Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/7318
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaur, Manjot | - |
dc.contributor.author | Singh, Someet | - |
dc.contributor.author | Gehlot, Anita | - |
dc.date.accessioned | 2025-09-10T09:12:46Z | - |
dc.date.available | 2025-09-10T09:12:46Z | - |
dc.date.issued | 2025 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/7318 | - |
dc.language.iso | en_US | en_US |
dc.publisher | Lovely Professional University, Phagwara | en_US |
dc.subject | Electronics and communication engineering | en_US |
dc.title | Tulsi herb’s infection classification and prediction using artificial intelligence | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Ph.D Thesis |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Final thesis.pdf | 27.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.