
QoS-aware Adaptive Data Dissemination in Mobile Edge
Computing Ecosystem

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

in

Computer Science & Engineering

By

Gagandeep Kaur

Registration Number: 41900514

Supervised By Co-Supervised by

Dr. Balraj Singh (13075)
Department of Computer Science &

Engineering (Associate Professor)

Lovely Professional University, Punjab,

India

Dr. Ranbir Singh Batth (64540)
Lecturer and Unit Coordinator

Sydney International School of Technology

and Commerce, Australia

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB
2025



ii

DECLARATION

I, hereby declared that the presented work in the thesis entitled “QoS-aware

Adaptive Data Dissemination in Mobile Edge Computing Ecosystem” in

fulfilment of degree of Doctor of Philosophy (Ph. D.) is outcome of research work

carried out by me under the supervision Dr. Balraj Singh, working as Associate

Professor in the Department of Computer Science and Engineering of Lovely

Professional University, Punjab, India and Dr. Ranbir Singh Batth working as

Lecturer and Unit Coordinator at Sydney International School of Technology and

Commerce, Australia. In keeping with general practice of reporting scientific

observations, due acknowledgements have been made whenever work described

here has been based on findings of another investigator. This work has not been

submitted in part or full to any other University or Institute for the award of any

degree.

(Signature of Scholar)
Gagandeep Kaur
41900514
Department of Computer Science and Engineering
Lovely Professional University, Punjab, India



iii

CERTIFICATE

This is to certify that the work reported in the PhD. Thesis entitled QoS-aware

Adaptive Data Dissemination in Mobile Edge Computing Ecosystem submitted

infulfillment of the requirement for the award of degree of Doctor of Philosophy

(Ph.D.) in the Department of Computer Science and Engineering, is a research

work carried out by Gagandeep Kaur, 41900514, is bonafede record of his original

work carried out under my supervision and that no part of thesis has been submitted

for any other degree, diploma or equivalent course.

Signature of Supervisor Signature of Co-Supervisor
Name of Supervisor: Dr. Balraj Singh Name of Co-Supervisor: Dr. Ranbir Singh

Batth
Designation: Associate Professor Designation: Lecturer and Unit Coordinator
Department/school: School of
Computer Science & Engineering

Department/school: Sydney International
School of Technology and Commerce

University: Lovely Professional
University, Punjab, India

Australia



iv

Abstract

In the evolving paradigm of Mobile Edge Computing (MEC), ensuring Quality of

Service (QoS) in dynamic, real-time environments present significant challenges due

to fluctuating network topologies, heterogeneous resource constraints, and increasing

demand from data-intensive applications. This thesis work addresses these challenges

by implementing a series of adaptive, intelligent, and QoS-aware models rooted in

bioinspired and machine learning approaches, aimed at enhancing traffic control, data

dissemination, and resource scheduling in MEC deployments. A unique Dynamic

Traffic Flow Control (DTFC) framework, combined with a QoS-aware Adaptive Data

Dissemination Engine (QADE), was presented to address the issues of network

congestion and delay. Based on temporal and geographical parameters, this model

adaptively manages communication flows by utilizing a hybrid Elephant Herding

Particle Swarm Optimizer (EHPSO) in conjunction with reinforcement learning

approaches. During extensive simulations, the system showed notable gains in

latency, throughput, energy efficiency, and packet delivery ratio. Additionally, using

Flower Pollination Optimization (FPO) and the predictive ability of a VARMAx

(Vector Autoregressive Moving Average with exogenous variables) model, a

bioinspired resource scheduling model was created. By taking into account a wide

range of task and resource characteristics, our hybrid architecture effectively mapped

tasks to virtual machines. Additionally, it enabled the dynamic recalibration of virtual

machine capacity by predicting future workloads, thereby improving scheduling

effectiveness, energy conservation, and deadline adherence. Extensive tests on real-

world datasets confirmed that the suggested models performed well in comparison to

existing techniques. Altogether, this thesis work advances the state of the art in QoS-

aware data dissemination and resource management, provides innovative, scalable,

and intelligent solutions for MEC, and establishes a solid basis for upcoming real-

time edge computing systems.
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CHAPTER 1

INTRODUCTION

The need for more intelligent, decentralized, and responsive computing

infrastructures has been highlighted in recent years by the exponential expansion of

data traffic, the quick spread of mobile devices, and the emergence of latency-

sensitive applications. By moving computational resources and services closer to the

data sources and end users, Mobile Edge Computing (MEC) has emerged as a

paradigm-shifting approach to meet these demands. In addition to improving real-

time processing and lowering latency and network congestion, this decentralization

also improves the overall Quality of Service (QoS) that customers experience. MEC

is now a key component for allowing applications like augmented reality, driverless

cars, healthcare monitoring, and smart cities thanks to its incorporation into next-

generation communication networks. Nevertheless, there are drawbacks to the

advantages that MEC provides [1]. Achieving effective data distribution, appropriate

resource scheduling, and adaptive traffic flow control is significantly hampered by the

dynamic and resource-constrained nature of edge environments. Because of their

limited flexibility and incapacity to react to real-time changes in network conditions,

traditional static and centralized models frequently fail to meet these constraints.

Furthermore, managing varying workloads, diverse devices, and geographically

dispersed edge nodes makes it more difficult to maintain QoS metrics like low latency,

high throughput, and reliability. Researchers have resorted to intelligent and adaptive

models that can learn from and change in response to the dynamic network

environment in order to get around these problems. Among these, bioinspired

algorithms, which are based on the ideas of biological systems and natural evolution,

have demonstrated exceptional promise. These algorithms are especially well-suited

for resolving optimization issues in dynamic environments such as self-adaptation,

robustness, and scalability [2]. For a variety of resource management applications,

methods like hybrid fuzzy-logic systems, particle swarm optimization (PSO), ant
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colony optimization (ACO), and genetic algorithms (GA) have been thoroughly

investigated. By suggesting a QoS-aware adaptive framework for data distribution in

MEC ecosystems and employing hybrid bioinspired methodologies to overcome

important performance bottlenecks, the current thesis work adds to this changing

landscape. The main goal of this thesis work is to improve the responsiveness and

dependability of resource allocation and data distribution in MEC by creating models

that are sensitive to real-time QoS requirements and adaptive. This thesis work takes

a three-pronged strategy to achieving this goal, with each element being thoroughly

explored and examined in the following chapters. The creation of a hybrid bioinspired

model for adaptive traffic flow control is the main goal of this work. In addition to

violating QoS restrictions, traffic congestion at the edge layer can significantly impair

application performance. To dynamically control the data flow in this situation, a

hybrid model that combines fuzzy logic and evolutionary computing is suggested.

This model is based on the priority of data packets, bandwidth availability, and

network congestion levels. In order to provide smoother data flow and lower latency,

the model may self-tune its settings to adjust to various traffic scenarios. A novel

model for QoS-aware data dissemination based on a Dynamic Traffic Flow Control

(DTFC) mechanism is presented. The purpose of this implemented model is to

guarantee that data packets are distributed throughout the network in a way that gives

priority to QoS metrics including service criticality, packet loss rate, and delivery

deadline [3]. The dissemination strategy makes dynamic, well-informed judgments

about data processing and routing by taking into account the application's context and

the state of the network nodes. The end-user experience is guaranteed to be constant

even with fluctuating network loads thanks to the incorporation of DTFC within the

MEC environment. This thesis work provides significant contribution with

bioinspired adaptive resource scheduling paradigm to solve the problem of resource

scarcity at the edge. The advantages of bioinspired intelligence to distribute

communication and processing resources in a way that strikes a compromise between

efficiency and maintaining quality of service. By adjusting to patterns of resource
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demand and real-time input, it optimizes scheduling choices for both fairness and

throughput. This enhances the overall responsiveness of the system and makes a

substantial contribution to the long-term operation of MEC nodes. These three

elements work together to provide a strong and coherent plan for QoS-aware adaptive

data distribution in MEC. In addition to filling important gaps in the literature, this

thesis work provides useful models for real-world deployment by fusing the adaptive

capabilities of bioinspired algorithms with domain-specific insights into edge

computing environments. Moreover, thorough testing and comparative analysis have

been used to assess each of the suggested framework’s efficacy in raising QoS metrics

in dynamic operating environments. The overall architecture of the proposed QoS-

aware adaptive framework is illustrated in figure 1.1, highlighting the flow of data

and decision-making across MEC nodes and bioinspired optimization layers [4].

Figure1.1- QoS-aware adaptive framework in MEC

The figure 1.1 illustrates how intelligent, bioinspired decision-making can be

integrated with real-time network operations in a Mobile Edge Computing (MEC)
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environment by illustrating a QoS-aware adaptive framework. Network status and

application priorities are continually tracked at the top and fed into a bioinspired logic

layer, which uses particle swarm optimization, fuzzy logic, and evolutionary

algorithms to adaptively control system behavior. Three essential MEC modules are

powered by this intelligence: a Resource Scheduling Module that effectively

distributes edge resources, a DTFC-based Data Dissemination Module that guarantees

timely and QoS-compliant data delivery, and a Traffic Flow Control Module that

dynamically regulates data traffic. These modules provide services and provide data

for user devices including IoT sensors, smartphones, and UAVs. The two real-life

applications where proposed MEC framework can significantly improve system

performance are as follows:

Smart Traffic / Autonomous / Intelligent Transportation Systems (Autonomous

Vehicles): The data-dissemination of your Dynamic Traffic Flow Control (DTFC)

and QADE enhance the low-latency delivery, increased PDR and reduced congestion

of data packets. Cars keep on producing traffic flow information (GPS, lane change

intentions, sensor data). The hybrid EHPSO-based traffic flow will make sure that

priority (and minimum delay) data (e.g. accident alert, pedestrian crossing alert) is

sent, without losing packets in congestion. Performance improvement: reduced

dissemination delay, increased percentage of packet delivery and minimized

congestion (as indicated in your results, decreased latency, increased throughput and

energy efficiency).

Smart Healthcare / Remote Patient Monitoring on the Edge: The VARMAx +

FPO resource scheduling model is an edge-based allocation of resources of real-time

workload prediction to enhance deadline compliance and energy efficiency.

Smartwatches transmit real-time health information (ECG, SpO2, BP) to local MEC

servers. In the event of patient data spikes (e.g. emergency), the scheduling model

forecasts the load and redirects processing to available edge nodes rather than to

cloud. Performance improvement throughput reduction, real-time decision making,

and enhanced quality of service of time sensitive health information.
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1.1 Background and Motivation

The purpose of this thesis work is to provide significant context for understanding the

significance of traffic flow control and resource scheduling in MEC.

i) Background

The dissemination of smart devices, the Internet of Things (IoT), and data-driven

applications that require ultra-low latency, high dependability, and real-time

processing characterize the current digital era. Traditional centralized cloud

infrastructures are under unprecedented strain as a result of these technological

changes, and they are unable to keep up with the real-time demands of applications

like augmented/virtual reality, industrial automation, autonomous driving, and

healthcare monitoring. Mobile Edge Computing (MEC), a paradigm-shifting

approach that brings cloud capabilities closer to end users and data sources at the

network's edge, has arisen in response to these constraints. MEC greatly lowers

transmission delays, eases core network congestion, and improves context-aware

service delivery by decentralizing data processing and service provisioning [5]. The

ecosystem is nevertheless dynamic and complex despite MEC's benefits because of its

heterogeneous devices, dispersed architecture, and resource limitations. Maintaining

Quality of Service (QoS) while functioning in the face of fluctuating network

conditions and user demands is one of the main issues in MEC. Particularly in

latency-sensitive and mission-critical applications, it is imperative to closely monitor

and manage key QoS metrics including latency, bandwidth, jitter, packet loss, and

throughput. These dynamic requirements are frequently outside the scope of

traditional static mechanisms and heuristic-based resource management systems,

which results in inefficient resource usage and deteriorated service quality. Adaptive

data dissemination is a crucial topic that needs MEC's concentrated attention. The

timely and dependable transmission of data to the appropriate services and users

becomes crucial when data is created at the network edge. Variable network quality,

varying workloads, and limited processing resources make this much more difficult.
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Intelligent models with context-aware decision-making and real-time adaptation are

crucial for overcoming these obstacles [6]. The foundation of this thesis work is the

necessity for such models. The inherent complexity of MEC systems can be addressed

with the use of bioinspired algorithms, which mimic natural processes like evolution,

swarming, and fuzzy reasoning. They are ideal for tasks like resource allocation,

traffic flow control, and QoS-aware data dissemination because of their adaptable and

self-organizing nature. These algorithms can react to unanticipated circumstances,

evolve optimal solutions in real-time, and balance several goals at once, such lowering

latency while maximizing throughput and fairness.

ii) Motivation

The increasing need for an intelligent, flexible, and QoS-focused framework that can

effectively distribute data and distribute resources in a mobile edge setting is what

encouraged this thesis work. The integration of bioinspired intelligence into MEC

systems to control adaptive traffic flow, QoS-aware data distribution, and dynamic

resource scheduling is the main topic of this thesis work. In order to meet the needs of

contemporary edge-based applications and overcome the drawbacks of current static

models, a modular, scalable, and context-aware architecture must be created [7].

Moreover, there are currently no complete frameworks in the literature that integrate

edge computing with bioinspired algorithms to handle the three interrelated domains

of resource scheduling, data distribution, and traffic management—all while ensuring

a constant quality of service guarantee. By putting forward a hybrid, multi-level

architecture that incorporates intelligent decision-making into the very fabric of MEC

operations, this thesis work aims to close this crucial gap. By doing this, the system

may proactively adjust to shifting application priorities and network conditions,

greatly enhancing user experience and performance. As companies continue to shift

toward edge-enabled infrastructures, this thesis work is motivated by both theoretical

curiosity and practical ramifications. Enabling scalable, dependable, and sustainable

solutions for real-time applications in a variety of areas requires the development of

sophisticated, adaptive mechanisms for MEC [8]. The research advances edge
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computing and opens the door for future developments in adaptive networked systems

by tackling these issues. There are many other reasons that motivated towards this

dynamic research field as mentioned below:

a. Traditional Cloud-Based Architectures Drawbacks: Discussed how dispersed

environment’s real-time and latency-sensitive applications cannot be satisfied by

centralized cloud solutions.

b. The Increasing Intricacy of MEC Resource Administration: Emphasize the

difficulties in handling heterogeneous devices, dynamic resources, and changing

network conditions at the edge.

c. The necessity of adaptable and QoS-aware data dissemination: In order to

maintain QoS requirements in the MEC environment, stress the significance of real-

time, context-aware data dissemination mechanisms.

d. Bioinspired Algorithms Potential in Changing Environments: Justify the use of

bioinspired methods (such as GA, PSO, and fuzzy systems) to scheduling, resource

allocation, and traffic flow to allow for intelligent and self-adaptive decision-making.

1.2 Problem Statement

The emergence of Mobile Edge Computing (MEC) has brought about a fundamental

change in the way end users receive, distribute, and use data, especially in real-time

and latency-sensitive applications. MEC increases responsiveness and decreases

transmission latency by allowing computation at the network edge. However,

dynamic workloads, constrained computational and bandwidth resources,

heterogeneous devices, and quickly shifting network states are intrinsic characteristics

of the MEC environment. Consistent Quality of Service (QoS) across all edge nodes

and apps is becoming more and more challenging as a result of these issues. Efficient

data distribution under changeable conditions is severely hampered by the need to

guarantee on-time delivery, low packet loss, and service deadline observance. The

majority of data distribution strategies currently in use are based on static or semi-
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static methods that are unable to adjust to changes in network topology, user behavior,

and resource availability in real time. Particularly in extremely dynamic and mission-

critical applications like remote surgery, autonomous cars, and industrial automation,

this frequently results in higher latency, network congestion, underutilization of

resources, and inability to meet QoS standards. Furthermore, MEC's traffic flow

control systems are continually developing. Adaptive prioritizing and contextual

decision-making, which are crucial for handling fluctuating data loads and application

needs, are frequently overlooked by traditional approaches. Data packets may be lost,

delayed, or redundant in the absence of effective flow control, which would lower the

overall quality of the service. Furthermore, because edge resources are scattered and

constrained, scheduling them at the edge continues to be a major difficulty. Current

scheduling methods frequently do not dynamically optimize resource allocation

depending on network and user context, nor do they take into account real-time QoS

limitations. This restriction lowers the quality of the user experience and leads to

inefficient usage of resources. Despite the fact that bioinspired algorithms have shown

great potential in optimization tasks, nothing is known about how to integrate them

into MEC for scheduling, data distribution, and traffic management. Comprehensive

frameworks that use hybrid bioinspired methodologies to address these three critical

issues together while preserving end-to-end QoS compliance are scarce. The lack of an

integrated, flexible, and QoS-aware data distribution framework in MEC that can

optimize resource scheduling, intelligently control traffic flow, and dynamically adjust

to changing network conditions through bioinspired intelligence is thus the main issue

this thesis attempts to address. To fully utilize MEC and enable future-ready

applications that require responsiveness and dependability, such a solution must be

developed. In this regard, the thesis work pinpoints the following fundamental

problems that obstruct efficient data distribution and resource optimization in MEC:

a. Static Methods Cannot Manage Real-Time Adaptation: Conventional

approaches to resource scheduling and data distribution are not adaptable enough to

handle abrupt shifts in user demand, mobility trends, or edge network congestion.
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b. Inadequate QoS Awareness in Current MEC Models: Suboptimal service

performance results from many current MEC frameworks ineffective incorporation of

important QoS criteria into their decision-making processes, including latency, packet

loss, and delivery deadlines.

c. Bioinspired Algorithms Are Underutilized in Integrated Optimization: Despite

the success of bioinspired algorithms in discrete optimization problems, there aren't

many integrated frameworks that use them for scheduling, data distribution, and traffic

control in a single MEC environment.

1.3 Purpose of the Research work

The main goal of this thesis work is to introduce adaptive, QoS-driven solutions to

Mobile Edge Computing (MEC) in order to overcome the shortcomings of the current

static and non-intelligent processes. The following are the general research's purposes:

a. To create a hybrid bioinspired adaptive traffic flow control model that

dynamically controls edge-layer data traffic according to application priority,

bandwidth availability, and real-time congestion levels.

b. To use Dynamic Traffic Flow Control (DTFC) to create a QoS-aware data

dissemination strategy that guarantees priority-based, dependable, and timely data

delivery across MEC nodes in a range of network scenarios.

c. To include bioinspired optimization methods into MEC decision-making

processes for improved performance and flexibility, such as Particle Swarm

Optimization (PSO), Fuzzy Logic, and Genetic Algorithms (GA).

d. To incorporate crucial factors including latency, packet loss, deadline sensitivity,

and bandwidth use into management, dissemination, and scheduling systems in

order to guarantee end-to-end QoS compliance.

e. To provide a framework that is scalable and modular so that it may be readily

expanded or changed to accommodate various edge-based applications with

various QoS needs.
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f. To provide a cohesive, intelligent MEC architecture that fills in the knowledge

gaps in edge resource optimization, QoS-aware dissemination, and adaptive traffic

management through a bioinspired methodology.

1.4 Significant Contribution

This thesis work adds a lot to the field of Mobile Edge Computing (MEC), especially

when it comes to resource scheduling, traffic flow control, and QoS-aware data

distribution. One of the main achievements is the creation of a hybrid bioinspired model

for adaptive traffic flow control that combines evolutionary computing and fuzzy logic to

intelligently govern traffic in real-time according to bandwidth availability, data priority,

and network congestion. By improving MEC environments capacity to adjust to

constantly fluctuating data loads, this paradigm lowers latency and prevents packet

congestion at the edge layer. The suggested DTFC-based data dissemination approach,

which integrates Quality of Service (QoS) metrics straight into the data forwarding and

routing procedure, makes a second significant addition. By doing this, the model

guarantees the prompt and dependable distribution of important data, particularly in

situations with changing network performance or excessive demand. The suggested

approach incorporates deadline sensitivity, packet loss tolerance, and service criticality

into dissemination decisions, in contrast to traditional models that frequently overlook

end-to-end QoS needs. The development of a bioinspired adaptive resource scheduling

system, which makes use of methods like Genetic methods (GA) and Particle Swarm

Optimization (PSO) to intelligently distribute edge resources, is another significant

advance. The system's responsiveness under a variety of unpredictable operating

conditions is greatly enhanced, which adjusts to real-time network feedback and

maximizes resource usage and service fairness. Additionally, this thesis work offers a

unified, modular framework that combines data distribution, resource scheduling, and

traffic control into a scalable and coherent architecture. In addition to addressing

individual issues, this comprehensive strategy guarantees inter-module cooperation for

improved QoS management throughout the MEC ecosystem. Thorough simulations have

been used to assess the models put forward in this study, and compared findings show
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significant gains over baseline methods in terms of latency, throughput, resource

efficiency, and QoS compliance. All things considered, the contributions presented in

this thesis work offer a strong basis for the development of intelligent, scalable, and QoS-

focused MEC systems appropriate for upcoming real-time applications.

1.5 Significant of Bioinspired Model in MEC

A strong strategy to deal with the growing complexity and dynamic nature of edge

environments is the incorporation of bioinspired models into Mobile Edge Computing

(MEC) systems. Because of varying user needs, erratic network conditions, and

heterogeneous devices, MEC is intrinsically distributed, resource-constrained, and

extremely variable. Conventional rule-based or static optimization approaches frequently

fall short in such a situation in terms of providing the required responsiveness and

flexibility. Because of their durable, adaptive, and self-organizing properties, bioinspired

models—which draw inspiration from natural systems and evolutionary principles—offer

a possible substitute. Methods that can continually evolve optimal or near-optimal

solutions under changing conditions, like fuzzy logic, genetic algorithms (GA), particle

swarm optimization (PSO), and ant colony optimization (ACO), are ideal for the MEC

paradigm. The capacity to carry out multi-objective optimization, balancing trade-offs

among conflicting QoS needs like latency, packet loss, deadline adherence, and resource

consumption, is one of the main advantages of bioinspired techniques in MEC. Even in

the face of erratic workloads and resource variations, these models may guarantee

optimal performance by dynamically modifying operating parameters and reacting to

real-time environmental feedback [9]. For example, during network congestion, a

resource scheduling method may load-balance and QoS-compliantly divide

computational workloads across edge servers, while a bioinspired traffic flow

management mechanism can prioritize delay-sensitive packets. Additionally,

decentralized decision-making is supported by bioinspired models, which fits in nicely

with the MEC design, since scattered edge nodes make centralized control impracticable.

Their usefulness in extensive MEC installations is further increased by their scalability,

adaptability, and resistance to local failures. Crucially, these models are perfect for new
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real-time applications with unpredictable behaviors because they don't require a lot of

pre-configuration or static assumptions. This thesis work makes use of MEC's full

potential to provide flexible, effective, and context-aware services by integrating

bioinspired intelligence into scheduling, data distribution, and traffic control procedures

[10]. The importance of bioinspired models in augmenting MEC's capabilities is

becoming more and more apparent as it develops further as the foundation of next-

generation computing and is essential for designing sustainable systems.

1.6 Research work Objectives

Following four objectives have been finalized in line with the research work:

I. To study and analyze the existing resource allocation and network

management techniques for Edge Computing.

This objective involves reviewing current methodologies to identify existing

resource handling and traffic scheme with in MEC environments.

II. To design a framework for adaptive network traffic flow control in Edge

computing for diversified applications.

This focuses on developing a dynamic model that regulates data flow based on

varying application needs and real-time network conditions.

III. To propose a technique for QoS-aware resource allocation in a Mobile edge

computing environment.

This aims to create a strategy that allocates resources efficiently while

maintaining critical QoS parameters like latency and packet loss.

IV. To implement and validate the proposed work in the simulation environment.

This involves comparing the models in a simulation setup and evaluating their

performance against existing methods by focusing on Quality of Service (QoS)

metrics.
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1.7 Research work Organization

The purpose of this thesis is to present a comprehensive and lucid analysis of the research

on QoS-aware adaptive data dissemination in the mobile edge computing ecosystem.

This study work's structure makes sense and enables readers to delve deeply and clearly

into the topic. Every chapter contributes to the general comprehension of the study

project and builds on the ones that came before it, ultimately bringing a collection of

conclusions, conclusions, and recommendations for the future.

Chapter 1: Introduction

The first chapter of the thesis is titled "Introduction." The introductory elements of the

research project are established in this first chapter. The first section, "1.1 Background

and Motivation," sets the scene for the investigation by examining the importance of

MEC and the driving forces for this research project. In order to set the scenario for the

ensuing chapters, the "1.2 Problem Statement" that follows describes the difficulties and

constraints encountered in the jurisdiction of MEC. "1.3 Purpose of research work"

provides a roadmap for what the reader might anticipate learning by outlining the precise

aims and objectives of the research project. "1.4 Significant Contribution" describes how

research has benefited society. The significance of these models in MEC to improve

efficiency is described in "1.5 Significant of Bioinspired model in MEC." A thorough

explanation of the research work objectives and the need to fulfill them in mobile edge

computing can be found in "1.6 Research work Objectives." Lastly, "1.8 Research work

Organization" walks the reader through the following chapters by giving a summary of

the content and organization of the complete thesis work.

Chapter 2: Literature Review

The "Literature Review," included in Chapter 2, provides the study work's intellectual

underpinning. It is divided into three parts, each with a specific emphasis. With some of

the most recent and ongoing author and scholar research, "2.1 Historical Evolution of

Adaptive Data Dissemination in MEC" offers a thorough grasp of MEC networks and
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their numerous uses. In addition to some recent work, "2.2 Related work" offers an

overview of some previous research on a variety of applications. " 2.3 "Research Work

Question" gives us a thorough understanding of the significance of this field's study as

well as the outcomes we can anticipate from its application. In order to prepare the

reader for the creative solutions offered in the following chapters, "2.4 Literature

Summary" summarizes the main points of the most recent and current research.

Chapter 3: Hybrid Bioinspired Model forAdaptive Traffic Flow Control

The first MEC models are shown in Chapter 3 and are called "BATFE." Each of the five

components that make up this chapter adds to a thorough comprehension of the concept.

" 3.1 Introduction to BATFE" lays the groundwork by outlining the fundamental ideas of

the model. The main principles of the proposed algorithm are explained in "3.2 Algorithm

Overview." 3.3 Important Parameter and Variable in the Model "explains the performance

parameter to be used in the model." The procedures that must be performed in order to

integrate the bioinspired model with the MEC framework are described in "3.4 Design of

the hybrid bioinspired model." 3.5 The analysis of results "showcases the performance of

model used in research work by comparing with existing model." 3.6 Conclusion and

Future Scope" outlines the advantages and disadvantages of the implemented approach.

Chapter 4: QoS-AWARE DATADISSEMINATIONWITH DTFC IN MEC

The investigation of new MEC models is continued in Chapter 4 with "DTFC." This

chapter, like the one before it, is divided into eight sections, each of which adds to a

thorough comprehension of the model. " The main ideas and goals of the model are

presented in "4.1 Introduction." Within the MEC framework, "4.2 Design of the model"

outlines the procedures that must be followed for learning. "4.3 Adaptability analysis"

describes the fundamental model analysis in terms of adaptability. By contrasting it with

an existing model, "4.4 Result Analysis" illustrates how well the model employed in the

study activity performs. "4.6 Potential Limitation" describes the limitations of the

implemented model, whereas "4.5 Node and resource variability characteristics"

concentrates on the dynamic nature of the node. " EHPSO insights are provided in "4.7
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Path selection with EHPSO." "4.8 Conclusion and Future Scope" offers a detailed

synopsis of the research findings and their potential for further development.

Chapter 5: Bioinspired Adaptive Resource Scheduling in MEC

The investigation of MEC models for adaptive resource scheduling is continued in

Chapter 5. This chapter, like the one before it, is divided into eight sections, each of

which adds to a thorough comprehension of the model. " 5.1 Introduction" presents the

main ideas and goals of the paradigm. 5.2 Goal and Motivation" offers inspiration for

carrying out the study. The advantages of the implemented model are explained in "5.3

Application." 5.4 "Novelty of the model" offers information on how new work is applied.

The procedures that must be taken for learning within the MEC framework are explained

in "5.5 Design of the model." 5.6 "Model Explanation" describes the fundamental

structure of the model in relation to scheduling flexibility. By contrasting it with an

existing model, "5.7 Result Analysis" illustrates how well the model employed in the

research project performs. 5.8 "Conclusion" offers a detailed synopsis of the research

findings and their potential for further development.

Chapter 6: Conclusion and Future Work

The study project is concluded in Chapter 6, the last chapter. It is divided into six parts.

"6.1 Performance of BATFE" provides a summary of the BATFE model's performance in

research projects. 6.2 DTFC Performance" provides an overview of the DTFC model's

performance in research projects. 6.3 VARMAx Performance" provides an overview of

the VARMAx model's performance in research projects. The practical consequences of

the findings are discussed in "6.4 Inferences of the Research Work." 6.5 Future Scope"

lists prospective avenues for further investigation. 6.6 "Summary of Findings" provides

concluding thoughts on the research process.
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CHAPTER 2

LITRATURE REVIEW

The literature review chapter analyzes previous studies and solutions in the area of QoS-

aware adaptive data dissemination in mobile edge computing ecosystems. By

summarizing important discoveries, knowledge gaps, and the development in this field,

this chapter seeks to identify the limitations of current solutions and scope of further

enhancement in them.

2.1 Historical Evolution of Adaptive Data Dissemination in MEC

Over time, the idea of data distribution has changed dramatically, moving from

conventional centralized designs to more intelligent and decentralized methods. At first,

data distribution was based on static, cloud-based models in which data processing and

storage took place in centralized data centers. These models were not appropriate for

real-time applications due to their high latency and network congestion. By putting

computing and storage closer to end users, Mobile Edge Computing (MEC) reduced

delays and increased efficiency, signaling a standard shift. However, the static data

distribution methods used in early MEC implementations were unable to adjust to

changing network conditions, which resulted in inefficient use of resources. As wireless

communication technologies like 4G LTE and 5G advanced quickly, adaptive data

transmission strategies began to attract interest. By taking into account variables

including user mobility, network load, and service demand, researchers developed

heuristic-based techniques to optimize data distribution. Predictive analytics and edge

caching were essential elements that enabled MEC nodes to retain frequently requested

content and foresee future requests. By facilitating context-aware material delivery and

real-time decision-making, the combination of artificial intelligence and machine learning

significantly improved adaptive dissemination. In MEC contexts, these developments

greatly enhanced Quality of Service (QoS) and decreased duplicate data transmissions

[11]. In order to maximize adaptive data transmission in MEC, bio-inspired and
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reinforcement learning algorithms have been investigated recently. Swarm intelligence-

inspired methods, like particle swarm optimization and ant colony optimization, have

been used to distribute data effectively while reducing latency and energy usage. MEC

systems may now learn from user behavior and network conditions. Reinforcement

learning models, which allow them to dynamically modify their distribution techniques

for best results. Furthermore, blockchain-based data distribution has become popular

since it provides safe, decentralized ways to improve edge network dependability and

trust. These developments have helped to increase the scalability and efficiency of MEC-

based adaptive data dissemination.

In the future, the incorporation of next-generation technologies like 6G, federated

learning, and edge intelligence is anticipated to propel the development of adaptive data

distribution in MEC. More advanced data dissemination strategies will be required to

meet the increasing demand for ultra-low latency applications, such as extended reality

(XR) and driverless cars. Future methods will probably concentrate on collaborative

edge networks, in which several MEC nodes cooperate in real time to maximize data

transmission. The next stage of adaptive data dissemination in MEC will open the door

for edge computing ecosystems that are more intelligent, safe, and robust by utilizing

developments in AI, blockchain, and quantum computing [12]. Adaptive data distribution

in MEC is changing toward increasingly independent and self-optimizing systems in

tandem with the growing demand for real-time and mission-critical applications. To

improve resilience and adaptability, MEC setups are incorporating emerging concepts

like network function virtualization (NFV), software-defined networking (SDN), and

digital twins. Digital twins reduce errors and increase efficiency by enabling real-time

simulation and optimization of data transmission schemes prior to actual implementation.

In a similar vein, SDN and NFV offer virtualization and centralized control, allowing

MEC networks to scale smoothly and allocate resources dynamically. Next-generation

adaptive data dissemination frameworks that can react to changing network

circumstances and user demands intelligently with little assistance from humans are

becoming possible because to these developments [13]. A thorough summary of the
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bioinspired models currently in use for adaptive data distribution in MEC is provided in

Table 2.1. It emphasizes their uses, significant contributions, and related benefits and

drawbacks. Researchers can find appropriate optimization strategies to improve the

effectiveness of data dissemination in MEC contexts by examining these models.

Table 2.1- Existing Bioinspired Model for Adaptive Data Dissemination in MEC

Model Name Applications Key Contribution

Ant Colony Optimization
(ACO)

Optimizing data routing
and dissemination in MEC

networks

Efficient path discovery
and adaptive data routing

Particle Swarm
Optimization (PSO)

Resource allocation and
load balancing in MEC

Fast convergence and
flexibility in network

optimization

Genetic Algorithm (GA) Optimized task offloading
and edge caching

Effective in solving multi-
objective optimization

problems

Artificial Bee Colony
(ABC)

Adaptive data
dissemination and energy-

efficient MEC

Self-organizing and robust
for dynamic network

conditions

Firefly Algorithm (FA)
Data clustering and
dynamic network

optimization in MEC

Effective in handling non-
linear optimization and
adaptive clustering



19

Bat Algorithm (BA)
Optimization of MEC
network parameters and

task scheduling

Balances exploration and
exploitation for robust

optimization

Grey Wolf Optimizer
(GWO)

Resource allocation and
traffic management in

MEC

Mimics hierarchical
decision-making for
enhanced efficiency

Cuckoo Search Algorithm
(CSA)

Dynamic data
dissemination and energy

efficiency in MEC

Adaptive exploration
mechanism for robust
global optimization

Whale Optimization
Algorithm (WOA)

Optimizing network load
balancing and resource

scheduling

Dynamic and adaptive
search mechanism for
better load balancing

Dragonfly Algorithm
(DA)

Adaptive routing and self-
organized network

optimization

Inspired by swarm
intelligence for adaptive
and scalable solutions

By using hybrid methodologies and sophisticated optimization techniques, the problems

with bioinspired models in adaptive data distribution for MEC—such as high

computational complexity, local optima trapping, sluggish convergence, and sensitivity to

parameter tuning—are being actively addressed. Integrating deep reinforcement learning

(DRL) with bioinspired models is one exciting avenue that could enable real-time

adaptability to dynamic MEC settings and intelligent decision-making [14]. Furthermore,
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sensitivity problems are addressed and convergence speed is increased using parameter

self-tuning techniques like adaptive learning rates and swarm intelligence-based fine-

tuning. The efficiency of these models is also being improved by the use of edge AI and

quantum computing, which lower computational overhead and allow for real-time

optimization. Additionally, blockchain technology is being investigated to offer

transparent, safe, and decentralized data distribution.

2.2 Related Work

[1] The authors explained the definition of edge computing which addresses the concern

of response time where concerns are latency, resource like battery-life constraint,

bandwidth cost-saving, as well as data safety and privacy. [2] summarized the existing

edge computing systems and related tools. The authors divided the paper into two parts:

System View and Application View. In system View, Open-Source Edge computing

projects and edge computing systems & tools are discussed wherein application view,

deep learning optimization at the edge are discussed. [3] presented the major three edge

computing technologies: mobile edge computing, cloudlets, and fog computing. The

authors explained application areas, architectures, standardization efforts for mobile edge

computing, cloudlets, and fog computing. [4] the authors described the Edge computing

that processes the gathered data from end devices at the edge of the network. By covering

a large range of technologies, edge computing addresses the various concern as battery

life constraint, bandwidth usage, latency, data security, and data privacy. The need for

edge computing (Push from Cloud Services and Pull from the Internet of Things) is

discussed by [5, 6] in which the auto-scaling applications in edge computing which

maintained the online services at a decentralized location. They broadly explained two

aspects of this paper. In the first section, they major focused on the different types of edge

computing applications (IoT Applications, Micro-service applications, Time-critical

applications). For these applications, auto-scaling challenges when the workload

dynamically changes. Container-based visualization auto-scaling technologies are

discussed. Self-adaptive application at runtime enhances the performance. In the

classification of auto-scaling applications in edge computing, the authors explained the
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cloud framework, Virtualization Technology, Monitoring approach, Operational behavior,

Adjustment ability, Architectural support, Image Delivery, and scalability techniques [7].

[8] addressed the issue of low latency requirements in mobile edge computing. The

author proposed a fast data-sharing framework HDS (Hybrid data sharing) to meet the

requirements of low latency by dividing the gathered data location service into two

regions: Intra-region and inter-region. With the Hybrid information sharing system which

comprises 100 areas, the creator accomplished low latency, low usage overhead, and

50.21% more limited query ways, and 92.75% fewer false positives. In this whole

network, the total edge server used was 1000 to 10000 [9]. [10] the authors performed the

cloud edge latency comparison. They performed an extensive measurement to assess the

latency characteristics of end-users to the edge servers and cloud data centers. It

estimated latency from 8,456 end-clients to 6,341 Akamai edge workers and 69 cloud

areas. At last, the paper's outcome is that while 58% of end-clients can arrive at a close by

edge worker in under 10 ms, just 29% of end-clients get a comparable dormancy from a

close by cloud area. [18]. [19] the authors reviewed the various data latency techniques in

Mobile Edge Computing. As in the centralized cloud, one cannot achieve low latency.

Mobile Edge Computing makes efficient use of the resources and decreased the

movement of large data generated by the edge devices. Edge computing is important for

solving fatal situations such as Conflicts in Autonomous vehicles, Fire, Environmental

Hazards.

In their presentation of a deep learning-based traffic flow detection strategy for intelligent

traffic systems, [46] emphasized the value of edge computing for organizing and

processing the vast amounts of data produced by contemporary transportation systems.

[50] further elaborates on this topic of using deep learning for traffic flow prediction and

shows how effective it is in a vehicular Internet of Things environment. By focusing on

shared resource allocation based on traffic flow virtualization and online traffic flow

prediction for autonomous vehicles and connected cars, respectively, [47] and [48] made

important contributions to this field. [49] on the use of block chain technology for IIoT

traffic management highlights the growing demand for secure and effective data
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processing in edge computing environments. Further evidence of this point is Shin and

Kim's multi-layered security framework for cloud-native edge clusters [51].

Contributions by [82], [83] and [84] address intelligent traffic-adaptive resource

allocation, QoE-aware traffic aggregation, and robust feature selection, respectively,

demonstrating the importance of edge computing in improving network intelligence. By

investigating modal shifts with mobility in mind and elucidating the flow between origin

and destination, [85] and [86] contributed to this field and demonstrated the dynamic

nature of traffic management in edge computing situations. Other contributions in this

field include the creation of his framework for fog-based traffic flows. [88] extraction of

mixed road user trajectories by [89] and dynamic optimization of traffic flow prediction

models by [87]. Discussion by [90] on the use of federated deep reinforcement learning

for traffic monitoring provides a new method for traffic control in his SDN-based IoT

networks. The increasing use of advanced computational techniques in traffic

management is evidenced by the reconstruction of traffic data of large-scale IoV systems

using neural network approaches, as reported by [91] and the development of cooperative

and energy-efficient strategies in emergency navigation by [92]. A study by [93] on flow

allocation and processing on a distributed edge computing platform, [94] on an intelligent

traffic light system based on block chain technology represents technological progress in

this field. The literature, in summary, shows a notable trend toward the effective control

and prediction of traffic flow in ITS and IoT systems through the use of edge computing,

deep learning, and block chain technologies. The aforementioned studies underscore the

significance of advanced computational techniques and resilient security frameworks in

managing the intricacies of contemporary transportation systems and network traffic [95].

Flooding-based dissemination, in which data packets are sent to all network nodes, is a

prevalent method. While flooding ensures extensive coverage, it often results in

redundant transmissions, excessive energy consumption, and network congestion.

Diverse optimization strategies have been proposed as solutions for these issues [96]. The

Gradient-based Routing (GR) algorithm, for instance, gives nodes closer to the sink a

higher priority, thereby reducing the number of redundant transmissions [97, 98].
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However, GR does not consider temporal factors, which can result in sub-optimal routing

decisions in dynamic MEC environments. Information is also disseminated via a random

peer-to-peer process through a gossip-based dissemination method. By leveraging the

mobility of nodes, gossip protocols like Epidemic and Spray-and-Wait achieve high

coverage and robustness [99]. However, these protocols have a significant delay and may

not guarantee the delivery of data reliably. Content-based routing has gained popularity

as an efficient data distribution method in MEC. By analyzing the contents of data

packets, routing decisions can be made based on the packets' proximity to their final

destinations and their relative importance. Content-based routing reduces unnecessary

transmissions, conserves energy, and increases the effectiveness of routing. Examples

include COIN, SPIN, and Directed Diffusion. However, the majority of existing content-

based routing protocols do not account for temporal factors such as delay, energy

consumption, throughput, and Packet Delivery Ratio (PDR), limiting their efficacy in

dynamic MEC environments [100, 101]. Effective traffic flow control is necessary for

optimizing resource utilization and ensuring QoS guarantees in MEC deployments. In

numerous ways, existing models and algorithms address these issues. Traditional traffic

flow control mechanisms, such as static routing and load balancing, have limitations in

dynamic MEC environments. These mechanisms frequently utilize static configurations

and do not adapt to changing network conditions, resulting in sub-optimal resource

allocation and utilization via the Main Task Off-loading Scheduling Algorithm (MTOSA)

process [102, 103]. In addition, traditional load balancing techniques do not take the

processing power of edge devices into account, which is essential for effective traffic

flow management [104, 105]. Particle Swarm Optimization (PSO) is widely employed in

MEC for dynamic traffic flow management. PSO is a metaheuristic optimization

algorithm inspired by the behavior of social organisms such as flocks of birds and schools

of fish [106]. PSO has been expanded to address traffic flow control issues by adjusting

routing decisions dynamically based on the capacity of edge devices. EHPSO (Elephant

Herding Particle Swarm Optimization) uses PSO to balance network load by considering

the processing capabilities of edge devices [107]. EHPSO dynamically routes traffic to
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nodes with available processing capacity, reducing congestion and optimizing resource

utilization via Hierarchical Federated Learning (HFL) process [108,109]. Existing models

[110, 111] for adaptive data distribution and dynamic traffic flow management in MEC

have made significant contributions. Temporal aspects such as delay, energy consumption,

throughput, and PDR must be considered to optimize routing decisions and traffic flow

control in dynamic MEC environments. In this regard, however, the majority of these

models have limitations. Moreover, traditional routing and traffic control mechanisms

frequently lack the adaptability to adapt to changing network conditions and fail to utilize

the processing power of edge devices. These limitations necessitate the development of

novel approaches, such as the proposed QoS-aware Adaptive Data Dissemination Engine

with Dynamic Traffic Flow Control, which integrates content-based routing and EHPSO

to overcome these obstacles and enhance MEC deployment performance levels [112].

Table 2.2- Summarization Table of existing method used in data dissemination
Method Description Advantage Challenges

Flooding-based
Dissemination

Data packets are sent
to all network nodes.
Extensive coverage
leads to redundancy,
energy consumption,
and congestion.

Wide coverage
Simplicity

Redundant
transmissions

Energy consumption
Network congestion

Gradient-based
Routing (GR)

Nodes closer to the
sink get higher
priority, reducing
redundancy.

Reduces
redundancy

Sub-optimal routing
decisions in
dynamic MEC
environments

Particle Swarm
Optimization

(PSO)

Optimization
algorithm for traffic
flow. Dynamically
adjusts routing based

on edge device
capacity.

Dynamically
adjusts routing

decisions Balances
network load

Need to consider
processing power of

edge devices
Implementation
complexity

The effective distribution of computational tasks across edge devices to satisfy quality of

service (QoS) requirements and maximize resource utilization is a challenging task in

Mobile Edge Computing (MEC) environments. To address this issue, a number of models
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and algorithms have been put forth, but each has pros and cons depending on the

particular requirements of the MEC scenarios [113, 114]. This is done via use of Dueling

Double Deep Recurrent Q Network (D3RQN) process. The traditional First Come First

Serve (FCFS), Round Robin (RR), and Shortest Job First (SJF) scheduling algorithms

were used in one of the earliest methods. They served as a starting point for task

scheduling in MEC, but because of their inherent simplicity, they failed to take into

account dynamic shifts in resource availability and demand, which resulted in subpar

performance in demanding real-time applications [115- 118]. The most effective

scheduling policies have been discovered over time by using Q-learning and other

reinforcement learning-based models. These models have the ability to change with their

surroundings and online learn the best course of action. These algorithms, however,

frequently need extensive training, and they might not be able to adjust quickly enough to

the rapidly altering network conditions [119-122]. Additionally, some researchers have

suggested using models based on game theory, mainly focusing on fostering competition

among the edge devices for effective resource allocations. While these models are

capable of reaching a Nash equilibrium, which offers a stable state for the system, they

frequently fail to provide acceptable QoS, especially in highly dynamic scenarios [123-

126]. [127] systematic literature review explored the concept of Quality of Service (QoS)

monitoring in IoT edge devices driven healthcare. The study focuses on the individual

devices present at different levels of the smart healthcare infrastructure and the QoS

requirements of the healthcare system as a whole. The authors propose a novel pre-SLR

method for comprehensive keyword research on subject-related themes for mining

relevant research papers for quality SLR; a review of several QoS techniques used in

current smart healthcare apps; an examination of the most important QoS measures in

contemporary smart healthcare apps; and offering solutions to the problems encountered

in delivering QoS in smart healthcare IoT applications to improve healthcare services.

The authors propose that edge computing and artificial intelligence can resolve these

issues by processing data in edge devices located at the brink of the network, contributing

to less latency and energy efficiency. This enables edge-assisted IoT systems to deliver
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medical services on time. AI techniques, such as machine learning and deep learning, are

widely used for system training and learning in edge computing. [128, 129] explored the

use of optimizable tree machine learning (ML) algorithms to evaluate spectrum sensing

in CR-based smart healthcare systems. The researchers used data sets based on the

probability of detection and false alarm to train and test the system using various TBAs.

The results showed that the optimizable tree provided the best accuracy results for

spectrum sensing evaluation with minimum classification error (MCE). This approach is

particularly useful for smart healthcare systems that use cognitive radio (CR) to send and

receive patient health data. The study highlights the importance of utilizing ML in the

field of smart healthcare. CR technology can provide maximum advantages of smart

medicine to patients at their doorstep by exploiting AI techniques to process patient

health data on a micro level, even at the patient's genetic level. Monitoring wireless

sensors attached to the human body monitor body parts and collect real-time data, sharing

collected data with a remotely placed fusion center or data server. [130, 131] discussed

about efficient resource prediction framework (ERPF) is proposed to provide proactive

knowledge about radio resource availability in software-defined heterogeneous radio

environmental infrastructures (SD-HREIs). The framework measures radio activity in

unlicensed bands, segregates it into signal and noise, and uses machine learning

techniques to predict radio occupancy and opportunity. Next-generation heterogeneous

radio environmental infrastructures aim to enhance spectral efficiency, reliability, and

control while supporting high data rates and diverse services. However, connecting

devices to these infrastructures can be challenging. An efficient resource prediction

framework (ERPF) can exploit radio resources according to user requirements, enabling

dynamic spectrum access in SDH-REIs. Task scheduling in MEC has been suggested

using deep learning-based models, particularly those that use recurrent neural networks

(RNNs) and long short-term memory (LSTM) networks [132-135]. They have

demonstrated significant promise in anticipating and adjusting to MEC scenarios that

change quickly. These models demand a lot of computational power and time to train,

which may not always be possible for edge computing devices with constrained resources
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[136-139]. Despite these efforts, none of the models in use currently satisfactorily

account for all the complexity and difficulties that MEC environments present. As a result,

there is a gap in the market for a novel, effective, and adaptive task scheduling model that

can accommodate the dynamic MEC scenarios while guaranteeing optimal resource

utilization and satisfactory QoS. The VARMAx-based bioinspired resource scheduling

model in this thesis work aims to fill this gap for real-time scenarios [140, 141]. Mobile

Edge Computing (MEC) is an emerging concept that moves compute and storage

resources closer to the network edge, enabling quicker data processing and lower latency

for real-time applications. Recent studies underline the important importance of MEC in

enabling the exponential production of IoT devices and the rising need for low-latency

services. For instance, a detailed evaluation demonstrates the benefits of MEC in

lowering end-to-end latency and boosting user experience by processing data at the

network edge rather than depending on distant cloud servers [142]. Another research

analyzes the integration of 5G with MEC, pointing out that the combination of both

technologies can greatly enhance the performance of mobile networks by shifting

computationally expensive jobs to edge servers, thereby lowering network congestion

and enhancing service delivery [143-145]. Efficient task scheduling is crucial for

maximizing resource usage and assuring Quality of Service (QoS) in MEC contexts.

Traditional scheduling algorithms frequently struggle to fulfill the dynamic and

diversified requirements of MEC applications. Recent research has focused on generating

more adaptable and intelligent scheduling algorithms. For example, multi-objective deep

reinforcement learning strategy for MEC, which simultaneously optimizes numerous QoS

metrics like as latency and energy usage. This strategy harnesses the Pareto front to

determine optimum trade-offs between conflicting objectives, providing considerable

increases in scheduling efficiency [146, 147]. Bioinspired optimization techniques have

showed tremendous promise in tackling the complicated job scheduling challenges in

MEC. These algorithms mimic natural processes to identify optimal solutions in

extremely dynamic and multi-dimensional problem domains. Recent research has studied

several bioinspired strategies, including Flower Pollination Optimization (FPO), Genetic
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Algorithms (GA), and Particle Swarm Optimization (PSO), to optimize resource

allocation in MEC. For instance, a recent work proposes a VARMAx-based bioinspired

resource scheduling model that combines the predictive powers of the VARMAx model

with the flexibility of FPO. This hybrid technique provides more accurate task mapping

to Virtual Machines (VMs) by incorporating numerous task and resource characteristics,

leading to considerable increases in make span, deadline hit percentage, energy efficiency,

and throughput [148]. This study seeks to design a multi-objective optimization technique

optimized for job offloading in mobile edge computing (MEC) scenarios. The major

purpose is to research and increase MEC system performance with reference to workload

offloading.

Initially, a multi-objective task offloading scenario within MEC is built. A MEC task

offloading scheduling technique based on multi-objective optimization is described,

concentrating on improving both latency and energy usage during the computational

offloading process [149-151]. Table 2.1 summarizing some existing resource scheduling

models for Mobile Edge Computing (MEC). A summary of the current approaches used

in data dissemination is given in Table 2.2, together with an explanation of their

fundamental ideas and methods of execution. Understanding the development of various

strategies and their efficacy in MEC-based adaptive data dissemination is made easier by

this comparison. The benefits and drawbacks of a few current strategies utilized in data

distribution are highlighted in Table 2.3. Reader can find areas for improvement and

investigate hybrid or enhanced approaches to address present issues in MEC contexts by

assessing their advantages and disadvantages.

Table 2.3 Advantages and limitations of some existing models
Model Advantages Limitations

First Come First
Serve (FCFS)

Simple and easy to
implement.

Does not consider task priority or
resource requirements, leading to

potential inefficiencies.
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Round Robin
(RR)

Fairly distributes tasks
among resources,

preventing any single
resource from becoming

overloaded.

Ignores task complexity and
resource heterogeneity, which can
lead to suboptimal performance.

Genetic
Algorithm (GA)

Can find near-optimal
solutions for complex
scheduling problems
through evolutionary

techniques.

Computationally intensive and may
require significant time to converge

to a solution.

Particle Swarm
Optimization

(PSO)

Efficient in exploring
large solution spaces and
can adapt to dynamic

changes in the
environment.

May suffer from premature
convergence and require fine-tuning

of parameters.

Ant Colony
Optimization

(ACO)

Effective in finding
optimal paths and

resource allocations based
on pheromone trails.

Performance can be heavily affected
by the number of iterations and
pheromone evaporation rate.

Multi-Objective
Evolutionary
Algorithm
(MOEA)

Simultaneously optimizes
multiple objectives, such
as delay and energy

consumption.

Computationally expensive and may
require balancing trade-offs between

conflicting objectives.

Deep
Reinforcement
Learning (DRL)

Learns and adapts to
dynamic environments,
potentially finding highly

efficient scheduling
policies.

Requires large amounts of training
data and computational resources;

may struggle with real-time
constraints.

2.3 Research Questions

Q.1 How can bioinspired optimization techniques enhance adaptive data

dissemination in MEC?

Response: Bioinspired optimization methods such as Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are used to improve

adaptive data dissemination by optimizing routing, load balancing and resource allocation.

These models replicate natural behaviors in a bid to enhance energy efficiency, reduction

in latency as well as dynamically adjusting to network conditions. The ability of the MEC
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systems to adapt to the environmental conditions in order to learn better provides better

QoS-aware data dissemination.

Q.2 What are the key limitations of existing data dissemination techniques in MEC,

and how can they be addressed?

Response: The existing techniques, including gradient-based routing and flooding-based

dissemination, are associated with high-energy usage, high redundancy, and network

congestion. Overcoming these challenges can be achieved by using hybrid approaches

that integrate machine learning, predictive analytics and bioinspired optimization tools.

Moreover, edge intelligence and software-defined networking (SDN) may enhance

scalability and flexibility, whereas blockchain-based secure data dissemination may

enhance reliability.

Q.3 What role does reinforcement learning play in improving adaptive data

dissemination in MEC?

Response: Reinforcement Learning (RL) models can help MEC systems change data

dissemination strategies in real time, using their user behavior and network conditions as

inputs to the model to learn dynamically. It is possible to take adaptive dissemination

further to reduce latency, enhance network performance, and resource consumption

through integrating RL with bioinspired models. To illustrate, DRL-based techniques

have the ability to optimize the cache placements at edge nodes, as well as predict future

demands.

Q.4 What are the trade-offs between computational complexity and optimization

performance in bioinspired models for MEC?

Response: Although bioinspired models such as ACO and PSO provide effective load

balancing and path optimization, they frequently have slow convergence and significant

computing complexity. By increasing convergence speed while preserving optimization

efficiency, hybrid strategies—like combining PSO with edge AI or reinforcement
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learning—help achieve equilibrium. To increase efficiency, quantum-inspired

optimization methods and parameter self-tuning are increasingly becoming popular.

Q.5 How can bioinspired approaches be integrated with real-time adaptive traffic

flow control for MEC-based applications?

Response: Dynamically changing routing based on the demand and network state can be

used to combine traffic flow control with bioinspired models. As an example, PSO and

EHPSO-based load balancing strategies could be useful to optimize resource allocation

and network congestion. Moreover, within the framework of intelligent transportation

systems and autonomous vehicle networks, bioinspired models can be enhanced with

federated deep learning to enhance the quality of routing and prediction of traffic.

Q.6 How can hybrid bioinspired approaches improve the efficiency and scalability

of adaptive data dissemination in MEC?

Response: Hybrid bioinspired systems also enhance efficiency and scalability through

the combination of machine learning, reinforcement learning and deep learning with

more traditional bioinspired algorithms, such as ACO, PSO, and GA. As an illustration,

bioinspired models coupled with Deep Reinforcement Learning (DRL) make it possible

to combine the two to create real-time learning and dynamics adaption of networks.

2.4 Literature Summary

Adaptive data dissemination in Mobile Edge Computing (MEC) has changed

dramatically from traditional cloud-based models to decentralized and intelligent

alternatives, as this chapter is examination of several extant methodologies makes clear.

The use of centralized designs for early data distribution resulted in significant latency,

network congestion, and wasteful resource use. By putting computing and storage closer

to end users, MEC became a viable solution that enhanced network performance and

decreased latency. However, the static data broadcast techniques utilized in the early

MEC implementations were unable to dynamically adjust to shifting network conditions.

To overcome this difficulty, researchers investigated edge caching, predictive analytics,
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and heuristic-based methods to maximize data transfer. These developments were

essential in improving Quality of Service (QoS) and cutting down on unnecessary data

transfers. The application of bioinspired optimization approaches to improve adaptive

data distribution in MEC is also covered in great detail in the literature. Data routing,

resource allocation, and job offloading have all been shown to be efficiently optimized by

algorithms like Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),

Genetic Algorithms (GA), and Artificial Bee Colony (ABC). These bioinspired models

minimize latency and energy consumption by dynamically modifying dissemination

tactics based on network conditions by utilizing swarm intelligence and evolutionary

concepts. Even with these developments, there are still issues with current models, such

as their high computational complexity. According to the literature, next-generation

technologies like 6G, federated learning, and edge intelligence will propel future

developments in adaptive data dissemination in MEC. It is anticipated that collaborative

edge networks, in which several MEC nodes work together in real time, will improve the

effectiveness of data distribution for ultra-low latency applications, such as extended

reality (XR) and driverless cars. Network scalability and dynamic resource allocation

will be further made possible by the combination of network function virtualization (NFV)

and software-defined networking (SDN).
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CHAPTER 3

HYBRID BIOINSPIRED MODELFORADAPTIVE TRAFFIC FLOWCONTROL

Effective traffic flow management requires monitoring edge devices to ensure traffic is

evenly dispersed across networks. However, existing flow control systems, sometimes

incorporating machine learning, struggle with complicated configurations and

inefficiencies, particularly in large-scale device networks. This thesis work provides a

hybrid bioinspired system to optimize traffic flow control in edge device networks and

address these issues. The implemented methodology utilizes request-response time data

to forecast traffic flows across multiple device sets. Using this predictive capacity, edge

resources are dynamically assigned, considerably enhancing Quality of Service (QoS) in

large-scale systems. The model analyzes this data using a hybrid Elephant Herding

Particle Swarm Optimizer (EHPSO), which assigns temporal weights to IP groups to

estimate future demands, permitting effective resource allocation depending on system

capacity. A performance-based fitness function further modifies edge configurations to

respond to incoming traffic. By using EHPSO, the suggested model achieves an 8.3%

improvement in resource allocation efficiency, a 4.5% reduction in calculation time, and a

6.4% decrease in computational burden for processing huge numbers of requests, making

it very useful for large-scale applications.

3.1 Introduction to BATFE

The applications, which are based on Artificial Intelligence (AI) and their application,

especially in the Internet of Things (IoT), are mandatory in the contemporary mobile

communication network systems [1, 2]. There exist three major use cases in 3rd

generation partnership project (3GPP), enhanced mobile broadband (eMBB) and massive

machine-type communication (mMTC) and ultra-reliable low-latency communications

(uRLLC). Deep Simple Online and Real-time Tracking (DSORT), virtual service flow

(VSF), vector autoregressive (VAR) modelling, and binary coding trees (BCT) are some

of the technologies that can be used to support these use cases [3, 4]. In contrast to eMBB,

which attempts to utilize the spectrum in a manner that is as efficient as possible, uRLLC
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has been extremely problematic when it comes to supporting the needs of high-latency

and high-reliability networking, which has played an important role as an innovation in

networking. The multitasking of the control of the people and traffic volumes is a critical

issue as uRLLC becomes more and more significant. It is a trend that the increase in the

number of smart devices induces telecommunications companies to balance the ability of

services and user demand by using the models such as the Long Short-Term Memory

(LSTM) with Sparse Auto-Encoder (SAE), Ensemble weight Approach (EWA) and

preference logic-based aggregation model (PLM) [5-8]. The secret to ensuring that the

users enjoy a high Quality of Experience (QoE) is real-time interactions and customised

services. The mobile traffic increase is predicted and will have a large impact on the load

to compute and dispatching on edge clouds (base station) and remote clouds (data centers)

on the IoT-Cloud architecture [9-12]. Although features of cloud IoT are pressing in terms

of dealing with the rise in mobile network, they are also challenging in relation to the

network and the processing power that may on the other hand cause an increase in the

response time of the applications. The allocation of bandwidth to various applications

that are executed in clouds is also a complication of the necessity to create a balance [13-

15]. The transition towards the heterogeneous IoT of the traditional one and the increased

burden of the resources of the smart services pressure an even increased burden on the

network operators and service providers. In this regard, the data on a mobile traffic flow

demands an effective analysis and regulation, especially when it comes to uRLLC clients

that demand the minimum delay [21-24]. The more efficient forecasting of the mobile

traffic flow, dynamic distribution of resources, and mobile network structure will help

resolve these problems. There is an intersection between edge computing, cloud-based

wireless network and the IoT Cloud, in which it is necessary to exercise strict control,

particularly within the area of high standards of latency and reliability of uRLLC [25-28].

The recent developments in processing and storage technologies, on smartphones, on the

base stations and on remote clouds make this integration possible [29-33]. The transition

to the complex system management in which the more complex machine learning (ML)

methods are being used in AI marks the growing use of the traditional pattern recognition.



35

The aspect of AI and machine learning has been enhanced over the last several decades,

and currently, more sophisticated technologies such as wireless communication networks

can be created [34]. Approaches to bioinspired optimization algorithms which have

proven to be useful in intelligent traffic flow prediction are genetic Optimization (GO)

and Particle Swarm Optimization (PSO), which is realized through the analysis and

prediction of long-term time series events. The flow control techniques, which are

currently in use, however, are normally susceptible in configuration complexity and

inefficient Ness in linking two or more devices on the network. This paper has proposed a

mixed bioinspired system that will be used to regulate the movement of traffic in the

implementation of edge devices. The model also applies the bioinspired concepts to

ensure that efficiency and effectiveness of the traffic flow management is maximized in

such a way that there exist balanced allocation and optimal allocation of resources even

in the case of a large scale set up. This is the strength of the model compared to the

conventional machine learning-based applications since it simulates the natural processes

to come up with a scalable and flexible solution to the predicaments of contemporary

mobile networks. Elephant Herding Particle Swarm Optimizer (EHPSO) is a form of

optimization algorithm that is an amalgamation of two bioinspired optimization

algorithms. EHO approximates this behavior by subdividing potential solutions

population (treated as elephants) into clans. In optimization, the following steps will be

necessary:

a. Clans and Matriarchs: The population is divided into several clans, with each

clan led by a matriarch, representing the best solution within that group.

b. Herding: Elephants within a clan go towards the matriarch, mirroring the social

behavior of elephants following their leader.

c. Separate Operator: To maintain diversity, a separate operator randomly

relocates certain elephants, preventing early convergence and encouraging the

exploration of new areas in the solution space. PSO is inspired by the social

behavior of birds flocking or fish schooling. Each individual, termed a particle,
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represents a potential solution and modifies its location in the search space based

on:

 Personal Best Position (pBest): The best solution a particle has discovered so far.

 Global Best Position (gBest): The best solution identified by the whole swarm.

 Velocity Update: Particles adjust their velocities based on their personal best

positions and the global best position, guiding their movement toward optimal

solutions.

3.1.1 Integration in EHPSO

EHPSO integrates the clan-based structure of EHO with the velocity and position update

mechanisms of PSO, leveraging the strengths of both techniques. The following outlines

how EHPSO functions:

a. Initialization: A population of solutions (elephants/particles) is initialized and

organized into clans.

b. Clan-based Social Learning: Within each clan, elephants travel towards their

matriarch employing the herding characteristic of EHO.

c. Swarm-based Optimization: Particles adjust their velocities and positions

following the principles of PSO, taking into account both their personal best and

the global best positions.

d. Separating Operator: Randomly relocates certain elephants to new spots to

improve variety and prevent local optima.

3.1.2 Feature of EHPSO

a. Exploration and Exploitation Balance: The combination of EHO and PSO

enables a fair balance between exploration (finding new regions) and exploitation

(refining existing good solutions).

b. Diversity Maintenance: The separating operator in EHO helps preserve diversity

in the population, lowering the risk of early convergence.
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c. Efficiency: By harnessing the characteristics of both EHO and PSO, EHPSO may

efficiently search for optimum solutions in complicated, high-dimensional areas.

d. Adaptability and Robustness: Bioinspired algorithms are extremely flexible and

durable, capable of managing dynamic and unpredictable settings. They can

readily adjust to changes in the issue space and continue seeking for answers.

e. Parallelism: The population-based design of these algorithms enables parallel

processing, allowing multiple potential solutions to be evaluated simultaneously,

which significantly accelerates the optimization process.

f. Self-Organization:Many bioinspired algorithms exhibit self-organizing behavior,

where complex global patterns emerge from simple local interactions. This self-

organization is essential for addressing complex problems without the need for

centralized control.

g. Stochasticity: Randomness plays a key role in bioinspired optimization. It aids in

exploring the solution space and escape local optima, contributing to the

robustness of the algorithms.

h. Fitness Function: A fitness function evaluates the quality of solutions, guiding

the search process by offering feedback on how well each solution meets the

optimization criteria.

EHPSO is especially effective in scenarios that require efficient resource allocation,

scheduling, and optimization in dynamic environments, such as traffic flow control in

edge computing, as described in this chapter. The Elephant Herding Particle Swarm

Optimizer (EHPSO) is a robust hybrid optimization method that merges the clan-based

social behavior of EHO with the velocity and position update mechanisms of PSO. This

integration allows for successful optimization in complex and dynamic settings by

maintaining diversity and striking a balance between exploration and exploitation. The

motivation for implementing the recommended hybrid bioinspired technique, specifically

the Elephant Herding Particle Swarm Optimizer (EHPSO), is to handle challenges in

traffic flow management and resource allocation in mobile edge computing. Conventional

machine learning methods commonly confront issues relating to configuration
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complexity and inefficiency in extended networks. This method tries to boost adaptability

and efficiency in dynamic situations, such as edge networks, by employing bioinspired

principles to manage substantial changes in traffic demands.

The hybrid EHPSO incorporates the social behaviours of Elephant Herding Optimization

(EHO) and Particle Swarm Optimization (PSO) to optimize resource allocation, minimize

computational stress, and increase Quality of Service (QoS). This decision is also

influenced by the demand to equilibrate exploration and exploitation in search strategies,

keeping system variation while moving towards optimal solutions. The EHPSO

framework provides a scalable and adaptive solution proficient at handling the

sophisticated, vast traffic flows typical of modern mobile networks, therefore enhancing

overall system performance. The key findings reveal considerable increases in resource

allocation efficiency, computational delay reduction, and computational load,

demonstrating that the proposed approach successfully optimizes resource distribution

within edge devices under high-density traffic scenarios. Compared to previous

techniques, the EHPSO model offers substantial benefits, emphasizing its appropriateness

for real-time edge computing settings by lowering system latency and boosting Quality of

Service (QoS). These results demonstrate that the model not only fulfils but substantially

enhances the actual criteria for adaptive traffic flow control, highlighting its potential

influence on managing complex and dynamic edge network scenarios.

3.2 Algorithm Overview

Commonly used in Intelligent Transportation Systems (ITS), the Elephant Herding

Particle Swarm Optimizer (EHPSO) is an advanced method designed to optimize traffic

flow in edge device networks. The following outlines the sequence of iterative procedures

involved in this optimization, without the use of equations [35, 36]:

1. Optimization Constants for Initialization: First, several constants are initialized,

including the total number of iterations, the number of particles to be generated initially,

the total number of herds to be optimized, and the learning rates for both particles and

herds.
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2. Particles Generation: Every particle is a possible configuration for network

optimization. The procedure entails:

 Randomly change the capacity of each edge node based on a predetermined

learning rate.

 If a new node is added to the network and the new capacity of the node exceeds

the current capacity, the configuration is reevaluated.

 To test your network, send simulated requests from different IP addresses and

update your performance metrics accordingly.

 Evaluate each particle's "fitness" or effectiveness according to how effectively it

responds to these demands. Figure 3.1 is showing ants working together to

transport food, combined with a graphic of data packets moving through a

network.

Figure 3.1: Ants working together to transport food, same as data packets moving through

a network
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3. Herds Formation: After generating all the particles, Swarms are formed from

particles with power above a given level.

4. Herd Performance Evaluation: Each swarm is evaluated based on the average

performance of its particles. The swarm's effectiveness in optimizing network traffic

determines the swarm's ranking.

5. 'Matriarch' Herd Identification: “Matriarch” refers to the herd that exhibits the best

performance. This herd arrangement is considered the most efficient.

6.Modifications to Other Herds: The configuration of other herds is modified based on

that of the 'Matriarch' herd. To do this, their settings must be adjusted to mimic the

'Matriarch' herd's effective setup.

7. Optimized Iterations: For the predefined number of times, the whole process of

creating particles, assembling herds, assessing them, and making adjustments in response

to the 'Matriarch' herd is repeated. The system improves performance by fine-tuning its

settings with each cycle.

8. Complete Execution: The configuration chosen by the 'Matriarch' herd is used as the

model to optimize network traffic flows at the end of each cycle. To manage traffic

effectively in real-time, the best-performing configurations are implemented to

reconfigure the edge devices [37, 38]. The EHPSO method is an iterative and dynamic

approach that leverages herd behavior and swarm intelligence. It continuously adjusts the

network setup to control and optimize traffic flow, ensuring peak performance and

efficient resource utilization in real-time environments.

The research objective of this thesis work is to develop and validate an adaptive traffic

flow control framework leveraging a hybrid bioinspired optimization model, specifically

the Elephant Herding Particle Swarm Optimizer (EHPSO), to address challenges in

resource allocation and traffic management within edge computing environments. By

integrating the adaptive characteristics of elephant herding and particle swarm algorithms,

this implemented work intends to increase the Quality of Service (QoS) in edge networks
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through efficient, real-time resource distribution across large-scale, high-density

networks. The aim involves making quantifiable gains in resource allocation efficiency,

decreasing computational load, and minimizing delays, consequently overcoming limits

presented by classical machine learning models in dynamic edge computing scenarios.

Through predictive analysis of traffic patterns and adaptive resource allocation, this

research intends to develop a scalable solution that enhances edge network performance,

especially in applications demanding low latency and high responsiveness.

3.3 Crucial Parameter & Variables Used in the Model

The crucial elements and criteria consist of:

1. Optimization Constants:

 Total iterations (N_i): How many times the optimization procedure will be carried

out in its entirety.

 Number of Particles (N_p): The starting number of various possible setups or

solutions that need to be assessed.

 Total Herds (N_h): The quantity of groups or herds that the performance of the

particles determines for their classification.

 Learning Rates (L_r, L_c, L_s): These rates guide the adaptation and learning

process within the EHPSO. L_r is the learning rate for herds, while L_c and L_s

are the cognitive and social learning rates for individual particles.

2. Particle Generation and Capacity Adjustment:

 Each particle represents a potential network configuration. Their initial setup

includes random adjustments in the capacity of edge nodes.

 The process involves evaluating the network's performance under different

capacity levels and configurations.

3. IPAddresses and Request-Response Metrics:
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 IP Addresses: The addresses from which dummy network requests are sent to test

each particle's configuration.

 Request-Response Metrics (RRM): These metrics evaluate how effectively a

particle's configuration handles network traffic.

4. Fitness Evaluation:

 The effectiveness or 'fitness' of each particle and herd is calculated based on their

performance in managing traffic [39].

5. Herd Formation and Evaluation:

 Particles are grouped into herds based on their fitness levels.

 Each herd is then assessed for its overall effectiveness in optimizing traffic flow.

6. 'Matriarch' Herd Identification:

 The herd with the highest fitness score is labelled the 'Matriarch'. Its configuration

is considered the most effective.

7. Herd Configuration Adjustment:

 Based on the 'Matriarch' herd, the configurations of other herds are adjusted in an

attempt to replicate the most successful setup.

8. Iterative Process:

 The process of generating particles, evaluating them, forming herds, and adjusting

configurations is repeated across several iterations to continuously improve

performance.

Every one of these elements is essential to the EHPSO's functioning and helps it to

efficiently optimize network traffic flow in edge computing settings. The way these

components are integrated demonstrates the intricacy and depth of the EHPSO approach,

which uses cutting-edge computational methods to optimize and regulate traffic in

intelligent transportation systems [40].



43

3.4 Design of Proposed Hybrid Bioinspired Model

A review of cloud-based flow control models shows that these systems often rely on

machine-learning-based reconfigurable components, which are either complex to deploy

or exhibit reduced computational efficiency when scaled to larger device networks. To

address these challenges, this chapter presents the design of an efficient hybrid

bioinspired model for adaptive traffic flow control in edge device deployments. As

depicted in Figure 3.2, the proposed model first collects temporal request-response

parameters to anticipate traffic flows from various device sets. This pre-emptive approach

enables the dynamic allocation of edge device resources, thereby enhancing Quality of

Service (QoS) even in large-scale environments. The gathered data is processed through a

hybrid Elephant Herding Particle Swarm Optimizer (EHPSO), which assigns temporal

weights to different IP groups. These weights help predict future request densities,

allowing for optimal assignment to capacity-aware edge devices. By combining both

Elephant Herding and Particle Swarm Optimization concepts, the EHPSO model

successfully balances exploration and exploitation in traffic flow optimization, which is

critical in dynamic and high-demand edge contexts. This dual-layered optimization

technique allows the model to distribute resources with more precision, lowering latency

and improving response times across different network circumstances. Additionally, the

adaptive nature of the EHPSO enables it to change resource allocation in real-time,

making it particularly ideal for applications that demand speedy and dependable

processing, even under variable traffic loads. This process is guided by a performance-

specific fitness function that reconfigures internal edge settings based on the anticipated

request densities. Thus, the model initially collects traffic flows in the form of request

logs, response logs, and temporal logs, which consist of the following fields,

 IP addresses of the requesting entities

 Requested cloud service �����

 Request timestamp (�����)
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 Response timestamp (������)

 Status of response (either valid or invalid) (�����)

 Packet size of request & response (����� & ������)

Based on these parameters, a request-response metric (RRM) is estimated for each IP

address via equation 1,

��� =
�=1

����

������� − ������ ∗
�������

��� ������
∗

������

��� �����
∗ ������� …(1)

Where ���� represents the total number of requests & response pairs for a given IP

address. Based on this evaluation, the distance between two IPs is calculated via equation

2,

�1,2 =
�=1

����

(���1� − ���2�)2� …(2)

Using this distance metric, a set of core points is estimated via equation 3,

������� =
�,�

���

� ��,� > ���� …(3)
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Figure 3.2: Design of the proposed pre-emption model for real-time traffic flows

Where, represents total IP addresses in the network, and is an error threshold that is set up

by network designers to improve the efficiency of clustering operations. Each of these

core points is marked as initial cluster centroids and is processed via K-means Clustering

to segregate IPs into distance-specific groups.

These groups can be observed from Figure 3.3, where the request-response metric is used

on the Y axis, while the IP number is used on the X axis, each of these groups is further

processed via a rule-based mining method, that assists in the identification of high-

density traffic flows. To identify such flows, a minimum support vector is estimated via

equation 4,
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Figure 3.3: Clustered IP addresses via RRM and kMeans process.

������ ��1, ��2 =
��� ��� �12 , ��� �12

��� ��� �12 , ��� �12
…(4)

Where, STD & VAR represent standard deviation and variance levels, which are

estimated via equations 5 & 6 as follows,
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� ��
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� ��

��
2

�

� − 1
…(6)

Based on this minimum support value, an Apriori rule miner is used to estimate request

specific rules, for different IPs. These rules assist in the identification of the following

use cases,

 IP addresses that require frequent cloud access

 IP addresses that send larger request packets

 IP addresses that have higher acceptance & rejection rates

 IP addresses that have higher faster responses
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Based on these rules, an IP pre-emption metric (IPPM) is estimated via equation 7,

���� =
��� ∗ ���� ∗ �� ∗ ��

��� ���� ∗ ���(��)
…(7)

Where CAR represents the cloud access rate, S_req represents request size, AR

represents cloud acceptance rate, and RT represents cloud response rate, which is

provided by the Apriori rule mining technique for every IP address. Based on this IPPM

level, an Elephant Herding Particle Swarm Optimizer (EHPSO) is activated, which

executes as per the following process,

 To set up the optimizer, initialize the following constants used for optimization:

 Total iterations that will be used to generate & reconfigure edge device sets

(��)

 The number of particles that will be initially generated (��)

 Total Herds that will be used to optimize these particles (�ℎ)

 The learning rate for each of these Herds (��)

 Cognitive and Social Learning rates for each particle (�� & ��)

 When these constants are set up, then �� particles are calculated as per the below

steps,

 For each edge node, modify their capacity levels stochastically via equation 8,

�� ��� = �� ��� + ����� �� ∗ ��, 1 ∗
�=1
������� ������ − �=1

�����ℎ��� ������
�����ℎ���

�������

…(8)

Here, represents the edge capacity, denotes the number of IP addresses currently being
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served by this edge, refers to the number of IP addresses being handled by other edge

nodes, and indicates a stochastic process used to calculate these values through an

efficient Markovian process.

 If the new edge capacity is more than the capacity currently available with the

edge node, then deploy a new edge node, and repeat the clustering process.

 Based on this configuration, update the ���� value, and send � dummy

requests from each of the IP addresses

 Capture the request & response parameters for these requests, and estimate

particle fitness via equation 9,

� = �=1
��� �����

���
…(9)

 Repeat this process for the generation of �� particles.

 Once all particles are generated, then generate N_h Herds via the following process,

 Find particles with � > ��ℎ, where ��ℎ is estimated as per equation 10,

��ℎ =
�=1

��

�� ∗
��

��
� …(10)

 Group all these particles in a single Herd, and repeat the process of particle

generation �ℎ times to get different Herd configurations.

 After the generation of all Herds, calculate Herd fitness via equation 11,

�ℎ =
�=1

��ℎ
��

��ℎ
∗

��

�� + ��
� …(11)

Where ��ℎ represents the number of particles present the each of the Herds.
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 Identify the Herd with the highest fitness, and mark it as a 'Matriarch' Herd

 Based on the configuration of the 'Matriarch' Herd, modify the configuration

of other Herds via equation 12,

� ��� = � ��� + �� ∗ �1 ∗ �ℎ − � ���� + �� ∗ �2
∗ �ℎ − � ��������ℎ … 12

Where, �(����) represents the best inter-iteration fitness level for the current Herd, while

�1 & �2 are stochastic constants, and � ��� & �(���) represents the new & old

capacity level of each edge configuration in the current Herd

 Using these new capacity levels, update the Herd configuration, and modify

the edge nodes for improving traffic flows.

 This process is repeated for �� iterations and new ‘Matriarch’ Herds are obtained

Once all iterations are completed, configurations selected by 'Matriarch' Herd are used for

optimizing traffic flows of edge device sets. Among these configurations, the particles

with the highest fitness levels are selected, and their capacity levels are applied to

reconfigure edge devices for optimal traffic flow in real-time conditions. The efficiency

of this process was evaluated and compared with existing models in terms of resource

allocation efficiency, computational delay, and the number of computations required for

traffic processing under high-density loads. An example is provided to illustrate the

overall calculation of the proposed model, using sample data and simplified calculations

to explain the key steps of the process.

3.4.1 Scenario Setup:

Edge Network: Suppose we have an edge network with 5 edge nodes, each handling

traffic from various IP addresses.

Optimization Constants:

 Total Iterations (Ni): 10
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 Number of Particles (Np): 5 (representing 5 edge nodes)

 Total Herds (Nh): 2

 Learning Rates: Lr = 0.1, Lc = 0.2, Ls = 0.3

Step 1: Initialization

 Assume each edge node (particle) has an initial capacity (e.g., 100 units).

 Each node handles traffic from a set number of IP addresses.

Step 2: Particle Generation

 Traffic Data: Assume each node initially handles varying traffic loads, with

different request and response sizes.

 Capacity Adjustment: For each node, we adjust the capacity based on the traffic

load. For simplicity, let's say the new capacity is calculated as the current capacity

plus a random value between -10 and 10.

Step 3: Fitness Evaluation

 Each node's performance is evaluated based on how well it handles the traffic.

Let's assume a simple fitness score based on the ratio of requests successfully

processed to total requests.

Step 4: Herd Formation

 Particles are grouped into herds based on their fitness. Let's say particles with

above-average fitness go into Herd 1, and the rest into Herd 2.

Step 5: Iterative Process

 'Matriarch' Identification: In each iteration, the best-performing herd is identified.

Let's say Herd 1 performs better in the first iteration.

 Herd Adjustment: Other herds adjust their configurations slightly towards the

'Matriarch' herd's configuration.

Step 6: Repeating the Process



51

 This process is repeated for 10 iterations (Ni), with particles and herds being

continuously evaluated and adjusted.

Step 7: Final Configuration Selection

 After 10 iterations, the configuration of the 'Matriarch' herd is used to set the final

capacities and configurations for the edge nodes.

3.4.2 Sample Calculations:

1. Initial Capacity Setup: Node 1 = 100, Node 2 = 100, Node 3 = 100, Node 4 = 100,

Node 5 = 100.

2. Adjust Capacity: Node 1 = 105, Node 2 = 110, Node 3 = 95, Node 4 = 90, Node 5 =

105.

3. Evaluate Fitness: Suppose Node 1 and Node 2 handle traffic better than others. They

form Herd 1; the rest are in Herd 2.

4. Iterate and Adjust: Herd 2 adjusts its configuration to emulate Herd 1.

In this simplified example, the EHPSO method iteratively optimizes the capacity and

traffic management of edge nodes. Through multiple iterations, less efficient nodes adjust

based on the performance of more efficient ones, resulting in an overall improvement in

network performance. In a real-world application, this process would involve more

complex calculations, larger datasets, and advanced learning algorithms to address the

dynamic and diverse nature of edge computing traffic.

3.5 Result Analysis

The implemented model initially collects large datasets from edge devices, which include

client request and server response parameters. These datasets are used to cluster IP

addresses based on traffic flow, request acceptance rates, and packet sizes. This process
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assists the EHPSO model in generating edge configurations that optimize traffic flow.

The EHPSO model first pre-empts edge capacity to accommodate dynamic requests,

which are subsequently optimized through Herd operations. These operations utilize

'Matriarch' based learning, supported by cognitive and social learning processes. As a

result, the implemented model improves edge efficiency in terms of resource allocation,

computational delay, and the number of computations required to handle edge requests.

The performance of this model was evaluated using the following datasets,

 The Telecom Dataset, which consists of 7.2 million records of accessing the

Internet through 3,233 base stations from 9,481 mobile phones for six months,

and can be accessed from http://sguangwang.com/TelecomDataset.html

 Edge Computing / Edge servers Dataset, which can be accessed from

https://www.kaggle.com/datasets/salmaneunus/edge-computing-edge-servers

 Image Recognition Task Execution Times in Mobile Edge Computing Data Set,

which can be accessed from

https://archive.ics.uci.edu/ml/datasets/Image+Recognition+Task+Execution+Time

s+in+Mobile+Edge+Computing

All these datasets consist of edge configurations, task traffic flows, and their responses,

which cumulate to form a total of 1.2 million records. These records were segregated into

80% for training, 10% for testing, and 10% for validation operations. Based on this

strategy, the resource allocation efficiency (RAE) was evaluated via equation 13, and

compared with VSF [2], LSTM SAE [5], and PLM [8] w.r.t. Number of Executed Tasks

(NET) in Table 1 as follows,

��� =
�=1

��
��� ∗ ���

��� ∗ ��� ∗ ��
… 13�

Where, RA, ET, RT & AT represent allotted resources, executed tasks, total resources,

and available tasks on the edge device sets, and N_r represents the number of requests

used during the performance evaluation process. Table 3.1 compares Resource Allocation

Efficiency (RAE) among multiple models—VSF, LSTM SAE, PLM, and the

http://sguangwang.com/TelecomDataset.html
https://www.kaggle.com/datasets/salmaneunus/edge-computing-edge-servers
https://archive.ics.uci.edu/ml/datasets/Image+Recognition+Task+Execution+Times+in+Mobile+Edge+Computing
https://archive.ics.uci.edu/ml/datasets/Image+Recognition+Task+Execution+Times+in+Mobile+Edge+Computing
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implemented BATFE model—over an increasing number of completed tasks (NET). It

shows that while other models display a modest gain in efficiency as task volume grows,

the BATFE model consistently gets the greatest RAE across all NET values. This

suggests that BATFE's hybrid bioinspired method considerably increases resource

allocation, making it especially useful for handling large-scale, high-demand settings in

edge computing.

Based on the evaluation presented in Table 3.1 and Figure 3.4, the model demonstrated a

10.5% improvement in resource allocation performance compared to VSF [2], a 5.9%

improvement compared to LSTM SAE [5], and a 23.5% improvement over PLM [8],

making it highly suitable for real-time environments. The key factor driving this

performance enhancement is the incorporation of cloud access rate, request size, cloud

acceptance rate, and cloud response rate in the selection of edge configurations.

Additionally, it was observed that this performance continues to improve across various

executed tasks. Similarly, computational delay (CD) was estimated using equation 14 and

summarized in Table 3.1,

Table 3.1: Comparison of Resource Allocation Efficiency for different task sets

NET RAE (%)
VSF [2]

RAE (%)
LSTM SAE [5]

RAE (%)
PLM [8]

RAE (%)
BATFE

1k 75.30 65.40 70.50 82.08
2k 76.20 68.50 70.90 83.85
3k 77.15 72.30 70.95 85.19
5k 77.90 73.50 71.20 86.00
8k 78.30 74.80 71.50 86.65
10k 78.50 75.90 71.60 87.26
15k 78.65 77.20 71.90 88.12
20k 79.69 78.60 72.20 89.31
25k 80.25 81.20 72.45 90.44
40k 80.81 82.97 72.60 91.39
80k 81.38 84.73 72.75 92.35
100k 81.94 86.49 72.94 93.34
150k 82.51 88.25 73.24 94.34
200k 83.07 90.01 73.46 95.00
250k 83.64 90.15 73.68 95.34
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300k 84.20 90.17 73.91 95.65
350k 84.76 90.19 74.13 95.96
400k 85.33 90.23 74.35 96.40
450k 85.89 90.88 74.57 96.88
500k 86.46 91.18 74.80 97.30
550k 87.02 91.48 75.02 97.72
600k 87.59 91.77 75.24 98.13
700k 88.15 92.07 75.47 98.55
800k 88.71 92.37 75.69 98.97
1 M 89.28 92.67 75.91 99.38
1.2 M 89.84 92.97 76.13 99.80

�� =
�=1

��
���������� − �������

��
… 14�

Where ���������� & ������� represents the timestamp during the completion and start of

processing the task sets.

Figure 3.4: Comparison of Resource Allocation Efficiency for different task sets

Table 3.2: Comparison of Computational Delay for different task sets
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NET CD (ms)
VSF [2]

CD (ms)
LSTM SAE [5]

CD (ms)
PLM [8]

CD (ms)
BATFE

1k 25.75 16.95 20.70 2.96
2k 26.68 20.40 20.93 4.52
3k 27.53 22.90 21.08 5.60
5k 28.10 24.15 21.35 6.33
8k 28.40 25.35 21.55 6.96
10k 28.58 26.55 21.75 7.69
15k 29.17 27.90 22.05 8.71
20k 29.97 29.90 22.33 9.87
25k 30.53 32.08 22.53 10.92
40k 31.10 33.85 22.68 11.87
80k 31.66 35.61 22.85 12.85
100k 32.23 37.37 23.09 13.84
150k 32.79 39.13 23.35 14.67
200k 33.35 40.08 23.57 15.17
250k 33.92 40.16 23.80 15.49
300k 34.48 40.18 24.02 15.80
350k 35.05 40.21 24.24 16.18
400k 35.61 40.55 24.46 16.64
450k 36.18 41.03 24.69 17.09
500k 36.74 41.33 24.91 17.51
550k 37.30 41.62 25.13 17.92
600k 37.87 41.92 25.35 18.34
700k 38.43 42.22 25.58 18.76
800k 39.00 42.52 25.80 19.18
1 M 39.56 42.82 26.02 19.59
1.2 M 40.13 43.12 26.24 20.01
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Figure 3.5: Comparison of Computational Delay for different task sets

Based on the evaluation in Table 3.2 and Figure 3.5, the model demonstrated a 40.5%

faster computational performance compared to VSF [2], a 42.4% improvement over

LSTM SAE [5], and a 19.1% enhancement compared to PLM [8], making it highly

suitable for high-speed edge deployments. The primary reason for this improvement in

computational speed is the use of request and response timestamps, along with EHPSO,

for selecting edge configurations. It was also observed that this performance improves

incrementally with the increasing number of tasks. Similarly, the number of computations

(NC) required for task execution is presented in Table 3.3.

Based on the evaluation in Table 3.3 and Figure 3.6, it was found that the model required

16.5% fewer computations compared to VSF [2], 19.2% fewer compared to LSTM SAE

[5], and 8.3% fewer compared to PLM [8], making it highly effective for high-capacity

edge deployments. The primary reason for this reduction in computations is the use of

adaptive flow rates through EHPSO, which facilitates the deployment of new edge

resources for IP-specific locations. It was also observed that performance improves as the

number of tasks increases. Due to these optimizations, the proposed model is well-suited
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for multiple edge-based deployments, offering high efficiency and low complexity in

real-time environments.

Table 3.3: Comparison of Number of Computations for different task sets

NET NC
VSF [2]

NC
LSTM SAE [5]

NC
PLM [8]

NC
BATFE

1k 241 147 189 28
2k 251 181 191 44
3k 260 210 193 55
5k 267 223 196 62
8k 270 236 198 68
10k 272 249 200 75
15k 277 263 203 85
20k 287 282 206 97
25k 293 307 208 108
40k 299 326 210 117
80k 305 345 211 127
100k 311 364 214 137
150k 317 383 217 146
200k 323 397 219 151
250k 329 398 221 154
300k 335 398 224 157
350k 341 398 226 161
400k 348 400 228 166
450k 354 406 231 170
500k 360 409 233 175
550k 366 413 235 179
600k 372 416 238 183
700k 378 419 240 187
800k 384 422 243 191
1 M 390 425 245 196
1.2 M 396 428 247 215
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Figure 3.6: Comparison of Number of Computations for different task sets

3.6 Conclusion & Future Scope

This work has emphasized the promise of a hybrid bioinspired technique, especially the

Elephant Herding Particle Swarm Optimizer (EHPSO), in solving the complex

difficulties of traffic flow control and resource allocation in current edge computing

environments. As edge computing needs continue to expand, standard machine learning-

based models suffer constraints in scalability, efficiency, and flexibility, especially when

applied to large-scale networks. The EHPSO model, inspired by the social behaviours of

elephant herding and particle swarming, was created to address these restrictions by

dynamically optimizing resource allocation in response to real-time traffic needs. By

evaluating request-response time data and assigning temporal weights to IP groups, the

EHPSO model increases forecast accuracy for traffic flows, allowing for a more balanced

and efficient deployment of resources. This dynamic allocation leads to a major

enhancement in the Quality of Service (QoS) for large-scale, high-density networks.

Through testing and validation, the suggested model revealed an 8.3% improvement in

resource allocation efficiency, a 4.5% reduction in calculation time, and a 6.4% decrease

in computational load, making it especially beneficial for applications with huge amounts
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of data. The results demonstrate that the EHPSO-based strategy not only addresses but

increases fundamental needs for scalable and adaptive traffic management in edge

computing, making it a vital contribution to contemporary network optimization

methodologies. The positive results of this study suggest various paths for future research

and practical developments. First, verifying the EHPSO model over a broader range of

edge computing situations, including even bigger and more complicated network

environments, would give more proof of its scalability and dependability in varied real-

world applications. As mobile networks and edge devices continue to grow, introducing

new hybrid bioinspired optimization strategies, beyond elephant herding and particle

swarming, might further increase the model’s flexibility and responsiveness in controlling

dynamic traffic flows. Additionally, with rising concerns surrounding environmental

sustainability, future study might examine the model’s influence on energy consumption,

concentrating on energy-efficient resource allocation algorithms that minimize power

usage without compromising performance. Robust security and privacy protections

should also be integrated to preserve sensitive data, which is crucial for deployment in

areas like healthcare, banking, and government.
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CHAPTER 4

QoS-AWARE DATA DISSEMINATIONWITH DTFC IN MEC

In the disruptive environment of mobile edge computing (MEC), where the merging of

computation and communication is the driver of the universality of connectivity. The

increased load of real time and data intensive applications is putting an unprecedented

strain on the current infrastructure that requires solutions that are not only unique but also

able to handle the expanding array of issues. The chapter takes off on an interesting tour

of the MEC realm in which it discovers the complexity of issues that have so far made its

integration in our digital lives difficult. With the growth of the mobile device and

insatiable data demands are piling pressure on the bandwidth of the network, latency is

emerging as a challenging enemy, with the integrity of applications that demand split-

second reaction being at risk. The unpredictability of mobile devices and mobility also

brings dynamism to the network topology that is not predictable, making the

conventional methods of traffic control useless. The result is a hairy tangle of congestion,

resources underutilization, and affected Quality of Service (QoS), which contributes to

the inability to optimize the potential of MEC. The model, which is synergistic, augments

the abilities of MEC deployments with the strength of content-based routing and

advanced optimization strategies. QADE having its innovative use of Elephant Herding

Particle Swarm Optimizer (EHPSO) excavates the data dissemination techniques with an

unparalleled emphasis on Quality of Service (QoS) measures. The four stars that guide us

to pursue the efficiency of the routing process are temporal delay, energy consumption,

throughput, and Packet Delivery Ratio (PDR). With the ability to leverage on this pool of

knowledge, QADE becomes an icon of efficiency, propelling latency to its lowest point,

multiplying bandwidth, reducing packet loss, increasing throughput, and rationalizing

operational expenses. DTFC is an addition to this effort; dynamically directing the traffic

flows based on edge processing capacity allows bypassing the pitfalls of congestion and

realizing the efficiency of resource utilization that was thought unachievable before. Our

suggested QADE with DTFC is a ray of hope in an endless assessment of available
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methodologies. It is a new age of real-time data dissemination with 8.5% latency

reduction over RL, 16.4% latency reduction over MTO SA, and an astonishing 18.0%

latency reduction over HFL. The proposed research by promoting the concept of QoS

awareness, flexibility, and effectiveness puts mobile edge computing in a new era of

resource optimization and excellent network performance.

4.1 Introduction

The new concept of Mobile Edge Computing (MEC) has become a promising solution to

the problem of exists of latency-sensitive applications and the astronomical increase in

data regarding the Internet of Things (IoT) and 5G networks. MEC can bring

computation and storage capabilities to the edge of the network so as to support a range

of applications including real-time video streaming, augmented reality, smart cities, and

autonomous vehicles [46-48]. In MEC deployments, the optimization of the network

performance and Quality of Service (QoS) guarantees is impossible without effective data

distribution and dynamic traffic flow management. But, the existing strategies are often

not sufficient to deal with these challenges properly. The conventional routing algorithms

used to distribute data are not suitable to consider any of the time related aspects like

delay, energy usage, throughput, and Packet Delivery Ratio (PDR) of nodes leading to

sub-optimal routing decisions. On the same note, the absence of dynamic traffic flow

control systems with regard to edge capacity will hamper the proper allocation and

utilization of resources. In order to address these shortcomings, this chapter talked about

a new approach that integrates Content-based routing to Adaptive Data Dissemination

and Elephant Herding Particle Swarm Optimizer (EHPSO) to Dynamic Traffic Flow

Control. As opposed to just using network topology, content-based routing lets the

network use the content to route data and permits the network to use it in a more efficient

and intelligent manner. EHPSO: It is a Particle Swarm Optimization (PSO) variant

applied to manage traffic flows with dynamically changing ability and capabilities of

edge devices and sets.
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MEC deployments using Adaptive Data Dissemination Engine (QADE) and Dynamic

Traffic Flow Control (DTFC). The adaptive data dissemination process enhances routing

performance because QADE uses the temporal delay of nodes, energy usage, throughput

and PDR levels, leading to the reduction of the latency, the bandwidth, the loss of packets,

the throughput and the overall costs. The current approaches cannot solve the special

challenges posed by the MEC deployments. Hence, this study is necessary. The procedure

has worked effectively as compared to traditional routing algorithms and traffic control

systems, as it pays more attention to time and considers the unique features of edge

computing systems. To seal a multitude of gaps in the current literature in real-time

contexts, the paper will present a solution to QoS-aware and efficient adaptive data

dissemination and dynamic traffic flow control in MEC, which is novel to the literature

[49-51]. The proposed strategy has a wide range of uses and applications.

4.2 Design of the Model

Based on the review of existing dissemination models used for mobile edge deployments,

it can be observed that these models either increase the computational complexity of

these deployments or have lower efficiency when used for large-scale scenarios. To

overcome these issues, this section discusses the design of an efficient QoS-aware

adaptive data dissemination engine with DTFC for mobile edge computing deployments.

As per Figure 4.1, the proposed model uses an Elephant Herding Particle Swarm

Optimizer (EHPSO) for the selection of optimal dissemination paths, which assists in the

deployment of an efficient QoS-aware adaptive data dissemination engine for underlying

edge device sets. These paths selected by EHPSO are processed by a Q Learning Model,

which assists in the identification of optimal data rates. This allows the model to

incorporate Dynamic Traffic Flow Control (DTFC) into the edge devices for

heterogeneous communication requests. The thesis work makes several significant

contributions to the field of mobile edge computing (MEC). Firstly, it introduces an

innovative approach to efficient data dissemination within MEC deployments [52, 53].

By leveraging the Elephant Herding Particle Swarm Optimizer (EHPSO) for path

selection, the model substantially enhances the efficiency of content-based routing. This
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contribution addresses the challenges associated with scalability and computational

complexity often encountered in existing dissemination models used for large-scale

scenarios. Fundamental to the implemented model is the introduction of the QoS-aware

Adaptive Data Dissemination Engine (QADE). QADE optimizes data dissemination by

taking into account critical metrics such as temporal delay, energy consumption, packet

delivery ratio (PDR), and throughput. This holistic approach to QoS awareness represents

a significant contribution, as it ensures that data reaches its intended destination

efficiently while maintaining a high level of service quality.

Moreover, the model seamlessly incorporates Dynamic Traffic Flow Control (DTFC),

further augmenting its capabilities. DTFC is a dynamic traffic management mechanism

that intelligently allocates communication requests to available resources based on edge

processing capacity. This contribution is vital for optimizing resource utilization and

preventing congestion in MEC deployments, thus enhancing the overall network

performance. The model's performance evaluation is another noteworthy contribution.

Through rigorous assessments conducted under diverse network scenarios, the model

provides empirical evidence of its effectiveness. It demonstrates superior performance

compared to existing models, underscoring its potential to significantly improve real-time

data dissemination and traffic management in edge computing environments. Ultimately,

the core contribution of this work lies in its advancement of Quality of Service (QoS)

within MEC. By optimizing data dissemination efficiency, traffic flow control, and

resource utilization, the model addresses the specific challenges posed by the dynamic

nature of edge computing. In doing so, it contributes practically viable solutions for real-

world MEC deployments, making a substantial step towards enhancing the overall QoS

and performance of edge networks. To perform these tasks, the model initially collects

spatial and temporal network parameters, and processes them via EHPSO Model, which

works via the following process,

• The EHPSO Model initially generates an augmented set of Particles, each of which

individually selects a group of stochastic nodes via equation 1,
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P =
i=1

N

STOCH 1, NN … 1�

Where, P represents the number of routing nodes in the edge network, represents the total

number of nodes that must be selected for routing operations which is estimated via

equation 2, while is the set of nodes that are stochastically selected by the process.

N = STOCH LR ∗ NN, NN …(2)

Where, N represents the learning rate for the PSO Process (which is empirically selected

between 0 & 1), while represents a stochastic process. The stochastic model adds

dynamicity to the process.

• Based on this path selection, an effective fitness level is calculated for the path via

equation 3,

f =
i=2

N P
d i − 1, i
E(i − 1)

∗
j=1

NC(i)

D j ∗
e j

PDR j ∗ THR(j)
�� …(3)

Where, f represents the number of temporal communications done by the nodes,

represents the distance between the nodes which is estimated via equation 4, and residual

energy of the nodes, represents temporal values of delay, energy consumed, packet

delivery ratio & throughput during temporal communications, which are estimated via

equations 5, 6, 7, & 8 as follows,

d i, j =
x i − x j

2
+ y i − y j

2
+

z i − z j 2 …(4)

Where, d (i, j) are the approximate locations of participating edge nodes?

D i = ts complete, i − ts start, i …(5)
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Where, D(i) represents the timestamp at which the temporal communications were

completed & started respectively under real-time scenarios.

e i = E start, i − E complete, i …(6)

Where, e(i) represents residual energy of the nodes.

PDR i =
Rx i
Tx(i)

…(7)

Where, PDR(i) represents the total number of received and transmitted packets while

serving temporal requests. These evaluations assist in adding temporal metrics to the

evaluation process.

THR i =
Rx i
D i … 8

• This process is repeated for all Particles, and based on this, values of Global Best are

estimated via equation 9,

GBest = Min f …(9)

•These particles are processed by an Elephant Herding Optimizer, which works as per the

following operations,

For each of the particles, mark the Global Best as the 'Matriarch' Herd Particle, Estimate

the fitness threshold via equation 10,

fth =
1

NP i=1

NP
f i ∗ LR� …(10)

Particles (or Herds) having fitness above are reconfigured via equation 11,

P New, i = P Old, i + LS ∗ f ew, i − f Matriarch
+ LC f New, i − Max f i …(11)
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Particles (or Herds) having fitness below are reconfigured as follows, For the remaining

particles, calculate a 2nd level threshold via equation 12,

fth 2 = fth ∗
LS

LS + LC
…(12)

•All Particles that have fitness lower than are passed directly to the next iteration, while

others are reconfigured via equation 13,

Figure 4.1: Design of the proposed model for optimal dissemination & flow control
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operations

P New, i = P Old, i + LS ∗ f ew, i − f Matriarch

+ LC f New, i −
j=1

f>fth(2)
f j

N f > fth 2
� …(13)

This process is repeated for Iterations, and new Particles (Herds) are generated with

highly efficient dissemination configurations. After completion of all Iterations, the

model can identify edge nodes with higher dissemination efficiency in terms of delay,

energy, PDR, and throughput levels. As this is an infinite optimization task, the model

doesn't wait for convergence but selects the path based on the last iteration sets. This is

done by selecting the Particle configuration that has lower fitness levels. After

completion of this process, an efficient Q Learning-based model is used, which assists in

the selection of optimal data rates for individual edge nodes. To perform this task, an

augmented Q Value is estimated for each of the nodes via equation 14,

Q =
i=1

N(P)

PDR i ∗
DR i
e(i)� …(14)

After completion of such communications, another Value is estimated, based on which

the Q Learning Model calculates an augmented reward factor via equation 15,

r =
Q New − Q(Old)

LR
− d ∗ Max Q + Q New …(15)

Where, r is the discount factor, which is empirically selected for the learning operations?

If the reward value is less than 1 for any node, then its data rate is modified via equation

16,
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DR New = DR Old ∗
r

1 − r …(16)

Based on this new data rate, the model can tune the traffic flow between edge nodes. This

process is repeated till the reward rates of all nodes are above, which indicates that all

nodes are tuned for optimal traffic flow control for the given edge deployments. Based on

this process, the model optimizes its internal data dissemination & traffic flow parameters,

thereby improving the overall QoS of the edge devices for real-time scenarios. In this

model, all hyperparameters were estimated empirically to obtain better performance

under different scenarios. The performance of this model was evaluated under different

network scenarios, and compared with existing models.

4.3 Adaptability Analysis

The model's ability to adapt data rates in response to changing network conditions using

Q Learning is a critical aspect of its functionality, contributing to improved network

performance and quality of service (QoS). Here, we'll elaborate on how this adaptation

process works for better understanding:

a. Q Learning as a Dynamic Decision Maker: Q Learning is a reinforcement

learning technique that enables the model to make dynamic decisions based on

environmental feedback. In this context, the environment represents the mobile

edge computing (MEC) network, and the decisions about traffic flow control and

data rate adjustments.

b. State Representation: Q Learning operates by defining states, actions, rewards,

and a Q-table. In the context of MEC, states can represent various network

conditions, such as congestion levels, available bandwidth, latency, and the

number of active users. These states collectively capture the current environment's

characteristics.

c. Actions: Actions in the Q Learning framework correspond to the different data

rate levels or traffic management strategies that the model can employ. For
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instance, actions can include reducing data rates, increasing data rates, rerouting

traffic, or adjusting transmission power [54].

d. Rewards: Rewards are used to provide feedback to the Q Learning agent (the

model) after each action. In the context of traffic flow control, rewards could be

defined based on QoS metrics like latency, packet delivery ratio, and energy

efficiency. The goal is to maximize rewards, indicating improved network

performance.

e. Q-Table: The Q-table is a data structure that stores the expected cumulative

rewards for each state-action pair. Initially, it's filled with arbitrary values. As the

model interacts with the network environment and receives feedback (rewards), it

updates these values through a learning process.

f. Exploration and Exploitation: Q Learning balances exploration (trying new

actions to learn) and exploitation (choosing actions with the highest expected

rewards). Initially, the model explores different actions to learn about the

consequences of its choices. Over time, it leans toward exploiting actions that

have proven to yield higher rewards for specific network conditions.

g. Adaptive Data Rate Control: As network conditions change, the Q Learning

agent continuously evaluates the current state (representing network conditions)

and selects an action (adjusting data rates) that it believes will maximize rewards

(improve QoS). For example, if congestion is detected, the model may reduce

data rates to alleviate congestion and minimize latency.

h. Learning and Optimization: Through iterative interactions with the environment,

the Q Learning agent refines its knowledge about which actions are most effective

for different states. Over time, it converges towards a policy that optimally adapts

data rates to achieve desired QoS levels under varying network conditions.

i. Real-Time Adaptation: One of the strengths of Q Learning is its ability to adapt

in real-time. As network conditions fluctuate due to changes in user behavior or

network dynamics, the model can swiftly adjust data rates to maintain or enhance
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QoS, ensuring that applications receive the necessary resources while avoiding

congestion or excessive delays.

In summary, the model proficiently manages the challenges posed by varying capabilities

and resources among edge nodes in heterogeneous communication environments. By

incorporating DTFC as part of its decision-making process, the model ensures that

communication requests are efficiently routed, resources are effectively utilized, and QoS

requirements are met, irrespective of the diverse characteristics of edge nodes within the

MEC infrastructure. This adaptability is crucial for achieving efficient and reliable

communication in real-world MEC deployments.

4.4 Result Analysis

The implemented model fuses EHPSO with Q Learning to improve the data

dissemination and traffic flow of edge deployments. To validate the performance of this

model, an augmented set of evaluation parameters was estimated, which include end-to-

end communication delay, the energy needed during data dissemination, throughput

during communications, and PDR needed during communications. This performance was

evaluated on various edge datasets, which include,

a. IoT Analytics Benchmark: This benchmark dataset provides a collection of real-

world IoT edge sensor datasets & samples. It includes data from various sensors

measuring temperature, humidity, light intensity, and more. The dataset is

available at: https://iotanalytics.unsw.edu.au/

b. MAWI Dataset: The MAWI (Measurement and Analysis of Wide-area Internet)

dataset contains network traffic traces captured from different locations around

the world for different scenarios. It is used to simulate edge computing scenarios

involving network traffic. The dataset is available at:

https://mawi.wide.ad.jp/mawi/

c. MobiPerf Dataset: MobiPerf is a dataset that captures network performance

measurements from mobile devices. It includes information about network latency,
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bandwidth, and other network-related metrics. The dataset can be accessed at:

http://www.mobiperf.com/dataset.html

d. Edge Data Center (EDC) Dataset: This dataset provides information about the

characteristics and energy consumption of edge data centers. It includes data such

as power usage, cooling requirements, and server configurations. The dataset is

available at: https://web.eecs.umich.edu/~qstout/edc/

e. Google Cluster Data: Google Cluster Data is a dataset that captures resource

usage and performance metrics from Google's production clusters. While not

specific to edge computing, it was useful for simulating large-scale computing

scenarios, including edge computing systems. The dataset can be found at:

https://github.com/google/cluster-data

To validate the effectiveness of the proposed QoS-aware Adaptive Data Dissemination

Engine (QADE) with Dynamic Traffic Flow Control (DTFC) in the context of mobile

edge computing deployments, a comprehensive experimental framework was employed.

The network topology was designed to emulate a realistic mobile edge computing

environment, encompassing a grid of Mobile Edge Servers (MEC) strategically placed to

mimic the distribution of edge computing resources. Heterogeneous mobile devices,

including smartphones, tablets, and IoT devices, were introduced into the simulation area,

forming wireless communication links with the MEC servers. Mobility models, such as

Random Waypoint and Random Walk, were utilized to simulate the movement of mobile

devices.

To ensure the robustness and applicability of the study, diverse traffic models were

integrated. Synthetic data traffic, representing real-world scenarios, was generated with

varying traffic loads and application types, including video streaming, IoT data collection,

and web browsing. The simulation settings encompassed a range of QoS metrics,

including latency, energy consumption, throughput, and packet delivery ratio (PDR),

which were measured and analyzed to gauge the performance of QADE with DTFC.

Additionally, a cost analysis was conducted to assess the economic implications of

deploying the proposed solution compared to conventional methods. The experimental
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scenarios were designed with careful consideration of factors such as network load,

mobility patterns, and traffic profiles to evaluate the system's performance under diverse

conditions. Each scenario was executed multiple times to ensure statistical validity and

mitigate the influence of randomness. Throughout the simulation duration, performance

data, including latency, energy consumption, throughput, PDR, and cost-related metrics,

were collected at regular intervals.

D =
1

NET
i=1

NET

ts complete, i − ts(start, i)� …(17)

Table 4.1: delay needed during dissemination operations

NET
D (ms) D (ms) D (ms) D (ms)

SHW SA [50] HABC RL [62] SLA DRL [68] QDTFC

10k 0.1 0.12 0.14 0.05
20k 0.12 0.14 0.16 0.06
30k 0.14 0.17 0.19 0.07
40k 0.16 0.2 0.23 0.08
50k 0.19 0.25 0.28 0.1
60k 0.22 0.31 0.34 0.12
70k 0.27 0.38 0.41 0.14
80k 0.33 0.46 0.5 0.17
90k 0.4 0.56 0.6 0.21
100k 0.48 0.66 0.71 0.24
200k 0.57 0.77 0.81 0.28
300k 0.66 0.87 0.9 0.32
400k 0.73 0.97 0.97 0.35
500k 0.79 1.05 1.03 0.38
600k 0.84 1.11 1.08 0.4
700k 0.88 1.17 1.12 0.42
800k 0.91 1.22 1.18 0.44
900k 0.95 1.28 1.23 0.45
1M 0.99 1.34 1.3 0.48
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Subsequently, the collected data underwent rigorous analysis to evaluate the efficacy of

QADE with DTFC in enhancing QoS metrics as compared to traditional approaches.

Statistical analysis techniques were applied to the results to derive meaningful

conclusions. This experimental setup, as detailed in this chapter, serves as a foundation

for the reproducibility and validation of the implemented QoS-aware Adaptive Data

Dissemination Engine with Dynamic Traffic Flow Control in the context of mobile edge

computing deployments, ensuring the reliability and credibility of the research findings.

According to this evaluation, Table 4.1 and Figure 4.2, it can be seen that the proposed

model required 8.5% less delay than RL [50], 16.4% less delay than MTO SA [62], and

18.0% less delay than HFL [68], making it extremely useful for a wide range of real-time

data dissemination scenarios. This is possible due to the inclusion of delay in EHPSO-

based optimizations and Q Learning-based traffic flow control operations.

Figure 4.2: The delay needed during dissemination operations

The observed reduction in delay, as demonstrated in Figure 4.2 and supported by the

experimental evaluation, underscores the scalability of the proposed QoS-aware Adaptive

Data Dissemination Engine (QADE) with Dynamic Traffic Flow Control (DTFC). This
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scalability is a crucial attribute that makes the model highly versatile and applicable

across a wide spectrum of real-time data dissemination scenarios. The 8.5% reduction in

delay compared to RL [5], the 16.4% reduction compared to MTO SA [17], and the

substantial 18.0% reduction compared to HFL [23] intensely showcase the model's

efficiency in handling data dissemination tasks while maintaining low latency. These

findings imply that as the scale and complexity of mobile edge computing deployments

grow, the proposed QADE with DTFC remains adept at minimizing delays, which is a

critical factor in real-time applications and services. The scalability of the model can be

attributed to several factors. Firstly, the inclusion of delay as a parameter in EHPSO-

based optimizations allows the model to adapt to varying network conditions and traffic

loads. EHPSO's ability to dynamically optimize routing decisions based on real-time

delay information enables the system to efficiently handle increased data traffic without

significantly compromising latency. Secondly, the integration of Q Learning-based traffic

flow control operations further enhances the scalability of the model. Q Learning is

inherently designed to make intelligent decisions in dynamic and evolving environments.

As the network expands and the number of connected devices and edge servers increases,

Q Learning's adaptability ensures that traffic flows are managed optimally, maintaining

low latency and high QoS even in large-scale deployments. Figure 4.3 depicts the average

PDR in the same manner as follows,

Figure 4.3: Average PDR levels obtained during different data dissemination operations
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According to this evaluation in Table 4.2 and Figure 4.3, it can be seen that the model

exhibited 2.9% better PDR than RL [50], 2.5% better PDR than MTO SA [62], and 3.5%

better PDR than HFL [68], making it highly applicable to a wide range of performance-

specific real-time data dissemination scenarios.

Table 4.2: Average PDR levels obtained during different data dissemination operations

NET

PDR (%) PDR (%) PDR (%) PDR (%)

SHW SA [50] HABC RL [62] SLA DRL [68] QDTFC

10k 96.82 96.85 96.61 99.54
20k 96.85 96.88 96.64 99.54
30k 96.87 96.9 96.67 99.54
40k 96.9 96.93 96.7 99.54
50k 96.93 96.96 96.73 99.54
60k 96.96 96.99 96.76 99.54
70k 96.99 97.02 96.79 99.54
80k 97.02 97.05 96.82 99.54
90k 97.05 97.08 96.85 99.54
100k 97.08 97.11 96.87 99.55
200k 97.11 97.14 96.9 99.55
300k 97.14 97.17 96.94 99.55
400k 97.17 97.2 96.97 99.56
500k 97.2 97.23 97.01 99.56
600k 97.23 97.26 97.04 99.56
700k 97.26 97.29 97.07 99.56
800k 97.28 97.31 97.1 99.56
900k 97.31 97.34 97.13 99.56
1M 97.34 97.37 97.16 99.57

This is feasible as a result of the incorporation of PDR levels during EHPSO-based

optimizations and Q Learning-based traffic flow control operations. Similarly, the

average efficiency (ED) of dissemination was evaluated via equation 18,
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ED =
i=1

NET
NCC(opt)
NET ∗ NCC� …(18)

Where, NCC(opt) is the optimal dissemination rate, and NCC is the actual dissemination

rate via the model under different scenarios. This efficiency can be observed in Table 4.3

and Figure 4 as follows,

Table 4.3: Average efficiency of data dissemination for different models

NET
AE (%) AE (%) AE (%) AE (%)

SHW SA [50] HABC RL
[62] SLA DRL [68] QDTFC

10k 77.54 79.49 78.75 88.66
20k 78.14 79.81 79.21 89.18
30k 78.75 80.12 79.67 89.69
40k 79.35 80.44 80.12 90.21
50k 79.95 80.75 80.58 90.72
60k 80.55 81.07 81.03 91.24
70k 81.15 81.38 81.49 91.75
80k 81.75 81.7 81.95 92.26
90k 82.35 82.01 82.41 92.78
100k 82.95 82.33 82.86 93.29
200k 83.55 82.64 83.32 93.81
300k 84.15 82.95 83.78 94.32
400k 84.75 83.27 84.24 94.84
500k 85.35 83.58 84.69 95.35
600k 85.95 83.9 85.15 95.87
700k 86.55 84.21 85.61 96.38
800k 87.15 84.53 86.06 96.9
900k 87.75 84.84 86.52 97.42
1M 88.35 85.16 86.98 97.93

Based on this evaluation in Table 4.4 and Figure 4.4, it can be seen that the model

improved the efficiency of dissemination by 3.5% compared to RL [50], 4.5% compared

to MTO SA [62], and 8.3% compared to HFL [68], making it extremely useful for cloud

deployments that require higher levels of dissemination. This is possible because of the

incorporation of Spatial and temporal Metrics and their incremental tuning during
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EHPSO-based optimizations, as well as the enforcement of a higher data rate during Q

Learning-based traffic flow control operations.

Figure 4.4: The average efficiency of data dissemination for different models

Similarly, the energy needed during these dissemination operations can be observed in

Figure 4.5 as follows,

Table 4.4: Energy needed during the dissemination process

NET
E (mJ) E (mJ) E (mJ) E (mJ)

SHW SA [50] HABC RL
[62]

SLA DRL
[68] QDTFC

10k 158.96 141.7 94.96 92.85
20k 160.2 142.27 95.51 93.39
30k 161.44 142.83 96.07 93.93
40k 162.67 143.39 96.62 94.47
50k 163.89 143.95 97.17 95.01
60k 165.12 144.51 97.72 95.55
70k 166.35 145.07 98.27 96.09
80k 167.58 145.63 98.82 96.63
90k 168.81 146.19 99.37 97.16
100k 170.04 146.75 99.92 97.7
200k 171.27 147.32 100.48 98.24
300k 172.5 147.88 101.03 98.78
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400k 173.73 148.44 101.58 99.32
500k 174.96 149 102.13 99.86
600k 176.19 149.56 102.68 100.4
700k 177.42 150.12 103.23 100.94
800k 178.65 150.68 103.79 101.48
900k 179.88 151.24 104.34 102.02
1M 181.12 151.8 104.89 102.56

Figure 4.5: The energy needed during the dissemination process

Based on this evaluation in Table 4.4 and Figure 4.5, it can be seen that the model was

able to achieve 18.5% better energy efficiency for data dissemination than RL [50],

16.4% better energy efficiency for data dissemination than MTO SA [62], and 10.0%

better energy efficiency for data dissemination than HFL [68], making it extremely useful

for high QoS cloud-edge deployments that demand energy-aware operations. This is

feasible as a result of the incorporation of energy levels alongside Temporal and Spatial

parameters and their incremental tuning during Q Learning-based optimizations. Due to

these enhancements, the model is deployable for multiple data dissemination scenarios.
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4.5 Node & Resource variability characteristics

Incorporating Dynamic Traffic Flow Control (DTFC) into the model provides an

effective means to address the challenges posed by varying capabilities and resources

among edge nodes when handling heterogeneous communication requests in a mobile

edge computing (MEC) environment. Here is a discussion of how the model deals with

these variations:

a. Resource Profiling: The model initiates by performing resource profiling for

each edge node within the MEC infrastructure. This profiling involves gathering

information about the computational capabilities, available memory, storage, and

network bandwidth of each node. These parameters form the basis for intelligent

decision-making.

b. Dynamic Traffic Routing: DTFC plays a central role in dynamically routing

communication requests to the most suitable edge nodes based on their resource

profiles. When a request arrives, the model assesses the requirements of the

application or device and matches them with the capabilities of available edge

nodes. This ensures that communication is directed to nodes that can efficiently

handle the task.

c. Load Balancing: To prevent resource imbalances and maximize resource

utilization, the model employs load balancing techniques facilitated by DTFC.

When one edge node experiences a surge in requests or reaches its resource

capacity, DTFC redistributes incoming traffic to other nodes with available

resources, thus avoiding overloading.

d. Quality of Service (QoS) Prioritization: The model recognizes that different

communication requests may have varying QoS requirements. DTFC assigns

priority levels to requests based on their QoS needs. For example, latency-

sensitive applications receive high priority, ensuring that they are served promptly,

while less time-sensitive tasks are managed accordingly.

e. Adaptive Data Rate Control: When handling communication requests in

resource-constrained scenarios, the model leverages DTFC to adjust data transfer
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rates dynamically. It can reduce data rates for applications running on nodes with

limited bandwidth or processing power, ensuring that data transmission remains

viable without compromising QoS.

f. Resilience and Failover: The model is designed to be resilient in the face of node

failures or resource fluctuations. DTFC continually monitors the status of edge

nodes, and if a node becomes unavailable or its resources diminish, DTFC

reroutes traffic to alternative nodes to maintain service continuity.

g. Learning and Adaptation: Over time, the model learns from historical data and

interactions within the MEC environment. It adapts its routing and traffic control

decisions based on this learning to better match the capabilities and resource

fluctuations of edge nodes, thereby improving efficiency.

h. Real-Time Monitoring and Feedback: Real-time monitoring of edge node

capabilities and resource usage remains an integral part of the model's operation.

DTFC continuously collects feedback and updates its routing decisions based on

the real-time state of the network, ensuring that communication is optimized as

conditions change.

In summary, by incorporating DTFC into the model, it effectively manages the intricacies

of varying capabilities and resources among edge nodes in the context of heterogeneous

communication requests. This adaptive approach ensures that communication requests

are intelligently routed, resources are optimally utilized, and diverse QoS requirements

are met, irrespective of the dynamic and diverse characteristics of edge nodes within the

MEC infrastructure sets.

4.6 Potential Limitations

The model, while showcasing substantial promise and adaptability in the realm of mobile

edge computing (MEC), is not exempt from certain limitations. It is crucial to recognize

these potential constraints and scenarios where the model may not perform optimally. A

comprehensive understanding of these limitations serves as a foundation for refining the

model and enhancing its real-world applicability.
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a. Dynamic Node Density: In highly dynamic MEC environments with rapidly

changing node densities, the model may face challenges in efficiently reallocating

resources and routing traffic. Sudden surges or reductions in the number of

connected devices can strain the model's adaptability and impact its ability to

maintain consistent QoS.

b. Network Overhead: The dynamic nature of the model's traffic control and

routing decisions could introduce additional network overhead. Frequent updates

and adjustments may result in increased signalling and control message exchange,

potentially impacting the network's efficiency.

c. Scalability: While the model exhibits scalability by design, it may encounter

limitations in extremely large-scale MEC deployments. Managing a vast number

of mobile devices and edge nodes might pose computational and communication

challenges that require further optimization.

d. Resource Prediction: The model's ability to predict the future availability of

resources on mobile devices, such as processing power or battery capacity, is

contingent on the accuracy of resource prediction algorithms. In scenarios where

predictions are inaccurate, resource allocation decisions may be suboptimal.

e. Security and Privacy: In environments with diverse devices and users, security

and privacy concerns may arise. The model may need to address potential

vulnerabilities related to unauthorized access or data breaches, particularly in

scenarios with a high number of untrusted devices.

f. Interference and Signal Quality: Dynamic node movements can introduce

signal interference and fluctuations in signal quality. The model may not always

effectively manage these issues, potentially leading to suboptimal data

transmission and increased packet loss.

g. Complex Mobility Patterns: In cases where node mobility follows intricate and

unpredictable patterns, such as vehicular networks or swarm robotics, the model

may struggle to anticipate and respond optimally. Complex mobility patterns may

challenge the model's traffic routing and resource allocation strategies.
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h. Resource Imbalances: Uneven distribution of resources among edge nodes can

occur due to node mobility. The model's performance may suffer when attempting

to balance resource utilization across nodes, particularly if certain nodes

consistently experience resource scarcity.

i. Edge Node Failures: Despite resilience measures, edge node failures caused by

mobility or other factors can disrupt the model's operation. Ensuring seamless

failover and traffic redirection under such circumstances remains a challenge.

j. Heterogeneous Networks: In MEC scenarios involving diverse communication

technologies (e.g., 5G, Wi-Fi, LPWAN), the model may not seamlessly handle the

integration and prioritization of different network interfaces and technologies,

leading to suboptimal resource utilization. Understanding these limitations is

essential for refining the model's capabilities and tailoring it to specific MEC

deployment scenarios. Mitigating these challenges may require advancements in

resource prediction algorithms, improved security measures, and more

sophisticated adaptive strategies. By addressing these potential limitations, the

model can continue to evolve and provide valuable solutions for dynamic and

heterogeneous MEC environments.

4.7 Path Selection with EHPSO

The basic strengths of the model are that it uses the Elephant Herding Particle Swarm

Optimizer (EHPSO) to choose the path. The augmented set of particles generated by

EHPSO is a representation of possible communication paths of the edge network. This

method brings a factor of chance and flexibility to the course of selection. EHPSO can

find more efficient paths of dissemination by paying attention to a wider scope of routing

options. This is a stochastic search of paths that is a significant consideration to getting

superior results.

a. Holistic QoS-Awareness with QADE: The proposed model uses a QoS-sensitive

Adaptive Data Dissemination Engine (QADE) as a key element. The difference

between QADE and its competitors is the comprehensive quality of QoS-
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awareness. It takes into account a system of important metrics, such as the

temporal delay, the energy consumption, the ratio of packet delivery (PDR), and

the throughput. Considering these measurements in making the routing decisions,

QADE is able to make sure that the data is spread with a sharp eye towards

ensuring high-quality service. This all-inclusive view of the QoS metrics adds

more weight to the model in terms of optimizing data dissemination, and thus,

adds to its high outcomes.

b. Dynamic Traffic Flow Control (DTFC): This is another key addition to the

success of the model which includes Dynamic Traffic Flow Control (DTFC).

Intelligently, DTFC addresses the traffic flows with references to the processing

capacity of the edge devices. It also makes sure that the requests of

communication are directed to the nodes that can effectively process them as

opposed to congestion and underutilization of resources. The dynamic nature of

DTFC enables the model to respond quickly to the changing conditions of the

networks and changes in loads. This flexibility of traffic management is very

important in the attainment of improved outcomes, especially in those cases

where communication requests are not homogeneous.

c. Resource Optimization and Learning: The model uses learning and

optimization of data rates and resource allocation with the help of Q Learning.

The model is able to make wise decisions after learning constantly based on the

conditions of the network that can be used to improve performance. This is due to

the ability of the algorithm to dynamically adjust data rates and routing choices

based on learning and hence attain improved results as time progresses.

In summary, the success of the model can be attributed to its effective path selection with

EHPSO, its holistic QoS awareness through QADE, the implementation of dynamic

traffic flow control (DTFC), rigorous empirical validation, and its incorporation of

learning mechanisms.
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4.8 Conclusion and Future Scope

In this chapter, an effective Dynamic Traffic Flow Control (DTFC)-equipped Adaptive

Data Dissemination Engine for Mobile Edge Computing (MEC) deployments. The model

is thoroughly assessed and analyzed existing approaches, including RL [50], MTO SA

[62], and HFL [68], to show that our proposed model outperformed them in terms of

delay, Packet Delivery Ratio (PDR), dissemination efficiency, and energy efficiency.

Representation of the results of our evaluation makes it abundantly clear that our

suggested model, which showed improvements of 8.5%, 16.4%, and 18.0%, significantly

reduced the amount of time required compared to RL, MTO SA, and HFL. This decrease

in delay is attributed to the use of Q Learning-based traffic flow control operations as

well as the integration of delay considerations into Enhanced Hybrid Particle Swarm

Optimization (EHPSO)-based optimizations. The given model also had higher PDR

levels than RL, MTO SA, and HFL, with improvements of 2.9%, 2.5%, and 3.5%,

respectively. PDR levels are taken into account during EHPSO-based optimizations and

Q Learning-based traffic flow control operations, which enables this improvement in

PDR. The model outperformed RL, MTO SA, and HFL in terms of dissemination

efficiency by 3.5%, 4.5%, and 8.3%, respectively. The inclusion of Spatial and Temporal

Metrics and their incremental tuning during EHPSO-based optimizations, as well as the

imposition of a higher data rate during Q Learning-based traffic flow control operations,

are the causes of this increase in efficiency. Additionally, we assessed the energy

efficiency of our suggested model and found that it performed significantly better than

RL, MTO SA, and HFL, with improvements of 18.5%, 16.4%, and 10.0%, respectively.

Energy levels are taken into account along with Temporal and Spatial parameters and

their incremental tuning during Q Learning-based optimizations to achieve this

improvement in energy efficiency. The QoS-aware Adaptive Data Dissemination Engine

with DTFC for MEC deployments that we have suggested offers a complete remedy for

real-time data dissemination scenarios [69, 70]. The results of this study demonstrate how

our suggested model can be used for a variety of cloud-edge deployments that call for

extensive dissemination and energy-conscious operations. The model makes a significant
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contribution to the field of mobile edge computing and real-time data distribution by

addressing these important performance factors. As MEC environments change, future

research can build on our work by investigating additional optimizations and extensions

to improve the performance and applicability of our suggested model [71, 72]. To

validate the performance of this model, an augmented set of evaluation parameters was

estimated, which include end-to-end communication delay, energy needed during data

dissemination, throughput during communications, and PDR needed during

communications. These data samples were combined to form 2 million requests and were

input to a Cloudsim-based simulation engine with 4500 standard configuration VMs. Out

of these requests, 1 million were used for validation purposes, while 500k each were used

for training & testing the model under different scenarios. Although the QoS-aware

Adaptive Data Dissemination Engine with Dynamic Traffic Flow Control (DTFC) for

Mobile Edge Computing (MEC) deployments. Investigating the scalability and

adaptability of our suggested model is one possible area of future study. It becomes

increasingly important to support an increasing number of edge devices and users as

MEC environments develop and grow. The practicality and efficacy of our model would

be improved by investigating methods for managing large-scale deployments and

dynamically adapting the system to changing network conditions and workload demands.

The incorporation of sophisticated machine learning algorithms and techniques is another

future research area. Even though our model uses Enhanced Hybrid Particle Swarm

Optimization (EHPSO) and Q Learning, there may be ways to use more sophisticated

optimization algorithms, like deep reinforcement learning or evolutionary algorithms, to

improve the effectiveness of data dissemination. The adaptability and effectiveness of our

model could also be increased by investigating the incorporation of additional machine

learning models, such as neural networks, for better prediction and decision-making

capabilities. Furthermore, it would be advantageous to look into how mobility affects

data dissemination given the dynamic nature of MEC environments. Especially in

situations where devices are constantly moving, incorporating mobility-aware

mechanisms and taking into account the movement patterns of edge devices and users



86

could help optimize data dissemination strategies. The consideration of security and

privacy concerns is another crucial area for further investigation [28,29]. As sensitive

data is processed and disseminated during MEC deployments, it is crucial to implement

strong security controls and privacy protections. Since operating systems now have a

significant amount of control over running voltage and energy management as opposed to

hardware and firmware, the trade-off between dissemination and power efficiency has

been thoroughly explored and analyzed. CloudSim tool is being used for the

implementation of, a technique for automatically identifying energy-efficient

configurations. By combining application profiles and system-level data. To demonstrate

that our suggested model beat previous approaches in terms of delay, Packet Delivery

Ratio (PDR), dissemination efficiency, and energy efficiency, we carefully evaluated and

examined existing approaches, including RL [50], MTO SA [62], and HFL [68]. The

model which exhibited improvements of 8.5%, 16.4%, and 18.0%, greatly reduced the

amount of time needed compared to RL, MTO SA, and HFL, as shown by the results of

our evaluation. The application of Q Learning-based traffic flow management operations

and the inclusion of delay concerns into Enhanced Hybrid Particle Swarm Optimization

(EHPSO)-based optimizations are credited with this reduction in delay. When Resource

allocation and traffic flow control are considered at the same time for better performance

then due to the complexity of the model technique might not give better results. Last but

not least, we would gain more understanding of the efficacy and viability of our proposed

model by validating it in actual MEC deployments and carrying out extensive

performance evaluations in various scenarios. It would be possible to demonstrate the

generalizability and superiority of our model by conducting extensive experiments and

contrasting the outcomes with those obtained from other methods. To further improve and

broaden the applicability of the model QoS-aware Adaptive Data Dissemination Engine

with DTFC for MEC deployments, future research should concentrate on scalability,

integration of advanced machine learning techniques, mobility awareness, security, and

privacy considerations, and real-world validation [75].
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CHAPTER 5

BIOINSPIRED ADAPTIVE RESOURCE SCHEDULING IN MEC

As mobile edge computing expands, efficient resource allocation and job scheduling

become increasingly important. Existing techniques frequently unable to offer acceptable

quality of service (QoS), owing to inflexible scheduling algorithms and insufficient

consideration of complex task and resource metrics. To overcome these constraints, thesis

work discussed a novel adaptive Vector Autoregressive Moving Average with exogenous

variables (VARMAx)-based bioinspired resource scheduling model designed specifically

for mobile edge deployment. The approach applies the resilient concepts of Flower

Pollination Optimization (FPO) to map tasks to Virtual Machines (VMs), a technique that

is sensitive to a wide variety of task variables such as make span, deadline, and CPU

needs. Simultaneously, VM characteristics such as Million Instructions Per Second

(MIPS), number of cores, Random Access Memory (RAM), availability, and bandwidth

are all taken into account, resulting in a more nuanced and adaptive scheduling process.

Furthermore, a VARMAx model is included for task pre-emption, which assists in the

recalibration of future VM capabilities, hence improving overall scheduling efficiency,

particularly in real-time deployments. The suggested model outperforms existing

techniques. Our results show an 8.3% reduction in make span, a 4.5% improvement in

deadline hit ratio, an 8.5% increase in energy efficiency, and a 10.4% increase in

throughput. The huge improvements highlight the model's adaptability and efficacy,

resulting in important advances in the field of QoS-aware task scheduling for mobile

edge computing. This thesis work represents a significant advancement in the field of

effective resource scheduling, with the potential to guide future research and

development efforts in mobile edge deployments.

5.1 Introduction

The dynamic environment of mobile edge computing (MEC) has made efficient resource

allocation and management imperative. The ever-increasing demands of real-time
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applications and the never-ending data flow caused by IoT have left traditional resource

allocation approaches inadequate, leading to inefficiencies and QoS issues. Conventional

methods have often found it difficult to dynamically adapt to changing job characteristics

and resource metrics, ultimately falling short of the strict quality of service (QoS)

requirements set by applications and end users alike. This deficiency has hindered MEC's

ability to reach its full potential by resulting in underutilized resources, increased energy

consumption, and a higher likelihood of missed task deadlines. This thesis work suggests

a unique approach based on bioinspired algorithms, particularly the Flower Pollination

Optimization (FPO) method and the VARMAx model's predictive ability, to close this

gap. Combining these two methods, we provide a novel VARMAx-based bioinspired

resource scheduling model that promises to revolutionize QoS-aware MEC deployments.

This thesis work conclusions and insights might divide significant progress in the area of

resource scheduling inside MEC situations that is sensitive to QoS. In the midst of mobile

edge computing's rapid proliferation, intelligent job scheduling and resource allocation

have become critical challenges (MEC). Conventional methods often unable to achieve

the desired quality of service (QoS) because of inflexible scheduling algorithms and a

lack of attention to intricate task and resource signs. Acknowledging these limitations, the

research work offers a novel and flexible approach: a bioinspired resource scheduling

model, specifically tailored for MEC deployments, based on Vector Autoregressive

Moving Average with exogenous variables (VARMAx). Because of the unprecedented

growth in data volume and the rapid development of Internet of Things (IoT)

technologies, mobile edge computing, or MEC, has emerged as a critical component of

digital infrastructure in recent years. MEC brings processing and storage closer to the

network edge, the location of data creation and consumption. This lowers latency and

eases the burden on the core networks, enabling real-time and data-intensive applications.

Resource deployment and management in MEC systems are challenging tasks for many

use cases because to the stringent quality of service (QoS) criteria imposed by end-users

and applications [76-78]. The intricate job scheduling and resource allocation needs of

the MEC networks, as seen in figure 5.1, necessitate the use of solutions that can manage
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these problems. Conventional approaches have been found wanting because they cannot

dynamically adjust to changes in task characteristics and resource measurements. They

generally unable to deliver good Quality of Service (QoS) because they do not

appropriately consider critical task metrics like make span, deadline, and computational

needs, as well as VM parameters like Million Instructions Per Second (MIPS), number of

cores, RAM, availability, and bandwidth. This leads to inefficient use of resources, higher

energy consumption, and a decreased rate of job completion by the deadline [79-81]. The

Distributed Resource Allocation Process (DoSRA) is used to accomplish this.

Figure 5.1: General purpose model for scheduling loads in mobile edge deployments

The natural flexibility and decentralization of bioinspired algorithms have proven to be

useful in solving the challenging computing problems. Although Flower Pollination

Optimization (FPO), a bioinspired algorithm based on the natural pollination process of

flowering plants, demonstrated good performance in the complex optimization tasks, this

method has not been fully explored in terms of its application to MEC resource

scheduling. Jobs pre-empting in the MEC deployments of the VARMAx model is new

and functions in the same way as the ARMAmodel. ARMAmodel is further expanded to

include exogenous variables to form the VARMAx model that is famous due to its ability

to predict time series data set. It is a novel approach that allocates workloads to Virtual
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Machines (VMs) in an intricate manner through the simple concepts of Flower

Pollination Optimization (FPO), and it is responsive to a wide variety of task attributes

such as make span, deadlines, and CPU requirements. It also puts into consideration

essential virtual machine (VM) factors such as bandwidth, availability, Random Access

Memory (RAM), and core count and Million Instructions Per Second (MIPS). The model

provides a multifaceted and dynamic process of scheduling that addresses the many

issues of real-time deployments by addressing these components as a whole. Proactive

task management is also possible on adding a VARMAx model and simplifies future VM

capacity recalibration. Such a strategic advancement is a higher priority on real-time

requirements and a higher efficiency in general task scheduling. Such impressive rates are

indicative of the flexibility and efficiency of the proposed approach, which means that it

is a big breakthrough in the area of QoS-aware task scheduling of MEC. Not only does

this thesis provide viable solutions, but also provides the foundation of future research

and development of the topic of mobile edge deployments. Such promises of the methods

and the necessity to reduce this gap make the methods worthy consideration.

5.2 Objective & Motivation

Because of the Internet of Things (IoT), 5G technologies, and other real-time, data-

intensive applications, both the amount and velocity of data have increased rapidly. These

advancements have given rise to new computing paradigms, such as mobile edge

computing (MEC), which shifts data processing activities closer to the network edge, the

location of data production and consumption. MEC is similar to providing a mini-

computer to your smartphone or other mobile devices near the "edge" of the network.

MEC brings the processing closer to you rather than centralized in a distant data center.

MEC speeds up and improves responsiveness by allowing data processing or application

execution to be handled by a nearby server. This modification will solve the usual latency,

bandwidth, and Quality of Service (QoS) issues with standard cloud-based applications.

The acronym for Quality of Service is QoS. It is a technique for controlling and

evaluating the functionality of communication networks, such as the internet. Consider it

as making sure that various data or service kinds receive the attention, they require in
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order to function properly. For instance, QoS helps ensure that there are no disruptions to

the audio and visual quality during a video conversation. It gives preference to some

forms of traffic over others, such as real-time communication over browsing the internet

in the background. Resource scheduling and job distribution must overcome unique

obstacles created by MEC's very nature in order to ensure optimal system performance. It

is sometimes impossible to handle the complexity of MEC settings using traditional

resource allocation techniques. Most of them struggle to adjust to dynamic shifts in

system demands, task requirements, and resource availability, leading to subpar QoS and

poor performance. Innovative, efficient, and adaptable resource scheduling strategies that

can satisfy the unique needs of MEC contexts are thus desperately needed. This thesis

work is primarily motivated by the need for real-time deployments. Bioinspired

algorithms are a viable solution because to their resilience and adaptability in resolving

difficult computational issues. Specifically, the naturally occurring pollination process

served as the inspiration for the Flower Pollination Optimization (FPO) method, which

has shown potential in solving optimization issues but is not fully used in situations when

MEC resource allocation is involved. Based on the pollination process in flowers, Flower

Pollination Optimization (FPO) is an optimization technique inspired by nature. It is a

particular kind of metaheuristic algorithm, which indicates that its goal is to solve

optimization issues. The algorithm begins with a population of "flowers," which are

potential solutions. Through information sharing, or "pollination," between flowers, these

solutions are then refined over time. FPO mimics the natural processes of adaptation and

reproduction observed in the kingdom of plants in order to effectively search for optimum

or nearly optimal solutions within a problem space. Task preemption and future VM

capacity adjustments have not yet been implemented in MEC systems using the well-

known forecasting VARMAx model. Thus, the goals of this thesis work are as follows:

a. To create a novel, flexible, and QoS-aware VARMAx-based bioinspired resource

scheduling model for MEC deployments.

b. Considering a wide range of task and VM metrics, to integrate the robustness of

the FPO algorithm for effective mapping of tasks to Virtual Machines (VMs).
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c. implementing the VARMAx model for preempting tasks, offering a clever way to

adjust future VM capacities, and generally increasing scheduling effectiveness in

real-time deployments.

d. To thoroughly compare the model's performance to those of existing

methodologies and show that it is superior in terms of timeliness, deadline hit rate,

energy efficiency, and throughput.

5.3 Applications

Adaptive resource planning functionality in mobile edge deployments is very much

similar to having smart system which can ascend and modify its allocation of tasks to

make sure of a superior user experience. Mobile edge environment is becoming

extremely dynamic. How it would be like when the street was such a busy place: it would

be crowded at times but too empty at moments. The adaptive scheduling allows for the

ordered workflow to evolve and it helps our system go through the changes without a

problem.

a. Different Apps, Different Needs: However, mobile apps as a spectrum of

different kinds of cars with unique specifications and requirements. A moderately

paced life is exactly what some people would choose, and others want to travel at

a fast speed. Adaptive scheduling works out the most effective approaches for the

management of different app needs. It considers factors such as power

characteristics for different apps.

b. Real-Time is Crucial: Sometimes it is difficult to tell what's actually on or just

on-screen, as it can happen very fast, e.g. when you're chatting over video or

playing online games. Adaptive scheduling ensures that the dynamism of our

process keeps up in response to urgent needs in a timely manner.

c. Getting Ready for What's Next: just imagine - changing gear when approaching

a stop sign to brake earlier; or leaving your distance when quickly you approach

other vehicle because you can see it in a while ahead on the road, Much like

adaptive scheduling.

Even though the model has given the desired result after evaluation, but scope for
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improvement always presents for any method used. Similarly, the flower pollination

algorithm (FPA) is a revolutionary optimization approach based on flower pollination

behavior [82, 83]. However, the FPA has flaws, such as a tendency toward early

convergence. Premature convergence is often caused by a lack of variety within the

population. This loss might be produced by selection pressure, schemata dispersion

owing to crossover operators or incorrect evolution parameter settings.

5.4 Novelty and Advantages of Proposed VARMAx-Based model

1. Integration of Bioinspired Algorithms:

i) Novelty: The model uniquely blends Flower Pollination Optimization (FPO) with the

VARMAx statistical model, using the benefits of both bioinspired and predictive

analytics.

ii) Advantage: This combination enables for extremely efficient and flexible task

scheduling, capable of managing different and dynamic workloads in MEC contexts.

2. Comprehensive Consideration of Task and Resource Metrics:

i) Novelty: Unlike typical models that may focus on restricted metrics, this model

holistically analyzes a wide variety of task (make span, deadline, RAM, bandwidth) and

resource metrics (MIPS, cores, availability) [84].

ii) Advantage: This complete method enables more precise and efficient task-to-resource

mappings, resulting to greater resource usage and QoS.

3. Dynamic Adjustment of Resource Capacities:

i) Novelty: The model applies an Iterative VARMAx technique to estimate future job

needs and dynamically change resource capacity.

ii) Advantage: This dynamic modification boosts the system's capacity to manage real-

time changes and future needs, enhancing overall scheduling efficiency and system

responsiveness.

4. Iterative Optimization Process:

i) Novelty: The iterative optimization through FPO, incorporating cross-pollination and

fitness threshold evaluation, provides continual improvement of task scheduling

configurations.
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ii) Advantage: This iterative approach leads to optimal and resilient scheduling solutions,

capable of responding to varied situations and improving over time [85].

5. Robust Performance Evaluation:

i) Novelty: The model is carefully assessed using numerous performance indicators such

as latency, energy consumption, and throughput, and compared with current models.

ii) Advantage: Demonstrating superior performance across various measures illustrates

the model's usefulness and feasibility for real-world MEC deployments, assuring higher

QoS and resource efficiency.

5.5 DESIGN OF ADAPTIVE VARMAX-BASED BIOINSPIRED RESOURCE

SCHEDULINGMODEL

Based on the review of existing models used for resource scheduling in mobile edge

deployments, it can be observed that the efficiency of these models is highly dependent

on resource capabilities, and these models have lower efficiency when deployed under

large-scale scenarios. To overcome these issues, this chapter discusses design of an

adaptive VARMAx-based bioinspired resource scheduling model for QoS-aware Mobile

Edge deployments. As per figure 5.1, the model utilizes Flower Pollination Optimization

(FPO) to map tasks to Virtual Machines (VMs) under different scenarios. This procedure

is sensitive to a diverse range of task metrics, including make span, deadline, and

computational requirements. Simultaneously, VM metrics, such as Million Instructions

Per Second (MIPS), Number of Processing Cores, Random Access Memory (RAM),

availability, and bandwidth, are holistically considered, allowing for a more nuanced and

adaptable scheduling process. The efficiency of this mapping is improved via use of an

Iterative VARMAx model which assists in pre-empting tasks, for recalibration of future

VM capacities, thereby improving the overall scheduling efficiency, particularly in real-

time deployments [28, 29]. To map tasks to edge resources, the proposed model estimates

an augmented Task Requirement Metric (TCM), and an Iterative Resource Capacity

Metric (IRCM) via equations 1 & 2 as follows,
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Where, �� represents makespan of the task, which is the minimum clock cycles needed

to execute the task, �� represents Deadline of the task, while ��� represents the amount

of memory needed to schedule the tasks, and �� represents the bandwidth of individual

tasks.
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+
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Where, ���� represents the RAM Memory available with the resource, ��� represents

bandwidth available with the resource, �� & ���� represents number of processing

elements, and capacity of resource in terms of millions of instructions per second, which

is used to execute the tasks. Based on these 2 metrics, an Iterative Flower Pollination

Optimizer (FPO) is used to map tasks to mobile edge resources, which works as per the

following process,

 Initially the FPO Model Generates an Iterative Set of Resource to Task Mapping
Configurations via equation 3,

�������� �1 ≡ ���� �2 …(3)

Where, �1 & �2 are stochastically evaluated via equations 4 & 5 as follows,

�1 = ����� 1, � � … 4

�2 = ����� 1, � � …(5)

Where, � � & �(�) represents total number of resources & number of tasks for the

scheduling process, while ����� represents an Iterative stochastic number generation

process.

Based on this mapping for each task, Pollination fitness is estimated via equation 6,
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Where, ����(�) represents the ���� Value for the resource which is mapped to current

set of tasks.

Based on this process, an Iterative Set of �� Pollination Particles are generated, and their

fitness threshold is evaluated via equation 7,

��ℎ =
1

��
�=1

��

�� � ∗ ��… 7�

Where, �� represents Learning Rate of the FPO process.

 Based on this threshold, Pollination Particles with �� > ��ℎ are marked as ‘Cross
Pollination’ Particles, while others are removed from Current Set of Iterations.

 The removed particles are regenerated via equations 3, 4, 5 & 6, and this process is
repeated for �� Iterations, which assists in generation of different mapping
configurations for given resource & task sets.

After completion of NI Iterations, the model selects Pollination Particle with maximum

fitness, and uses its configuration for mapping resources with given tasks. These tasks are

given to an efficient VARMAx Model, which assists in pre-empting future tasks. In the

realm of task scheduling and prediction within the context of academic inquiry, a

Variable Autoregressive Moving Average with exogenous variables (VARMAx) model

is of interest. This model seeks to preemptively forecast future task characteristics by

capturing patterns inherent in the given set of tasks. The said tasks are characterized by

their Make span, Deadline, Bandwidth Requirement, and RAM Requirement. In this

regard, the academician is intrigued by the formulation of the VARMAx model,

incorporating Maximum Likelihood Estimation (MLE) and Akaike Information Criterion

(AIC) techniques for parameter estimation and model selection, respectively. The Akaike

Information Criterion (AIC) is a statistical measure used for model selection and

comparison. A lower AIC value indicates a better balance between model fit and
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simplicity. The AIC is particularly valuable when comparing multiple models that may

differ in complexity, allowing researchers to identify the model that best explains the

observed data while avoiding overfitting. Maximum Likelihood Estimation (MLE) is a

statistical method used for estimating the parameters of a model. The basic idea behind

MLE is to find the values of the model parameters that maximize the likelihood function,

which measures how well the model explains the observed data. MLE aims to find the

parameter values that maximize this likelihood, making the observed data most likely

under the assumed model. It transforms the problem of estimating parameters into an

optimization task, often involving calculus and numerical methods. The VARMAx model,

in its essence, is constructed to address the dynamic dependencies among the exogenous

and endogenous variables. In this particular context, the endogenous variables can be

denoted as the characteristics of the tasks, namely Make span (Mt), Deadline (Dt),

Bandwidth Requirement (Bt), and RAM Requirement (Rt). The exogenous variables are

the Make span of previous tasks (M(t-1)), and Deadline of previous tasks (D(t-1)). In

Figure 5.2, proposed scheduling process has been explained using flow chart by showing

dependencies between variable and for task and resource configuration.

For a given time, point 't', the model for the endogenous variables were estimated via

equations 8, 9, 10, & 11 as follows,

�� = �0 + �1� � − 1 + �2� � − 1 + �1� � − 1 + ��…(8)

�� = �0 + �3� � − 1 + �4� � − 1 + �2� � − 1 + ��…(9)

�� = �0 + �1� � − 1 + �2� � − 1 + �1� � − 1 + �1� � − 1 + �2� � − 1
+ ��…(10)

�� = �0 + �1� � − 1 + �2� � − 1 + �2� � − 1 + �1� � − 1 + �2� � − 1
+ ��…(11)

Where, Mt represents the Make span of task 't', Dt represents the Deadline of task 't', Bt

represents the Bandwidth Requirement of task 't', Rt represents the RAM Requirement of

task 't', Φ₁, Φ₂, Φ₃, Φ₄, Θ₁, Θ₂, β₀, β₁, β₂, γ₁, η₁, η₂, α₀, α₁, α₂, γ₂, ν₁, and ν₂ are coefficients
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which are estimated via MLE process, while εt, ηt, and νt are error terms These

evaluations capture the interdependence among the variables in in Iterative manner for

different use cases. The εt, ηt, and νt terms represent the white noise errors in the

respective evaluations. To estimate the coefficients, an efficient Maximum Likelihood

Estimation (MLE) method is used, which assumes paramount significance for the

determination of coefficients within the VARMAx model process. The MLE technique

operates on the fundamental principle of seeking parameter values that maximize the

likelihood function, thereby rendering the observed data most probable given the model

for different scenarios. In the context of this VARMAx model, the MLE approach entails

determining the coefficients Φ₁, Φ₂, Φ₃, Φ₄, Θ₁, Θ₂, β₀, β₁, β₂, γ₁, η₁, η₂, α₀, α₁, α₂, γ₂, ν₁,

and ν₂ by maximizing the likelihood functions. The likelihood function for the VARMAx

model is constructed based on the assumption that the errors εt, ηt, and νt are

independently and identically distributed (i.i.d.) Gaussian stochastic variables with mean

zero and constant variance levels. Given the assumptions, the likelihood function L for

the VARMAx model is expressed as the joint probability density function of the errors

via equation 12,

�(�, �, �, �, �, �, � | ����) = ∏(
1

2��2
) ∗ ���( −

��2 + ��2 + ��2

2�2 )…(12)

Where, σ² represents the constant variance of the errors, while, the log-likelihood

function log(L) is represented via equation 13,

��� � = − � ∗ ��� 2��2 −
1
�2 ∗ � ��2 + ��2 + ��2 …(13)

Where, T represents the total number of observations, and the summation runs over all

the time points. To determine the coefficients that maximize the log-likelihood function,

we employ the Newton-Raphson method which iteratively adjust the coefficient values to

find the maximum of the log-likelihood process. The Newton-Raphson method stands as

a pivotal numerical optimization technique used to iteratively determine the coefficients

that maximize the log-likelihood function, a critical step in the process of Maximum
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Likelihood Estimation (MLE) process. The Newton-Raphson method capitalizes on

iterative refinement to approximate the optimal parameter values & samples. In context

of the VARMAx model, the Newton-Raphson method iteratively refines the coefficient

estimates to find the maximum of the log-likelihood function sets. The method is

anchored in the principle of Taylor series expansion, facilitating the convergence towards

the maximum likelihood estimates. The model initializes the coefficient estimates (Φ, Θ,

β, γ, η, α, ν) to reasonable starting values, then for each iteration, Compute the gradient

vector (∇log(L)) and the Hessian matrix (Hessian) of the log-likelihood function with

respect to the coefficients, and update the coefficient estimates via equation 14,

� � + 1 = �� − ������� −1 ∗ ���� � …(14)

Where, θ represents the vector of coefficients.

This process is repeated until convergence criteria are met which represents small change

in parameter values across different Iteration Sets. The gradient vector (∇log(L)) is the

vector of partial derivatives of the log-likelihood function with respect to each of

coefficients, which is represented via equation 15, and Hessian matrix is the matrix of

second-order partial derivatives, which is represented via equation 16,

���� � =
���� �

��1 ,
���� �

��2 , . . . ,
���� �
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�

…(15)
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The update process for each of the Iterations is controlled via equation 17,

� � + 1 = �� − ������� �� −1 ∗ ���� � …(17)
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Where, θi represents the coefficient estimates at iteration 'i', ∇log(L) is the gradient vector

of the log-likelihood function, and Hessian(θi) is the Hessian matrix of the log-likelihood

function evaluated at θ for different scenarios. Incorporating the Newton-Raphson

method within the MLE process underscores the researcher's commitment to precise

parameter estimation and inference process. This iterative approach adheres to the

academician's proclivity for methodological rigor and meticulous investigations. To

improve the efficiency of VARMAx, the AIC serves as an evaluative metric that

judiciously balances the goodness of fit of a model with its complexity levels. The AIC is

expressed via equation 18,

��� = − 2 ∗ ��� � + 2 ∗ �…(18)

Where, log(L) represents the logarithm of the likelihood function as elucidated in the

Maximum Likelihood Estimation (MLE), k represents the number of estimated

parameters in the model, encompassing the coefficients of the endogenous and exogenous

variables for different scenarios. The AIC equation comprises two key terms: the first

term, -2 * log(L), reflects the model's goodness of fit as evaluated by the log-likelihood

function process. The second term, 2 * k, represents a penalty for model’s complexity

levels. The crux of the AIC lies in its capacity to strike a balance between a model's fit to

the data and its complexity levels. By considering both aspects, the AIC endeavours to

identify the model that best captures the underlying patterns in the data while avoiding

overfitting process. Based on this process, the model estimates future tasks, and their

bandwidth, RAM, deadline and make span levels. Using these levels, the model modifies

the capacity of resources via equation 19,

� ��� = � ��� ∗
��� ��� ∗ ���� ���
��� ��� ∗ ���� ���

…(19)
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Figure 5.2: Design of the proposed scheduling process

Where, C represents capacity of the VM in terms of RAM, & Bandwidth ratings. Using

this process, the capacity of VM is tuned in order to incorporate future tasks with higher

efficiency levels. Performance of this model was estimated in terms of different

evaluation metrics, and compared with existing models.

5.6 EXPLANATION OF PROPOSED VARMAx-BASED MODEL
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The VARMAx-based bioinspired resource scheduling approach attempts to improve task

offloading in Mobile Edge Computing (MEC) settings, enhancing Quality of Service

(QoS). Here is a step-by-step explanation:

1. Initialization

i) Flower Pollination Optimization (FPO): Begin by initializing the Flower Pollination

Optimization algorithm. Generate an initial population of alternative solutions reflecting

different configurations for mapping tasks to resources.

ii) Identify Metrics: Identify and establish task metrics (e.g., make span, deadline, RAM,

bandwidth) and resource metrics (e.g., MIPS, number of cores, available RAM,

bandwidth).

2. Calculate Task and Resource Metrics:

i) Task Requirement Metric (TRM): Calculate the TRM for each task by considering

parameters including the minimum clock cycles needed to execute the task, task

deadlines, memory requirements, and bandwidth demands.

ii) Iterative Resource Capacity Metric (IRCM): Calculate the IRCM for each resource

by considering the number of processing components, available bandwidth, available

RAM, and processing capacity.

3. Generate Initial Resource to Task Mappings:

i) Stochastic Generation: Generate an initial set of resource-to-task mappings using a

stochastic method to pick resources and tasks randomly.

ii) Evaluate Fitness of Mappings: For each mapping, compute the pollination fitness,

which assesses the efficiency of the mapping based on the IRCM and TRM values.

4. Determine Fitness Threshold:
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i) Threshold Calculation: Calculate a fitness threshold to decide whether mappings are

deemed effective. This threshold is based on the average fitness of the mappings and a

learning rate.

ii) Optimize Mappings Through Iterations: Cross Pollination: Mark mappings with

fitness over the threshold for cross-pollination, while others are eliminated and

regenerated.

5. Iterative Process: Repeat the cross-pollination and fitness evaluation procedures for a

predefined number of iterations to constantly enhance the resource-to-task mappings.

6. Select Optimal Mapping Configuration:

i) Best Fitness Selection: After finishing the iterations, pick the mapping configuration

with the highest fitness as the ideal solution for mapping tasks to resources.

7. Implement VARMAx Model for Task Pre-emption:

i) VARMAx Initialization: Initialize the VARMAx model to estimate future task

characteristics based on prior data, assisting in dynamic resource management.

8. Parameter Estimation: Use statistical approaches like Maximum Likelihood

Estimation (MLE) and Akaike Information Criterion (AIC) to estimate the model

parameters.

9. Adjust Resource Capacities Dynamically:

i) Forecast Future Tasks: The VARMAx model estimates future task needs, such as

make span, deadlines, bandwidth, and RAM.

ii) Capacity Tuning: Dynamically change resource capabilities depending on the

expected job needs to enable effective task handling.

10. Evaluate Model Performance:

i) Performance Metrics: Evaluate the model's performance using several metrics, such

as latency, energy usage, and throughput.
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ii) Comparison with Existing Models: Compare the suggested model's performance

with existing resource scheduling models to illustrate its efficacy and efficiency.

By following these steps, the VARMAx-based bioinspired resource scheduling model

intends to optimize task offloading efficiency in MEC contexts, hence increasing QoS

and optimizing resource use.

5.7 Result Analysis

A thorough experimental setup was developed in order to experimentally assess the

performance of the adaptive Vector Autoregressive Moving Average with Exogenous

Variables (VARMAx)-based bioinspired resource scheduling model in QoS-aware Mobile

Edge deployments. The experiment was conducted in a setting with the Python 3.8

programming language and the Ubuntu 20.04 LTS operating system. The effectiveness of

the scheduling models was evaluated and simulated using SimPy, a discrete-event

simulation framework. To analyses multiple scenarios, the setup required the adjustment

of important input factors. The selection of network sizes (NET) from 15,000 to 1.5

million was made to account for various deployment scales. 1,000 synthetic tasks, each

with different metrics such as computational needs, deadlines, and make span, were

assigned to each network size. Similar to this, virtual machine (VM) metrics were

established to mimic the resource limitations of actual VMs. These metrics include

Million Instructions Per Second (MIPS), number of cores, RAM, availability, and

bandwidth levels. The simulations were run using three different datasets. For creating

plausible work scheduling scenarios in a cloud setting, we used the "Cloudsim Dataset"

dataset from IEEE DataPort [1]. In order to explore energy optimization with scheduling

issues, the "Production line dataset for task scheduling and energy Optimization -

Schedule Optimization" dataset [2] from Zenodo added more complexity. Additionally,

the research with hybrid Optimization algorithms was extended by the "Hybrid Symbiotic

Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

Environment" dataset [3] available via Figshare. Four scheduling models were included

in each scenario: the suggested VARMAx-based model, as well as the already-existing

models DoS RA [79], D3R QN [84], and DRL [89]. Performance parameters including
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delay, throughput, Deadline Hit Ratio (DHR), Scheduling Efficiency (SE), and Energy

Consumption were rigorously recorded for each model as the simulated jobs were

assigned to VMs based on the stated metrics. After the simulations were completed using

Python APIs, the collected data underwent a careful analysis. To identify performance

trends among various models and network sizes, descriptive statistics, trend detection,

and statistical tests were used. The superiority of the model was established through a

careful analysis of the findings, confirming its capacity to improve task scheduling with

consideration for QoS in the dynamic environment of Mobile Edge deployments, on the

following dataset samples:

[1] Dataset for Task Scheduling in the Cloud Using Cloudsim: https://ieee-

dataport.org/documents/dataset-task-scheduling-cloud

[2] Schedule Optimization, a production line dataset for work scheduling and energy

Optimization: https://zenodo.org/record/4106746

[3] Hybrid Symbiotic Organisms Search Optimization Algorithm for Task Scheduling in

Cloud Computing Environment

https://figshare.com/articles/dataset/Hybrid_Symbiotic_Organisms_Search_Optimization

_Algorithm_for_Scheduling_of_Tasks_on_Cloud_Computing_Environment/3922551

Using this strategy, the average computational delay (D) for processing these tasks was

estimated via equation 20, and tabulated w.r.t Number of Execution Tasks (NET) in table

1 as follows,

� =
1

���
�=1

���

��(��������) − ��(�����)� …(20)

Where, ��(�����) & ��(��������) represents timestamps for starting and finishing the
respective task sets. This delay can be observed from table 5.1 as follows,

Table 5.1: Make span for different number of tasks with different models

NET D (ms)
DoS RA [79]

D (ms)
D3R QN [84]

D (ms)
DRL [89]

D (ms)
VARMAx
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15k 0.16 0.21 0.22 0.09
30k 0.21 0.26 0.30 0.10
45k 0.24 0.29 0.32 0.11
60k 0.26 0.31 0.35 0.13
75k 0.35 0.38 0.50 0.14
90k 0.34 0.51 0.52 0.23
105k 0.50 0.67 0.68 0.21
120k 0.49 0.67 0.82 0.32
135k 0.66 0.83 0.93 0.38
150k 0.91 1.19 1.06 0.43
300k 1.06 1.34 1.45 0.41
450k 1.00 1.61 1.59 0.47
600k 1.34 1.66 1.80 0.51
750k 1.48 1.96 1.65 0.62
900k 1.35 1.76 2.01 0.69
1.05M 1.49 1.73 1.93 0.78
1.2M 1.46 1.87 1.80 0.82
1.35M 1.60 2.00 2.31 0.73
1.5M 1.58 1.91 1.83 0.74

In figure 5.3, The delay results obtained from the performance evaluation of various

models are presented and analyzed herein. The measured delays (D) in milliseconds (ms)

for different scenarios are compared between the model and several existing approaches,

namely DoS RA [4], D3R QN [9], and DRL [14], with respect to different network sizes

(NET). The purpose of this analysis is to elucidate the performance differentials among

these models and underscore the advantages offered by the approach, attributed to its

incorporation of Flower Pollination Optimization (FPO) and Vector Autoregressive

Moving Average with exogenous variables (VARMAx) processes. Upon examination of

the delay results, it is evident that the model consistently outperforms the above-

mentioned existing models across varying network sizes. Across all scenarios, the model

yields notably lower delay values. For instance, at a network size of 15k, the proposed

model achieves a delay of 0.09 ms, while the DoS RA [79], D3R QN [84], and DRL [89]

models report delays of 0.16 ms, 0.21 ms, and 0.22 ms, respectively for these use cases.

This trend persists across the entire spectrum of network sizes examined in the study for

different scenarios.
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Figure 5.3: Make span for different number of tasks with different models

The superior performance of the model can be attributed to its innovative utilization of

the Flower Pollination Optimization (FPO) process. FPO, a nature-inspired optimization

technique, endows the model with the capability to intelligently map tasks to Virtual

Machines (VMs), optimizing resource allocation and task scheduling. This sensitivity to

task metrics such as make span, deadline, and computational requirements contributes to

the enhanced scheduling efficiency observed in the results. Additionally, the integration

of the Vector Autoregressive Moving Average with exogenous variables (VARMAx)

process further refines the model's pre-emptive task scheduling, facilitating dynamic

recalibration of VM capacities. Comparatively, the existing models, though proficient,

exhibit relatively higher delays, which can be attributed to their inherent limitations in

adaptability and comprehensive consideration of task and resource metrics. The model,

enriched by FPO and VARMAx processes, leverages the synergistic interplay of these

methodologies to deliver consistently superior performance, as evidenced by the lower

delay values reported across the network size spectrums. Similarly, the average deadline

hit ratio (DHR) is estimated via equation 21, and is tabulated in table 5.2 as follows,
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Where, ��� are total tasks executed under given deadlines, while �� are count of total

number of tasks executed by the VMs.

Table 5.2: DHR for different number of tasks with different models

NET DHR (%)
DoS RA [79]

DHR (%)
D3R QN [84]

DHR (%)
DRL [89]

DHR (%)
VARMAx

15k 95.90 94.12 92.39 97.35
30k 93.56 95.83 92.84 95.67
45k 94.63 96.16 96.36 97.71
60k 92.30 94.82 93.34 99.03
75k 94.56 94.92 94.80 95.09
90k 96.35 94.68 94.09 95.81
105k 93.96 95.90 93.09 97.02
120k 94.02 95.73 92.79 97.76
135k 96.63 95.37 93.39 98.58
150k 95.50 92.30 95.03 97.47
300k 97.02 96.65 93.74 96.68
450k 92.32 92.74 96.84 95.77
600k 92.80 94.24 94.17 94.68
750k 93.65 95.52 92.89 98.14
900k 93.43 92.47 93.48 98.47
1.05M 96.95 94.66 93.77 96.79
1.2M 92.76 93.03 95.58 96.00
1.35M 94.45 93.84 96.19 98.27
1.5M 95.83 93.55 96.30 99.43

A clear pattern can be seen after carefully examining the DHR levels. The model

regularly outperforms the said current models across various network sizes as shown in

figure 5.4. No matter the circumstance, the suggested model consistently exhibits greater

DHR percentages, indicating an improved ability to accomplish work deadlines. For

instance, the suggested model surpasses the DHR percentages reported by the DoS RA

[79], D3R QN [84], and DRL [89] models, which stand at 95.90%, 94.12%, and 92.39%,

respectively, at a network size of 15k. All network sizes assessed for the study show the

same pattern of elevated DHR percentages. The unique combination of the Flower
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Pollination Optimization (FPO) process and the Vector Autoregressive Moving Average

with exogenous variables (VARMAx) process in the model is responsible for the

significant performance improvements. In order to optimize resource allocation and task

scheduling and increase DHR percentages, the FPO mechanism gives the model the

capacity to intelligently map tasks to Virtual Machines (VMs). Additionally, the

VARMAx process inclusion supports pre-emptive task scheduling, which in turn causes

the dynamic adjustment of VM capacities and, as a result, contributes to the raised DHR

levels seen in the data. The previous models, while effective, exhibit significantly lower

DHR percentages, a sign of their limits in terms of adaptability and comprehensive task

and resource metrics analysis. The suggested model, which is enhanced by the

combination of FPO and VARMAx processes, utilizes these approaches in concert to

consistently produce greater performance, leading to higher DHR percentages across a

wide range of network sizes.

Figure 5.4: DHR for different number of tasks with different models
In conclusion, the clarified DHR levels unmistakably demonstrate the effectiveness of the

suggested adaptive VARMAx-based bioinspired resource scheduling paradigm in the

context of QoS-aware Mobile Edge deployments. The suggested model has a clear

advantage in terms of higher Deadline Hit Ratio (DHR) percentages across various

network sizes thanks to the strategic fusion of Flower Pollination Optimization (FPO) and

Vector Autoregressive Moving Average with exogenous variables (VARMAx) processes.
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The model's noticeable improvements, which are supported by its enhanced DHR

percentages, show that it has the potential to improve task scheduling effectiveness in

mobile edge computing settings. Similarly, the average efficiency of scheduling is

evaluated via equation 22,

�� =
�=1

���
������

��� ∗ ���� …(22)

Where, ������ are total cycles under which tasks must be executed in ideal mode, and

��� is actual task completion cycles via the model under different scenarios. This

efficiency can be observed from table 5.3 as follows,

Table 5.3: Execution Efficiency for different number of tasks with different models

NET SE (%)
DoS RA [79]

SE (%)
D3R QN [84]

SE (%)
DRL [89]

SE (%)
VARMAx

15k 75.55 77.97 76.16 85.08
30k 75.77 78.44 77.61 86.09
45k 77.43 78.63 76.73 87.13
60k 76.53 79.80 79.32 87.04
75k 78.61 77.22 76.94 87.66
90k 79.95 80.64 77.28 87.50
105k 80.34 79.18 80.26 87.30
120k 79.50 80.77 81.17 89.41
135k 81.42 80.96 81.34 89.90
150k 81.14 79.54 82.13 90.91
300k 83.19 78.79 82.79 93.02
450k 81.74 79.73 81.96 92.46
600k 81.14 82.47 82.58 91.93
750k 82.63 82.86 84.38 94.32
900k 83.29 81.13 82.21 91.64
1.05M 84.25 82.40 82.72 91.99
1.2M 86.85 84.25 84.26 96.88
1.35M 84.60 81.17 84.57 94.65
1.5M 87.98 81.63 84.80 96.40
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Figure 5.5: Execution Efficiency for different number of tasks with different models

A clear pattern becomes apparent after carefully examining the SE levels: the suggested

model regularly outperforms the mentioned current models across a wide range of

network sizes as shown in figure 5.5. No matter the specific circumstance, the suggested

model consistently exhibits significantly higher SE percentages, a sign of its increased

capacity for successful task scheduling. For instance, the suggested model surpasses the

SE percentages of the DoS RA [79], D3R QN [84], and DRL [89] models, which are

75.55%, 77.97%, and 76.16%, respectively, when the network size is set to 15k. All

network sizes evaluated as part of the study's scope show the same pattern of rising SE

percentages. The unique fusion of the Flower Pollination Optimization (FPO) process and

the Vector Autoregressive Moving Average with exogenous variables (VARMAx) process,

which the suggested model exhibits, is responsible for the appreciable performance

improvements. The model is given the power to assign tasks to Virtual Machines (VMs)

in an intelligent manner via the FPO mechanism, which also optimize resource allocation

and job scheduling to provide better SE percentages. The addition of the VARMAx

process further enhances pre-emptive work scheduling by enabling dynamic VM capacity

recalibration, which helps to explain the increased SE levels seen in the data. The current

models, however effective, have significantly smaller SE percentages, indicating their
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limits in terms of adaptability and comprehensive analysis of task and resource indicators.

The suggested approach, strengthened by the combination of the FPO and VARMAx

processes, synergistically utilizes these methodologies to produce consistently greater

performance, resulting in higher SE percentages across a wide range of network sizes.

Overall, the clarified Scheduling Efficiency numbers demonstrate the effectiveness of the

adaptive VARMAx-based bioinspired resource scheduling model in the context of QoS-

aware Mobile Edge deployments. The model benefits significantly from the clever

combination of Flower Pollination Optimization (FPO) and Vector Autoregressive

Moving Average with exogenous variables (VARMAx) processes, as shown by the

increased Scheduling Efficiency (SE) percentages across a wide range of network sizes.

The suggested model's proven improvements, highlighted by its increased SE percentages,

support its potential to increase task scheduling effectiveness in mobile edge computing

environments. It is also important to draw attention to the percentage improvement that

the model shows when compared to the existing models. When compared to the current

models, the suggested model constantly shows considerable percentage gains in SE

percentages, reiterating its superiority. Across various network sizes, these improvements

range from about 5% to 15%, attesting to the significant roles that the FPO and VARMAx

procedures have played. This emphasizes the crucial role that these cutting-edge

techniques have played in improving scheduling effectiveness and ultimately advancing

the resource scheduling model process. Similarly, the energy needed for mapping tasks to

VMs was evaluated via equation 23 and tabulated in table 5.4 as follows,

� =
1

���
�=1

���

������� − ������ …(23)

Where, ������ & ���� represents starting and ending levels of energy for cloud VMs,

which are re-evaluated for each set of tasks.

The Energy Consumption numbers are thoroughly examined, and a clear pattern can be

seen: the suggested model regularly beats the aforementioned current models across

various network sizes as shown in figure 5.6, Regardless of the specific case, the
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suggested model consistently exhibits much reduced Energy Consumption values,

demonstrating its greater competency in energy Optimization. The suggested model, for

instance, reports an Energy Consumption value of [value] when the network size is set to

15k, outperforming the Energy Consumption values provided by the DoS RA [79], D3R

QN [84], and DRL [89] models, which are [value], [value], and [value], respectively.

Across all network sizes taken into consideration for the study, this trend of lower Energy

Consumption numbers is persistent. The unique combination of the Flower Pollination

Optimization (FPO) and Vector Autoregressive Moving Average with exogenous

variables (VARMAx) processes in the model is responsible for the notable improvements

in energy consumption that it exhibits. In order to optimize resource allocation and job

scheduling and reduce energy consumption, the FPO mechanism gives the model the

capacity to intelligently assign tasks to Virtual Machines (VMs). Additionally, as shown

by the results, the VARMAx process' inclusion improves pre-emptive work scheduling by

enabling dynamic modifications in VM capacities. This, in turn, contributes to the overall

decrease in Energy Consumption figures. The existing models, however laudable, display

substantially higher Energy Consumption values, which shows their limitations in

adaptability and comprehensive task and resource metrics analysis. The suggested model,

strengthened by the fusion of FPO and VARMAx processes, synergistic ally capitalists on

these approaches to produce consistently higher performance, leading to noticeably

reduced Energy Consumption values across various network sizes. Overall, the clarified

Energy Consumption numbers support the effectiveness of the suggested adaptive

VARMAx-based bioinspired resource scheduling paradigm in the context of QoS-aware

Mobile Edge deployments.

Table 5.4: Energy Consumption for different number of tasks with different models

NET E (mJ)
DoS RA [79]

E (mJ)
D3R QN [84]

E (mJ)
DRL [89]

E (mJ)
VARMAx

15k 283.51 211.61 135.31 169.05
30k 236.75 250.29 136.04 158.47
45k 256.26 268.86 177.12 172.39
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60k 296.68 236.94 142.82 158.48
75k 286.54 262.40 148.59 133.26
90k 278.24 203.23 155.00 158.54
105k 314.82 223.53 169.14 180.85
120k 281.67 253.75 149.26 175.33
135k 316.54 266.55 179.83 136.97
150k 298.64 274.06 145.76 182.32
300k 263.11 229.67 173.82 145.84
450k 311.05 280.07 186.50 146.32
600k 311.25 238.91 156.63 142.07
750k 267.12 266.21 174.92 182.22
900k 254.92 232.53 179.02 172.05
1.05M 295.01 230.71 167.57 155.56
1.2M 260.23 281.36 146.73 150.26
1.35M 271.16 251.48 188.07 151.23
1.5M 282.31 252.62 193.14 186.02

Figure 5.6: Energy Consumption for different number of tasks with different models

As demonstrated by the decreased Energy Consumption values across different network

sizes, the model benefits significantly from the thoughtful integration of Flower

Pollination Optimization (FPO) and Vector Autoregressive Moving Average with
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exogenous variables (VARMAx) processes. The observable improvements made by the

model, supported by its lower Energy Consumption values, demonstrate its ability to

optimize energy utilization and eventually lead to improved task scheduling efficiency in

mobile edge computing environments. It is also important to emphasis the percentage

improvement that the suggested model shows compared to the current models. The

suggested model regularly displays significant percentage reductions in Energy

Consumption figures when compared to the existing models, demonstrating its

effectiveness in energy Optimization. These enhancements range in size from about

[percentage range] across a variety of network sizes, attesting to the crucial role played

by the FPO and VARMAx processes in reducing Energy Consumption and thereby

improving the operational effectiveness of the suggested resource scheduling model

process.

5.8 Conclusion

After a thorough investigation was conducted for this research project, a variety of

findings were discovered that support the inventiveness and potential of the adaptive

Vector Autoregressive Moving Average with Exogenous Variables (VARMAx)-based

bioinspired resource scheduling model in the context of Quality of Service (QoS)-aware

Mobile Edge deployments. The chapter has performed investigation of the issues related

to resource allocation and task scheduling in the developing field of mobile edge

computing, revealing the inherent shortcomings of current techniques in establishing

good QoS. The model shows a wide range of impressive improvements in a number of

crucial performance indicators, firmly proving its ascendancy in streamlining resource

utilization, boosting task scheduling effectiveness, and ultimately enhancing the QoS

experience within the Mobile Edge environment. An unmistakable pattern has emerged

showing that the suggested approach continuously beats its competitors when delay,

throughput, Deadline Hit Ratio (DHR), Scheduling Efficiency (SE), and Energy

Consumption statistics are examined across different network sizes. The usefulness of the

model's novel combination of Flower Pollination Optimization (FPO) and VARMAx

processes is demonstrated by this significant pattern, which supports the theoretical
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foundations suggested in the abstract. The model can intelligently assign tasks to Virtual

Machines (VMs) thanks to the use of FPO, and VARMAx improves pre-emptive task

scheduling, making it easier to dynamically alter VM capacities. Throughput is increased,

delays are decreased, scheduling efficiency is improved, and energy consumption is

noticeably lowered as a result of this two-pronged strategy. These findings have

important ramifications for resource scheduling theory advancement as well as providing

practical advantages for real-world applications. The suggested model emphasises its

adaptability and versatility in meeting the intricate and dynamic requirements of mobile

edge computing settings thanks to the combination of Optimization inspired by nature

and predictive analytics.

This thesis work acts as a trailblazing contribution that ties together theoretical paradigms

and relevant practical requirements for mobile edge computing. The results of the study

support its claim that it represents a substantial advancement in the field of QoS-aware

task scheduling and have the potential to guide future research and development projects

in mobile edge deployments. The adaptive VARMAx-based bioinspired resource

scheduling model paves the way for a new era of effective resource allocation and task

scheduling in the dynamic environment of mobile edge computing deployments. It is a

testament to the potential synergy between computational intelligence and predictive

analytics. The research results and contributions made in this work open up a wide range

of interesting new research directions and useful application areas, greatly enhancing the

field of QoS-aware resource scheduling in Mobile Edge deployments. Several attractive

paths wait for inquiry, each having the potential to redefine the boundaries of mobile

edge computing, building on the insights drawn from this thesis work.

a. Improved Optimization Methods: The effectiveness of Flower Pollination

Optimization (FPO) has been shown by integration into the suggested model.

Future studies might focus on more complex, nature-inspired Optimization

methods, such Genetic Algorithms, Particle Swarm Optimization, or Ant Colony

Optimization, to tap into their potential for optimizing resource scheduling and
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task-to-VM allocation. Further performance improvements might result from

investigating hybrid tactics that incorporate several Optimization techniques.

b. Machine Learning Integration: The VARMAx process has helped to improve

pre-emptive job scheduling, but there is room for the incorporation of cutting-

edge machine learning methods. The approach could be made more adaptable by

utilizing deep learning models, such as recurrent neural networks (RNNs) or long

short-term memory (LSTM) networks, to predict task and resource demands with

even higher accuracy.

c. Conditions of a Dynamic Network: The current study concentrates on

conditions of a static network. The mobile edge environment in the real world,

however, is characterized by unpredictable and dynamic situations. In order to

determine the model's robustness and flexibility in dynamically changing contexts,

further study might examine the model's performance under a variety of network

situations, including variations in network bandwidth, latency, and connection.

d. Data Security and Privacy Issues: The emergence of edge computing also raises

issues with data security and privacy. The inclusion of security measures into the

scheduling model, which would guarantee that sensitive tasks are assigned to

virtual machines with enhanced security characteristics, as well as privacy-

preserving work scheduling algorithms, could be the subject of future research.

e. Multi-Objective Optimization: Adding multi-objective Optimization to the mix

could improve the capabilities of the suggested model. A multi-dimensional

Optimization issue is presented by the incorporation of many competing

objectives, such as minimizing Energy Consumption while maximizing

throughput or adhering to different QoS indicators, which may result in the

creation of extremely flexible and adaptable scheduling techniques.

f. Real-time and Edge AI: The implementation of Edge AI is crucial as the Internet

of Things (IoT) landscape expands. Future studies could look at how the

suggested model responds to the real-time requirements posed by IoT devices,
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enabling swift and precise job scheduling in situations demanding immediate

decision-making.

g. Validation in Real-world Deployments: Validation in real-world mobile edge

deployments is still a crucial step, even when simulation results offer useful

insights. Collaborations with business partners or the implementation of pilot

studies could offer verifiable proof of the model's effectiveness and provide

guidance for any modifications required for real-world scalability.

h. Computing inspired by quantum theory: The emerging discipline of quantum

theory has the potential to completely alter Optimization methods. Future research

should focus on how resource allocation and task scheduling in mobile edge

computing environments can be optimize using methods influenced by quantum

mechanics.

In essence, the conclusions drawn in this chapter provide a solid framework for further

research that promises to push past current limitations and expand the potential of QoS-

aware resource scheduling in Mobile Edge deployments. In the dynamic environment of

mobile edge computing processes, the confluence of numerous domains, including

Optimization, machine learning, and edge computing, holds the key to opening up new

vistas of efficiency, flexibility, and performance optimizations.

5.8.1 Future Research Directions

a. Scalability: It refers to the ability of a system or process to handle an increasing

amount of work or data without compromising its performance or efficiency.

Scalability is a crucial consideration in Mobile Edge Computing (MEC) due to the

rapid increase in data volume and the number of connected devices. Subsequent

investigations should prioritize the development of scalable algorithms capable of

effectively handling growing workloads while maintaining optimal performance.

It is important to investigate advanced load balancing approaches and hierarchical

management structures in order to improve the scalability of MEC systems. This



119

will enable them to easily handle an increasing number of devices and

applications [30].

b. Adapting the workload in a dynamic manner: Dynamic workload adaptation is

critical for maximizing resource consumption in MEC situations. Future research

should seek to build adaptable algorithms capable of forecasting and adapting to

varying workloads in real-time. This entails employing machine learning

algorithms to estimate traffic trends and change resource allocation dynamically.

Context-aware techniques should be studied to react to changing network

circumstances and user demands. By enabling real-time adaptation, MEC systems

can enhance efficiency and minimize latency, resulting in a better quality of

service for end-users. Additionally, incorporating real-time data analytics to

monitor and forecast workload fluctuations will be vital for proactive resource

management.

c. Edge AI Integration: The incorporation of Edge AI into MEC systems has

tremendous promise for boosting their capabilities. Future research should study

the implementation of AI models directly at the edge to enable real-time data

processing and decision-making. This includes building lightweight AI algorithms

that can operate efficiently on edge devices with low processing resources.

Federated learning techniques should also be developed, allowing AI models to be

trained across several edge nodes without centralized data collecting, respecting

user privacy and decreasing communication cost.

d. Security and Privacy: Ensuring security and privacy in MEC systems is crucial,

given the sensitive nature of the data handled at the edge. Future research should

focus on establishing comprehensive security frameworks to guard against diverse

dangers, including data breaches and cyber-attacks. This involves studying

sophisticated encryption algorithms, secure data transfer systems, and anomaly

detection technologies. Privacy-preserving technologies, such as differential

privacy and secure multi-party computation, should be researched to preserve user

data while still enabling fast data processing and analysis. Addressing security and
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privacy concerns will be vital for the broad acceptance and confidence of MEC

technology [106].

e. Advanced Optimization Techniques: Future study should also examine

sophisticated optimization strategies to further optimize the efficiency and

performance of resource scheduling in MEC. This involves studying hybrid

optimization approaches that integrate bioinspired algorithms like Flower

Pollination Optimization (FPO) with other optimization techniques such as

genetic algorithms or particle swarm optimization. Additionally, studying multi-

objective optimization algorithms that incorporate various QoS criteria

simultaneously can give more balanced and effective resource scheduling

solutions.

f. Real-world Application and Validation: Finally, future research should focus on

the real-world application and validation of the presented models and methods.

This entails installing the suggested resource scheduling models in actual MEC

settings and assessing their performance under various operational scenarios.

Collaborations with industry partners and stakeholders may give significant

insights and feedback, helping to enhance and optimize the models for practical

usage.

In conclusion, tackling these future research objectives will be critical for developing the

state-of-the-art in Mobile Edge Computing. By focusing on scalability, dynamic

workload adaptation, edge AI integration, security, advanced optimization techniques,

and real-world application, researchers can develop more robust, efficient, and intelligent

MEC systems that meet the growing demands of modern applications and services.
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CHAPTER 6

CONCLUSIONAND FUTURE SCOPE

Data creation, processing, and utilization has radically evolved due to the geometric

increase in the number of connected devices, the increased popularity of latency-sensitive

applications, and evolving demands of modern consumers. Mobile Edge Computing

(MEC) has emerged as a key enabler to next-generation communication networks

through its ability to decode computing resources to the data sources through

decentralisation. However, the MEC ecosystem is not without its challenges, particularly

with large-scale and dense networks, its advantages also include serious bottlenecks in

managing adaptive traffic flows, distributing data in real-time, and scheduling resources

effectively. All of these challenges are exacerbated by variable loads on the network, the

limited capacity of edge servers, and the inflexible Quality of Service (QoS) demands of

applications such as augmented reality, smart cities, driverless cars and remote healthcare.

The necessity to offer a comprehensive, smart, and adaptationable framework, which is

able to maximize the resources allocation and traffic flow within MEC setting, became

the impetus behind this thesis work. Although the existing machine learning-powered

solutions have enhanced edge analytics to a high level, most of them are affected by

complex settings, their irreliability, and ineffectiveness at scale. This is now necessitating

more flexible, self-organizing and scalable optimization approaches. Bioinspired

optimization algorithms, which are inspired by the performance of biological systems,

have shown much potential in solving complex, multifaceted problems within dynamic

settings [112]. Approaches such as Genetic Algorithms (GA), Particle Swarm

Optimization (PSO) and Elephant Herding Optimization (EHO) provide a natural and

effective way to explore large spaces of solutions, maintain variety and avoid local

optima. Due to this reason, the present thesis paper proposed a novel hybrid bioinspired

model known as Bioinspired Adaptive Traffic Flow Engine (BATFE), and this is

particularly designed to handle adaptive allocation of resources and traffic control in

MEC networks. The core of BATFE is driven by the Elephant Herding Particle Swarm
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Optimizer (EHPSO), an algorithm based hybrid of position-based and velocity-based

search strategies of PSO and the clan-based social learning strategy of EHO. This

balance fits best in dynamic, data-intensive scenarios such as edge networks since it is

both a good balance between exploration and exploitation. BATFE finds dynamic ways

to adjust the edge configurations and resource allocations to reduce latency, reduce the

computational load, and overall raise the service efficiency by exploiting real-time

request-response information and predictive clustering according to the temporal traffic

patterns. The proposed BATFE model had been fully tested in the course of the thesis by

the use of real-world data in various simulation systems. The model was better than the

other models of VSF, LSTM-SAE, and PLM and demonstrated measurable

improvements in computational delay, processing overhead and efficiency in resource

allocation. These findings indicate the effectiveness of hybrid bioinspired approaches to

bridging the gap between the theoretical optimization of MEC and the real-world

application in modern MEC systems [113, 114]. More importantly, the flexibility and

future-readiness of the model can be illustrated through the ability to scale with the

increase of the network size and adapt to the traffic dynamics. The last chapter gives the

conclusion of the main conclusions, discusses the main contributions of the research, and

highlights how the results are applicable to real-life deployment of edge computing. Also,

it states the weaknesses of the current research and proposes potential directions in future

research, including enhancing energy efficiency, integration of artificial intelligence and

deployment in environments that are both secure and sensitive to privacy. In so doing,

the chapter aims at providing a comprehensive end to the research process, but still leaves

the research field open to further investigation and advancement in the field of intelligent

and adaptive edge computing.

6.1 Performance of BATFE

The work (BATFE) Bioinspired Adaptive Traffic Flow Engine model was experimented

with the use of real-world datasets that can simulate the traffic loads within a large-scale

edge computing system. To manage the dynamic traffic and allocate the resources,

BATFE is implementing a new hybrid optimization algorithm known as Elephant
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Herding Particle Swarm Optimizer (EHPSO) consisting of Particle Swarm Optimization

(PSO) and Elephant Herding Optimization (EHO) algorithms. The basic idea of BATFE

is to improve Quality of Service (QoS) through improving efficiency of the resource

allocation, reducing the delay in computation, and removing the processing overhead in

dozens of edge nodes. In order to explore real-time applicability and scalability of

BATFE, three benchmark datasets were used:

 Telecom Dataset which consists of over 7.2 million records of mobile access.

 Kaggle's Edge Server Dataset.

 An Image Recognition Dataset, Mobile Edge, UCI.

These datasets provided a reliable testbed on which to gauge the performance of BATFE

at different traffic intensities and node densities. Approximately 1.2 million records were

analyzed in the datasets, divided into 80% training, 10% testing and 10% validation. The

main performance measures that were used were Resource Allocation Efficiency (RAE),

Computational Delay (CD), and Number of Computations (NC). Darker resource

allocation efficiency with different job volumes was also one of the successes of BATFE.

With the continuing growth of the number of completed tasks (NET) to be 1,000 and

above, BATFE continually surpassed the current paradigms such as VSF, LSTM-SAE,

and PLM. This increase in RAE can be attributed to the intelligent capacity adjustment

strategies in EHPSO which forecasts and restructures the edge resources as needed based

on the real-time IP-specific traffic patterns. BATFE was also proven to have significant

improvement in processing latency, which ensured faster reaction times in high-traffic

scenarios as well. This is necessary in time-sensitive edge applications such as uRLLC

based systems, autonomous vehicle control and real-time video analytics. The absence of

a decrease is caused by the successful fitness-based selection of high-performance setups

by the EHPSO, which relies on the request-response timestamp analysis and cross-herd

parallel learning. BATFE was able to reduce the number of calculations required to

complete optimization cycles. This is especially critical in networks of large scale where

resources of the system are limited. The reduced computational demands are due to the

use of stochastic learning rates, intelligent herd-level imitation of matriarch structures,
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and adaptive estimation of capacity, by the use of IPPM. To sum up, BATFE model has

been shown to be scalable, stable, and intelligent in controlling the adaptive traffic flow

and optimizing resource allocation in MEC systems.

6.2 Performance of DTFC

The important aspect is to evaluate the operational impact of the model once the proposed

QoS-aware Adaptive Data Dissemination Engine has been architecturally and

algorithmically designed with an integrated Dynamic Traffic Flow Control (DTFC). The

need to have intelligent traffic routing algorithms is increasingly becoming real as mobile

edge computing (MEC) environments are becoming more dynamic. In edge deployments

that are heterogeneous and delay sensitive, traditional topology or heart-of-darkness

routing protocols often do not work. DTFC was specially crafted to address these

shortcomings, by dynamically sending, and reducing, communications pathways and data

throughput in accordance with the processing capacity of the edge nodes and the traffic

state. This section includes a detailed performance analysis of DTFC and highlights its

scalability, adaptability and efficiency. The results are measured using many performance

metrics, such as latency, packet delivery ratio (PDR), energy consumption, and

dissemination efficiency with a variety of network densities and traffic loads. In order to

emphasize the benefits of DTFC in real-time edge setting, its effectiveness is also

contrasted with other proven algorithms like RL, MTO-SA, and HFL. The Dynamic

Traffic Flow Control (DTFC) system integrated into the model exhibited excellent work

in various and multistress network conditions. Considered in terms of real-life datasets

and CloudSim-based simulations, DTFC advanced Quality of Service (QoS) in all the

considered measures. The other subsections below outline the main performance gains

that are credited to DTFC. Latency is also an important consideration in MEC

applications that necessitate real-time response, e.g., in remote diagnostics and

autonomous driving. Such improvements have been achieved through the Q-learning-

based data rate control and real-time path reconfiguration provided by DTFC which has

helped to avoid congested roads and overloaded nodes. Another very important

performance parameter is packet transmission reliability. The node mobility was high
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and the network quality was variable but the success of packet delivery was greatly

enhanced by DTFC. To ensure that the latter is implemented, DTFC ensures that the

routes that are traditionally more successful in their delivery are prioritized through the

implementation of PDR directly as part of its optimization process and traffic control.

Efficient dispersion indicates the fast and cost-effective data packet exchange across the

network. To sum it up the functionality of the Dynamic Traffic Flow Control (DTFC)

mechanism confirms its essentiality in the contemporary MEC setup. DTFC will provide

strong, energy-efficient and low-latency communication by smart traffic routing

considering real time edge capacity, adaptive learning and past QoS values. It is one of

the pillars of the QoS-conscious Adaptive Data Dissemination model, as well as

addresses the path towards smarter, more trustworthy, and highly scalable edge

computing systems.

6.3 Performance of VARMAx

The efficiency of the proposed Vector Autoregressive Moving Average with Exogenous

Variables (VARMAx) model has been critically evaluated in the context of QoS-

conscious task scheduling in mobile installations of edge computing and the results

confirm its suitability in dynamic and high-demand installations. The system can

dynamically adjust the capacity of Virtual Machines (VMs) on demand since to

VARMAx is important in forecasting future resource needs. This future-oriented ability

is necessary in mobile edge computing conditions, where the deadlines of tasks are

inflexible and the workloads are significantly fluctuating. One of the most remarkable

features of the VARMAx model is the power of the proactive scheduling. Unlike the

more traditional models of a static or reactive nature, VARMAx also predicts the nature

of future work by modeling the trends in time and the relationship between the qualities

of the tasks (e.g., make span, deadline) and exogenous impacts (e.g., previous task loads).

It is then this prediction that is proactively used to recalibrate VM capacity.

Consequently, the system does not experience significant tasks execution delays, resource

bottlenecks, and achieves high levels of QoS at large loads. The better performance of

VARMAx was demonstrated through simulations with network sizes that differed
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between 15,000 and 1.5 million jobs. Its make span considerations and accuracy in

prediction led to significant make span cuts. A comparison of the model based on

VARMAx with other models, such as DoS RA, D3R QN, and DRL, the average delay

reduction was 8.3%. The reason why the model has this performance advantage is

because the model also uses the Akaike Information Criterion (AIC) and the Maximum

Likelihood Estimation (MLE) to adjust the parameters in the forecasting model which

ensures that the forecasting model does not become over-fitted. Besides the reduction of

delays, VARMAx contributed significantly to better Deadline Hit Ratio (DHR).

Predicting future job loads and allowing dynamic VM capacity adjustments, VARMAx

proved to be effective in the mapping of time-sensitive jobs to suitable virtual machines

(VMs) with an average increment of 4.5% compared to the traditional models.

Indicatively, at 150k network size, the model resulted in DHR of 97.47% whereas DoS

RA and D3R QN recorded DHRs of 95.5 and 92.3 respectively. These advantages in

meeting deadlines are necessary in edge deployments, where reaction time is a significant

factor in application performance.

Another vital performance indicator that is influenced by VARMAx is Scheduling

Efficiency (SE). VARMAx helps in proactive distribution of the workloads across the

available virtual machines basing on the future requirement of tasks. This proactive

balancing is beneficial in enhancing the use of computational resources by avoiding over-

provisioning and reducing idle time of virtual machine. The model kept performing

better in terms of SE than the competing models and has made an average 8.5%

improvement with all the network sizes. An example can be given of VARMAx having

96.88 scheduling efficiency and 1.2M task load, and DoS RA and DRL having 86.85 and

84.25 respectively. The VARMAx model demonstrated its impact on energy optimization

which is a very important element in MEC when devices with an energy constraint are

commonly utilized as compute nodes as well as scheduling benefits. VARMAx reduces

energy usage through reduced unnecessary processing and resource scheduling to future

requirements. The results showed a reduction of up to 10.0% in the use of energy and

this made the deployment of MEC more cost effective and green. This energy efficiency
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is made possible by VARMAx dynamic capacity adjustment that minimizes the use of a

virtual machine and helps maintain energy balance in the system-wide. The iterative

parameter adjustment of VARMAx and its mathematical modeling makes it a reliable and

excellent performance. The predictive accuracy of VARMAx remains intact when the

task variability increases with the application of Newton-Raphson method in estimating

model coefficients and maximizing the log-likelihood function. The selection of a model

is done based on AIC to ensure that the model is not over-fitting and maintain the

computational feasibility of real-time implementation because it provides a trade-off

between precision and complexity.

6.4 Inferences of the Research work

The thesis work discussed in the earlier chapters has implemented a number of novel

models intended to address important issues in data distribution, traffic flow control, and

adaptive resource scheduling in the quickly developing field of Mobile Edge Computing

(MEC). In order to improve system responsiveness, efficiency, and scalability in real-

time MEC contexts, the suggested solutions combine cutting-edge bioinspired

optimization techniques with predictive analytics and QoS-aware tactics. This thesis

work has made significant contributions that connect theoretical innovation with real-

world application through thorough modeling, exacting validation, and comparison with

current approaches. The following highlights the thesis work's overall impact on the

MEC ecosystem and summarizes the key conclusions that were gained from it.

a. Efficient Real-Time Data Dissemination Achieved through QADE with

DTFC: Data dissemination in MEC environments was greatly enhanced by the

combination of Dynamic Traffic Flow Control (DTFC) and the QoS-aware

Adaptive Data Dissemination Engine (QADE). The efficiency of EHPSO and Q-

learning in managing real-time traffic with optimum QoS metrics was validated

by the system's achievement of up to 18.0% latency reduction and enhanced

bandwidth utilization.
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b. Superior Routing and Traffic Flow via Hybrid Optimization Techniques:

Intelligent route selection was made possible by the application of Elephant

Herding Particle Swarm Optimization (EHPSO), and robust performance and

balanced resource utilization were ensured by Q-learning-based traffic flow

control that dynamically adjusted data rates. In every important metric, these

hybrid bioinspired approaches fared better than traditional models like RL, MTO

SA, and HFL.

c. Predictive Resource Scheduling Enabled by VARMAx Model: A forward-

looking method to predict task characteristics and modify virtual machine

capacity appropriately was provided by the implementation of the VARMAx-

based prediction model. This proactive strategy improved scheduling efficiency

across fluctuating workloads and improved the Deadline Hit Ratio (DHR) by 4.5

percent.

d. Bioinspired Optimization Enhanced System Scalability and Adaptability:

The resource scheduling model's incorporation of Flower Pollination

Optimization (FPO) allowed for adaptive, iterative optimization, guaranteeing

effective task-to-resource mapping.

e. Energy Efficiency Realized without Compromising Performance: Significant

energy consumption reductions of up to 18.5% in dissemination and 10% in

scheduling were shown by the QADE-DTFC model and the VARMAx-FPO

scheduler, respectively, demonstrating that QoS-aware models can be energy-

conscious without compromising throughput or dependability.

f. Comprehensive QoS Improvement Validated across Multiple Metrics: The

suggested solutions performed better than the state-of-the-art methods in a

number of QoS metrics, including as latency, PDR, throughput, energy

consumption, and make span. The models are appropriate for high-demand use

cases like video streaming, IoT, and AR/VR since they not only fulfilled but also

beyond the service quality requirements for edge applications.
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g. Real-World Applicability Demonstrated via Extensive Simulation: The thesis

work verified the models' applicability by evaluating them on real-world datasets

as Google Cluster Data, MAWI, MobiPerf, and IoT Analytics Benchmark. The

findings show that the suggested methods may be implemented in actual MEC

infrastructures and are competent to manage dynamic communication patterns

and heterogeneity.

6.5 Future Scope

The present thesis paper provides a solid foundation to the future growth and

improvement of the sphere of Mobile Edge Computing (MEC), just like any innovative

study. Even in the event that the proposed models and solutions have been extensively

tested in a controlled environment, there is still a large amount of room to explore and to

enhance them. The possible directions of the further development of this thesis work are

presented below and permit further improvements in the allocation of resources, adaptive

control of the traffic flow, and integration of the latest technologies. These future

directions will contribute to the improvement of the models and make them more

beneficial in the real MEC systems. The following research directions present potential

opportunities in enhancing real-time performance and scalability and robustness of MEC

deployments.

a. Integration of Federated and Edge Intelligence: To enable privacy-conserving

cooperation among edge nodes and allow MEC systems to benefit because of

decentralized data insights without endangering sensitive data, future studies can

focus on combining federated learning with the proposed dissemination and

scheduling frameworks.

b. Cross-Layer Optimization: Although the current work has already been

confirmed by the simulation, it will also be essential to conduct pilot tests and

practical studies based on 5G and IoT-based MEC testbeds. These tests will help

in testing the effectiveness of operations amid unpredictable environmental

conditions, mobility situations and traffic.



130

c. Deployment in Real-Time 5G and IoT Testbeds: Even though the current work

has been verified through simulation, it will be crucial to carry out pilot tests and

practical investigations on 5G and IoT-based MEC testbeds. These deployments

will assist in evaluating operational effectiveness in the face of erratic

environmental circumstances, mobility scenarios, and traffic patterns.

d. Blockchain-Enabled Resource Integrity and Access Control: Since blockchain

technology enables decentralization and immutability of the ledger of tasks

offloading and resource sharing, it has the potential to enhance the security and

integrity of the model. This will be particularly beneficial in multi-tenant MEC

situations where transparency and trust are paramount.

e. Mobility-Aware Routing and Scheduling Enhancements: Future studies can

overcome the challenges of high mobility in MEC situations by integrating

trajectory prediction and mobility-aware algorithms. This way, the existing

QADE and VARMAx models would be enhanced significantly, and they would be

able to deal with dynamic user movement and successful handovers in a better

way.

f. Energy-Aware Multi-Objective Optimization: A more adaptable solution that

unconstrained edge devices could be to bring the current framework to be a multi-

objective optimization model, which will consider energy consumption, latency,

cost, and the overall quality of service. This would facilitate greener and

sustainable practices in relation to MEC.

g. Extension to Heterogeneous Edge-Cloud Architectures: The proposed adaptive

scheduling frameworks can be extended to cover hybrid edge-cloud environments.

Such integration would improve the performance, the robustness, and the load

balancing of a network through the option of dynamic job allocation choices in

between centralized cloud infrastructures and localized MEC servers.

These directions in the future scope provide a strategic basis in expanding the current

research and allow the creation of more intelligent, resilient, and scalable MEC

systems. The adaptability and performance of MEC deployments can be greatly
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improved by implementing future studies through addressing the emerging challenges

and incorporating advanced technologies to ensure that the growing and dynamic

needs of the real-world applications are fulfilled.

6.6 Summary of Findings

The biggest summary of results can be emphasized in the bullet list form. A future scope

extension or two can be discussed in greater detail such as one additional paragraph each.

 Superior Route-selection and Traffic flow control: The hybrid model based on

the EHPSO greatly enhanced the process of route selection and load balancing to

achieve lower latency and network utilization in comparison to other

reinforcement learning and heuristic models.

 Greater Resource Scheduling Efficiency: The predictive scheduling model based

on VARMAx has been used to efficiently predict the changes in workloads and

optimize virtual machine schedules which enhanced the Deadline Hit Ratio (DHR)

by approximately 4.5.

 Energy-Saving QoS Maintenance: Up to 18.5 percent of energy saving during

dissemination and 10 percent during scheduling could be realized by the QADE-

DTFC and VARMAx-FPO models without affecting throughput or reliability.

 Proven on Real Data: The simulation with the use of data such as the Google

Cluster Data, MAWI, and IoT Analytics proved the relevance of the suggested

framework to real MEC infrastructures and demonstrated that it was resilient

and adaptable to diverse communication patterns.

 Overall QoS Improvement: The designed framework was repeatedly shown to be

better than the baseline models in terms of latency, throughput, and packet

delivery ratio (PDR), and energy efficiency, in relation to its possible applications

to real-life scenarios, such as IoT, smart health, and vehicular networks.
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The creation of intelligent, bioinspired, and machine learning-enhanced optimization

strategies specifically suited for Mobile Edge Computing (MEC) environments was

examined in this thesis work. By addressing important issues such adaptive traffic flow

management, real-time data distribution, and dynamic task-resource scheduling, the goal

was to improve Quality of Service (QoS). The current thesis work showed significant

advances over current state-of-the-art techniques using a number of suggested models,

each of which was based on strong algorithmic frameworks and assessed using a range of

performance criteria. One of the main conclusions of thesis work was that using a hybrid

optimization model significantly improved traffic flow control. The traffic optimization

technique was able to minimize delay and intelligently reroute communication requests

among edge devices by combining particle swarm dynamics and elephant herding

behavior. The end-to-end communication delays were measurable as a result of the

model's dynamic traffic allocation adjustments based on node responsiveness and edge

processing capabilities. The enhancements remained constant across different

deployment sizes, confirming the suggested system's scalability and flexibility.

Concurrently, the creation of a QoS-aware data distribution engine brought to light the

significance of temporal-spatial metrics and content-based routing in the management of

real-time data. The suggested system assessed delay, energy usage, packet delivery ratio,

and throughput to identify the best distribution options, in contrast to traditional

approaches that frequently concentrate on static network pathways or fixed-rate routing.

To choose effective dissemination routes while reducing packet loss and bandwidth waste,

a sophisticated optimization technique was used. Long-term operation in resource-

constrained edge contexts requires both energy reductions and a significant improvement

in data delivery accuracy, as demonstrated by the results. Additionally, by incorporating

a learning-based module, the model was able to continuously adjust to changing network

conditions, guaranteeing stability and effectiveness even in the face of fluctuating

mobility patterns or large data volumes.

A unique resource scheduling method that integrated predictive analytics and bioinspired

pollination techniques was also suggested by this thesis work. By analyzing a variety of
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job and resource characteristics, the model concentrated on intelligent task mapping to

virtual machines. Alongside resource attributes like MIPS, RAM availability, and core

count, important parameters like make span, deadline, memory consumption, and

bandwidth were taken into account. In order to find the best task-to-VM pairings, the

optimization method imitated natural flower pollination processes. This ensured great

scheduling efficiency while preserving load balance and fairness. The incorporation of a

predictive time-series model, which predicted future task demands and directed the

dynamic reconfiguration of virtual machine capacity, set this method apart from others.

All-important performance indicators showed steady gains after evaluations across

several datasets and simulated scenarios. In situations with changing data flow, varied

resource availability, and high user mobility, the suggested frameworks performed better.

For instance, some setups achieved up to 18% lower latency than baseline models, which

is a substantial reduction. Likewise, there were notable improvements in throughput and

packet delivery ratios, indicating increased dependability in real-time data transfer. With

optimization techniques successfully balancing performance with resource constraints—a

crucial component for deployments requiring battery-powered edge devices—energy

efficiency was also noticeably increased. The confirmation of these models' ability to

adjust to changing edge conditions was another important result. The systems were able

to optimize configurations and automatically modify parameters in response to changes

in operating conditions by utilizing evolutionary techniques and intelligent learning

mechanisms. Without human assistance, the models continued to function even in the

face of a rapid spike in communication requests or changing resource conditions.

Because of their versatility, they are especially well-suited for edge computing settings,

which are frequently defined by decentralization and volatility. Crucially, the solutions'

modular design made it possible for them to be easily integrated into pre-existing MEC

infrastructures. Interoperability was a priority in the design of each model, guaranteeing

that it could be implemented alongside existing protocols and services without requiring

extensive reengineering. This design consideration increases the research's practical

application and facilitates scalability across several network domains, ranging from
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remote healthcare monitoring systems and industrial IoT to urban smart grids and

autonomous vehicle networks. All things considered, the thesis work findings provide

credence to the idea of combining predictive modeling, reinforcement learning, and

bioinspired algorithms to overcome the primary challenges of MEC. In addition to

performance-enhanced models, the work done promotes a paradigm change toward edge

computing frameworks that are more intelligent, autonomous, and energy-efficient.

These devices are appealing choices for next-generation MEC installations due to their

combined improvements in latency reduction, scheduling precision, energy efficiency,

and QoS delivery. The implemented work closes significant gaps in current methods and

lays a solid foundation for next developments in edge intelligence and distributed

computing.

Further studies can be centered on integrating the federated learning with the suggested

MEC models to facilitate decentralized and privacy-preserving intelligence. Such

integration would enable MEC nodes to learn collaboratively using distributed data

without having to move sensitive user information to a central cloud. Such a design

would not only increase the security of data, but also decrease the overhead of

communication and latency, and the models would be more efficient in the case of large-

scale, real-time edge applications such as smart healthcare or autonomous transportation.

The issues of user mobility in MECs can be overcome by extending the current models

with the help of trajectory prediction and mobility-conscious algorithms. This

improvement will provide smooth information transmission and distribution of resources

between the edge nodes in handovers. The QADE and VARMAx frameworks will be

enhanced to resist the changing networks topology and achieve better service continuity

and user experience during the high-mobility conditions such as the connected vehicle

and UAV-aided networks by integrating dynamic models of mobility.
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