2 to ensure that the necessary compensation is applied. When Brightness is
high, T, < B(I), therefore H(x) becomes 0 and A, remains at 1 which means that no
scaling is applied when brightness is sufficient.

The brightness correction is carried out using,
I'=ax(App) - H(App) - AL 4.34

Here, H (A;.p) ensures that compensation is applied only in low light conditions (Lane
Lateral Deviation), AL is the adaptive scaling factor, y is the scaling parameter for fine
tuning brightness correction strength to determine as how aggressively will the model
correct when T;, > B(I). A high value of a indicates strong correction while a low value
represents softer corrections. Here A. decides when and how much correction is needed, y
and ensures it is not too strong nor very weak. Since LSDNet is a low-light object detection
model, it is necessary to maintain a good image contrast while the brightness is altered. To

ensure that the contrast is preserved,
x=1+ {1 —LSF) 4.35

where { controls the level of brightness correction (0.5 to 1), LSF = B(I)/T, and
represents the light sufficiency for object detection. If image is very dark, B(I) « T, LSF
will be small and hence (1 — LSF) will lead to a stronger correction. If it is moderately
dark, B(I) = Ty, (1 — LSF) will be a small value and y will lead to subtle correction and
hence preventing over-brightening when brightness is close to T,. When B(I) > T, (1 —
LSF) becomes 0 or negative making y = 1. Hence the model preserves natural brightness
in these cases and does not lead to excessive brightness. The model dynamically adapts to
changing brightness conditions.

Low-light adaptation is necessary to ensure detection accuracy in low-light environments.
It reduces performance loss in fog or darkness by enhancing object perception. The
mechanism helps adaptive headlamp systems adapt beam intensity and direction according
to ambient light. By making dark objects and pedestrians in shadows more visible, it
enhances road safety during nighttime. It also adjusts high beams automatically to enhance

driver visibility and minimize glare for approaching traffic. Hence, class-specific score
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adjustments place priority on significant traffic-related objects such as pedestrians,
bicycles, and cars, enhancing detection of critical elements while minimizing false positives
on non- essential objects. LSDNet includes class-specific score improvements to enhance
dashcam use cases detections which makes confidence scores higher for a few significant
on-road objects.

The correction factor is given by

1.15, C € dashcam — relevant classes
Ae = 1.10, C € small object classes 4.36
1.0, otherwise

$'=S* 1, 4.37

The model incorporates additional enhancements to refine object detection and improve
adaptive headlamp performance. Adaptive confidence thresholding and Non-Maximum
Suppression (NMS) ensure that only relevant detections influence headlamp adjustments,
reducing noise and false positives. A day/night classification mechanism enables adaptive
processing by differentiating between daytime and nighttime conditions, optimizing
detection parameters accordingly. Furthermore, metadata extraction provides numerical
insights, including small object count, average detection confidence, and brightness
analysis, enhancing situational awareness. These enhancements highlighted in Table 4.3
collectively improve real-time object detection, allowing adaptive headlamps to
dynamically respond to changing road conditions, ensuring safer night time driving.
Metadata analytics offer real-time performance monitoring through aggregation of average
detection confidence across all detections, class-specific detection counts to measure object
frequencies per class, and bounding box distributions to estimate anticipated spatial areas.
The architecture represents a high-performance deep learning architecture that is consistent
with the expansion-depthwise-projection principles, integrating hierarchical multi-scale
features and adaptive refinement strategies to increase detection competency. The
architecture of the model is specifically tailored to improve predictive accuracy, spatial
resolution optimization, and computational efficiency maximization, making it extremely

suitable for real-time object detection tasks.

4.4 Summary of the object detection models discussed

This chapter has discussed the design and deployment of three cutting-edge Al models—
Modified SSD, MultiFaceted Al Model, and LSDNET—fine-tuned for nighttime on-road
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object detection. Having overcome some of the primary limitations of existing models like
YOLO, Tiny YOLO, and SSD, the proposed frameworks bring new architectural
enhancements, feature fusion methods, and inference-time efficiency. The Modified SSD
enhances SSD with adaptive feature scaling and confidence modulation to improve
detection of small objects under low-light conditions. The MultiFaceted Al Model adopts
a hybrid strategy of spatial and global feature extraction, allowing improved robustness to
different nighttime illumination conditions. LSDNET uses illumination-driven processing
modulation, dynamic confidence scaling, and class-aware prioritization to greatly improve
detection recall and accuracy for low-contrast and small objects.

These models are optimally balanced between accuracy of detection and computational
efficiency and are applicable to real-time uses in autonomous navigation, adaptive
headlight control, and intelligent surveillance systems. The breakthroughs introduced in
this chapter set the stage for an in-depth performance analysis, which will be done in the
next Performance Analysis Chapter, where the proposed models will be compared to
current methods. The outcomes will confirm their efficiency in enhancing detection
accuracy, recall, and resilience in difficult nighttime driving conditions

4.5 Results and discussion on the On-road object detection models
Obiject detection is still a key problem in computer vision, with many state-of-the-art
models being proposed to enhance the accuracy, efficiency, and robustness to real-world
challenges. This chapter provides a comparison of conventional and recent object detection
models to identify how effective they are in detecting objects under different
circumstances, such as low-light conditions and small object detection. The assessment
consists of four popular object detection methods—YOLO, Tiny YOLO, SSD, and
RCNN-—comparing their strengths and weaknesses on the basis of critical performance
indicators like precision, recall, mean average precision (mAP), and inference speed.

Subsequent to this, the performance of three suggested models—Modified SSD, Multi-
Faceted Al Model, and LSDNET—is analyzed. These models have been developed to
improve object detection performance by overcoming certain limitations seen in current
methods. The comparative analysis brings out how these models perform compared to
traditional methods, especially in difficult situations where traditional methods tend to fail.
One of the main points of this debate is the capacity of these models to identify objects

under low-light settings and small objects precisely, which have been ongoing challenges
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for computer vision. By testing their efficiency in relation to conventional models, this
analysis seeks to identify the most stable method for practical use. The results offer
insightful perceptions of the strengths and areas of improvement for each model to
ultimately direct future improvements in object detection technology.

4.5.1 Performance of YOLO, Tiny YOLO, RCNN and SSD Models

Obiject detection is a core problem in computer vision, and many deep learning models
have been created to improve the speed, accuracy, and robustness of detection. From
among the most used techniques, YOLO, Tiny YOLO, RCNN, and SSD have achieved
considerable breakthroughs in real-time detection and localization of objects. The models
are each different and offer benefits in various applications depending on computational
complexity, detection accuracy, and handling of scenarios with complex environments.
The subsequent sections examine these models on the basis of their structural variance,
strengths, and possible drawbacks in object detection applications. The models are trained
on an open-source COCO database comprising over 15,000 images and 93 classes,
employing Python 3. The accuracy of object detection is evaluated using the mAP (Mean
Average Precision), calculated as the average of Average Precision across different
verification sets, alongside the two-dimensional Precision-Recall (P-R) curve for various
thresholds. Detection speed, quantified in Frames Per Second (FPS), is also measured,

considering factors such as learning rate and different losses.

4.5.1.1 YOLO Model

YOLO (You Only Look Once) is a real-time object detection model that detects an entire
image in a single pass of a neural network, which makes it one of the fastest detection
frameworks (figure 4.6 through 4.9). Through the removal of region proposal networks,
YOLO provides high-speed detection, which makes it suitable for use in applications like

surveillance, autonomous driving, and robotics.

45.1.2 Tiny YOLO

Tiny YOLO is a lighter version of the YOLO model that is used in environments with
fewer computational resources. In decreasing the number of parameters and layers, Tiny
YOLO loses some accuracy but with much better processing speed (Figure 4.10 through
4.13). The model is most appropriate for use in edge devices and real-time uses where

efficiency is considered key.
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Figure 4.7 Frames per second on YOLO Model

Precision x Recall curve, mAP=24.85%
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Figure 4.8 YOLO Model Emphasized by mean Average Precision
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5 Results — *

Results

COCO METRICS:

AP: 0.17775080285733375
APS0: 0.24879628907501345
AP75: 0.21155494361746144
APsmall: 0.0354073264369354
APmedium: 0.1031741228541981
APlarge: 0.22715393237076085
AR1: 0,19568554375273048
AR10: 0.249249056 14419582
AR100: 0.24924505614419682
ARsmall: 0,0475

ARmedium: 0. 16669082125603865
ARlarge: 0.305441906653426

PASCAL METRIC (AP per class)
car: 0.40466842515519735
ambulance: 0

bus: 0.664363668368245

truck: 0.17334147334147326
motorcycle: 0

PASCAL METRIC (mAP)
mAP: 0.24847471337298313

Plots with Predision x Recall curve per dass calculated with PASCAL VOC were also saved in the folder:

Figure 4.9 YOLO-COCO AND PASCAL Metrics

Figure 4.11 Frames per second for YOLOvV3-Tiny Model
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Precision x Recall curve, mAP=6.23%
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Figure 4.12 mean Average Precision value for YOLOV3 Tiny Model
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Figure 4.13 Screenshot of the statistics as obtained for the YOLO-Tiny Model
calculated with PASCAL VOC

4.5.1.3 RCNN

RCNN (Region-Based Convolutional Neural Network) has a region proposal method,
dividing an image into several regions prior to subjecting them to deep learning-based
classification. Although RCNN ensures decent detection accuracy, it consumes huge
computation power because of its multi-stage processing pipeline and is thus less ideal

for real-time applications (figure 4.14 and 4.15).
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detection-results
(498 files and 20 detected classes)
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Figure 4.14 TP & FP for the RCNN Model
mMAP = 10.37%

train 0.28
bird 0.22
diningtable 0.20
sofa 0.18
horse 0.17
bus 0.16
cat 0.11
dog 0.11
tvmonitor 0.11
cow 0.09
aeroplane 0.08
sheep 0.06
car 0.06
pottedplant 0.06
person 0.05
motorbike 0.05
bicycle 0.05
boat 0.03
chair 0.02
bottle {0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Precision

Figure 4.15 mAP of the RCNN Model

4.5.1.4 SSD Model

SSD (Single Shot MultiBox Detector) provides a compromise between speed and accuracy
by making object location and classification predictions during a single network forward
pass. In contrast to RCNN, SSD does away with region proposals, which results in much
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faster processing without compromising on accuracy (figure 4.16 through 4.19). This

model finds extensive applications where efficiency is a requirement along with accurate

object localization.

FPS:

-
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4 |\ \ \ S

Figure 4.16 Object detection using SSD Model in dense traffic at night

[ n
FPS: 20.26 E

—

Figure .17Frames per second for SSD Model

4.5.2 Model Comparison

Table 4.4 and 4.5 summarizes the performance metrics of several Al models. Both YOLO-
tiny and SSD achieve an FPS value of 14.56, while YOLO attained 1.9 FPS. The mean
Average Precision (mAP) values for YOLO, YOLO-tiny, and SSD are 0.33, 0.041, and
0.38 respectively. FPS and mAP values are crucial in determining the speed and accuracy
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of detection for these models. Only mAP is assessed for RCNN due to its inadequate
response, making it unsuitable for the current application. Furthermore, the RCNN model's
performance under low illumination is compromised, leading to its exclusion from the

comparison with other Al models that demonstrate accurate mAP and FPS results.

Precision x Recall curve, mAP=18.49%
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Table 4.4: Comparison of the three Models based on Frames per Second
and mean Average Precision

Model FPS MAP

YOLO 1.9 0.2484747
YOLO-Tiny 14.56 0.0622573
SSD 14.56 0.1849486

Table 4.5: Comparison of the three Models based Average Precision of
detection for each class

Model Car Bus Truck
SSD 30.8283 61.645 23.465
YOLO 40.46 66.43 17.334
YOLO V3-Tiny 4.95 21.74 4.44

The findings suggest that SSD (Single Shot Multibox Detector) appears suitable for the
application, given its competitive mAP value of 0.1849486 and presumably efficient
performance in various lighting conditions compared to RCNN. Therefore, SSD could be
a favorable choice considering both its accuracy and adaptability to different
environmental conditions. The next section of the discussion deals with modifying the
SSD framework to improve accuracy for the application.

The performance analysis of YOLO, Tiny YOLO, RCNN, and SSD for real-time low-light
object detection underscores essential trade-offs in accuracy, computational resource
requirements, and resilience to extreme conditions. As impressive as YOLO is for speed,
it is equally poor in precision at night under low-light scenarios due to low performance in
handling small or even occluded objects. Small YOLO, even with optimization to handle
quicker inference, shows additional degradation in detection accuracy, rendering it
inappropriate for applications requiring high dependability in dark environments. RCNN
offers better detection accuracy via its region proposal mechanism but is unsuitable for
real-time applications due to its computational requirement and slow inference time. The
model's dependence on multiple processing steps creates high latency, a major drawback
for real-time applications like autonomous driving and surveillance. SSD comes as a more
balanced solution with a trade-off between speed and accuracy, promising to be an

excellent fit for real-time object detection in low-light environments.

140



Unlike RCNN, SSD removes the region proposals step, significantly decreasing inference
time with comparable detection performance. The capability of the model to predict at
multiple scales increases its performance for small and faraway object detection, an
important requirement when applied under low-light applications with limited visibility.
The architectural efficiency of SSD also enables it to be deployed on edge devices and
embedded systems without requiring heavy computational resources. These features make
SSD a viable option for real-time detection of objects in nighttime scenarios, where speed
and accuracy are both significant. Yet, additional advancements like enhanced feature
extraction and incorporation of low-light processing expertise may be required to

maximize SSD's performance for more challenging real-world conditions.

4.5.3 Modified SSD Architecture

Since SSD exhibited high suitability for object detection at night, an optimized SSD
architecture was created to optimize its performance even more. The introduced model
simplifies SSD by removing individual convolutional layers, speeding up detection
without compromising on accuracy. This differs from the base SSD, which uses diversified
aspect ratios in accordance with feature map layers, enhancing detection at different scales.
The model only uses 3x3 convolutional kernels to minimize parameters and computation.
Other predictor layers further increase multi-scale detection, whereas batch normalization
and L2 regularization increase training effectiveness and generalization. These updates

increase the model's efficiency in real-time on-road object detection.
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The performance metrics of the Mod SSD offer a strong balance between accuracy and
performance. This is comparable to other models even if its accuracy (53%) and mean
Average Precision (mAP) (0.42) are not the best. In addition, the Mod SSD offers an AUC
of 0.77 (Figure 4.20), hints at the fact that the model can effectively detect objects in the
background. F1 score of Mod SSD is notably faster than YOLO and Tiny YOLO,
outperforming both categories while maintaining a far higher frame rate (23.8 FPS) than

any of the other two.

Architectural modifications cause this increased speed, which may allow real-time
applications that require quicker inference. This is still not enough, though, for the real-
time night application. Therefore, an improved framework is required. If the work requires
absolute peak accuracy, alternate models such as YOLO may be more appropriate.
However, for cases that require a balance between performance and speed, the Mod SSD
appears to be a good option. Despite not achieving the highest accuracy (53%) or mAP
(0.42), Mod SSD demonstrates a strong balance between accuracy and performance, as
depicted in Table 4. Additionally, Mod SSD's AUC of 0.77 (Figure 4.20) suggests
effective object detection capabilities, outperforming YOLO and Tiny YOLO in both
accuracy and speed, with a notably higher frame rate of 23.8 FPS.

4.5.4 YOLO V8 based Object detect

The YOLOv8 model uses a convolutional neural network (CNN) encoder-decoder
architecture for semantic segmentation. The encoder learns hierarchical features through
five convolutional layers with progressive filter sizes, utilizing a ResNet backbone for
compact feature expression. C2f convolutional layers and max pooling for dimensionality
reduction improve contextual representation without overfitting. The decoder restores
spatial knowledge via bilinear interpolation and concatenation layers, improving
segmentation accuracy. Bounding box layers combine with segmentation masks to offer
end-to-end object detection, while softmax activation allows for accurate pixel-wise
classification, making this model very efficient for real-time object segmentation and
detection tasks.

The V8-based model’s confusion matrix (figure 4.21) shows an overall accuracy of 78.4%.
With only 6 false negatives and 19 true positives, the model can accurately recognize
background items. Its effectiveness in separating the background from other classes is

demonstrated by its low miss rate. 71 cars were properly identified, but there were causes
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for concern over the 21 false positives and 9 false negatives. Notably, there appears to be
some confusion between these groups because 16 motorbikes were incorrectly categorized
as vehicles. Also, none of 76 real traffic lights could be recognized by the model. This
class has serious problems, as indicated by its high miss rate. This model shows some
uncertainty, but not as much as with traffic lamps; it correctly identifies five motorcycles

as vehicles and incorrectly classifies six motorcycles as backgrounds.

Confusion Matrix

Predictes!

motarcycle trafficlamp Background

True

Figure 4.21 Confusion Matrix of V8 based Model

The Model displays performance constraints in balancing recall and precision, with an
average F1 score of 0.4 at 50% confidence as shown in figure 4.22. Vehicles with the
highest F1 score (0.5) at this confidence level were not as successful as those with lower
confidence levels, suggesting problems with particular vehicle types. Motorcycles
performed better when making predictions with moderate confidence (F1 score of about
0.6), but they had trouble with high confidence. A crucial area for improvement is
highlighted by the traffic light’s poor performance, which included the lowest F1 score
(0.2) at 50% confidence and continued to deteriorate with increased confidence. It’s
interesting to note that the model showed less confidence in predictions for less common

objects than automobiles, such as traffic lights.

This highlights the need for a customized model to identify specific problems and place
targeted adjustments in place to obtain a more robust and balanced performance across all
object classes and confidence levels. With an average mAP at 0.5 of 0.305, suggesting

limits in object recognition, particularly with increasing recall as shown in figure 4.23. The
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vehicle class had the highest mAP at 0.5 (0.553); however, as the recall increased, its
precision decreased, indicating problems with particular car models. The motorcycle class
struggled to increase recall despite having high precision (0.220) at low recall as shown in
figure 4.25.

F1-Confidence Curve
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Figure 4.22 F1-Confidence matrix for V8 based Model
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Figure 4.23 Precision-Recall for V8 based Model
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Figure 4.24 Precision-Confidence Curve- V8 Model
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Figure 4.25 Recall-Confidence Curve- V8 based Model

Even at low recall, the traffic signal class had the lowest precision (0.143), indicating a
need for significant improvement as depicted in figure 4.24. This performance can be
caused by inadequate or non-diverse training data, inappropriate model architecture, or
insufficient training time. Nevertheless, the model demonstrates promising overall
performance, as accurate object detection is crucial for adjusting headlight beams,
regardless of the object type. The model's performance seems to improve over training
epochs, evident from decreased training and validation total losses in Table 4.6. However,
the persisting gap between training and validation losses suggests some degree of

overfitting.
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Table 4.6 Model training and validation losses and learning rate for different epochs

Epoch

train/ box loss
train/ cls loss
train/ dfl loss
metrics/
precision (B)
metrics/ recall
(B)
metrics/
mAP50- 95 (B)
val/ box loss
val/ cls_loss
val/ dfl_loss
Ir/ pg0
Ir/ pgl
Ir/ pg2

2.201 3.21 1.42 0.276 0.263 0.047 2.381 11.3 1.56 0.00031 0.00031 0.00031

2.051 1.92 1.39 0.442 0.344 0.105 2.273 2.54 1.66 0.00043 0.00043 0.00043

2.030 1.52 1.34 0.418 0.230 0.082 2.367 2.19 1.79 0.00033 0.00033 0.00033

146



4.5.5 Performance of the proposed Multi-Faceted Framework

The Multi-Faceted (MF) Model uses a multi-block convolutional neural network design
optimized for semantic segmentation. It incorporates an encoder-decoder model, in which
convolutional blocks capture hierarchical features and upsampling layers improve spatial
resolution for accurate segmentation. Skip connections improve feature preservation,
allowing spatial consistency in pixel-wise predictions. Depthwise and pointwise
convolutions enhance computational efficiency, while squeeze-and-excite blocks
dynamically recalibrate channel-wise feature responses. This architecture supports multi-
scale feature extraction, allowing accurate object detection of different sizes. With
hierarchical processing in head and tail sections and the backbone section, the MF Model

supports improved object recognition to be appropriate for real-time vision applications.

The precision of the MF model is comparatively high and constant over the entire range
of confidence values for all classes. This indicates that the majority of items in the model
can be accurately identified with a high degree of accuracy. It appears that the precision
for each class (vehicle, motorcycle, and traffic light) was less than the precision for all
classes combined. This implies that the model’s accuracy in identifying particular object
types is generally lower than its accuracy in identifying objects. However, the model
demonstrates a high overall value which is promising because it is necessary to identify
objects and not classes in order to change headlight beams, but it is not necessary to know
what kind of object or vehicle is approaching.

The plots in figure 4.26 show that the model’s performance appears to improve over the
training epochs, as indicated by the decreased training and validation total losses. However,
there is still a difference between the training and validation losses, implying over fitting.
This is further confirmed, where the validation loss for classification is much greater than
the training loss in the first epoch, indicating that the model initially over-fits the training
data of the classification task. The model’s accuracy and recall are both improving, with a
validation precision of 0.44 in epoch 2. However, the mAP50 metric, which assesses
average precision at various loU levels, exhibits some variability. Based on the evaluations,
the model performs moderately well, with an accuracy of 70.43%; however, F1 score of
0.38 indicates that it has limitations when it comes to balancing precision and recall.
Although at recall score of 0.56 indicates a decent capacity to locate relevant things,

confidence calibration needs to be performed carefully because the F1 score tends to
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decline as confidence increases. Motorcycles perform best when analyzed by class, but

they have accuracy issues when confidence levels are lower.

However, traffic signals perform the worst, necessitating a major increase in memory and
precision. Vehicles with the highest F1 score exhibited a decline in precision at lower
confidence levels, which may suggest problems with particular vehicle types. The model
performed effectively on the P-R curve, consistently obtaining high precision (above 0.9)
for each of the three object classes (vehicle, motorcycle, and traffic lamp). This
corresponds to a significant ability to discriminate between relevant objects and
background clutter, indicating good true positive identification with few false positives.
Moreover, the remarkable similarity between the P-R curves indicates a balanced
performance across all item types, which is an important finding given that object detection
algorithms frequently struggle with issues such as visual similarity or data imbalance. As
the training progressed, the classification accuracy increased and the model learned

successfully, as evidenced by the classification loss curve in figure 4.27.

This pattern indicates that overfitting to the training set was avoided, which is a sign of
good generalization. It appears that the loss peaks at approximately 2,500 epochs, which
may indicate that the model is approaches its peak performance. To draw firm results,
more research on model specifics and training protocols is necessary. Because of the
intrinsic stochasticity of the training procedure, only modest fluctuations were predicted.
Overall, the loss curve presents a positive image of the model’s capacity for learning and
precise categorization. The regularization loss curve, as depicted in figure 4.27 b, shows a
steady downward trend during training, indicating efficient control and limiting overfitting.

This is in line with the goal of generalizing the model outside of training data.

Although the rate of reduction slows down around 1500 epochs, possibly suggesting an
ideal regularization level, more research into the specific model and training specifics is
required before firm conclusions can be drawn. Because of the intrinsic stochasticity of
training, slight fluctuations are anticipated. The total loss curve shown in figure 4.27 c,
exhibits a consistent downward trend throughout the training, indicating successful model
learning and an improved ability to fit the training data. The initial epochs witnesed a
rapid decrease in loss, followed by a gradual slowdown and plateauing at approximately
2000 epochs. This suggests that the model has learned most of what it can from the data,
with further gains likely to be minimal.
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Figure 4.26 Training & Validation losses for various epochs- MF based Object detection Model
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(e) Localization Loss
Figure 4.27 Losses and learning rate for Successive Epochs of the MF model.

Minor fluctuations were expected owing to the stochastic nature of the training process.
Specifically, sharp drops in loss around epochs 500 and 1500 might be attributed to
adjustments in the learning rate or other hyper-parameters. Fluctuations between epochs
2000-3000, followed by a final decrease and plateau, could indicate an increased
sensitivity to minor data variations as the model exhibits optimal performance. Overall,
the total loss plot indicated effective learning and data fitting. However, the plateau trend
suggests diminishing returns with further training. For a comprehensive evaluation,
incorporating additional metrics such as validation set has to be considered. The trajectory
of the learning rate curve in figure 4.27 d indicates that it may have an impact on the

functionality of the model.

It shows a continuous rise to 0.06 and then settles at approximately 0.08 for the duration
of training. This implies an excessively high starting rate that might interfere with training,
followed by inadequate investigation at lower rates. In addition, significant variations in
the learning rate appeared at the conclusion of training, suggesting potential difficulties
with gradient oscillations or convergence. However, the model’s output does not indicate
that this had an impact. However, there are issues that warrant further assessment. Positive
indications are observed in the early stages of the localization loss curve shown in figure
4.27 e, which suggest that the model can learn quickly. Its remarkable ability to understand
the work at hand is demonstrated by a sharp decline from 0.8 to 0.5 within the first 500
epochs. Further research is required owing to the incomplete convergence. Minor shifts
distributed throughout the training process are likely attributed to intrinsic randomness or
noise within the data and don’t pose substantial issues. It is difficult to choose the best

object detection model and necessitates taking into account a number of metrics.

The accuracy, maP, Recall, F1 score, RoC-AUC, and FPS metrics are shown in figure 4.33
for the following models that are being discussed: MF, V8, Mod SSD, SSD, YOLO, and
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YOLO-Tiny. In terms of precision and confidence, the MF is superior. With remarkable
77.2% mAP, MF leads the accuracy field and demonstrates remarkable object localization
and pinpointing abilities. Because of its excellent memory and precision balance, as seen
by its high F1 score of 0.58, it is the perfect choice for tough jobs that require utmost
confidence. V8 comes next with excellent mAP (0.44) and accuracy (70.43%), achieving
the desired balance between processing speed and precision. This places it in an excellent
spot for use where the processing speed may be obtained at the expense of a small degree
of precision. However, even with a respectable 53% accuracy, Mod SSD stumbles with a
weak mAP (0.041). This poses concerns regarding dependability because it may be
difficult to distinguish comparable things or handle complex situations. With its low
accuracy (6%) and mAP (0.041), YOLO-Tiny trails substantially behind and is essentially
ineffective for object recognition tasks in the actual world. MF excels in real-time
applications and speed owing to its remarkable 45.31 frames per second. However, the
increased processing demands associated with this superior performance may limit
projects with limited resources. With 25 FPS, V8 offers a speed and accuracy combination
that works well for a larger variety of applications.

Mod SSD achieves an average of 23.8 fps and has an edge over YOLO-Tiny edges in terms
of speed of 1.9 FPS. YOLO-Tiny has low accuracy rendering it unsuitable for most
practical applications. Considering Recall and Balance, V8 stands ahead of MF. High-
confidence detections are prioritized by MF, which achieves a recall of 0.529. This implies
that while it concentrates on producing extremely dependable findings, it may overlook
some objects. With 0.56 recall, V8 shows a more balanced approach, indicating that it can
capture a larger variety of objects with a respectable level of precision. The lower recall
scores (0.474 and 0.368, respectively) for Mod SSD and YOLO-Tiny suggest possible
limits in detecting all relevant objects, which could be detrimental for applications

requiring exhaustive detection.
4.5.6 Performance of the proposed Inference-Optimized LSDNet

Context-Aware Adaptation Network

LSDNet is an optimized object detection model built on EfficientDet-D0, with pre- and
post-processing optimizations specifically designed for nighttime detection. Through the
use of a sophisticated scaling method, LSDNet optimizes width, depth, and resolution
simultaneously, achieving high accuracy and efficiency. The weighted BiFPN enhances

multi-scale feature extraction to improve low-light small object detection. Critical changes
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involve adaptive brightness adjustment, class-aware score modification, and dynamic
confidence thresholding. Post-processing improvement such as advanced Non-Maximum
Suppression (NMS) enhances detection trustworthiness further. These optimizations
render LSDNet very well-positioned for real-time use in applications such as adaptive
vehicle headlamps, enhancing on-road safety across different lighting environments.

=~ Standard EfficientDet-DO
Modified EfficientDet-D0

F1 Score
&
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Figure 4.28 F1 Vs Confidence Curve

Multiple analytical techniques are employed to determine the perfromance of the LSDNet
Model. The performance curves: F1-Confidence, Precision-Recall, Precision-Confidence
and ROC plots are discussed. This is followed by sensitivity analysis of the LSDNet Model,;
on varying brightness levels and on varying object sizes to determine the models detection
capabilities on these factors. The performance of the model is then benchmarked against
YOLO (Tiny & V8), SSD, Modified SSD, Standard Det DO Model. The section also
performs data visualization techniques like Radar Chart, Heatmap, Scatter plot and Box
plot to find the best fit model for the application. Also, the relative performance of

LSDNET against Dataset Mean is performed to determine the superior model.

The tradeoff between Precision and Recall of LSDNet and the Std Det DO model is
determined using the F1-Confidence Curve shown in figure 4.28. As confidence score
increases the F1 score also shows and increase till a point where the LSDNet shows an
optimal balance between detection while maintaining fewer false positives. Beyond this,

F1 shows a fall as the recall reduces and the model becomes conservative it the detections.
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It shows consistency in scores throughout the range, by maintaining a balance (between
Precision values & Recall) over diverse range and shows maintains a higher value in
comparison to the efficient det model which is a reference to their improved detection
capability, notably for higher confidence values. This means that the model has an
improved filtering performance that suppresses false positives with no compromise on the
detections. Hence, it is robust in nature by avoiding false detections without affecting the

recall while Std Det model experiences a sharper fall post the optimal threshold.
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Figure 4.29 Recall Vs Confidence Curve

This means that the Std Det Model finds it difficult to sustain relaiable detections under
higher confidence levels. The Recall vs. Confidence Threshold plot (Figure 4.29) displays
the recall variation wrt varying confidence threshold values for the baseline EfficientDet-
D0 and LSDNet models. Recall is a measure of the model's sensitivity to all objects of
interest, with higher recall values reflecting better sensitivity. Recall diminishes as the
confidence threshold increases since more stringent positive prediction requirements

eliminate lower-confidence detections that consist of true positives.

LSDNet always preserves a better recall at all the confidence levels, indicating better object
detection sensitivity. This is a major improvement for situations where small objects or in
low-light setups are involved because recall is at a premium here. The observed trend shows
it allows the model to have a higher number of true positives retained while the false

positives continue to be adequately filtered out. Though precision-recall trade-offs do
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occur, its improved recall indicates a better detection ability, especially under difficult
conditions. The variations demonstrate the effectiveness of the optimization in securing
more robust detections without significantly lowering overall performance. These findings
justify LSDNet's contribution to improving object detection robustness through increased
recall without overly degrading precision.
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Figure 4.30 Precision Recall Curve

The distinction between the two models remains subtle in the Precision-Recall Curve,
signifying that the changes improve performance without significantly varying the
detection nature. From figure 4.30, it can be noted that the updated model shows small
improvements in recall with a similar precision profile, implying that it fine-tunes detection
ability, especially under the difficult nighttime condition. These gains lead to better object
identification with fewer significant trade-offs, corroborating the improvement in detection
robustness through the modifications while not compromising the advantage of the basic
model. The Precision Vs. Confidence Threshold graph in shows how precision changes

with increasing confidence thresholds for both the default and modified models.

Precision, or the fraction of correctly identified objects out of all detections, rises as the
confidence threshold is increased because higher thresholds remove lower-confidence false
positives. The default EfficientDet-DO0 has slightly higher precision for most thresholds,
indicating it shows fewer false positives. But the adjusted model closely tracks, showing

competitive accuracy with a better-balanced strategy. The narrow gap reflects a
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compromise, in which the adjusted model may prefer recall gains, providing improved

detection of low-visibility objects in nighttime environments.

Receiver Operating Characteristic (ROC) Curve
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Figure 4.31 ROC Curve

LSDNet’s and EfficientDet-D0’s Receiver Operating Characteristic Curve is steeper with
a large area which hints at the discrimination capability of a model. Both LSDNet and
Standard EfficientDet-DO0 have nearly identical ROC curves, both having an AUC of 0.960.
This shows that both models perform well in terms of classification, with the ability to
clearly discriminate between positive and negative object detection. The identical curves
imply that changes in LSDNet have not greatly affected the general model discrimination
capacity, as quantified using AUC. However, ROC curves by themselves do not disclose
performance differences in class imbalance or low-confidence areas. As LSDNet focuses
on small-object detection and low-light conditions, recall and precision gains at certain

confidence levels might not be completely represented by AUC.

Nevertheless, the similar AUC ensures that LSDNet is still reliable for detection while it
increases recall and precision in essential areas, especially where traditional detection
models perform poorly. The performance plots hint at the suitability of the Model for low-
light object detection. With the model maintaining a higher recall at varying confidence
levels, LSDNet promises significant improvement in detection compared to standard model
which falls short in detecting small objects. Precision-Confidence Curve shows comparable

performance with marginal decrease at a few confidence thresholds which is due to the fact
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that for nighttime detections maximizing the recall is the key to reduce detection fails,

which is substantially crucial than the false positives.

Further substantiating the models ability is the increased F1 score across the varying
confidence thresholds which optimizes the tradeoff between precision and recall. This
indicates that the model has the ability to deal with tradeoffs due to low-light and keeps
detections steady even in unfavorable lighting conditions. The models ability to maintain
higher mean average precision over the confidence thresholds is reflected in the mAP-
Confidence plot highlingting its ability to detect effectively even with weak visual cues.
The large area under the AUC curve in the ROC plot (shown in figure 4.31) as same as that
of the efficient Det-Do suggests that the modifications performed to deduce the new model
does not affect the general classification ability while the low-light illumination is
improved. Improved recall and consistent mAP leads to a comprehensive detection
framework that is ideal for the small as well as compromised contrast based object
detections in nighttime conditions. High recall without a tradeoff on the precision along

with improvement on F1, mAP makes the optimized model ideal for the application.

4.5.6.1 Sensitivity Analysis based on brightness

The analysis of the LSDNet model under varying brightness condition in relation to the
baseline model shown in Figure 4.32 shows improved performance in object detection
during low light conditions. The discussion based on performance plots clearly places
LSDNet as a good model for low-illumination scenarios and the performance under low
brightness substantiates it further. The model shows a 5.85% improvement in AP for a
brightness factor of ~0.3 when compared to efficient det model. On an average LSDNet
shows a 1.39% variation whereas in baseline model it is 2.61% which hints at a stable
detection rate in this model.

Accuracy trends are also observed to follow a similar trend, where the model tends to
outperform the standard model more significantly at higher brightness levels, with a peak
relative performance of more than 110%. This can be observed most strongly in the 1.3 to
1.7 brightness range, where the model performs better than the standard model by a rough
margin of 2.35%. LSDNet indicates an overall average variation of accuracy to be 4.78%,
marginally greater than 4.62% for the standard model, which illustrates better general

stability under changing brightness conditions.
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The most prominent difference is in Recall, with the model outperforming the baseline
model in the low brightness range. At brightness of 0.5 to 0.7, LSDNet records more than
a 3.11% improvement in recall over the baseline model. This indicates a greater capacity
to pick up objects that would otherwise go undetected in low-light conditions. As brightness
goes higher than 1.0, remember differences between the models decrease, implying that it
is actually optimized for conditions where object visibility is naturally lower. Yet, under
all brightness conditions, the baseline model shows a larger deviation of 2.81% in recall,
while LSD shows a more regulated change of 1.42%. The F1 Score curves closely mimic
those of recall and accuracy, with LSD performing better than the baseline model at lower
brightness. At the 0.5 to 0.7 brightness interval, LSDNet has an F1 Score improvement of
about 1.2% (compared to Efficient Det). The avg F1 Score fluctuation is 1.28%, while the
baseline model has a wider fluctuation of 2.27%, further validating its capability to offer
balanced precision-recall performance in low-illumination environments. Computational
speed, in terms of FPS, is another important dimension where LSDNet shines. On the
lowest brightness level (0.3), LSDNet is almost a 41.65% boost in FPS over the baseline
model.

This gain indicates that the model will have real-time processing capabilities while
enhancing detection reliability under difficult conditions. Even with brightness being
increased, LSDNet still holds a better FPS, on average a 0.79 FPS lead compared to the
normal model at every level of brightness, with an overall variation of 2.73% to 1.94% for
the normal model. Overall, the model achieves higher recall and efficiency in computations
when there is low light, and it enjoys an AP improvement of about 5.85% in extreme low-
light, with a gain of 3.11% in recall, as well as up to an FPS boost of 41.65% in lowest
brightness conditions. These outcomes unequivocally reveal that LSDNet is deeply
optimized for night-time object detection where it is most important to maintain a

compromise between detection quality and real-time execution.

4.5.6.1 Sensitivity Analysis based on Object Size

Obiject size detection performance analysis shows that LSDNet demonstrates significant
improvement, especially for detection of small objects as shown in Table 4.7. On very small
objects (<0.5%), the model has an average precision (AP) improvement of 28.4% (0.243
to 0.312) and recall improvement of 23.1% (0.351 to 0.432), suggesting improved
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sensitivity to subtle object details. In the same way, for small objects (0.5-2%), AP is
enhanced by 17.0% (0.352 to 0.412), and recall is enhanced by 12.9% (0.463 to 0.523).

Table 4.7 Comparison of the Det Dy and LSDNet's object detection ability with
different object sizes.

Efficient Det Do Model LSDNET Model
Object Size
AP Recall AP Recall
Tiny (<0.5%) 0.243 0.351 0.312 0.432
Small (0.5-2%) 0.352 0.463 0.412 0.523
Medium (2-20%) 0.674 0.712 0.683 0.736
Large (>20%) 0.763 0.801 0.771 0.815

These enhancements indicate that the pre-processing and post-processing adjustments in
LSDNet maximize feature extraction in different brightness levels and facilitate more stable
detection of small-scale objects. For medium (2-20%) and large objects (>20%), LSD
retains a performance advantage, but with comparatively lower improvements. The AP
improves by 1.3% for the medium objects (0.674 to 0.683) and 1.0% for large objects
(0.763 to 0.771), whereas the improvements in recall are still moderate at 3.4% and 1.7%,
respectively. This reflects that the changes are largely favoring detection of smaller objects,
which is vital for safety-oriented applications like autonomous navigation and nighttime
monitoring. In addition, the consistent enhancement of recall with all object sizes
emphasizes LSDNet's ability to reduce false negatives to make it more reliable in low-

illumination settings.

4.5.7 Benchmarking against state-of-the-art models

The models performance on these metrics: accuracy, recall, F1 score, mMAP, ROC-AUC, as
well as FPS is compared against major object detection models [106]. These form the basis
for measuring the efficiency of a model in detection as well as localization, specifically
under low-illumination conditions. Accuracy measures correct classification, while mAP
measures localization accuracy. Recall and F1 score provide minimal false negatives, with
ROC-AUC reflecting classification dependability. FPS decides real-time processing
ability. As can be seen from the data set, LSDNet always has better recall, mAP, and FPS,
further supporting that it is articularly well-suited for night time object detection tasks
involving speed and trustworthiness. The comparisons of models against these factors are
plotted in Figure 4.33.
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Figure 4.33. Metrics comparison across models

4.5.7.1 Analytic benchmarking

Radar chart (Figure 4.34) graphically shows the comparative performance of different
object detection models on many test metrics. The extent an individual model occupies on
the radar chart reflects its overall balance of performance. The larger and evenly distributed
the area, the better the model performs on many aspects, while smaller or irregular-shaped
areas point to weakness in certain areas. Based on the analysis, LSDNet model has one of
the largest and most evenly balanced radar chart areas. This is largely because it has a high
recall (75.36%) and mAP (68.08%), with which it is able to successfully detect objects even
when there is low lighting. In addition, LSDNet's FPS (50.66) is the highest across all
models, making it appropriate for real-time usage. While its accuracy (52.03%) is slightly
lower due to a design trade-off, this aligns with the model’s objective of prioritizing object

detection over classification.
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Std Det D, and MF Model are also a robust and outperforms YOLO V8 and SSD both in
recall and precision and hence is a good all-around option. Contrariwise, YOLO-Tiny
occupies the smallest area on the radar chart, which reflects extreme limitations. Its very
low accuracy, recall, and FPS (1.9) render it inappropriate for real-time applications,
particularly, low-light environments. While YOLO, SSD, and Modified SSD occupy a
moderate area on the radar chart, they have poor recall and FPS, which are essential for
detecting small objects in low-light environments. YOLO V8 and Std Det Do Model are
better, with YOLO V8 showing better accuracy (45%) but poorer recall (24%), which could

result in missed detections.

In contrast, Std Det Do Model shows a good balance, with accuracy (56.99%), recall
(72.37%), and a comparatively high FPS (34). Nevertheless, its FPS is still lower than
LSDNet, so it is more appropriate for real-time use. Given the specific needs of night, on-
road object detection, with particular attention to small objects, it is the best model to
consider. Its ability to provide high recall, decent mAP, and higher FPS guarantees objects
being detected with effectiveness while also maintaining real-time. Although other models
excel in certain areas, they cannot match the overall well-rounded performance of the
model for low-light, fast-moving detection scenarios. Thus, LSDNET is the best option for

this use.
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Figure 4.35 Heat map of multiple model plotted across the performance metrics

The heatmap visualization shown in Figure 4.35 gives an effective illustration of the object
detection model's strengths and weaknesses in relation to FPS, recall, F1 score, and mAP.
LSDNet, Std Det Do and MF Model have deep red tones in all the important metrics,
demonstrating their good real-time performance and detection effectiveness, suitable for
low-light environments. The model, specifically, has a uniformly red color palette,
affirming its even trade-off between speed and accuracy. MF Model, specifically, shows
an excellent balance between speed and accuracy, like LSDNet, but with slightly reduced
recall and FPS.

YOLO V8, though exhibiting fair accuracy, tilts towards cold blue colors in recall, F1
score, and FPS, which reveals high precision but low speed suitable for real-time usage.
YOLO and SSD models exhibit mixed red and blue colors, depicting compromises between
recall, accuracy, and speed, rendering them unreliable for night time detection. YOLO-Tiny
is mostly dark blue, representing poor recall, low mAP, and poor FPS, which makes it
inappropriate for real-time purposes. The high red dominance in the heatmap supports its
better performance in real-time, which makes it the best model to use for night time object
detection.

Figure 4.36, pairplot visualization, represents the distribution and inter-relationships of the
metrics. The visualization shows an evident compromise wherein models with greater
recall tend to have lower FPS, and the models that are tuned for faster speed tend to

compromise on detection accuracy. The spread in recall and mAP scores indicates that
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certain models are more concerned with detection robustness, while others are concerned
with computational efficiency. With Std Det D, and MF Model, it can be observed that its
mMAP and recall scores are dramatically higher than those of SSD and YOLO, suggesting
excellent object detection performance. Yet its FPS is a bit lower than LSDNet's,
demonstrating that it finds a balance between computational efficiency and the robustness

of detection.
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Figure 4.36 Scatter Pair plot of the multiple models being compared

Figure 4.37, the FPS vs. Recall scatter plot, also demonstrates this trade-off, with clear
clusters of models depending on their performance profiles. The model is the one with the
highest recall of 75.36 and a better FPS of 50.7, which makes it ideal for real-time
applications where high recall is critical. Std Det Do Model takes a close second. It may
have lesser recall compared to LSDNet but is still above several other models, such as
YOLO V8 and SSD. Conversely, YOLO-Tiny, although having lightweight inference
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speed, has very low recall and hence is not effective for applications with the need for
robust object detection. Std Det Do comes after LSDNET in performance but slightly lower
in recall, further emphasizing the models’ advantage in optimizing speed and detection
accuracy. YOLO architectures and SSD have moderate recall measures but cannot be as
efficient as it.

Trade-off between FPS and Recall across Models
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Figure 4.37 Plot of trade-off between FPS and Recall across various models

The diversity in box sizes among metrics in Figure 4.38 and Table 4.8 reveals more about
the variability of object detection model performance. The dispersion seen in FPS is
considerably large, signifying great variability in real-time processing speed. Models that
fall on the higher end, i.e., LSDNet, are far better in terms of speed, whereas models that
fall at the lower end, i.e., YOLO-Tiny, are way too slow to be practically implemented in
dynamic scenarios. This broad dissemination solidifies that computation efficiency is the
most important differentiation factor between models, and the model being the top one for

real-time detection.

In contrast, the distribution of recall values is heavily skewed, with a long upper whisker
extending toward models like LSDNet and the Std Det Do Model. This suggests that while
most models struggle with detection, a few significantly outperform the average, making
them more reliable for scenarios where detecting an object, rather than just classifying it,
is of primary importance. The observed variation in F1 Score is moderate, indicating that
there are some models that have a trade-off (between precision and recall), while others,

especially those placed in the lower quartiles, have difficulty in making stable detections.
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A very large spread is also seen in mAP, affirming that the accuracy of object localization
differs considerably across models. While better localization is seen by LSDNet and the
Std Det Do Model, models such as YOLO-Tiny completely fail, asserting the importance
of selecting architectures that are specifically optimized for accurate object recognition,

particularly in difficult night time scenarios.
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Figure 4.38 Box plot of the performance distribution of metrics across various models

Table 4.8 Box plot Quartile values for various metrics across multiple models
Q1 (Lower Median Q3 (Upper Max

Metric MinValue o506y  (Q2-50%)  75%)  Value
FPS 19 1456 ~1918 3145  50.66
Recall 0025 02425 ~026 5435 75.36
F1 Score 0022 ~0204  -02425 <0651 078
mAP 0041 03425 ~040 4976 68.08
Accuracy 6 ~43.5 ~48.52 ~52.76 56.99
ROC-AUC 053 ~07125 0745 ~090275 098
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The range of accuracy values, however, is fairly compact, suggesting that the majority of
models are performing within a comparable range in terms of classification accuracy. In
spite of this, model’s emphasis on detection rather than classification is consistent with its
target application, where misclassification is an acceptable compromise for the sake of high
recall. ROC-AUC trends alongside accuracy, albeit with a modest box size that reflects the
preponderance of models that portray consistent classification powers. But far outliers like
YOLO-Tiny demonstrate limitations in architectures with respect to distinct object
discrimination. The general conclusions made from the box plot indicate that although
accuracy and classification performance are fairly consistent across models, the actual
distinguishing factors for nighttime object detection are detection ability, speed, and
localization accuracy. The broad range of these important factors indicates the superiority
of LSDNet, which is consistently in the higher quartiles in the most significant metrics.

4.5.7.2 LSDNet's Relative Performance Against Dataset Mean

The Relative Performance against Dataset Mean metric measures the superiority of a model
by comparing its values with the dataset mean. The mean and the standard deviation of
every value across all models are calculated first. Then, the z-score is calculated by Z as
the difference between the model's value and the mean divided by the standard deviation.
The higher the z-score, the higher the relative performance against other models. These are
presented in Table 4.9 with LSDNet being the best performer, and also MF Model showing
good competitive performance. The high Z-Score of 1.08 for mAP and 1.31 for Recall
validates the capability of LSDNet in object detection at nighttime, making it well-suited
for implementations such as adaptive headlamps and autonomous driving.An excellent Z-
Score of 1.37 for FPS, accompanied by enhanced Recall and mAP scores, makes LSDNet
the best model for real-time detection in dynamic scenes. This is supported by its excellent
F1 Score Z-Score (1.23), which reflects an excellent balance between Precision and Recall,
efficiently eliminating false positives and negatives. Although its Accuracy Z-Score (0.43)
is similar to the baseline model, such consistency is a conscious design trade-off, focusing

on detection at the expense of classification accuracy.

MF Model also performs well on main metrics. It has an FPS Z-Score of 1.07 to provide
effective real-time detection at the cost of minimal Recall (0.48) and mAP (0.62). While
lagging slightly behind LSDNet, it offers a sound alternative for real-time applications

where speed and detection are both critical (Figure 4.39).
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Table 4.9 Relative Performance Table for LSDNet, MF Model, and Modified SSD

Models Metric value Z-Score Relative Performance (%)

Dataset Std

Metric MF  Modified . e e
LSDNET Mean Deviation MF Modified MF Modified

Model SSD LSDNet LSDNet

Value Model SSD Model SSD
Value Value

Accuracy 52.03 55.03 53.00 44 .44 17.70 0.43 0.60 0.48 17.08 23.83 19.26
mAP 0.68 0.58 0.42 0.44 0.22 1.08 0.62 -0.11 53.38 30.63 -5.41
Recall 0.75 0.53 0.27 0.40 0.27 1.31 0.48 -0.48 88.50 32.25 -32.50
F1 Score 0.78 0.58 0.27 0.41 0.30 1.23 0.57 -0.46 90.24 41.46 -33.90
AUC-ROC 0.98 0.89 0.77 0.80 0.16 1.12 0.56 -0.19 22.50 11.25 -3.75
FPS 50.66 45.31 23.80 26.40 17.75 1.37 1.07 -0.15 91.89 71.63 -9.85
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Table 4.10 Comparison of Object Detection Models for Nighttime Applications

Model Notable attributes Performance gaps
Rarely fails to detect objects, even small ones, and Because LSDNET focuses on detection rather than classification for
LSDNET works at real-time speeds, making it suitable for night real-time headlamp compensation, some items will be misclassified,
object detection. which is fine for the purpose they are intended to serve.
Std Det Do Corregtly d_eteg:t_s most  objects, guaranteeing high Detecting delays with slower real-time response.
Model detection reliability.
General object detection is best for it, especially during May miss out on detecting tiny objects at nighttime, lowering night
YOLO V8 . . L
the daytime. detection reliability
Balances detection accuracy and speed well, making it Slightly worse recall and FPS than LSDNET, which can lead to
MF Model ) . . i ) . . ST .
a good real-time candidate for night object detection. occasional missed detections in high-speed scenarios.
- Works slightly better for detecting small objects and Has difficulty differentiating objects appropriately, resulting in
Modified SSD . . .
real-time execution than the regular SSD. increased false alarms.
SSD Works marginally more reliably for object detection. Too slow for real-time night use.
Misses majority of objects in low contrast lighting and is too slow
YOLO-Tiny Works on low-power devices. for real-time detection and thus not adequate for nighttime object

detection.
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Meanwhile, the Modified SSD model falters by comparison, with negative Z-Scores in
Recall (-0.48), F1 Score (-0.46), and mAP (-0.11) pointing at a significant reduction in
detection reliability, thus unsuitable for high-speed real-time processing. AUC-ROC scores
for LSDNet (1.12) and MF Model (0.56) verify their capacity to perform consistent
detection under varied environmental conditions, highlighting their deployment feasibility.
LSDNet's higher AUC-ROC score further emphasizes its resistance to detecting objects
(varied conditions), making it a perfect candidate for nighttime object detection where both
speed and precision are vital.

4.5.8 Model Trade-off Analysis

Determining the best detection model for this application includes assessing divergent
parameters: accuracy, recall, and FPS. As the scene is low-light, with small objects present,
the most critical requirement is to detect the objects and not classify them with high
accuracy. This trade-off analysis thoroughly assesses the models to identify the best
contender for real-time object detection in nighttime scenarios. There is a significant trade-
off in speed and accuracy, as more accurate models generally demand more computational
power, resulting in lower FPS. Models like YOLO V8 (Accuracy: 45, FPS: 14.56) and Std
Det Do Model (Accuracy: 66.21, FPS: 34) have high classification accuracy but low
inference speeds, which can cause latency in real-time detection applications.

On the other hand, LSDNET (Accuracy: 52.03, FPS: 50.66) shows a better balance by
ensuring decent detection accuracy while drastically increasing FPS, hence being more. On
the opposite end, models such as YOLO-Tiny (Accuracy: 6, FPS: 1.9) perform poorly in
both detection accuracy and real-time processing. The tradeoff (of accuracy-speed) makes
LSDNET the best as it achieves fast object detection while maintaining good classification
performance. In addition to accuracy and speed, recall and mean average precision (mAP)
are also important measures of a model's detection effectiveness and localization accuracy.
Recall is most important in nighttime detection—where false negatives (missed detections)
are more dangerous than false positives (misclassifications)—models with better recall are
preferred. LSDNET attains the best recall of 75.36 and competitive mAP of 68.08, with the
ability to detect objects with less omission and with good localization accuracy. Std Det
Do Model comes in at second place with recall of 72.37 and mAP of 66.21 and can be
relied upon as a backup. Conversely, YOLO V8 shows a comparably good mAP of 44 but
a poorer recall of 56, indicating that although it is very good at accurate localization, it will

likely lose objects, especially at night.
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Down at the bottom is YOLO-Tiny, with a recall of 2.5% and an mAP of 4.1%, falling
short of the minimum detection threshold, as expected. The focus on recall rather than mAP
also confirms LSDNET as the best model since it consistently detects objects without
substantial omission while keeping decent localization accuracy. The key comparisons of
the models are shown in Table 4.10. Another crucial metric for model performance is the
F1 Score (measure of the proportion of precision and the recall) to ensure accurate
detection. But attaining a high F1 Score should not be at the cost of real-time usability,
requiring a compromise with FPS. LSDNET surpasses other models yet again by having
the best F1 Score (0.78) while retaining a best-in-industry FPS (50.66), which makes it the
most efficient model. The Std Det Do Model, with an F1 Score of 0.778 but lower FPS of
34, is still a good alternative, albeit less efficient for real-time usage.

Other models, including SSD and YOLO, are not as good at both F1 Score (0.214 and
0.201, respectively) and FPS (14.56), and thus are less competitive for dynamic, low-
visibility settings. Because both F1 Score and FPS are very important in achieving effective
object detection, LSDNET is the most well-rounded option. Efficient computation is
important for real-world deployment, especially in embedded devices, autonomous
vehicles, and surveillance, where the processing power is constrained. LSDNET has the
best FPS without compromising on high recall and F1 Score, which means it is designed to
be computationally efficient. This is in stark contrast to YOLO V8 and SSD, which demand
much more computation to deliver mere moderate FPS and hence are not as suitable for

real-time operations.

The capacity for efficient high-speed processing with low computational overhead places
LSDNET as the best candidate for use in resource-limited environments. According to this
thorough trade-off analysis, LSDNET stands as the best optimized model for object
detection at night. It is able to balance speed, detection accuracy, and computational cost
well, making it the best fit for real-time usage where detecting objects, not classifying them,
is the goal. The model's most significant strengths are the highest FPS (50.66), guaranteeing
real-time detection ability; the highest recall (75.36), minimizing the chance of missing
objects; a competitive mAP (68.08) for precise localization; a robust F1 Score (0.78),
guaranteeing dependable detection; and effective computational efficiency, allowing it to
be deployable in real-world systems. These features make LSDNET the best model for
nighttime object detection, with its trade-offs tuned for low-light, on-road applications.
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Additional optimizations and sharpening could further improve its effectiveness in ultra-
low-light environments, but its present detection effectiveness and computational

efficiency make it the first choice for actual deployment.

4.5.9 Summary of the performance of LSDNet and future directions

LSDNet tackles the challenges of nighttime object detection by employing inference-level
adaptations that improve model effectiveness in poor illumination. Traditional detectors
fail due to poor contrast and difficulty identifying small or distant objects. LSDNet employs
the Efficient Det D, backbone with brightness-aware modulation, size-aware confidence
scaling, and class-prioritized detection for enhanced sensitivity under low-light conditions.
Benchmarking proves its supremacy: LSDNet improves recall by 4.1% over Efficient
Det D, and achieves more than 23.1% improvement in small item recall. It registers a
5.85% improvement in average precision at extreme low-light levels, with a mean average

precision of 68.08, outperforming YOLOVS8, SSD, and their variants.

LSDNet attains 50.66 FPS inference speed, improving over the baseline by 34% while
retaining higher detection quality, thus enabling real-time deployment in embedded Al
systems for ADAS, self-driving cars, and smart traffic control. The performance lies
essentially upon its dynamic adjustment of detection confidence based on scene brightness
and object size. This improves identification of vulnerable traffic participants like
pedestrians and bicycles. Class-specific weighting improves detection precision for critical
objects like cars and obstacles, thus reducing false positives. Future improvement includes
TensorRT-based acceleration for lowering latency, Transformer-based attention for
adaptive feature extraction, and GAN-based augmentation for enhanced low-light
generalization. loU-aware loss functions like GloU and DIloU are designed to improve
bounding box localization. LSDNet offers a robust, efficient, and real-time solution to
safety-critical low-light detection tasks, with huge potential in autonomous vehicles, smart

surveillance, and adaptive illumination systems.

4.5.10 Summary of the performance analysis of the object detection

models
LSDNET is the most reliable and effective model for object recognition at night,

particularly in real-time adaptive headlamp applications, based on a comparative
performance evaluation of alternative object detection models. At night, LSDNET

accurately detects small or occluded objects with a 0.78 F1 score, a 52.03% detection rate,
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and an extremely high mean average precision of 68.08%. Its 50.66 frames per second
(FPS) real-time processing ability further enhances its suitability for situations involving
fast-moving cars. This limitation is tolerable in adaptive headlamp compensation, where
immediate availability of an object is more important than its precise label, even though its
primary emphasis is on object detection rather than classification, which sometimes leads
to misclassifications. High reliability is also reflected by the Standard Detection Do model,
with an acceptable AUC-ROC score of 0.98 and an F1 score of 0.778. Its reduced
processing speed (34 FPS) at high-speed driving, though, could result in noticeable lag
when compared to LSDNET. The Modified SSD and Multi-Faceted (MF) models are
balanced ones with a mid-level speed and detection rate. Especially in normal nighttime
driving conditions, the MF model performs well; however, it lags behind LSDNET in recall
and real-time response, which may lead to occasional missed detection when traveling at

high speeds.

On the other hand, YOLO-V8 has issues with identifying small or low-contrast objects
during nighttime, although it is robust in typical object identification scenarios and daytime
settings. This affects its reliability in uses where these types of detections are needed during
nighttime. Typical SSDs do not have the speed required for real-time processing, although
they have a good detection power. Although created to be executed on low-power
hardware, YOLO-Tiny falls short due to its slow inference time and poor low-light
performance. In conclusion, LSDNET is the optimal model for nighttime object recognition
in real time, while MF and Mod SSD serve as secondary options for a few particular
situations. Due to their poor performance at night, models such as the YOLO-Tiny and the

standard SSD are not suitable for consideration by adaptive headlamp systems.

4.6 Overview on the Lane detection techniques

This subsection discusses a lane detection method for adaptive headlamp control that
calculates steering angle and curvature through OpenCV-based methods to set beams to
increase illumination. It also identifies the manner in which deep learning is replacing
traditional feature-based approaches for detecting roads [76]. Because of their ability to
perform end-to-end feature extraction and learning [78], CNNs have replaced more
traditional methods like HoG and RealBoost in tasks such as pedestrian and vehicle
detection [24][77][11]. Even though CNNs are more accurate, real-time adjustments such

as YOLO and Fast R-CNN have been introduced because of their computational
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requirements [79]. To cope with challenging conditions such as weathered lane markers,
curves, and glare, lane detection methods have developed. Probabilistic models and sensor
fusion approaches (e.g., camera + LiDAR) enhance robustness [41][83], while vanishing
point detection [86] and graph-based ranking [85] enhance boundary estimation in
complex road textures. Lightweight inference models [82] and semantic segmentation
networks such as UPA and UBA [88] provide high spatial accuracy at low overhead,
making them suitable for embedded systems. For improving performance, recent models
further focus on trajectory prediction using spatial feature pooling [90] and monocular
vision [89]. Obstructions, faded lane markings, and varied road geometries still pose
challenges.  Improving adaptive lane-aware headlight systems requires a deeper

integration of deep learning with multi-sensor fusion and semantic reasoning.

4.7 Framework for lane detection and integrating LSDNet

model to operate in multiple driving scenarios®[108]
Lane detection is crucial for autonomous vehicles and driver-assistance systems, enabling

safe navigation and precise decision-making. This section details a comprehensive lane
detection technique, illustrated in Figure 4.40. The method employs various image
processing methods to reliably recognize lane markings across diverse environments.
Initially, a gamma correction function enhances the brightness and contrast of the original
image. Subsequently, the gamma-corrected image undergoes bilateral filtering to smooth
it while preserving essential edge information. The Canny edge detection technique,
applied through the canny function, extracts relevant edges, generating a binary image

highlighting the detected edges.

The Hough transform function is then utilized with both the original and binary edge-
detected images to locate lines within the edge-detected image. This method employs
thresholding, grayscale conversion, and line detection to create an image displaying
realized lines and relevant information. A clustering technique is developed based on
parameters derived from identified lines and the original image, enhancing and ordering
the detected lines. Related lines are clustered, resulting in detected lane lines. An HSV

filter is subsequently applied to the BGR image, along with assigned minimum and

6 Section 4.7 of this Chapter was presented at an International Conference and has received the Best Paper Award. The
details are as follows: Toney, Glenson, Sethi, Gaurav and Cherry Bhargava. "A Novel Lane Detection Approach for
Vehicle Adaptive headlamps” International Conference on Advances in Smart Sensor, Signal Processing and
Communication Technology, Goa University, India, March 2024

175



maximum HSV values for yellow and white colors, distinguishing lane marker colors. The
resulting image accentuates pixels within the specified color range relevant to lane
markings by filtering pixels within specified thresholds. This algorithmic approach
correctly identifies and distinguishes lane markers across various environmental scenarios,
potentially enhancing the safety and efficiency of driver assistance and autonomous

driving systems.

Image frame from
the on-road video

2

Gamma

RelU

Correction

Adjusts image brightness and
contrast for better clarity

Batch

Activation

Smoothens the image while
preserving the edges
important for lane markings

Batch

Normalisation \

Identifies relevant edges
and creates a binary image
highlighting them

Batch J

Skip Connection

Normalisation

Normalisation
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for finding the lane lines

Isolates pixels within the
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—
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Figure 4.40 The lane detection intermediate processes [108]

The Gamma Correction tool improves image quality by adjusting brightness and contrast

to account for the nonlinear relationship between pixel values and perceived brightness.

I.=1"

original

(4.38)

Equation (4.38) defines the gamma correction function, where | represents the original
pixel intensity, I.denotes the corrected pixel intensity, and y alters the image's brightness
and contrast. Higher gamma values (> 1) emphasize details in brighter areas, while lower
values (< 1) enhance details in darker areas, helping to compensate for changes in the
display system's response curve. This correction enhances the image's dynamic range and

tonal representation, particularly in scenarios with varying lighting and exposure levels.
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To preserve edges and reduce noise, the bilateral filter (Equation 4.39) functions as a non-
linear, edge-preserving smoothing filter, averaging pixels based on spatial closeness and

intensity differences.
. 1
Bilateral(l, a5, o) = W_p quQGs(”p —qll, g5)- G(| I, = Ir”'o—r)'lq (4.39)

Here, Wp represents the normalization term, I, and lq are intensity values at pixels p and
q respectively, Gsis the spatial Gaussian kernel function with standard deviation oy, Gy is
the range Gaussian kernel function with standard deviation gy, and | is the input image.
Additionally, a Gaussian filter is applied to smooth the image, controlled by the standard
deviation of the Gaussian kernel, regulating smoothing intensity. Sobel operators calculate
the gradient of the smoothed image, aiding in discerning intensity variations in both
horizontal and vertical directions. Subsequently, non-maximum suppression retains only
local maxima along the gradient direction, resulting in thinner edges and preserving only

the strongest edge responses.

After detecting potential edges, a double thresholding process distinguishes strong and
weak edges based on gradient magnitudes relative to high and low thresholds. Strong edges
have magnitudes above the high threshold, while weak edges fall between the low and
high thresholds, with pixels below the low threshold discarded. Edge tracking, based on
hysteresis, connects weak edges to strong ones, considering only those weak edges linked
to strong ones as components of an edge, guided by gradient directions. Configuring
thresholds is crucial and depends on image properties, balancing sensitivity (detecting all

edges) and specificity (excluding noise).
r = xcos(8) + ysin(0) (4.40)

The Hough Transform represents detected shapes in a coordinate system, employing polar
representation (Equation 4.40). Here, (r, 8) denotes a point in Hough space, with 6 as the
angle between the x-axis and the line, and r as the perpendicular distance from the origin
to the line. Votes aggregate in the Hough space, a 2D parameter space representing r and
6 for line detection. Each edge pixel contributes to a sinusoidal curve in the Hough space,
accumulating votes for intersections of corresponding curves, revealing lines in the image
as peaks in the Hough space. Normalization enhances lane marking visibility in low-light
driving conditions by ensuring consistent pixel values (Equation 4.41). This aids clustering

algorithms in distinguishing lane markings from dark backgrounds.
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P _ P—-min(P)
norm max(P)—min(P)

(4.41)

The K-means algorithm (Equation 4.42) is employed to minimize the within-cluster sum
of squares, where I represents the image, C denotes the cluster centroids, and ||-|| indicates

the Euclidean norm and distance metric.

argmin $5_; T\ — C\\2 (4.42)

Euclidean distance (Equation 4.43) calculates the distance between two points in
Euclidean space, aiming to minimize the sum of squared Euclidean distances within
clusters. Each cluster corresponds to a distinct lane or background region. Euclidean space

is given by
d(1;,Cie)= [I1;—Cill (4.43)

The HSV (Hue, Saturation, Value) filter represents colors in a color space that separates
chromatic information (hue and saturation) from intensity information (value or
brightness). Particularly useful for color image analysis and editing, the HSV filter allows
manipulation of various color ranges without directly altering intensity, making it effective
in different lighting conditions.

4.7.1 The lane detection

The input image's pixel intensities, illustrated in Figure 4.41, undergo modification using
the Gamma Correction Function, depicted in Figure 4.42. This mathematical adjustment
employs a power-law relationship to correct gamma, thereby enhancing brightness levels,
improving contrast, and highlighting details in both bright and dark areas. The resulting
pixel values provide a perceptually accurate representation of the original image. The
Bilateral Filter function, demonstrated in Figure 4.43, smoothens the input image by
suppressing noise while preserving significant edges and patterns. This filter considers
spatial proximity and intensity differences between pixels, ensuring effective noise
reduction. Utilizing the Canny Edge Detection method, a binary edge map is generated,
depicted in Figure 4.44, categorizing pixels based on their gradient magnitudes. This map
aids in identifying essential image properties by highlighting principal edges and reducing
false positives in noisy images. Figure 4.45 illustrates the Hough Transform, which
performs shape recognition tasks such as line and circle detection. Particularly useful for

identifying lines and curves within images, this transform utilizes a line's slope (m) and y-
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intercept (b) to represent it in the Cartesian coordinate system. Figure 4.46 presents the
chromatic details of the image frame, while Figure 4.47 a & b showcases lane recognition
and projection during lane changes and vehicle movement. These projections accurately
reflect the road on which the vehicle is traveling. The model detects lane projections and
computes the left and right curvatures based on these projections, as depicted in Figure
4.49 a & b. By analyzing the lane outer and inner curvatures along with the vehicle's
wheelbase, the model estimates the vehicle's slip angle, also known as the steering angle,
which determines how much the vehicle's body should tilt in relation to the tires
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Figure 4.47 Figure 4.48
Both during lane changes and while the vehicle moves across the path, lane
recognition and projection are performed. The road that the car is traveling on is
reflected in these projections.

Left Curvature: 608.79 m
Right Curvature: 364.93 m
Turn: Right Turn

Left Curvature: 290.69 m
Right Curvature: 57.05 m
Turn: Right Turn

Figure 4.49 Figure 4.50

The left and right curvatures are computed by the model based on the lane
projections. In a and b, the model that forecasts the lane projections under
various lighting scenarios is displayed.

This information is crucial for adjusting the vehicle's headlights to illuminate the road
optimally, especially in low-light conditions, as shown in the model's predictions under
various lighting scenarios. Accurately predicting the slip angle is essential for ensuring
maximum visibility and safety while driving, particularly at night. VVehicles equipped with
systems that adjust headlamp angles based on this information can effectively respond to
changes in road conditions, thereby enhancing driving safety and overall experience while

reducing the risk of accidents.

4.7.2 The calculation of the angle of vehicle wrt to the lane curvature

Following lane detection, the model assesses the angular disparity between the center of
the dashboard (blue line) and the center of the lane (red line), illustrated in figure 4.51. In
this depiction, the distance 'd’ between the lower edge of the dashboard and the center (0,0)
of the screen remains constant, while the distance between the screen's origin (0,0) and

point r(x',y') varies.
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Figure 4.51 The dashboard perspective to compute the compensation value for
adjusting the headlamp to enhance visibility when the vehicle executes a turning
maneuver within the lane.

Table 4.11 The headlamp adjustment criteria based on the lane trajectory and the
values of the intermediate variables - r and 6.

Vehicle .

Condition r value 0 value Left Headlamp Right Headlamp
No turn 0 0 No No

Left turn <0 Negative Yes No

Right turn >0 Positive No Yes

The angle 8, denoting the lane angle, reflects the adjustment needed for headlamp
illumination. This angle is calculated using the formula 8 = arctan(r/d). Table 4.11
presents the values of r and 6 for different lane conditions and the corresponding headlamp
adjustments for improved illumination. This is assuming the fact that the dasboard screen
size is fixed and the center line remains constant. The Vehicle Condition describes
different driving situations, including no turn (when the vehicle travels straight along a
lane), left turn, and right turn. The r Value row quantifies the lateral deviation of the vehicle
from the lane's centerline, with negative values indicating leftward deviation and positive
values indicating rightward deviation. Meanwhile, the 6 Value represents the angular

deviation of the vehicle from the lane's centerline, calculated based on the arctan function.

During a left turn, the vehicle deviates to the left, resulting in negative values for both 'r'

and 8, while during a right turn, the vehicle deviates to the right, leading to positive values
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for'r'and 6. The last two rows indicate whether compensation is applied to the left or right
headlamp based on the vehicle's lateral deviation. For example, during a left turn,
compensation is applied to the left headlamp to illuminate the turning path, while during a
right turn, compensation is applied to the right headlamp. In scenarios where the vehicle
travels straight along the lane, no compensation is applied to either headlamp. This
compensation mechanism ensures optimal illumination of the road, enhancing visibility

and safety, particularly during turning maneuvers.

4.8 Integrating the multifaceted object identification model and the lane

detection model

Enhancing beam light adjustment along a curve and dynamically toggling high and low
beams depending on object detection is essential to provide effective performance in all
these scenarios. PCB hardware implementation is utilized for this integration. As indicated
in Figure 4.52, this approach enables seamless integration of complex object recognition
models and beam angle adjustments based on predictions from lane detection models. This
hardware structure enables real-time processing and response to dynamic road conditions,
enhancing night driving safety and comfort. The revolutionary dynamic headlamp
alignment and high beam adjustment technology combines hardware and Al models to

enhance driving safety and comfort.

It employs a Raspberry Pi 4, multidimensional Al models, lane detection, MOSFET, and
servo motors. These elements combine to accurately change headlamp position and control
high beams automatically depending on traffic conditions. A XL7056 buck converter
supplies the Raspberry Pi and other logic circuits, and the XL4015 supplies servo motors
and high beam strips. Pulse Width Modulation (PWM) technology from the Raspberry Pi
manages the servo motors and high beam strips, enabling precise headlamp orientation
adjustments according to Al model lane detection information. The Al algorithm forecasts
the inner and outer lane curvatures, which are used to determine the optimal headlight

orientation during turns.

Another essential part of the system is the holistic object detection Al model, which can
accurately detect cars, pedestrians, and barriers. MOSFET (IRF520) triggers when
something is sensed, extinguishing the model's high beam strip. MOSFETs enhance
reliability and switching rates, allowing fast road condition reactions. The MOSFET

182



minimizes pedestrian and auto glare by keeping the high beam strips isolated from the
ground, enhancing safety on the road. This entire system combines innovative technology
to address nighttime driving issues. The hardware model is based on the object detection

and lane detection model's lane curve angle information of the Al model.
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Figure 4.52 The dashboard view for the calculation of the value for compensating the
headlamp for improving visibility as the vehicle does a turning maneuver across the
lane

The surface-mounted device PCB layout for implementing the adaptive headlamp control
unit is shown in Fig. 4.53 a and the actual dual layer PCB in Fig. 4.53 b. The PCB layout
of the LED arrangement (for both high and low Beams) and their interconnections are
shown in Fig. 4.53 ¢ and Fig. 4.53 d respectively. A 3D model of the adaptive headlamp is
shown in Fig. 4.54 a and the top-view of the 3D printed Headlamp is shown in Fig. 4.54 d.
The high and low beam configuration are shown in Fig. 4.54 b and Fig. 4.54 c respectively.
To prevent glare to other drivers, turn the headlamp to low beam when an object or vehicle
is sensed on the road. The MOSFET turns off the high beam strip to avoid headlights
blinding oncoming drivers. Figure 4.55 illustrates the high beam control signal plot. A high
pulse indicates the high beam is ON, while a zero pulse suggests an object was detected

and the high beam strip is off.
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Figure 4.53 The PCB designs and implementation.
Obijects were detected during frames 20 to 250, 260 to 270, and 360 to 500, disabling the
high beam strip. This feature enhances driving comfort and eliminates headlamp manual
adjustments, which lessens driver stress. Adaptive lighting control systems are also
applicable to autonomous vehicles to enhance road safety and efficiency. Figure 4.56
indicates how the system computes lane deviation in relation to the vehicle path and

compensates the light beam to enhance road visibility.

The compensation angle approximately equals the deviance, depicting the tire-body angle
of the vehicle. The body angle of the vehicle is different from its tire angle when turning
and makes the headlamp deviate from the lane angle. It sends a control signal to regulate
the headlight by the angle detected to correct the deviation and align it with the wheel angle,
as illustrated in the figure. This dynamic adjustment mechanism optimizes illumination,
particularly in turns, enhancing driver safety and visibility. The system operation is carried

out by the functioning of Servo Motor 1 and 2, for the left and right headlamps respectively.
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(a) The 3D design of the adaptive
headlamp designed using Autodesk
Fusion 360.

b) High-beam configuration (d) The topview of the model.

Figure 4.54 The software design and the
hardware prototype of the adaptive
headlamp model for integrating the
LSDNet and the Lane detection
techniques.

(c) Low-beam configuration

As shown in Table 4.11, Servo 1 functions in the case of left turns, while Servo 2 is on for
right turns. Figure 4.57 illustrates that Servo 1 is on for left turns while Servo 2 remains
off for 100 frames. The duties transition from frame 100 to close to 400 in right turns. This
modification enhances road perception and driving. Table 4.12 and Figure 458 a & b
demonstrate that object detection and trajectory angle identification can simultaneously be
achieved. Table 4.12 illustrates what occurs when no vehicle or object is detected during
lane shifting or when there is no change. Control signals are used by the hardware
prototype to control these situations. They regulate the MOSFET for the high-low beam
switching and the PWM signals for the compensation of trajectory angle. It's made for

unpredictable road conditions of nighttime driving.
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Figure 4.55 The plot illustrates the pulse modulation responsible for activating
and deactivating the MOSFET, subsequently regulating the high beam strip of
the vehicle's headlamp.
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Figure 4.56 Variation plot of the vehicle along the trajectory and the
corresponding angles calculated by the lane detection model.
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Figure 4.57 The duty cycle of servo motors 1 and 2 during left and right maneuvers
of the vehicle across frames.
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Figure 4.58 b

Figure 4.58 The model integration enables the concurrent detection of on-road

objects and the trajectory angle.

Table 4.12 The adaptive headlamp compensation details to the changing conditions
encountered during on-road driving. The table illustrates the intermediate status of
the hardware prototype, indicating the control points for this implementation wrt
the Figure 4.52

MOSFET Status
Condition IRF620 MOSFET of the Is Is
On-road of the Control IRF620 Beam PMW1 PWM?2
Condition Traiector Signal Operating L obe (Pin 33) (Pin 32)
] y Pin (Pin  Region . Varied? Varied?
Strip
24)
No Object Hiah
or Vehicle  Noturn High Saturation g No No
beam
detected
No Object Hiah
or Vehicle  Left turn High Saturation g Yes No
beam
detected
No Object Hiah
or Vehicle  Right turn High Saturation g No Yes
beam
detected
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MOSFET

condition  'RF620  MOSFET iﬁﬁf Is Is
On-road of the Control IRF620 Beam PMW1 PWM2
Condition Traiector Signal Operating L obe (Pin 33) (Pin 32)
! y Pin (Pin  Region . Varied? Varied?
Strip
24)
Object or
. Low
Vehicle No turn Low Cutoff Yes No
beam
detected
Object or
] Low
Vehicle Left turn Low Cutoff Yes No
beam
detected
Object or
. . Low
Vehicle Right turn Low Cutoff No Yes
beam
detected

4.9 Discussion

The design of an adaptive headlight management system based on real-time sensing to
enhance the safety of nighttime driving was discussed in detail in Sections 4.6 to 4.8. To
adjust beam direction and intensity based on driving conditions, the system integrates
object recognition, vehicle trajectory estimation, and lane detection. OpenCV is employed
to detect lanes through conventional techniques like bilateral filtering, gamma correction,
Hough transform, and Canny edge detection. This enables the estimation of the steering
angle and yaw rate, making beam deflection compatible with the road curvature.

When obstacles or cars are detected, dynamic beam switching is enabled through
LSDNet's illumination-aware preprocessing and confidence modulation that manage
object detection. Object and trajectory inputs are mapped to specific beam lobe and
intensity responses by a rule-based control algorithm. Simulation, visual plots, and profiles
of control signals under different road conditions were employed to validate the system's
effectiveness. With its light computational load, quick response, and scalability, the
framework—developed for embedded systems—is a good starting point for next-

generation ADAS applications that include sensor fusion and deep learning control.

4.10 Summary

To enhance safety and visibility while driving at night, this chapter (section 4.1 to 4.5)
gave a comprehensive architecture that integrates trajectory-based beam management and
advanced object identification. A comparative analysis of object identification models in
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the first section confirmed that LSDNet was the most reliable in low-light environments.
In challenging light environments, LSDNet exhibited its best performance in detecting
small and occluded objects with an impressive F1 score of 0.78, detection rate of 52.03%,
and real-time processing at 50.66 FPS. In adaptive headlamp usage, LSDNet's balance of
speed and accuracy made it the optimum choice, although other choices such as the MF

model and Modified SSD had average performance.

The second segment (section 4.6 to 4.9) built on this by incorporating LSDNet into an
adaptive illumination system with lane awareness. The system projected the vehicle
trajectory and steering angle by deriving lane boundaries and curvature through OpenCV's
classical image processing algorithms. This was utilized for dynamic direction and
intensity beam control in combination with real-time object detection via LSDNet. Turning
behavior and object presence were translated into precise beam commands by a rule-based
control logic. Simulation and signal analysis were employed to verify the entire system,
which demonstrated low processing cost, responsiveness, and scalability for embedded
deployment. This work provides the foundation for future integration with sensor fusion

and deep learning control methods.
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CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

In this thesis, the development and design of adaptive headlamp systems for automobiles
are examined with the objective of enhancing the safety and comfort of driving using
advanced technology. The purpose of this study was to solve a long-standing issue of
automotive safety: the inadequacy of conventional car headlamps during night driving,
especially on winding roads and in poor visibility conditions. The limitations of static beam
headlights, compounded by the Troxler effect, pose significant risks to both pedestrians
and vehicles.

This thesis offers a novel, holistic framework that integrates dynamic modeling, predictive
control, and intelligent perception for adaptive headlamp systems. The research offers
implementable, and scalable techniques to enhance nighttime driving safety by meeting
four major goals. The main goal was to emulate a controller derived from a mathematical

model for the control of headlamp beams, i.e., for curved road sections.

This was obtained through the development of a high-fidelity dynamic vehicle model with
longitudinal, lateral, and yaw dynamics, as well as tire forces, aerodynamics, and braking
influence. Accurate computation of the vehicle's slip angle was necessary to estimate the
actual trajectory in cornering maneuvers. A Proportional Controller was used first to
proportionally relate the slip angle to the headlamp deflection angle, aligning the beam with
the vehicle's actual path rather than the theoretical direction of steering. A Filtered
Proportional Controller was used to account for actuator delay and provide a smooth beam
transition. This filtered strategy reduced beam jitter during rapid maneuvers, ensuring

perceived stability and improved alignment with real-time dynamics.

The model was tested over a number of synthetic road profiles and driving speeds, showing
stable and responsive control of the headlight direction in accordance with the vehicle's
behavior under real-world conditions. The second goal was to suggest a perception
algorithm capable of identifying on-road objects and coming traffic in order to dynamically
adjust beam intensity and direction and counteract the Troxler effect. This led to the
development of LSDNet (Low-light and Small-object Detection Network), a deep learning

model optimized for night-time driving conditions.
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LSDNet was specifically designed to perform well in low-light environments, able to detect
small or subtle objects—Ilike pedestrians, vehicles, and stationary obstacles—that can be
overlooked by traditional vision systems. The model was compared with leading object
detectors such as SSD, Faster R-CNN, YOLO, and Tiny-YOLO. The results showed
LSDNet's improved recall, detection accuracy, and robustness against lighting condition
variations. LSDNet enabled accurate, low-latency detection of oncoming vehicles and
roadside hazards, enabling the system to adaptively control the beam, reducing glare to
other motorists while enhancing drivers' visibility—directly addressing the root causes of

the Troxler effect.

The second goal was to integrate the beam steering module and object recognition module
into a single system that could optimize headlamp direction and intensity simultaneously.
This unification led to the creation of a Fused Controller—a unified architecture that
combines FF-MPC (Filtered Feedforward Model Predictive Control), E-MPC (Extended
Model Predictive Control), and perceptive outputs from LSDNet. The Fused Controller
combines predictive modeling of road geometry through slip angle and steering-based
prediction with real-time environmental perception through object detection.

This fusion allows the system to pre-steer beams through bends, modulate intensity based
on observed traffic and pedestrian movement, and enable smooth state transitions. The
Fused Controller combines dynamic modeling with semantic perception to enable
anticipatory and context-aware illumination beyond typical rule-based or sensor-only
adaptive systems. The combined system contains a perceptual-control synergy that enables
adaptive lighting decisions to be proactive and reactive depending on the situation. The last
goal was to measure the performance of the system in terms of efficiency, latency, and
accuracy under simulated road test conditions.

An extensive series of tests were performed on a 2-kilometer virtual road with varied
curvatures and traffic conditions. The results showed that the FF-MPC and E-MPC
controllers outperformed conventional methods in beam alignment accuracy and
responsiveness. The Fused Controller improved on these features by adapting to dynamic
conditions, like the sudden appearance of oncoming traffic or unpredictable bends, with

minimal latency and high dependability.
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LSDNet achieved a very high mAP and FPS tradeoff, making real-time inference possible
while reliably detecting low-contrast objects all the time. The latency across the full
control-perception loop remained below tolerable thresholds for driving applications,
ensuring fast and accurate headlamp response. The proposed system demonstrated
considerable improvements on all criteria measured against existing adaptive headlamp
technology, affirming the feasibility of an intelligent, safety-focused headlamp design.

This thesis offers a new and holistic approach to adaptive headlamp design.

It offers a novel integration of dynamic vehicle modeling with deep learning-based
perception, leading to a Fused Controller that effectively manages both the direction and
intensity of headlamp beams. This cross-disciplinary integration provides a strategic
answer to the challenges of night driving, particularly in turbulent or ambiguous
environments. The emphasis on real-time reaction, perceptual robustness, and adaptive
control ensures that the proposed system improves driver visibility and enhances road
safety for all users. This work provides a solid foundation for future developments in

intelligent automobile lighting and active safety systems.

5.2 Future Developments

The adaptive headlight system has demonstrated impressive performance in simulations;
however, several avenues are available to enhance its practicability, robustness, and
readiness for deployment in real-world applications. One of the central area is the real-
time operation on vehicle hardware. The control algorithms and LSDNet perception model
need to be optimized for deployment on vehicle-grade ECUs with tight limits on power and
memory. This involves the application of model compression techniques, such as pruning,
quantization, and knowledge distillation, to reduce inference time and resource usage,

thereby enabling real-time operation without the need for specialized GPUs.

The next step is in-vehicle testing in real-world environments and evaluating its
performance under real driving conditions will expose integration problems like actuator
delay, sensor oscillation, and misalignment. Practical tests deliver empirical tuning of
controller parameters and collection of driver data, thereby guaranteeing the reliability and
responsiveness of the system in dynamic situations. Another area is multi-sensor fusion.
LSDNet works well for low-light object detection; however, incorporating it with LiDAR,
radar, or thermal sensing might make it more robust in bad weather like rain, fog, or low-

contrast conditions. Radar can detect incoming vehicles under low visibility, while thermal
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cameras enhance the detection of pedestrians or animals at night. Fusion strategies, such
as early or late integration, can be explored to combine the strengths of different modalities

for greater object awareness.

Adaptive learning algorithms can further refine beam adaptation on the control side.
Techniques like reinforcement learning or fuzzy adaptation would be able to offer
personalization based on driver behavior or road conditions. Hybridizing learning-based
methods with the model predictive control (MPC) architecture aids in balancing
deterministic safety regulations and pragmatic adaptability. The proposed Fused Controller
can also evolve through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication. The device can actively alter beams before visual detection by getting
data from other cars or roadside units about upcoming curves, obstacles, or traffic
congestion. This shared perception can reduce latency and improve decision-making

accuracy. A key point is compliance with automobile regulations and industry standards.

Given that adaptive lighting is strictly regulated, it is essential to ensure the system
complies with beam cutoff limitations, glare thresholds, and redundancy standards.
Subsequent endeavors should encompass formal verification of control logic,
implementation of fail-safe defaults, and engagement in standardization initiatives. This
will facilitate the process of certification and commercial implementation. Scalability
represents a crucial aspect. The system needs to be adaptable over a range of vehicle
categories, including two-wheelers, commercial vehicles, and public transport. Every
platform has unique dynamics and constraints, but may benefit from improved lighting
intelligence. Perceptual and control layers will be modularized to increase adaptability
over different platforms and applications. The evolution of automobile technology
demands the integration of autonomous driving and ADAS systems as a logical progression.

The intelligent beam control system can be used in combination with lane-keeping,
pedestrian detection, and night-time course planning. This creates a wider context in which
lighting is an integrated part of a total safety system. This thesis introduces an adaptive
headlamp architecture that provides a sound basis for future development in intelligent
vehicle lighting. The possibilities for enhancing and extending this work, from real-world
implementation to advanced sensor integration, regulatory cooperation, and cross-platform
portability, are significant. With the increasing emphasis on vehicle safety and autonomy,
these systems are likely to become standard features in the next generation of smart vehicles.
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Comparison of Object Detection Models and Vehicle Models for Adaptive
Headlamps from Literature Review

This annexure presents six illustrative figures developed as part of the literature review for the
thesis. The figures are intended to provide a comparative visualization of techniques discussed
as part of the literature review. The charts are based on normalized and qualitative
approximations derived from reported trends in peer-reviewed literature. They are not
experimental data, but conceptual visualizations meant to highlight the evolution of detection
methods, learning frameworks, and vehicle models used in adaptive headlamp systems.

A1l-1 Figure 2.3 — Performance Comparison of Traditional Object Detection Features
A1-2 Figure 2.4 — Comparison of ML Classifiers for Vehicle Detection

A1-3 Figure 2.5 — Accuracy vs Inference Time of Deep Learning Detection Models
A1l-4 Figure 2.7 — Comparative Analysis of Vehicle Path Models

A1-5 Figure 2.8 - Model Stability and Parameter Dependence

A1-6 Figure 2.9 — Trend of Model Evolution for Adaptive Headlamp Systems
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Al-1 Figure 2.3 — Performance Comparison of Traditional Object Detection Features

Objective:
To compare the performance of SIFT, SURF, and HOG feature extractors based on relative
accuracy, speed, and computational efficiency.

Feat
Eiztlr:z:or Accuracy | Speed | Efficiency Rationale
SIFT 9 6 7 Highly ro'bust and accurate but
computationally heavy.
SURF 7 ] 2 Balanced speed and accuracy, improved
performance over SIFT.
HOG 6 9 9 Fastest and lightweight, lower
discriminative power.
Performance Comparison of Traditional Object Detection Features
9 9
8 -
e
2

0_

—
=
w

SURF
HOG

Feature Extraction Method

BN Accuracy BB Speed W Efficiency
The figure shows the trade-off between accuracy and speed in traditional handcrafted features.

SIFT offers superior robustness at the cost of computation, whereas HOG provides rapid
feature extraction suitable for embedded use.
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A1-2 Figure 2.4 — Comparison of ML Classifiers for Vehicle Detection

Objective:
To illustrate the comparative performance of SVM, KNN, and AdaBoost classifiers based on
qualitative assessment of accuracy, speed, and model complexity.

Classifier | Accuracy Speed Complexity Description
High ionall
SVM 9 6 3 1g a<‘:curacy, computationally
expensive.
KNN 7 7 6 Simple but slow at inference.
AdaBoost g 9 7 Balanced ensemble with good

speed and robustness.

Comparison of Machine Learning Classifiers for Vehicle Detection
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AdaBoost exhibits better efficiency than SVM while retaining strong accuracy. These
models bridge the transition from static feature-based systems to learning-based frameworks.
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A1-3 Figure 2.5 — Accuracy vs Inference Time of Deep Learning Detection Models

Objective:
To compare major deep-learning-based object detection architectures used in adaptive
headlamp systems.

Accuracy | Inference Time L.

Model (%) (ms/frame)* Characteristics

R-CNN 9 2000 High accuracy, very slow (region
proposals).

Fast R-CNN 90 500 Faster, single-stage training.

Faster R-CNN 88 250 Uses region proposal network for speed.

YOLOV3 85 40 Real-time detection with regression
approach.

SSD 27 60 Slightly slower than YOLO, comparable
accuracy.

*Approximate values based on reported benchmarks in cited literature.

Accuracy vs Inference Time of Deep Learning Detection Models

- 2000

80 - - 1750

- 1500

60 - - 1250

- 1000
40 -

Accuracy (%)

- 750

- 500

Inference Time (ms/frame)

20 -

R-CNN Fast R-CNN Faster R-CNN YOLOv3 SSD

Detection Model

B Accuracy (%) =—@= Inference Time (ms/frame)

A clear inverse relationship exists between accuracy and inference time. R-CNN-based models
offer superior precision but are unsuitable for real-time headlamp control. YOLO and SSD
strike an optimal balance for embedded automotive implementation.
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A1l-4 Figure 2.7 — Comparative Analysis of Vehicle Path Models

Objective:
To compare geometric, kinematic, and dynamic vehicle models used for path prediction in
adaptive headlamp systems.

Complexity | Real-Time ..
Model Accuracy (In\?erse)y Feasibility Description
Geometric 6 8 6 Basic, low computational cost.
Kinematic 7 6 7 Includes velocity and heading angle.
Extended g 5 g Adds dynamic constraints and
Kinematic correction terms.
Pure Pursuit 7 7 6 Target-based path tracking.
Vector Pursuit g 4 5 Suita?ble for complex curvature
tracking.
Clothoid Curve 9 7 9 High precision for smooth curves.
Dynamic 9 5 . Realistic,'physics-based but
computationally heavy.

Comparative Analysis of Vehicle Path Models for Adaptive Headlamps

9 9 9
8 8 8
8_
7 7 7 7 7 7
6 6 6 6
6-
5 5 5
4
4_
2,
0_

Geometric Kinematic  Extended Kinematic Pure Pursuit Vector Pursuit Clothoid Curve Dynamic

Normalized Performance Score (1-10)

Model Type
N Accuracy EEE Complexity (Inverse) Wl Real-Time Feasibility
The figure highlights how models evolve from computational simplicity to high-fidelity

realism. The Clothoid and Dynamic models achieve superior accuracy but require greater
computational resources.
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A1-5 Figure 2.8 — Model Stability and Parameter Dependence

Objective:
To compare the models based on stability, sensor dependence, curvature handling, and
implementation complexity.

Qualitative Scale (1-10):

Model Stability Deszzfi‘:;cy C};‘:ﬁlti‘:ge Complexity
Geometric 6 5 5 8
Kinematic 7 6 7 6
Extended Kinematic 8 7 8 5
Pure Pursuit 6 5 6 7
Vector Pursuit 7 6 7 5
Clothoid Curve 9 7 9 6
Dynamic 9 8 9 4

Model Stability and Parameter Dependence
Sensor Dependency
Curvature Haifdli ability

Implementation Complexity

—— Geometric —— Pure Pursuit —— Clothoid Curve
Kinematic ——— Vector Pursuit Dynamic
—— Extended Kinematic

Extended kinematic and clothoid-based models provide optimal trade-offs between curvature

handling and complexity, while dynamic models score highest on realism but demand
additional sensory and computational support.
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A1-6 Figure 2.9 — Trend of Model Evolution for Adaptive Headlamp Systems

Objective:

To depict the gradual evolution of vehicle path modeling techniques in adaptive headlamp
research.

Model Physical Realism Computational Cost
Geometric 4 3
Kinematic 5 4

Extended Kinematic 6 5

Pure Pursuit 6 5

Vector Pursuit 7 6

Clothoid Curve 8 7

Dynamic 9 8

Trend of Model Evolution for Adaptive Headlamp Systems

Normalized Scale (1-10)

\ ' \ \
Geonetric Kinematic Extended Kinematic Pure Pursuit

Model Progression

== Physical Realism == Computational Cost

The figure shows an ascending progression in physical realism with each generation of models,
indicating a steady shift from simple geometric assumptions toward integrated dynamic

' |
Clothoid Curve Dynamic

systems capable of handling tire slip, yaw rate, and steering nonlinearities.

All quantitative values in the figures represent normalized qualitative trends synthesized from
descriptive analyses and corroborated by benchmark literature. They serve to visually illustrate
technological progressions and comparative behavior among algorithms and models used in
adaptive headlamp research. These approximations are meant to strengthen conceptual

understanding within the literature review, not to replace empirical validation.

215




