Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/5381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanika-
dc.contributor.authorSingla, Jimmy-
dc.date.accessioned2024-04-27T05:24:10Z-
dc.date.available2024-04-27T05:24:10Z-
dc.date.issued2022-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/5381-
dc.language.isoen_USen_US
dc.publisherLovely Professional University, Phagwaraen_US
dc.subjectComputer Science and Engineeringen_US
dc.titleFraud detection in online transactions using deep learning techniquesen_US
dc.typeThesisen_US
Appears in Collections:Ph.D Thesis

Files in This Item:
File Description SizeFormat 
kanika thesis report final.pdf2.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.