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Abstract

In the evolving paradigm of Mobile Edge Computing (MEC), ensuring Quality of
Service (QoS) in dynamic, real-time environments present significant challenges due
to fluctuating network topologies, heterogeneous resource constraints, and increasing
demand from data-intensive applications. This thesis work addresses these challenges
by implementing a series of adaptive, intelligent, and QoS-aware models rooted in
bioinspired and machine learning approaches, aimed at enhancing traffic control, data
dissemination, and resource scheduling in MEC deployments. A unique Dynamic
Traffic Flow Control (DTFC) framework, combined with a QoS-aware Adaptive Data
Dissemination Engine (QADE), was presented to address the issues of network
congestion and delay. Based on temporal and geographical parameters, this model
adaptively manages communication flows by utilizing a hybrid Elephant Herding
Particle Swarm Optimizer (EHPSO) in conjunction with reinforcement learning
approaches. During extensive simulations, the system showed notable gains in
latency, throughput, energy efficiency, and packet delivery ratio. Additionally, using
Flower Pollination Optimization (FPO) and the predictive ability of a VARMAx
(Vector Autoregressive Moving Average with exogenous variables) model, a
bioinspired resource scheduling model was created. By taking into account a wide
range of task and resource characteristics, our hybrid architecture effectively mapped
tasks to virtual machines. Additionally, it enabled the dynamic recalibration of virtual
machine capacity by predicting future workloads, thereby improving scheduling
effectiveness, energy conservation, and deadline adherence. Extensive tests on real-
world datasets confirmed that the suggested models performed well in comparison to
existing techniques. Altogether, this thesis work advances the state of the art in QoS-
aware data dissemination and resource management, provides innovative, scalable,
and intelligent solutions for MEC, and establishes a solid basis for upcoming real-

time edge computing systems.
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CHAPTER 1

INTRODUCTION

The need for more intelligent, decentralized, and responsive computing
infrastructures has been highlighted in recent years by the exponential expansion of
data traffic, the quick spread of mobile devices, and the emergence of latency-
sensitive applications. By moving computational resources and services closer to the
data sources and end users, Mobile Edge Computing (MEC) has emerged as a
paradigm-shifting approach to meet these demands. In addition to improving real-
time processing and lowering latency and network congestion, this decentralization
also improves the overall Quality of Service (QoS) that customers experience. MEC
is now a key component for allowing applications like augmented reality, driverless
cars, healthcare monitoring, and smart cities thanks to its incorporation into next-
generation communication networks. Nevertheless, there are drawbacks to the
advantages that MEC provides [1]. Achieving effective data distribution, appropriate
resource scheduling, and adaptive traffic flow control is significantly hampered by the
dynamic and resource-constrained nature of edge environments. Because of their
limited flexibility and incapacity to react to real-time changes in network conditions,
traditional static and centralized models frequently fail to meet these constraints.
Furthermore, managing varying workloads, diverse devices, and geographically
dispersed edge nodes makes it more difficult to maintain QoS metrics like low latency,
high throughput, and reliability. Researchers have resorted to intelligent and adaptive
models that can learn from and change in response to the dynamic network
environment in order to get around these problems. Among these, bioinspired
algorithms, which are based on the ideas of biological systems and natural evolution,
have demonstrated exceptional promise. These algorithms are especially well-suited
for resolving optimization issues in dynamic environments such as self-adaptation,
robustness, and scalability [2]. For a variety of resource management applications,

methods like hybrid fuzzy-logic systems, particle swarm optimization (PSO), ant
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colony optimization (ACO), and genetic algorithms (GA) have been thoroughly
investigated. By suggesting a QoS-aware adaptive framework for data distribution in
MEC ecosystems and employing hybrid bioinspired methodologies to overcome
important performance bottlenecks, the current thesis work adds to this changing
landscape. The main goal of this thesis work is to improve the responsiveness and
dependability of resource allocation and data distribution in MEC by creating models
that are sensitive to real-time QoS requirements and adaptive. This thesis work takes
a three-pronged strategy to achieving this goal, with each element being thoroughly
explored and examined in the following chapters. The creation of a hybrid bioinspired
model for adaptive traffic flow control is the main goal of this work. In addition to
violating QoS restrictions, traffic congestion at the edge layer can significantly impair
application performance. To dynamically control the data flow in this situation, a
hybrid model that combines fuzzy logic and evolutionary computing is suggested.
This model is based on the priority of data packets, bandwidth availability, and
network congestion levels. In order to provide smoother data flow and lower latency,
the model may self-tune its settings to adjust to various traffic scenarios. A novel
model for QoS-aware data dissemination based on a Dynamic Traffic Flow Control
(DTFC) mechanism is presented. The purpose of this implemented model is to
guarantee that data packets are distributed throughout the network in a way that gives
priority to QoS metrics including service criticality, packet loss rate, and delivery
deadline [3]. The dissemination strategy makes dynamic, well-informed judgments
about data processing and routing by taking into account the application's context and
the state of the network nodes. The end-user experience is guaranteed to be constant
even with fluctuating network loads thanks to the incorporation of DTFC within the
MEC environment. This thesis work provides significant contribution with
bioinspired adaptive resource scheduling paradigm to solve the problem of resource
scarcity at the edge. The advantages of bioinspired intelligence to distribute
communication and processing resources in a way that strikes a compromise between

efficiency and maintaining quality of service. By adjusting to patterns of resource



demand and real-time input, it optimizes scheduling choices for both fairness and
throughput. This enhances the overall responsiveness of the system and makes a
substantial contribution to the long-term operation of MEC nodes. These three
elements work together to provide a strong and coherent plan for QoS-aware adaptive
data distribution in MEC. In addition to filling important gaps in the literature, this
thesis work provides useful models for real-world deployment by fusing the adaptive
capabilities of bioinspired algorithms with domain-specific insights into edge
computing environments. Moreover, thorough testing and comparative analysis have
been used to assess each of the suggested framework’s efficacy in raising QoS metrics
in dynamic operating environments. The overall architecture of the proposed QoS-
aware adaptive framework is illustrated in figure 1.1, highlighting the flow of data

and decision-making across MEC nodes and bioinspired optimization layers [4].

Network State,
Appllcatlon Priority

B|0|nsp|red Logic
Genetic Algorithms Deadii
Latency Fuzzy Logic eadline
Particle Swarm Optimiization

Traffic Flow DTFC-based Resource C
Bandwidth| | Control Module | |Data Dissemination Scheduling Clor%
(Hybrid Bioispired) Module Module) 5
Blomsplred High Latency)

;,Feedback<—J
s01we

User Devices

Dedlline Packet Loss

Figurel.1- QoS-aware adaptive framework in MEC

The figure 1.1 illustrates how intelligent, bioinspired decision-making can be

integrated with real-time network operations in a Mobile Edge Computing (MEC)
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environment by illustrating a QoS-aware adaptive framework. Network status and
application priorities are continually tracked at the top and fed into a bioinspired logic
layer, which uses particle swarm optimization, fuzzy logic, and evolutionary
algorithms to adaptively control system behavior. Three essential MEC modules are
powered by this intelligence: a Resource Scheduling Module that effectively
distributes edge resources, a DTFC-based Data Dissemination Module that guarantees
timely and QoS-compliant data delivery, and a Traffic Flow Control Module that
dynamically regulates data traffic. These modules provide services and provide data
for user devices including IoT sensors, smartphones, and UAVs. The two real-life
applications where proposed MEC framework can significantly improve system

performance are as follows:

Smart Traffic / Autonomous / Intelligent Transportation Systems (Autonomous
Vehicles): The data-dissemination of your Dynamic Traffic Flow Control (DTFC)
and QADE enhance the low-latency delivery, increased PDR and reduced congestion
of data packets. Cars keep on producing traffic flow information (GPS, lane change
intentions, sensor data). The hybrid EHPSO-based traffic flow will make sure that
priority (and minimum delay) data (e.g. accident alert, pedestrian crossing alert) is
sent, without losing packets in congestion. Performance improvement: reduced
dissemination delay, increased percentage of packet delivery and minimized
congestion (as indicated in your results, decreased latency, increased throughput and

energy efficiency).

Smart Healthcare / Remote Patient Monitoring on the Edge: The VARMAx +
FPO resource scheduling model is an edge-based allocation of resources of real-time
workload prediction to enhance deadline compliance and energy efficiency.
Smartwatches transmit real-time health information (ECG, SpO2, BP) to local MEC
servers. In the event of patient data spikes (e.g. emergency), the scheduling model
forecasts the load and redirects processing to available edge nodes rather than to
cloud. Performance improvement throughput reduction, real-time decision making,

and enhanced quality of service of time sensitive health information.
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1.1 Background and Motivation

The purpose of this thesis work is to provide significant context for understanding the

significance of traffic flow control and resource scheduling in MEC.
i) Background

The dissemination of smart devices, the Internet of Things (IoT), and data-driven
applications that require ultra-low latency, high dependability, and real-time
processing characterize the current digital era.  Traditional centralized cloud
infrastructures are under unprecedented strain as a result of these technological
changes, and they are unable to keep up with the real-time demands of applications
like augmented/virtual reality, industrial automation, autonomous driving, and
healthcare monitoring.  Mobile Edge Computing (MEC), a paradigm-shifting
approach that brings cloud capabilities closer to end users and data sources at the
network's edge, has arisen in response to these constraints. MEC greatly lowers
transmission delays, eases core network congestion, and improves context-aware
service delivery by decentralizing data processing and service provisioning [5]. The
ecosystem is nevertheless dynamic and complex despite MEC's benefits because of its
heterogeneous devices, dispersed architecture, and resource limitations. Maintaining
Quality of Service (QoS) while functioning in the face of fluctuating network
conditions and user demands is one of the main issues in MEC. Particularly in
latency-sensitive and mission-critical applications, it is imperative to closely monitor
and manage key QoS metrics including latency, bandwidth, jitter, packet loss, and
throughput. These dynamic requirements are frequently outside the scope of
traditional static mechanisms and heuristic-based resource management systems,
which results in inefficient resource usage and deteriorated service quality. Adaptive
data dissemination is a crucial topic that needs MEC's concentrated attention. The
timely and dependable transmission of data to the appropriate services and users
becomes crucial when data is created at the network edge. Variable network quality,

varying workloads, and limited processing resources make this much more difficult.



Intelligent models with context-aware decision-making and real-time adaptation are
crucial for overcoming these obstacles [6]. The foundation of this thesis work is the
necessity for such models. The inherent complexity of MEC systems can be addressed
with the use of bioinspired algorithms, which mimic natural processes like evolution,
swarming, and fuzzy reasoning. They are ideal for tasks like resource allocation,
traffic flow control, and QoS-aware data dissemination because of their adaptable and
self-organizing nature. These algorithms can react to unanticipated circumstances,
evolve optimal solutions in real-time, and balance several goals at once, such lowering

latency while maximizing throughput and fairness.
ii) Motivation

The increasing need for an intelligent, flexible, and QoS-focused framework that can
effectively distribute data and distribute resources in a mobile edge setting is what
encouraged this thesis work. The integration of bioinspired intelligence into MEC
systems to control adaptive traffic flow, QoS-aware data distribution, and dynamic
resource scheduling is the main topic of this thesis work. In order to meet the needs of
contemporary edge-based applications and overcome the drawbacks of current static
models, a modular, scalable, and context-aware architecture must be created [7].
Moreover, there are currently no complete frameworks in the literature that integrate
edge computing with bioinspired algorithms to handle the three interrelated domains
of resource scheduling, data distribution, and traffic management—all while ensuring
a constant quality of service guarantee. By putting forward a hybrid, multi-level
architecture that incorporates intelligent decision-making into the very fabric of MEC
operations, this thesis work aims to close this crucial gap. By doing this, the system
may proactively adjust to shifting application priorities and network conditions,
greatly enhancing user experience and performance. As companies continue to shift
toward edge-enabled infrastructures, this thesis work is motivated by both theoretical
curiosity and practical ramifications. Enabling scalable, dependable, and sustainable
solutions for real-time applications in a variety of areas requires the development of

sophisticated, adaptive mechanisms for MEC [8]. The research advances edge
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computing and opens the door for future developments in adaptive networked systems
by tackling these issues. There are many other reasons that motivated towards this

dynamic research field as mentioned below:

a. Traditional Cloud-Based Architectures Drawbacks: Discussed how dispersed
environment’s real-time and latency-sensitive applications cannot be satisfied by

centralized cloud solutions.

b. The Increasing Intricacy of MEC Resource Administration: Emphasize the
difficulties in handling heterogeneous devices, dynamic resources, and changing

network conditions at the edge.

c. The necessity of adaptable and QoS-aware data dissemination: In order to
maintain QoS requirements in the MEC environment, stress the significance of real-

time, context-aware data dissemination mechanisms.

d. Bioinspired Algorithms Potential in Changing Environments: Justify the use of
bioinspired methods (such as GA, PSO, and fuzzy systems) to scheduling, resource

allocation, and traffic flow to allow for intelligent and self-adaptive decision-making.
1.2 Problem Statement

The emergence of Mobile Edge Computing (MEC) has brought about a fundamental
change in the way end users receive, distribute, and use data, especially in real-time
and latency-sensitive applications. MEC increases responsiveness and decreases
transmission latency by allowing computation at the network edge. However,
dynamic workloads, constrained computational and bandwidth resources,
heterogeneous devices, and quickly shifting network states are intrinsic characteristics
of the MEC environment. Consistent Quality of Service (QoS) across all edge nodes
and apps is becoming more and more challenging as a result of these issues. Efficient
data distribution under changeable conditions is severely hampered by the need to
guarantee on-time delivery, low packet loss, and service deadline observance. The

majority of data distribution strategies currently in use are based on static or semi-



static methods that are unable to adjust to changes in network topology, user behavior,
and resource availability in real time. Particularly in extremely dynamic and mission-
critical applications like remote surgery, autonomous cars, and industrial automation,
this frequently results in higher latency, network congestion, underutilization of
resources, and inability to meet QoS standards. Furthermore, MEC's traffic flow
control systems are continually developing. Adaptive prioritizing and contextual
decision-making, which are crucial for handling fluctuating data loads and application
needs, are frequently overlooked by traditional approaches. Data packets may be lost,
delayed, or redundant in the absence of effective flow control, which would lower the
overall quality of the service. Furthermore, because edge resources are scattered and
constrained, scheduling them at the edge continues to be a major difficulty. Current
scheduling methods frequently do not dynamically optimize resource allocation
depending on network and user context, nor do they take into account real-time QoS
limitations. This restriction lowers the quality of the user experience and leads to
inefficient usage of resources. Despite the fact that bioinspired algorithms have shown
great potential in optimization tasks, nothing is known about how to integrate them
into MEC for scheduling, data distribution, and traffic management. Comprehensive
frameworks that use hybrid bioinspired methodologies to address these three critical
issues together while preserving end-to-end QoS compliance are scarce. The lack of an
integrated, flexible, and QoS-aware data distribution framework in MEC that can
optimize resource scheduling, intelligently control traffic flow, and dynamically adjust
to changing network conditions through bioinspired intelligence is thus the main issue
this thesis attempts to address. To fully utilize MEC and enable future-ready
applications that require responsiveness and dependability, such a solution must be
developed. In this regard, the thesis work pinpoints the following fundamental

problems that obstruct efficient data distribution and resource optimization in MEC:

a. Static Methods Cannot Manage Real-Time Adaptation: Conventional
approaches to resource scheduling and data distribution are not adaptable enough to

handle abrupt shifts in user demand, mobility trends, or edge network congestion.



b. Inadequate QoS Awareness in Current MEC Models: Suboptimal service
performance results from many current MEC frameworks ineffective incorporation of
important QoS criteria into their decision-making processes, including latency, packet

loss, and delivery deadlines.

c. Bioinspired Algorithms Are Underutilized in Integrated Optimization: Despite
the success of bioinspired algorithms in discrete optimization problems, there aren't
many integrated frameworks that use them for scheduling, data distribution, and traffic

control in a single MEC environment.
1.3 Purpose of the Research work

The main goal of this thesis work is to introduce adaptive, QoS-driven solutions to
Mobile Edge Computing (MEC) in order to overcome the shortcomings of the current

static and non-intelligent processes. The following are the general research's purposes:

a. To create a hybrid bioinspired adaptive traffic flow control model that
dynamically controls edge-layer data traffic according to application priority,
bandwidth availability, and real-time congestion levels.

b. To use Dynamic Traffic Flow Control (DTFC) to create a QoS-aware data
dissemination strategy that guarantees priority-based, dependable, and timely data
delivery across MEC nodes in a range of network scenarios.

c. To include bioinspired optimization methods into MEC decision-making
processes for improved performance and flexibility, such as Particle Swarm
Optimization (PSO), Fuzzy Logic, and Genetic Algorithms (GA).

d. To incorporate crucial factors including latency, packet loss, deadline sensitivity,
and bandwidth use into management, dissemination, and scheduling systems in
order to guarantee end-to-end QoS compliance.

e. To provide a framework that is scalable and modular so that it may be readily
expanded or changed to accommodate various edge-based applications with

various QoS needs.



f. To provide a cohesive, intelligent MEC architecture that fills in the knowledge
gaps in edge resource optimization, QoS-aware dissemination, and adaptive traffic

management through a bioinspired methodology.
1.4 Significant Contribution

This thesis work adds a lot to the field of Mobile Edge Computing (MEC), especially
when it comes to resource scheduling, traffic flow control, and QoS-aware data
distribution. One of the main achievements is the creation of a hybrid bioinspired model
for adaptive traffic flow control that combines evolutionary computing and fuzzy logic to
intelligently govern traffic in real-time according to bandwidth availability, data priority,
and network congestion. By improving MEC environments capacity to adjust to
constantly fluctuating data loads, this paradigm lowers latency and prevents packet
congestion at the edge layer. The suggested DTFC-based data dissemination approach,
which integrates Quality of Service (QoS) metrics straight into the data forwarding and
routing procedure, makes a second significant addition. By doing this, the model
guarantees the prompt and dependable distribution of important data, particularly in
situations with changing network performance or excessive demand. The suggested
approach incorporates deadline sensitivity, packet loss tolerance, and service criticality
into dissemination decisions, in contrast to traditional models that frequently overlook
end-to-end QoS needs. The development of a bioinspired adaptive resource scheduling
system, which makes use of methods like Genetic methods (GA) and Particle Swarm
Optimization (PSO) to intelligently distribute edge resources, is another significant
advance. The system's responsiveness under a variety of unpredictable operating
conditions is greatly enhanced, which adjusts to real-time network feedback and
maximizes resource usage and service fairness. Additionally, this thesis work offers a
unified, modular framework that combines data distribution, resource scheduling, and
traffic control into a scalable and coherent architecture. In addition to addressing
individual issues, this comprehensive strategy guarantees inter-module cooperation for
improved QoS management throughout the MEC ecosystem. Thorough simulations have

been used to assess the models put forward in this study, and compared findings show
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significant gains over baseline methods in terms of latency, throughput, resource
efficiency, and QoS compliance. All things considered, the contributions presented in
this thesis work offer a strong basis for the development of intelligent, scalable, and QoS-

focused MEC systems appropriate for upcoming real-time applications.
1.5 Significant of Bioinspired Model in MEC

A strong strategy to deal with the growing complexity and dynamic nature of edge
environments is the incorporation of bioinspired models into Mobile Edge Computing
(MEC) systems. Because of varying user needs, erratic network conditions, and
heterogeneous devices, MEC is intrinsically distributed, resource-constrained, and
extremely variable. Conventional rule-based or static optimization approaches frequently
fall short in such a situation in terms of providing the required responsiveness and
flexibility. Because of their durable, adaptive, and self-organizing properties, bioinspired
models—which draw inspiration from natural systems and evolutionary principles—ofter
a possible substitute. Methods that can continually evolve optimal or near-optimal
solutions under changing conditions, like fuzzy logic, genetic algorithms (GA), particle
swarm optimization (PSO), and ant colony optimization (ACO), are ideal for the MEC
paradigm. The capacity to carry out multi-objective optimization, balancing trade-offs
among conflicting QoS needs like latency, packet loss, deadline adherence, and resource
consumption, is one of the main advantages of bioinspired techniques in MEC. Even in
the face of erratic workloads and resource variations, these models may guarantee
optimal performance by dynamically modifying operating parameters and reacting to
real-time environmental feedback [9]. For example, during network congestion, a
resource scheduling method may load-balance and QoS-compliantly divide
computational workloads across edge servers, while a bioinspired traffic flow
management mechanism can prioritize delay-sensitive packets. Additionally,
decentralized decision-making is supported by bioinspired models, which fits in nicely
with the MEC design, since scattered edge nodes make centralized control impracticable.
Their usefulness in extensive MEC installations is further increased by their scalability,

adaptability, and resistance to local failures. Crucially, these models are perfect for new
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real-time applications with unpredictable behaviors because they don't require a lot of
pre-configuration or static assumptions. This thesis work makes use of MEC's full
potential to provide flexible, effective, and context-aware services by integrating
bioinspired intelligence into scheduling, data distribution, and traffic control procedures
[10]. The importance of bioinspired models in augmenting MEC's capabilities is
becoming more and more apparent as it develops further as the foundation of next-

generation computing and is essential for designing sustainable systems.
1.6 Research work Objectives
Following four objectives have been finalized in line with the research work:

I. To study and analyze the existing resource allocation and network

management techniques for Edge Computing.
This objective involves reviewing current methodologies to identify existing
resource handling and traffic scheme with in MEC environments.

II. To design a framework for adaptive network traffic flow control in Edge
computing for diversified applications.
This focuses on developing a dynamic model that regulates data flow based on
varying application needs and real-time network conditions.

III. To propose a technique for QoS-aware resource allocation in a Mobile edge
computing environment.
This aims to create a strategy that allocates resources efficiently while
maintaining critical QoS parameters like latency and packet loss.

IV.  To implement and validate the proposed work in the simulation environment.
This involves comparing the models in a simulation setup and evaluating their
performance against existing methods by focusing on Quality of Service (QoS)

metrics.
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1.7 Research work Organization

The purpose of this thesis is to present a comprehensive and lucid analysis of the research
on QoS-aware adaptive data dissemination in the mobile edge computing ecosystem.
This study work's structure makes sense and enables readers to delve deeply and clearly
into the topic. Every chapter contributes to the general comprehension of the study
project and builds on the ones that came before it, ultimately bringing a collection of

conclusions, conclusions, and recommendations for the future.
Chapter 1: Introduction

The first chapter of the thesis is titled "Introduction." The introductory elements of the
research project are established in this first chapter. The first section, "1.1 Background
and Motivation," sets the scene for the investigation by examining the importance of
MEC and the driving forces for this research project. In order to set the scenario for the
ensuing chapters, the "1.2 Problem Statement" that follows describes the difficulties and
constraints encountered in the jurisdiction of MEC. "1.3 Purpose of research work"
provides a roadmap for what the reader might anticipate learning by outlining the precise
aims and objectives of the research project. "1.4 Significant Contribution" describes how
research has benefited society. The significance of these models in MEC to improve
efficiency is described in "1.5 Significant of Bioinspired model in MEC." A thorough
explanation of the research work objectives and the need to fulfill them in mobile edge
computing can be found in "1.6 Research work Objectives." Lastly, "1.8 Research work
Organization" walks the reader through the following chapters by giving a summary of

the content and organization of the complete thesis work.
Chapter 2: Literature Review

The "Literature Review," included in Chapter 2, provides the study work's intellectual
underpinning. It is divided into three parts, each with a specific emphasis. With some of
the most recent and ongoing author and scholar research, "2.1 Historical Evolution of

Adaptive Data Dissemination in MEC" offers a thorough grasp of MEC networks and
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their numerous uses. In addition to some recent work, "2.2 Related work" offers an
overview of some previous research on a variety of applications. " 2.3 "Research Work
Question" gives us a thorough understanding of the significance of this field's study as
well as the outcomes we can anticipate from its application. In order to prepare the
reader for the creative solutions offered in the following chapters, "2.4 Literature

Summary" summarizes the main points of the most recent and current research.
Chapter 3: Hybrid Bioinspired Model for Adaptive Traffic Flow Control

The first MEC models are shown in Chapter 3 and are called "BATFE." Each of the five
components that make up this chapter adds to a thorough comprehension of the concept.
" 3.1 Introduction to BATFE" lays the groundwork by outlining the fundamental ideas of
the model. The main principles of the proposed algorithm are explained in "3.2 Algorithm
Overview." 3.3 Important Parameter and Variable in the Model "explains the performance
parameter to be used in the model." The procedures that must be performed in order to
integrate the bioinspired model with the MEC framework are described in "3.4 Design of
the hybrid bioinspired model." 3.5 The analysis of results "showcases the performance of
model used in research work by comparing with existing model." 3.6 Conclusion and

Future Scope" outlines the advantages and disadvantages of the implemented approach.
Chapter 4: QoS-AWARE DATA DISSEMINATION WITH DTFC IN MEC

The investigation of new MEC models is continued in Chapter 4 with "DTFC." This
chapter, like the one before it, is divided into eight sections, each of which adds to a
thorough comprehension of the model. " The main ideas and goals of the model are
presented in "4.1 Introduction." Within the MEC framework, "4.2 Design of the model"
outlines the procedures that must be followed for learning. "4.3 Adaptability analysis"
describes the fundamental model analysis in terms of adaptability. By contrasting it with
an existing model, "4.4 Result Analysis" illustrates how well the model employed in the
study activity performs. "4.6 Potential Limitation" describes the limitations of the
implemented model, whereas "4.5 Node and resource variability characteristics"

concentrates on the dynamic nature of the node. " EHPSO insights are provided in "4.7
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Path selection with EHPSO." "4.8 Conclusion and Future Scope" offers a detailed

synopsis of the research findings and their potential for further development.
Chapter 5: Bioinspired Adaptive Resource Scheduling in MEC

The investigation of MEC models for adaptive resource scheduling is continued in
Chapter 5. This chapter, like the one before it, is divided into eight sections, each of
which adds to a thorough comprehension of the model. " 5.1 Introduction" presents the
main ideas and goals of the paradigm. 5.2 Goal and Motivation" offers inspiration for
carrying out the study. The advantages of the implemented model are explained in "5.3
Application." 5.4 "Novelty of the model" offers information on how new work is applied.
The procedures that must be taken for learning within the MEC framework are explained
in "5.5 Design of the model." 5.6 "Model Explanation" describes the fundamental
structure of the model in relation to scheduling flexibility. By contrasting it with an
existing model, "5.7 Result Analysis" illustrates how well the model employed in the
research project performs. 5.8 "Conclusion" offers a detailed synopsis of the research

findings and their potential for further development.
Chapter 6: Conclusion and Future Work

The study project is concluded in Chapter 6, the last chapter. It is divided into six parts.
"6.1 Performance of BATFE" provides a summary of the BATFE model's performance in
research projects. 6.2 DTFC Performance" provides an overview of the DTFC model's
performance in research projects. 6.3 VARMAXx Performance" provides an overview of
the VARMAX model's performance in research projects. The practical consequences of
the findings are discussed in "6.4 Inferences of the Research Work." 6.5 Future Scope"
lists prospective avenues for further investigation. 6.6 "Summary of Findings" provides

concluding thoughts on the research process.
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CHAPTER 2

LITRATURE REVIEW

The literature review chapter analyzes previous studies and solutions in the area of QoS-
aware adaptive data dissemination in mobile edge computing ecosystems. By
summarizing important discoveries, knowledge gaps, and the development in this field,
this chapter seeks to identify the limitations of current solutions and scope of further

enhancement in them.
2.1 Historical Evolution of Adaptive Data Dissemination in MEC

Over time, the idea of data distribution has changed dramatically, moving from
conventional centralized designs to more intelligent and decentralized methods. At first,
data distribution was based on static, cloud-based models in which data processing and
storage took place in centralized data centers. These models were not appropriate for
real-time applications due to their high latency and network congestion. By putting
computing and storage closer to end users, Mobile Edge Computing (MEC) reduced
delays and increased efficiency, signaling a standard shift. However, the static data
distribution methods used in early MEC implementations were unable to adjust to
changing network conditions, which resulted in inefficient use of resources. As wireless
communication technologies like 4G LTE and 5G advanced quickly, adaptive data
transmission strategies began to attract interest. By taking into account variables
including user mobility, network load, and service demand, researchers developed
heuristic-based techniques to optimize data distribution. Predictive analytics and edge
caching were essential elements that enabled MEC nodes to retain frequently requested
content and foresee future requests. By facilitating context-aware material delivery and
real-time decision-making, the combination of artificial intelligence and machine learning
significantly improved adaptive dissemination. In MEC contexts, these developments
greatly enhanced Quality of Service (QoS) and decreased duplicate data transmissions

[11]. In order to maximize adaptive data transmission in MEC, bio-inspired and
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reinforcement learning algorithms have been investigated recently. Swarm intelligence-
inspired methods, like particle swarm optimization and ant colony optimization, have
been used to distribute data effectively while reducing latency and energy usage. MEC
systems may now learn from user behavior and network conditions. Reinforcement
learning models, which allow them to dynamically modify their distribution techniques
for best results. Furthermore, blockchain-based data distribution has become popular
since it provides safe, decentralized ways to improve edge network dependability and
trust. These developments have helped to increase the scalability and efficiency of MEC-

based adaptive data dissemination.

In the future, the incorporation of next-generation technologies like 6G, federated
learning, and edge intelligence is anticipated to propel the development of adaptive data
distribution in MEC. More advanced data dissemination strategies will be required to
meet the increasing demand for ultra-low latency applications, such as extended reality
(XR) and driverless cars. Future methods will probably concentrate on collaborative
edge networks, in which several MEC nodes cooperate in real time to maximize data
transmission. The next stage of adaptive data dissemination in MEC will open the door
for edge computing ecosystems that are more intelligent, safe, and robust by utilizing
developments in Al, blockchain, and quantum computing [12]. Adaptive data distribution
in MEC is changing toward increasingly independent and self-optimizing systems in
tandem with the growing demand for real-time and mission-critical applications. To
improve resilience and adaptability, MEC setups are incorporating emerging concepts
like network function virtualization (NFV), software-defined networking (SDN), and
digital twins. Digital twins reduce errors and increase efficiency by enabling real-time
simulation and optimization of data transmission schemes prior to actual implementation.
In a similar vein, SDN and NFV offer virtualization and centralized control, allowing
MEC networks to scale smoothly and allocate resources dynamically. Next-generation
adaptive data dissemination frameworks that can react to changing network
circumstances and user demands intelligently with little assistance from humans are

becoming possible because to these developments [13]. A thorough summary of the
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bioinspired models currently in use for adaptive data distribution in MEC is provided in
Table 2.1. It emphasizes their uses, significant contributions, and related benefits and
drawbacks. Researchers can find appropriate optimization strategies to improve the

effectiveness of data dissemination in MEC contexts by examining these models.

Table 2.1- Existing Bioinspired Model for Adaptive Data Dissemination in MEC

Model Name Applications Key Contribution

Ant Colony Optimization Optimizing data routing

and dissemination in MEC Efficient b ath dlscovgry
(ACO) and adaptive data routing
networks
Particle Swarm Resource allocation and lf:laesyfi](;ci)ltil:]eirfennei:vztrllf
Optimization (PSO) load balancing in MEC Y

optimization

Effective in solving multi-

Genetic Algorithm (GA) Optimized task offloading objective optimization

and edge caching

problems
o Adaptive data Self-organizing and robust
Art1ﬁ012(111Ax]]33%e)C010ny dissemination and energy- for dynamic network
efficient MEC conditions
Data clustering and Effective in handling non-
Firefly Algorithm (FA) dynamic network linear optimization and
optimization in MEC adaptive clustering
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Optimization of MEC

Balances exploration and

MEC

Bat Algorithm (BA) network parameters and exploitation for robust
task scheduling optimization
Grey Wolf Optimizer Resource allocation apd er‘nl‘cs hlerarchwal
(GWO) traffic management in decision-making for

enhanced efficiency

Cuckoo Search Algorithm
(CSA)

Dynamic data
dissemination and energy
efficiency in MEC

Adaptive exploration
mechanism for robust
global optimization

Whale Optimization
Algorithm (WOA)

Optimizing network load
balancing and resource
scheduling

Dynamic and adaptive
search mechanism for
better load balancing

Dragonfly Algorithm
(DA)

Adaptive routing and self-
organized network
optimization

Inspired by swarm
intelligence for adaptive
and scalable solutions

By using hybrid methodologies and sophisticated optimization techniques, the problems
with bioinspired models in adaptive data distribution for MEC—such as high
computational complexity, local optima trapping, sluggish convergence, and sensitivity to
parameter tuning—are being actively addressed. Integrating deep reinforcement learning
(DRL) with bioinspired models is one exciting avenue that could enable real-time

adaptability to dynamic MEC settings and intelligent decision-making [14]. Furthermore,
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sensitivity problems are addressed and convergence speed is increased using parameter
self-tuning techniques like adaptive learning rates and swarm intelligence-based fine-
tuning. The efficiency of these models is also being improved by the use of edge Al and
quantum computing, which lower computational overhead and allow for real-time
optimization.  Additionally, blockchain technology is being investigated to offer

transparent, safe, and decentralized data distribution.
2.2 Related Work

[1] The authors explained the definition of edge computing which addresses the concern
of response time where concerns are latency, resource like battery-life constraint,
bandwidth cost-saving, as well as data safety and privacy. [2] summarized the existing
edge computing systems and related tools. The authors divided the paper into two parts:
System View and Application View. In system View, Open-Source Edge computing
projects and edge computing systems & tools are discussed wherein application view,
deep learning optimization at the edge are discussed. [3] presented the major three edge
computing technologies: mobile edge computing, cloudlets, and fog computing. The
authors explained application areas, architectures, standardization efforts for mobile edge
computing, cloudlets, and fog computing. [4] the authors described the Edge computing
that processes the gathered data from end devices at the edge of the network. By covering
a large range of technologies, edge computing addresses the various concern as battery
life constraint, bandwidth usage, latency, data security, and data privacy. The need for
edge computing (Push from Cloud Services and Pull from the Internet of Things) is
discussed by [5, 6] in which the auto-scaling applications in edge computing which
maintained the online services at a decentralized location. They broadly explained two
aspects of this paper. In the first section, they major focused on the different types of edge
computing applications (IoT Applications, Micro-service applications, Time-critical
applications). For these applications, auto-scaling challenges when the workload
dynamically changes. Container-based visualization auto-scaling technologies are
discussed. Self-adaptive application at runtime enhances the performance. In the

classification of auto-scaling applications in edge computing, the authors explained the
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cloud framework, Virtualization Technology, Monitoring approach, Operational behavior,
Adjustment ability, Architectural support, Image Delivery, and scalability techniques [7].
[8] addressed the issue of low latency requirements in mobile edge computing. The
author proposed a fast data-sharing framework HDS (Hybrid data sharing) to meet the
requirements of low latency by dividing the gathered data location service into two
regions: Intra-region and inter-region. With the Hybrid information sharing system which
comprises 100 areas, the creator accomplished low latency, low usage overhead, and
50.21% more limited query ways, and 92.75% fewer false positives. In this whole
network, the total edge server used was 1000 to 10000 [9]. [10] the authors performed the
cloud edge latency comparison. They performed an extensive measurement to assess the
latency characteristics of end-users to the edge servers and cloud data centers. It
estimated latency from 8,456 end-clients to 6,341 Akamai edge workers and 69 cloud
areas. At last, the paper's outcome is that while 58% of end-clients can arrive at a close by
edge worker in under 10 ms, just 29% of end-clients get a comparable dormancy from a
close by cloud area. [18]. [19] the authors reviewed the various data latency techniques in
Mobile Edge Computing. As in the centralized cloud, one cannot achieve low latency.
Mobile Edge Computing makes efficient use of the resources and decreased the
movement of large data generated by the edge devices. Edge computing is important for
solving fatal situations such as Conflicts in Autonomous vehicles, Fire, Environmental

Hazards.

In their presentation of a deep learning-based traffic flow detection strategy for intelligent
traffic systems, [46] emphasized the value of edge computing for organizing and
processing the vast amounts of data produced by contemporary transportation systems.
[50] further elaborates on this topic of using deep learning for traffic flow prediction and
shows how effective it is in a vehicular Internet of Things environment. By focusing on
shared resource allocation based on traffic flow virtualization and online traffic flow
prediction for autonomous vehicles and connected cars, respectively, [47] and [48] made
important contributions to this field. [49] on the use of block chain technology for IloT

traffic management highlights the growing demand for secure and effective data
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processing in edge computing environments. Further evidence of this point is Shin and

Kim's multi-layered security framework for cloud-native edge clusters [51].

Contributions by [82], [83] and [84] address intelligent traffic-adaptive resource
allocation, QoE-aware traffic aggregation, and robust feature selection, respectively,
demonstrating the importance of edge computing in improving network intelligence. By
investigating modal shifts with mobility in mind and elucidating the flow between origin
and destination, [85] and [86] contributed to this field and demonstrated the dynamic
nature of traffic management in edge computing situations. Other contributions in this
field include the creation of his framework for fog-based traffic flows. [88] extraction of
mixed road user trajectories by [89] and dynamic optimization of traffic flow prediction
models by [87]. Discussion by [90] on the use of federated deep reinforcement learning
for traffic monitoring provides a new method for traffic control in his SDN-based IoT
networks. The increasing use of advanced computational techniques in traffic
management is evidenced by the reconstruction of traffic data of large-scale IoV systems
using neural network approaches, as reported by [91] and the development of cooperative
and energy-efficient strategies in emergency navigation by [92]. A study by [93] on flow
allocation and processing on a distributed edge computing platform, [94] on an intelligent
traffic light system based on block chain technology represents technological progress in
this field. The literature, in summary, shows a notable trend toward the effective control
and prediction of traffic flow in ITS and IoT systems through the use of edge computing,
deep learning, and block chain technologies. The aforementioned studies underscore the
significance of advanced computational techniques and resilient security frameworks in

managing the intricacies of contemporary transportation systems and network traffic [95].

Flooding-based dissemination, in which data packets are sent to all network nodes, is a
prevalent method. While flooding ensures extensive coverage, it often results in
redundant transmissions, excessive energy consumption, and network congestion.
Diverse optimization strategies have been proposed as solutions for these issues [96]. The
Gradient-based Routing (GR) algorithm, for instance, gives nodes closer to the sink a

higher priority, thereby reducing the number of redundant transmissions [97, 98].
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However, GR does not consider temporal factors, which can result in sub-optimal routing
decisions in dynamic MEC environments. Information is also disseminated via a random
peer-to-peer process through a gossip-based dissemination method. By leveraging the
mobility of nodes, gossip protocols like Epidemic and Spray-and-Wait achieve high
coverage and robustness [99]. However, these protocols have a significant delay and may
not guarantee the delivery of data reliably. Content-based routing has gained popularity
as an efficient data distribution method in MEC. By analyzing the contents of data
packets, routing decisions can be made based on the packets' proximity to their final
destinations and their relative importance. Content-based routing reduces unnecessary
transmissions, conserves energy, and increases the effectiveness of routing. Examples
include COIN, SPIN, and Directed Diffusion. However, the majority of existing content-
based routing protocols do not account for temporal factors such as delay, energy
consumption, throughput, and Packet Delivery Ratio (PDR), limiting their efficacy in
dynamic MEC environments [100, 101]. Effective traffic flow control is necessary for
optimizing resource utilization and ensuring QoS guarantees in MEC deployments. In
numerous ways, existing models and algorithms address these issues. Traditional traffic
flow control mechanisms, such as static routing and load balancing, have limitations in
dynamic MEC environments. These mechanisms frequently utilize static configurations
and do not adapt to changing network conditions, resulting in sub-optimal resource
allocation and utilization via the Main Task Off-loading Scheduling Algorithm (MTOSA)
process [102, 103]. In addition, traditional load balancing techniques do not take the
processing power of edge devices into account, which is essential for effective traffic
flow management [104, 105]. Particle Swarm Optimization (PSO) is widely employed in
MEC for dynamic traffic flow management. PSO is a metaheuristic optimization
algorithm inspired by the behavior of social organisms such as flocks of birds and schools
of fish [106]. PSO has been expanded to address traffic flow control issues by adjusting
routing decisions dynamically based on the capacity of edge devices. EHPSO (Elephant
Herding Particle Swarm Optimization) uses PSO to balance network load by considering

the processing capabilities of edge devices [107]. EHPSO dynamically routes traffic to
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nodes with available processing capacity, reducing congestion and optimizing resource
utilization via Hierarchical Federated Learning (HFL) process [108,109]. Existing models
[110, 111] for adaptive data distribution and dynamic traffic flow management in MEC
have made significant contributions. Temporal aspects such as delay, energy consumption,
throughput, and PDR must be considered to optimize routing decisions and traffic flow
control in dynamic MEC environments. In this regard, however, the majority of these
models have limitations. Moreover, traditional routing and traffic control mechanisms
frequently lack the adaptability to adapt to changing network conditions and fail to utilize
the processing power of edge devices. These limitations necessitate the development of
novel approaches, such as the proposed QoS-aware Adaptive Data Dissemination Engine
with Dynamic Traffic Flow Control, which integrates content-based routing and EHPSO

to overcome these obstacles and enhance MEC deployment performance levels [112].

Table 2.2- Summarization Table of existing method used in data dissemination

Method Description Advantage Challenges
Data packets are sent
to all network nodes. Redundant
Flooding-based Extensive coverage Wide coverage transmissions
Dissemination leads to redundancy, Simplicity Energy consumption
energy consumption, Network congestion
and congestion.
Nodes closer to the Sub-optimal routing
Gradient-based sink get higher Reduces decisions in
Routing (GR) priority, reducing redundancy dynamic MEC
redundancy. environments
Optimization

Need to consider

. algorithm for traffic Dynamically .
Particle Swarm . ; . processing power of
L flow. Dynamically adjusts routing .
Optimization : ! . edge devices
adjusts routing based | decisions Balances .
(PSO) . Implementation
on edge device network load .
. complexity
capacity.

The effective distribution of computational tasks across edge devices to satisfy quality of
service (QoS) requirements and maximize resource utilization is a challenging task in

Mobile Edge Computing (MEC) environments. To address this issue, a number of models
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and algorithms have been put forth, but each has pros and cons depending on the
particular requirements of the MEC scenarios [113, 114]. This is done via use of Dueling
Double Deep Recurrent Q Network (D3RQN) process. The traditional First Come First
Serve (FCFS), Round Robin (RR), and Shortest Job First (SJF) scheduling algorithms
were used in one of the earliest methods. They served as a starting point for task
scheduling in MEC, but because of their inherent simplicity, they failed to take into
account dynamic shifts in resource availability and demand, which resulted in subpar
performance in demanding real-time applications [115- 118]. The most effective
scheduling policies have been discovered over time by using Q-learning and other
reinforcement learning-based models. These models have the ability to change with their
surroundings and online learn the best course of action. These algorithms, however,
frequently need extensive training, and they might not be able to adjust quickly enough to
the rapidly altering network conditions [119-122]. Additionally, some researchers have
suggested using models based on game theory, mainly focusing on fostering competition
among the edge devices for effective resource allocations. While these models are
capable of reaching a Nash equilibrium, which offers a stable state for the system, they
frequently fail to provide acceptable QoS, especially in highly dynamic scenarios [123-
126]. [127] systematic literature review explored the concept of Quality of Service (QoS)
monitoring in IoT edge devices driven healthcare. The study focuses on the individual
devices present at different levels of the smart healthcare infrastructure and the QoS
requirements of the healthcare system as a whole. The authors propose a novel pre-SLR
method for comprehensive keyword research on subject-related themes for mining
relevant research papers for quality SLR; a review of several QoS techniques used in
current smart healthcare apps; an examination of the most important QoS measures in
contemporary smart healthcare apps; and offering solutions to the problems encountered
in delivering QoS in smart healthcare 10T applications to improve healthcare services.
The authors propose that edge computing and artificial intelligence can resolve these
issues by processing data in edge devices located at the brink of the network, contributing

to less latency and energy efficiency. This enables edge-assisted IoT systems to deliver
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medical services on time. Al techniques, such as machine learning and deep learning, are
widely used for system training and learning in edge computing. [128, 129] explored the
use of optimizable tree machine learning (ML) algorithms to evaluate spectrum sensing
in CR-based smart healthcare systems. The researchers used data sets based on the
probability of detection and false alarm to train and test the system using various TBAs.
The results showed that the optimizable tree provided the best accuracy results for
spectrum sensing evaluation with minimum classification error (MCE). This approach is
particularly useful for smart healthcare systems that use cognitive radio (CR) to send and
receive patient health data. The study highlights the importance of utilizing ML in the
field of smart healthcare. CR technology can provide maximum advantages of smart
medicine to patients at their doorstep by exploiting Al techniques to process patient
health data on a micro level, even at the patient's genetic level. Monitoring wireless
sensors attached to the human body monitor body parts and collect real-time data, sharing
collected data with a remotely placed fusion center or data server. [130, 131] discussed
about efficient resource prediction framework (ERPF) is proposed to provide proactive
knowledge about radio resource availability in software-defined heterogeneous radio
environmental infrastructures (SD-HREIs). The framework measures radio activity in
unlicensed bands, segregates it into signal and noise, and uses machine learning
techniques to predict radio occupancy and opportunity. Next-generation heterogeneous
radio environmental infrastructures aim to enhance spectral efficiency, reliability, and
control while supporting high data rates and diverse services. However, connecting
devices to these infrastructures can be challenging. An efficient resource prediction
framework (ERPF) can exploit radio resources according to user requirements, enabling
dynamic spectrum access in SDH-REIs. Task scheduling in MEC has been suggested
using deep learning-based models, particularly those that use recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks [132-135]. They have
demonstrated significant promise in anticipating and adjusting to MEC scenarios that
change quickly. These models demand a lot of computational power and time to train,

which may not always be possible for edge computing devices with constrained resources
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[136-139]. Despite these efforts, none of the models in use currently satisfactorily
account for all the complexity and difficulties that MEC environments present. As a result,
there is a gap in the market for a novel, effective, and adaptive task scheduling model that
can accommodate the dynamic MEC scenarios while guaranteeing optimal resource
utilization and satisfactory QoS. The VARMAXx-based bioinspired resource scheduling
model in this thesis work aims to fill this gap for real-time scenarios [140, 141]. Mobile
Edge Computing (MEC) is an emerging concept that moves compute and storage
resources closer to the network edge, enabling quicker data processing and lower latency
for real-time applications. Recent studies underline the important importance of MEC in
enabling the exponential production of IoT devices and the rising need for low-latency
services. For instance, a detailed evaluation demonstrates the benefits of MEC in
lowering end-to-end latency and boosting user experience by processing data at the
network edge rather than depending on distant cloud servers [142]. Another research
analyzes the integration of 5G with MEC, pointing out that the combination of both
technologies can greatly enhance the performance of mobile networks by shifting
computationally expensive jobs to edge servers, thereby lowering network congestion
and enhancing service delivery [143-145]. Efficient task scheduling is crucial for
maximizing resource usage and assuring Quality of Service (QoS) in MEC contexts.
Traditional scheduling algorithms frequently struggle to fulfill the dynamic and
diversified requirements of MEC applications. Recent research has focused on generating
more adaptable and intelligent scheduling algorithms. For example, multi-objective deep
reinforcement learning strategy for MEC, which simultaneously optimizes numerous QoS
metrics like as latency and energy usage. This strategy harnesses the Pareto front to
determine optimum trade-offs between conflicting objectives, providing considerable
increases in scheduling efficiency [146, 147]. Bioinspired optimization techniques have
showed tremendous promise in tackling the complicated job scheduling challenges in
MEC. These algorithms mimic natural processes to identify optimal solutions in
extremely dynamic and multi-dimensional problem domains. Recent research has studied

several bioinspired strategies, including Flower Pollination Optimization (FPO), Genetic
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Algorithms (GA), and Particle Swarm Optimization (PSO), to optimize resource
allocation in MEC. For instance, a recent work proposes a VARMAXx-based bioinspired
resource scheduling model that combines the predictive powers of the VARMAXx model
with the flexibility of FPO. This hybrid technique provides more accurate task mapping
to Virtual Machines (VMs) by incorporating numerous task and resource characteristics,
leading to considerable increases in make span, deadline hit percentage, energy efficiency,
and throughput [ 148]. This study seeks to design a multi-objective optimization technique
optimized for job offloading in mobile edge computing (MEC) scenarios. The major
purpose is to research and increase MEC system performance with reference to workload

offloading.

Initially, a multi-objective task offloading scenario within MEC is built. A MEC task
offloading scheduling technique based on multi-objective optimization is described,
concentrating on improving both latency and energy usage during the computational
offloading process [149-151]. Table 2.1 summarizing some existing resource scheduling
models for Mobile Edge Computing (MEC). A summary of the current approaches used
in data dissemination is given in Table 2.2, together with an explanation of their
fundamental ideas and methods of execution. Understanding the development of various
strategies and their efficacy in MEC-based adaptive data dissemination is made easier by
this comparison. The benefits and drawbacks of a few current strategies utilized in data
distribution are highlighted in Table 2.3. Reader can find areas for improvement and
investigate hybrid or enhanced approaches to address present issues in MEC contexts by

assessing their advantages and disadvantages.

Table 2.3 Advantages and limitations of some existing models

Model Advantages Limitations
First Come First Simple and easy to ]r)e(s)(e)irnc(: rceo?lsilr(ifrrletiig lfer;(()iriﬁy ?;
Serve (FCFS) implement. d ’ &

potential inefficiencies.

28



Round Robin
(RR)

Fairly distributes tasks
among resources,
preventing any single
resource from becoming
overloaded.

Ignores task complexity and
resource heterogeneity, which can
lead to suboptimal performance.

Genetic
Algorithm (GA)

Can find near-optimal
solutions for complex
scheduling problems
through evolutionary
techniques.

Computationally intensive and may
require significant time to converge
to a solution.

Particle Swarm
Optimization
(PSO)

Efficient in exploring
large solution spaces and
can adapt to dynamic
changes in the
environment.

May suffer from premature
convergence and require fine-tuning
of parameters.

Ant Colony
Optimization
(ACO)

Effective in finding
optimal paths and

resource allocations based

on pheromone trails.

Performance can be heavily affected
by the number of iterations and
pheromone evaporation rate.

Multi-Objective
Evolutionary
Algorithm
(MOEA)

Simultaneously optimizes
multiple objectives, such
as delay and energy
consumption.

Computationally expensive and may
require balancing trade-offs between
conflicting objectives.

Deep
Reinforcement
Learning (DRL)

Learns and adapts to
dynamic environments,

potentially finding highly

efficient scheduling
policies.

Requires large amounts of training
data and computational resources;
may struggle with real-time
constraints.

2.3 Research Questions

Q.1 How can bioinspired optimization techniques enhance adaptive data

dissemination in MEC?

Response: Bioinspired optimization methods such as Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are used to improve

adaptive data dissemination by optimizing routing, load balancing and resource allocation.

These models replicate natural behaviors in a bid to enhance energy efficiency, reduction

in latency as well as dynamically adjusting to network conditions. The ability of the MEC
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systems to adapt to the environmental conditions in order to learn better provides better

QoS-aware data dissemination.

Q.2 What are the key limitations of existing data dissemination techniques in MEC,

and how can they be addressed?

Response: The existing techniques, including gradient-based routing and flooding-based
dissemination, are associated with high-energy usage, high redundancy, and network
congestion. Overcoming these challenges can be achieved by using hybrid approaches
that integrate machine learning, predictive analytics and bioinspired optimization tools.
Moreover, edge intelligence and software-defined networking (SDN) may enhance
scalability and flexibility, whereas blockchain-based secure data dissemination may

enhance reliability.

Q.3 What role does reinforcement learning play in improving adaptive data

dissemination in MEC?

Response: Reinforcement Learning (RL) models can help MEC systems change data
dissemination strategies in real time, using their user behavior and network conditions as
inputs to the model to learn dynamically. It is possible to take adaptive dissemination
further to reduce latency, enhance network performance, and resource consumption
through integrating RL with bioinspired models. To illustrate, DRL-based techniques
have the ability to optimize the cache placements at edge nodes, as well as predict future

demands.

Q.4 What are the trade-offs between computational complexity and optimization

performance in bioinspired models for MEC?

Response: Although bioinspired models such as ACO and PSO provide effective load
balancing and path optimization, they frequently have slow convergence and significant
computing complexity. By increasing convergence speed while preserving optimization

efficiency, hybrid strategies—like combining PSO with edge Al or reinforcement
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learning—help achieve equilibrium. To increase efficiency, quantum-inspired

optimization methods and parameter self-tuning are increasingly becoming popular.

Q.5 How can bioinspired approaches be integrated with real-time adaptive traffic

flow control for MEC-based applications?

Response: Dynamically changing routing based on the demand and network state can be
used to combine traffic flow control with bioinspired models. As an example, PSO and
EHPSO-based load balancing strategies could be useful to optimize resource allocation
and network congestion. Moreover, within the framework of intelligent transportation
systems and autonomous vehicle networks, bioinspired models can be enhanced with

federated deep learning to enhance the quality of routing and prediction of traffic.

Q.6 How can hybrid bioinspired approaches improve the efficiency and scalability

of adaptive data dissemination in MEC?

Response: Hybrid bioinspired systems also enhance efficiency and scalability through
the combination of machine learning, reinforcement learning and deep learning with
more traditional bioinspired algorithms, such as ACO, PSO, and GA. As an illustration,
bioinspired models coupled with Deep Reinforcement Learning (DRL) make it possible

to combine the two to create real-time learning and dynamics adaption of networks.
2.4 Literature Summary

Adaptive data dissemination in Mobile Edge Computing (MEC) has changed
dramatically from traditional cloud-based models to decentralized and intelligent
alternatives, as this chapter is examination of several extant methodologies makes clear.
The use of centralized designs for early data distribution resulted in significant latency,
network congestion, and wasteful resource use. By putting computing and storage closer
to end users, MEC became a viable solution that enhanced network performance and
decreased latency. However, the static data broadcast techniques utilized in the early
MEC implementations were unable to dynamically adjust to shifting network conditions.

To overcome this difficulty, researchers investigated edge caching, predictive analytics,
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and heuristic-based methods to maximize data transfer. These developments were
essential in improving Quality of Service (QoS) and cutting down on unnecessary data
transfers. The application of bioinspired optimization approaches to improve adaptive
data distribution in MEC is also covered in great detail in the literature. Data routing,
resource allocation, and job offloading have all been shown to be efficiently optimized by
algorithms like Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),
Genetic Algorithms (GA), and Artificial Bee Colony (ABC). These bioinspired models
minimize latency and energy consumption by dynamically modifying dissemination
tactics based on network conditions by utilizing swarm intelligence and evolutionary
concepts. Even with these developments, there are still issues with current models, such
as their high computational complexity. According to the literature, next-generation
technologies like 6G, federated learning, and edge intelligence will propel future
developments in adaptive data dissemination in MEC. It is anticipated that collaborative
edge networks, in which several MEC nodes work together in real time, will improve the
effectiveness of data distribution for ultra-low latency applications, such as extended
reality (XR) and driverless cars. Network scalability and dynamic resource allocation
will be further made possible by the combination of network function virtualization (NFV)

and software-defined networking (SDN).
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CHAPTER3

HYBRID BIOINSPIRED MODEL FOR ADAPTIVE TRAFFIC FLOW CONTROL

Effective traffic flow management requires monitoring edge devices to ensure traffic is
evenly dispersed across networks. However, existing flow control systems, sometimes
incorporating machine learning, struggle with complicated configurations and
inefficiencies, particularly in large-scale device networks. This thesis work provides a
hybrid bioinspired system to optimize traffic flow control in edge device networks and
address these issues. The implemented methodology utilizes request-response time data
to forecast traffic flows across multiple device sets. Using this predictive capacity, edge
resources are dynamically assigned, considerably enhancing Quality of Service (QoS) in
large-scale systems. The model analyzes this data using a hybrid Elephant Herding
Particle Swarm Optimizer (EHPSO), which assigns temporal weights to IP groups to
estimate future demands, permitting effective resource allocation depending on system
capacity. A performance-based fitness function further modifies edge configurations to
respond to incoming traffic. By using EHPSO, the suggested model achieves an 8.3%
improvement in resource allocation efficiency, a 4.5% reduction in calculation time, and a
6.4% decrease in computational burden for processing huge numbers of requests, making

it very useful for large-scale applications.
3.1 Introduction to BATFE

The applications, which are based on Artificial Intelligence (AI) and their application,
especially in the Internet of Things (IoT), are mandatory in the contemporary mobile
communication network systems [l, 2]. There exist three major use cases in 3rd
generation partnership project (3GPP), enhanced mobile broadband (eMBB) and massive
machine-type communication (mMTC) and ultra-reliable low-latency communications
(uRLLC). Deep Simple Online and Real-time Tracking (DSORT), virtual service flow
(VSF), vector autoregressive (VAR) modelling, and binary coding trees (BCT) are some
of the technologies that can be used to support these use cases [3, 4]. In contrast to eMBB,

which attempts to utilize the spectrum in a manner that is as efficient as possible, uRLLC
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has been extremely problematic when it comes to supporting the needs of high-latency
and high-reliability networking, which has played an important role as an innovation in
networking. The multitasking of the control of the people and traffic volumes is a critical
issue as URLLC becomes more and more significant. It is a trend that the increase in the
number of smart devices induces telecommunications companies to balance the ability of
services and user demand by using the models such as the Long Short-Term Memory
(LSTM) with Sparse Auto-Encoder (SAE), Ensemble weight Approach (EWA) and
preference logic-based aggregation model (PLM) [5-8]. The secret to ensuring that the
users enjoy a high Quality of Experience (QoE) is real-time interactions and customised
services. The mobile traffic increase is predicted and will have a large impact on the load
to compute and dispatching on edge clouds (base station) and remote clouds (data centers)
on the IoT-Cloud architecture [9-12]. Although features of cloud IoT are pressing in terms
of dealing with the rise in mobile network, they are also challenging in relation to the
network and the processing power that may on the other hand cause an increase in the
response time of the applications. The allocation of bandwidth to various applications
that are executed in clouds is also a complication of the necessity to create a balance [13-
15]. The transition towards the heterogeneous IoT of the traditional one and the increased
burden of the resources of the smart services pressure an even increased burden on the
network operators and service providers. In this regard, the data on a mobile traffic flow
demands an effective analysis and regulation, especially when it comes to uRLLC clients
that demand the minimum delay [21-24]. The more efficient forecasting of the mobile
traffic flow, dynamic distribution of resources, and mobile network structure will help
resolve these problems. There is an intersection between edge computing, cloud-based
wireless network and the IoT Cloud, in which it is necessary to exercise strict control,
particularly within the area of high standards of latency and reliability of uRLLC [25-28].
The recent developments in processing and storage technologies, on smartphones, on the
base stations and on remote clouds make this integration possible [29-33]. The transition
to the complex system management in which the more complex machine learning (ML)

methods are being used in AI marks the growing use of the traditional pattern recognition.
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The aspect of Al and machine learning has been enhanced over the last several decades,
and currently, more sophisticated technologies such as wireless communication networks
can be created [34]. Approaches to bioinspired optimization algorithms which have
proven to be useful in intelligent traffic flow prediction are genetic Optimization (GO)
and Particle Swarm Optimization (PSO), which is realized through the analysis and
prediction of long-term time series events. The flow control techniques, which are
currently in use, however, are normally susceptible in configuration complexity and
inefficient Ness in linking two or more devices on the network. This paper has proposed a
mixed bioinspired system that will be used to regulate the movement of traffic in the
implementation of edge devices. The model also applies the bioinspired concepts to
ensure that efficiency and effectiveness of the traffic flow management is maximized in
such a way that there exist balanced allocation and optimal allocation of resources even
in the case of a large scale set up. This is the strength of the model compared to the
conventional machine learning-based applications since it simulates the natural processes
to come up with a scalable and flexible solution to the predicaments of contemporary
mobile networks. Elephant Herding Particle Swarm Optimizer (EHPSO) is a form of
optimization algorithm that is an amalgamation of two bioinspired optimization
algorithms. EHO approximates this behavior by subdividing potential solutions
population (treated as elephants) into clans. In optimization, the following steps will be

necessary:

a. Clans and Matriarchs: The population is divided into several clans, with each
clan led by a matriarch, representing the best solution within that group.

b. Herding: Elephants within a clan go towards the matriarch, mirroring the social
behavior of elephants following their leader.

c. Separate Operator: To maintain diversity, a separate operator randomly
relocates certain elephants, preventing early convergence and encouraging the
exploration of new areas in the solution space. PSO is inspired by the social

behavior of birds flocking or fish schooling. Each individual, termed a particle,
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represents a potential solution and modifies its location in the search space based
on:

Personal Best Position (pBest): The best solution a particle has discovered so far.
Global Best Position (gBest): The best solution identified by the whole swarm.
Velocity Update: Particles adjust their velocities based on their personal best
positions and the global best position, guiding their movement toward optimal

solutions.

3.1.1 Integration in EHPSO

EHPSO integrates the clan-based structure of EHO with the velocity and position update

mechanisms of PSO, leveraging the strengths of both techniques. The following outlines

how EHPSO functions:

a.

Initialization: A population of solutions (elephants/particles) is initialized and
organized into clans.

Clan-based Social Learning: Within each clan, elephants travel towards their
matriarch employing the herding characteristic of EHO.

Swarm-based Optimization: Particles adjust their velocities and positions
following the principles of PSO, taking into account both their personal best and
the global best positions.

Separating Operator: Randomly relocates certain elephants to new spots to

improve variety and prevent local optima.

3.1.2 Feature of EHPSO

a.

b.

Exploration and Exploitation Balance: The combination of EHO and PSO
enables a fair balance between exploration (finding new regions) and exploitation
(refining existing good solutions).

Diversity Maintenance: The separating operator in EHO helps preserve diversity

in the population, lowering the risk of early convergence.
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c. Efficiency: By harnessing the characteristics of both EHO and PSO, EHPSO may
efficiently search for optimum solutions in complicated, high-dimensional areas.

d. Adaptability and Robustness: Bioinspired algorithms are extremely flexible and
durable, capable of managing dynamic and unpredictable settings. They can
readily adjust to changes in the issue space and continue seeking for answers.

e. Parallelism: The population-based design of these algorithms enables parallel
processing, allowing multiple potential solutions to be evaluated simultaneously,
which significantly accelerates the optimization process.

f. Self-Organization: Many bioinspired algorithms exhibit self-organizing behavior,
where complex global patterns emerge from simple local interactions. This self-
organization is essential for addressing complex problems without the need for
centralized control.

g. Stochasticity: Randomness plays a key role in bioinspired optimization. It aids in
exploring the solution space and escape local optima, contributing to the
robustness of the algorithms.

h. Fitness Function: A fitness function evaluates the quality of solutions, guiding
the search process by offering feedback on how well each solution meets the

optimization criteria.

EHPSO is especially effective in scenarios that require efficient resource allocation,
scheduling, and optimization in dynamic environments, such as traffic flow control in
edge computing, as described in this chapter. The Elephant Herding Particle Swarm
Optimizer (EHPSO) is a robust hybrid optimization method that merges the clan-based
social behavior of EHO with the velocity and position update mechanisms of PSO. This
integration allows for successful optimization in complex and dynamic settings by
maintaining diversity and striking a balance between exploration and exploitation. The
motivation for implementing the recommended hybrid bioinspired technique, specifically
the Elephant Herding Particle Swarm Optimizer (EHPSO), is to handle challenges in
traffic flow management and resource allocation in mobile edge computing. Conventional

machine learning methods commonly confront issues relating to configuration
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complexity and inefficiency in extended networks. This method tries to boost adaptability
and efficiency in dynamic situations, such as edge networks, by employing bioinspired

principles to manage substantial changes in traffic demands.

The hybrid EHPSO incorporates the social behaviours of Elephant Herding Optimization
(EHO) and Particle Swarm Optimization (PSO) to optimize resource allocation, minimize
computational stress, and increase Quality of Service (QoS). This decision is also
influenced by the demand to equilibrate exploration and exploitation in search strategies,
keeping system variation while moving towards optimal solutions. The EHPSO
framework provides a scalable and adaptive solution proficient at handling the
sophisticated, vast traffic flows typical of modern mobile networks, therefore enhancing
overall system performance. The key findings reveal considerable increases in resource
allocation efficiency, computational delay reduction, and computational load,
demonstrating that the proposed approach successfully optimizes resource distribution
within edge devices under high-density traffic scenarios. Compared to previous
techniques, the EHPSO model offers substantial benefits, emphasizing its appropriateness
for real-time edge computing settings by lowering system latency and boosting Quality of
Service (QoS). These results demonstrate that the model not only fulfils but substantially
enhances the actual criteria for adaptive traffic flow control, highlighting its potential

influence on managing complex and dynamic edge network scenarios.
3.2 Algorithm Overview

Commonly used in Intelligent Transportation Systems (ITS), the Elephant Herding
Particle Swarm Optimizer (EHPSO) is an advanced method designed to optimize traffic
flow in edge device networks. The following outlines the sequence of iterative procedures

involved in this optimization, without the use of equations [35, 36]:

1. Optimization Constants for Initialization: First, several constants are initialized,
including the total number of iterations, the number of particles to be generated initially,
the total number of herds to be optimized, and the learning rates for both particles and

herds.
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2. Particles Generation: Every particle is a possible configuration for network

optimization. The procedure entails:

e Randomly change the capacity of each edge node based on a predetermined
learning rate.

e If a new node is added to the network and the new capacity of the node exceeds
the current capacity, the configuration is reevaluated.

e To test your network, send simulated requests from different IP addresses and
update your performance metrics accordingly.

e Evaluate each particle's "fitness" or effectiveness according to how effectively it
responds to these demands. Figure 3.1 is showing ants working together to
transport food, combined with a graphic of data packets moving through a

network.

-

S

Figure 3.1: Ants working together to transport food, same as data packets moving through

a network
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3. Herds Formation: After generating all the particles, Swarms are formed from

particles with power above a given level.

4. Herd Performance Evaluation: Each swarm is evaluated based on the average
performance of its particles. The swarm's effectiveness in optimizing network traffic

determines the swarm's ranking.

5. "Matriarch' Herd Identification: ‘“Matriarch” refers to the herd that exhibits the best

performance. This herd arrangement is considered the most efficient.

6. Modifications to Other Herds: The configuration of other herds is modified based on
that of the 'Matriarch' herd. To do this, their settings must be adjusted to mimic the

'Matriarch' herd's effective setup.

7. Optimized Iterations: For the predefined number of times, the whole process of
creating particles, assembling herds, assessing them, and making adjustments in response
to the 'Matriarch' herd is repeated. The system improves performance by fine-tuning its

settings with each cycle.

8. Complete Execution: The configuration chosen by the 'Matriarch' herd is used as the
model to optimize network traffic flows at the end of each cycle. To manage traffic
effectively in real-time, the best-performing configurations are implemented to
reconfigure the edge devices [37, 38]. The EHPSO method is an iterative and dynamic
approach that leverages herd behavior and swarm intelligence. It continuously adjusts the
network setup to control and optimize traffic flow, ensuring peak performance and

efficient resource utilization in real-time environments.

The research objective of this thesis work is to develop and validate an adaptive traffic
flow control framework leveraging a hybrid bioinspired optimization model, specifically
the Elephant Herding Particle Swarm Optimizer (EHPSO), to address challenges in
resource allocation and traffic management within edge computing environments. By
integrating the adaptive characteristics of elephant herding and particle swarm algorithms,

this implemented work intends to increase the Quality of Service (QoS) in edge networks
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through efficient, real-time resource distribution across large-scale, high-density
networks. The aim involves making quantifiable gains in resource allocation efficiency,
decreasing computational load, and minimizing delays, consequently overcoming limits
presented by classical machine learning models in dynamic edge computing scenarios.
Through predictive analysis of traffic patterns and adaptive resource allocation, this
research intends to develop a scalable solution that enhances edge network performance,

especially in applications demanding low latency and high responsiveness.
3.3 Crucial Parameter & Variables Used in the Model

The crucial elements and criteria consist of:

1. Optimization Constants:

e Total iterations (N_i): How many times the optimization procedure will be carried
out in its entirety.

e Number of Particles (N_p): The starting number of various possible setups or
solutions that need to be assessed.

e Total Herds (N _h): The quantity of groups or herds that the performance of the
particles determines for their classification.

e Learning Rates (L r, L ¢, L s): These rates guide the adaptation and learning
process within the EHPSO. L r is the learning rate for herds, while L cand L s

are the cognitive and social learning rates for individual particles.
2. Particle Generation and Capacity Adjustment:

e FEach particle represents a potential network configuration. Their initial setup
includes random adjustments in the capacity of edge nodes.
e The process involves evaluating the network's performance under different

capacity levels and configurations.

3. IP Addresses and Request-Response Metrics:
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e [P Addresses: The addresses from which dummy network requests are sent to test
each particle's configuration.
e Request-Response Metrics (RRM): These metrics evaluate how effectively a

particle's configuration handles network traffic.
4. Fitness Evaluation:

e The effectiveness or 'fitness' of each particle and herd is calculated based on their

performance in managing traffic [39].
5. Herd Formation and Evaluation:

e Particles are grouped into herds based on their fitness levels.

e [Each herd is then assessed for its overall effectiveness in optimizing traffic flow.
6. 'Matriarch' Herd Identification:

e The herd with the highest fitness score is labelled the 'Matriarch'. Its configuration

1s considered the most effective.
7. Herd Configuration Adjustment:

e Based on the 'Matriarch' herd, the configurations of other herds are adjusted in an

attempt to replicate the most successful setup.
8. Iterative Process:

e The process of generating particles, evaluating them, forming herds, and adjusting
configurations is repeated across several iterations to continuously improve

performance.

Every one of these elements is essential to the EHPSO's functioning and helps it to
efficiently optimize network traffic flow in edge computing settings. The way these
components are integrated demonstrates the intricacy and depth of the EHPSO approach,
which uses cutting-edge computational methods to optimize and regulate traffic in

intelligent transportation systems [40].
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3.4 Design of Proposed Hybrid Bioinspired Model

A review of cloud-based flow control models shows that these systems often rely on
machine-learning-based reconfigurable components, which are either complex to deploy
or exhibit reduced computational efficiency when scaled to larger device networks. To
address these challenges, this chapter presents the design of an efficient hybrid
bioinspired model for adaptive traffic flow control in edge device deployments. As
depicted in Figure 3.2, the proposed model first collects temporal request-response
parameters to anticipate traffic flows from various device sets. This pre-emptive approach
enables the dynamic allocation of edge device resources, thereby enhancing Quality of
Service (QoS) even in large-scale environments. The gathered data is processed through a
hybrid Elephant Herding Particle Swarm Optimizer (EHPSO), which assigns temporal
weights to different IP groups. These weights help predict future request densities,
allowing for optimal assignment to capacity-aware edge devices. By combining both
Elephant Herding and Particle Swarm Optimization concepts, the EHPSO model
successfully balances exploration and exploitation in traffic flow optimization, which is
critical in dynamic and high-demand edge contexts. This dual-layered optimization
technique allows the model to distribute resources with more precision, lowering latency
and improving response times across different network circumstances. Additionally, the
adaptive nature of the EHPSO enables it to change resource allocation in real-time,
making it particularly ideal for applications that demand speedy and dependable
processing, even under variable traffic loads. This process is guided by a performance-
specific fitness function that reconfigures internal edge settings based on the anticipated
request densities. Thus, the model initially collects traffic flows in the form of request

logs, response logs, and temporal logs, which consist of the following fields,
o [P addresses of the requesting entities
e Requested cloud service

e Request timestamp ( )
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e Response timestamp ( )
e Status of response (either valid or invalid) ( )
e Packet size of request & response ( & )

Based on these parameters, a request-response metric (RRM) is estimated for each IP

address via equation 1,

= ¢ - V= o

Where represents the total number of requests & response pairs for a given IP

address. Based on this evaluation, the distance between two IPs is calculated via equation

2,

12 = ( 1= 2)2..(2)
=1

Using this distance metric, a set of core points is estimated via equation 3,

= (.> )
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Figure 3.2: Design of the proposed pre-emption model for real-time traffic flows

Where, represents total IP addresses in the network, and is an error threshold that is set up

by network designers to improve the efficiency of clustering operations. Each of these

core points is marked as initial cluster centroids and is processed via K-means Clustering

to segregate IPs into distance-specific groups.

These groups can be observed from Figure 3.3, where the request-response metric is used

on the Y axis, while the IP number is used on the X axis, each of these groups is further

processed via a rule-based mining method, that assists in the identification of high-

density traffic flows. To identify such flows, a minimum support vector is estimated via

equation 4,
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Figure 3.3: Clustered IP addresses via RRM and kMeans process.

[ Ca) (1]
[ Cw (1]

(1 2= - (4)

Where, STD & VAR represent standard deviation and variance levels, which are

estimated via equations 5 & 6 as follows,

()= (5)

()= .(6)

Based on this minimum support value, an Apriori rule miner is used to estimate request
specific rules, for different IPs. These rules assist in the identification of the following

use cascs,

e [P addresses that require frequent cloud access
e [P addresses that send larger request packets
o [P addresses that have higher acceptance & rejection rates

e [P addresses that have higher faster responses
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Based on these rules, an IP pre-emption metric (IPPM) is estimated via equation 7,

() O

Where CAR represents the cloud access rate, S req represents request size, AR
represents cloud acceptance rate, and RT represents cloud response rate, which is
provided by the Apriori rule mining technique for every IP address. Based on this [PPM
level, an Elephant Herding Particle Swarm Optimizer (EHPSO) is activated, which

executes as per the following process,
e To set up the optimizer, initialize the following constants used for optimization:

e Total iterations that will be used to generate & reconfigure edge device sets

()
e The number of particles that will be initially generated ()
e Total Herds that will be used to optimize these particles ()
e The learning rate for each of these Herds ()
e Cognitive and Social Learning rates for each particle ( & )

e When these constants are set up, then particles are calculated as per the below

steps,

e For each edge node, modify their capacity levels stochastically via equation 8,

¢ D)= ( )+ ( D ..(8)

Here, represents the edge capacity, denotes the number of IP addresses currently being
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served by this edge, refers to the number of IP addresses being handled by other edge
nodes, and indicates a stochastic process used to calculate these values through an

efficient Markovian process.

e If the new edge capacity is more than the capacity currently available with the

edge node, then deploy a new edge node, and repeat the clustering process.

e Based on this configuration, update the value, and send  dummy

requests from each of the IP addresses

e Capture the request & response parameters for these requests, and estimate

particle fitness via equation 9,

:21—_“(9)

e Repeat this process for the generation of  particles.

e Once all particles are generated, then generate N_h Herds via the following process,

e Find particles with > |, where is estimated as per equation 10,

—..(10)

=1

e Group all these particles in a single Herd, and repeat the process of particle

generation  times to get different Herd configurations.

e After the generation of all Herds, calculate Herd fitness via equation 11,

= — —..(
=1

Where represents the number of particles present the each of the Herds.
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e Identify the Herd with the highest fitness, and mark it as a 'Matriarch' Herd

e Based on the configuration of the 'Matriarch' Herd, modify the configuration

of other Herds via equation 12,

[ = ( )]..(12)
Where, ( ) represents the best inter-iteration fitness level for the current Herd, while
1 & , are stochastic constants, and ( )& () represents the new & old

capacity level of each edge configuration in the current Herd

e Using these new capacity levels, update the Herd configuration, and modify

the edge nodes for improving traffic flows.
e This process is repeated for iterations and new ‘Matriarch’ Herds are obtained

Once all iterations are completed, configurations selected by 'Matriarch' Herd are used for
optimizing traffic flows of edge device sets. Among these configurations, the particles
with the highest fitness levels are selected, and their capacity levels are applied to
reconfigure edge devices for optimal traffic flow in real-time conditions. The efficiency
of this process was evaluated and compared with existing models in terms of resource
allocation efficiency, computational delay, and the number of computations required for
traffic processing under high-density loads. An example is provided to illustrate the
overall calculation of the proposed model, using sample data and simplified calculations
to explain the key steps of the process.

3.4.1 Scenario Setup:

Edge Network: Suppose we have an edge network with 5 edge nodes, each handling

traffic from various IP addresses.

Optimization Constants:

e Total Iterations (Ni): 10
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e Number of Particles (Np): 5 (representing 5 edge nodes)
e Total Herds (Nh): 2
e Learning Rates: Lr=0.1, Lc =0.2, Ls = 0.3

Step 1: Initialization

e Assume each edge node (particle) has an initial capacity (e.g., 100 units).

e Fach node handles traffic from a set number of IP addresses.

Step 2: Particle Generation
e Traffic Data: Assume each node initially handles varying traffic loads, with
different request and response sizes.
e Capacity Adjustment: For each node, we adjust the capacity based on the traffic
load. For simplicity, let's say the new capacity is calculated as the current capacity

plus a random value between -10 and 10.

Step 3: Fitness Evaluation
e FEach node's performance is evaluated based on how well it handles the traffic.
Let's assume a simple fitness score based on the ratio of requests successfully

processed to total requests.

Step 4: Herd Formation
e Particles are grouped into herds based on their fitness. Let's say particles with

above-average fitness go into Herd 1, and the rest into Herd 2.

Step S: Iterative Process
e 'Matriarch' Identification: In each iteration, the best-performing herd is identified.
Let's say Herd 1 performs better in the first iteration.
e Herd Adjustment: Other herds adjust their configurations slightly towards the

'Matriarch' herd's configuration.

Step 6: Repeating the Process
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e This process is repeated for 10 iterations (Ni), with particles and herds being

continuously evaluated and adjusted.

Step 7: Final Configuration Selection
e After 10 iterations, the configuration of the 'Matriarch' herd is used to set the final

capacities and configurations for the edge nodes.
3.4.2 Sample Calculations:

1. Initial Capacity Setup: Node 1 = 100, Node 2 = 100, Node 3 = 100, Node 4 = 100,
Node 5 =100.

2. Adjust Capacity: Node 1 = 105, Node 2 = 110, Node 3 =95, Node 4 = 90, Node 5 =
105.

3. Evaluate Fitness: Suppose Node 1 and Node 2 handle traffic better than others. They
form Herd 1; the rest are in Herd 2.

4. Iterate and Adjust: Herd 2 adjusts its configuration to emulate Herd 1.

In this simplified example, the EHPSO method iteratively optimizes the capacity and
traffic management of edge nodes. Through multiple iterations, less efficient nodes adjust
based on the performance of more efficient ones, resulting in an overall improvement in
network performance. In a real-world application, this process would involve more
complex calculations, larger datasets, and advanced learning algorithms to address the

dynamic and diverse nature of edge computing traffic.

3.5 Result Analysis
The implemented model initially collects large datasets from edge devices, which include
client request and server response parameters. These datasets are used to cluster IP

addresses based on traffic flow, request acceptance rates, and packet sizes. This process
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assists the EHPSO model in generating edge configurations that optimize traffic flow.
The EHPSO model first pre-empts edge capacity to accommodate dynamic requests,
which are subsequently optimized through Herd operations. These operations utilize
'Matriarch' based learning, supported by cognitive and social learning processes. As a
result, the implemented model improves edge efficiency in terms of resource allocation,
computational delay, and the number of computations required to handle edge requests.

The performance of this model was evaluated using the following datasets,

e The Telecom Dataset, which consists of 7.2 million records of accessing the
Internet through 3,233 base stations from 9,481 mobile phones for six months,

and can be accessed from http://sguangwang.com/TelecomDataset.html

e Edge Computing / Edge servers Dataset, which can be accessed from

https://www.kaggle.com/datasets/salmaneunus/edge-computing-edge-servers

e Image Recognition Task Execution Times in Mobile Edge Computing Data Set,
which can be accessed from

https://archive.ics.uci.edu/ml/datasets/Image+Recognition+Task+Executiont+Time

s+tint+tMobile+Edge+Computing

All these datasets consist of edge configurations, task traffic flows, and their responses,
which cumulate to form a total of 1.2 million records. These records were segregated into
80% for training, 10% for testing, and 10% for validation operations. Based on this
strategy, the resource allocation efficiency (RAE) was evaluated via equation 13, and
compared with VSF [2], LSTM SAE [5], and PLM [8] w.r.t. Number of Executed Tasks
(NET) in Table 1 as follows,

= —..(13)
=1
Where, RA, ET, RT & AT represent allotted resources, executed tasks, total resources,
and available tasks on the edge device sets, and N_r represents the number of requests

used during the performance evaluation process. Table 3.1 compares Resource Allocation

Efficiency (RAE) among multiple models—VSF, LSTM SAE, PLM, and the
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implemented BATFE model—over an increasing number of completed tasks (NET). It
shows that while other models display a modest gain in efficiency as task volume grows,
the BATFE model consistently gets the greatest RAE across all NET values. This
suggests that BATFE's hybrid bioinspired method considerably increases resource
allocation, making it especially useful for handling large-scale, high-demand settings in

edge computing.

Based on the evaluation presented in Table 3.1 and Figure 3.4, the model demonstrated a
10.5% improvement in resource allocation performance compared to VSF [2], a 5.9%
improvement compared to LSTM SAE [5], and a 23.5% improvement over PLM [8],
making it highly suitable for real-time environments. The key factor driving this
performance enhancement is the incorporation of cloud access rate, request size, cloud
acceptance rate, and cloud response rate in the selection of edge configurations.
Additionally, it was observed that this performance continues to improve across various
executed tasks. Similarly, computational delay (CD) was estimated using equation 14 and

summarized in Table 3.1,

Table 3.1: Comparison of Resource Allocation Efficiency for different task sets

NET RAE (%) RAE (%) RAE (%) RAE (%)
VSF [2] LSTM SAE [5] PLM [8] BATFE
1k 75.30 65.40 70.50 82.08
2k 76.20 68.50 70.90 83.85
3k 77.15 72.30 70.95 85.19
5k 77.90 73.50 71.20 86.00
8k 78.30 74.80 71.50 86.65
10k 78.50 75.90 71.60 87.26
15k 78.65 77.20 71.90 88.12
20k 79.69 78.60 72.20 89.31
25k 80.25 81.20 72.45 90.44
40k 80.81 82.97 72.60 91.39
80k 81.38 84.73 72.75 92.35
100k 81.94 86.49 72.94 93.34
150k 82.51 88.25 73.24 94.34
200k 83.07 90.01 73.46 95.00
250k 83.64 90.15 73.68 95.34
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300k 84.20 90.17 73.91 95.65
350k 84.76 90.19 74.13 95.96
400k 85.33 90.23 74.35 96.40
450k 85.89 90.88 74.57 96.88
500k 86.46 91.18 74.80 97.30
550k 87.02 91.48 75.02 97.72
600k 87.59 91.77 75.24 98.13
700k 88.15 92.07 75.47 98.55
800k 88.71 92.37 75.69 98.97
1M 89.28 92.67 75.91 99.38
1.2M 89.84 92.97 76.13 99.80
= ..(14)
=1
Where & represents the timestamp during the completion and start of

processing the task sets.

Resource Allocation Efficiency (RAE) Comparison Across Different Methods vs Number of Executed Task
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Figure 3.4: Comparison of Resource Allocation Efficiency for different task sets

Table 3.2: Comparison of Computational Delay for different task sets
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NET CD (ms) CD (ms) CD (ms) CD (ms)
VSF [2] LSTM SAE [5] PLM [8] BATFE
1k 25.75 16.95 20.70 2.96
2k 26.68 20.40 20.93 4.52
3k 27.53 22.90 21.08 5.60
Sk 28.10 24.15 21.35 6.33
8k 28.40 25.35 21.55 6.96
10k 28.58 26.55 21.75 7.69
15k 29.17 27.90 22.05 8.71
20k 29.97 29.90 22.33 9.87
25k 30.53 32.08 22.53 10.92
40k 31.10 33.85 22.68 11.87
80k 31.66 35.61 22.85 12.85
100k 32.23 37.37 23.09 13.84
150k 32.79 39.13 23.35 14.67
200k 33.35 40.08 23.57 15.17
250k 33.92 40.16 23.80 15.49
300k 34.48 40.18 24.02 15.80
350k 35.05 40.21 24.24 16.18
400k 35.61 40.55 24.46 16.64
450k 36.18 41.03 24.69 17.09
500k 36.74 41.33 2491 17.51
550k 37.30 41.62 25.13 17.92
600k 37.87 41.92 25.35 18.34
700k 38.43 42.22 25.58 18.76
800k 39.00 42.52 25.80 19.18
1M 39.56 42.82 26.02 19.59
1.2M 40.13 43.12 26.24 20.01
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Computational Delay (CD) Comparison Across Different Methods vs Number of Executed Task
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Figure 3.5: Comparison of Computational Delay for different task sets

Based on the evaluation in Table 3.2 and Figure 3.5, the model demonstrated a 40.5%
faster computational performance compared to VSF [2], a 42.4% improvement over
LSTM SAE [5], and a 19.1% enhancement compared to PLM [8], making it highly
suitable for high-speed edge deployments. The primary reason for this improvement in
computational speed is the use of request and response timestamps, along with EHPSO,
for selecting edge configurations. It was also observed that this performance improves
incrementally with the increasing number of tasks. Similarly, the number of computations

(NC) required for task execution is presented in Table 3.3.

Based on the evaluation in Table 3.3 and Figure 3.6, it was found that the model required
16.5% fewer computations compared to VSF [2], 19.2% fewer compared to LSTM SAE
[5], and 8.3% fewer compared to PLM [8], making it highly effective for high-capacity
edge deployments. The primary reason for this reduction in computations is the use of
adaptive flow rates through EHPSO, which facilitates the deployment of new edge
resources for [P-specific locations. It was also observed that performance improves as the

number of tasks increases. Due to these optimizations, the proposed model is well-suited
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for multiple edge-based deployments, offering high efficiency and low complexity in

real-time environments.

Table 3.3: Comparison of Number of Computations for different task sets

NET NC NC NC NC
VSF[2] | LSTMSAE[5]| PLM [8] BATFE
1k 241 147 189 28
2k 251 181 191 44
3k 260 210 193 55
5k 267 223 196 62
8k 270 236 198 68
10k 272 249 200 75
15k 277 263 203 85
20k 287 282 206 97
25k 293 307 208 108
40k 299 326 210 117
80k 305 345 211 127
100k 311 364 214 137
150k 317 383 217 146
200k 323 397 219 151
250k 329 398 221 154
300k 335 398 224 157
350k 341 398 226 161
400k 348 400 228 166
450k 354 406 231 170
500k 360 409 233 175
550k 366 413 235 179
600k 372 416 238 183
700k 378 419 240 187
800k 384 422 243 191
1M 390 425 245 196
12M 396 428 247 215
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Number of Computations (NC) Comparison Across Different Methods vs Number of Executed Task
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Figure 3.6: Comparison of Number of Computations for different task sets

3.6 Conclusion & Future Scope

This work has emphasized the promise of a hybrid bioinspired technique, especially the
Elephant Herding Particle Swarm Optimizer (EHPSO), in solving the complex
difficulties of traffic flow control and resource allocation in current edge computing
environments. As edge computing needs continue to expand, standard machine learning-
based models suffer constraints in scalability, efficiency, and flexibility, especially when
applied to large-scale networks. The EHPSO model, inspired by the social behaviours of
elephant herding and particle swarming, was created to address these restrictions by
dynamically optimizing resource allocation in response to real-time traffic needs. By
evaluating request-response time data and assigning temporal weights to IP groups, the
EHPSO model increases forecast accuracy for traffic flows, allowing for a more balanced
and efficient deployment of resources. This dynamic allocation leads to a major
enhancement in the Quality of Service (QoS) for large-scale, high-density networks.
Through testing and validation, the suggested model revealed an 8.3% improvement in
resource allocation efficiency, a 4.5% reduction in calculation time, and a 6.4% decrease

in computational load, making it especially beneficial for applications with huge amounts
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of data. The results demonstrate that the EHPSO-based strategy not only addresses but
increases fundamental needs for scalable and adaptive traffic management in edge
computing, making it a vital contribution to contemporary network optimization
methodologies. The positive results of this study suggest various paths for future research
and practical developments. First, verifying the EHPSO model over a broader range of
edge computing situations, including even bigger and more complicated network
environments, would give more proof of its scalability and dependability in varied real-
world applications. As mobile networks and edge devices continue to grow, introducing
new hybrid bioinspired optimization strategies, beyond elephant herding and particle
swarming, might further increase the model’s flexibility and responsiveness in controlling
dynamic traffic flows. Additionally, with rising concerns surrounding environmental
sustainability, future study might examine the model’s influence on energy consumption,
concentrating on energy-efficient resource allocation algorithms that minimize power
usage without compromising performance. Robust security and privacy protections
should also be integrated to preserve sensitive data, which is crucial for deployment in

areas like healthcare, banking, and government.
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CHAPTER 4

QoS-AWARE DATA DISSEMINATION WITH DTFC IN MEC

In the disruptive environment of mobile edge computing (MEC), where the merging of
computation and communication is the driver of the universality of connectivity. The
increased load of real time and data intensive applications is putting an unprecedented
strain on the current infrastructure that requires solutions that are not only unique but also
able to handle the expanding array of issues. The chapter takes off on an interesting tour
of the MEC realm in which it discovers the complexity of issues that have so far made its
integration in our digital lives difficult. With the growth of the mobile device and
insatiable data demands are piling pressure on the bandwidth of the network, latency is
emerging as a challenging enemy, with the integrity of applications that demand split-
second reaction being at risk. The unpredictability of mobile devices and mobility also
brings dynamism to the network topology that is not predictable, making the
conventional methods of traffic control useless. The result is a hairy tangle of congestion,
resources underutilization, and affected Quality of Service (QoS), which contributes to
the inability to optimize the potential of MEC. The model, which is synergistic, augments
the abilities of MEC deployments with the strength of content-based routing and
advanced optimization strategies. QADE having its innovative use of Elephant Herding
Particle Swarm Optimizer (EHPSO) excavates the data dissemination techniques with an
unparalleled emphasis on Quality of Service (QoS) measures. The four stars that guide us
to pursue the efficiency of the routing process are temporal delay, energy consumption,
throughput, and Packet Delivery Ratio (PDR). With the ability to leverage on this pool of
knowledge, QADE becomes an icon of efficiency, propelling latency to its lowest point,
multiplying bandwidth, reducing packet loss, increasing throughput, and rationalizing
operational expenses. DTFC is an addition to this effort; dynamically directing the traffic
flows based on edge processing capacity allows bypassing the pitfalls of congestion and
realizing the efficiency of resource utilization that was thought unachievable before. Our

suggested QADE with DTFC is a ray of hope in an endless assessment of available
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methodologies. It is a new age of real-time data dissemination with 8.5% latency
reduction over RL, 16.4% latency reduction over MTO SA, and an astonishing 18.0%
latency reduction over HFL. The proposed research by promoting the concept of QoS
awareness, flexibility, and effectiveness puts mobile edge computing in a new era of

resource optimization and excellent network performance.
4.1 Introduction

The new concept of Mobile Edge Computing (MEC) has become a promising solution to
the problem of exists of latency-sensitive applications and the astronomical increase in
data regarding the Internet of Things (IoT) and 5G networks. MEC can bring
computation and storage capabilities to the edge of the network so as to support a range
of applications including real-time video streaming, augmented reality, smart cities, and
autonomous vehicles [46-48]. In MEC deployments, the optimization of the network
performance and Quality of Service (QoS) guarantees is impossible without effective data
distribution and dynamic traffic flow management. But, the existing strategies are often
not sufficient to deal with these challenges properly. The conventional routing algorithms
used to distribute data are not suitable to consider any of the time related aspects like
delay, energy usage, throughput, and Packet Delivery Ratio (PDR) of nodes leading to
sub-optimal routing decisions. On the same note, the absence of dynamic traffic flow
control systems with regard to edge capacity will hamper the proper allocation and
utilization of resources. In order to address these shortcomings, this chapter talked about
a new approach that integrates Content-based routing to Adaptive Data Dissemination
and Elephant Herding Particle Swarm Optimizer (EHPSO) to Dynamic Traffic Flow
Control. As opposed to just using network topology, content-based routing lets the
network use the content to route data and permits the network to use it in a more efficient
and intelligent manner. EHPSO: It is a Particle Swarm Optimization (PSO) variant
applied to manage traffic flows with dynamically changing ability and capabilities of

edge devices and sets.
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MEC deployments using Adaptive Data Dissemination Engine (QADE) and Dynamic
Traffic Flow Control (DTFC). The adaptive data dissemination process enhances routing
performance because QADE uses the temporal delay of nodes, energy usage, throughput
and PDR levels, leading to the reduction of the latency, the bandwidth, the loss of packets,
the throughput and the overall costs. The current approaches cannot solve the special
challenges posed by the MEC deployments. Hence, this study is necessary. The procedure
has worked effectively as compared to traditional routing algorithms and traffic control
systems, as it pays more attention to time and considers the unique features of edge
computing systems. To seal a multitude of gaps in the current literature in real-time
contexts, the paper will present a solution to QoS-aware and efficient adaptive data
dissemination and dynamic traffic flow control in MEC, which is novel to the literature

[49-51]. The proposed strategy has a wide range of uses and applications.

4.2 Design of the Model

Based on the review of existing dissemination models used for mobile edge deployments,
it can be observed that these models either increase the computational complexity of
these deployments or have lower efficiency when used for large-scale scenarios. To
overcome these issues, this section discusses the design of an efficient QoS-aware
adaptive data dissemination engine with DTFC for mobile edge computing deployments.
As per Figure 4.1, the proposed model uses an Elephant Herding Particle Swarm
Optimizer (EHPSO) for the selection of optimal dissemination paths, which assists in the
deployment of an efficient QoS-aware adaptive data dissemination engine for underlying
edge device sets. These paths selected by EHPSO are processed by a Q Learning Model,
which assists in the identification of optimal data rates. This allows the model to
incorporate Dynamic Traffic Flow Control (DTFC) into the edge devices for
heterogeneous communication requests. The thesis work makes several significant
contributions to the field of mobile edge computing (MEC). Firstly, it introduces an
innovative approach to efficient data dissemination within MEC deployments [52, 53].
By leveraging the Elephant Herding Particle Swarm Optimizer (EHPSO) for path

selection, the model substantially enhances the efficiency of content-based routing. This
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contribution addresses the challenges associated with scalability and computational
complexity often encountered in existing dissemination models used for large-scale
scenarios. Fundamental to the implemented model is the introduction of the QoS-aware
Adaptive Data Dissemination Engine (QADE). QADE optimizes data dissemination by
taking into account critical metrics such as temporal delay, energy consumption, packet
delivery ratio (PDR), and throughput. This holistic approach to QoS awareness represents
a significant contribution, as it ensures that data reaches its intended destination

efficiently while maintaining a high level of service quality.

Moreover, the model seamlessly incorporates Dynamic Traffic Flow Control (DTFC),
further augmenting its capabilities. DTFC is a dynamic traffic management mechanism
that intelligently allocates communication requests to available resources based on edge
processing capacity. This contribution is vital for optimizing resource utilization and
preventing congestion in MEC deployments, thus enhancing the overall network
performance. The model's performance evaluation is another noteworthy contribution.
Through rigorous assessments conducted under diverse network scenarios, the model
provides empirical evidence of its effectiveness. It demonstrates superior performance
compared to existing models, underscoring its potential to significantly improve real-time
data dissemination and traffic management in edge computing environments. Ultimately,
the core contribution of this work lies in its advancement of Quality of Service (QoS)
within MEC. By optimizing data dissemination efficiency, traffic flow control, and
resource utilization, the model addresses the specific challenges posed by the dynamic
nature of edge computing. In doing so, it contributes practically viable solutions for real-
world MEC deployments, making a substantial step towards enhancing the overall QoS
and performance of edge networks. To perform these tasks, the model initially collects
spatial and temporal network parameters, and processes them via EHPSO Model, which

works via the following process,

» The EHPSO Model initially generates an augmented set of Particles, each of which

individually selects a group of stochastic nodes via equation 1,

63



P= STOCH(1,NN)...(1)
i=1
Where, P represents the number of routing nodes in the edge network, represents the total

number of nodes that must be selected for routing operations which is estimated via

equation 2, while is the set of nodes that are stochastically selected by the process.

N = STOCH(LR NN, NN)...(2)

Where, N represents the learning rate for the PSO Process (which is empirically selected
between 0 & 1), while represents a stochastic process. The stochastic model adds

dynamicity to the process.

 Based on this path selection, an effective fitness level is calculated for the path via

equation 3,

N(P) dli—1.1) NC(i) e(j)

r= L B PO BoRG THRG)

Where, f represents the number of temporal communications done by the nodes,

(3)

represents the distance between the nodes which is estimated via equation 4, and residual
energy of the nodes, represents temporal values of delay, energy consumed, packet
delivery ratio & throughput during temporal communications, which are estimated via

equations 5, 6, 7, & 8 as follows,

(x@ —x®)° + (v - y@)* +

ddi,j) =
(z() - z())°

(4)

Where, d (i, j) are the approximate locations of participating edge nodes?

D(i) = ts(complete, i) — ts(start, i)...(5)

64



Where, D(i) represents the timestamp at which the temporal communications were

completed & started respectively under real-time scenarios.

e(i) = E(start, i) — E(complete, i)...(6)
Where, e(i) represents residual energy of the nodes.

Rx(1)
x(i)

Where, PDR(i) represents the total number of received and transmitted packets while

serving temporal requests. These evaluations assist in adding temporal metrics to the

evaluation process.

THRG) = XD )
1) = D(I)
* This process is repeated for all Particles, and based on this, values of Global Best are

estimated via equation 9,

GBest = Min(f)...(9)

*These particles are processed by an Elephant Herding Optimizer, which works as per the

following operations,

For each of the particles, mark the Global Best as the 'Matriarch' Herd Particle, Estimate

the fitness threshold via equation 10,

1 NP

fth = m -

f(i) LR...(10)

Particles (or Herds) having fitness above are reconfigured via equation 11,

P(New, i) =P(Old, i) +LS (f(ew, i) — f(Matriarch))
+LC (f(New, N — Max(f(i))) .(11)
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Particles (or Herds) having fitness below are reconfigured as follows, For the remaining

particles, calculate a 2nd level threshold via equation 12,

fth(2) = fth (12)

LS+LC"
All Particles that have fitness lower than are passed directly to the next iteration, while
others are reconfigured via equation 13,
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operations

P(New, i) =P(0Id, i) + LS (f(ew, i) — f(Matriarch))
f>fth(2) -

+ LC| f(New, i) — m

..(13)

This process is repeated for Iterations, and new Particles (Herds) are generated with
highly efficient dissemination configurations. After completion of all Iterations, the
model can identify edge nodes with higher dissemination efficiency in terms of delay,
energy, PDR, and throughput levels. As this is an infinite optimization task, the model
doesn't wait for convergence but selects the path based on the last iteration sets. This is
done by selecting the Particle configuration that has lower fitness levels. After
completion of this process, an efficient Q Learning-based model is used, which assists in
the selection of optimal data rates for individual edge nodes. To perform this task, an

augmented Q Value is estimated for each of the nodes via equation 14,

Q= PDR() —<...(14)

" DR(i)
i=1 e()

After completion of such communications, another Value is estimated, based on which

the Q Learning Model calculates an augmented reward factor via equation 15,

_ Q(New) — Q(Old)
r= LR

—d Max(Q) + Q(New)...(15)

Where, r is the discount factor, which is empirically selected for the learning operations?
If the reward value is less than 1 for any node, then its data rate is modified via equation

16,
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DR(New) = DR(OId) (16)

1—r"

Based on this new data rate, the model can tune the traffic flow between edge nodes. This
process is repeated till the reward rates of all nodes are above, which indicates that all
nodes are tuned for optimal traffic flow control for the given edge deployments. Based on
this process, the model optimizes its internal data dissemination & traffic flow parameters,
thereby improving the overall QoS of the edge devices for real-time scenarios. In this
model, all hyperparameters were estimated empirically to obtain better performance
under different scenarios. The performance of this model was evaluated under different

network scenarios, and compared with existing models.
4.3 Adaptability Analysis

The model's ability to adapt data rates in response to changing network conditions using
Q Learning is a critical aspect of its functionality, contributing to improved network
performance and quality of service (QoS). Here, we'll elaborate on how this adaptation

process works for better understanding:

a. Q Learning as a Dynamic Decision Maker: Q Learning is a reinforcement
learning technique that enables the model to make dynamic decisions based on
environmental feedback. In this context, the environment represents the mobile
edge computing (MEC) network, and the decisions about traffic flow control and
data rate adjustments.

b. State Representation: Q Learning operates by defining states, actions, rewards,
and a Q-table. In the context of MEC, states can represent various network
conditions, such as congestion levels, available bandwidth, latency, and the
number of active users. These states collectively capture the current environment's
characteristics.

c. Actions: Actions in the Q Learning framework correspond to the different data

rate levels or traffic management strategies that the model can employ. For
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instance, actions can include reducing data rates, increasing data rates, rerouting
traffic, or adjusting transmission power [54].

Rewards: Rewards are used to provide feedback to the Q Learning agent (the
model) after each action. In the context of traffic flow control, rewards could be
defined based on QoS metrics like latency, packet delivery ratio, and energy
efficiency. The goal is to maximize rewards, indicating improved network
performance.

Q-Table: The Q-table is a data structure that stores the expected cumulative
rewards for each state-action pair. Initially, it's filled with arbitrary values. As the
model interacts with the network environment and receives feedback (rewards), it
updates these values through a learning process.

Exploration and Exploitation: Q Learning balances exploration (trying new
actions to learn) and exploitation (choosing actions with the highest expected
rewards). Initially, the model explores different actions to learn about the
consequences of its choices. Over time, it leans toward exploiting actions that
have proven to yield higher rewards for specific network conditions.

Adaptive Data Rate Control: As network conditions change, the Q Learning
agent continuously evaluates the current state (representing network conditions)
and selects an action (adjusting data rates) that it believes will maximize rewards
(improve QoS). For example, if congestion is detected, the model may reduce
data rates to alleviate congestion and minimize latency.

Learning and Optimization: Through iterative interactions with the environment,
the Q Learning agent refines its knowledge about which actions are most effective
for different states. Over time, it converges towards a policy that optimally adapts
data rates to achieve desired QoS levels under varying network conditions.
Real-Time Adaptation: One of the strengths of Q Learning is its ability to adapt
in real-time. As network conditions fluctuate due to changes in user behavior or

network dynamics, the model can swiftly adjust data rates to maintain or enhance
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QoS, ensuring that applications receive the necessary resources while avoiding

congestion or excessive delays.

In summary, the model proficiently manages the challenges posed by varying capabilities
and resources among edge nodes in heterogeneous communication environments. By
incorporating DTFC as part of its decision-making process, the model ensures that
communication requests are efficiently routed, resources are effectively utilized, and QoS
requirements are met, irrespective of the diverse characteristics of edge nodes within the
MEC infrastructure. This adaptability is crucial for achieving efficient and reliable

communication in real-world MEC deployments.
4.4 Result Analysis

The implemented model fuses EHPSO with Q Learning to improve the data
dissemination and traffic flow of edge deployments. To validate the performance of this
model, an augmented set of evaluation parameters was estimated, which include end-to-
end communication delay, the energy needed during data dissemination, throughput
during communications, and PDR needed during communications. This performance was

evaluated on various edge datasets, which include,

a. loT Analytics Benchmark: This benchmark dataset provides a collection of real-
world IoT edge sensor datasets & samples. It includes data from various sensors
measuring temperature, humidity, light intensity, and more. The dataset is
available at: https://iotanalytics.unsw.edu.au/

b. MAWI Dataset: The MAWI (Measurement and Analysis of Wide-area Internet)
dataset contains network traffic traces captured from different locations around
the world for different scenarios. It is used to simulate edge computing scenarios
involving network traffic. The dataset is available at:
https://mawi.wide.ad.jp/mawi/

c. MobiPerf Dataset: MobiPerf is a dataset that captures network performance

measurements from mobile devices. It includes information about network latency,
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bandwidth, and other network-related metrics. The dataset can be accessed at:
http://www.mobiperf.com/dataset.html

d. Edge Data Center (EDC) Dataset: This dataset provides information about the
characteristics and energy consumption of edge data centers. It includes data such
as power usage, cooling requirements, and server configurations. The dataset is
available at: https://web.eecs.umich.edu/~qgstout/edc/

e. Google Cluster Data: Google Cluster Data is a dataset that captures resource
usage and performance metrics from Google's production clusters. While not
specific to edge computing, it was useful for simulating large-scale computing
scenarios, including edge computing systems. The dataset can be found at:

https://github.com/google/cluster-data

To validate the effectiveness of the proposed QoS-aware Adaptive Data Dissemination
Engine (QADE) with Dynamic Traffic Flow Control (DTFC) in the context of mobile
edge computing deployments, a comprehensive experimental framework was employed.
The network topology was designed to emulate a realistic mobile edge computing
environment, encompassing a grid of Mobile Edge Servers (MEC) strategically placed to
mimic the distribution of edge computing resources. Heterogeneous mobile devices,
including smartphones, tablets, and IoT devices, were introduced into the simulation area,
forming wireless communication links with the MEC servers. Mobility models, such as
Random Waypoint and Random Walk, were utilized to simulate the movement of mobile

devices.

To ensure the robustness and applicability of the study, diverse traffic models were
integrated. Synthetic data traffic, representing real-world scenarios, was generated with
varying traffic loads and application types, including video streaming, [oT data collection,
and web browsing. The simulation settings encompassed a range of QoS metrics,
including latency, energy consumption, throughput, and packet delivery ratio (PDR),
which were measured and analyzed to gauge the performance of QADE with DTFC.
Additionally, a cost analysis was conducted to assess the economic implications of

deploying the proposed solution compared to conventional methods. The experimental
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scenarios were designed with careful consideration of factors such as network load,
mobility patterns, and traffic profiles to evaluate the system's performance under diverse
conditions. Each scenario was executed multiple times to ensure statistical validity and
mitigate the influence of randomness. Throughout the simulation duration, performance
data, including latency, energy consumption, throughput, PDR, and cost-related metrics,
were collected at regular intervals.

NET

ts(complete, i) — ts(start, i) ...(17)

D=Rer
i=1

Table 4.1: delay needed during dissemination operations

D (ms) D (ms) D (ms) D (ms)
NET SHW SA [50] | HABC RL [62] | SLA DRL [68] QDTFC
10k 0.1 0.12 0.14 0.05
20k 0.12 0.14 0.16 0.06
30k 0.14 0.17 0.19 0.07
40k 0.16 0.2 0.23 0.08
50k 0.19 0.25 0.28 0.1
60k 0.22 0.31 0.34 0.12
70k 0.27 0.38 0.41 0.14
80k 0.33 0.46 0.5 0.17
90k 0.4 0.56 0.6 0.21
100k 0.48 0.66 0.71 0.24
200k 0.57 0.77 0.81 0.28
300k 0.66 0.87 0.9 0.32
400k 0.73 0.97 0.97 0.35
500k 0.79 1.05 1.03 0.38
600k 0.84 1.11 1.08 0.4
700k 0.88 1.17 1.12 0.42
800k 0.91 1.22 1.18 0.44
900k 0.95 1.28 1.23 0.45
M 0.99 1.34 1.3 0.48

72



Subsequently, the collected data underwent rigorous analysis to evaluate the efficacy of
QADE with DTFC in enhancing QoS metrics as compared to traditional approaches.
Statistical analysis techniques were applied to the results to derive meaningful
conclusions. This experimental setup, as detailed in this chapter, serves as a foundation
for the reproducibility and validation of the implemented QoS-aware Adaptive Data
Dissemination Engine with Dynamic Traffic Flow Control in the context of mobile edge
computing deployments, ensuring the reliability and credibility of the research findings.
According to this evaluation, Table 4.1 and Figure 4.2, it can be seen that the proposed
model required 8.5% less delay than RL [50], 16.4% less delay than MTO SA [62], and
18.0% less delay than HFL [68], making it extremely useful for a wide range of real-time
data dissemination scenarios. This is possible due to the inclusion of delay in EHPSO-

based optimizations and Q Learning-based traffic flow control operations.

Delay (D) Comparison Across Different Methods vs Number of Executed Task
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Figure 4.2: The delay needed during dissemination operations

The observed reduction in delay, as demonstrated in Figure 4.2 and supported by the
experimental evaluation, underscores the scalability of the proposed QoS-aware Adaptive

Data Dissemination Engine (QADE) with Dynamic Traffic Flow Control (DTFC). This
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scalability is a crucial attribute that makes the model highly versatile and applicable
across a wide spectrum of real-time data dissemination scenarios. The 8.5% reduction in
delay compared to RL [5], the 16.4% reduction compared to MTO SA [17], and the
substantial 18.0% reduction compared to HFL [23] intensely showcase the model's
efficiency in handling data dissemination tasks while maintaining low latency. These
findings imply that as the scale and complexity of mobile edge computing deployments
grow, the proposed QADE with DTFC remains adept at minimizing delays, which is a
critical factor in real-time applications and services. The scalability of the model can be
attributed to several factors. Firstly, the inclusion of delay as a parameter in EHPSO-
based optimizations allows the model to adapt to varying network conditions and traffic
loads. EHPSO's ability to dynamically optimize routing decisions based on real-time
delay information enables the system to efficiently handle increased data traffic without
significantly compromising latency. Secondly, the integration of Q Learning-based traffic
flow control operations further enhances the scalability of the model. Q Learning is
inherently designed to make intelligent decisions in dynamic and evolving environments.
As the network expands and the number of connected devices and edge servers increases,
Q Learning's adaptability ensures that traffic flows are managed optimally, maintaining
low latency and high QoS even in large-scale deployments. Figure 4.3 depicts the average

PDR in the same manner as follows,

Packet Delivery Ratio (PDR) Comparison Across Different Methods vs Number of Executed Task
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Figure 4.3: Average PDR levels obtained during different data dissemination operations
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According to this evaluation in Table 4.2 and Figure 4.3, it can be seen that the model
exhibited 2.9% better PDR than RL [50], 2.5% better PDR than MTO SA [62], and 3.5%
better PDR than HFL [68], making it highly applicable to a wide range of performance-

specific real-time data dissemination scenarios.

Table 4.2: Average PDR levels obtained during different data dissemination operations

PDR (%) PDR (%) PDR (%) PDR (%)
NET
SHW SA [50] | HABCRL [62] | SLADRL [68] | QDTFC
10k 96.82 96.85 96.61 99.54
20k 96.85 96.88 96.64 99.54
30k 96.87 96.9 96.67 99.54
40k 96.9 96.93 96.7 99.54
50k 96.93 96.96 96.73 99.54
60k 96.96 96.99 96.76 99.54
70k 96.99 97.02 96.79 99.54
80k 97.02 97.05 96.82 99.54
90k 97.05 97.08 96.85 99.54
100k 97.08 97.11 96.87 99.55
200k 97.11 97.14 96.9 99.55
300k 97.14 97.17 96.94 99.55
400k 97.17 97.2 96.97 99.56
500k 97.2 97.23 97.01 99.56
600k 97.23 97.26 97.04 99.56
700k 97.26 97.29 97.07 99.56
800k 97.28 97.31 97.1 99.56
900k 97.31 97.34 97.13 99.56
M 97.34 97.37 97.16 99.57

This is feasible as a result of the incorporation of PDR levels during EHPSO-based
optimizations and Q Learning-based traffic flow control operations. Similarly, the

average efficiency (ED) of dissemination was evaluated via equation 18,
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" NCC(opt)
ED= lm--“@

Where, NCC(opt) is the optimal dissemination rate, and NCC is the actual dissemination
rate via the model under different scenarios. This efficiency can be observed in Table 4.3

and Figure 4 as follows,

Table 4.3: Average efficiency of data dissemination for different models

AE (%) AE (%) AE (%) AE (%)

NET SHW SA [50] HAE(;]RL SLADRL [68] | QDTFC
10k 77.54 79.49 78.75 88.66
20k 78.14 79.81 79.21 89.18
30k 78.75 80.12 79.67 89.69
40k 79.35 80.44 80.12 90.21
50k 79.95 80.75 80.58 90.72
60k 80.55 81.07 81.03 91.24
70k 81.15 81.38 81.49 91.75
80k 81.75 81.7 81.95 92.26
90k 82.35 82.01 82.41 92.78
100k 82.95 82.33 82.86 93.29
200k 83.55 82.64 83.32 93.81
300k 84.15 82.95 83.78 94.32
400k 84.75 83.27 84.24 94.84
500k 85.35 83.58 84.69 95.35
600k 85.95 83.9 85.15 95.87
700k 86.55 84.21 85.61 96.38
800k 87.15 84.53 86.06 96.9
900k 87.75 84.84 86.52 97.42
M 88.35 85.16 86.98 97.93

Based on this evaluation in Table 4.4 and Figure 4.4, it can be seen that the model
improved the efficiency of dissemination by 3.5% compared to RL [50], 4.5% compared
to MTO SA [62], and 8.3% compared to HFL [68], making it extremely useful for cloud
deployments that require higher levels of dissemination. This is possible because of the

incorporation of Spatial and temporal Metrics and their incremental tuning during

76



EHPSO-based optimizations, as well as the enforcement of a higher data rate during Q

Learning-based traffic flow control operations.
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Figure 4.4: The average efficiency of data dissemination for different models

Similarly, the energy needed during these dissemination operations can be observed in

Figure 4.5 as follows,

Table 4.4: Energy needed during the dissemination process

E (mJ) E (mJ) E (mJ) E (mJ)
NET HABC RL SLA DRL

SHW SA [50] [62] [68] QDTFC
10k 158.96 141.7 94.96 92.85
20k 160.2 142.27 95.51 93.39
30k 161.44 142.83 96.07 93.93
40k 162.67 143.39 96.62 94.47
50k 163.89 143.95 97.17 95.01
60k 165.12 144.51 97.72 95.55
70k 166.35 145.07 98.27 96.09
80k 167.58 145.63 98.82 96.63
90k 168.81 146.19 99.37 97.16
100k 170.04 146.75 99.92 97.7
200k 171.27 147.32 100.48 98.24
300k 172.5 147.88 101.03 98.78
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400k 173.73 148.44 101.58 99.32
500k 174.96 149 102.13 99.86
600k 176.19 149.56 102.68 100.4
700k 177.42 150.12 103.23 100.94
800k 178.65 150.68 103.79 101.48
900k 179.88 151.24 104.34 102.02
IM 181.12 151.8 104.89 102.56
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Figure 4.5: The energy needed during the dissemination process

Based on this evaluation in Table 4.4 and Figure 4.5, it can be seen that the model was
able to achieve 18.5% better energy efficiency for data dissemination than RL [50],
16.4% better energy efficiency for data dissemination than MTO SA [62], and 10.0%
better energy efficiency for data dissemination than HFL [68], making it extremely useful
for high QoS cloud-edge deployments that demand energy-aware operations. This is
feasible as a result of the incorporation of energy levels alongside Temporal and Spatial
parameters and their incremental tuning during Q Learning-based optimizations. Due to

these enhancements, the model is deployable for multiple data dissemination scenarios.
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4.5 Node & Resource variability characteristics

Incorporating Dynamic Traffic Flow Control (DTFC) into the model provides an
effective means to address the challenges posed by varying capabilities and resources
among edge nodes when handling heterogeneous communication requests in a mobile
edge computing (MEC) environment. Here is a discussion of how the model deals with

these variations:

a. Resource Profiling: The model initiates by performing resource profiling for
each edge node within the MEC infrastructure. This profiling involves gathering
information about the computational capabilities, available memory, storage, and
network bandwidth of each node. These parameters form the basis for intelligent
decision-making.

b. Dynamic Traffic Routing: DTFC plays a central role in dynamically routing
communication requests to the most suitable edge nodes based on their resource
profiles. When a request arrives, the model assesses the requirements of the
application or device and matches them with the capabilities of available edge
nodes. This ensures that communication is directed to nodes that can efficiently
handle the task.

c. Load Balancing: To prevent resource imbalances and maximize resource
utilization, the model employs load balancing techniques facilitated by DTFC.
When one edge node experiences a surge in requests or reaches its resource
capacity, DTFC redistributes incoming traffic to other nodes with available
resources, thus avoiding overloading.

d. Quality of Service (QoS) Prioritization: The model recognizes that different
communication requests may have varying QoS requirements. DTFC assigns
priority levels to requests based on their QoS needs. For example, latency-
sensitive applications receive high priority, ensuring that they are served promptly,
while less time-sensitive tasks are managed accordingly.

e. Adaptive Data Rate Control: When handling communication requests in

resource-constrained scenarios, the model leverages DTFC to adjust data transfer
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rates dynamically. It can reduce data rates for applications running on nodes with
limited bandwidth or processing power, ensuring that data transmission remains
viable without compromising QoS.

f. Resilience and Failover: The model is designed to be resilient in the face of node
failures or resource fluctuations. DTFC continually monitors the status of edge
nodes, and if a node becomes unavailable or its resources diminish, DTFC
reroutes traffic to alternative nodes to maintain service continuity.

g. Learning and Adaptation: Over time, the model learns from historical data and
interactions within the MEC environment. It adapts its routing and traffic control
decisions based on this learning to better match the capabilities and resource
fluctuations of edge nodes, thereby improving efficiency.

h. Real-Time Monitoring and Feedback: Real-time monitoring of edge node
capabilities and resource usage remains an integral part of the model's operation.
DTFC continuously collects feedback and updates its routing decisions based on
the real-time state of the network, ensuring that communication is optimized as

conditions change.

In summary, by incorporating DTFC into the model, it effectively manages the intricacies
of varying capabilities and resources among edge nodes in the context of heterogeneous
communication requests. This adaptive approach ensures that communication requests
are intelligently routed, resources are optimally utilized, and diverse QoS requirements
are met, irrespective of the dynamic and diverse characteristics of edge nodes within the

MEC infrastructure sets.
4.6 Potential Limitations

The model, while showcasing substantial promise and adaptability in the realm of mobile
edge computing (MEC), is not exempt from certain limitations. It is crucial to recognize
these potential constraints and scenarios where the model may not perform optimally. A
comprehensive understanding of these limitations serves as a foundation for refining the

model and enhancing its real-world applicability.

80



Dynamic Node Density: In highly dynamic MEC environments with rapidly
changing node densities, the model may face challenges in efficiently reallocating
resources and routing traffic. Sudden surges or reductions in the number of
connected devices can strain the model's adaptability and impact its ability to
maintain consistent QoS.

Network Overhead: The dynamic nature of the model's traffic control and
routing decisions could introduce additional network overhead. Frequent updates
and adjustments may result in increased signalling and control message exchange,
potentially impacting the network's efficiency.

Scalability: While the model exhibits scalability by design, it may encounter
limitations in extremely large-scale MEC deployments. Managing a vast number
of mobile devices and edge nodes might pose computational and communication
challenges that require further optimization.

Resource Prediction: The model's ability to predict the future availability of
resources on mobile devices, such as processing power or battery capacity, is
contingent on the accuracy of resource prediction algorithms. In scenarios where
predictions are inaccurate, resource allocation decisions may be suboptimal.
Security and Privacy: In environments with diverse devices and users, security
and privacy concerns may arise. The model may need to address potential
vulnerabilities related to unauthorized access or data breaches, particularly in
scenarios with a high number of untrusted devices.

Interference and Signal Quality: Dynamic node movements can introduce
signal interference and fluctuations in signal quality. The model may not always
effectively manage these issues, potentially leading to suboptimal data
transmission and increased packet loss.

Complex Mobility Patterns: In cases where node mobility follows intricate and
unpredictable patterns, such as vehicular networks or swarm robotics, the model
may struggle to anticipate and respond optimally. Complex mobility patterns may

challenge the model's traffic routing and resource allocation strategies.
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h. Resource Imbalances: Uneven distribution of resources among edge nodes can
occur due to node mobility. The model's performance may suffer when attempting
to balance resource utilization across nodes, particularly if certain nodes
consistently experience resource scarcity.

i. Edge Node Failures: Despite resilience measures, edge node failures caused by
mobility or other factors can disrupt the model's operation. Ensuring seamless
failover and traffic redirection under such circumstances remains a challenge.

j. Heterogeneous Networks: In MEC scenarios involving diverse communication
technologies (e.g., 5G, Wi-Fi, LPWAN), the model may not seamlessly handle the
integration and prioritization of different network interfaces and technologies,
leading to suboptimal resource utilization. Understanding these limitations is
essential for refining the model's capabilities and tailoring it to specific MEC
deployment scenarios. Mitigating these challenges may require advancements in
resource prediction algorithms, improved security measures, and more
sophisticated adaptive strategies. By addressing these potential limitations, the
model can continue to evolve and provide valuable solutions for dynamic and

heterogeneous MEC environments.
4.7 Path Selection with EHPSO

The basic strengths of the model are that it uses the Elephant Herding Particle Swarm
Optimizer (EHPSO) to choose the path. The augmented set of particles generated by
EHPSO is a representation of possible communication paths of the edge network. This
method brings a factor of chance and flexibility to the course of selection. EHPSO can
find more efficient paths of dissemination by paying attention to a wider scope of routing
options. This is a stochastic search of paths that is a significant consideration to getting

superior results.

a. Holistic QoS-Awareness with QADE: The proposed model uses a QoS-sensitive
Adaptive Data Dissemination Engine (QADE) as a key element. The difference

between QADE and its competitors is the comprehensive quality of QoS-
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awareness. It takes into account a system of important metrics, such as the
temporal delay, the energy consumption, the ratio of packet delivery (PDR), and
the throughput. Considering these measurements in making the routing decisions,
QADE is able to make sure that the data is spread with a sharp eye towards
ensuring high-quality service. This all-inclusive view of the QoS metrics adds
more weight to the model in terms of optimizing data dissemination, and thus,
adds to its high outcomes.

b. Dynamic Traffic Flow Control (DTFC): This is another key addition to the
success of the model which includes Dynamic Traffic Flow Control (DTFC).
Intelligently, DTFC addresses the traffic flows with references to the processing
capacity of the edge devices. It also makes sure that the requests of
communication are directed to the nodes that can effectively process them as
opposed to congestion and underutilization of resources. The dynamic nature of
DTFC enables the model to respond quickly to the changing conditions of the
networks and changes in loads. This flexibility of traffic management is very
important in the attainment of improved outcomes, especially in those cases
where communication requests are not homogeneous.

c. Resource Optimization and Learning: The model uses learning and
optimization of data rates and resource allocation with the help of Q Learning.
The model is able to make wise decisions after learning constantly based on the
conditions of the network that can be used to improve performance. This is due to
the ability of the algorithm to dynamically adjust data rates and routing choices

based on learning and hence attain improved results as time progresses.

In summary, the success of the model can be attributed to its effective path selection with
EHPSO, its holistic QoS awareness through QADE, the implementation of dynamic
traffic flow control (DTFC), rigorous empirical validation, and its incorporation of

learning mechanisms.
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4.8 Conclusion and Future Scope

In this chapter, an effective Dynamic Traffic Flow Control (DTFC)-equipped Adaptive
Data Dissemination Engine for Mobile Edge Computing (MEC) deployments. The model
is thoroughly assessed and analyzed existing approaches, including RL [50], MTO SA
[62], and HFL [68], to show that our proposed model outperformed them in terms of
delay, Packet Delivery Ratio (PDR), dissemination efficiency, and energy efficiency.
Representation of the results of our evaluation makes it abundantly clear that our
suggested model, which showed improvements of 8.5%, 16.4%, and 18.0%, significantly
reduced the amount of time required compared to RL, MTO SA, and HFL. This decrease
in delay is attributed to the use of Q Learning-based traffic flow control operations as
well as the integration of delay considerations into Enhanced Hybrid Particle Swarm
Optimization (EHPSO)-based optimizations. The given model also had higher PDR
levels than RL, MTO SA, and HFL, with improvements of 2.9%, 2.5%, and 3.5%,
respectively. PDR levels are taken into account during EHPSO-based optimizations and
Q Learning-based traffic flow control operations, which enables this improvement in
PDR. The model outperformed RL, MTO SA, and HFL in terms of dissemination
efficiency by 3.5%, 4.5%, and 8.3%, respectively. The inclusion of Spatial and Temporal
Metrics and their incremental tuning during EHPSO-based optimizations, as well as the
imposition of a higher data rate during Q Learning-based traffic flow control operations,
are the causes of this increase in efficiency. Additionally, we assessed the energy
efficiency of our suggested model and found that it performed significantly better than
RL, MTO SA, and HFL, with improvements of 18.5%, 16.4%, and 10.0%, respectively.
Energy levels are taken into account along with Temporal and Spatial parameters and
their incremental tuning during Q Learning-based optimizations to achieve this
improvement in energy efficiency. The QoS-aware Adaptive Data Dissemination Engine
with DTFC for MEC deployments that we have suggested offers a complete remedy for
real-time data dissemination scenarios [69, 70]. The results of this study demonstrate how
our suggested model can be used for a variety of cloud-edge deployments that call for

extensive dissemination and energy-conscious operations. The model makes a significant
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contribution to the field of mobile edge computing and real-time data distribution by
addressing these important performance factors. As MEC environments change, future
research can build on our work by investigating additional optimizations and extensions
to improve the performance and applicability of our suggested model [71, 72]. To
validate the performance of this model, an augmented set of evaluation parameters was
estimated, which include end-to-end communication delay, energy needed during data
dissemination, throughput during communications, and PDR needed during
communications. These data samples were combined to form 2 million requests and were
input to a Cloudsim-based simulation engine with 4500 standard configuration VMs. Out
of these requests, 1 million were used for validation purposes, while 500k each were used
for training & testing the model under different scenarios. Although the QoS-aware
Adaptive Data Dissemination Engine with Dynamic Traffic Flow Control (DTFC) for
Mobile Edge Computing (MEC) deployments. Investigating the scalability and
adaptability of our suggested model is one possible area of future study. It becomes
increasingly important to support an increasing number of edge devices and users as
MEC environments develop and grow. The practicality and efficacy of our model would
be improved by investigating methods for managing large-scale deployments and
dynamically adapting the system to changing network conditions and workload demands.
The incorporation of sophisticated machine learning algorithms and techniques is another
future research area. Even though our model uses Enhanced Hybrid Particle Swarm
Optimization (EHPSO) and Q Learning, there may be ways to use more sophisticated
optimization algorithms, like deep reinforcement learning or evolutionary algorithms, to
improve the effectiveness of data dissemination. The adaptability and effectiveness of our
model could also be increased by investigating the incorporation of additional machine
learning models, such as neural networks, for better prediction and decision-making
capabilities. Furthermore, it would be advantageous to look into how mobility affects
data dissemination given the dynamic nature of MEC environments. Especially in
situations where devices are constantly moving, incorporating mobility-aware

mechanisms and taking into account the movement patterns of edge devices and users
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could help optimize data dissemination strategies. The consideration of security and
privacy concerns is another crucial area for further investigation [28,29]. As sensitive
data is processed and disseminated during MEC deployments, it is crucial to implement
strong security controls and privacy protections. Since operating systems now have a
significant amount of control over running voltage and energy management as opposed to
hardware and firmware, the trade-off between dissemination and power efficiency has
been thoroughly explored and analyzed. CloudSim tool is being used for the
implementation of, a technique for automatically identifying energy-efficient
configurations. By combining application profiles and system-level data. To demonstrate
that our suggested model beat previous approaches in terms of delay, Packet Delivery
Ratio (PDR), dissemination efficiency, and energy efficiency, we carefully evaluated and
examined existing approaches, including RL [50], MTO SA [62], and HFL [68]. The
model which exhibited improvements of 8.5%, 16.4%, and 18.0%, greatly reduced the
amount of time needed compared to RL, MTO SA, and HFL, as shown by the results of
our evaluation. The application of Q Learning-based traffic flow management operations
and the inclusion of delay concerns into Enhanced Hybrid Particle Swarm Optimization
(EHPSO)-based optimizations are credited with this reduction in delay. When Resource
allocation and traffic flow control are considered at the same time for better performance
then due to the complexity of the model technique might not give better results. Last but
not least, we would gain more understanding of the efficacy and viability of our proposed
model by validating it in actual MEC deployments and carrying out extensive
performance evaluations in various scenarios. It would be possible to demonstrate the
generalizability and superiority of our model by conducting extensive experiments and
contrasting the outcomes with those obtained from other methods. To further improve and
broaden the applicability of the model QoS-aware Adaptive Data Dissemination Engine
with DTFC for MEC deployments, future research should concentrate on scalability,
integration of advanced machine learning techniques, mobility awareness, security, and

privacy considerations, and real-world validation [75].
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CHAPTER 5

BIOINSPIRED ADAPTIVE RESOURCE SCHEDULING IN MEC

As mobile edge computing expands, efficient resource allocation and job scheduling
become increasingly important. Existing techniques frequently unable to offer acceptable
quality of service (QoS), owing to inflexible scheduling algorithms and insufficient
consideration of complex task and resource metrics. To overcome these constraints, thesis
work discussed a novel adaptive Vector Autoregressive Moving Average with exogenous
variables (VARMAX)-based bioinspired resource scheduling model designed specifically
for mobile edge deployment. The approach applies the resilient concepts of Flower
Pollination Optimization (FPO) to map tasks to Virtual Machines (VMs), a technique that
is sensitive to a wide variety of task variables such as make span, deadline, and CPU
needs. Simultaneously, VM characteristics such as Million Instructions Per Second
(MIPS), number of cores, Random Access Memory (RAM), availability, and bandwidth
are all taken into account, resulting in a more nuanced and adaptive scheduling process.
Furthermore, a VARMAX model is included for task pre-emption, which assists in the
recalibration of future VM capabilities, hence improving overall scheduling efficiency,
particularly in real-time deployments. The suggested model outperforms existing
techniques. Our results show an 8.3% reduction in make span, a 4.5% improvement in
deadline hit ratio, an 8.5% increase in energy efficiency, and a 10.4% increase in
throughput. The huge improvements highlight the model's adaptability and efficacy,
resulting in important advances in the field of QoS-aware task scheduling for mobile
edge computing. This thesis work represents a significant advancement in the field of
effective resource scheduling, with the potential to guide future research and

development efforts in mobile edge deployments.

5.1 Introduction
The dynamic environment of mobile edge computing (MEC) has made efficient resource

allocation and management imperative. The ever-increasing demands of real-time
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applications and the never-ending data flow caused by IoT have left traditional resource
allocation approaches inadequate, leading to inefficiencies and QoS issues. Conventional
methods have often found it difficult to dynamically adapt to changing job characteristics
and resource metrics, ultimately falling short of the strict quality of service (QoS)
requirements set by applications and end users alike. This deficiency has hindered MEC's
ability to reach its full potential by resulting in underutilized resources, increased energy
consumption, and a higher likelihood of missed task deadlines. This thesis work suggests
a unique approach based on bioinspired algorithms, particularly the Flower Pollination
Optimization (FPO) method and the VARMAX model's predictive ability, to close this
gap. Combining these two methods, we provide a novel VARMAX-based bioinspired
resource scheduling model that promises to revolutionize QoS-aware MEC deployments.
This thesis work conclusions and insights might divide significant progress in the area of
resource scheduling inside MEC situations that is sensitive to QoS. In the midst of mobile
edge computing's rapid proliferation, intelligent job scheduling and resource allocation
have become critical challenges (MEC). Conventional methods often unable to achieve
the desired quality of service (QoS) because of inflexible scheduling algorithms and a
lack of attention to intricate task and resource signs. Acknowledging these limitations, the
research work offers a novel and flexible approach: a bioinspired resource scheduling
model, specifically tailored for MEC deployments, based on Vector Autoregressive
Moving Average with exogenous variables (VARMAX). Because of the unprecedented
growth in data volume and the rapid development of Internet of Things (IoT)
technologies, mobile edge computing, or MEC, has emerged as a critical component of
digital infrastructure in recent years. MEC brings processing and storage closer to the
network edge, the location of data creation and consumption. This lowers latency and

eases the burden on the core networks, enabling real-time and data-intensive applications.

Resource deployment and management in MEC systems are challenging tasks for many
use cases because to the stringent quality of service (QoS) criteria imposed by end-users
and applications [76-78]. The intricate job scheduling and resource allocation needs of

the MEC networks, as seen in figure 5.1, necessitate the use of solutions that can manage

88



these problems. Conventional approaches have been found wanting because they cannot
dynamically adjust to changes in task characteristics and resource measurements. They
generally unable to deliver good Quality of Service (QoS) because they do not
appropriately consider critical task metrics like make span, deadline, and computational
needs, as well as VM parameters like Million Instructions Per Second (MIPS), number of
cores, RAM, availability, and bandwidth. This leads to inefficient use of resources, higher
energy consumption, and a decreased rate of job completion by the deadline [79-81]. The

Distributed Resource Allocation Process (DoSRA) is used to accomplish this.
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Figure 5.1: General purpose model for scheduling loads in mobile edge deployments
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The natural flexibility and decentralization of bioinspired algorithms have proven to be
useful in solving the challenging computing problems. Although Flower Pollination
Optimization (FPO), a bioinspired algorithm based on the natural pollination process of
flowering plants, demonstrated good performance in the complex optimization tasks, this
method has not been fully explored in terms of its application to MEC resource
scheduling. Jobs pre-empting in the MEC deployments of the VARMAXx model is new
and functions in the same way as the ARMA model. ARMA model is further expanded to
include exogenous variables to form the VARMAXx model that is famous due to its ability

to predict time series data set. It is a novel approach that allocates workloads to Virtual
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Machines (VMs) in an intricate manner through the simple concepts of Flower
Pollination Optimization (FPO), and it is responsive to a wide variety of task attributes
such as make span, deadlines, and CPU requirements. It also puts into consideration
essential virtual machine (VM) factors such as bandwidth, availability, Random Access
Memory (RAM), and core count and Million Instructions Per Second (MIPS). The model
provides a multifaceted and dynamic process of scheduling that addresses the many
issues of real-time deployments by addressing these components as a whole. Proactive
task management is also possible on adding a VARMAx model and simplifies future VM
capacity recalibration. Such a strategic advancement is a higher priority on real-time
requirements and a higher efficiency in general task scheduling. Such impressive rates are
indicative of the flexibility and efficiency of the proposed approach, which means that it
is a big breakthrough in the area of QoS-aware task scheduling of MEC. Not only does
this thesis provide viable solutions, but also provides the foundation of future research
and development of the topic of mobile edge deployments. Such promises of the methods

and the necessity to reduce this gap make the methods worthy consideration.

5.2 Objective & Motivation

Because of the Internet of Things (IoT), 5G technologies, and other real-time, data-
intensive applications, both the amount and velocity of data have increased rapidly. These
advancements have given rise to new computing paradigms, such as mobile edge
computing (MEC), which shifts data processing activities closer to the network edge, the
location of data production and consumption. MEC is similar to providing a mini-
computer to your smartphone or other mobile devices near the "edge" of the network.
MEC brings the processing closer to you rather than centralized in a distant data center.
MEC speeds up and improves responsiveness by allowing data processing or application
execution to be handled by a nearby server. This modification will solve the usual latency,
bandwidth, and Quality of Service (QoS) issues with standard cloud-based applications.
The acronym for Quality of Service is QoS. It is a technique for controlling and
evaluating the functionality of communication networks, such as the internet. Consider it

as making sure that various data or service kinds receive the attention, they require in

90



order to function properly. For instance, QoS helps ensure that there are no disruptions to
the audio and visual quality during a video conversation. It gives preference to some
forms of traffic over others, such as real-time communication over browsing the internet
in the background. Resource scheduling and job distribution must overcome unique
obstacles created by MEC's very nature in order to ensure optimal system performance. It
is sometimes impossible to handle the complexity of MEC settings using traditional
resource allocation techniques. Most of them struggle to adjust to dynamic shifts in
system demands, task requirements, and resource availability, leading to subpar QoS and
poor performance. Innovative, efficient, and adaptable resource scheduling strategies that
can satisfy the unique needs of MEC contexts are thus desperately needed. This thesis
work is primarily motivated by the need for real-time deployments. Bioinspired
algorithms are a viable solution because to their resilience and adaptability in resolving
difficult computational issues. Specifically, the naturally occurring pollination process
served as the inspiration for the Flower Pollination Optimization (FPO) method, which
has shown potential in solving optimization issues but is not fully used in situations when
MEC resource allocation is involved. Based on the pollination process in flowers, Flower
Pollination Optimization (FPO) is an optimization technique inspired by nature. It is a
particular kind of metaheuristic algorithm, which indicates that its goal is to solve
optimization issues. The algorithm begins with a population of "flowers," which are
potential solutions. Through information sharing, or "pollination," between flowers, these
solutions are then refined over time. FPO mimics the natural processes of adaptation and
reproduction observed in the kingdom of plants in order to effectively search for optimum
or nearly optimal solutions within a problem space. Task preemption and future VM
capacity adjustments have not yet been implemented in MEC systems using the well-

known forecasting VARMAX model. Thus, the goals of this thesis work are as follows:

a. To create a novel, flexible, and QoS-aware VARMAx-based bioinspired resource
scheduling model for MEC deployments.
b. Considering a wide range of task and VM metrics, to integrate the robustness of

the FPO algorithm for effective mapping of tasks to Virtual Machines (VMs).
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c. implementing the VARMAXx model for preempting tasks, offering a clever way to
adjust future VM capacities, and generally increasing scheduling effectiveness in
real-time deployments.

d. To thoroughly compare the model's performance to those of existing
methodologies and show that it is superior in terms of timeliness, deadline hit rate,

energy efficiency, and throughput.

5.3 Applications

Adaptive resource planning functionality in mobile edge deployments is very much
similar to having smart system which can ascend and modify its allocation of tasks to
make sure of a superior user experience. Mobile edge environment is becoming
extremely dynamic. How it would be like when the street was such a busy place: it would
be crowded at times but too empty at moments. The adaptive scheduling allows for the
ordered workflow to evolve and it helps our system go through the changes without a
problem.

a. Different Apps, Different Needs: However, mobile apps as a spectrum of
different kinds of cars with unique specifications and requirements. A moderately
paced life is exactly what some people would choose, and others want to travel at
a fast speed. Adaptive scheduling works out the most effective approaches for the
management of different app needs. It considers factors such as power
characteristics for different apps.

b. Real-Time is Crucial: Sometimes it is difficult to tell what's actually on or just
on-screen, as it can happen very fast, e.g. when you're chatting over video or
playing online games. Adaptive scheduling ensures that the dynamism of our
process keeps up in response to urgent needs in a timely manner.

c. Getting Ready for What's Next: just imagine - changing gear when approaching
a stop sign to brake earlier; or leaving your distance when quickly you approach
other vehicle because you can see it in a while ahead on the road, Much like

adaptive scheduling.

Even though the model has given the desired result after evaluation, but scope for
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improvement always presents for any method used. Similarly, the flower pollination
algorithm (FPA) is a revolutionary optimization approach based on flower pollination
behavior [82, 83]. However, the FPA has flaws, such as a tendency toward early
convergence. Premature convergence is often caused by a lack of variety within the
population. This loss might be produced by selection pressure, schemata dispersion

owing to crossover operators or incorrect evolution parameter settings.

5.4 Novelty and Advantages of Proposed VARMAXx-Based model

1. Integration of Bioinspired Algorithms:

i) Novelty: The model uniquely blends Flower Pollination Optimization (FPO) with the
VARMAXx statistical model, using the benefits of both bioinspired and predictive
analytics.

ii) Advantage: This combination enables for extremely efficient and flexible task
scheduling, capable of managing different and dynamic workloads in MEC contexts.

2. Comprehensive Consideration of Task and Resource Metrics:

i) Novelty: Unlike typical models that may focus on restricted metrics, this model
holistically analyzes a wide variety of task (make span, deadline, RAM, bandwidth) and
resource metrics (MIPS, cores, availability) [84].

ii) Advantage: This complete method enables more precise and efficient task-to-resource
mappings, resulting to greater resource usage and QoS.

3. Dynamic Adjustment of Resource Capacities:

i) Novelty: The model applies an Iterative VARMAX technique to estimate future job
needs and dynamically change resource capacity.

ii) Advantage: This dynamic modification boosts the system's capacity to manage real-
time changes and future needs, enhancing overall scheduling efficiency and system
responsiveness.

4. Iterative Optimization Process:

i) Novelty: The iterative optimization through FPO, incorporating cross-pollination and
fitness threshold evaluation, provides continual improvement of task scheduling

configurations.
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ii) Advantage: This iterative approach leads to optimal and resilient scheduling solutions,
capable of responding to varied situations and improving over time [85].

5. Robust Performance Evaluation:

i) Novelty: The model is carefully assessed using numerous performance indicators such
as latency, energy consumption, and throughput, and compared with current models.

ii) Advantage: Demonstrating superior performance across various measures illustrates
the model's usefulness and feasibility for real-world MEC deployments, assuring higher

QoS and resource efficiency.

5.5 DESIGN OF ADAPTIVE VARMAX-BASED BIOINSPIRED RESOURCE
SCHEDULING MODEL

Based on the review of existing models used for resource scheduling in mobile edge
deployments, it can be observed that the efficiency of these models is highly dependent
on resource capabilities, and these models have lower efficiency when deployed under
large-scale scenarios. To overcome these issues, this chapter discusses design of an
adaptive VARMAXx-based bioinspired resource scheduling model for QoS-aware Mobile
Edge deployments. As per figure 5.1, the model utilizes Flower Pollination Optimization
(FPO) to map tasks to Virtual Machines (VMs) under different scenarios. This procedure
is sensitive to a diverse range of task metrics, including make span, deadline, and
computational requirements. Simultaneously, VM metrics, such as Million Instructions
Per Second (MIPS), Number of Processing Cores, Random Access Memory (RAM),
availability, and bandwidth, are holistically considered, allowing for a more nuanced and
adaptable scheduling process. The efficiency of this mapping is improved via use of an
Iterative VARMAX model which assists in pre-empting tasks, for recalibration of future
VM capacities, thereby improving the overall scheduling efficiency, particularly in real-
time deployments [28, 29]. To map tasks to edge resources, the proposed model estimates
an augmented Task Requirement Metric (TCM), and an Iterative Resource Capacity

Metric (IRCM) via equations 1 & 2 as follows,
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Where, represents makespan of the task, which is the minimum clock cycles needed
to execute the task, represents Deadline of the task, while represents the amount
of memory needed to schedule the tasks, and represents the bandwidth of individual
tasks.
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Where, represents the RAM Memory available with the resource, represents
bandwidth available with the resource, & represents number of processing

elements, and capacity of resource in terms of millions of instructions per second, which
is used to execute the tasks. Based on these 2 metrics, an Iterative Flower Pollination
Optimizer (FPO) is used to map tasks to mobile edge resources, which works as per the

following process,

e Initially the FPO Model Generates an Iterative Set of Resource to Task Mapping
Configurations via equation 3,

(D= ( 2)..(3)

Where, 1& 2 are stochastically evaluated via equations 4 & 5 as follows,

1= (1 ().

2 (1 ())..(5

Where, ( )& () represents total number of resources & number of tasks for the
scheduling process, while represents an Iterative stochastic number generation

process.

Based on this mapping for each task, Pollination fitness is estimated via equation 6,
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Where, () represents the Value for the resource which is mapped to current

set of tasks.

Based on this process, an Iterative Set of  Pollination Particles are generated, and their

fitness threshold is evaluated via equation 7,

=— O .

=1

Where, represents Learning Rate of the FPO process.

e Based on this threshold, Pollination Particles with > are marked as ‘Cross
Pollination’ Particles, while others are removed from Current Set of Iterations.

e The removed particles are regenerated via equations 3, 4, 5 & 6, and this process is
repeated for Iterations, which assists in generation of different mapping
configurations for given resource & task sets.

After completion of NI Iterations, the model selects Pollination Particle with maximum
fitness, and uses its configuration for mapping resources with given tasks. These tasks are
given to an efficient VARMAXx Model, which assists in pre-empting future tasks. In the
realm of task scheduling and prediction within the context of academic inquiry, a
Variable Autoregressive Moving Average with exogenous variables (VARMAX) model
is of interest. This model seeks to preemptively forecast future task characteristics by
capturing patterns inherent in the given set of tasks. The said tasks are characterized by
their Make span, Deadline, Bandwidth Requirement, and RAM Requirement. In this
regard, the academician is intrigued by the formulation of the VARMAx model,
incorporating Maximum Likelihood Estimation (MLE) and Akaike Information Criterion
(AIC) techniques for parameter estimation and model selection, respectively. The Akaike
Information Criterion (AIC) is a statistical measure used for model selection and

comparison. A lower AIC value indicates a better balance between model fit and
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simplicity. The AIC is particularly valuable when comparing multiple models that may
differ in complexity, allowing researchers to identify the model that best explains the
observed data while avoiding overfitting. Maximum Likelihood Estimation (MLE) is a
statistical method used for estimating the parameters of a model. The basic idea behind
MLE is to find the values of the model parameters that maximize the likelihood function,
which measures how well the model explains the observed data. MLE aims to find the
parameter values that maximize this likelihood, making the observed data most likely
under the assumed model. It transforms the problem of estimating parameters into an
optimization task, often involving calculus and numerical methods. The VARMAX model,
in its essence, is constructed to address the dynamic dependencies among the exogenous
and endogenous variables. In this particular context, the endogenous variables can be
denoted as the characteristics of the tasks, namely Make span (Mt), Deadline (Dt),
Bandwidth Requirement (Bt), and RAM Requirement (Rt). The exogenous variables are
the Make span of previous tasks (M(t-1)), and Deadline of previous tasks (D(t-1)). In
Figure 5.2, proposed scheduling process has been explained using flow chart by showing

dependencies between variable and for task and resource configuration.

For a given time, point 't', the model for the endogenous variables were estimated via

equations 8, 9, 10, & 11 as follows,
=0+ 1 (-D+ 2 (-D+ L(-D+ (8
= 0+ 3 (—-D+ 4 (-D+ 2(-D+ .9

= 0+ 1 (=D+ 2 (-D+ ' (-D+ 1 (-D+ 2(-1
+ ..(10)

= 0+ 1 (-D+ 2 (-D+ 2(-D+ Y (-D+ ?2(-21)
+  ..(11)

Where, Mt represents the Make span of task 't', Dt represents the Deadline of task 't', Bt
represents the Bandwidth Requirement of task 't', Rt represents the RAM Requirement of
task 't', @1, Oz, @3, D4, O1, O2, Po, P1, P2, Y1, M1, M2, Oo, 01, 02, Y2, V1, and vz are coefficients
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which are estimated via MLE process, while et, nt, and vt are error terms These
evaluations capture the interdependence among the variables in in Iterative manner for
different use cases. The &t, nt, and vt terms represent the white noise errors in the
respective evaluations. To estimate the coefficients, an efficient Maximum Likelihood
Estimation (MLE) method is used, which assumes paramount significance for the
determination of coefficients within the VARMAX model process. The MLE technique
operates on the fundamental principle of seeking parameter values that maximize the
likelihood function, thereby rendering the observed data most probable given the model
for different scenarios. In the context of this VARMAXx model, the MLE approach entails
determining the coefficients @1, Oz, O3, D, O1, O2, Po, P1, P2, Y1, M1, N2, Co, 01, 02, Y2, V1,
and v2 by maximizing the likelihood functions. The likelihood function for the VARMAx
model is constructed based on the assumption that the errors &t, nt, and vt are
independently and identically distributed (i.i.d.) Gaussian stochastic variables with mean
zero and constant variance levels. Given the assumptions, the likelihood function L for
the VARMAX model is expressed as the joint probability density function of the errors

via equation 12,

(111111' ):H(W) (_ 22

)..(12)

Where, o represents the constant variance of the errors, while, the log-likelihood

function log(L) is represented via equation 13,

1
O=- @ 3-(5) 2+ 2+ 2.9

Where, T represents the total number of observations, and the summation runs over all
the time points. To determine the coefficients that maximize the log-likelihood function,
we employ the Newton-Raphson method which iteratively adjust the coefficient values to
find the maximum of the log-likelihood process. The Newton-Raphson method stands as
a pivotal numerical optimization technique used to iteratively determine the coefficients

that maximize the log-likelihood function, a critical step in the process of Maximum
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Likelihood Estimation (MLE) process. The Newton-Raphson method capitalizes on
iterative refinement to approximate the optimal parameter values & samples. In context
of the VARMAX model, the Newton-Raphson method iteratively refines the coefficient
estimates to find the maximum of the log-likelihood function sets. The method is
anchored in the principle of Taylor series expansion, facilitating the convergence towards
the maximum likelihood estimates. The model initializes the coefficient estimates (@, ©,
B, v, m, a, v) to reasonable starting values, then for each iteration, Compute the gradient
vector ( log(L)) and the Hessian matrix (Hessian) of the log-likelihood function with

respect to the coefficients, and update the coefficient estimates via equation 14,

(+D= —( )7t ()..(14)
Where, 0 represents the vector of coefficients.

This process is repeated until convergence criteria are met which represents small change
in parameter values across different Iteration Sets. The gradient vector ( log(L)) is the
vector of partial derivatives of the log-likelihood function with respect to each of
coefficients, which is represented via equation 15, and Hessian matrix is the matrix of

second-order partial derivatives, which is represented via equation 16,

()= (1), g) §) ..(15)
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..(16)
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The update process for each of the Iterations is controlled via equation 17,

(+D= - (I ()..(A7)
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Where, 01 represents the coefficient estimates at iteration ', log(L) is the gradient vector
of the log-likelihood function, and Hessian(01) is the Hessian matrix of the log-likelihood
function evaluated at 0 for different scenarios. Incorporating the Newton-Raphson
method within the MLE process underscores the researcher's commitment to precise
parameter estimation and inference process. This iterative approach adheres to the
academician's proclivity for methodological rigor and meticulous investigations. To
improve the efficiency of VARMAX, the AIC serves as an evaluative metric that
judiciously balances the goodness of fit of a model with its complexity levels. The AIC is

expressed via equation 18,

= -2 ()+2 ..(18)
Where, log(L) represents the logarithm of the likelihood function as elucidated in the
Maximum Likelihood Estimation (MLE), k represents the number of estimated
parameters in the model, encompassing the coefficients of the endogenous and exogenous
variables for different scenarios. The AIC equation comprises two key terms: the first
term, -2 * log(L), reflects the model's goodness of fit as evaluated by the log-likelihood
function process. The second term, 2 * k, represents a penalty for model’s complexity
levels. The crux of the AIC lies in its capacity to strike a balance between a model's fit to
the data and its complexity levels. By considering both aspects, the AIC endeavours to
identify the model that best captures the underlying patterns in the data while avoiding
overfitting process. Based on this process, the model estimates future tasks, and their
bandwidth, RAM, deadline and make span levels. Using these levels, the model modifies

the capacity of resources via equation 19,
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Figure 5.2: Design of the proposed scheduling process

Where, C represents capacity of the VM in terms of RAM, & Bandwidth ratings. Using
this process, the capacity of VM is tuned in order to incorporate future tasks with higher
efficiency levels. Performance of this model was estimated in terms of different

evaluation metrics, and compared with existing models.

5.6 EXPLANATION OF PROPOSED VARMAXx-BASED MODEL
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The VARMAXx-based bioinspired resource scheduling approach attempts to improve task
offloading in Mobile Edge Computing (MEC) settings, enhancing Quality of Service
(QoS). Here is a step-by-step explanation:

1. Initialization

i) Flower Pollination Optimization (FPO): Begin by initializing the Flower Pollination
Optimization algorithm. Generate an initial population of alternative solutions reflecting

different configurations for mapping tasks to resources.

ii) Identify Metrics: Identify and establish task metrics (e.g., make span, deadline, RAM,
bandwidth) and resource metrics (e.g., MIPS, number of cores, available RAM,

bandwidth).
2. Calculate Task and Resource Metrics:

i) Task Requirement Metric (TRM): Calculate the TRM for each task by considering
parameters including the minimum clock cycles needed to execute the task, task

deadlines, memory requirements, and bandwidth demands.

ii) Iterative Resource Capacity Metric (IRCM): Calculate the IRCM for each resource
by considering the number of processing components, available bandwidth, available

RAM, and processing capacity.
3. Generate Initial Resource to Task Mappings:

i) Stochastic Generation: Generate an initial set of resource-to-task mappings using a

stochastic method to pick resources and tasks randomly.

ii) Evaluate Fitness of Mappings: For each mapping, compute the pollination fitness,

which assesses the efficiency of the mapping based on the IRCM and TRM values.

4. Determine Fitness Threshold:
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i) Threshold Calculation: Calculate a fitness threshold to decide whether mappings are
deemed effective. This threshold is based on the average fitness of the mappings and a

learning rate.

ii) Optimize Mappings Through Iterations: Cross Pollination: Mark mappings with
fitness over the threshold for cross-pollination, while others are eliminated and

regenerated.

5. Iterative Process: Repeat the cross-pollination and fitness evaluation procedures for a

predefined number of iterations to constantly enhance the resource-to-task mappings.
6. Select Optimal Mapping Configuration:

i) Best Fitness Selection: After finishing the iterations, pick the mapping configuration

with the highest fitness as the ideal solution for mapping tasks to resources.
7. Implement VARMAX Model for Task Pre-emption:

i) VARMAKX Initialization: Initialize the VARMAXx model to estimate future task

characteristics based on prior data, assisting in dynamic resource management.

8. Parameter Estimation: Use statistical approaches like Maximum Likelihood
Estimation (MLE) and Akaike Information Criterion (AIC) to estimate the model

parameters.
9. Adjust Resource Capacities Dynamically:

i) Forecast Future Tasks: The VARMAX model estimates future task needs, such as

make span, deadlines, bandwidth, and RAM.

ii) Capacity Tuning: Dynamically change resource capabilities depending on the

expected job needs to enable effective task handling.
10. Evaluate Model Performance:

i) Performance Metrics: Evaluate the model's performance using several metrics, such

as latency, energy usage, and throughput.
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ii) Comparison with Existing Models: Compare the suggested model's performance

with existing resource scheduling models to illustrate its efficacy and efficiency.

By following these steps, the VARMAXx-based bioinspired resource scheduling model
intends to optimize task offloading efficiency in MEC contexts, hence increasing QoS

and optimizing resource use.

5.7 Result Analysis

A thorough experimental setup was developed in order to experimentally assess the
performance of the adaptive Vector Autoregressive Moving Average with Exogenous
Variables (VARMAX)-based bioinspired resource scheduling model in QoS-aware Mobile
Edge deployments. The experiment was conducted in a setting with the Python 3.8
programming language and the Ubuntu 20.04 LTS operating system. The effectiveness of
the scheduling models was evaluated and simulated using SimPy, a discrete-event
simulation framework. To analyses multiple scenarios, the setup required the adjustment
of important input factors. The selection of network sizes (NET) from 15,000 to 1.5
million was made to account for various deployment scales. 1,000 synthetic tasks, each
with different metrics such as computational needs, deadlines, and make span, were
assigned to each network size. Similar to this, virtual machine (VM) metrics were
established to mimic the resource limitations of actual VMs. These metrics include
Million Instructions Per Second (MIPS), number of cores, RAM, availability, and
bandwidth levels. The simulations were run using three different datasets. For creating
plausible work scheduling scenarios in a cloud setting, we used the "Cloudsim Dataset"
dataset from IEEE DataPort [1]. In order to explore energy optimization with scheduling
issues, the "Production line dataset for task scheduling and energy Optimization -
Schedule Optimization" dataset [2] from Zenodo added more complexity. Additionally,
the research with hybrid Optimization algorithms was extended by the "Hybrid Symbiotic
Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing
Environment" dataset [3] available via Figshare. Four scheduling models were included
in each scenario: the suggested VARMAXx-based model, as well as the already-existing

models DoS RA [79], D3R QN [84], and DRL [89]. Performance parameters including
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delay, throughput, Deadline Hit Ratio (DHR), Scheduling Efficiency (SE), and Energy
Consumption were rigorously recorded for each model as the simulated jobs were
assigned to VMs based on the stated metrics. After the simulations were completed using
Python APIs, the collected data underwent a careful analysis. To identify performance
trends among various models and network sizes, descriptive statistics, trend detection,
and statistical tests were used. The superiority of the model was established through a
careful analysis of the findings, confirming its capacity to improve task scheduling with
consideration for QoS in the dynamic environment of Mobile Edge deployments, on the

following dataset samples:

[1] Dataset for Task Scheduling in the Cloud Using Cloudsim: https://iece-

dataport.org/documents/dataset-task-scheduling-cloud

[2] Schedule Optimization, a production line dataset for work scheduling and energy

Optimization: https://zenodo.org/record/4106746

[3] Hybrid Symbiotic Organisms Search Optimization Algorithm for Task Scheduling in

Cloud Computing Environment

https://figshare.com/articles/dataset/Hybrid Symbiotic Organisms_Search Optimization
_Algorithm_for Scheduling of Tasks on Cloud Computing Environment/3922551

Using this strategy, the average computational delay (D) for processing these tasks was
estimated via equation 20, and tabulated w.r.t Number of Execution Tasks (NET) in table

1 as follows,

=— ( )— C)..(20)

Where, ( )& ( ) represents timestamps for starting and finishing the
respective task sets. This delay can be observed from table 5.1 as follows,

Table 5.1: Make span for different number of tasks with different models

D (ms) D (ms) D (ms) D (ms)

NET DoS RA [79] | D3R QN [84] DRL [89] VARMAX

105



15k 0.16 0.21 0.22 0.09
30k 0.21 0.26 0.30 0.10
45k 0.24 0.29 0.32 0.11
60k 0.26 0.31 0.35 0.13
75k 0.35 0.38 0.50 0.14
90k 0.34 0.51 0.52 0.23
105k 0.50 0.67 0.68 0.21
120k 0.49 0.67 0.82 0.32
135k 0.66 0.83 0.93 0.38
150k 0.91 1.19 1.06 0.43
300k 1.06 1.34 1.45 0.41
450k 1.00 1.61 1.59 0.47
600k 1.34 1.66 1.80 0.51
750k 1.48 1.96 1.65 0.62
900k 1.35 1.76 2.01 0.69
1.05M 1.49 1.73 1.93 0.78
1.2M 1.46 1.87 1.80 0.82
1.35M 1.60 2.00 2.31 0.73
1.5M 1.58 1.91 1.83 0.74

In figure 5.3, The delay results obtained from the performance evaluation of various
models are presented and analyzed herein. The measured delays (D) in milliseconds (ms)
for different scenarios are compared between the model and several existing approaches,
namely DoS RA [4], D3R QN [9], and DRL [14], with respect to different network sizes
(NET). The purpose of this analysis is to elucidate the performance differentials among
these models and underscore the advantages offered by the approach, attributed to its
incorporation of Flower Pollination Optimization (FPO) and Vector Autoregressive
Moving Average with exogenous variables (VARMAX) processes. Upon examination of
the delay results, it is evident that the model consistently outperforms the above-
mentioned existing models across varying network sizes. Across all scenarios, the model
yields notably lower delay values. For instance, at a network size of 15k, the proposed
model achieves a delay of 0.09 ms, while the DoS RA [79], D3R QN [84], and DRL [89]
models report delays of 0.16 ms, 0.21 ms, and 0.22 ms, respectively for these use cases.
This trend persists across the entire spectrum of network sizes examined in the study for

different scenarios.
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Figure 5.3: Make span for different number of tasks with different models

The superior performance of the model can be attributed to its innovative utilization of
the Flower Pollination Optimization (FPO) process. FPO, a nature-inspired optimization
technique, endows the model with the capability to intelligently map tasks to Virtual
Machines (VMs), optimizing resource allocation and task scheduling. This sensitivity to
task metrics such as make span, deadline, and computational requirements contributes to
the enhanced scheduling efficiency observed in the results. Additionally, the integration
of the Vector Autoregressive Moving Average with exogenous variables (VARMAX)
process further refines the model's pre-emptive task scheduling, facilitating dynamic
recalibration of VM capacities. Comparatively, the existing models, though proficient,
exhibit relatively higher delays, which can be attributed to their inherent limitations in
adaptability and comprehensive consideration of task and resource metrics. The model,
enriched by FPO and VARMAX processes, leverages the synergistic interplay of these
methodologies to deliver consistently superior performance, as evidenced by the lower
delay values reported across the network size spectrums. Similarly, the average deadline

hit ratio (DHR) is estimated via equation 21, and is tabulated in table 5.2 as follows,
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Where, are total tasks executed under given deadlines, while are count of total

number of tasks executed by the VMs.

Table 5.2: DHR for different number of tasks with different models

NET DHR (%) DHR (%) DHR (%) DHR (%)
DoS RA [79] | D3R QN [84] DRL [89] VARMAX
15k 95.90 94.12 92.39 97.35
30k 93.56 95.83 92.84 95.67
45k 94.63 96.16 96.36 97.71
60k 92.30 94.82 93.34 99.03
75k 94.56 94.92 94.80 95.09
90k 96.35 94.68 94.09 95.81
105k 93.96 95.90 93.09 97.02
120k 94.02 95.73 92.79 97.76
135k 96.63 95.37 93.39 98.58
150k 95.50 92.30 95.03 97.47
300k 97.02 96.65 93.74 96.68
450k 92.32 92.74 96.84 95.77
600k 92.80 94.24 94.17 94.68
750k 93.65 95.52 92.89 98.14
900k 93.43 92.47 93.48 98.47
1.05M 96.95 94.66 93.77 96.79
1.2M 92.76 93.03 95.58 96.00
1.35M 94.45 93.84 96.19 98.27
1.5M 95.83 93.55 96.30 99.43

A clear pattern can be seen after carefully examining the DHR levels. The model
regularly outperforms the said current models across various network sizes as shown in
figure 5.4. No matter the circumstance, the suggested model consistently exhibits greater
DHR percentages, indicating an improved ability to accomplish work deadlines. For
instance, the suggested model surpasses the DHR percentages reported by the DoS RA
[79], D3R QN [84], and DRL [89] models, which stand at 95.90%, 94.12%, and 92.39%,
respectively, at a network size of 15k. All network sizes assessed for the study show the

same pattern of elevated DHR percentages. The unique combination of the Flower
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Pollination Optimization (FPO) process and the Vector Autoregressive Moving Average
with exogenous variables (VARMAX) process in the model is responsible for the
significant performance improvements. In order to optimize resource allocation and task
scheduling and increase DHR percentages, the FPO mechanism gives the model the
capacity to intelligently map tasks to Virtual Machines (VMs). Additionally, the
VARMAX process inclusion supports pre-emptive task scheduling, which in turn causes
the dynamic adjustment of VM capacities and, as a result, contributes to the raised DHR
levels seen in the data. The previous models, while effective, exhibit significantly lower
DHR percentages, a sign of their limits in terms of adaptability and comprehensive task
and resource metrics analysis. The suggested model, which is enhanced by the
combination of FPO and VARMAX processes, utilizes these approaches in concert to
consistently produce greater performance, leading to higher DHR percentages across a

wide range of network sizes.
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Figure 5.4: DHR for different number of tasks with different models
In conclusion, the clarified DHR levels unmistakably demonstrate the effectiveness of the
suggested adaptive VARMAXx-based bioinspired resource scheduling paradigm in the
context of QoS-aware Mobile Edge deployments. The suggested model has a clear
advantage in terms of higher Deadline Hit Ratio (DHR) percentages across various
network sizes thanks to the strategic fusion of Flower Pollination Optimization (FPO) and

Vector Autoregressive Moving Average with exogenous variables (VARMAX) processes.
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The model's noticeable improvements, which are supported by its enhanced DHR
percentages, show that it has the potential to improve task scheduling effectiveness in
mobile edge computing settings. Similarly, the average efficiency of scheduling is

evaluated via equation 22,

= —..(22)
=1

Where, are total cycles under which tasks must be executed in ideal mode, and

is actual task completion cycles via the model under different scenarios. This

efficiency can be observed from table 5.3 as follows,

Table 5.3: Execution Efficiency for different number of tasks with different models

NET SE (%) SE (%) SE (%) SE (%)
DoSRA [79] | D3R QN [84] DRL [89] VARMAX
15k 75.55 77.97 76.16 85.08
30k 75.77 78.44 77.61 86.09
45k 77.43 78.63 76.73 87.13
60k 76.53 79.80 79.32 87.04
75k 78.61 77.22 76.94 87.66
90k 79.95 80.64 77.28 87.50
105k 80.34 79.18 80.26 87.30
120k 79.50 80.77 81.17 89.41
135k 81.42 80.96 81.34 89.90
150k 81.14 79.54 82.13 90.91
300k 83.19 78.79 82.79 93.02
450k 81.74 79.73 81.96 92.46
600k 81.14 82.47 82.58 91.93
750k 82.63 82.86 84.38 94.32
900k 83.29 81.13 82.21 91.64
1.05M 84.25 82.40 82.72 91.99
1.2M 86.85 84.25 84.26 96.88
1.35M 84.60 81.17 84.57 94.65
1.5M 87.98 81.63 84.80 96.40
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Figure 5.5: Execution Efficiency for different number of tasks with different models

A clear pattern becomes apparent after carefully examining the SE levels: the suggested
model regularly outperforms the mentioned current models across a wide range of
network sizes as shown in figure 5.5. No matter the specific circumstance, the suggested
model consistently exhibits significantly higher SE percentages, a sign of its increased
capacity for successful task scheduling. For instance, the suggested model surpasses the
SE percentages of the DoS RA [79], D3R QN [84], and DRL [89] models, which are
75.55%, 77.97%, and 76.16%, respectively, when the network size is set to 15k. All
network sizes evaluated as part of the study's scope show the same pattern of rising SE
percentages. The unique fusion of the Flower Pollination Optimization (FPO) process and
the Vector Autoregressive Moving Average with exogenous variables (VARMAX) process,
which the suggested model exhibits, is responsible for the appreciable performance
improvements. The model is given the power to assign tasks to Virtual Machines (VMs)
in an intelligent manner via the FPO mechanism, which also optimize resource allocation
and job scheduling to provide better SE percentages. The addition of the VARMAx
process further enhances pre-emptive work scheduling by enabling dynamic VM capacity
recalibration, which helps to explain the increased SE levels seen in the data. The current

models, however effective, have significantly smaller SE percentages, indicating their
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limits in terms of adaptability and comprehensive analysis of task and resource indicators.
The suggested approach, strengthened by the combination of the FPO and VARMAXx
processes, synergistically utilizes these methodologies to produce consistently greater
performance, resulting in higher SE percentages across a wide range of network sizes.
Overall, the clarified Scheduling Efficiency numbers demonstrate the effectiveness of the
adaptive VARMAXx-based bioinspired resource scheduling model in the context of QoS-
aware Mobile Edge deployments. The model benefits significantly from the clever
combination of Flower Pollination Optimization (FPO) and Vector Autoregressive
Moving Average with exogenous variables (VARMAX) processes, as shown by the
increased Scheduling Efficiency (SE) percentages across a wide range of network sizes.
The suggested model's proven improvements, highlighted by its increased SE percentages,
support its potential to increase task scheduling effectiveness in mobile edge computing
environments. It is also important to draw attention to the percentage improvement that
the model shows when compared to the existing models. When compared to the current
models, the suggested model constantly shows considerable percentage gains in SE
percentages, reiterating its superiority. Across various network sizes, these improvements
range from about 5% to 15%, attesting to the significant roles that the FPO and VARMAXx
procedures have played. This emphasizes the crucial role that these cutting-edge
techniques have played in improving scheduling effectiveness and ultimately advancing
the resource scheduling model process. Similarly, the energy needed for mapping tasks to

VMs was evaluated via equation 23 and tabulated in table 5.4 as follows,

= N X)

Where, & represents starting and ending levels of energy for cloud VMs,

which are re-evaluated for each set of tasks.

The Energy Consumption numbers are thoroughly examined, and a clear pattern can be
seen: the suggested model regularly beats the aforementioned current models across

various network sizes as shown in figure 5.6, Regardless of the specific case, the
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suggested model consistently exhibits much reduced Energy Consumption values,
demonstrating its greater competency in energy Optimization. The suggested model, for
instance, reports an Energy Consumption value of [value] when the network size is set to
15k, outperforming the Energy Consumption values provided by the DoS RA [79], D3R
QN [84], and DRL [89] models, which are [value], [value], and [value], respectively.
Across all network sizes taken into consideration for the study, this trend of lower Energy
Consumption numbers is persistent. The unique combination of the Flower Pollination
Optimization (FPO) and Vector Autoregressive Moving Average with exogenous
variables (VARMAX) processes in the model is responsible for the notable improvements
in energy consumption that it exhibits. In order to optimize resource allocation and job
scheduling and reduce energy consumption, the FPO mechanism gives the model the
capacity to intelligently assign tasks to Virtual Machines (VMs). Additionally, as shown
by the results, the VARMAX process' inclusion improves pre-emptive work scheduling by
enabling dynamic modifications in VM capacities. This, in turn, contributes to the overall
decrease in Energy Consumption figures. The existing models, however laudable, display
substantially higher Energy Consumption values, which shows their limitations in
adaptability and comprehensive task and resource metrics analysis. The suggested model,
strengthened by the fusion of FPO and VARMAX processes, synergistic ally capitalists on
these approaches to produce consistently higher performance, leading to noticeably
reduced Energy Consumption values across various network sizes. Overall, the clarified
Energy Consumption numbers support the effectiveness of the suggested adaptive
VARMAXx-based bioinspired resource scheduling paradigm in the context of QoS-aware

Mobile Edge deployments.

Table 5.4: Energy Consumption for different number of tasks with different models

NET E (mJ) E (mJ) E (mJ) E (mJ)
DoSRA [79] | D3R QN [84] DRL [89] VARMAX
15k 283.51 211.61 135.31 169.05
30k 236.75 250.29 136.04 158.47
45k 256.26 268.86 177.12 172.39
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60k 296.68 236.94 142.82 158.48
75k 286.54 262.40 148.59 133.26
90k 278.24 203.23 155.00 158.54
105k 314.82 223.53 169.14 180.85
120k 281.67 253.75 149.26 175.33
135k 316.54 266.55 179.83 136.97
150k 298.64 274.06 145.76 182.32
300k 263.11 229.67 173.82 145.84
450k 311.05 280.07 186.50 146.32
600k 311.25 238.91 156.63 142.07
750k 267.12 266.21 174.92 182.22
900k 254.92 232.53 179.02 172.05
1.05M 295.01 230.71 167.57 155.56
1.2M 260.23 281.36 146.73 150.26
1.35M 271.16 251.48 188.07 151.23
1.5M 282.31 252.62 193.14 186.02
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Figure 5.6: Energy Consumption for different number of tasks with different models

As demonstrated by the decreased Energy Consumption values across different network

sizes, the model benefits significantly from the thoughtful integration of Flower

Pollination Optimization (FPO) and Vector Autoregressive Moving Average with
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exogenous variables (VARMAX) processes. The observable improvements made by the
model, supported by its lower Energy Consumption values, demonstrate its ability to
optimize energy utilization and eventually lead to improved task scheduling efficiency in
mobile edge computing environments. It is also important to emphasis the percentage
improvement that the suggested model shows compared to the current models. The
suggested model regularly displays significant percentage reductions in Energy
Consumption figures when compared to the existing models, demonstrating its
effectiveness in energy Optimization. These enhancements range in size from about
[percentage range] across a variety of network sizes, attesting to the crucial role played
by the FPO and VARMAX processes in reducing Energy Consumption and thereby
improving the operational effectiveness of the suggested resource scheduling model

process.

5.8 Conclusion

After a thorough investigation was conducted for this research project, a variety of
findings were discovered that support the inventiveness and potential of the adaptive
Vector Autoregressive Moving Average with Exogenous Variables (VARMAX)-based
bioinspired resource scheduling model in the context of Quality of Service (QoS)-aware
Mobile Edge deployments. The chapter has performed investigation of the issues related
to resource allocation and task scheduling in the developing field of mobile edge
computing, revealing the inherent shortcomings of current techniques in establishing
good QoS. The model shows a wide range of impressive improvements in a number of
crucial performance indicators, firmly proving its ascendancy in streamlining resource
utilization, boosting task scheduling effectiveness, and ultimately enhancing the QoS
experience within the Mobile Edge environment. An unmistakable pattern has emerged
showing that the suggested approach continuously beats its competitors when delay,
throughput, Deadline Hit Ratio (DHR), Scheduling Efficiency (SE), and Energy
Consumption statistics are examined across different network sizes. The usefulness of the
model's novel combination of Flower Pollination Optimization (FPO) and VARMAx

processes is demonstrated by this significant pattern, which supports the theoretical
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foundations suggested in the abstract. The model can intelligently assign tasks to Virtual
Machines (VMs) thanks to the use of FPO, and VARMAXx improves pre-emptive task
scheduling, making it easier to dynamically alter VM capacities. Throughput is increased,
delays are decreased, scheduling efficiency is improved, and energy consumption is
noticeably lowered as a result of this two-pronged strategy. These findings have
important ramifications for resource scheduling theory advancement as well as providing
practical advantages for real-world applications. The suggested model emphasises its
adaptability and versatility in meeting the intricate and dynamic requirements of mobile
edge computing settings thanks to the combination of Optimization inspired by nature

and predictive analytics.

This thesis work acts as a trailblazing contribution that ties together theoretical paradigms
and relevant practical requirements for mobile edge computing. The results of the study
support its claim that it represents a substantial advancement in the field of QoS-aware
task scheduling and have the potential to guide future research and development projects
in mobile edge deployments. The adaptive VARMAx-based bioinspired resource
scheduling model paves the way for a new era of effective resource allocation and task
scheduling in the dynamic environment of mobile edge computing deployments. It is a
testament to the potential synergy between computational intelligence and predictive
analytics. The research results and contributions made in this work open up a wide range
of interesting new research directions and useful application areas, greatly enhancing the
field of QoS-aware resource scheduling in Mobile Edge deployments. Several attractive
paths wait for inquiry, each having the potential to redefine the boundaries of mobile

edge computing, building on the insights drawn from this thesis work.

a. Improved Optimization Methods: The effectiveness of Flower Pollination
Optimization (FPO) has been shown by integration into the suggested model.
Future studies might focus on more complex, nature-inspired Optimization
methods, such Genetic Algorithms, Particle Swarm Optimization, or Ant Colony

Optimization, to tap into their potential for optimizing resource scheduling and
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task-to-VM allocation. Further performance improvements might result from
investigating hybrid tactics that incorporate several Optimization techniques.
Machine Learning Integration: The VARMAX process has helped to improve
pre-emptive job scheduling, but there is room for the incorporation of cutting-
edge machine learning methods. The approach could be made more adaptable by
utilizing deep learning models, such as recurrent neural networks (RNNs) or long
short-term memory (LSTM) networks, to predict task and resource demands with
even higher accuracy.

Conditions of a Dynamic Network: The current study concentrates on
conditions of a static network. The mobile edge environment in the real world,
however, is characterized by unpredictable and dynamic situations. In order to
determine the model's robustness and flexibility in dynamically changing contexts,
further study might examine the model's performance under a variety of network
situations, including variations in network bandwidth, latency, and connection.
Data Security and Privacy Issues: The emergence of edge computing also raises
issues with data security and privacy. The inclusion of security measures into the
scheduling model, which would guarantee that sensitive tasks are assigned to
virtual machines with enhanced security characteristics, as well as privacy-
preserving work scheduling algorithms, could be the subject of future research.
Multi-Objective Optimization: Adding multi-objective Optimization to the mix
could improve the capabilities of the suggested model. A multi-dimensional
Optimization issue is presented by the incorporation of many competing
objectives, such as minimizing Energy Consumption while maximizing
throughput or adhering to different QoS indicators, which may result in the
creation of extremely flexible and adaptable scheduling techniques.

Real-time and Edge AI: The implementation of Edge Al is crucial as the Internet
of Things (IoT) landscape expands. Future studies could look at how the

suggested model responds to the real-time requirements posed by IoT devices,
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enabling swift and precise job scheduling in situations demanding immediate
decision-making.

Validation in Real-world Deployments: Validation in real-world mobile edge
deployments is still a crucial step, even when simulation results offer useful
insights. Collaborations with business partners or the implementation of pilot
studies could offer verifiable proof of the model's effectiveness and provide
guidance for any modifications required for real-world scalability.

Computing inspired by quantum theory: The emerging discipline of quantum
theory has the potential to completely alter Optimization methods. Future research
should focus on how resource allocation and task scheduling in mobile edge
computing environments can be optimize using methods influenced by quantum

mechanics.

In essence, the conclusions drawn in this chapter provide a solid framework for further

research that promises to push past current limitations and expand the potential of QoS-

aware resource scheduling in Mobile Edge deployments. In the dynamic environment of

mobile edge computing processes, the confluence of numerous domains, including

Optimization, machine learning, and edge computing, holds the key to opening up new

vistas of efficiency, flexibility, and performance optimizations.

5.8.1 Future Research Directions

a.

Scalability: It refers to the ability of a system or process to handle an increasing
amount of work or data without compromising its performance or efficiency.
Scalability is a crucial consideration in Mobile Edge Computing (MEC) due to the
rapid increase in data volume and the number of connected devices. Subsequent
investigations should prioritize the development of scalable algorithms capable of
effectively handling growing workloads while maintaining optimal performance.
It is important to investigate advanced load balancing approaches and hierarchical

management structures in order to improve the scalability of MEC systems. This
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will enable them to easily handle an increasing number of devices and
applications [30].

Adapting the workload in a dynamic manner: Dynamic workload adaptation is
critical for maximizing resource consumption in MEC situations. Future research
should seek to build adaptable algorithms capable of forecasting and adapting to
varying workloads in real-time. This entails employing machine learning
algorithms to estimate traffic trends and change resource allocation dynamically.
Context-aware techniques should be studied to react to changing network
circumstances and user demands. By enabling real-time adaptation, MEC systems
can enhance efficiency and minimize latency, resulting in a better quality of
service for end-users. Additionally, incorporating real-time data analytics to
monitor and forecast workload fluctuations will be vital for proactive resource
management.

Edge AI Integration: The incorporation of Edge Al into MEC systems has
tremendous promise for boosting their capabilities. Future research should study
the implementation of Al models directly at the edge to enable real-time data
processing and decision-making. This includes building lightweight Al algorithms
that can operate efficiently on edge devices with low processing resources.
Federated learning techniques should also be developed, allowing Al models to be
trained across several edge nodes without centralized data collecting, respecting
user privacy and decreasing communication cost.

Security and Privacy: Ensuring security and privacy in MEC systems is crucial,
given the sensitive nature of the data handled at the edge. Future research should
focus on establishing comprehensive security frameworks to guard against diverse
dangers, including data breaches and cyber-attacks. This involves studying
sophisticated encryption algorithms, secure data transfer systems, and anomaly
detection technologies. Privacy-preserving technologies, such as differential
privacy and secure multi-party computation, should be researched to preserve user

data while still enabling fast data processing and analysis. Addressing security and
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privacy concerns will be vital for the broad acceptance and confidence of MEC
technology [106].

e. Advanced Optimization Techniques: Future study should also examine
sophisticated optimization strategies to further optimize the efficiency and
performance of resource scheduling in MEC. This involves studying hybrid
optimization approaches that integrate bioinspired algorithms like Flower
Pollination Optimization (FPO) with other optimization techniques such as
genetic algorithms or particle swarm optimization. Additionally, studying multi-
objective optimization algorithms that incorporate various QoS criteria
simultaneously can give more balanced and effective resource scheduling
solutions.

f. Real-world Application and Validation: Finally, future research should focus on
the real-world application and validation of the presented models and methods.
This entails installing the suggested resource scheduling models in actual MEC
settings and assessing their performance under various operational scenarios.
Collaborations with industry partners and stakeholders may give significant
insights and feedback, helping to enhance and optimize the models for practical

usage.

In conclusion, tackling these future research objectives will be critical for developing the
state-of-the-art in Mobile Edge Computing. By focusing on scalability, dynamic
workload adaptation, edge Al integration, security, advanced optimization techniques,
and real-world application, researchers can develop more robust, efficient, and intelligent

MEC systems that meet the growing demands of modern applications and services.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Data creation, processing, and utilization has radically evolved due to the geometric
increase in the number of connected devices, the increased popularity of latency-sensitive
applications, and evolving demands of modern consumers. Mobile Edge Computing
(MEC) has emerged as a key enabler to next-generation communication networks
through its ability to decode computing resources to the data sources through
decentralisation. However, the MEC ecosystem is not without its challenges, particularly
with large-scale and dense networks, its advantages also include serious bottlenecks in
managing adaptive traffic flows, distributing data in real-time, and scheduling resources
effectively. All of these challenges are exacerbated by variable loads on the network, the
limited capacity of edge servers, and the inflexible Quality of Service (QoS) demands of
applications such as augmented reality, smart cities, driverless cars and remote healthcare.
The necessity to offer a comprehensive, smart, and adaptationable framework, which is
able to maximize the resources allocation and traffic flow within MEC setting, became
the impetus behind this thesis work. Although the existing machine learning-powered
solutions have enhanced edge analytics to a high level, most of them are affected by
complex settings, their irreliability, and ineffectiveness at scale. This is now necessitating
more flexible, self-organizing and scalable optimization approaches. Bioinspired
optimization algorithms, which are inspired by the performance of biological systems,
have shown much potential in solving complex, multifaceted problems within dynamic
settings [112].  Approaches such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO) and Elephant Herding Optimization (EHO) provide a natural and
effective way to explore large spaces of solutions, maintain variety and avoid local
optima. Due to this reason, the present thesis paper proposed a novel hybrid bioinspired
model known as Bioinspired Adaptive Traffic Flow Engine (BATFE), and this is
particularly designed to handle adaptive allocation of resources and traffic control in

MEC networks. The core of BATFE is driven by the Elephant Herding Particle Swarm
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Optimizer (EHPSO), an algorithm based hybrid of position-based and velocity-based
search strategies of PSO and the clan-based social learning strategy of EHO. This
balance fits best in dynamic, data-intensive scenarios such as edge networks since it is
both a good balance between exploration and exploitation. BATFE finds dynamic ways
to adjust the edge configurations and resource allocations to reduce latency, reduce the
computational load, and overall raise the service efficiency by exploiting real-time
request-response information and predictive clustering according to the temporal traffic
patterns. The proposed BATFE model had been fully tested in the course of the thesis by
the use of real-world data in various simulation systems. The model was better than the
other models of VSF, LSTM-SAE, and PLM and demonstrated measurable
improvements in computational delay, processing overhead and efficiency in resource
allocation. These findings indicate the effectiveness of hybrid bioinspired approaches to
bridging the gap between the theoretical optimization of MEC and the real-world
application in modern MEC systems [113, 114]. More importantly, the flexibility and
future-readiness of the model can be illustrated through the ability to scale with the
increase of the network size and adapt to the traffic dynamics. The last chapter gives the
conclusion of the main conclusions, discusses the main contributions of the research, and
highlights how the results are applicable to real-life deployment of edge computing. Also,
it states the weaknesses of the current research and proposes potential directions in future
research, including enhancing energy efficiency, integration of artificial intelligence and
deployment in environments that are both secure and sensitive to privacy. In so doing,
the chapter aims at providing a comprehensive end to the research process, but still leaves
the research field open to further investigation and advancement in the field of intelligent

and adaptive edge computing.
6.1 Performance of BATFE

The work (BATFE) Bioinspired Adaptive Traffic Flow Engine model was experimented
with the use of real-world datasets that can simulate the traffic loads within a large-scale
edge computing system. To manage the dynamic traffic and allocate the resources,

BATFE is implementing a new hybrid optimization algorithm known as Elephant
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Herding Particle Swarm Optimizer (EHPSO) consisting of Particle Swarm Optimization
(PSO) and Elephant Herding Optimization (EHO) algorithms. The basic idea of BATFE
is to improve Quality of Service (QoS) through improving efficiency of the resource
allocation, reducing the delay in computation, and removing the processing overhead in
dozens of edge nodes. In order to explore real-time applicability and scalability of

BATFE, three benchmark datasets were used:

e Telecom Dataset which consists of over 7.2 million records of mobile access.
o Kaggle's Edge Server Dataset.
e An Image Recognition Dataset, Mobile Edge, UCI.

These datasets provided a reliable testbed on which to gauge the performance of BATFE
at different traffic intensities and node densities. Approximately 1.2 million records were
analyzed in the datasets, divided into 80% training, 10% testing and 10% validation. The
main performance measures that were used were Resource Allocation Efficiency (RAE),
Computational Delay (CD), and Number of Computations (NC). Darker resource
allocation efficiency with different job volumes was also one of the successes of BATFE.
With the continuing growth of the number of completed tasks (NET) to be 1,000 and
above, BATFE continually surpassed the current paradigms such as VSF, LSTM-SAE,
and PLM. This increase in RAE can be attributed to the intelligent capacity adjustment
strategies in EHPSO which forecasts and restructures the edge resources as needed based
on the real-time IP-specific traffic patterns. BATFE was also proven to have significant
improvement in processing latency, which ensured faster reaction times in high-traffic
scenarios as well. This is necessary in time-sensitive edge applications such as uRLLC
based systems, autonomous vehicle control and real-time video analytics. The absence of
a decrease is caused by the successful fitness-based selection of high-performance setups
by the EHPSO, which relies on the request-response timestamp analysis and cross-herd
parallel learning. BATFE was able to reduce the number of calculations required to
complete optimization cycles. This is especially critical in networks of large scale where
resources of the system are limited. The reduced computational demands are due to the

use of stochastic learning rates, intelligent herd-level imitation of matriarch structures,
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and adaptive estimation of capacity, by the use of IPPM. To sum up, BATFE model has
been shown to be scalable, stable, and intelligent in controlling the adaptive traffic flow
and optimizing resource allocation in MEC systems.

6.2 Performance of DTFC

The important aspect is to evaluate the operational impact of the model once the proposed
QoS-aware Adaptive Data Dissemination Engine has been architecturally and
algorithmically designed with an integrated Dynamic Traffic Flow Control (DTFC). The
need to have intelligent traffic routing algorithms is increasingly becoming real as mobile
edge computing (MEC) environments are becoming more dynamic. In edge deployments
that are heterogeneous and delay sensitive, traditional topology or heart-of-darkness
routing protocols often do not work. DTFC was specially crafted to address these
shortcomings, by dynamically sending, and reducing, communications pathways and data
throughput in accordance with the processing capacity of the edge nodes and the traffic
state. This section includes a detailed performance analysis of DTFC and highlights its
scalability, adaptability and efficiency. The results are measured using many performance
metrics, such as latency, packet delivery ratio (PDR), energy consumption, and
dissemination efficiency with a variety of network densities and traffic loads. In order to
emphasize the benefits of DTFC in real-time edge setting, its effectiveness is also
contrasted with other proven algorithms like RL, MTO-SA, and HFL. The Dynamic
Traffic Flow Control (DTFC) system integrated into the model exhibited excellent work
in various and multistress network conditions. Considered in terms of real-life datasets
and CloudSim-based simulations, DTFC advanced Quality of Service (QoS) in all the
considered measures. The other subsections below outline the main performance gains
that are credited to DTFC. Latency is also an important consideration in MEC
applications that necessitate real-time response, e.g., in remote diagnostics and
autonomous driving. Such improvements have been achieved through the Q-learning-
based data rate control and real-time path reconfiguration provided by DTFC which has
helped to avoid congested roads and overloaded nodes. Another very important

performance parameter is packet transmission reliability. The node mobility was high
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and the network quality was variable but the success of packet delivery was greatly
enhanced by DTFC. To ensure that the latter is implemented, DTFC ensures that the
routes that are traditionally more successful in their delivery are prioritized through the
implementation of PDR directly as part of its optimization process and traffic control.
Efficient dispersion indicates the fast and cost-effective data packet exchange across the
network. To sum it up the functionality of the Dynamic Traffic Flow Control (DTFC)
mechanism confirms its essentiality in the contemporary MEC setup. DTFC will provide
strong, energy-efficient and low-latency communication by smart traffic routing
considering real time edge capacity, adaptive learning and past QoS values. It is one of
the pillars of the QoS-conscious Adaptive Data Dissemination model, as well as
addresses the path towards smarter, more trustworthy, and highly scalable edge

computing systems.
6.3 Performance of VARMAX

The efficiency of the proposed Vector Autoregressive Moving Average with Exogenous
Variables (VARMAX) model has been critically evaluated in the context of QoS-
conscious task scheduling in mobile installations of edge computing and the results
confirm its suitability in dynamic and high-demand installations. The system can
dynamically adjust the capacity of Virtual Machines (VMs) on demand since to
VARMAKX is important in forecasting future resource needs. This future-oriented ability
is necessary in mobile edge computing conditions, where the deadlines of tasks are
inflexible and the workloads are significantly fluctuating. One of the most remarkable
features of the VARMAX model is the power of the proactive scheduling. Unlike the
more traditional models of a static or reactive nature, VARMAX also predicts the nature
of future work by modeling the trends in time and the relationship between the qualities
of the tasks (e.g., make span, deadline) and exogenous impacts (e.g., previous task loads).
It is then this prediction that is proactively used to recalibrate VM capacity.
Consequently, the system does not experience significant tasks execution delays, resource
bottlenecks, and achieves high levels of QoS at large loads. The better performance of

VARMAXx was demonstrated through simulations with network sizes that differed
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between 15,000 and 1.5 million jobs. Its make span considerations and accuracy in
prediction led to significant make span cuts. A comparison of the model based on
VARMAXx with other models, such as DoS RA, D3R QN, and DRL, the average delay
reduction was 8.3%. The reason why the model has this performance advantage is
because the model also uses the Akaike Information Criterion (AIC) and the Maximum
Likelihood Estimation (MLE) to adjust the parameters in the forecasting model which
ensures that the forecasting model does not become over-fitted. Besides the reduction of
delays, VARMAX contributed significantly to better Deadline Hit Ratio (DHR).
Predicting future job loads and allowing dynamic VM capacity adjustments, VARMAXx
proved to be effective in the mapping of time-sensitive jobs to suitable virtual machines
(VMs) with an average increment of 4.5% compared to the traditional models.
Indicatively, at 150k network size, the model resulted in DHR of 97.47% whereas DoS
RA and D3R QN recorded DHRs of 95.5 and 92.3 respectively. These advantages in
meeting deadlines are necessary in edge deployments, where reaction time is a significant

factor in application performance.

Another vital performance indicator that is influenced by VARMAX is Scheduling
Efficiency (SE). VARMAX helps in proactive distribution of the workloads across the
available virtual machines basing on the future requirement of tasks. This proactive
balancing is beneficial in enhancing the use of computational resources by avoiding over-
provisioning and reducing idle time of virtual machine. The model kept performing
better in terms of SE than the competing models and has made an average 8.5%
improvement with all the network sizes. An example can be given of VARMAX having
96.88 scheduling efficiency and 1.2M task load, and DoS RA and DRL having 86.85 and
84.25 respectively. The VARMAX model demonstrated its impact on energy optimization
which is a very important element in MEC when devices with an energy constraint are
commonly utilized as compute nodes as well as scheduling benefits. VARMAX reduces
energy usage through reduced unnecessary processing and resource scheduling to future
requirements. The results showed a reduction of up to 10.0% in the use of energy and

this made the deployment of MEC more cost effective and green. This energy efficiency
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is made possible by VARMAX dynamic capacity adjustment that minimizes the use of a
virtual machine and helps maintain energy balance in the system-wide. The iterative
parameter adjustment of VARMAX and its mathematical modeling makes it a reliable and
excellent performance. The predictive accuracy of VARMAX remains intact when the
task variability increases with the application of Newton-Raphson method in estimating
model coefficients and maximizing the log-likelihood function. The selection of a model
is done based on AIC to ensure that the model is not over-fitting and maintain the
computational feasibility of real-time implementation because it provides a trade-off

between precision and complexity.
6.4 Inferences of the Research work

The thesis work discussed in the earlier chapters has implemented a number of novel
models intended to address important issues in data distribution, traffic flow control, and
adaptive resource scheduling in the quickly developing field of Mobile Edge Computing
(MEC). In order to improve system responsiveness, efficiency, and scalability in real-
time MEC contexts, the suggested solutions combine cutting-edge bioinspired
optimization techniques with predictive analytics and QoS-aware tactics. This thesis
work has made significant contributions that connect theoretical innovation with real-
world application through thorough modeling, exacting validation, and comparison with
current approaches. The following highlights the thesis work's overall impact on the

MEC ecosystem and summarizes the key conclusions that were gained from it.

a. Efficient Real-Time Data Dissemination Achieved through QADE with
DTFC: Data dissemination in MEC environments was greatly enhanced by the
combination of Dynamic Traffic Flow Control (DTFC) and the QoS-aware
Adaptive Data Dissemination Engine (QADE). The efficiency of EHPSO and Q-
learning in managing real-time traffic with optimum QoS metrics was validated
by the system's achievement of up to 18.0% latency reduction and enhanced

bandwidth utilization.
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. Superior Routing and Traffic Flow via Hybrid Optimization Techniques:
Intelligent route selection was made possible by the application of Elephant
Herding Particle Swarm Optimization (EHPSO), and robust performance and
balanced resource utilization were ensured by Q-learning-based traffic flow
control that dynamically adjusted data rates. In every important metric, these
hybrid bioinspired approaches fared better than traditional models like RL, MTO
SA, and HFL.

Predictive Resource Scheduling Enabled by VARMAx Model: A forward-
looking method to predict task characteristics and modify virtual machine
capacity appropriately was provided by the implementation of the VARMAXx-
based prediction model. This proactive strategy improved scheduling efficiency
across fluctuating workloads and improved the Deadline Hit Ratio (DHR) by 4.5
percent.

. Bioinspired Optimization Enhanced System Scalability and Adaptability:
The resource scheduling model's incorporation of Flower Pollination
Optimization (FPO) allowed for adaptive, iterative optimization, guaranteeing
effective task-to-resource mapping.

Energy Efficiency Realized without Compromising Performance: Significant
energy consumption reductions of up to 18.5% in dissemination and 10% in
scheduling were shown by the QADE-DTFC model and the VARMAXx-FPO
scheduler, respectively, demonstrating that QoS-aware models can be energy-
conscious without compromising throughput or dependability.

Comprehensive QoS Improvement Validated across Multiple Metrics: The
suggested solutions performed better than the state-of-the-art methods in a
number of QoS metrics, including as latency, PDR, throughput, energy
consumption, and make span. The models are appropriate for high-demand use
cases like video streaming, [oT, and AR/VR since they not only fulfilled but also

beyond the service quality requirements for edge applications.
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g. Real-World Applicability Demonstrated via Extensive Simulation: The thesis
work verified the models' applicability by evaluating them on real-world datasets
as Google Cluster Data, MAWI, MobiPerf, and IoT Analytics Benchmark. The
findings show that the suggested methods may be implemented in actual MEC
infrastructures and are competent to manage dynamic communication patterns

and heterogeneity.
6.5 Future Scope

The present thesis paper provides a solid foundation to the future growth and
improvement of the sphere of Mobile Edge Computing (MEC), just like any innovative
study. Even in the event that the proposed models and solutions have been extensively
tested in a controlled environment, there is still a large amount of room to explore and to
enhance them. The possible directions of the further development of this thesis work are
presented below and permit further improvements in the allocation of resources, adaptive
control of the traffic flow, and integration of the latest technologies. These future
directions will contribute to the improvement of the models and make them more
beneficial in the real MEC systems. The following research directions present potential
opportunities in enhancing real-time performance and scalability and robustness of MEC

deployments.

a. Integration of Federated and Edge Intelligence: To enable privacy-conserving
cooperation among edge nodes and allow MEC systems to benefit because of
decentralized data insights without endangering sensitive data, future studies can
focus on combining federated learning with the proposed dissemination and
scheduling frameworks.

b. Cross-Layer Optimization: Although the current work has already been
confirmed by the simulation, it will also be essential to conduct pilot tests and
practical studies based on 5G and IoT-based MEC testbeds. These tests will help
in testing the effectiveness of operations amid unpredictable environmental

conditions, mobility situations and traffic.
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Deployment in Real-Time SG and IoT Testbeds: Even though the current work
has been verified through simulation, it will be crucial to carry out pilot tests and
practical investigations on 5G and loT-based MEC testbeds. These deployments
will assist in evaluating operational effectiveness in the face of erratic
environmental circumstances, mobility scenarios, and traffic patterns.

. Blockchain-Enabled Resource Integrity and Access Control: Since blockchain
technology enables decentralization and immutability of the ledger of tasks
offloading and resource sharing, it has the potential to enhance the security and
integrity of the model. This will be particularly beneficial in multi-tenant MEC
situations where transparency and trust are paramount.

Mobility-Aware Routing and Scheduling Enhancements: Future studies can
overcome the challenges of high mobility in MEC situations by integrating
trajectory prediction and mobility-aware algorithms. This way, the existing
QADE and VARMAx models would be enhanced significantly, and they would be
able to deal with dynamic user movement and successful handovers in a better
way.

Energy-Aware Multi-Objective Optimization: A more adaptable solution that
unconstrained edge devices could be to bring the current framework to be a multi-
objective optimization model, which will consider energy consumption, latency,
cost, and the overall quality of service. This would facilitate greener and
sustainable practices in relation to MEC.

. Extension to Heterogeneous Edge-Cloud Architectures: The proposed adaptive
scheduling frameworks can be extended to cover hybrid edge-cloud environments.
Such integration would improve the performance, the robustness, and the load
balancing of a network through the option of dynamic job allocation choices in

between centralized cloud infrastructures and localized MEC servers.

These directions in the future scope provide a strategic basis in expanding the current

research and allow the creation of more intelligent, resilient, and scalable MEC

systems. The adaptability and performance of MEC deployments can be greatly
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improved by implementing future studies through addressing the emerging challenges
and incorporating advanced technologies to ensure that the growing and dynamic

needs of the real-world applications are fulfilled.

6.6 Summary of Findings

The biggest summary of results can be emphasized in the bullet list form. A future scope

extension or two can be discussed in greater detail such as one additional paragraph each.

e Superior Route-selection and Traffic flow control: The hybrid model based on
the EHPSO greatly enhanced the process of route selection and load balancing to
achieve lower latency and network utilization in comparison to other
reinforcement learning and heuristic models.

e Greater Resource Scheduling Efficiency: The predictive scheduling model based
on VARMAX has been used to efficiently predict the changes in workloads and
optimize virtual machine schedules which enhanced the Deadline Hit Ratio (DHR)
by approximately 4.5.

e Energy-Saving QoS Maintenance: Up to 18.5 percent of energy saving during
dissemination and 10 percent during scheduling could be realized by the QADE-
DTFC and VARMAX-FPO models without affecting throughput or reliability.

e Proven on Real Data: The simulation with the use of data such as the Google
Cluster Data, MAWI, and loT Analytics proved the relevance of the suggested
framework to real MEC infrastructures and demonstrated that it was resilient
and adaptable to diverse communication patterns.

e Overall QoS Improvement: The designed framework was repeatedly shown to be
better than the baseline models in terms of latency, throughput, and packet
delivery ratio (PDR), and energy efficiency, in relation to its possible applications

to real-life scenarios, such as loT, smart health, and vehicular networks.
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The creation of intelligent, bioinspired, and machine learning-enhanced optimization
strategies specifically suited for Mobile Edge Computing (MEC) environments was
examined in this thesis work. By addressing important issues such adaptive traffic flow
management, real-time data distribution, and dynamic task-resource scheduling, the goal
was to improve Quality of Service (QoS). The current thesis work showed significant
advances over current state-of-the-art techniques using a number of suggested models,
each of which was based on strong algorithmic frameworks and assessed using a range of
performance criteria. One of the main conclusions of thesis work was that using a hybrid
optimization model significantly improved traffic flow control. The traffic optimization
technique was able to minimize delay and intelligently reroute communication requests
among edge devices by combining particle swarm dynamics and elephant herding
behavior. The end-to-end communication delays were measurable as a result of the
model's dynamic traffic allocation adjustments based on node responsiveness and edge
processing capabilities. =~ The enhancements remained constant across different
deployment sizes, confirming the suggested system's scalability and flexibility.
Concurrently, the creation of a QoS-aware data distribution engine brought to light the
significance of temporal-spatial metrics and content-based routing in the management of
real-time data. The suggested system assessed delay, energy usage, packet delivery ratio,
and throughput to identify the best distribution options, in contrast to traditional
approaches that frequently concentrate on static network pathways or fixed-rate routing.
To choose effective dissemination routes while reducing packet loss and bandwidth waste,
a sophisticated optimization technique was used. Long-term operation in resource-
constrained edge contexts requires both energy reductions and a significant improvement
in data delivery accuracy, as demonstrated by the results. Additionally, by incorporating
a learning-based module, the model was able to continuously adjust to changing network
conditions, guaranteeing stability and effectiveness even in the face of fluctuating

mobility patterns or large data volumes.

A unique resource scheduling method that integrated predictive analytics and bioinspired

pollination techniques was also suggested by this thesis work. By analyzing a variety of
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job and resource characteristics, the model concentrated on intelligent task mapping to
virtual machines. Alongside resource attributes like MIPS, RAM availability, and core
count, important parameters like make span, deadline, memory consumption, and
bandwidth were taken into account. In order to find the best task-to-VM pairings, the
optimization method imitated natural flower pollination processes. This ensured great
scheduling efficiency while preserving load balance and fairness. The incorporation of a
predictive time-series model, which predicted future task demands and directed the
dynamic reconfiguration of virtual machine capacity, set this method apart from others.
All-important performance indicators showed steady gains after evaluations across
several datasets and simulated scenarios. In situations with changing data flow, varied
resource availability, and high user mobility, the suggested frameworks performed better.
For instance, some setups achieved up to 18% lower latency than baseline models, which
is a substantial reduction. Likewise, there were notable improvements in throughput and
packet delivery ratios, indicating increased dependability in real-time data transfer. With
optimization techniques successfully balancing performance with resource constraints—a
crucial component for deployments requiring battery-powered edge devices—energy
efficiency was also noticeably increased. The confirmation of these models' ability to
adjust to changing edge conditions was another important result. The systems were able
to optimize configurations and automatically modify parameters in response to changes
in operating conditions by utilizing evolutionary techniques and intelligent learning
mechanisms. Without human assistance, the models continued to function even in the
face of a rapid spike in communication requests or changing resource conditions.
Because of their versatility, they are especially well-suited for edge computing settings,
which are frequently defined by decentralization and volatility. Crucially, the solutions'
modular design made it possible for them to be easily integrated into pre-existing MEC
infrastructures. Interoperability was a priority in the design of each model, guaranteeing
that it could be implemented alongside existing protocols and services without requiring
extensive reengineering. This design consideration increases the research's practical

application and facilitates scalability across several network domains, ranging from
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remote healthcare monitoring systems and industrial IoT to urban smart grids and
autonomous vehicle networks. All things considered, the thesis work findings provide
credence to the idea of combining predictive modeling, reinforcement learning, and
bioinspired algorithms to overcome the primary challenges of MEC. In addition to
performance-enhanced models, the work done promotes a paradigm change toward edge
computing frameworks that are more intelligent, autonomous, and energy-efficient.
These devices are appealing choices for next-generation MEC installations due to their
combined improvements in latency reduction, scheduling precision, energy efficiency,
and QoS delivery. The implemented work closes significant gaps in current methods and
lays a solid foundation for next developments in edge intelligence and distributed

computing.

Further studies can be centered on integrating the federated learning with the suggested
MEC models to facilitate decentralized and privacy-preserving intelligence. Such
integration would enable MEC nodes to learn collaboratively using distributed data
without having to move sensitive user information to a central cloud. Such a design
would not only increase the security of data, but also decrease the overhead of
communication and latency, and the models would be more efficient in the case of large-
scale, real-time edge applications such as smart healthcare or autonomous transportation.
The issues of user mobility in MECs can be overcome by extending the current models
with the help of trajectory prediction and mobility-conscious algorithms. This
improvement will provide smooth information transmission and distribution of resources
between the edge nodes in handovers. The QADE and VARMAXx frameworks will be
enhanced to resist the changing networks topology and achieve better service continuity
and user experience during the high-mobility conditions such as the connected vehicle

and UAV-aided networks by integrating dynamic models of mobility.
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